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 Abstract 

This research focuses on the application and modification of the numerical manifold 

method (NMM) for the purpose of enhancing the analysis capability of underground openings 

embedded in discontinuous rock masses. As a hybrid method between numerical methods 

from the continuum (FEM) and discontinuum (DDA) approaches, the NMM is capable of 

modeling dynamic problems involving the interaction of multiple blocks including the stress 

distribution and deformations inside those blocks. 

The NMM is verified using four analytical solutions. In three static problems, the 

NMM program capability of accurately solving the stresses and displacements in a 

homogeneous elastic domain (circular hole in an infinite plate and beam under concentrate 

load and volumetric force) and in inhomogeneous elastic domain (layered plate) is verified. In 

one dynamic problem, the NMM program ability to model frictional contacts between two 

blocks (block on an incline) is verified. A good agreement between the NMM and the 

analytical solutions is obtained. 

In this work the original NMM is modified in order to improve its capability of 

analyzing the stability of underground openings in blocky rock masses. An algorithm for a  

two-stage procedure is implemented into the NMM code in order to allow tunnel excavation 

during the NMM simulation, after the local stresses in the medium already exist and the 

medium has already experienced elastic deformation due to overburden stress. 

The importance of analyzing underground opening stability with the modified NMM, 

where the underground opening is excavated during the simulation, is demonstrated with an 

example of rectangular underground opening embedded in horizontally stratified and 

vertically jointed rock mass. When analyzed with the modified NMM, the underground 

opening is stable when the discontinuities’ friction angle is 15º and above, while with the 

original NMM, stability is achieved only at friction angles of 30º and above.  

The original and modified NMM are applied in this thesis to analyze the stability of 

the 30 m span “Freemasons hall” at Zedekiah cave which is embedded in a blocky rock mass. 

Stability analysis with an experimentally obtained friction angle value of 41
o
 reveals that the 

rock mass above the cavern attains stable arching after small initial vertical deflection of the 

immediate roof. Stability analyses of the studied opening with significantly smaller values of 

friction angles lend support to the conclusion that cavern is stable in its current configuration: 

with the modified NMM the cavern is stable when the discontinuities’ friction angle is 15º 

and above, while with the original NMM the cavern is stable when the discontinuities’ friction 

angle is 25º and above. 
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Chapter 1- Introduction 

Rock masses are not an ideal material, and may largely be characterized by the 

acronym " DIANE"  (Discontinues, Inhomogeneous, Anisotropic and Non-elastic) (Harrison 

and Hudson, 2000). In discontinuous rock masses, the intersection of several sets of 

discontinuities (joints, bedding planes, faults) forms rock blocks. When analyzing the stability 

of an underground opening embedded in a blocky rock mass, analytical solution are rare, and 

observational and numerical methods are usually employed.  

1.1 Observational methods 

In the observational methods, the analyzed rock mass is classified and rated on the 

basis of  mechanical and geometrical parameters such as strength of intact rock, spacing, 

orientation and condition of discontinuities, water content and local stresses. Then, support 

design is suggested, based on previous empirical data. The two rock mass classification 

methods which are mostly used today are the Geomechanics Classification (a.k.a. Rock Mass 

Rating -RMR) of Bieniawski (1973; Bieniawski, 1989) and the Rock Quality system of 

Barton et al., (1974). Those methods can be a valuable tool at the early stages of a project: 

they are simple and can be used as a check-list to ensure that all relevant information has been 

considered. However, they are general and ignore specific characteristic of the rock mass and 

project (Riedmüller and Schubert, 1999). Thus, they should be used only for preliminary, 

planning purposes rather than stability evaluation (Riedmüller and Schubert, 1999) or final tunnel 

support (Bieniawski, 1997). 

1.2 Numerical methods 

Numerical methods have been extensively used in the field of rock mechanics in the 

past several decades due to advances in computing power. An extensive and comprehensive 

review of techniques and advances in numerical modeling for rock mechanics and rock 

engineering is presented by Jing (2003), the source on which much of the material in this 

section is based. 

The numerical methods in rock mechanics are classified into two main categories: 1) 

Continuum methods; and 2) Discrete methods. The choice of continuum or discrete methods 

depends mainly on the problem scale and fracture system geometry. Figure  1.1 illustrates the 

alternative choices for different fracture circumstances in rock mechanics problems. 

Continuum approaches should be used for rock masses with no fractures (Figure  1.1a), or 

with many fractures where pseudo continuous displacement field is produced (Figure  1.1d). 
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When a small number of discontinuities divide the medium into a small number of continuous 

regions (Figure  1.1b), the displacement field will be continuous inside each region but may be 

discontinuous across the discontinuities. If a continuum model is used, the model should be 

able to consider the specific discontinuities. The discrete approach is most suitable for 

moderately fractured rock masses where the number of fractures is too large for continuum 

approaches, or where large-scale displacements of individual blocks are possible 

(Figure  1.1c). 

 

Figure ‎1.1. Suitability of different numerical methods for an excavation in a rock mass: a) 

continuum method; b) either continuum with fracture elements or discrete method; c) discrete 

method; and d) continuum method with equivalent properties (Jing, 2003). 

1.2.1 Continuum methods 

The most commonly applied continuum based numerical methods for rock mechanics 

are the finite difference method (FDM), the finite element method (FEM), and the boundary 

element method (BEM).  

The FDM is a direct approximation of the governing partial differential equations 

(PDEs) by replacing partial derivatives with finite differences at grids imposed over problem 

domains, i.e. transferring the original PDEs into a system of algebraic equations in terms of 

unknowns at grid points. The solution of the system equation is obtained after imposing the 

necessary initial and boundary conditions.  

The FEM is perhaps the most widely applied numerical method in engineering today 

because of its flexibility in handling material heterogeneity, anisotropy, non-linearity and 
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complex boundary conditions. The FEM requires the division of the problem domain into a 

collection of sub-domains (elements) of smaller sizes and standard shapes (triangle, 

quadrilateral, tetrahedral, etc.), with a fixed number of nodes at the vertices and/or on the 

sides. Trial functions, usually polynomial, are used to approximate the behavior of PDEs at 

the element level and generate the local algebraic equations representing the behavior of the 

elements. The local elemental equations are then assembled, into a global system of algebraic 

equations whose solution then produces the required information in the solution domain, after 

imposing the properly defined initial and boundary conditions. 

The BEM, on the other hand, requires discretization at the boundary of the solution 

domains only, thus reducing the problem dimensions by one and greatly simplifying the input 

requirements. The information required in the solution domain is separately calculated from 

the information on the boundary, which is obtained by solution of a boundary integral 

equation, instead of direct solution of the PDEs. 

Representation of discontinuities in those methods has been motivated since the late 

1960's, especially in the FEM. Various joint element or interface element models like 

“Goodman joint element” (Goodman et al., 1968), six-node fracture element (Zienkiewicz et 

al., 1970), thin-layer element (Desai et al., 1984), and interface element based on contact 

mechanics (Katona, 1983) have been developed. Despite of these efforts, the treatment of 

fractures and their growth remains limited: Block rotations, complete detachment, and large-

scale opening cannot be treated accurately with the FEM.  

1.2.2 Discrete Element Methods (DEM) 

In the DEM, the fractured medium is treated as an assemblage of rigid or deformable 

blocks/bodies. The theoretical foundation of the method is the formulation and solution of 

equations of motion of those blocks using implicit (based on FEM discretization) and explicit 

(using FDM discretization) formulations. The contacts between blocks are identified and 

continuously updated during the entire deformation/motion process. Large displacements 

caused by rigid body motion of individual blocks, including block rotation, fracture opening 

and complete detachments are straightforward in the discrete approach. 

The most representative explicit DEM method is the Distinct Element Method, 

originally developed by Cundall (1971). It is a force method that employs an explicit time 

marching scheme to solve directly the Newtonian motion equations. At each time step, the 

kinematic quantities (velocities, displacements and accelerations) are first calculated and the 

contact forces or stresses, as well as the internal stresses of the elements, are then obtained via 

constitutive relations for contacts. This method has been developed extensively since its 
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introduction. The comprehensive DEM program UDEC (Universal Distinct Element Code) 

has powerful capabilities, which allow the modeling of variable rock deformability, non-linear 

joint behavior, fracture of intact rock and fluid flow. 

The implicit DEM is represented mainly by the Discontinuous Deformation Analysis 

(DDA), originated by Shi (1988). DDA is a displacement method, where the unknowns of the 

equilibrium equations are displacements. The formulation is based on minimization of the 

total potential energy and contacts are treated using the “penalty” method. DDA has two 

major advantages over the explicit DEM: 1) relatively large time steps; and 2) closed form 

integrations for the stiffness matrices of the elements.  

The DDA was applied vastly to analyze the stability of underground openings 

embedded in blocky rock mass (Bakun-Mazor et al., 2009; Chikahisa et al., 1997; Hatzor and 

Benary, 1998; Hatzor et al., 2010; Tsesarsky and Hatzor, 2006; Wu et al., 2004). However, in 

cases where stress distribution and deformations in the blocks themselves are critical for the 

solution, DDA is limited, since in DDA deformation is solved for the center of mass of every 

block with no stress distribution within blocks. For these cases a hybrid approach between the 

continuum-based and discontinuum numerical methods is required. 

1.3  The Numerical Manifold Method 

The numerical manifold method proposed by Shi (1996a) is a natural bridge between 

the continuum and discrete representations by combining the DDA and FEM methods in a 

united form (Jing, 2003). It consists of three main parts: block kinematics, finite covering 

systems, and the simplex integration method (Cheng et al., 2005).  

The NMM inherits strengths of the DDA method for block kinematics analysis with its 

excellent contact detection algorithm, its unique open-close iteration procedure that 

guarantees that at the end of every time step there is no tension and no penetration between 

discrete blocks, and its fully dynamic formulation. Thus, it can deal with the mechanical 

response of a block system under general loading and moving boundary conditions when 

body movement and large deformation occur simultaneously.  

The finite cover system is based on three basic concepts (Ma et al., 2010): the 

mathematical cover, the physical cover and the manifold element. The mathematical cover 

consists of finite covers which occupy the whole material volume. They can overlap each 

other and do not need to conform to neither the external boundaries nor the internal 

discontinuities. Thus, the meshing task in the NMM is very convenient. On each 

mathematical cover a weight function is defined. The physical covers are the intersection of 

the mathematical cover and the physical domain with its internal discontinuities and external 
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boundaries. The physical cover inherits the weight function from is associate mathematical 

cover. In addition, a local displacement function is defined on each physical cover. The 

common area of several physical covers forms a manifold element (Shi, 1996). The weight 

and local functions of each physical component in the manifold element are connected 

together to form a global displacement function for each element. Then, the equilibrium 

equations can be derived from minimizing the total potential energy. 

In the NMM, numerical integration such as Gauss integration method is not needed. 

The NMM uses the simplex integration method (Shi, 1996b), in which an arbitrary domain of 

integration of a function is converted into many triangles in which the integration can be 

calculated analytically to ensure high precision (Cheng et al., 2005).  

Most of the previous NMM researches where focused on theoretical implementations 

and improvements of the NMM rather than application to real case studies. Moreover, there is 

not even a single literature source of applying the NMM for real tunneling case. The main 

developments of the NMM can be categorized into three groups: 1) Improvement of the 

approximation accuracy (Chen et al., 1998; Cheng et al., 2002); 2) Extension of the NMM for 

crack propagation problems (Chiou et al., 2002; Ma et al., 2010; Tsay et al., 1999; Zhang et 

al., 2010); and 3) Development of 3D NMM (Cheng and Zhang, 2008; He and Ma, 2010; 

Jiang et al., 2009).   

An important limitation of the original NMM when applied to underground mining is 

that in the original NMM computer program developed by Shi (1996a), tunnels are open from 

the beginning of the simulation. However, in realty when tunnels are excavated, compressive 

stresses allready exist in the field, and the rock collum has already experinced elastic 

deformation over geologic times due to overburden stress. This issue can be very important 

when the stability of underground opening in discontinuous rock masses is analyzed.  

