State of the Art of **Solar Tower** Technology

Exceptional service in the national interest

Clifford K. Ho Sandia National Laboratories Concentrating Solar Technologies Dept. Albuquerque, New Mexico, USA <u>ckho@sandia.gov</u>, (505) 844-2384

SAND2016-9390

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Problem Statement
- What is Concentrating Solar Power (CSP)?
- Commercial Solar Tower Plants
- Challenges and Research Needs
- Summary

Problem Statement

- Current renewable energy sources are intermittent
 - Causes curtailment or negative pricing during mid-day
 - Cannot meet peak demand, even at high penetration
- Available energy storage options for solar PV & wind
 - Large-scale battery storage is expensive
 - \$0.20/kWh_e \$1.00/kWh_e
 - Compressed air and pumped hydro – geography and/or resource limited

Need

 Renewable energy technology with reliable, efficient, and inexpensive energy storage

Concentrating solar power (CSP) with thermal energy storage

Outline

- Problem Statement
- What is Concentrating Solar Power (CSP)?
- Commercial Solar Tower Plants
- Challenges and Research Needs
- Summary

What is Concentrating Solar Power (CSP)?

Conventional power plants burn fossil fuels (e.g., coal, natural gas) or use radioactive decay (nuclear power) to generate heat for the power cycle

What is Concentrating Solar Power (CSP)?

CSP uses concentrated heat from the sun as an alternative heat source for the power cycle

CSP and Thermal Energy Storage

- Concentrating solar power uses mirrors to concentrate the sun's energy onto a receiver to provide heat to spin a turbine/generator to produce electricity
- Hot fluid can be stored as thermal energy efficiently and inexpensively for ondemand electricity production when the sun is not shining

Timeline of CSP Development

Solar One and Solar Two 10 MW_e Daggett, CA 1980's – 1990's

Stirling Energy Systems 1.5 MW_e, AZ, 2010

MW_e, Spain, 2011

Ivanpah, steam, 377 MW_e, CA, 2014

Outline

- Problem Statement
- What is Concentrating Solar Power (CSP)?
- Commercial Solar Tower Plants
- Challenges and Research Needs
- Summary

Direct Steam Solar Towers

PS10 and PS20 (Seville, Spain)

Sandia National Laboratories

- First commercial power tower plants in the world (2007, 2009)
- 11 MW and 20 MW
- Saturated steam
 - 250 C, 45 bar steam, wet cooling

Ivanpah Solar Power Tower California (near Las Vegas, NV)

http://news.nationalgeographic.com

Three towers, 392 MWe, superheatedsteam at 540 C, 160 bar, air-cooled (2014)

Ashalim Solar Power Station (Under Construction 2015 - 2017)

- 121 MWe Solar Tower
 - 2% of Israel's electricity needs
 - 110,000 households
- Superheated steam
 - ~600 C
- Wi-Fi controlled heliostats

Receiver and heliostat field under construction

Molten Salt Solar Tower

Gemasolar

(near Seville, Spain)

1st commercial power tower (19 MW) in the world with "24/7 dispatchable energy production" (15 hours of thermal storage using molten salt), wet cooling.
 Commissioned in May 2011.

Crescent Dunes

Tonopah, Nevada

110 MWe, 570 C molten-salt, 10 hours of storage, hybrid air-cooled condenser (2015)

Liquid Sodium Solar Tower

Jemalong Solar Station - Australia

Sandia National Laboratories

- Expected start in 2016
- 1.1 MW_e
- Liquid sodium
 - 560 C
 - 3 hour storage
 - Dry cooling

5 modular solar fields with 30 m towers

Outline

- Problem Statement
- What is Concentrating Solar Power (CSP)?
- Commercial Solar Tower Plants
- Challenges and Research Needs
- Summary

Challenges and Research Needs

- Heliostat Alignment and Optical Performance
- High-Temperature Receivers
- Thermal Energy Storage

Heliostats and Optical Performance

Optical Accuracy – Alignment & Tracking

- Mirrors need to be properly aligned and focused
- Need accurate tracking

Before

After

What happens if heliostats are misaligned or not tracking properly?

