FROM PEROVSKITE SOLAR CELLS TO MODULES AND PANELS (with the help of 2D materials)

Aldo Di Carlo

CHOSE – Centre for Hybrid and Organic Solar Energy

University of Rome Tor Vergata (italy) and NUST-MISIS (Moscow)

A. Agresti, S. Pescetelli, P. Mariani, A. Palma (Rome) A. Pazniak, D. Saranin, (Moscow)

In Collaboration with

- Italian Institute of Technology: **F. Bonaccorso** group
- TEI Crete (Greece): E. Kymakis Group
- LENS-Florence (Italy): A. Vinattieri group
- University of Namur (Belgium): Y. Busby group

Scaling up to large area modules

Organometal Halide Perovskite

MethylAmmonium Lead (Pb) Iodide (MAPI)

 $A=CH_{3}NH_{3}^{(+)}; B=Pb^{(+)} X=I^{(-)}$

methylammonium ion

2

Typical (mesoscopic) PSC

G. Divitini et al., Nature Energy (2016) 1, 15012

"Efficiency and stability are controlled by the interfaces

E. Palomares* et al. Chem Mat (2015) DOI: 10.1021/acs.chemmater.5b03902

Several strategies can be used to tune interface properties. Both chemical and physical methods have been applied so far

Can we use **Graphene and Related 2D Materials** to properly change interface properties ?

Anode and Cathode with Graphene

GO interlayer:

- increase wettability of PSK
- Improve the interconnection between perovskite and spiro-OMeTAD film, by enhancing the charge-collection efficiency

W. Li, et al. J. Mater. Chem. A 2014, 2, 20105.

G in $mTiO_2$ improve charge-transport dynamics

A. Agresti et al. ChemSusChem (2016) 9, 2516

Interface Engineering with G and GO

a)

A. Agresti et al. ChemSusChem (2016) 9, 2516

Graphene and perovskite: why?

PSC with Graphene has faster rise-time than Ref. PSC. V_{OC} rise time is correlated to:

- the charge transfer from the active to transport layer
- the active layer regeneration

Graphene stabilize permanent ferrorelectric dipole improving charge injection <u>Volonakis and Giustino JPCL, 2015, 6, 2496</u>,

This result has been confirmed by Time-Resolved Photoluminescence experiments

PL measurements: impact of Graphene

Crystallinity of MAPI at low temperature: the presence of graphene inhibits phase change into the orthorhombic form.

Biccari et al., Adv. En. Mater. 2017, 22,1701349

Light soaking stability

- **G in mTiO2 reduces the trapping of the charges** improving the stability of the cell (Ann et al arXiv:1604.07912)
- MAPI crystals can undergo a hydration reaction triggered by prolonged illumination. (Kamat et al. JACS 2016, 137, 1530) This can produce hydrogen iodine (HI) which can reduce the GO (S. Pei et al. Carbon 2010, 48, 4466, Z. Fan et al. Joule 1, 548–562 (2017).;).

... But there are 2000 bidimensional materials !!

A. Agresti et al. ChemSusChem (2016) 9, 2516

From GO to MoS₂ interlayer

MoS₂: High mobility, chemical inertness Liquid-phase exfoliation (LPE) of MoS₂ in NMP Solvent exchange with IPA (compatible with perovskites)

MoS₂ flakes are deposited by spin-coating on perovskite

A. Capasso et al. Adv. Energy Mat. (2016),6, 1600920

Efficiency and Stability of PSK/MoS₂

A. Capasso et al. Adv. Energy Mat. (2016) 6, 1600920; Y. Busby et al, Materials Today Energy 2018, 9, 1

Where is the problem of MoS₂?

L. Najafi et al, ACS Nano 2018, 12, 11, 10736

Graphene Interface Engineering 2.0

2D materials can be properly combined to boost further the efficiency of the cell and to properly protect the interface from degradation

L. Najafi et al, ACS Nano 2018, 12, 11, 10736

MAPI degradation at 85°C: Exfoliation

Fan et al. Joule 1, 548–562, November 15, 2017

Stable high-efficiency PSC is with 2D materials !

Arora, Graetzel et al., Science (2017);

A new 2D material strategy: MXenes

a M₃AC₂ powder (precursor)

MAX phase

b $M_{3}C_{2}T_{x}$ powder (multilayer)

HF etching

c Delamination $(M_3C_2T_x)$

Exfoliation

MXenes consist of few atoms thick layers of transition metal carbides, nitrides , or carbonitrides.

