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1. Introduction

Discontinuous Deformation Analysis (DDA) is an implicit, dis-
crete element method proposed by Shi [1–4] to provide a tool use-
ful for investigating the dynamics of blocky rock masses and
systems composed of multiple blocks. The 2D-DDA was proposed
first, at the 1980s at UC Berkeley, and the 3D-DDA was published
later [5]. A good review of the essentials of DDA is provided by Jing
[6]. Reviews of DDA within the scope of other numerical methods
used today to solve problems in rock mechanics and rock engineer-
ing are provided by Jing [7], Jing and Hudson [8] and Jing and
Stephansson [9]. Many verification and validation studies have
been performed to test the capability of DDA to solve static as well
as dynamic problems since its publication. A comprehensive
review of 2D-DDA validations is provided by MacLaughlin and
Doolin [10]. The 3D-DDA, being a more recent development, has
not been verified extensively and this paper presents new and use-
ful validations also of 3D-DDA.

Many research groups have made modifications to the original
code developed by Shi [1,3,4] in an attempt to better address some
of the fundamental issues in DDA. For example, Lin et al. [11]
modified the original contact model of DDA, which is based on
the penalty method, by adopting the Lagrange type approach. Ning
et al. [12] modified the contact algorithm of DDA by adopting the
Augmented Lagrangian method. Bao and Zhao [13,14] have made
some enhancements to the vertex to vertex contact. In an attempt
to overcome the DDA simply deformable blocks assumption and
therefore uniform distribution of stresses within blocks, Shi [15]
developed the Numerical Manifold Method, using superposition
of a mathematical cover over the physical mesh of the blocks.
Bao and Zhao [16] have integrated the advantages of both DDA
and the finite element methods (FEM), and developed the hybrid
nodal-DDA (NDDA), thus improving the accuracy of stress distribu-
tion and allowing for crack propagation within blocks. Jiao et al.
[17] developed a two-dimensional contact constitutive model to
simulate the fragmentation of jointed rock. Several other research
groups have developed higher order DDA codes to address this
issue e.g. [18]. Jiao et al. [19] applied a viscous boundary in DDA
based on the standard viscous boundary condition provided in
the original DDA formulation, in order to deal with dynamic wave
propagation problems. Later on Bao et al. [20] implemented new
viscous boundary conditions to the 2D-DDA, in order to improve
the absorbing efficiency. Mikola and Sitar [21] developed a
3D-DDA formulation using an explicit time integration procedure,
and a different contact detection algorithm. Kim et al. [22] and Jing
et al. [23] have made a modification where they compute water
pressure and seepage through rock mass, this way coupling fluid
flow in fractures. More recent implementations of hydro-
mechanical coupling in DDA was developed by Chen et al. [24]
and Ben et al. [25]. Koyama et al. [26] combined the DDA and the
finite element method for fluid flow simulation to model the inter-
action between solid particles movement and fluid flow. Wu et al.
[27] developed a post-contact adjustment method to overcome
issues when addressing rock fall problems in the original code. A
model for cable bolt–rock mass interaction was integrated with
DDA by Moosavi and Grayeli [28]. Other useful developments
and applications of DDA are summarized in a series of ICADD pro-
ceedings (International Conference on Analysis of Discontinuous
Deformation) published biannually since 1995.

In this paper we review illustrative benchmark tests performed
by members of the rock mechanics group at the Ben-Gurion
University of the Negev (BGU), with the original codes of 2D and
3D-DDA. These tests could be performed in every development of
the DDA code, for verification purposes. We compare all bench-
mark tests reported here with analytical solutions, some developed
at BGU and some adopted from existing publications. The authors
do acknowledge other verification studies performed by other
research groups, such as the extensive study of sliding blocks per-
formed at Nanyang Technological University in Singapore [29],
slope stability kinematics [30] and analysis of three-hinged beams
[31] performed at U.C. Berkeley, and more, but here only verifica-
tions resulting from BGU research are discussed, for brevity.
Verifications that have already been published are briefly summa-
rized. New verifications that have never been published are pre-
sented more thoroughly.

We begin with a brief summary of DDA fundamentals in
Section 2, followed by review of published verifications of
2D-DDA in Section 3, and presentation of published and newly
developed results of 3D-DDA in Section 4. Summary of results
and conclusions are presented in Section 5.

2. DDA fundamentals

DDA considers both statics and dynamics using a time-step
marching scheme and an implicit algorithm formulation. The static
analysis assumes the velocity of the different block elements is
zero at the beginning of each time step, while the dynamic analysis
assumes the velocity at the beginning of a time step is inherited
from the previous one. The criterion for convergence in DDA is that
there will be neither tension nor penetration between the blocks.
These two constraints are applied using a penalty method, where
stiff springs are attached to the contacts. Extension or compression
of the springs are energy consuming, therefore the minimum
energy solution utilized in DDA assures no penetration or tension
between the blocks.

In the original code of the DDA, a damping submatrix was not
incorporated in the equilibrium equations. There are two ways to
introduce damping in the original code: the time step marching



Fig. 2. Block displacement vs. time for the case of a block on an incline –
gravitational loading only. Comparison between analytical (lines) and DDA
(symbols) solutions, as computed by Kamai [35], after MacLaughlin [36].
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scheme introduces algorithmic damping [32], that is determined
by the time step size used, and will be briefly discussed later,
and kinetic damping. The latter can be applied by assigning a num-
ber lower than 1 for the dynamic control parameter: a value of zero
means the analysis is static and the velocity is zeroed at the begin-
ning of each time step, a value of unity means the analysis is fully
dynamic and the velocity at the beginning of a time step is inher-
ited from the previous one, and any value between zero and one
corresponds to the percentage of the velocity that is inherited from
one time step to the next. For example, a value of 0.98 corresponds
to 2% kinetic damping.

In this section the basic equations of the 2D-DDA will be briefly
reviewed. The 3D-DDA shares the same basic principles, extended
to 3D. In the DDA method the simultaneous equilibrium equations,
which are derived by minimizing the total potential energy of the
system, P, are written as:

M€dþ C _dþ Kd ¼ f ð1Þ
M, C, and K are the mass, damping, and stiffness matrices, respec-
tively, and d and f are the displacement unknowns and force vec-
tors. In a two-dimensional DDA model with n blocks, the basic
element is a block with six unknowns:

di ¼ fu0 v0 r0 ex ey cxy gTi ; ði ¼ 1;2; . . . ;nÞ ð2Þ
where (u0, v0) are the rigid body translations, r0 is the rotation angle
of the block with respect to the rotation center at (x0, y0), and ex, ey
and cxy are the normal and shear strains of the block. As shown by
Shi [3], the complete first order approximation of displacements at
any point (x, y) takes the following form:

ux

uy

� �
i

¼ Tidi; ði ¼ 1;2; . . . ; nÞ ð3Þ

where

Ti ¼
1 0 �ðy� y0Þ ðx� x0Þ 0 ðy�y0Þ

2

0 1 ðx� x0Þ 0 ðy� y0Þ ðx�x0Þ
2

" #
i

ð4Þ

By adopting first order displacement approximation, the distri-
bution of the stresses and strains is constant within a block.