Miki et al., (2007) introduced a model for tunnel excavation during a NMM simulation 

suitable for cases where the rock mass contains only few discontinuities, and the immediate 

medium around the tunnel is continuous so that it can be modeled with a single NMM block.   

1.4 Research Objectives 

The main goal of this research is to improve the NMM suitability for analyzing the 

stability of underground openings in blocky rock masses by developing and programing an 

algorithm which will allow tunnel excavation during the NMM simulation, after the local 

stresses already exist and the elastic deformation has already occurred. It would be interesting 

to compare between the modified NMM and the original NMM assessments of the stability of 

underground openings embedded in blocky rock mass.  
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A secondary goal of this research is verification of the NMM with 3 static problems 

(layered plate subjected to gravity, Kirsch solution, and beam under concentrated load and 

volumetric force) and one dynamic problem (dynamic sliding of a block on an inclined plane). 

1.5 Thesis organization  

Chapter 2 reviews the theoretical background of the Numerical Manifold Method 

(NMM) including the finite covering systems, block kinematics, and the simplex integration 

method. Then, the NMM is verified with four analytical solutions: layered plate subjected to 

gravity, Kirsch solution, beam under concentrated load and volumetric force, and dynamic 

sliding of a block on an inclined plane in chapter 3. 

Chapter 4 introduces a new algorithm for simulating the excavation sequence with 

NMM. In addition, the stability of rectangular cavern embedded in an artificial blocky rock 

mass is analyzed with the modified NMM (with the new algorithm) and the original NMM for 

various values of friction angles in order to explore the significance of the developed 

algorithm. In chapter 5, the stability of Zedekiah cave, a 2000 year old underground quarry 

below the old city of Jerusalem which embedded in blocky rock mass, is analyzed with both 

modified NMM and original NMM. 

Finally, Chapter 6 summarizes the conclusions of this research and makes suggestions 

regarding future research.  
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Chapter 2- ‎Scientific‎Background:‎Review‎of‎NMM‎principals 

This chapter describes the main concepts of the NMM. The description follows the 

original paper of Shi (1996a), yet with additional figures, descriptions and examples. At the 

beginning, the NMM finite cover system is described, including construction of mathematical 

covers with their associated weight functions, generation of physical covers with their local 

functions and generation of manifold element with their displacement functions. Then, the 

global equations of equilibrium are derived by minimization of the potential energy, and all 

potential energy sources (continuous and discontinuous) and their contribution to the global 

equations of equilibrium are described. Finally, the method of open-close iteration is 

described.  

2.1 NMM finite cover system 

As presented at the introduction, the NMM finite cover system is based on three basic 

concepts: the mathematical cover, the physical cover and the manifold element. In the 

following three subsections, the construction of mathematical covers, physical covers, 

manifold elements and their associated functions are presented. 

2.1.1 Mathematical cover and weighting functions: 

Theoretically any shape of covers can be used in NMM. However integration of 

manifold elements is related to the cover shape, and a reasonable choice of cover shape is 

very important (Chen et al., 1998). A triangular finite element mesh is usually adopted to 

define the mathematical cover for manifold method. Therefore, the construction of 

mathematical cover that based on triangular elements is presented here.  

A mathematical cover is a hexagonal composed of six triangular elements. The 

common node of the six triangular elements is regarded as a star (Figure  2.1a). On each 

mathematical cover, a weight function (shape function in the case of FEM cover) w is defined. 

The weight function is equal to 1 in the center and declines linearly to zero at the sides of the 

mathematical cover (Figure  2.1b), and has to satisfy  
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where Ci is the mathematical cover and ME is a triangular element.  

 

Figure ‎2.1. The mathematical cover based on triangular finite elements mesh (a) and the weight 

function of a hexagonal mathematical cover (b) (after Chen et al. (1998)). 

Each triangular element (ME) is the common region of three mathematical covers 

(M(i), i = 1,2,3) which are located in the triangular vertexes. On each triangular element the 

three weight functions of the mathematical covers are: 
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  (2.3)

Where S(i), i = 1,2,3 are the areas of the sub triangles created by a node (x,y) inside 

the triangle and two of its vertexes (Figure  2.2), and S is the area of the triangle. The 

following expressions denote those areas 
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Denote: 
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then, 
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Figure ‎2.2. Triangular element divided to three sub triangles (after An (2010)). 

2.1.2 Physical cover and local function 

The physical cover is the intersection of the mathematical cover and the material 

volume, and it inherits the weight function from its associate mathematical cover. In addition, 

on each physical cover, a local cover function is defined. The cover function can be constant, 

linear, high order polynomials or locally series. In the original NMM, however, a constant 

cover function is defined as: 
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If a mathematical cover is partially out of the physical cover, the weight function 

should be effective only in the region of the physical cover, and thus, a modifier, , is acting 

on the weight function  

 ),(),( yxwyxw iii  
   (2.11)

where 1i , within the problem domain, and 0i elsewhere.  

In order to explain how the physical covers and manifold elements are generated, an 

example of a square body with vertical discontinuity is presented in Figure  2.3a, and the 

mathematical cover which overlaps the body is presented in Figure  2.3b. Taking node 1 as a 

star, two triangular elements (1,3) are included in this star, the mathematical cover M1 is cut 

by the external boundary and by the vertical discontinuity into three parts. Thus two physical 

(x3,y3)

(x1,y1)(x2,y2)

(S1) (S2)

(S3)



Modeling the Excavation Sequence with the Numerical Manifold Method, Yuval Tal 

Chapter 2- Scientific Background: Review of NMM principals                                                       20 

cover P1
1
 and P1

2
 which are inside the problem domain are generated. The generation of all 

the physical covers in the problem is presented in Table  2.1. 

 

Figure ‎2.3. An example of manifold problem: Rectangular body with vertical discontinuity (a); 

and NMM model of the problem with triangular finite elements mesh (b). 

Table ‎2.1 The physical covers in the NMM model. 

Mathematical cover Physical cover  
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1
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8 P8
1,

 P8
2 

 

9 P9
1
, P9

1
 

 

10 P10
1
 

 

2.1.3 Manifold elements and global displacement function 

The elements of the manifold are the common regions of the physical covers, and 

thus, are also the common region of three stars. In the previous example, the common area 

of three physical covers P1
1
, P2

1
, P5

2 
forms one manifold element ME1, which is the 

intersection of stars 1, 2 and 5.  

The linear weight function given in Eq. (2.9) and the constant local function given in 

Eq. (2.10) of each physical component in the manifold element are connected together to form 

a global linear displacement function for each manifold element which is given by: 
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where e(1), e(2), e(3) are the three star nodes of the manifold element. 

Denote: 
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the displacement becomes 
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It is important to note that when a mathematical cover is divided into two completely 

disconnected domains by a discontinuity boundary, the two manifold elements which are 

created should be able to move apart. Thus, two mathematical covers with the same shape and 

position are needed. In the previous example, there are four couples of manifold elements 

which are common region of star nodes, but are divided by the discontinuity: ME1 and ME2 

(star 1, 2, and 5), ME5 and ME6 (star 2, 5, and 6), ME9 and ME20 (star 5, 6, and 9), and ME12 

and ME13 (star 5, 8, and 9). Therefore, each star splits into two stars with different effective 

region, and new stars numbering is performed (Figure  2.4). 

 

Figure ‎2.4. Generation of two mathematical covers from a single mathematical cover which 

holds a discontinuity.  
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2.2 Global equations of equilibrium  

The global equations of equilibrium are derived using a FEM style potential energy 

minimization. The total potential energy   is the summation of all the potential energy 

sources: 1) strain energy; 2) initial stresses; 3) point load; 4) body load; 5) inertia force; and 6) 

fixed points for the continuous material, and 7) contact springs; and 8) friction forces for the 

discontinuities. The total potential energy can be expresses as follow for a problem with n star 

nodes: 
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where  iD  is a 2×1 sub-vector of the displacements  ii vu  of a star node, ][ ijK is 

the coefficient 2 × 2 sub-matrix, and  iF is 2×1 loading sub-vector. Minimizing the total 

potential energy , the global equations of equilibrium are: 
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In the following two sections, the potential energy sources (continuous and 

discontinuous), and their contribution to the global equations of equilibrium are described. 

2.3 Continuous material contribution to the global equations of equilibrium  

2.3.1 Stiffness matrix: 

The strain energy e  done by the elastic stresses of element e is: 
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where the integration is over the entire material area A of that element. 

The relationship between stress and strain for plane stress condition is given by 

Hooke's low: 
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where E and  are the Young’s modulus and Poisson’s ratio respectively. For a plane strain 

condition, E and  can be replaced by 

 )1/( 2
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The relationship between strain and displacement is: 
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substituting Eq. (2.12), the strain becomes: 
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Denote: 
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and substitute Eq. (2.14), the strain becomes:  
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and the strain energy is rewritten in a matrix form as: 
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  (2.26)

where eS  is the area of the element. Therefore, 
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e

  
  (2.27)

is the element [6x6] stiffness matrix that composed of 9 [2x2] matrices which are  assembled 

into the global stiffness matrix  eK according to the element’s nodes.  

where e(1), e(2), e(3) are the three star nodes of the manifold element. 

2.3.2 Initial stress matrix: 

The manifold method is a step by step method. The computed stresses of previous 

time step will be the initial stresses of the next time step. Therefore the initial stresses are 

essential for manifold computation. 

The potential energy of the initial constant stresses for the element e is: 
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where  Txyyx
000  are the initial stresses in the element. 

Denote 
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and substitute Eq. (2.25), the potential energy is rewritten in a matrix form as: 
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Therefore, 
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is the element {6x1} load vector composed of 3 {2x1} vectors which are assembled into the 

global loading vector  eF  according to the element’s nodes. 

2.3.3 Point load matrix 

The potential energy due to point loading is: 
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where  Tyx FF is the loading force which acts on points (x0,y0) of element e. 

Therefore,  
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is the element {6x1} point load vector composed of 3 {2x1} vectors which are assembled into 

the global loading vector  eF  according to the element’s nodes. 

2.3.4 Body force matrix 

The potential energy due to body force loading is: 
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where  Tyx ff is a constant body force acting on the area of element e. 

Substituting Eq. (2.13) and (2.9), the potential energy becomes: 
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where 
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Therefore, 
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is the element {6x1} body loading vector composed of 3 {2x1} vectors which are assembled 

into the global loading vector  eF  according to the element’s nodes. 

2.3.5 Inertia force matrix 

The potential energy of the inertia force of element e is: 

  










A
y

x
i dxdy

f

f
vu

  

  (2.39)

 

where the inertia force is: 
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and Ttvtu )()(  is the time dependent displacement of any point (x,y) of element e in the 

current time step, and   is the mass per unit area. 

Substituting Eq. (2.40) into Eq. (2.39), the potential energy is rewritten in a matrix 

form as: 
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The displacement at the end of the time step can be expressed as a Taylor series as:  
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where     00 eD  is the element displacement at the beginning of the time step, 

    ee DtD  )(  is the displacement at the end of the time step, and t is the time interval 

of this time step.  

Manipulation on Eq. (2.42) gives: 
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where  
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is the velocity at the beginning of the time step. 

The potential energy is therefore, 
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Substituting Eq. (2.9), the integration part can be computed as: 
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Denote:  
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where 
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and substitute Eq. (2.46) into Eq. (2.44), the potential energy becomes: 
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Therefore, 
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is the element [6x6] stiffness matrix composed of 9 [2x2] matrices which are  assembled into 

the global stiffness matrix  eK according to the element’s nodes, and 
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is the element {6x1} inertia force vector composed of 3 {2x1} vectors which are assembled 

into the global loading vector  eF  according to the element’s nodes. 

2.3.6 Fixed point matrix 

As a boundary condition, some of the elements are fixed at specific points. The 

constraint can be applied by using two very stiff springs. The strain energy of the spring is: 
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where ),( 00 yx are the fixed point coordinates, and k is the stiffness of the two springs which 

are along the x and y directions respectively (kx = ky). 

Therefore, 

 

    (2.54)

is the element [6x6] stiffness matrix that composed of 9 [2x2] matrices which are  assembled 

into the global stiffness matrix  eK according to the element’s nodes. 