- Reduced energy production
- Overheating / fire hazard

In May 2016, mirrors that were not tracking properly caused a small fire in the Unit 3 tower at Ivanaph, igniting wiring and insulation around pipes

> San Bernardino County Fire Department/A)

Mirrors need to be kept clean

 Need anti-soiling coatings or devices for mirrors to reduce need for washing and maintain high reflectivity

Anti-Soiling Coatings and Devices

3M Anti-Soiling Coating (nanoparticle based liquid pH ~3) M. Mazumdar (Boston University) Electrodynamic screens charge particles and lift them off the surface

Need to Prevent Glare

Looking Northeast at Ivanpah Unit 1, 9:10 AM PDT (~3 miles away from glare)

28

Reduce Avian Mortality and Hazards

- Recent reports of birds being singed and killed by solar flux at CSP plants have drawn a significant amount of attention and negative publicity
- Need alternative heliostat standby aiming strategies that mitigate avian flux hazards and glare

MacGillivray Warbler with "Grade 3" solar flux injury found at Ivanpah CSP Plant (Kagan et al., 2014)

Receivers

High-Temperature Receivers

Sandia National Laboratories

- Maximize solar absorptance and minimize heat loss (selective absorber coatings, geometry, concentration ratio)
- Need materials that operate at high temperature (>700 °C) and are durable in air

Cavity receiver

External tubular receiver

Types of Receivers & Challenges

Gas-Based Central Receivers

- Low heat transfer coefficient, low efficiency, heat exchange, flow instabilities, storage
- Liquid-Based Central Receivers
 - Decomposition of molten nitrate salts > 600 C, corrosivity of chloride salts, freezing of salts, material durability
- Solid-Particle Central Receivers
 - Particle/fluid heat exchange, high convective loss, particle attrition, particle conveyance and control

Solar Two Molten Salt Receiver (Pacheco, 2002)

Kribus, 1999, 2001)

Fractal-Like Receiver Designs

 Develop fractal-<u>like</u> designs and structures across multiple scales to increase solar absorptance while minimizing heat loss

High Temperature Falling Particle Receiver (DOE SunShot Award FY13 – FY16)

Participants: Sandia, Georgia Tech, Bucknell U., King Saud Univ., DLR

Advantages of Particle Receivers

Sandia National Laboratories

- Direct heating of particles
 - Higher temperatures than conventional molten salts
 - Enable more efficient power cycles (e.g., sCO2 at ~700 C)
 - Higher solar fluxes for increased receiver efficiency
- Direct storage of hot particles
 - Reduced costs

Particle Receiver Designs – Free Falling

Particle Flow over Chevron Meshes

Pros: particle velocity reduced for increased residence time, heating, and flow control

Cons: Mesh structures exposed to concentrated sunlight (~1000 suns)

36

Sandia National Laboratories

Prototype System Design

On-Sun Tower Testing

Over 600 suns peak flux on receiver (July 20, 2015)

On-Sun Tower Testing

Particle Flow Through Mesh Structures (June 25, 2015)

Energy Storage

Types of Thermal Energy Storage

- Sensible (single-phase) storage
 - Use temperature difference to store heat
 - Molten salts (nitrates, carbonates, chlorides)
 - Solids storage (ceramic, graphite, concrete)
- Phase-change materials
 - Use latent heat to store energy (e.g., molten salts, metallic alloys)
- Thermochemical storage
 - Converting solar energy into chemical bonds (e.g., decomposition/synthesis, redox reactions)

Molten-salt storage tanks at Solana CSP plant in Arizona. Credit: Abengoa

Research in Thermal Energy Storage

Corrosion studies in molten salt up to 700 C in "salt pots"

Outline

- Problem Statement
- What is Concentrating Solar Power (CSP)?
- Commercial Solar Tower Plants
- Challenges and Research Needs
- Summary

- Concentrating Solar Power (CSP) provides utilityscale electricity and energy storage
 - Uses mirrors to concentrate solar flux onto receiver
 - Hot working fluid converts heat to mechanical energy to spin a turbine/generator for electricity
 - Extra heat can be used for thermal storage to generate electricity during night or cloudy periods

- State of the Art Commercial Solar Towers
 - Direct Steam
 - Molten Salt
 - Liquid Sodium

- Market and Economics of CSP
 - Currently, only ~1% of U.S. electricity is from solar energy
 - >90% from PV, <10% from CSP</p>
 - Current cost of CSP is significantly higher than fossil-fuel power plants and other renewables (PV, wind)
 - Cost of CSP with storage is currently cheaper than photovoltaics with large-scale battery storage
 - ~\$0.12/kWh vs. \$0.30/kWh \$1.00/kWh
 - DOE SunShot goal is to reduce LCOE to \$0.06/kWh by 2020

- Research is needed to improve efficiency and reduce costs
 - Mirror Alignment, Tracking, and Optical Performance
 - High-Temperature Receivers / Materials
 - Storage Technologies
 - Efficient power cycles
 - (e.g., Solarized Supercritical CO₂ Brayton Cycle)

-

48

Future Directions

- Molten Salt Solar Towers
 - South Africa Redstone 100 MW + 12 hour storage (SolarReserve)
 - Chile, South America ~1 GW of Solar Towers + 13 hours storage (SolarReserve)
 - China 10 GW of CSP mandated; 9 Molten Salt Plants (~500 MW) announced
- Hybrid CSP + PV
 - Spectrum splitting
 - Co-location / recovery of spillage
- Next generation high-temperature power cycles and processes
 - Solarized supercritical CO₂ Brayton cycle
 - Solar fuels

Arizona State University – Professor Zachary Holman

Questions?

