Aug. 09, 2021

​Belowground feedbacks as drivers of spatial self-organization and community assembly

Link to the paper 

Inderjita,∗, Ragan M.Callawayb, EhudMeronc,d,**

aDepartment of Environmental Studies, Centre for Environmental Management of Degraded Ecosystems (CEMDE), University of Delhi, Delhi, India
bDivision of Biological Sciences and the Institute on Ecosystems, University of Montana, Missoula, MT, 59812, USA
cBlaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel
dPhysics Department, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel

Vegetation patterning in water-limited and other resource-limited ecosystems highlights spatial self-organization processes as potentially key drivers of community assembly. These processes provide insight into predictable landscape-level relationships be-tween organisms and their abiotic environment in the form of regular and irregular patterns of biota and resources. However, two aspects have largely been overlooked; the roles played by plant – soil-biota feedbacks and allelopathy in spatial self-organization, and their potential contribution, along with plant-resource feedbacks, to community assembly through spatial self-organization. Here, we expand the drivers of spatial self-organization from a focus on plant-resource feedbacks to include plant – soil-biota feed-backs and allelopathy, and integrate concepts of nonlinear physics and community ecology to generate a new hypothesis. According to this hypothesis, below-ground processes can affect community assemblages through two types of spatial self-organization, global and local. The former occurs simultaneously across whole ecosystems, leading to self-organized patterns of biota, allelochemicals and resources, and niche partitioning. The latter occurs locally in ecotones, and determines ecotone structure and motion, invasion dynamics, and species coexistence. Studies of the two forms of spatial self-organization are important for understanding the or-ganization of plant communities in drier climates which are likely to involve spatial patterning or re-patterning. Such studies are also important for developing new practices of ecosystem management, based on local manipulations at ecotones, to slow invasion dynamics or induce transitions from transitive to intransitive networks of interspecific interactions which increase species diversity.
©2021 Elsevier B.V. All rights reserved.