2.4 Adding discontinuities to the global equations of equilibrium 

The main advantage of the NMM approach is its capability of modeling the behavior 

of discontinues materials. Thus, it is necessary to connect the individual discontinuous 

boundaries into the global equations system. The approach is based on the condition of no 

tension and no penetration between the two contact sides of a discontinuity, mathematically 

described by two inequalities. Coloumb’s friction law is another inequality which has to be 

satisfied. The NMM is an incremental approach. The time steps should be chosen small 

enough so that the displacements of all points in the problem domain are less than a pre-
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defined limit . Due to the small time steps, the displacements are small too, and the three 

inequalities can be simplified to linear inequalities of iD .  

2.4.1 Contacts detection and definition 

At the beginning of each time step, a two-stage contact detecting process is performed: 

the first stage is a global search for blocks that might be in contact during the time step. Two 

blocks can be in contact during the time step only if the minimum distance between any pair 

of points,  111 , yxP  of block i and  222 , yxP  of block j, is less than a numerical control 

parameter 2. The second stage is a local search for three types of contacts: 1) angle to angle; 

2) angle to edge; and 3) edge to edge (Figure  2.5). The edge to edge contacts are transferred 

into angle to edge contacts. On the contrary to DDA, the angles in the NMM are also the 

intersection points of the triangular mesh elements with block boundaries or joints, and not 

only the vertices of physical boundaries. For example, in the problem described in 

section  2.1.2, there are two angle to edge contacts at the ends of the vertical discontinuity 

which are the vertices of the blocks, and three more angle to edge contacts along the vertical 

discontinuity which are the intersection of the triangular mesh with block boundaries 

(Figure  2.6).  

 

Figure ‎2.5. Types of block contacts: a) angle to angle; b) angle to edge; c) edge to edge; 

(Modified after Shi (1996a)). 

 

Figure ‎2.6. Contacts in the example problem. The stars represent contacts of physical boundary 

vertices, and the dots represent contacts of the intersection points of the triangular mesh with 

physical boundaries. 

P1
P2 P3

P1 P2
P4P3

(a) (b) (c)



Modeling the Excavation Sequence with the Numerical Manifold Method, Yuval Tal 

Chapter 2- Scientific Background: Review of NMM principals                                                       31 

The angle to angle contact is defined to be a contact if the minimum distance of two 

angle vertices of the contacts is less than 2, and the maximum overlapping angle of the two 

angles is less than 2 when one angle vertex translates to the vertex of other angle without 

rotation. In the computer program,  = 1.5º. An illustration of the overlapping angle of the 

two angles is shown in Figure  2.7a. 

The angle to edge contact is defined to be a contact if the minimum distance of the 

angle vertex to the edge of the contacts is less than 2, and the maximum overlapping angle 

of the angle and the edge is less than 2 when the angle vertex translates to the edge without 

rotation. An illustration of the overlapping angle of the angle and the edge is shown in 

Figure  2.7b. 

 

 

Figure ‎2.7. Illustration of overlapping angle: a) angle to angle; b) angle to edge; (Modified after 

Shi (1996a)). 

2.4.2 Entrance Lines of Contacts 

At the end of each time step, the condition of no tension and no penetration between 

the two contact sides of a discontinuity must be satisfied. In order to be able to describe 

mathematically the no penetration condition, an entrance line is defined. Generally, a 

penetration occurs when a vertex crosses the entrance line. The definition of entrance lines 

(a) (b)

P1

P2 P3P2

P1

P1 < 2 P1P2 P3

< 2
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and the conditions for penetrations in the three different contact configurations are as 

following: 

1. For the case of angle to angle contact, if both angles are less than 180º, there are 

two entrance lines which are defined according to Table  2.2. The penetration 

occurs when the two entrance lines are passed simultaneously by the vertex of the 

other angle. 

2. For the case of angle to angle contact, if one of the two associated angles is greater 

than 180º, there are two entrance lines which are the two edges of the angle which 

is greater than 180º. The penetration occurs when one of the two entrance line is 

passed by the vertex of the other angle. 

3. For the case of angle to edge contact, the edge is defined as the entrance line. The 

penetration occurs when the entrance line is passed by the angle vertex. 

Table ‎2.2. Definition of entrance lines in an angle to angle contact when both angles are less than 

180º (modified after Shi (1996a)).  
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A vertex P1 penetrates the entrance line P2P3 (points P1, P2, P3 rotate anticlockwise) if 

the area of the triangle which is formed by the 3 points in the end of the time step is negative 

(Figure  2.8). Thus, the criterion for penetration is an inequality, defined as: 
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  (2.55)

where  ii yx ,  and  ii vu ,  are the coordinates and displacements of Pi  3,2,1i , 

respectively.  

 

Figure ‎2.8. Penetration criterion: vertex entrance line relationship in the beginning of the time 

step (left hand side), and in the end of the time step (right hand side); (Modified after (Shi, 

1996a)). 

In order to prevent the penetration of the two sides of the contacts, normal stiff springs 

are applied to push the vertex away from the entrance line as follows: 

1) For the case of angle to angle contact, if both angles are less than 180, a single stiff 

spring is inserted between a vertex and its corresponding entrance line, where the 

passing distance between the vertex and its corresponding entrance line is smallest. 

2) For the case of angle to angle contact with an angle larger than 180, if only one of the 

two entrance lines has been passed by the corresponding vertex of another angle, a 

single stiff spring is inserted along the normal to this edge. If two entrance lines have 

been passed, two stiff springs are applied to the two entrance edges. 

3) For angle to edge contact, a single stiff spring is applied where the passing distance 

between the vertex and the edge is smallest. 

There are three possible modes for a contact: one open  0  and two close modes

 0 : sliding and lock. For an open contact no springs are applied. For a sliding angle to 

edge contact, a normal stiff spring, and a pair of shear sliding forces are applied. For a lock 

angle to edge contact, a normal stiff spring is applied and another shear stiff spring is applied 

in order to avoid the tangential displacement between the vertex and the edge. For a sliding 

and lock angle to angle contacts, only normal spring is applied. 

2.4.2.1 Normal Contact Matrices 

The strain energy of the normal spring is: 

P1

P2 P3 P1’

P2’ P3’

S/2
l
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where kn is the  spring stiffness, and dn is the entrance distance. 

Considering inequality (2.55), the entrance distance dn between a vertex P1 of element 

i to its corresponding entrance line P2P3 of element j (element i and element j are located in 

different sides of the discontinuity) is: 
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    (2.57)

where l is the distance between P2 and P3 (see Figure  2.8). 

The displacement  vu,  in each time step is small due to the small time step. 

Therefore, every multiply  

3,2,1,  lkvu lk  

is a second order infinitely small. 
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and neglecting second order infinitely small components, Δ can be expressed as 
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Denote: 
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the entrance distance becomes: 
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and the strain energy becomes: 
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Therefore, 
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are the element [6x6] matrices composed of 9 [2x2] matrices which are assembled into the 

global stiffness matrix [Ke] according to the elements’ nodes, and 
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are the element {6x1} load vectors composed of 3 {2x1} vectors which are assembled into the 

global loading vector {F}according to the elements’ nodes  

2.4.3  Shear Contact Matrix 

For the case of lock contact, in addition to the normal spring, a shear spring is added in 

order to prevent tangential displacement between the vertex P1 of element i to its 

corresponding entrance line P2P3 of element j (element i and element j are located in different 

sides of the discontinuity). An illustration of the procedure of adding shear spring is shown in 

Figure  2.9. 

The strain energy of the shear spring is: 
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where ds is the sliding distance, and  ks is the shear springs stiffness which is formulated in the 

computer program to nk
5

2
. 

Assume P0  00 , yx  is the projection point of vertex P1 on entrance line P2P3 

(Figure  2.9), its coordinates and displacements expressed as: 
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  (2.67)

where 0t   10 0  t  is the distance P2P0 normalized by l.  

 

Figure ‎2.9. Illustration of the shear spring insertion procedure in NMM: contact configuration 

at a) the beginning of the time step; and b) the end of the time step. The dashed line represents 

the location of vertex P1 if a shear spring is not added (Modified after Shi (1996a)). 

The shear displacement of P0 and P1 along line P2P3 is 
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Denote: 
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neglecting second order infinitesimally small multiplies  

   23231 , vvvuuu l   

and substituting expression (2.67) for  00 , yx  and  00 ,vu
 
gives 

P1

P2 P3
P0

P1’P2’

P3’

P0’

ds

(b)(a)



Modeling the Excavation Sequence with the Numerical Manifold Method, Yuval Tal 

Chapter 2- Scientific Background: Review of NMM principals                                                       37 

 

 

        

    






























3

3
3020130201

2

2
3020130201

1

1
2323

0

212212
1

21122112
1

1
~

v

u
ytytyxtxtx

l

v

u
ytytyxtxtx

l

v

u
yyxx

ll

S
ds

 

  (2.70)

Denote: 
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the sliding distance becomes: 
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and the strain energy of the shear springs becomes: 
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Therefore, 
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are the element [6x6] matrices composed of 9 [2x2] matrices which are assembled into the 

global stiffness matrix [Ke] according to the elements’ nodes, and 
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are the element {6x1} load vectors composed of 3 {2x1} vectors which are assembled into the 

global loading vector {F}according to the elements’ nodes 

2.4.4 Friction force matrix 

According to Coulomb’s law, when sliding between two sides of the boundary 

contacts is allowed, in addition to the normal spring a pair of frictional forces is added. Based 

on Coulomb’s law, the frictional force is calculated as: 

  tannndksignf 
    (2.77)

where  tan  is the friction coefficient, and sign is assigned as “+” or “-“ according to the 

direction of the relative sliding (positive when the vertex P1 slides in the direction P2 to P3). 

The potential energy due to friction force f at P1 on element i is: 
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and the potential energy due to friction force f at P0 on element j is: 
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the potential energy becomes: 
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Therefore, 
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are the element {6x1} load vectors composed of 3 {2x1} vectors which are assembled into the 

global loading vector {F}according to the elements’ nodes 

2.5 Two dimensional simplex integration 

For the manifold method, the manifold elements with their arbitrary shape are the 

integration zones. Therefore, the integration scheme of FEM which is suitable for triangular 

and rectangular elements are not applicable, and the analytical simplex integration of Shi (Shi, 

1996b), where the arbitrary domain of integration is converted into several oriented (positive 

or negative) triangles, is adopted. An illustration of triangulation of manifold element with the 

sign convention is shown in Figure  2.10. 

 

Figure ‎2.10. Triangulation of manifold element with the sign convection: positive- 

counterclockwise, negative- clockwise (Modified after Shi (1996b)). 

The analytical solutions for the six integrations which are required in the manifold 

method are as following: 
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where x0 and y0 are the coordinates of the arbitrary chosen point O, and m is the number of the 

vertices in the manifold element.  

2.6 Equation solver and open-close iteration for equilibrium equations  

The manifold method computations follow a time step marching scheme. For each 

time step the following stages are applied: 

1) Several physical and geometrical parameters are inherited from the previous time step: 

a) stresses of each element; b) strains of each element; c) velocities of each element 

(only for dynamic simulation); d) geometry of the joint boundaries and elements; and 

e) all closed contacts parameters, i.e. i) the contact vertex and edge; ii) the position of 

contact point; iii) the normal displacement and normal force; iv) the shear 

displacement and shear force; and v) locking or sliding as contact state. 

2) Calculation of the continuous material contribution to general equilibrium equation. 

3) Open-close iterations which includes 3 stages: 

a) Calculation of the discontinuities contribution to general equilibrium equation. 

b) The global equation is solved by the “SOR” (successive over relaxation method), 

which is a numeric method for solving linear equations.  

c) A check that two conditions are fulfilled in all contacts: i) no-penetrations in the 

open contacts; ii) no-tensions in the contacts with normal springs. If the two 

conditions are fulfilled the computation proceeds to the next time step. Otherwise, 

the equilibrium equation is updated (stage 3b), i.e. if a contact has a tensile contact 

force from the normal spring, the two sides will separate after the removal of this 

stiff spring, if the vertex penetrated the edge in other side of the contact, a stiff 

spring is applied. Then, the equilibrium equation is solved again (stage 3b). If the 
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two conditions are not fulfilled after six times of open-close iterations, the time 

step will be reduced to one third, and the procedure continues from stage 2.  