Cliff Ho, (505) 844-2384, ckho@sandia.gov

Backup Slides

U.S. Energy Consumption by Energy Source, 2011

Source: U.S. Energy Information Administration, Monthly Energy Review, Table 10.1 (March 2012), preliminary 2011 data.

Electricity Costs (LCOE)*

DOE SunShot Goal

- Reduce LCOE of solar-generated electricity to \$0.06/kWh by 2020 with no tax credits
 - Reduce cost of installed solar energy systems by 75%
 - Enable solar-generated power to account for 15–18% of America's electricity generation by 2030

Comparison of Energy Storage Options

			Energy Stora	age Technolog	ду	
	Solid Particles	Molten Nitrate Salt	Batteries	Pumped Hydro	Compressed Air	Flywheels
Levelized Cost ¹ (\$/MWh _e)	10 – 13	11 – 17	100 – 1,000	150 - 220	120 – 210	350 - 400
Round-trip efficiency ²	>98% thermal storage ~40% thermal-to- electric	>98% thermal storage ~40% thermal-to- electric	60 – 90%	65 – 80%	40 – 70%	80 – 90%
Cycle life ³	>10,000	>10,000	1000 – 5000	>10,000	>10,000	>10,000
Toxicity/ environmental impacts	N/A	Reactive with piping materials	Heavy metals pose environmental and health concerns	Water evaporation/ consumption	N/A	N/A
Restrictions/ limitations	Particle/fluid heat transfer can be challenging	< 600 °C (decomposes above ~600 °C)	Very expensive for utility-scale storage	Large amounts of water required	Unique geography required	Only provides seconds to minutes of storage

Thermal Energy Storage Goals

- Capable of achieving high temperatures (> 700 C)
- High energy and exergetic efficiency (>95%)
- Large energy density (MJ/m³)
- Low cost (<\$15/kWh_t; <\$0.06/kWh_e for entire CSP system)
- Durable (30 year lifetime)
- Ease of heat exchange with working fluid (h > 100 W/m²-K)

 TABLE 1
 The Physical Properties of Selected Thermal Energy Storage Media. Sensible Energy Storage

 Media, Both Liquid and Solid, Are Assumed to Have a Storage Temperature Differential of 350°C with
 Respect to the Calculation of Volumetric and Gravimetric Storage Density