Assuming the velocity at the beginning of the time step, which

can be obtained from the previous time step, is _d0, and that the
time interval of a single time step is D, then:

€d ¼ 2
D2 ðd� t _d0Þ;

_d ¼ 2
D
d� _d0

ð5Þ

By substituting Eqs. (5) into (1) the simultaneous equilibrium
equations can be rewritten as:

K̂d ¼ f ð6Þ
Fig. 1. Schematics of the block on an inclined plane problem.
where K̂ is the equivalent global stiffness matrix. Eq. (6) can be
written in a sub-matrix form as follows:

K11 K12 K13 � � � K1n

K21 K22 K23 � � � K2n

K31 K32 K33 � � � K3n

..

. ..
. ..

. . .
. ..

.

Kn1 Kn2 Kn3 � � � Knn

2
66666664

3
77777775

d1

d2

d3

..

.

dn

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

¼

f1
f2
f3
..
.

fn

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

ð7Þ

where Kij(i, j = 1, 2, . . ., n) are 6 � 6 sub-matrices; di and
fi(i = 1, 2, . . ., n) are 6 � 1 sub-matrices corresponding to block i.
For more details the interested reader is encouraged to refer to basic
DDA Refs. [1,3,4].

3. Benchmark tests for dynamic 2D-DDA

In this section we will review verification studies of 2D-DDA,
performed by the Rock Mechanics research group at the Ben-
Gurion University of the Negev.

3.1. Block sliding on an inclined plane

A block sliding on an inclined plane is a classic problem in rock
mechanics, as it is a simple and intuitive model for some cases of
rock slopes, and has a straightforward analytical solution. The
DDA has been verified by several researchers with the analytical
solution for a block on an inclined plane. Tsesarsky et al. [33]
and Kamai and Hatzor [34] have verified the 2D-DDA with the ana-
lytical solution. Ning and Zhao [29] have verified the 2D-DDA for a
block sliding on an inclined plane under horizontal and vertical
accelerations, and under different mechanisms of loading. In this
subsection the analytical solution for a block on an incline is briefly
reviewed, and the results of former verification studies of the
2D-DDA are presented.

3.1.1. Analytical solution
The model of a block on an inclined plane is presented in Fig. 1.

The inclination angle of the slope is a, and the friction angle of the
sliding interface is /. The forces acting on the block are its self-
weight mg, the normal from the plane N and the frictional force
at the interface between the block and the plane, f. In the most gen-
eralized case, where an external force is applied on the block in the
form of a harmonic function (Fig. 1), the downslope displacements
of the block can be calculated by:
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Fig. 3. Verification of the dynamic case of a block on an incline for three different interface friction angles: top—input acceleration function; center—comparison between
analytical (solid line) and DDA (symbols) solutions; and bottom—relative error for each simulation. After [34].

Fig. 4. (a) Schematics of the block on an incline and the angles controlling its mode. (b) An example for the failure mode chart for gravitational loading, at / = 30�. After [43].
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dðtÞ ¼ 1
2
gðsina� cosa tan/Þt2 � A

x2 sinðxtÞðcosa

þ sina tan/Þ þ _d0t þ d0 ð8Þ

where g is the acceleration of gravity, tan / is the friction coefficient
of the sliding interface, A and x are the amplitude and angular fre-

quency of the harmonic input acceleration, respectively, _d0 is the
initial velocity of the sliding block and d0 is its initial displacement.

3.1.2. Block sliding on an incline with 2D-DDA
Kamai [35] performed a verification study of a block sliding on

an inclined plane subjected to gravity (A = 0), starting at rest

ð _d0 ¼ 0; d0 ¼ 0Þ, for an inclination angle of a = 28�, and five differ-
ent values of friction angle /: 5�, 10�, 15�, 20� and 25�. She obtained
a good agreement between the two solutions (Fig. 2), demon-
strated by the relative numeric error, EN:

EN ¼ dA � dN

dA

����
���� � 100% ð9Þ

where dA and dN are the analytical and numerical displacements,
respectively. She found that the relative numeric error increases
with increasing friction angle, and was lower than 8% for / = 25�,
and at the order of 0.05% for / = 5�.

Kamai and Hatzor [34] then proceeded to loading the block with
a sinusoidal horizontal acceleration, as in Fig. 1. In this case,
downslope sliding will initiate only when the yield acceleration,
ay = g tan (/ � a), is exceeded, at time h = sin�1(tan (/ � a)g/A) ⁄
(1/x), a model proposed by Newmark [37] and Goodman and Seed



Fig. 5. Free body diagram and sign convention used in this paper for the rocking
block problem.
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[38], and today largely referred to as ‘Newmark type’ analysis. In

this case, Eq. (8) becomes (assuming that dðhÞ ¼ _dðhÞ ¼ 0):

dðtÞ ¼ gbðsina� cosa tan/Þð1=2t2 � ht þ 1=2h2Þc þ A
x2

� ½ðcosaþ sina tan/Þðx cosðxhÞðt � hÞ � sinðxtÞ
þ sinðxhÞÞ� ð10Þ

The downslope displacements, d(t), are calculated while ay is
exceeded for the first time at h1, or the block’s velocity is positive.
If neither condition is fulfilled, the block is at rest, and will initiate
sliding only once ay is exceeded again, at h2, and so on.

Kamai and Hatzor [34] have used this solution to verify the
2D-DDA. The inclination angle they used for the slope was
a = 20�, with friction angles of 22�, 30� and 35�. They obtained an
excellent agreement between the analytical and numerical solu-
tions, with relative numerical error lower than 1% for most of the
simulation time (Fig. 3).

