

Ben-Gurion University of the Negev Chemical Engineering Department

Blechner Center for Applied Catalysis and Process Development

Slides for 2011 report

*Pretreatment temperature 650°C

Reaction rate =
$$\frac{\text{WHSV*X}}{100*Mw_a}$$
 [$\frac{\text{mmol}}{g_{\text{cat}}h}$] TOF = $\frac{\text{Reaction rate}}{B}$ [$\frac{\text{mmol}}{\text{mmol}_{\text{site}}h}$]

*B- concentration of basic sites per gram catalyst.

The reaction rate and TOF were calculated for 10-20% conversion of ethanol at 450°C: MgO-I: WHSV = 5 h⁻¹; MgO-II: WHSV = 20 h⁻¹

The surface acid sites (Mg-OH) are significantly more thermally stable in chemically densified MgO-aerogel

At high conversions MgO-II material catalyzes EtOH condensation to higher hydrocarbons and their significant deoxygenation

- MgO-I at 400-500°C did not display significant condensation / dehydration activity toward ethanol yielding one liquid phase high alcohols.
- Densified MgO-II aerogel at of 500-530°C yielded liquid product consisted of two fractions.

Starting EtOH Product Product with MgO-I with MgO-II

- 1. Organic phase (50%) consisted of oxygenates (alcohols, aldehydes, ketones) dissolved in hydrocarbons containing paraffins, olefins and light aromatics.
- 2. Aqueous phase (25%) containing water and dissolved lower oxygenates.

"Bio-fuel" components

The biofuel phase consists of more than 100 different molecules. The main components Oxygenates – alcohols, aldehydes, ketones Hydrocarbons – paraffins, olefins, aromatics were identified by GC-FID and GCMS.

"Bio-fuel" components

Retention time[min]	Componen t name	Retention time[min]	Component name
1.95	2-Octanol	7.86	Propylbenzene
2.09	2-Hepten	7.95	2-Ethyl-Hexanal
2.17	Cyclohepten	8.17	1-ethyl,3-methyl Benzene
2.32	2-Methyl,1-Butanol	8.64	4-Octanone
2.51	4-Methyl,1,4 Hexadiene	8.79	1-ethyl,2-methyl Benzene
2.61	2-Ethyl-Butanal	9.14	3-Octanone
2.69	Toluene	9.27	1,2,3-trimethyl-Benzene
2.94	3-Hexanone	9.59	2-Ethyl-Hexenal
3.11	3-Hexanol	9.81	5-Decene
3.31	2-Octene	10.26	1,2,4-trimethyl-Benzene
3.58	2-Ethyl,2-Butenal	10.43	Cyclopropyl-Benzene
3.77	1,4 Dimethyl-1-cyclohexene	10.67	2-Methyl,1-Hexanol
4.14	2-Ethyl-Butanol	10.8	Benzyl alcohol
4.56	3-Hexen-1-ol	11.27	1,3 diethyl Benzene
4.69	Ethylbenzene	11.47	Butyl-Benzene
5.01	Formic acid. hexyl ester	11.64	2-methyl- Phenol
5.71	Xylene	12.77	2-Nonanone
5.95	Nonene	14.33	2-ethyl Phenol
6.03	2-Heptanol	15.64	2-ethyl,5-methyl-Phenol
6.96	3-Methyl,4-Heptanone	19.2	Thymol

"Bio-fuel" properties

Fuel property	Units	Biofuel produced over MgC -II	Israel gasoline standard
Density	Kg/m ³	830	720-775
Distillation char	racteristic		
Initial boiling point	°C	56	
10 vol%	°C	70	
20 vol%	°C	75	Max 70
30 vol%	°C	78	
40 vol%	°C	82	
50 vol%	°C	84	Max 100
60 vol%	°C	93	
70 vol%	°C	116	
80 vol%	°C	132	Max150
90 vol%	°C	167	
95 vol%	°C	205	
Final boiling point	°C	244	Max 210

50% "Bio-fuel" yield was obtained at high EtOH conversions in two continuous runs with MgO-II catalyst

Run time [h]

60

70

80

MWCNT modification and Co insertion modes control the exposure of hexagonal Co surface area at constant Co loading of 45 wt.%

Hexagonal Co

Experimental rig for testing $CO_2+H_2 \rightarrow CH_4$ methanation

The CH₄ yield in CO₂ methanation at 350°C, (H₂/CO₂ = 2 GHSV = 5.4 L/g*h) increases proportional to the exposure of hexagonal Co surface

Exposure of hexagonal Co surface area, m²/g catalyst

Catalyst with maximal exposure of hexagonal Co surface area display 96% CH₄ yield at 350°C (H_{2/}CO₂ = 6, GHSV = 5.4 L/g*h)