Storage Medium Heat (L/kg)K) Rearge (H) Heat (L/kg) Storage Cold Storage Heat (L/kg) Storage Consity (L/kg) Storage Density (L/kg) Density (L/kg
Medium (bkg-K) Heat (bkg) (bkg/m*) Cold For Density (bkg)
Sensible Energy Storage—Solids Concrete 0.9 - 2200 200 400 315 693 23 Sintered bauxite particles 1.1 - 2000 400 1000 385 770 24 NaCl 0.9 - 2160 200 500 315 680 23 Cast tron 0.6 - 7200 200 400 210 1512 25 Cast steel 0.6 - 7800 200 700 210 1638 23 Silica fire bricks 1.2 - 3000 200 700 420 1260 25 Graphite 1.9 - 1700 500 850 665 1131 26 Aluminum oxide 1.3 - 4000 200 770 455 1820 27 Slag 0.84 - 2700 200 700 294 794 28 Sensible Energy Storage—Liquids Nitrate salts 1.6 - 1815 300 600 560 1016 17 (ex. KN0_3-0.46NaN0_3) Therminol VP-1® 2.5 - 750 300 400 875 656 29 Silicone oil 2.1 - 900 300 400 875 665 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Carbonate salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27 Latent Energy Storage Aluminum 1.2 397 2380 - 660 397 945 28 Aluminum alloys 1.5 515 2250 - 579 515 1159 31, 32 (ex. (h ₂ O ₃) Nitrate salts 1.5 100 1950 - 222 100 195 28 (ex. (NO ₂ O ₃ O ₄ O ₄ O ₄ O ₄ O ₇
$ \begin{array}{c} {\rm Concrete} & 0.9 & - & 2200 & 200 & 400 & 315 & 693 & 23 \\ {\rm Sintered bauxite particles} & 1.1 & - & 2000 & 400 & 1000 & 385 & 770 & 24 \\ {\rm NaCl} & 0.9 & - & 2160 & 200 & 500 & 315 & 680 & 23 \\ {\rm Cast iron} & 0.6 & - & 7200 & 200 & 400 & 210 & 1512 & 25 \\ {\rm Cast steel} & 0.6 & - & 7800 & 200 & 700 & 210 & 1638 & 23 \\ {\rm Silica fire bricks} & 1 & - & 1820 & 200 & 700 & 350 & 637 & 23 \\ {\rm Magnesia fire bricks} & 1.2 & - & 3000 & 200 & 1200 & 420 & 1260 & 25 \\ {\rm Graphite} & 1.9 & - & 1700 & 500 & 850 & 665 & 1131 & 26 \\ {\rm Aluminum oxide} & 1.3 & - & 4000 & 200 & 700 & 294 & 794 & 28 \\ {\rm Sensible Energy Storage-Liquids} & & & & \\ {\rm Nitrate salts} & 1.6 & - & 1815 & 300 & 600 & 560 & 1016 & 17 \\ {\rm rex. KNO_3-0.46NaNO_3)} & & & & \\ {\rm Therminol VP-1^{(6)} & 2.5 & - & 750 & 300 & 400 & 875 & 656 & 29 \\ {\rm Silicone oil} & 2.1 & - & 900 & 300 & 400 & 735 & 662 & 23 \\ {\rm Carbonate salts} & 1.8 & - & 2100 & 450 & 850 & 630 & 1323 & 23 \\ {\rm Solum liquid metal} & 1.3 & - & 960 & 316 & 700 & 455 & 437 & 25 \\ {\rm Na-0.79K metal eutectic} & 1.1 & - & 900 & 300 & 700 & 385 & 347 & 30 \\ {\rm Hydroxide salts} & 1.5 & 515 & 2250 & - & 579 & 515 & 1159 & 31, 32 \\ {\rm Carbonate salts} & 1.5 & 515 & 2250 & - & 579 & 515 & 1159 & 31, 32 \\ {\rm Carbonate salts} & 1.5 & 515 & 2250 & - & 579 & 515 & 1159 & 31, 32 \\ {\rm (ex. Li_2C0_3)} & & & & & & & & & & & & & & & & & & &$
Sintered bauxite particles 1.1 - 2000 400 1000 385 770 24 NaCl 0.9 - 2160 200 500 315 680 23 Cast iron 0.6 - 7200 200 400 210 1512 25 Cast steel 0.6 - 7800 200 700 210 1638 23 Silica fire bricks 1 - 1820 200 700 350 637 23 Magnesia fire bricks 1.2 - 3000 200 1200 420 1260 25 Graphite 1.9 - 1700 500 850 665 1131 26 Aluminum oxide 1.3 - 4000 200 700 455 1820 27 Slag 0.84 - 2700 200 700 294 794 28 Sensible Energy Storage—Liquids Nitrate salts 1.6 - 1815 300 600 560 1016 17 (ex. KN0_3-0.46NaN0_3) Therminol PP1 $^{\circ}$ 2.5 - 750 300 400 875 656 29 Silicone oil 2.1 - 900 300 400 735 662 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Caloria HT-43 ⁽⁶⁾ 2.8 - 690 150 316 980 676 25 Sodium liquid metal 1.3 - 960 316 700 455 437 25 Na-0.79K metal eutectic 1.1 - 900 300 700 385 347 30 Hydroxide salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27 Latent Energy Storage Aluminum 1.2 397 2380 - 660 397 945 28 Aluminum 310ys 1.5 515 2250 - 579 515 1159 31, 32 (ex. Li-(20_3) Carbonate salts 1.5 100 1950 - 222 100 195 28 (ex. KN0_3-0.46NaN0_3) Erromice salts (ex. NaOH) 0.1 1 481 2170 - 801 481 1044 33 Flouride salts (ex. NaOH) 1.1 481 2170 - 801 481 1044 2297 33 Lithium hydride salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