3.2. Failure mode mapping for the block on an incline problem

A block on an incline, of which sliding failure was reviewed in
Section 3.1, has actually four possible modes: it can stay at rest,
Fig. 6. Solution for dynamic column rotation (b = 0.2 m, h = 0.6 m). Left: input amplitu
toppling. Solid line: analytical solution, open circles: DDA. From [47].
it can slide, it can topple, or it can slide and topple simultaneously.
The actual failure mode is controlled by three factors, when the
block is subjected to gravity: the inclination of the slope a, the
slenderness of the block d, and the friction angle of the interface,
/ (see Fig. 4a). The boundaries between the modes were modified
over the years [39–42] (see Fig. 4b), and recently mapping the fail-
ure mode when the block is subjected to an external pseudo-static
earthquake inertia force F (see Fig. 4a), has been demonstrated
[43]. Yagoda-Biran and Hatzor [43] have found that when adding
a horizontal pseudo-static force, with its resultant with the weight
vector forming an angle b with the vertical direction (see Fig. 4a),
the mode of the block is now controlled by the slenderness of
the block d, the friction angle of the interface /, and a new angle
w = a + b, rather than a.

3.2.1. Failure mode chart with 2D-DDA
The first comparison between 2D-DDA and analytically derived

failure mode chart for toppling and sliding was performed by
Yeung [42] at U.C. Berkeley, and the results are discussed exten-
sively in his PhD dissertation. A brief review of Yeung’s results is
provided in [43]. Yeung compared the nature of the first motion
of the block as computed with 2D-DDA, to the failure mode pre-
dicted by the analytical solution that was universally accepted at
those days [39–41]. Yeung found that in some cases with the
2D-DDA he obtained toppling mode when he should have obtained
sliding and toppling, according to the analytical solution. This
observation led him to develop a new equation for the boundary
between toppling and sliding and toppling. After making that mod-
ification to the boundary and turning it from static to dynamic in
nature, he got a very good agreement between the 2D-DDA and
the analytical solution. The agreement can’t be discussed in terms
of relative error, since in this case only the first motion of the block
is of interest, so the degree of agreement can be thought of as
binary – either the solutions agree, or they don’t.

3.2.2. Comparison between 2D-DDA and modified failure mode chart
under pseudo-static loading

Yagoda-Biran and Hatzor [43] used the 2D-DDA to verify their
newly developed failure mode chart when a pseudo-static inertia
force is also considered. They put forth a set of rules to determine
the first motion of the block as obtained with DDA, and compared
it to the prediction of their modified mode chart. The regions close
to the boundaries were examined more thoroughly than those far
de lower than required to topple the column, right: input amplitude sufficient for



Fig. 7. The model used in the 2D verification of block response to induced
displacements (after [34]).
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away from the boundaries between modes. The slope angle a used
was 10� for most of the simulations. The range of block slenderness
d was between 6� and 70�, and of the friction angle / was 10� and
80�. The change in the angle w was controlled by changing the
magnitude of the applied pseudo-static force. An excellent agree-
ment was obtained between the two solutions, with the DDA
returning the modes as predicted by the analytical mode chart
for 106 out of the 110 simulations.
3.3. Rocking of a single block

Makris and Roussos [44] studied the problem of the dynamic
rocking of a free-standing column subjected to a sinusoidal input
acceleration and their analytical solution can be reviewed in
[44,45]. The free body diagram for the problem is shown in
Fig. 5. The analytical solution assumes that no sliding occurs at
the base of the rocking block.

Yagoda-Biran and Hatzor [45] compared between results from
2D-DDA simulations and the Makris and Roussos [44] solution.
They selected a geometry of a block where b = 0.2 and h = 0.6 m,
and used an acceleration input function of the form
€ugðtÞ ¼ apsinðxpt þ wÞ, with changing amplitude ap and x = 2p
from t = 0 to t = 0.5 s. For this specific geometry and frequency of
motion, the analytical solution shows that the block will not topple
with ap ¼ 5:43 m=s2, but will topple with ap ¼ 5:44 m=s2. Yagoda-
Biran and Hatzor [45] found the value of contact spring stiffness
(i.e. the optimal penalty parameter) that will give the same results,
in terms of stability-failure, in the 2D-DDA, and then compared the
rotation time histories of the column calculated by the analytical
and DDA solutions. They obtained an excellent agreement between
the two solutions, where the relative error drops below 10% after
about 0.3 s of simulation, and below 1% after about 0.5 s (Fig. 6).
Yagoda-Biran and Hatzor [45] found that the error grows larger
and the DDA deviates from the analytical solution as soon as the
first impact between the rocking column and the fixed base occurs.
They explained it by the way damping is implemented in the two
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After [34].
solutions. While in the analytical solution the motion during
impact is energetically damped due to conservation of angular
momentum following the constant value of the coefficient of resti-
tution [44], in DDA oscillations at contact points are restrained due
to inherent algorithmic damping [32,46].

3.4. Block response to shaking foundations

In the preceding discussion the dynamic response of the blocks
was a result of direct dynamic input to the blocks centroid. In the
case presented in this section, Kamai and Hatzor [34] verified the
2D-DDA with a semi-analytical solution for a block responding to
induced displacements at its foundation. Such an application
would be suitable for dynamic analysis of structures which
respond to earthquake motions at their foundations. The model
comprises of three blocks as follows (Fig. 7): a stationary base
block (0), an intermediate block (1) to which the input displace-
ments are applied, and an overlying very flat block (2) which
responds to the induced displacements in Block 1.

Block 1 is subjected to a horizontal displacement input function
in the form of a cosine, starting from zero:

dðtÞ ¼ Dð1� cosð2pftÞÞ ð11Þ
The only force acting on Block 2, other than its weight and the

normal from Block 1, is the frictional force, which determines the
acceleration of block 2:

€d2 ¼ lg ð12Þ
where l is the friction coefficient (for full derivation of equations
please refer to Kamai and Hatzor [34]). The direction of the driving
force is determined by the direction of the relative velocity between

Block 1 and 2, denoted as _d�:

_d� ¼ _d1 � _d2 ð13Þ
Kamai and Hatzor [34] defined a set of inequalities and bound-

ary conditions that determine the magnitude and direction of the
acceleration of Block 2, as a function of the acceleration of block
1 and the relative velocity between the blocks. The complete set
of inequalities can be reviewed in their paper, or an equivalent
set can be viewed later on in this paper.

Kamai and Hatzor [34] compared the displacements computed
with 2D-DDA and the analytical solution for changing values of
friction angle of the interface between blocks 1 and 2, and for
changing amplitudes of input displacement. They found that gen-
erally the relative numeric error stayed below 5%, and was more
sensitive to friction coefficient than amplitude changes [34]. The
response of block 2 to changing amplitudes is presented in Fig. 8.