4) A check that the maximum displacements of all points in the problem domain (dmax) at 

a given time step are less than a pre-defined limit If this condition is not fulfilled, 

the time step size (tis reduced according to the following equation:  
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d
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t
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  (2.90)

 and the procedure continues from stage 2.  

2.7 NMM numeric implementation 

Computer implementation of NMM allows control over the analysis procedure 

through a set of user specified control parameters: 

1) Dynamic control parameter (k01) -- defines the type of the analysis required, from 

static to fully dynamic. For static analysis the velocity of each element is set to zero at 

the beginning of each time step, k01=0. In the case of the dynamic analysis the 

velocity of each element at the end of a time step is fully transferred to the next time 

step, k01=1.  

2) Upper limit of time step size (g1) – The maximum time interval that can be used in a 

time step, should be chosen small enough so that the second order displacements can 

be neglected, that the SOR iteration will converge in less than 30 iterations, and that 

the open-close iterations will converge in less than 6 iterations. 

3) Assumed maximum displacement ratio (g2) – The calculated maximum displacement 

within a time step is limited to an assumed maximum displacement in order to ensure 

infinitesimal displacement within a time step. The maximum displacement within a 

time step is limited to g2*H (g2*H = ), where H is half the height of the analysis 

domain. If g2 is too large there are too many unnecessary contacts, if g2is too small 

unrealistic inter-block penetration can occur. 

4) Penalty value (g0) -- is the stiffness of contact springs (g0=kn), used to enforce contact 

constrains between blocks. 

5) Mesh density (e) -- defined as the higher number between the following two options: 

1) number of triangular element layers in half domain height, or 2) number of 

triangular elements in half domain width. 
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Chapter 3- Numerical‎code‎verification 

In this chapter, the NMM is verified using four analytical solutions. In three static 

problems, the NMM program capability of accurately solving the stresses and displacements 

in a homogeneous elastic domain (circular hole in an infinite plate and beam under 

concentrate load and volumetric force) and in inhomogeneous elastic domain (layered plate) 

is examined. In one dynamic problem, the NMM program ability to model frictional contacts 

between two blocks (block on an incline) is examined. At this problem, the influence of three 

numerical control parameters on the accuracy of the NMM results is examined too. 

3.1 Layered plate subjected to gravity 

The first verification is for the case of a layered plate subjected to gravity. The plate 

resembles a layered geological medium which experienced deformation over geologic times 

due to overburden stress. The analytical solution for the horizontal and the vertical stresses 

and the vertical displacements under plane stress conditions is developed. A plane strain 

solution can be obtained when the elastic constants, E and , in the plane stress solution are 

modified by equations (2.20) and (2.21). The solution is performed for a special case where 

lateral strain is assumed to be zero (xx = 0), due to the typically infinite extent of the 

geological strata at depth in the field. The layout of the problem is illustrated in Figure  3.1 

where γ is the unit weight [kN/m
3
] of the material. Regarding the geometry of the model (x - 

horizontal axis, y - vertical axis, z - out of plane axis), y is the vertical distance from the 

origin, located at midsection at the bottom of the plate. An analytical solution for the case of 

continuous plate (Figure  3.2) is developed first, and is generalized later for the case of a 

layered plate. 

 

Figure ‎3.1. Layout of the modeled problem consisting of an elastic plate divided into n layers and 

constrained between stiff boundaries at sides and bottom.  
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3.1.1 Analytical solution:  

3.1.1.1 Continuous plate subjected to gravity: 

The increase of vertical stress with depth is: 

 )( yHhyy       (3.1)

From Hooke's law, the relationship between stress and strain is: 
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The vertical strain is:  
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and the total vertical displacement is therefore, 
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Figure ‎3.2. Layout of the modeled problem consisting of a continuous elastic plate constrained 

between stiff boundaries at sides and bottom. 

3.1.1.2 Generalization for a layered medium 

For the case of a plate with n layers the vertical stress can be expressed incrementally 

as: 
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and the horizontal stress can be expressed as: 

x

y

H

Depth
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The vertical strain is therefore: 
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and finally, the total vertical displacement is: 
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    (3.8)

where s is a variable for the specific integral. 

3.1.2 Analytical versus NMM solution  

 In order to verify the NMM for the case of a layered plate, the case of an elastic plate 

divided into 3 sub-layers is simulated with NMM. The plate is constrained between three 

fixed blocks at the sides and bottom. Fixed points are distributed along those three blocks 

(one per element) in order to eliminate any displacement of the blocks. The mechanical 

parameters of the layers and the numerical parameters in the simulation are presented in 

Table  3.1. The NMM model at the end of a simulation with scaled principal stress trajectories 

delineated in red, measurement points location, and the dimension of the model are shown in 

Figure  3.3. The agreement between the analytical and numerical solutions is determined by 

the numerical relative error, which is defined in a conventional manner as: 

 100



d

dd
E N

N     (3.9)

where d and dN are analytical and numerical solutions, respectively. 

 The comparisons between analytically derived and numerically obtained principal 

stresses are shown in Figure  3.4. A good agreement is obtained, with relative errors below 2% 

at 8 measurements points, and with relative error of 6.5% at depth of 100 m (Figure  3.5). At 

the surface of the model, the absolute values of the stresses are very small, and therefore, the 

relative error is much greater. The comparisons between analytically derived and numerically 

obtained vertical settlement are shown in Figure  3.6. A very good agreement is obtained, with 
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relative errors below 0.32% at 9 measurements points (Figure  3.7). At the bottom of the 

model, the vertical displacement is very small, and therefore, the relative error is much 

greater.  

Table ‎3.1. Input parameters for NMM verification. 

K01  g2  g1 [s]  g0 [kN/m] E E [GPa]  [kN/m
3
]

0 0.005 0.0005 50000000 20 

E1=2 

E2=0.5 

E3=10 

1=0.26 

 2=0.3 

 3=0.2 

1=16 

 2=18 

3=21 

   

Figure ‎3.3. NMM model of Elastic plate divided into 3 sub-layers at the end of the simulation. 

Typical stress distribution result with scaled principal stress trajectories delineated in red. 

 

Figure ‎3.4. Comparison between results of analytical and numerical approaches: Vertical and 

horizontal stresses as a function of measurement point depth. 
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Figure ‎3.5. Relative errors of the stresses as a function of measurement point depth. The relative 

error at depth of 0.1 m is absent due figure scale. 

 

Figure ‎3.6. Comparison between results of analytical and numerical approaches: Vertical 

displacement as a function of measurement point depth. 
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Figure ‎3.7. Relative errors of the vertical displacement as a function of measurement point 

depth. The relative error at the bottom of the model is absent due to figure scale. 

3.2 Kirsch solution 

In order to verify the NMM suitability for mining problems, the Kirsch solution 

(Kirsch, 1898) is adopted. Kirsch solution was developed for a circular hole in an infinite 

plate subjected to remote and constant principal stresses p and Kp as shown in Figure  3.8. It is 

used widely in tunneling applications, and assumes continuous, homogeneous, and linear 

elastic medium. (An, 2010) verified Kirsch soulution for the stresses near the hole in a plate 

under uniaxial tension. However, She used a high mesh densety (diameter of the hole contains 

10 elements), which demands a long simulation. In this verfication, a relatively sparse mesh 

(diameter  contains 5 elements) is examined (Figure  3.9). In addition, the vertical 

displacements are examined too. 

 

Figure ‎3.8. Sign convention for Kirsch solution; (after Brady and Brown (1993)).  
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Figure ‎3.9. NMM model for continuous elastic plate with a hole in the center with mesh density 

of 30. 

3.2.1 Analytical solution  

Kirsch solution is expressed here in polar coordinates, and provides the stress (,r) 

and displacements (ur, u) components around the cavern as a function of r,  and a, under 

plane strain conditions (for definition of r,  and a see Figure  3.8): 
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3.2.2 Analytical versus NMM solutions 

The layout of the numerical model is shown in Figure  3.10. As in the previous 

verification, the horizontal stresses are generated due to the stiff boundaries at the sides of the 

model (xx = 0). The mechanical and numerical parameters in the simulation are presented in 

Table  3.2 .  
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The comparisons between analytically derived and numerically obtained horizontal 

and vertical stresses are shown in Figure  3.11. The relative errors at the 9 measurement points 

are plotted in Figure  3.12. At the measurement point near the hole, the vertical stress is very 

small, and therefore, the relative error is much greater, and cannot be presented at the scale of 

the figure. The relative errors decrease with increasing distance from the center of the hole, 

and reach values below 9 % at distance of 2.5 radii from the center of the hole. 

Table ‎3.2. Input parameters for NMM analysis. 

K01  g2  g1 [s]  g0 [kN/m] e E [GPa]  [kN/m
3
]

0 0.005 0.0005 50000000 30 10 3  

 

 

Figure ‎3.10. Layout of model for continuous elastic plate with a hole in the center under remote 

vertical stress and vertical stiff boundaries. 
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Figure ‎3.11 Comparison between results of analytical and numerical approaches: Vertical and 

horizontal stresses as a function of the vertical distance above the center of the hole normalized 

by the hole's radius. 

 

Figure ‎3.12. Relative errors of the stresses as a function of the vertical distance above the center 

of the hole normalized by the hole's radius. The relative error for vertical stress at distance 0f 1 

radius above the center is absent due to figure scale. 
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1. Two simulations procedure: Subtraction of the elastic vertical displacements computed 

with NMM for a plate without a cavity from the vertical displacements computed with 

NMM for a plate containing a cavity.  

2. Two stages procedure: The cavity is opened during the simulation, after the elastic 

vertical displacements have already been achieved, and subtraction of the elastic vertical 

displacements of the first stage from the vertical displacements at the end of the 

simulation. In order to apply this procedure with NMM, the original NMM was modified 

in this thesis to allow cavity excavation during the simulation. At the beginning of the 

simulation, a single block which possesses the same elastic properties as its surrounding 

replaces the cavity and simulation is performed until elastic vertical displacements are 

achieved (tunnel excavation). Then, the block is removed (tunnel excavation), and the 

simulation proceeds with the same loads as in the first stage.  

The comparisons between analytically derived and numerically obtained (with the two 

procedures above) vertical displacements due to cavity are shown in Figure  3.13. A good 

agreement between analytic and numeric results is obtained, with relative errors below 8.2% 

Figure  3.14. Moreover, a very good agreement is achieved also between the two procedures, 

where the 2 simulation procedure is more accurate near the hole, and the 2 stages procedure is 

more accurate from a distance of 4 radii from the hole. 

  

Figure ‎3.13. Comparison between results of analytical (blue line) and numerical approaches: 

Vertical displacement due to cavity as a function of the vertical distance above the center of the 

hole normalized by the hole's radius. The orange diamonds indicate the two simulation 

procedure, while the purple squares indicate the two stages procedure.  
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Figure ‎3.14. Relative errors of the vertical displacement with 2 simulation procedure (orange 

diamonds) and 2 stages procedure (purple squares) as a function of the vertical distance above 

the center of the hole normalized by the hole's radius.  

3.3 Beam under concentrate load and volumetric force 

In this static verification, the vertical displacements and the horizontal stresses along a beam 

are verified in order to test the NMM suitability for cases where long blocks are created due to 

the intersection of discontinuities. The layout of the beam with the measurement points is 

presented in Figure  3.15. The bases beneath the beam eliminate it only from downward 

displacement.   

 

Figure ‎3.15. Beam under concentrate load and volumetric force. 
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where Ay and By are the vertical forces [kN] of the foundations, and P is a concentrated load 

[kN].   
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From beam theory, the forth derivative of the vertical settlement is: 
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where Izz is the second moment, x is the horizontal coordinate, and < >
n
 denote singularity 

function.  

Two integrations give the internal moment as: 
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The stress is expressed as: 
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Where y  is the vertical distance from the neutral line. 