NaCl 0.9 - 2160 200 500 315 680 23 Cast iron 0.6 - 7200 200 400 210 1512 25 Cast steel 0.6 - 7800 200 700 210 1638 23 Magnesia fire bricks 1.2 - 3000 200 700 350 637 23 Magnesia fire bricks 1.2 - 3000 200 700 420 1260 25 Graphite 1.9 - 1700 500 850 665 1131 26 Aluminum oxide 1.3 - 4000 200 700 455 1820 27 Slag 0.84 - 2700 200 700 455 1820 27 Slag 0.84 - 2700 200 700 455 1820 23 Sensible Energy Storage—Liquids 1.4 - 900 300 400 735 656 29 Silicone oi 2.1 </td
Cast iron 0.6 - 7200 200 400 210 1512 25 Cast steel 0.6 - 7800 200 700 210 1638 23 Magnesia fire bricks 1 - 1820 200 700 350 637 23 Magnesia fire bricks 1.2 - 3000 200 1200 420 1260 25 Graphite 1.9 - 1700 500 850 665 1131 26 Aluminum oxide 1.3 - 2000 700 294 794 28 Sensible Energy Storage—Liquids - 2700 200 700 294 794 28 Sensible Energy Storage—Liquids - 1.6 - 1815 300 600 850 656 29 Silicone oil 2.1 - 900 300 400 875 656 29 Solicone oil 2.1 - 900 300 700 385 347 30 Vadroxide sal
Cast steel 0.6 – 7800 200 700 210 1638 23 Silica fire bricks 1 – 1820 200 700 350 637 23 Magnesia fire bricks 1.2 – 3000 200 1200 420 1260 25 Graphite 1.9 – 1700 500 850 665 1131 26 Aluminum oxide 1.3 – 4000 200 700 455 1820 27 Slag 0.84 – 2700 200 700 455 1820 27 Sensible Energy Storage—Liquids Nitrate salts 1.6 – 1815 300 600 560 1016 17 (ex. KNO ₃ -0.46MaNO ₃) Therminol VP-1 $^{(0)}$ 2.5 – 750 300 400 875 656 29 Silicone oil 2.1 – 900 300 400 735 662 23 Carbonate salts 1.8 – 2100 450 850 630 1323 23 Caloria HT-43 ⁽⁶⁾ 2.8 – 690 150 316 980 676 25 Sodium liquid metal 1.3 – 960 316 700 455 437 25 Na-0.79K metal eutectic 1.1 – 900 300 700 385 347 30 Hydroxide salts (ex. NaOH) 2.1 – 1700 350 1100 735 1250 27 Latent Energy Storage Aluminum 1.2 397 2380 – 660 397 945 28 Aluminum alloys 1.5 515 2250 – 579 515 1159 31, 32 (ex. Al-0.135i) Copper alloys – 196 7090 – 803 196 1390 32 (ex. Cu-0.295i) Carbonate salts 1.5 110 1950 – 222 100 195 28 Aluminum alloys 1.5 515 2200 – 579 515 1159 31, 32 (ex. KNO ₃ -0.46MaNO ₃) Nitrate salts 1.5 100 1950 – 222 100 195 28 (ex. KNO ₃ -0.46MaNO ₃) Nitrate salts (ex. NaCI) 1.1 481 2170 – 801 481 1044 33 Flouride salts (ex. NaCI) 1.1 481 2170 – 801 481 1044 33 Flouride salts (ex. NaCI) 1.1 481 2170 – 801 481 1044 33 Flouride salts (ex. NaCI) 1.1 481 2170 – 801 481 1044 33 Flouride salts (ex. NaCI) 1.1 481 2170 – 801 481 1044 33 Flouride salts (ex. NaCI) 1.1 481 2170 – 801 481 1044 33 Flouride salts (ex. NaCI) 1.4 7 160 2070 – 822 100 31 Hydroxide salts (ex. NaCI) 1.4 7 160 2070 – 730 215 516 33 Chloride salts (ex. NaCI) 1.4 7 160 2070 – 730 215 516 33 Chloride salts (ex. NaCI) 1.1 481 2170 – 801 481 1044 33 Flouride salts (ex. NaCI) 1.4 7 160 2070 – 730 215 516 33 Chloride salts (ex. NaCI) 1.4 7 160 2070 – 730 215 516 33 Chloride salts (ex. NaCI) 1.4 7 160 2070 – 822 1004 31 Hydroxide salts (ex. NaCI) 1.4 7 160 2070 – 822 104 31 Hydroxide salts (ex. NaCI) 1.4 7 160 2070 – 820 160 331 31
Silica fire bricks 1 - 1820 200 700 350 637 23 Magnesia fire bricks 1.2 - 3000 200 1200 420 1260 25 Graphite 1.9 - 1700 500 850 665 1131 26 Aluminum oxide 1.3 - 4000 200 700 294 794 28 Sensible Energy Storage—Liquids - 2700 200 700 294 794 28 Silicone oil 1.6 - 1815 300 600 560 1016 17 (ex. KN03-0.46NaNO3) - - 900 300 400 735 662 23 Carbonate salts 1.8 - 210 450 850 630 1323 23 Caloria HT-43 ⁽⁹⁾ 2.8 - 690 150 316 980 676 25 Sodium liquid metal 1.3 - 960 316 700 455 437 30 Hydroxide s