3.5. Shear wave propagation

Bao et al. [48] tested the ability of the 2D-DDA to correctly sim-
ulate wave propagation. They modeled a set of stacked horizontal
layers (Fig. 9a), generated a shear wave by inducing horizontal
movements at the base (Fig. 9b), and compared the waveforms at
measurement point M1 in the model (Fig. 9a). Because the DDA
blocks are linear elastic and un-damped, the analytical amplitude
in the tests is the same amplitude as that of the incident wave at
the rigid base. After performing sensitivity analysis to the block
size and time step size, they managed to successfully preserve
the wave form in the DDA model (Fig. 9c).

Bao et al. [48] also validated the DDA with SHAKE program for
site response applications. SHAKE [49,50] is a program that ana-
lyzes the 1-dimensional response of a stack of linear-elastic layers
in the frequency domain. The stack can be composed of several lay-
ers with varying properties, and it is subjected to seismic motion
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Table 1
Numerical and physical parameters used in the first step of the verification study.

Parameter Value

dd – dynamic parameter 1
g0 – normal contact spring stiffness 4 ⁄ 108 N/m
g1 – time step interval 0.001 s
g2 – maximum displacement ratio 0.001
density 2700 kg/m3

Young’s modulus 40 GPa
Poisson’s ratio 0.18
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through its base. Although in this paper we reviewed only verification
studies, we choose to present this validation part, because the
SHAKE program has been verified many times, its accuracy is well
established for the underlying assumptions and boundary condi-
tions, and validating the DDA with SHAKE for wave propagation
applications seems to be an important step. Bao et al. [48] gener-
ated a stack of 15 layers in 2D-DDA, each with different mechanical
properties (Fig. 10a), and applied a real earthquake time history at
its base. They modeled the same sequence of layers in SHAKE, and
compared the spectral amplifications obtained with the two
approaches between the base and the top of the stack of layers.
A very good agreement between the two methods was obtained
(Fig. 10b), both for homogeneous and inhomogeneous media, both
in the frequency and the amplitudes. Their results suggest the DDA
can be used to model wave propagation through discontinuous
media, provided that the numerical control parameters are well
conditioned.
4. Benchmark tests for dynamic 3D-DDA

In this section we will review verification studies of 3D DDA,
performed by the Rock Mechanics research group at the
Ben-Gurion University of the Negev. Some verification studies have
been published before, and are briefly reviewed, and some are pre-
sented here for the first time and are reviewed more thoroughly.
Limitations of the current 3D-DDA code and formulation are dis-
cussed in Section 5.2.
4.1. Block sliding on an inclined plane – one direction of motion

The solution for a block sliding on an inclined plane was pre-
sented in Section 3.1.1. In this section an original verification
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study of the 3D-DDA is presented. The 3D-DDA mesh for the
model of the block on an incline is constructed of a triangular
prism base block, serving as the incline, with height of 10 m,
inclination angle of a = 45� and depth of 5 m. The sliding block
is a box, with dimensions 1 m � 1 m � 0.5 m (see Fig. 11). The
base block is fixed in space, and the sliding block is loaded by
two loading points, for the third step of the verification study,
as explained below.

This verification study of the block on an incline is performed in
three steps: first the response of the block when subjected to
gravity, starting at rest, is examined, then the block is given initial
horizontal velocity, and finally the block is subjected to one-
dimensional horizontal sinusoidal acceleration. When subjecting
the 3D block to initial velocity and acceleration in one direction
only, the problem is basically reduced to a 2D problem, similar to
the one presented in Section 3.1.1.
4.1.1. Block starting at rest
In this step the block is subjected to gravity alone (A = 0), start-

ing at rest ð _d0 ¼ 0; d0 ¼ 0Þ. In this case, Eq. (8) becomes:
dðtÞ ¼ 1
2
gðsina� cosa tan/Þt2 ð14Þ

The numerical and physical parameters used are listed in
Table 1.

The downslope displacement history is compared for three val-
ues of friction angle: 10�, 20� and 30� (remembering the inclination
angle of the slope is 45�). In Fig. 12a the results of the first step of
the verification study are presented. Note the excellent agreement
between the analytical and numerical solutions. In Fig. 12b the rel-
ative numerical error, defined earlier in Eq. (9) is presented. After
0.2 s the numerical error drops to below 1%, demonstrating the
excellent agreement between the two solutions.
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4.1.2. Block starting with initial velocity
The next step of the verification study is applying initial velocity

_d0 to the sliding block, and comparing the downslope displace-
ments of the block to the ones computed by the analytical solution.
In this case, where no external forces are applied on the block,
Eq. (8) becomes:

dðtÞ ¼ 1
2
gðsina� cosa tan/Þt2 þ _d0t ð15Þ

In this verification step the numerical and physical parameters
remain identical to the values presented in Table 1, except for the
time step interval that is reduced to 0.0001 s.

The initial velocities are applied horizontally in the dip direction
at three different values: 0.01, 0.1 and 1 m/s. Results for downslope
displacement histories are presented in Fig. 13a. The agreement
between the analytical and the numerical solutions is good for all
three different velocities, as demonstrated by the relative numerical
error plotted in Fig. 13b: less than 1% after 0.5 s of the analysis.
4.1.3. Block subjected to sinusoidal acceleration input
The third step of the verification study is comparing the

downslope displacements of the block computed by an analytical
solution, with those obtained by the 3D-DDA, where the sliding
block is subjected to a one-dimensional horizontal sinusoidal
acceleration, as in Fig. 1. The amplitude and frequency used for
the input acceleration are 2 m/s2 and 1 Hz, respectively.

Here the ‘Newmark’ type analysis is used as the analytical
solution, as in the 2D-DDA verification explained earlier in
Section 3.1.1. The friction angle of the interface between the slope
and the sliding block is set to / = 50�, higher than the inclination
angle a = 45�, so block sliding will initiate only when the yield
acceleration is exceeded. The numerical and physical parameters
are identical to the ones listed in Table 1, except for a reduced time
step size of 0.0001 s and the normal contact spring stiffness of
7 ⁄ 109 N/m.
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In Fig. 14a the downslope displacement histories calculated by
the Newmark analysis and the 3D-DDA code are presented. The
agreement between the two is good, and can again be expressed
in terms of relative error, presented in Fig. 14b. During most of
the analysis the error remains below 3%.