Two more integrations give the vertical deflection as: 

 
ZZEI

P
x

Px
x

P
x

P
V

1

6

125

12

50075

24
5

612

10 4
33 


























    (3.18)

3.3.2 Analytic versus NMM solutions 

In order to examine the influence of the mesh density on the results, four simulations 

with different mesh density (e = 5, 10, 20 and 40) are performed. The four NMM beams (at 

the end of the simulations) are presented in Figure  3.16. The bases beneath the beam are 

fixed, and eliminate the beam from downward displacement. The mechanical and numerical 

parameters in the simulations are presented in Table  3.3.  

Table ‎3.3. Input parameters for MM analysis. 

K01  g2  g1 [s]  g0 [kN/m] e E [GPa]  [kN/m
3
]

0 0.005 0.0005 5000000 5,10,20,40 1 2 2 
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Figure ‎3.16. NMM models of the beams at the end of the simulation for mesh densities of 5, 10, 

20 and 40. 

The comparisons between analytically derived and numerically obtained horizontal 

stresses are shown in Figure  3.17. The relative errors at 7 measurement points for mesh 

densities of 10, 20 and 40 are plotted in Figure  3.18. At the ends of the beam, the stresses are 

very small, and therefore, the relative errors are much greater, and cannot be presented at the 

scale of the Figure. Generally, the accuracy increases with increasing mesh density from 

average relative error of 91% at mesh density of 5 (not plotted due to figure scale), to average 

relative error of 18% at mesh density of 10, to average relative error of 9% at mesh density of 

40. At mesh density of 20, however, the results at the three central measurement points are 

less accurate than the results in mesh density of 10, but at other 4 points, the results are even 

more accurate than the results at mesh density of 40.  

The comparisons between analytically derived and numerically obtained vertical 

deflection are shown in Figure  3.19. The relative errors for mesh densities of 10, 20 and 40 

are plotted in Figure  3.20. The accuracy increases with increasing mesh density from average 

relative error of 62% at mesh density of 5 (not plotted due to figure scale), to average relative 

error of 29% at mesh density of 10, to average relative error of 7.7% at mesh density of 20 

and to average relative error of 0.7% at mesh density of 40. 

e=5: 

e=10: 

e=20: 

e=40: 
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Figure ‎3.17. Comparison between results of analytical (dashed blue line) and NMM: Horizontal 

stresses as a function of x for mesh densities of 5, 10, 20 and 40. 

 

Figure ‎3.18. Relative errors of the horizontal stresses as a function of X for densities of 10, 20 

and 40 at 7 measurement points (two points at the ends are absent due to figure scale). 

0 1 2 3 4 5 6 7 8 9 10

x [m]

-2500

-2000

-1500

-1000

-500

0


x
 [

K
P

a
]

x anal.

x (e=5)

x (e=10)

x (e=20)

x (e=40)

0 1 2 3 4 5 6 7 8 9 10

x [m]

0

5

10

15

20

25

30

35

40

E
N

 [
%

]

EN (e=10)

EN (e=20)

EN (e=40)



Modeling the Excavation Sequence with the Numerical Manifold Method, Yuval Tal 

Chapter 3- Numerical code verification                                                                                         57 

0 1 2 3 4 5 6 7 8 9 10

X [m]

-0.08

-0.06

-0.04

-0.02

0

V
 [

m
]

V anal.

V (e=5)

V (e=10)

V (e=20)

V (e=40)

 

Figure ‎3.19. Comparison between results of analytical (dashed blue line) and NMM: Vertical 

displacements as a function of X for mesh densities of 5, 10, 20 and 40. 
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Figure ‎3.20. Relative errors of the vertical displacements as a function of X for mesh densities of 

10, 20 and 40. 

3.4 Dynamic sliding of a block on an incline 

In order to verify the NMM for dynamic deformation, the case of a block on an 

inclined plane under gravity is re-examined following previous DDA works. The case of 

dynamic sliding of block on an incline was verified with DDA by Kamai and Hatzor  (2008). 

In contrast to DDA, where during sliding in this special case the contacts between blocks 

remain unchanged because they are located only at the vertices of the blocks, in the NMM 
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contacts are updated during sliding because they are located also at intersections between the 

mathematical mesh and the boundaries (see  2.1.3). The dynamic verification is performed 

here also for calibration purposes. The influence of the numerical parameters g1, g2 and g0 on 

the NMM accuracy is examined.  

3.4.1 Analytical solution 

For a single block resting on a plane inclined at an angle α with friction along the 

interface tan, and subjected to gravitational acceleration g (Figure  3.21), the displacement 

time history d(t) can be derived based on Newton’s second law as: 

   22 tancossin
2

1

2

1
)( tggattd       (3.19)

 

Figure ‎3.21. Schematic presentation of the forces acting on a single block lying on an incline. 

3.4.2 Analytical versus NMM solutions 

The layout of the numerical model is shown in Figure  3.22 . In order to examine the 

influence of the time step size (g1), spring’s stiffness (g0) and assumed maximum 

displacement ratio (g2) on the results, 343 simulations with different combinations of those 

three numerical control parameters (Table  3.4) are performed automatically by a self-

developed C code program (each numerical control parameter had seven values). However, 

the model dimension, mechanical parameters and the mesh density remained constant in all 

simulations. The number of time steps was updated according to the time step size in order to 

ensure a total time of 1 s in all simulations. 

  

g


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Table ‎3.4. Input parameters for NMM analysis. 

K01 E E [GPa]  [kN/m
3
]   g2  g1 [s]  g0/E  

1 10 10 2 1 3º 

0.0001 

0.00025 

0.0005 

0.001 

0.0025 

0.005 

0.01 

0.0001 

0.00025 

0.0005 

0.001 

0.0025 

0.005 

0.01 

0.1 

0.25 

0.5 

1 

2.5 

5 

10 

 

Figure ‎3.22. NMM model of a block on an incline 

 A comparison between analytically derived and numerically obtained displacements 

for the case of g1 = 0.00025 s, g2 = 0.001, and g0/ E = 5 is shown in Figure  3.23. A very good 

agreement is obtained, with relative errors decreasing from 1.77% at t = 0.1 s to 0.22% at t = 

1 s (Figure  3.24).  

10 m

10 m

 = 45º

d
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Figure ‎3.23. Comparison between results of analytical (blue line) and NMM: Block displacement 

as a function of time for the case of g1 = 0.00025, g2 = 0.001, and g0 = 5E. 
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Figure ‎3.24. Relative errors of the displacemen as a function of time for the case of g1 = 0.00025 

s, g2 = 0.001, and g0/ E = 5. 

A summary of the relative errors at the ends of all 343 simulations is presented in 

Figure  3.25. Generally, a good agreement is obtained where the relative errors are less than 

0.5 % in 62 % of the combinations, less than 1.5 % in 83 % of the combinations, less than 5 % 

in 90 % of the combinations, and never exceed 10 %. Examination of the numerical 

parameters influence on the results accuracy shows that: 

1) For the time step size (g1), it has no significant influence on the results accuracy, 

except for time step size of g1 = 0.01 s where most of the numerical errors are 

greater than 5 %. An optimum of the results accuracy is obtained at g1 = 0.0005 s. 
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2) For the spring’s stiffness (g0), there is an influence only at the smallest time step 

size (g1 = 0.0001) where the relative errors increase with increasing stiffness. 

However, even at this time step size the relative errors are greater than 3 % only in 

5 out of 49 simulations. 

3)  For the assumed maximum displacement ratio (g2), it has no influence on the 

results accuracy.  

 

Figure ‎3.25. Relative errors of the vertical displacement at t = 1 s as a function of g1, g0, g2. The 

empty symbols represent simulations where the total time of the simulation is lower than 1 s. 
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Figure 3.25 (cont.). Relative errors of the vertical displacement at t = 1 s as a function of g1, g0, 

g2. The empty symbols represent simulations where the total time of the simulation is lower than 

1 s. 

3.4.3 Average number of iterations per time step and total time of simulation 

 Figure  3.26 shows the average number of open-close iterations per time step (iav) as a 

function of g2/g1 ratio in all 49 combinations of g2 and g1. Since seven simulations are 

performed for each combination of g2 and g1 (seven different values g0), the average value of 

iav in all seven simulations is taken. When g2/g1 ratio is larger than 0.1, iav remains stable 

with values never exceeding 1.1. When g2/g1 ratio is 0.1 and below however, iav increases 

with decreasing g2/g1 ratio to value of 2.77 at g2/g1 ratio of 0.01.  

Figure  3.27 shows the total time of simulation as a function of g2/g1 ratio in all 49 

combinations of g2 and g1. When g2/g1 ratio is 0.1 and less, the total time of the simulations 

is lower than planned (1 s), and decreases with decreasing g2/g1 ratio to minimum value of 

0.35 s at g2/g1 ratio of 0.01. A lower total time of simulation than planed is a result of 

reduction of the real time step size ((t)) during the simulation due to two possible options 
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(section  2.6 c)): 1) the condition of no penetration/no tension in all contacts is not fulfilled 

after six open-close iterations; and 2) the condition that the displacements of all points in the 

problem domain during the current step are less than a pre-defined limit g2*H) is not 

fulfilled (H is half the height of the analysis domain size). In the case of dynamic sliding, the 

second condition is relevant because reduction of (t) is observed in iav values of 1.25 – 2.77 

(significantly smaller than 6). Moreover, most of the additional iterations are due to 

nonfulfillment of the second condition rather than the no penetration/no tension condition. 

The evolution of (t) during the simulation is plotted in Figure  3.28. In the beginning 

of the simulation, the block velocity and displacement are small, and (t) remains stable. 

After 32 time steps the displacements are higher than the pre-defined limit in the problem 

of a block on an incline the velocity and displacement increase with time),and (t) decreases 

sharply to 0.0035 s. Then, (t) decreases continuously to a value of 0.25 s  after  85 time 

steps.  Another sharp reduction of (t) occurs after 86 time steps. At this stage, there are two 

reductions of (t) in each step because of the large displacements. At the end of the 

simulation (t) = 0.0013 s, only 25 % the planned value. 
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Figure ‎3.26. average number of open-close iterations per time step as a function of g1/ g2 ratio in 

all 49 combinations of g2 and g1.  
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Figure ‎3.27. Total time of simulation as a function of g1/ g2 ratio in all 49 combinations of g2 

and g1. 
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Figure ‎3.28. Evolution of time step size during the simulation for the case of g1 = 0.005 s, g2 = 

0.0001 and g0/E = 1. 

3.5 Summary and conclusions 

The accuracy of the NMM program is verified using three static problems (layered 

plate under gravity, Kirsch solution and beam under concentrate load and volumetric force), 

and one dynamic problem (block on an incline). A good agreement is obtained between the 

numerical and the analytical solutions.  

In the static problems, both stresses and displacements are examined. The NMM 

results for the displacements are always much more accurate than the NMM results for the 

stresses. This observation can be explained by the fact that the NMM aims for the 
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displacements. The displacements are solved first, then by interpolation and derivation of the 

displacements the strains are obtained, and by Hooke's low the stresses are obtained. For each 

element, a linear displacement function is defined, while the stresses are constant. 

The influence of the mesh density on the NMM results is examined for the case of 

beam under concentrate load and volumetric force. The accuracy of the NMM results for the 

displacements increases with increasing mesh density as expected from method with linear 

displacement function. However, the accuracy of the NMM results for the stresses does not 

always increase with increasing mesh density. Since the stresses are constant in each element 

and are the average of the contributions from each node of the triangle, the accuracy of the 

numerical solution for the stresses depends on the relative location of the measurement point 

inside the element, i.e. the accuracy increases when the measurement points are located at the 

center of the element. The relative location of the measurement points changes when the mesh 

changes. Consequently, the accuracy of the numerical solution for the stresses does not 

always increase with increasing mesh density. For example, in the case of a beam with mesh 

density of e=20, the three central measurement points are located near the lower node of the 

element (Figure  3.29) while the center of the element is slightly higher. Therefore, the 

numerical solution for the stresses is lower than the analytical solution, and is not accurate. 

This issue should be kept in the mind by any NMM user when placing measurement points 

for stress analysis. 

 

Figure ‎3.29. Relative location of the three central mesurement points (orange dots) inside the 

elements for mesh densities of e=10 and e=20. 