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Graphite 1.9 - 1700 500 850 665 1131 26 Aluminum oxide 1.3 - 4000 200 700 455 1820 27 Slag 0.84 - 2700 200 700 294 794 28 Sensible Energy Storage—Liquids - 1815 300 600 560 1016 17 (ex. KNO ₃ -0.4GNANO ₃) - 750 300 400 875 656 29 Silicone oil 2.1 - 900 300 400 735 662 23 Cabonate salts 1.8 - 2100 450 850 630 1323 23 Caloria HT-43 ^(b) 2.8 - 690 150 316 980 676 25 Na-0.79K metal eutectic 1.1 - 900 300 700 385 347 30 Hydroxide salts (ex. NAOH) 2.1 - 1700
Aluminum oxide 1.3 - 4000 200 700 455 1820 27 Slag 0.84 - 2700 200 700 294 794 28 Sensible Energy Storage—Liquids 794 28 Sensible Energy Storage—Liquids 794 28 Silicone oil 1.6 - 1815 300 600 560 1016 17 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Caloria HT-43 [®] 2.8 - 690 150 316 980 676 25 Sodium liquid metal 1.3 - 960 316 700 455 437 25 Na-0.79K metal eutectic 1.1 - 900 300 700 385 347 30 Hydroxide salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27
Slag 0.84 - 2700 200 700 294 794 28 Sensible Energy Storage—Liquids Nitrate salts 1.6 - 1815 300 600 560 1016 17 Interminol VP-1 (*** 2.5 - 750 300 400 875 656 29 Silicone oil 2.1 - 900 300 400 875 662 23 Cabronate salts 1.8 - 2100 450 850 630 1323 23 Caloria HT-43 [®] 2.8 - 690 150 316 980 676 25 Sodium liquid metal 1.3 - 960 316 700 455 437 25 Na-0.79K metal eutectic 1.1 - 900 300 700 385 347 30 Hydroxide salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27 Latent Energy Storage - (ex. Al-0.135i) - 515 225 - <t< td=""></t<>
Sensible Energy Storage—Liquids Nitrate salts 1.6 - 1815 300 600 560 1016 17 (ex. KN03-0.46NaN03) - 750 300 400 875 656 29 Silicone oil 2.1 - 900 300 400 875 662 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Caloria HT-43 [®] 2.8 - 690 150 316 980 676 25 Sodium liquid metal 1.3 - 960 316 700 455 437 25 Na-0.79K metal eutectic 1.1 - 900 300 700 385 347 30 Hydroxide salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27 Latent Energy Storage - - 1700 350 100 735 1390 32 <
Nitrate salts1.6-1815300600560101617Therminol VP-1 (a)2.5-75030040087565629Silicone oil2.1-90030040073566223Carbonate salts1.8-2100450850630132323Caloria HT-43(b)2.8-69015031698067625Sodium liquid metal1.3-96031670045543725Na-0.79K metal eutectic1.1-90030070038534730Hydroxide salts (ex. NaOH)2.1-17003501100735125027Latent Energy StorageAluminum1.23972380-66039794528Aluminum alloys1.55152250-579515115931, 32(ex. Cu-0.295i)6072200-726607133532Carbonate salts1.51001950-22210019528(ex. KNO ₃ -0.46NaNO ₃)-607-73021551633Nitrate salts1.51001950-22210019528(ex. KNO ₃ -0.46NaNO ₃)-6402582790-641431104433Flouride salts (ex. NACI)1.1 <td< td=""></td<>
$\begin{array}{c crc} (ex. KNO_3 - 0.46NaNO_3) \\ \hline Therminol VP-1 (*) & 2.5 & - & 750 & 300 & 400 & 875 & 656 & 29 \\ \hline Silicone oil & 2.1 & - & 900 & 300 & 400 & 735 & 662 & 23 \\ \hline Carbonate salts & 1.8 & - & 2100 & 450 & 850 & 630 & 1323 & 23 \\ \hline Caloria HT-43 (*) & 2.8 & - & 690 & 150 & 316 & 980 & 676 & 25 \\ \hline Sodium liquid metal & 1.3 & - & 960 & 316 & 700 & 455 & 437 & 25 \\ \hline Na-0.79K metal eutectic & 1.1 & - & 900 & 300 & 700 & 385 & 347 & 30 \\ \hline Hydroxide salts (ex. NaOH) & 2.1 & - & 1700 & 350 & 1100 & 735 & 1250 & 27 \\ \hline Latent Energy Storage & & & & & & & & & & & & & & & & & & &$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Silicone oil 2.1 - 900 300 400 735 662 23 Carbonate salts 1.8 - 2100 450 850 630 1323 23 Caloria HT-43® 2.8 - 690 150 316 980 676 25 Sodium liquid metal 1.3 - 960 316 700 455 437 25 Na-0.79K metal eutectic 1.1 - 900 300 700 385 347 30 Hydroxide salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27 Latent Energy Storage - - 1700 350 1100 735 1250 27 Latent Energy Storage - - 1700 350 1100 735 1250 27 Latent Energy Storage - - 196 7090 - 579 515 159 21 Copper alloys - - 607 2200 - 726 607 1335
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Sodium liquid metal 1.3 - 960 316 700 455 437 25 Na-0.79K metal eutectic 1.1 - 900 300 700 385 347 30 Hydroxide salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27 Latent Energy Storage - 1.2 397 2380 - 660 397 945 28 Aluminum 1.2 397 2380 - 660 397 945 28 Aluminum alloys 1.5 515 2250 - 579 515 1159 31, 32 (ex. Al-0.135i) - - 607 2200 - 726 607 1335 32 (ex. Cu-0.295i) - - 607 2200 - 730 215 516 33 Nitrate salts 1.5 100 1950 - 222 100 195 28
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Hydroxide salts (ex. NaOH) 2.1 - 1700 350 1100 735 1250 27 Latent Energy Storage Aluminum 1.2 397 2380 - 660 397 945 28 Aluminum alloys 1.5 515 2250 - 579 515 1159 31, 32 (ex. Al-0.135i) - - 196 7090 - 803 196 1390 32 (ex. Cu-0.295i) - - 607 2200 - 726 607 1335 32 (ex. Lip CO ₃) - 607 2200 - 726 607 1335 32 (ex. KNO ₃ -0.46NaNO ₃) - - 607 2200 - 730 215 516 33 Strinte salts 1.5 100 1950 - 222 100 195 28 (ex. KNO ₃ -0.46NaNO ₃) - - 730 215 516 33 Bromide salts (ex. KBr) 0.53 215 2400 - 730 215
Latent Energy Storage Aluminum 1.2 397 2380 - 660 397 945 28 Aluminum alloys 1.5 515 2250 - 579 515 1159 31, 32 (ex. Al-0.13Si) - 196 7090 - 803 196 1390 32 (ex. Cu-0.29Si) - 607 2200 - 726 607 1335 32 (ex. L1 ₂ CO ₃) - 607 2200 - 726 607 1335 32 (ex. KNO ₃ -0.46NaNO ₃) - 1.5 100 1950 - 222 100 195 28 (ex. KNO ₃ -0.46NaNO ₃) - - 730 215 516 33 Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Chloride salts (ex. NaCl) 1.1 481 2170 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 - 683 2582 20
Aluminum 1.2 397 2380 - 660 397 945 28 Aluminum aluminum 1.5 515 2250 - 579 515 1159 31, 32 (ex. Al-0.135i) - 196 7090 - 803 196 1390 32 (ex. Cu-0.295i) - 607 2200 - 726 607 1335 32 (ex. Lig C0_3) - 607 2200 - 726 607 1335 32 Nitrate salts 1.5 100 1950 - 222 100 195 28 (ex. KN0 ₃ -0.46NaNO ₃) - - 730 215 516 33 Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Chloride salts (ex. NaCl) 1.1 481 2170 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 - 683 2582 2040 31 Hydroxide salt
Aluminum 1.2 337 200 - 579 515 159 31 32 Aluminum alloys 1.5 515 2250 - 579 515 1159 31, 32 (ex. Al-0.135i) - 196 7090 - 803 196 1390 32 Copper alloys - 196 7090 - 803 196 1390 32 Carbonate salts - 607 2200 - 726 607 1335 32 Nitrate salts 1.5 100 1950 - 222 100 195 28 (ex. KN0 ₃ -0.46NaNO ₃) Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Flouride salts (ex. NaCl) 1.1 481 2170 - 801 481 1044 33 Flouride salts (ex. LiF) 2.4 1044 2200 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 683 2582 2040 </td
Ardininania angly 1.3 3.13 2.23 3.1
Copper alloys - 196 7090 - 803 196 1390 32 (ex. Cu-0.29Si) - 196 7090 - 803 196 1390 32 (ex. Cu-0.29Si) - 607 2200 - 726 607 1335 32 (ex. Li2CO3) - - 607 2200 - 726 607 1335 32 Nitrate salts 1.5 100 1950 - 222 100 195 28 (ex. KNO3-0.46NaNO3) - - - 730 215 516 33 Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Chloride salts (ex. NACI) 1.1 481 2170 - 801 481 1044 33 Flouride salts (ex. LiF) 2.4 1044 2200 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 - 683 2582 2040 31