4.2. Block sliding on an incline – loading in two directions

Bakun-Mazor et al. [51,52] have derived a semi-analytical
3D-formulation for solving dynamic three dimensional displace-
ments of single and double plane sliding (Section 4.4). In their
paper, Bakun-Mazor et al.[51] presented an analytical formulation
which they called Vector Analysis (VA), based on the limiting equi-
librium equations of vector forces acting on a block on an inclined
plane. The dynamic equations of motion of their analytical solution
have a discrete nature, therefore the solution is considered semi-
analytical. The formulation is explained in details in [51,52]. They
first verified their new formulation with the Newmark type analy-
sis for a block subjected to horizontal harmonic external force in
the dip direction, as explained earlier, and once their new method
proved valid, they compared the 3D-DDA numerical results to the
results they obtained with their 3D-analytical solution. They sub-
jected the block to sinusoidal accelerations in the horizontal dip
and strike directions, with different amplitudes and frequencies,
and obtained a good agreement, where the numerical error in
the final position of the block after 6 s was approximately 8%
(Fig. 15).
Fig. 17. The 3D model used in the verification study for block response to shaking
foundation. The lower yellow block is displaced by the time-dependent displace-
ment vector, and the displacements of the green, upper, responding block are
measured. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
4.3. Failure mode mapping for the block on an incline problem

As previously reviewed in Section 3.2, a block on an incline has
four possible modes (see Fig. 4). In this section the verification of
3D-DDA with the failure mode chart is reviewed.

4.3.1. Gravitational loading
Since the 3D-DDA has not been verified many times in the past,

Yagoda-Biran and Hatzor [43] first verified the 3D-DDA with the
previously published failure mode chart as derived by [39–42],
using the same criteria for determining the first motion of the
block as used for the 2D comparison discussed in Section 3.2.
The range for a was between 14� and 50�, / was 20� in most of
the simulations, and d was between 11� and 50�. An excellent
agreement was obtained between the two solutions; 49 out of
the 51 DDA simulations produced the failure mode predicted by
the analytical mode chart.

4.3.2. Pseudo-static loading
After verifying the 3D-DDA with the original failure mode chart

for gravitational loading, Yagoda-Biran and Hatzor [43] proceeded
with comparing the 3D-DDA and their newly developed mode
chart incorporating a pseudo-static force, using the same criteria
for determining the first motion of the block as used for the 2D
comparison. The slope angle a used was 10� for most of the simu-
lations. The block slenderness range dwas between 6� and 70�, and
the range of input friction angle / between 6� and 80�. The change
in the angle w was controlled by changing the magnitude of the
applied pseudo-static force. All 89 simulations performed with
the 3D-DDA returned failure modes as predicted by the analytical
mode chart.

4.4. Sliding of a tetrahedral wedge

Bakun-Mazor et al. [51] verified the 3D-DDAwith a semi analyt-
ical solution for a classic problem in rock mechanics – the wedge
failure (double face sliding, Fig. 16b). There is no analytical solution
describing the dynamic sliding of a wedge, therefore Bakun-Mazor



Table 2
Physical and numerical control parameters used in the verification study of the
responding block.

Parameter Value

dd – dynamic parameter 1 (fully dynamic)
g0 – normal contact spring stiffness 1 ⁄ 109 N/m
g1 – time step size 0.0001 s
g2 – maximum displacement ratio 0.001
density 2250 kg/m3

Young’s modulus 17 GPa
Poisson’s ratio 0.22
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et al. [51] compared the Vector Analysis (VA) semi-analytical
formulation, described briefly in Section 4.2, with the numerical
3D-DDA for the case of a wedge. The input acceleration to the
wedge was a sine function acting parallel to the line of intersection
between the boundary planes along which the wedge slides. The
plunge of the line of intersection was 30� below the horizon, and
the friction of the sliding interfaces was set to 20�. They obtained
a good agreement between the 3D-DDA and their newly developed
analytical formulation where the relative numerical error
remained below 7% for the entire simulation (Fig. 16a).
4.5. Block response to induced displacement in the foundation

A verification of the case of a responding block to moving foun-
dation in three dimensions using 3D-DDA is presented here for the
first time. This verification is based on the one-dimensional verifi-
cation described in Section 3.4 by Kamai and Hatzor [34], with the
exception that here the displacements, velocities and accelerations
are now vectors.
4.5.1. The semi-analytical solution
The model used for the verification study is composed of two

blocks (Fig. 17): a lower block subjected to time dependent dis-
placements, and an upper block that responds to the displacements
of the lower one. The dimensions of the blocks and their physical
properties are irrelevant for the analytical solution, since it only
considers the friction coefficient, as shown below. For the
3D-DDA, though, block dimensions and properties are of impor-
tance. Each of the two blocks, which are denoted from hereon 1
and 2 for the lower and upper blocks, respectively, has time depen-

dent displacements �dðtÞ, velocities �_dðtÞ and accelerations �€dðtÞ.
The displacement induced to block 1, �d1, is in the form of a

cosine function:

�d1ðtÞ ¼ �Að1� cosð2p�f tÞÞ ð16Þ

where �A and �f are the amplitude and frequency of motion,
respectively.

The forces acting on block 2 are its weight,m2g, the normal from
block 1, N =m2g, and the frictional force between the two blocks,
l ⁄m2g, where l is the friction coefficient. Similarly to Eq. (14),
Newton’s second law of motion yields that the acceleration of

block 2 is �€d2

��� ��� ¼ l � g. Following Kamai and Hatzor [34], the direc-

tion of the frictional force, and therefore of �€d2, is determined by the
direction of the relative velocity between the two blocks,
�_d� � �_d1 � �_d2, defined by the unit vector of the relative velocity, _̂d�.

When �_d�
��� ��� ¼ 0, the acceleration of block 2 ð�€d2Þ is determined by

the acceleration of block 1 ð�€d1Þ. When the acceleration of block 1
exceeds the yield acceleration l ⁄ g, over which block 2 no longer
moves in harmony with block 1, the frictional force direction is
determined by the direction of _̂d�, but the magnitude of �€d2 is equal
to l ⁄ g. This rationale can be formulated as follows:

If �_d�
��� ��� ¼ 0 and �€d1

��� ��� 6 l � g then �€d2 ¼ �€d1

and �€d1

��� ��� > l � g then �€d2 ¼ ðl � gÞ � €̂d1

If �_d�
��� ���–0 then �€d2 ¼ ðl � gÞ � _̂d�

ð17Þ

This set of conditions and inequalities was applied using a
MATLAB script, with a time step of 0.0001 s. Since the analytical
solution is calculated numerically, it is actually a semi-analytical
solution.

4.5.2. The numerical model
The actual model used for the 3D-DDA is shown in Fig. 17. The

dimensions of block 1 are 4 m � 4 m � 0.5 m, and the dimensions
of block 2 are 2 m � 2 m � 0.1 m. Block 2 was designed to be very
flat, so as to avoid rotations during motion. The physical and
numerical control parameters used in the verification analyses
are listed in Table 2.