The influence of the numerical control parameters g0, g1 and g2 on the NMM results 

is examined only for the dynamic verification of block on an incline where the solution is 

determined by the displacement along block boundaries. Accurate results are obtained for 

time step sizes smaller than g1 = 0.01 s. The total time of the simulation however is lower 

than planned in simulations where the ratio g2/g1 is 0.1 and below, as a result of automatic 

time step size reduction performed by the code during the simulation. The time step size is 

e=20:

e=10:
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reduced in order to fulfill the condition that displacements of all points in the problem domain 

during the current step are less than a pre-defined limit g2*H). 
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Chapter 4- Simulating‎the‎excavation‎sequence 

In the original NMM code developed by Shi (1996a), tunnels exist from the beginning 

of the simulation. However, in realty when tunnels are excavated, compressive stresses 

allready exist in the field, and the rock collum has already experienced an elastic deformation 

over geologic times due to overburden stress. This issue can be very important when the 

stability of underground opening in discontinuous rock mass is analyzed.  

In this thesis, the original NMM code is modified for tunnel excavation during the 

NMM simulation, after the local stresses already exist and the elastic deformation has already 

occurred. The modified NMM code contains two stages: 1) at the beginning of the simulation 

a single block replaces the tunnel and static simulation (K01 = 0) is executed until equilibrium 

is attained. Then, 2) the tunnel block is removed (simulating tunnel excavation), and a 

dynamic computation (K01 = 1) is executed. The block removal process includes the removal 

of manifold elements inside this block and their corresponding star nodes, and the detachment 

of contacts with neighboring blocks. Because manifold elements are the intersection between 

the physical domain and the mathematical cover, the removal of an existing block enables 

realistic modeling of the excavation sequence without splitting existing manifold elements.  

In order to examine the significance of opening the underground openings during the 

simulation rather than from the beginning of the simulation, the stability of rectangular 

underground openings excavated in horizontally stratified and vertically jointed rock masses 

is examined.  

4.1 Model geometry and mechanical properties 

The layout of the numerical model is presented in Figure  4.1. The analysis domain is 

30 m high and 30 m wide, and is constrained between stiff boundaries at sides and bottom. 

The opening geometry is of a rectangular shaped tunnel with span B = 12 m and height ht = 6 

m located at a depth of 17 m (center). Two joint sets are generated: a set of horizontal bedding 

planes and a set of vertical joints, each with average spacing of Sj = 2 m. The displacements 

and stresses within the rock mass are measured at eight measurement points along a vertical 

line rising from the excavation crown. The mechanical properties of the rock mass are: E = 10 

[GPa],  = 0.2, and  = 24.5 [kN/m
3
]. The simulations are performed under plane strain 

conditions.  
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Figure ‎4.1. NMM model of the analyzed opening: a) modified NMM model at the beginning of 

the simulation; and b) original NMM model at the beginning of the simulation. 

4.2 Numerical control parameters calibration 

For a blocky rock mass under dynamic simulation, a proper selection of numerical 

control parameters is essential. The density of the mesh (e = 20) is chosen to be sufficiently 

dense so that each layer of the rock mass contains approximately two layers of elements, to 

enable more degrees of freedom for every block in the system without increasing the 

simulation time. Moreover, here the numerical parameters that control the relationship 

between the blocks are more important than the mesh density that affects the solution with 

respect to the continuous medium inside the blocks. The size of the time step is set to g1 = 

0.00025 in order to allow small displacements in a single time step, but to avoid exceedingly 

long simulations. In order to select proper spring’s stiffness (g0) and assumed maximum 

displacement ratio (g2), 15 simulations are performed, each simulation with different 

combination of spring’s stiffness and assumed maximum displacement ratio (Table  4.1). In all 

15 simulations, the first static stage is 5 s long (20,000 steps), and the second dynamic stage is 

7.5 s long (30,000 steps). The importance of choosing the right numerical control parameter 

can be demonstrated by the different evolutions of the underground openings during the 

simulations (Table  4.2), which change from stable, to significant roof displacement, to 

unstable, and in one case to severe penetration between blocks. 
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Table ‎4.1. Input Numerical parameters for NMM analysis. 

K01  g2  g1 [s]  g0/E  e 

1 

0.0001 

0.00025 

0.0005 

0.00025 

 

0.1 

0.5 

1 

5 

10 

20 

 

Table ‎4.2. Underground opening at the end of the simulations. 

  g2 

  0.0001 0.00025 0.0005 

g0/E 

0.1 penetration stable unstable 

0.5 unstable stable stable 

1 stable stable significant roof displacement 

5 stable stable significant roof displacement 

10 stable stable significant roof displacement 

 

In the following three sections, the spring’s stiffness and the assumed maximum 

displacement ratio are examined on the basis of three criteria: 1) accuracy of the numeric 

results at the end of the first stage (before the excavation) of the simulation; 2) average 

number of open-close iterations per time step; and 3) computing time (CPU time).  

4.2.1 Accuracy of the numerical results at the end of the first static stage 

In this section, a comparison between analytically derived and numerically obtained 

stresses and displacements, at the end of the first static stage of the simulation, is performed. 

At the end of the first stage the tunnel is not excavated yet, the rock mass is subjected to 

compressive stresses only, and blocks are constrained kinematically. Thus, the blocky rock 

mass behavior is quasi continuous, and the numerical results can be compared to the 

analytical results developed for a continuous medium in section  3.1.1. 

The comparisons between analytically derived and numerically obtained horizontal 

stresses, vertical stresses and vertical displacements for assumed maximum displacement ratio 

of g2=0.0001 are shown in Figure  4.2, Figure  4.3 and Figure  4.4 respectively. The spring’s 

stiffness ranges from one order below the young’s modulus to one order above it (g0/E = 0.1, 

0.5, 1, 5 and 10). Generally, a trend of increasing accuracy of the numerical results with 

increasing spring stiffness is seen. A decrease of the springs stiffness causes an under estimate 

of the stresses predicted by NMM compared to the analytical results, and an over estimate of 

the vertical displacements predicted by NMM compared to the analytical results.  
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Figure ‎4.2. Comparison between results of analytical (dashed blue line) and NMM solutions: 

horizontal stresses as a function of measurement point depth for assumed maximum 

displacement ratio of g2 = 0.0001, and g0/E ratios of 0.1, 0.5, 1, 5 and 10. 
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Figure ‎4.3. Comparison between results of analytical (dashed blue line) and NMM solutions: 

vertical stresses as a function of measurement point depth for assumed maximum displacement 

ratio of g2 = 0.0001, and g0/E ratios of 0.1, 0.5, 1, 5 and 10. 
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Figure ‎4.4. Comparison between results of analytical (dashed blue line) and NMM solutions: 

vertical displacements as a function of measurement point depth for assumed maximum 

displacement ratio of g2 = 0.0001, and g0/E ratios of 0.1, 0.5, 1, 5 and 10. 

In order compare all 15 simulations in more convenient method while taking into 

consideration the effect of all eight measurement points, the root mean square (dRMS) of the 

stresses and displacements in each simulation is calculated. The dRMS gives the same weight 

for each measurement point since it does not include relative values, and is defined as 

 
     

n

dddddd
d NnnNN

RMS

22
22

2
11 




    (4.1)

where di and dNi are analytical and numerical solutions of the i-th measurement point 

respectively, and n is the amount of measurement points. 

 The dRMS of the horizontal stresses, vertical stresses and vertical displacements in all 

15 simulations is presented in Figure  4.5, Figure  4.6 and Figure  4.7 respectively. Generally, 

dRMS magnitude and rate decrease with increasing g0/E ratio. The minimum dRMS of the 

vertical displacements is obtained at g0/E ratio of 10, and there is no significant difference 

between the results of the three maximum displacements ratios. However, for the horizontal 

and vertical stresses, the results are more complicated, and the minimum dRMS is also depends 

on the maximum displacements ratio. The minimum dRMS of the vertical stresses for g2 = 

0.0001 and g2 = 0.00025 is obtained at g0/E ratio of 5, while minimum dRMS for g2 = 0.0005 

is higher, and is obtained in two g0/E ratios: 5 and 10. The minimum dRMS of the horizontal 

stresses for g2 = 0.00025 is obtained at g0/E ratio of 5, while minimum dRMS for g2 = 0.0001 

and g2 = 0.0005 is higher, and is obtained at g0/E ratio of 10. 
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Figure ‎4.5. Root mean square of the horizontal stresses as a function of the ratio g0/E for 

maximum displacement ratios of g2=0.0001, g2=0.00025, and g2=0.0005. 
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Figure ‎4.6. Root mean square of the vertical stresses as a function of the ratio g0/E for maximum 

displacement ratios of g2=0.0001, g2=0.00025, and g2=0.0005. 
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Figure ‎4.7. Root mean square of the vertical displacements as a function of the ratio g0/E for 

maximum displacement ratios of g2=0.0001, g2=0.00025, and g2=0.0005. 

4.2.2 Average number of open-close iterations per time step 

As mentioned in section  2.6, in order to satisfy the constraint of no penetration/no 

tension in all contacts, a method of open-close iterations is performed until a convergence of 

the solution is achieved. Thus, lower number of open close iterations leads to faster 

convergence of the solution. In addition, if open-close iterations cannot converge in 6 

iterations the time step is reduced, and consequently the total time of the simulation might be 

significantly smaller than planned.  

Figure  4.8 shows the average number of open-close iterations per time step (iav) in all 

15 simulations. The average number of open-close iterations increases with increasing 

maximum displacement ratio. For maximum displacement ratio of g2 = 0.0001, iav decreases 

with increasing springs stiffness, from 4 iteration per step at g0/E ratio of 0.1 to 2.2 at g0/E 

ratio of 5 and 10. On the contrary, for g2 = 0.00025, iav increases with increasing springs 

stiffness, from 3.4 at g0/E ratio of 0.1 to 5.2 at g0/E ratio of 1, where it stabilizes. For g2 = 

0.0005, iav also increases with increasing springs stiffness: from 4.2 at g0/E ratio of 0.1 to 11 

at g0/E ratio of 10.  

Figure  4.9 shows the total time of simulation normalized by the planned total time 

(12.5 s) in all 15 simulations. The total time of the simulations is a mirror image of the iav, i.e. 

in combination of g0 and g2 with high iav, the normalized total time of simulation decreases 

significantly, where in the most extreme case the normalized total time decreases to 0.49. At 

combinations of g0 and g2 where iav is lower than 4.5, the total time of the simulation is 
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approximately 12.5 s, except for the case of g2 = 0.0001 and g0/E =0.1 where iav is equal to 4, 

but the normalized total is 0.79 due to the penetration between the blocks.  
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Figure ‎4.8. Average open-close iterations per time step as a function of g0/E ratio for maximum 

displacement ratios of g2=0.0001, g2=0.00025, and g2=0.0005. 
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Figure ‎4.9. Total time of simulation normalized by the planed total time (12.5 s) as a function of 

g0/E ratio for maximum displacement ratios of g2=0.0001, g2=0.00025, and g2=0.0005. 

4.2.3 Computing time (CPU time) 

When analyzing a complex problem, computing time can be a critical issue. 

Figure  4.10 shows the CPU time in all 15 simulations. The CPU time increases with 

increasing maximum displacement ratio. For maximum displacement ratios of g2=0.0001, the 

CPU time remains approximately 21 hours from g0/E ratio of 0.1 to g0/E ratio of 5, and then 



Modeling the Excavation Sequence with the Numerical Manifold Method, Yuval Tal 

Chapter 4- Simulating the excavation sequence                                                                              75 

increases to 29 hours at g0/E ratio of 10. For g2=0.00025, CPU time increases with increasing 

springs stiffness, from 25.6 hours at g0/E ratio of 0.1 to 43.8 hours at g0/E ratio of 10. For 

g2=0.0005, the CPU time also increases with increasing springs stiffness, from 26 hours at 

g0/E ratio of 0.1 to 84 hours at g0/E ratio of 10. 
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Figure ‎4.10. Simulation computing time as a function of g0/E ratio for maximum displacement 

ratios of g2=0.0001, g2=0.00025, and g2=0.0005. 