Carbonate salts - 607 2200 - 726 607 1335 32 Carbonate salts - 607 2200 - 726 607 1335 32 Nitrate salts 1.5 100 1950 - 222 100 195 28 (ex. KN03-0.46NaNO3) .
Carbonate salts - 607 2200 - 726 607 1335 32 Carbonate salts - 607 2200 - 726 607 1335 32 Nitrate salts 1.5 100 1950 - 222 100 195 28 (ex. KN03-0.46NaN03) - 730 215 516 33 Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Chloride salts (ex. NaCl) 1.1 481 2170 - 801 481 1044 33 Flouride salts (ex. LiF) 2.4 1044 2200 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 - 683 2582 2040 31 Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
California Salts 1.5 100 1950 - 222 100 1955 28 Nitrate salts 1.5 100 1950 - 222 100 195 28 (ex. KN03-0.46NaN03) Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Chloride salts (ex. NaCl) 1.1 481 2170 - 801 481 1044 33 Flouride salts (ex. LiF) 2.4 1044 2200 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 - 683 2582 2040 31 Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
Intrate salts 1.5 100 1950 - 222 100 195 28 (ex. KN0 ₃ -0.46NaN0 ₃) Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Chloride salts (ex. NACI) 1.1 481 2170 - 801 481 1044 33 Flouride salts (ex. LiF) 2.4 1044 2200 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 - 683 2582 2040 31 Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
Instructional solution of the s
Bromide salts (ex. KBr) 0.53 215 2400 - 730 215 516 33 Chloride salts (ex. NaCl) 1.1 481 2170 - 801 481 1044 33 Flouride salts (ex. LiF) 2.4 1044 2200 - 842 1044 2297 33 Lithium hydride 8.04 2582 790 - 683 2582 2040 31 Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
Chloride salts (ex. NaCl) 1.1 481 2170 - 801 481 1044 33 Flouride salts (ex. NaCl) 1.1 481 2170 - 801 481 1044 33 Lithium hydride 8.04 2582 790 - 683 2582 2040 31 Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
Choride salts (ex. NaCl) 1.1 401 2170 - 601 401 1044 33 Lifbium hydride 8.04 2582 790 - 683 2582 2040 31 Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
Lithium hydroide 8.04 2.582 790 - 683 2.582 2040 31 Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
Hydroxide salts (ex. NaOH) 1.47 160 2070 - 320 160 331 31
Storage
SO ₃ (g)↔ SO ₂ (s) + 1/2O ₂ (g) - 1225 - 650 1225 - 28, 30, 34
$CaCO_3(s) \leftrightarrow CO_2(g) + CaO(s) - 1757 - 527 1757 - 28, 34$
$CH_4(g) + CO_2(g) \leftrightarrow 2CO(g) - 4100 - 538 4100 - 35$
$+ 2\pi \chi(y)$ (L(a)) $+ 0(a)$ (b) $- 6064$ (c) $- 529$ (c) $- 529$
CriA(U) + ri2(U) ↔ - 0004 230 0004 - 33
$J_{17}(y) = Co(y)$ $C_{2}(AB) + C_{2}(b) + C_{2}(b) + B_{2}(b) = 1351 = -571 + 1351 = -79 + 20 + 24$
$H_2(a) = 121 + 121 + 12 + 16 + 130 + 130 + 130 + 150$

Siegel (2012)

125

56

Wind Impacts – Optics and Fatigue

J. Sment, J. Christian, J. Yuan

Mode shapeFatigue Affected Areas $\overbrace{Vode 2}^{Vode 2}$ $\overbrace{Vode 2}^{Vode 2}$ $Fatigue Affected Areas<math>\overbrace{Vode 2}^{Vode 2}$ $\overbrace{Vode 2}^{Vode 2}$ $\overbrace{Vode 2}^{Vode 2}$ $\overbrace{Vode 2}^{Vode 2}$

Optics impacted by "sway" or out-ofplane bending

- Need dampeners or anti-vibration devices
- "Winglets" to reduce wind loads?

Tacoma Narrows Bridge collapsing under 40 mph winds (1940)

Advanced Reflective Materials

Heliostat with 3M[™] Solar Mirror Film 1100

On-Sun Bladed Receiver Testing

Bladed receiver exhibited ~5% increase in thermal efficiency over flat receiver