All numerical simulations lasted seven seconds of real time,
where in the first two seconds no displacements were applied,
allowing for gravity ‘‘turn-on” and settlement of the springs.

4.5.3. One direction of motion
The first step was inducing displacements to block 1 in the

x-direction (see Fig. 17) only, similar to the work reported by
Kamai and Hatzor [34], and comparing the 3D-DDA results to the
semi-analytical solution presented here. This was done for three
different cases:

(1) Constant amplitude (A) of 0.2 m and friction (l) of 0.6, and
changing frequency (f) (Fig. 18a).

(2) Constant f of 1 Hz and l of 0.6, and changing A, (Fig. 19a).
(3) Constant f of 1 Hz and A of 0.5 m, and changing l, Fig. 20a).

As can be observed from Fig. 18b, the relative error remains
below 3% for most of the simulation time with frequencies of 2
and 3 Hz, and below 10% for frequency of 5 Hz. Generally, with
increasing frequency the numerical error increases as well, as can
be observed in Fig. 18b, where the numerical error for the simula-
tion with frequency of 5 Hz increases with time.

In Fig. 19b the numerical error remains below 7% for amplitude
of 0.3 m, and below 1% for amplitudes of 0.5 and 1 m for most of
the simulation time. In Fig. 20b for friction coefficient of 1, the
error remains below 7%, and for friction coefficients of 0.1 and
0.6 it remains below 1%.

4.5.4. Two directions of motion
In the second step of the verification study, displacements were

induced to the lower block in the x and y directions (see Fig. 17),
each with different amplitude and frequency. Results are presented
in Figs. 21 and 22. In Fig. 21a the resultant horizontal displacement
vs. time is presented, while Fig. 22 is a 3D plot of the x and y dis-
placements vs. time, presented as the vertical axis. Again, the
agreement between the 3D-DDA and the analytical solution is
good, as expressed by the numerical error in Fig. 21b, which
remains below 10% for the entire simulation. A deviation between
the numerical and analytical solutions is observed with increasing
simulation time (see Fig. 21).

4.5.5. Three directions of motion
The third verification step was subjecting block 1 to sinusoidal

displacements in all three directions: x, y and z. Adding sinusoidal
displacement in the z direction affects the response of block 2 as it
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remained unchanged, while input motion frequency changed. (b) relative numerical error, the 10% error is plotted for reference.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

time (s)

di
sp

la
ce

m
en

t (
m

)

A = 0.3m, analytical
A = 0.3m, DDA
A = 0.5m, analytical
A = 0.5m, DDA
A = 1m, analytical
A = 1m, DDA

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-4

10
-3

10
-2

10
-1

10
0

10
1

102

10
3

time (s)

nu
m

er
ic

al
 e

rr
or

 (
%

)

A = 0.3m
A = 0.5m
A = 1m

(a) (b)
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Fig. 20. (a) Comparison between the analytical solution (curves) and 3D-DDA solution (symbols). Frequency of 1 Hz and amplitude of 0.5 m for the input motion remained
unchanged, while the friction coefficient changed. Notice the excellent agreement between the two solutions (b).
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changes the normal force between the two blocks, and therefore
the frictional force between them. This in turn changes the acceler-

ation of block 2, �€d2, and yields a different displacement time his-
tory. Applying time-dependent displacements in the z direction is
actually equivalent to time-dependent changes in g: when block
1 has positive z acceleration ð€d1k̂ > 0Þ, it is added to g. When €d1k̂
is negative, it is subtracted from g. The analytical solution in this
case assumes no other effect of the vertical displacement of block
1 on the horizontal displacement of block 2. The induced displace-
ment function is now:
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Fig. 22. Comparison between analytical (black curve) and 3D-DDA (blue curve)
solutions. This analysis is for x amplitude and frequency of 0.3 m and 2 Hz and y
amplitude and frequency of 0.2 m and 4 Hz, respectively. Notice the good
agreement between the two solutions that decreases with analysis time. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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�d1ðtÞ ¼ 0:1ð1� cosð2p2tÞÞ � îþ 0:1ð1� cosð2p4tÞÞ � ĵ
þ 0:1ð1� cosð2ptÞÞ � k̂ ð18Þ

In Fig. 23 results of the verification study with three compo-
nents of induced displacements are presented. Fig. 23a presents
the resultant horizontal (x–y plane) displacement vs. time, for dif-
ferent values of the k – normal contact spring stiffness. The black
heavy curve is the analytical solution, and the light colored curves
are the 3D-DDA numerical solutions for different values of k. The
range of contact spring stiffness that best fits the analytical
solution is between 1 ⁄ 107 and 1 ⁄ 109 N/m, with stiffness of
k = 1 ⁄ 107 N/m, or 0.0003 E ⁄ L, being the optimal selection, where
E is the Young’s modulus of the block and L is the length of the line
across which the contact springs are attached. When considering
3D-DDA, it might be more relevant to compare k to E ⁄ A, where
A is the area across which the contact springs are attached. In this
case, k = 1 ⁄ 107 is �0.0001 E ⁄ A, not much different from E ⁄ L.
Fig. 23b demonstrates this with the relative numerical error. Note
that for the results obtained with k = 1 ⁄ 107 N/m, the relative error
stays below 3% for the entire analysis, and the error is well below
10% for k = 1 ⁄ 108 and 1 ⁄ 109 N/m as well.

5. Discussion

5.1. Numerical control parameters

When running simulations with DDA there are several user-
defined numerical control parameters the values of which have a
significant effect on the results of the simulation. In this section
we discuss these control parameters and suggest ways to make
optimal selections. We would however like to stress that although
some general guidance for optimal selection of the parameters is
presented, given the effect they have on the results of the simula-
tion, their calibration should be performed wherever possible, and
routine sensitivity analyses are highly recommended.

5.1.1. Normal contact spring stiffness
The normal contact spring stiffness, k, is the stiffness of the vir-

tual springs assigned at the dynamically formed contacts. In many
sensitivity analyses it was found that the value of k significantly
affects the results of the simulation.