4.2.4 Final selection of the numerical control parameters 

Based on section 3.2.1, the most accurate results for the horizontal stresses, vertical 

stress and vertical displacements are obtained with spring’s stiffness of g0 = 50000000 kN/m 

and g0 = 100000000 kN/m (g0/E=5 and 10). Based on section  4.2.2, the minimum average 

number of open-close iterations per time step is obtained at maximum displacement ratio of 

g2 = 0.0001, and spring’s stiffness of 50000000 kN/m and g0 = 100000000 kN/m. Based on 

section  4.2.3, the minimum CPU time obtained at g0 = maximum displacement ratio of g2 = 

0.0001, and spring’s stiffness of g0 = 1000000 kN/m, g0 = 50000000 kN/m, g0 = 10000000 

kN/m and g0 = 50000000 kN/m. Therefore, the maximum displacement ratio and contact 

stiffness which are chosen for the analysis are g2 = 0.0001 and g0 = 50000000 kN/m 

respectively. 
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4.3 Results 

4.3.1 Original versus modified NMM 

In order to compare the evolution of the analyzed opening under the modified NMM, 

where the underground opening is excavated during the simulation, and under the original 

NMM, where the underground opening is already excavated at the beginning of the 

simulation, seven simulations with friction angles of 10º, 15º, 20º, 25º, 30º, 35º and 40º are 

performed with each method. Figure  4.11 shows the underground openings at the end of the 

simulations. The modified NMM simulations are presented at the left hand side, and original 

NMM simulations are presented at the right hand side. For friction angle of  = 10º, the 

opening is not stable in both method. For friction angles ranging from  = 15º to  = 25º, the 

opening is not stable in the original NMM, but stable in the modified NMM. For friction 

angles ranging from  = 30º to  = 40 º, the opening is stable in both method. In two 

simulation, a severe deflection of the opening cover occurs (modified NMM  = 25º, and 

original NMM  = 30º). However, in both cases the displacements occur only at the beginning 

of the dynamic simulation (0.5-1 s), and then the opening is stable.  

 

Figure ‎4.11. The analyzed opening at the end of the modified NMM simulations (left hand side), 

and at the end of the original NMM simulations (right hand side) for friction angles of 10º, 15º, 

20º, 25º, 30º, 35º and 40º. 
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Figure 4.11 (cont.). The analyzed opening at the end of the modified NMM simulations (left hand 

side), and at the end of the original NMM simulations (right hand side) for friction angles of 10º, 

15º, 20º, 25º, 30º, 35º and 40º. 

 O

STABLE UNSTABLE4 m 4 m

 = 15º:  = 15º:

 = 20º:

STABLE UNSTABLE 4 m4 m

 = 20º:

STABLE UNSTABLE4 m 4 m

 = 25º:  = 25º:



Modeling the Excavation Sequence with the Numerical Manifold Method, Yuval Tal 

Chapter 4- Simulating the excavation sequence                                                                              78 

 

 

 
Figure 4.11(cont.). The analyzed opening at the end of the modified NMM simulations (left hand 

side), and at the end of the original NMM simulations (right hand side) for friction angles of 10º, 

15º, 20º, 25º, 30º, 35º and 40º. 
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4.3.2 Analysis of a single block behavior during the simulation 

At the previous section, the behavior of the whole blocky rock mass is analyzed. At 

this section, the behavior of the central block of the underground opening crown is analyzed. 

The modified NMM simulation with friction angle of  = 30º is applied again with two 

measurement points located at the upper part and at the lower part of the analyzed block. The 

horizontal stresses, vertical stresses and vertical displacements are recorded during the 

simulation. Figure  4.12 shows the analyzed domain at the end of the simulation with location 

of the specific analyzed block and the two measurement points. Inspection of the stress 

distribution (delineated in red) reveals that arching mechanism takes place in the roof of the 

underground opening. 

Figure  4.13 shows the horizontal stresses at the two measurement points during the 

simulation. During the static stage (before the excavation), the block is subjected to 

compressive horizontal stresses which increase until they stabilize at values of 65 KPa at the 

upper part of the block and 80 KPa at the lower part of the block after 3 s. After the 

excavation (t = 5 s), the horizontal stress at the upper part of the block increases until it 

stabilizes on value of 1410 KPa. However, at the lower part of the block, the horizontal stress 

decreases and turns into tension of 122 KPa.  

Although a comprehensive research on the behavior of a vertically jointed crown 

during the excavation is beyond the scope of this thesis, analysis of the horizontal stress 

distribution in the central block in the context of its neighboring blocks behavior (Figure  4.14) 

is performed in order to explain the obtained tensile stresses at the lower part of the block. 

The neighboring blocks undergo rotation inwards towards the center of the crown. 

Consequently, the central block undergoes 0.3 mm shortening at its upper part (Figure  4.14). 

Similarly to the Voussoir beam (Diederichs and Kaiser, 1999) and the multiple joint beam 

(Talesnick et al., 2007) a compressive arch evolves at the crown, and the central block is 

subjected to compressive loads at the upper part of its interfaces with the neighboring blocks. 

Because those loads are not completely horizontal and include also a small vertical 

component, the central block is subjected to moments which produce tensile stress and 

extension (0.03 mm) at its lower part. 

Figure  4.15 shows the vertical stresses at the two measurement points during the 

simulation. During the static stage, the block is subjected to compressive vertical stresses 

which increase until they stabilize at values of 295 KPa at the upper part of the block and 340 

KPa at the lower part of the block after 3 s. After the excavation, the vertical stresses at both 

parts of the block decrease. At the lower part of the block, near the free surface which is 
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created due to the excavation, the vertical stress is -8 KPa, while at the upper part of the 

block, the vertical stress is equal to -60 KPa. 

Figure  4.16 shows the vertical displacements at the two measurements point during the 

simulation. During the static stage, small elastic deformations occur, with increasing vertical 

displacements in both parts of the block until a value of about 0.85 mm at t = 2.5 s. After the 

excavation, the block undergoes an immediate settlement of 9 mm, and then it stabilizes with 

no additional displacements until the end of the dynamic stage. 

 

Figure ‎4.12. The modified NMM model at the end of the simulation with the locations of the 

analyzed block, and the two measurement points. Typical stress distribution result with scaled 

principal stress trajectories delineated in red. 
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Figure ‎4.13. Horizontal stresses at the upper (red) and lower (blue) measurement points as a 

function of time for simulation with friction angle of  = 30º at all discontinuities. 

 

Figure ‎4.14. Analysis of the three central blocks of the crown at the end of the simulation, 

including: horizantal stresses distribution and displacements at the central block, and 

displacements at the lower part of its neighboring blocks. 
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Figure ‎4.15. Vertical stresses at the upper (red) and lower (blue) measurement points as a 

function of time for simulation with friction angle of  = 30º at all discontinuities. 

 

Figure ‎4.16. Vertical displacements at the upper (red) and lower (blue) points as a function of 

time for simulation with friction angle of  = 30º at all discontinuities. 

4.4 Summary 

The original NMM, where the underground opening is open from the beginning of the 

simulation, is limited when analyzing the stability of underground openings in blocky rock 

masses since local stresses do not exist yet. This limitation can lead to a wrong estimation of 

the stability of the underground opening, albeit, on the conservative side. The modified NMM 

solves this problem by allowing excavation during the simulation after the local stresses 

already exist and the elastic deformation has already occurred.  
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The importance of analyzing underground opening stability with the modified NMM, 

where the underground opening is excavated during the simulation, is demonstrated with an 

example of underground opening in a blocky rock mass. When analyzed with the modified 

NMM, the underground opening is stable when the discontinuities’ friction angle is 15º and 

above. However, with the original NMM, stability is achieved only at friction angles of 30º 

and above. Analysis of the stresses in the central block of the underground opening crown 

during the simulation also demonstrates the importance of the new procedure. On the first 

stage of the simulation, the stresses reach to realistic values only after 2-3 s (8000-12000 time 

steps), and if the cavern would be opened earlier (and off course, if the cavern exist from the 

beginning of the simulation) the simulation would not reflect properly the real behavior of the 

rock mass during the excavation.  
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Chapter 5- The‎Zedekiah‎cave‎case‎study 

The case of Zedekiah cave was previously analyzed with DDA by (Bakun-Mazor et 

al., 2009), based on field measurements and laboratory tests performed by (Eimermacher, 

2004). Their results, based on 2D DDA modeling,  showed that in the immediate roof of the 

cavern, a significant amount of vertical deflection (34 cm) is expected before stable arching is 

obtained, 3 s after the beginning of the simulation. A friction angle value of 41
o
 was assumed 

for all discontinuities, and the analysis was performed under plane stress conditions.  

In this study, the stability of Zedekiah cave is analyzed with the NMM under plane 

strain conditions which is a more appropriate boundary condition for modeling elongated 

underground openings such as the case of Zedekiah cave with a long axis two orders of 

magnitudes greater than the opening diameter. A comparison between the NMM and the 

modified NMM for a range of friction angle is performed to explore the relative significance 

of the excavation during the simulation procedure developed earlier in this thesis. 

5.1 Site description 

Zedekiah Cave has been used as an underground quarry below the city of Jerusalem 

from ca. 700 - 800 BC, and continuously until the end of the late Byzantine period, in order to 

extract high quality building stones for monumental constructions in Jerusalem and vicinity. 

The quarry is excavated underneath the old city of Jerusalem (Figure  5.1a) in a sub-

horizontally bedded and moderately jointed, low strength, upper Cretaceous limestone of the 

Bina formation (Shadmaon, 1959). The underground quarry is 230 m long, with maximum 

width and height of 100 m and 15m respectively (Figure  5.1b). 

The most striking feature of the quarry is certainly the 30 m span, unsupported central 

chamber, locally known as the "Freemasons Hall", because of ritual ceremonies taken place at 

the chamber by Freemasons in recent times (Figure  5.1c). Site investigations revealed that 

large roof slabs in several side chambers have collapsed over the years, but that the roof of the 

Freemasons hall has remained intact. 
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Figure ‎5.1. The 2000 year old cave of Zedekiah underneath the old city of Jerusalem. a) Layout 

of Zedekiah cave superimposed on the old city of Jerusalem, b) plan of Zedekiah cave, 

"Freemasons’‎Hall"‎delimited‎by‎dashed‎square, c) A cross section through Freemasons’‎Hall 

(after Eimermacher (2004)).  
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5.2 NMM model 

The rock mass structure at Zedekiah cave consists of one set of sub-horizontal beds 

and three sets of inclined joints (Table  5.1). Since the NMM is restricted to a two-dimensional 

analysis, the fracture pattern has been simplified to two discontinuity sets: sub-vertical joints 

and horizontal bedding planes. The three sub-vertical joint sets are therefore replaced by a 

single representative vertical joint set with mean spacing of 1.5 m, trace length 8 m, and 

bridge length 0.2 m. Trace lines for the joint sets are generated synthetically by the line 

generation code of DDA (DL), in this case with a degree of randomness of 0.7 (for definition 

of the degree of randomness and the trace length generation algorithm employed in DL see 

Shi and Goodman 1989). Mesh generation is performed using the NMM cutting code (MC). 

Trace lines for the bedding planes are inserted manually to avoid undesired bedding plane 

locations, maintaining a mean bed thickness of 2 m in the mesh. The reason both joint set and 

bedding plane spacing is larger in the mesh than in the field is our desire to minimize the total 

number of blocks which will be computed without compromising on geometrical block 

characteristics. The resulting NMM  mesh is therefore, to some extent, an idealized picture of 

the rock mass in the field with a smaller number of individual blocks than in reality. Careful 

examination of the "Freemasons’ Hall" NMM model (Figure  5.2) reveals that discontinuity 

tips also exist. On the contrary to the DDA, the NMM cutting code (MC) allows the existence 

of discontinuity tips. However, those tips must be ended at the boundary of an element. An 

illustration of the differences between the DDA and the NMM cutting codes for the same data 

input is shown in (Figure  5.3).    

Table ‎5.1. Rock mass structure at Zedekiah cave (after Eimermacher (2004)) 

Discontinuity 

set 

Genetic 

type 

Mean 

orientation 

Mean spacing 

(m) 

1 Bedding 08/091 0.85 

2 Shears 71/061 0.79 

3 Shears 67/231 1.48 

4 Joints 75/155 1.39 
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Figure ‎5.2. NMM model of the "Freemasons’‎Hall" 

 

Figure ‎5.3. a) Schematic illustration of discontinuity tips in NMM mesh; and b) DDA mesh 

which were generated with the same input data. 