Surface terminations

Y. Gogotsi et al Nature Review Materials (2017)

Ti₃C₂Tx MXene: Experimental Work function

Perovskite WF shift induced by MXenes

A 0.35 eV reduction of the multication perovskite WF is observed by "doping" perovskite with MXenes (0.014 mg/ml)

Perovskite/MXene solar cells

Name	Device Structure		
Reference	cTiO ₂ /mTiO ₂ /perov/spiro-OMeTAD/Au		
Туре А	cTiO ₂ /mTiO ₂ /perov+MX/spiro-OMeTAD/Au		
Туре В	cTiO ₂ + MX /mTiO ₂ + MX /perov+ MX /spiro-OMeTAD/Au		
Туре С	cTiO ₂ + MX /mTiO ₂ + MX / MX /perov+ MX /spiro-OMeTAD/Au		

Better alignment improves Voc and charge transfer

MXenes in perovskite: Work Funcion engineering

WF tuning can be use to align perovskite with other charge transport layer beside conventional ones

Graphene Interface Engineering - cells

Efficiency (%)

Scaling up to large area modules

Large area module realization

G+c-TiO₂- Spray Pirolysis

FTO P1 Laser- scribing

G+mTiO₂- Blade Coating (screen printing, spin coating)

Perovskite-blade coating (spin coating, slot dye coating)

MoS₂+Spiro-MeOTAD-Blade Coating (spin coating)

P2 Laser- scribing

Gold- Thermal Evaporation

P3 Laser- scribing

Improved P1 P2 P3 process AR=95%

P1: Nd:YVO₄, λ =1064 nm, 15 ns pulsed laser on FTO 44 μm wide scribing P2: Nd:YVO₄, λ =355 nm, 10 ps pulsed laser on TiO₂/PSK/HTM 213 μm wide etching P3: Nd:YVO₄, λ =532 nm, 10 ps pulsed, 25 μm wide scribing

Active Area: 14.52 cm² Aperture Area: 15.28 cm² Aspect Ratio: 95% PCE = 9.5% Aperture PCE = 9.03%

A. L. Palma et al. IEEE J. Photovoltaics 2017 DOI 10.1109/JPHOTOV.2017.2732223

Gas quencing blade coating

S. Razza, F. Di Giacomo et al. J. Power sources 277, 286 (2015)

Compact automated blade/slotdie with Gas quenching, thermal annealing via substrate and/or IR lamp.

Perovskite Solar Modules - CHARON

10 cm

Process

- P1 laser
- Substrate cleaning
- Bladed mp-TiO₂
- Bladed Pbl₂
- MAI dipping
- Bladed Spiro
- P2 laser
- Gold evaporation
- P3 laser

Layout Glass 10x10 cm² Module 7x8 cm² 15 cell 3.1 cm² each

<u>Materials</u> c-TiO₂ BL diluted 30NRD mp-TiO₂ MAPI PSK Spiro-OMeTAD Gold

F. Matteocci et al. ACS Applied Materials & Interfaces (2019) 11, 25195

Two-step deposition optimization

F. Matteocci et al. ACS Applied Materials & Interfaces (2019) 11, 25195

Perovskite Solar Modules - CHARON

Low temperature with SnO₂ gives 14%

F. Matteocci et al. ACS Applied Materials & Interfaces (2019) 11, 25195

Graphene based module

1 SUN illumination condition 50 cm² active area

Module type	Electrical parameters				
	V _{oc} (V)	l (mA)	FF (%)	PCE(%)	ΔΡCE(%)
Ref	8.72	-112.8	59.4	11.6	-
mTiO ₂ +G	8.23	-118.1	62.4	11.9	+3%
mTiO ₂ /GOLi	8.46	-121.6	61.4	12.5	+8%
mTiO ₂ +G/GOLi	8.6	-114.8	64.6	12.6	+9%

A. Agresti et al. ACS Energy Lett. 2017, 2, 279–287

Scaling up Graphene/Perovskite module

2D/Perovskite modules scaling-up

A. Agresti et al. ACS Energy Lett. (2019) 48, 1862

Graphene/Perovskite module (2018)

Mobile charger up to 10 smartphones

A. Agresti et al. ACS Energy Lett. (2019) 48, 1862

82cm2 module with 15.27% efficiency

I-V characteristics of tested modules (active area 82 cm², substrate area 12.5×12.5 cm², ten series-connected solar cells.)

	V _{oc} (V)	I _{sc} (mA)	FF (%)	η (%)
With 2D materials	10.46	180.53	65.08	15.27
Without 2D materials	10.46	173.78	60.09	13.56

A. Agresti et al. ACS Energy Lett. (2019) 48, 1862

Conclusions

Graphene and related material are very effective for interface engineering in Perovskite Solar Cells.

MoS₂ and Graphene doped m-TiO₂ can be used to boost the efficiency of PSC exceeding 20 %.

MXenes a very promising class of 2D material for Work function and interface engineering in Perovskite solar cells.

The graphene-based modules (108 cm² active area) showed improved PCE values up to 13.4% and enlarged long-term stability. PCE > 15% on 80 cm2

2D material rimproved the efficiency of mechanically stacked perovskite/silicon 2T tandem up fo 26.3& (25.9% stabilized)

Acknowledgments:

Funded by the European Union