Shi [53], in his user manual, recommended that as a rule of
thumb k = E ⁄ L, where E is the Young’s modulus of intact block
material and L is the average block diameter. However, it is some-
times reported that the optimal value does not follow this rule. In
their study of wave propagation with DDA Bao et al. [48] found
that a k value lower by 1.5 orders of magnitude than Shi’s rule of
thumb is optimal. They suggested that the condition of the inter-
face between the blocks might have an effect on the value selected:
a weathered interface might effectively lower the Elastic modulus,
therefore lower the optimal stiffness value. This observation is sup-
ported by Yagoda-Biran and Hatzor [45] who modeled a physical
problem somewhat similar to the one modeled by Bao et al. [48]
and concluded that a k value of about 2 orders of magnitude lower
than Shi’s rule of thumb [53] would be optimal. In other cases how-
ever, it seems that the optimal stiffness value even further deviates
from Shi’s rule of thumb, such as the case presented in
Section 4.5.5. In this case, the optimal stiffness that results in the
smallest numerical error is 2–4 orders of magnitude lower than



Fig. 23. (a) Comparison between analytical (black heavy curve) and 3D-DDA (light colorful curves) solutions. The best fit is obtained with contact spring stiffness of
k = 1 ⁄ 107 N/m, but the overall trend of the analytical solution is maintained for all values of stiffness. (b) Relative numerical error for the different solutions presented in a.
Note the black dashed line, indicating error of 10%. The green curve, representing contact spring stiffness of 1 ⁄ 107 N/m, remains below 3% error the entire time span of the
analysis, and is the best fit for this case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Shi’s recommendation. In this case however the simulation is in
3D-DDA, while Shi’s recommendations were given as a guide for
2D-DDA, therefore generalization might not be appropriate in this
case.

5.1.2. Time step interval
Selecting an appropriate time step interval is an important issue

with DDA simulations. When selecting a time step that is too long,
the high frequency components are not resolved accurately
enough. Time step intervals that are too short, on the other hand,
result in long computation time, and may induce pseudo high fre-
quency oscillations at the wave front [48].

As reviewed in [48], various authors proposed different rules of
thumb for optimal time step size in relation to the wave period:
less than 1% of the primary wave period in finite element simula-
tions of nonlinear sound wave propagation [54], 5% of the shortest
period of incident waves in Newmark time integration scheme
[55], or smaller than 2/p of the un-damped period of vibration of
the system described in Eq. (1), in order to avoid bifurcation in
the DDA solution [32].

In order to ensure the stability of the numerical solution, the
time step interval should be smaller than the fraction of the period
that is equal to the ratio between the side length of the element
along the direction of wave propagation path, and the wavelength,
according to the Courant–Friedrichs–Levy condition [56]. This con-
dition however does not ensure accuracy. In the next section we
discuss how the choice of time step interval is reflected in the sys-
tems’ damping.

5.1.3. Damping
In the original DDA code a damping submatrix was not incorpo-

rated in the equilibrium equations. Therefore, if the original code is
to be used without modifications, damping can be introduced arti-
ficially by means of either kinetic damping or algorithmic damp-
ing. Kinetic damping is applied when the transferred velocity to
the consecutive time step is reduced by some measure. Any value
between 0 and 1 of the user defined dynamic control parameter
would correspond to the percentage of velocity transferred from
one time step to the following, that is, a dynamic parameter of
0.97 corresponds to 3% damping. When studying dynamic defor-
mation of jointed rock slopes Hatzor et al. [57] reported that a
2% kinetic damping is required to obtain stable solution with the
2D-DDA version they used at that time. But if true and accurate
displacements are required, then no kinetic damping should be
introduced at all. This can be done provided that all other numer-
ical control parameters are properly conditioned as discussed in
Section 5.2.

Algorithmic damping [32] is associated with the time integra-
tion scheme used for integrating second order systems of equa-
tions over time. Numerical damping stabilizes the numerical
integration scheme by damping out the unwanted high frequency
modes. For the Newmark scheme used in DDA, it also affects the
lower modes and reduces the accuracy of integration scheme to
first order. In DDA, the numerical damping that is associated with
the time integration scheme increases with increasing time step
size. If the time step is small enough, the numerical damping phe-
nomenon is insignificant. Bao et al. [48] suggested a way to utilize
this time step size dependence of algorithmic damping, and
obtained an equivalent damping ratio by seeking the time step size
that will result in exactly the same damping ratio that would have
been assumed otherwise in the structural analysis. They inspected
the damped oscillations of the free end of a cantilever beam mod-
eled with DDA with different time step intervals, and obtained an
equivalent damping ratio, using the algorithmic damping in DDA
as a function of time step interval. Then they modeled a stack of
horizontal layers in DDA, subjected to earthquake displacements
at the foundation, with a time step size of 0.001 s, which corre-
sponded in that case to 2.3% damping. They compared the amplifi-
cation and resonance frequency obtained with the DDA model, to
those of an equivalent SHAKE [49,50] model with an input of
2.3% damping, and obtained an extremely good agreement
between the two methods.

5.2. Limitations of 3D-DDA

5.2.1. Constructing a 3D-DDA mesh
Modeling three dimensional multi-block structures in 3D-DDA

is an elaborate and challenging task. The block cutting code in
3D-DDA does not have a graphic interface, and does not accept
three-dimensional blocks as input, but rather two-dimensional tri-
angles, of which the blocks are built. For example, in order to build
a rectangular face of a box, two triangles will be required, with



Fig. 24. (a) The masonry structure selected for 3D-DDA modeling in the city of L’Aquila, Italy. (b) Rotated view of the 3D-DDA model. (c) Acceleration time series from station
AQK at L’Aquila.

(a)

0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

time (sec)

di
sp

 (
m

)

dt = 0.1 sec

dt = 0.01 sec
dt = 0.001 sec

dt = 0.0001 sec

(b)

10-10

di
sp

 (m
) 

time (sec) 
0 0.1 0.2 0.3 0.4 0.5

dt = 0.01 s 
dt = 0.001 s 
dt = 0.0001 s 
dt = 0.00001 s 10-8

10-6

10-4

10-2

100

Fig. 25. Coupled effect of kinetic damping and time step size. (a) Cumulative displacement of a mass subjected to constant force, under 3% kinetic damping and different time
steps, as calculated semi-analytically. (b) Displacements of a mass subjected to constant force and 3% kinetic damping computed with 3D-DDA (dashed lines) and with
MATLAB (solid lines).

44 G. Yagoda-Biran, Y.H. Hatzor / Computers and Geotechnics 71 (2016) 30–46
three vertices each. Therefore, to form a simple box, one needs to
input the vertices for 12 triangles. When modeling problems
involving only of a few blocks, the process of building the mesh
might be tolerable, but when constructing meshes which consist
of many blocks (see Section 5.2.2) the task becomes difficult and
exhausting. It is therefore recommended to use computer aided
design (CAD) software to construct a 3D DDAmesh, and use a func-
tion of the CAD software to export the model. In the work pre-
sented here in Section 5.2.2 we used the AutoCAD software. We
built the model in the AutoCAD, exported the nodes to an Excel
spreadsheet, and then used a MATLAB script to write the model’s
nodes to a file readable by the DDA. The scope of this paper does
not allow for a full presentation of the process, but the interested
reader is welcome to contact the corresponding author for more
information.