5.3 NMM simulations 

The stability of the "Freemasons’ Hall" under gravitational loading is examined with 

both original NMM and modified NMM. In both methods, the duration of the dynamic 

simulations is 7.5 s, an equivalent of 30,000 NMM time steps (g1 = 0.00025 s). The static 

stage in the modified NMM (before the excavation) lasts also 7.5 s. The spring’s stiffness (g0) 

and the assumed maximum displacement ratio (g2) are identical to those chosen in  Chapter 4-. 

The mechanical and numerical parameters in the simulations are presented in Table  5.2. 
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Table ‎5.2. Input parameters for NMM analysis‎of‎Freemasons’‎Hall‎in‎Zedekiah‎cave,‎Jerusalem 

K01  g2  g1 [s]  g0 [kN/m] e E [GPa]  [kN/m
3
]

1 0.0001 0.00025 50000000 20 10 1 2 

5.3.1 Friction angle value of 41
o
 

Two simulations, one with the original and other with the modified NMM, are 

performed with friction angle value of 41
o
 in all discontinuities based on tilt tests of saw cut 

planes and measured joint surface profiles in the field (Eimermacher, 2004). The cavern at the 

end of the 2 simulations with scaled principal stress trajectories delineated in red is shown in 

Figure  5.4. Inspection of the figure reveals that arching mechanism is obtained after small 

initial vertical deflection of the immediate roof: 7.5 cm in the original NMM simulation, and 

3.8 cm in the modified NMM simulation. In both methods six blocks at the left side of the 

cavern and one small block at the right side of the cavern fall from the roof. Those blocks 

cannot remain attached in two dimensions analysis due to their initial configuration. 

 

Figure ‎5.4. The "Freemasons’‎Hall" model at the end of the modified NMM simulations (a), and 

at the end of the original NMM simulations (b). Typical stress distribution result with scaled 

principal stress trajectories delineated in red. 
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Figure 5.4 (cont.). The‎"Freemasons’‎Hall"‎model‎at‎the‎end‎of‎the‎modified‎NMM‎simulations‎

(a), and at the end of the original NMM simulations (b). Typical stress distribution result with 

scaled principal stress trajectories delineated in red. 

5.3.2 Required friction angle for stability 

The assumed value of friction angle based on tilt tests of saw-cut planes and a 

measured joint surface profile in the field is not very accurate. Therefore, the stability of the 

"Freemasons’ Hall" under gravitational loading is also examined with original and modified 

NMM for a range of assumed friction angles. This examination also enabled the comparison 

between the original and modified NMM in a real case study.  

Eight simulations (four for each method) are performed with assumed friction angle 

values of 10
o
, 15

o
, 20

o
 and 25

o
. The NMM models at the end of the 8 simulations are shown in 

Figure  5.5. The modified NMM simulations are presented at the left hand side, and original 

NMM simulations are presented at the right hand side. For a friction angle of 10
o
, the cavern 

is not stable in both methods: with original NMM the immediate roof and the layer above it 

falls, whereas with modified NMM only the immediate roof collapses. With an assumed 

friction angle of 15
o
 the cavern is stable when analyzed with modified NMM with immediate 

roof deflection of 15 cm but with the original NMM the immediate roof collapses. With an 

O-NMMb

4 m
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assumed friction angle of 20
o
 the cavern is stable when analyzed with modified NMM with 

immediate roof deflection of 7 cm. With the original NMM, the deflection of the immediate 

roof is 17.7 cm after 7.5 s. However, careful examination of the deflection of the roof as a 

function of the time (Figure  5.6) during the simulation reveals that the roof is not completely 

stable at the end of the simulation, with a continuous increase of roof deflection. A continuous 

increase of roof deflection is obtained also when the same simulation is performed for 16 s, 

with roof deflection of 31.5 cm at the end of the simulation. Therefore, the cavern is defined 

as unstable for this friction angle. With an assumed friction angle of 25
o
 the cavern is stable 

with both methods. The deflection of the immediate roof is 5 cm in the original NMM 

simulation, and 6.1 cm in the modified NMM simulation. 

 

Figure ‎5.5. The "Freemasons’‎Hall" model at the end of the modified NMM simulations (left 

hand side), and at the end of the original NMM simulations (right hand side) for friction angles 

of 10º, 15º, 20º and 25º. 
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Figure 5.5 (cont.). The‎"Freemasons’‎Hall"‎model‎at‎the‎end‎of‎the‎modified‎NMM‎simulations 

(left hand side), and at the end of the original NMM simulations (right hand side) for friction 

angles of 10º, 15º, 20º and 25º.  

 

Figure ‎5.6. Roof deflection as a function of time during modified (the graph represents only the 

second dynamic stage) and original NMM simulations, for friction angles of, 20º and 25º. 
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5.4 Summary 

Stability analysis of the “Freemasons hall” at Zedekiah cave with modified and 

original NMM reveals that the cavern is stable for the friction angle value obtained 

experimentally. The stability is attributed to the arching mechanism that develops in the layers 

of the immediate roof which are comprised of small, prismatic, blocks. These numerical 

results are supported by the fact that the roof of “Freemasons hall” has remained intact and 

un-supported since its excavation more than 2000 years ago. Moreover, the cavern is stable 

when analyzed with the modified and original NMM also for significantly smaller values of 

friction angles: 15º when analyzed with the modified NMM, and 25º when analyzed with the 

original NMM. This observation strengthens the conclusion that “Freemasons hall” is stable.  
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Chapter 6- Discussion‎and‎conclusions 

This research focuses on the application and modification of the numerical manifold 

method (NMM) for the purpose of enhancing the analysis capability of underground openings 

embedded in discontinuous rock masses. As a hybrid method between numerical methods 

from the continuum (FEM) and discontinuum (DDA) approaches, the NMM is capable of 

modeling dynamic problems involving the interaction of multiple blocks including the stress 

distribution and deformations inside those blocks.  

6.1 Verification and calibration of the NMM 

The capability of the NMM to solve stresses and displacements in a continuous elastic 

medium is verified using three static problems: 1) a layered plate subjected to gravity, where 

the NMM is found capable of modeling problems which involve inhomogeneous (layered) 

media; 2) circular hole in an infinite plate subjected to remote constant stresses (Kirsch 

solution) where the capability of the NMM to model problems which involve stress 

concentrations is verified; and 3) in the case of beam under a concentrated load and 

volumetric force, the NMM suitability for solving problems which involve bending is 

checked. Generally, a good agreement between the NMM and the analytical solutions is 

obtained, with higher accuracy of the NMM solution for the displacements than its solution 

for the stresses.  

The NMM uses linear displacement functions for its elements. Therefore, in cases 

where stresses change rapidly (e.g. the immediate region around the hole in Kirsch solution 

and along the beam under concentrated load and volumetric force), NMM results nicely 

follow the  analytical solution for stresses, but a relatively dense mesh of elements is required 

in order to solve the stress distribution accurately. However, it is important to note that the 

NMM (this research as well) aims for complex problems where the displacement field is 

dominated by displacements along discontinuities rather than stresses and deformation in the 

continuous medium.  

The NMM capability of modeling the interaction between blocks is tested using the 

case of dynamic sliding of a block on an inclined plane. In this verification, the influence of 

the spring’s stiffness (g0), time step size (g1), and the assumed maximum displacement per 

time step ratio (g2) on the NMM results is examined. For all time step sizes below g1 = 0.01 

s, a very good agreement between the NMM and analytical solution is obtained, without 

dependence on the numerical control parameters g0 and g2. For the case of g1 = 0.01 s, the 

relative errors are much higher and range from 5 % to 10 %. It is important to note, however, 
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that this verification is important as general benchmark tests for NMM, but its applicability to 

underground openings analysis is limited because it involves the interaction between only two 

blocks and it is performed under small stresses.  

Analysis of underground openings in blocky rock masses demands careful selection of 

the numerical control parameters. The size of the time step should be chosen small enough to 

allow small displacements in a single time step without causing exceedingly long simulations. 

It is found that the spring stiffens should be chosen at least 5 times larger than the Young’s 

modulus of the analyzed material. Otherwise, the stresses computed by NMM are under-

estimated, while the displacements computed by NMM are over-estimated. It is found also 

that for the chosen time step size in this thesis (g1 = 0.00025 s), minimum number of open-

close iterations before convergence of the numerical solution and the minimum CPU time are 

obtained for assumed maximum displacement ratio of g2 = 0.0001 and spring’s stiffens of g0 

= 50000000 kN/m (5 times larger than the Young’s modulus). These findings can be used as 

guidelines for future NMM users. 

6.2   Simulating the excavation sequence with NMM 

In this work the original NMM is modified in order to improve its capability of 

analyzing the stability of underground openings in blocky rock masses. An algorithm for a  

two-stage procedure is implemented into the NMM code in order to allow tunnel excavation 

(second stage) during the NMM simulation, after the local stresses in the medium already 

exist and the medium has already experienced elastic deformation due to overburden stress 

(first stage). The validity of the modified NMM code is verified using the case of Kirsch 

solution.  

The importance of analyzing underground opening stability in blocky rock masses 

with the modified NMM, where the underground opening is excavated during the simulation 

rather than the original NMM, where the underground opening is open from the beginning of 

the simulation, is demonstrated with an example of rectangular underground opening 

embedded in horizontally stratified and vertically jointed rock mass. The original NMM 

proves to be very conservative compared with the modified NMM: When analyzed with the 

original NMM, the underground opening is stable when the friction angle of all 

discontinuities is 30º and above. However, with the modified NMM, stability is achieved for 

friction angle of 15º and above.   

An analysis of central block in the cavern crown during a modified NMM simulation 

with discontinuity friction angle of 30º also demonstrates the importance of the new 

procedure. During the static stage (before the excavation), the horizontal compressive stresses 
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evolve slowly and reach to realistic value which can reflect properly a real excavation process 

only after 2-3 s (8000-12000 time steps). After the excavation the compressive horizontal 

stresses increase significantly in the upper region of the block while at the lower part of the 

block small tensile stresses are obtained as part of global arching mechanism and rotation of 

neighboring blocks which stabilize the crown of the cavern.  

The original and modified NMM are applied in this thesis to analyze the stability of 

the 30 m wide “Freemasons hall” at Zedekiah cave which is embedded in a blocky rock mass. 

When analyzed with friction angle value of 41
o
 in all discontinuities, the rock mass above the 

cavern attains stable arching (except for six blocks which fall in the sides) after significantly 

smaller initial vertical deflection of the immediate roof than is obtained in previous simulation 

with DDA: 7.5 cm with the original NMM and 3.8 cm with the modified NMM compared 

with 34 cm in DDA simulation. This result demonstrates the importance of the NMM 

approach when the analyzed rock mass contains blocks with different sizes, some of them 

with one dimension much larger than the other. However, it is important to note that the 

NMM simulations are performed under plane strain boundary condition, while the DDA 

simulations were performed under plane stress boundary condition. 

Stability analysis of the “Freemasons hall” with significantly smaller values of friction 

angles strengthens the conclusion that the cavern in its current configuration is stable. The 

difference between the modified and original NMM results for this case is less drastic than in 

the previous case but still significant: with the modified NMM the cavern is stable when the 

discontinuities’ friction angle is 15º and above, while with the original NMM the cavern is 

stable when the discontinuities’ friction angle is 25º and above. 

6.3 Recommendations for further research 

The main contribution of this research is the improvement of the NMM capability of 

modeling the behavior of underground openings in blocky rock masses. Future research can 

use this improvement to study the general behavior of underground openings embedded in 

blocky rock mass with respect to parameters such as joint spacing and orientation, elastic 

constants, cavern span, etc. 

In this research the NMM is verified using relatively simple problems which have 

analytical solutions. In future research the validation of NMM should be performed under 

more complex conditions, using experimental models such as the centrifuge model used by 

Tsesarsky and Talesnick (2007) for DDA validation, or real case studies where the rock mass 

deformation due to excavation is monitored and documented. 
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