5.2.2. The L’Aquila case study
The DDA in its two dimensional formulation has been used sev-

eral times as a tool to estimate historical seismic hazard [34,45].
While attempting to use the 3D-DDA in a similar manner, we have
stumbled upon limitations that suggest the 3D-DDA, at its current
formulation, is still not ready for solving reliably dynamic prob-
lems involving a large number of blocks. We use the case study
of L’Aquila to illustrate this problem,

The city of L’Aquila, the capital of the Abruzzo region, Italy, suf-
fered strong ground motions during the earthquake of April 6,
2009. Over 300 people were killed, and many of the buildings in
the old city were severely damaged and evacuated. Since there
are several strong ground motion accelerographs at and near the
city, this seemed as an excellent case study to check the validity
of the DDA for solving complicated dynamic problems in three
dimensions.

We searched the old city of L’Aquila for small, simple buildings
that can be easily modeled with the 3D-DDA. We found a small
masonry structure that was damaged by the earthquake, but did
not collapse (Fig. 24a). Naturally, the observed damage cannot be
modeled correctly with 2D-DDA, and a 3D approach is required.
The model of the structure in 3D-DDA was comprised of 197
blocks, and is presented in Fig. 24b.

When trying to run forward analyses with the model, subjecting
it to the acceleration time series as recorded in station AQK
(Fig. 24c) located some 500 m away from the structure, the
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solution converged only when kinetic damping of at least 3% was
used, that is, dynamic parameter 60.97, and a time step size no lar-
ger than 0.00001 s. With less kinetic damping and longer time step
sizes we were not able to obtain stable solutions. We believe the
necessity to introduce kinetic damping and extremely small time
steps results from limitations of the contact algorithm in its cur-
rent form that does not allow the system to converge when a large
number of contacts must be solved in each and every iteration. The
choice of such a small time step inevitably leads to extremely long
CPU time, especially when running simulations with long ‘‘real”
run time of tens of seconds. The use of small time step intervals
in the 3D-DDA, smaller than the ones used in similar simulations
in 2D-DDA, was observed many times. For example, the 3D simu-
lations in [43] used a time step size two orders of magnitude smal-
ler than the time step size used in similar 2D-DDA simulations. For
the case of the responding block to induced displacements, the
time step size used in the 3D-DDA case in Section 4.5 is one order
of magnitude smaller than the 2D-DDA case in Section 3.4 [35]. For
the case of a block on an incline, the time step size used in the
2D-DDA case is 0.002 s [34], while the 3D-DDA simulation in
Section 4.1 used a time step size of 0.0001 s.

Furthermore, we noticed that the displacements of the blocks
were several orders of magnitude smaller than expected. These
results led us to investigate what effect does the coupling of kinetic
damping and small time step has on the numerically obtained
cumulative displacements. We conducted a numerical experiment,
using MATLAB, where the time dependent displacements of a mass
driven by a constant force were computed, with kinetic damping of
3% and different time step sizes. As observed in Fig. 25a, when
using kinetic damping, the cumulative displacement decreases
with decreasing time step, an effect also observed in the same
experiment performed with the 3D-DDA (Fig. 25b). This effect
was not observed when no kinetic damping was applied: the time
step size had no effect on the cumulative displacements.
Furthermore, decreasing the kinetic damping by even 2%, down
to 1% damping, did not change the results significantly: the dis-
placements were still highly restrained.

To summarize, the combination of a very small time step inter-
val and kinetic damping of a small percentage significantly
decreases the cumulative displacement during the simulation ren-
dering the numerical results inaccurate and unrealistic. It is also
evident that a small increase in kinetic damping coefficient will
not make a great difference when very small time steps are used.
Ideally, it would be preferable to use zero kinetic damping in
dynamic DDA simulations, as the displacements per time step
are reduced with increasing time step size anyhow due to the
inherent algorithmic damping in DDA.

In cases such as these, where displacements are the desirable
output, these limitations of the current version of the 3D-DDA code
are not tolerable, and this effect makes the 3D-DDA, in its current
form, inapplicable for dynamic simulations of multi-block systems.
A new contact algorithm has been introduces by Shi [58], but has
not yet been implemented in executable codes. After the new con-
tact algorithm is implemented 3D-DDA should be tested again for
its applicability for multi-block systems and multiple contacts.
6. Summary and conclusions

In this paper the validity of dynamic analysis with 2D and 3D
DDA is verified by reviewing previously published verification
studies as well as presenting newly developed, original verifica-
tions, all of which have been developed by the rock mechanics
research group at Ben-Gurion University of the Negev. As the
numerical discrete element DDA method is becoming more popu-
lar in rock mechanics and engineering geology research it becomes
supremely important to verify the accuracy and applicability of the
method before it is accepted and established as a standard analyt-
ical approach in the practice. The DDA has been proven to accu-
rately solve problems involving block translations (block on an
incline, double face sliding) and rotations (rocking of a free stand-
ing column) when the loading is applied at the center of the block,
as well as translations when the loading is applied at the founda-
tion (responding block). It has been proven to accurately solve
large displacements, as well as wave propagation problems, that
involve small displacements, despite the simply deformable blocks
assumption and the first order approximations. It is suggested
here, however, that future research should be invested in testing
the accuracy of DDA in capturing site response for more complex
geometries and configurations than reviewed here, because the
potential of this method is vast.

The accuracy of the DDA highly depends on an educated selec-
tion of the numerical control parameters, first and foremost the
penalty parameter otherwise known as the contact spring stiffness,
as well as the time step size. A wise selection of the time step size
would balance between small computation times and high
accuracy. A wise contact spring stiffness selection would ensure
accuracy of the solution; the block size becomes an issue primarily
when dealing with wave propagation problems.

Naturally, 2D-DDA cannot be used in cases where out-of-plane
deformations are expected in the physical problem. In such cases
using the 3D-DDAwould seemmore appropriate although as much
as we have experimented with 3D-DDA in its current formulation
we have concluded that obtaining a stable solution to dynamic
problems involving a large number of blocks is a very challenging
task.

It is suggested here that the verifications reported in this paper
would be performed for every modification made to DDA or any
other numerical discrete element code.
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