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1 Introduction

We study a setting closely related to the two frameworks of contest design and of Blotto games,

where budget-constrained buyers need to partition their budgets among multiple simultaneous con-

tests. Departing from most of the literature, we assume that each contest is designed endogenously,

as part of a two-stage game: First, sellers simultaneously design their contests. Second, given the

set of contests being offered, buyers simultaneously decide how to partition their budgets among the

different contests. The goal of each contest designer is to obtain the largest possible revenue share,

i.e., to maximize the sum of budgets assigned to her contest. Our main interest is in understanding

what types of contests maximize their designer’s revenue share.

The study of contests and Blotto games stems from numerous economic applications. Examples

relevant to our work include situations of rent-seeking and lobbying (Tullock, 2001) where instead

of treating the regulatory committee as a single entity we study the case that the committee is

composed of several distinct members, multiple simultaneous R&D races each aiming to attract

the most research efforts (generalizing a single R&D race as in Che and Gale (2003)), and many

other situations of competing all-pay auctions. Our particular interest in this setting stems from

observations regarding the market for Internet search advertising. This is now a multi-billion

dollar market, where thousands of advertisers post hundreds of millions of ads every day. Quite

interestingly, market shares differ significantly from revenue shares in this market.1 In 2012, for

example, Google had a market share of about 65% and a revenue share of about 75%, while

Microsoft (Bing) had a market share of about 20% but a revenue share of less than 10% which is

less than half of its market share.2 We aim to study the connection between market shares and

revenue shares in an abstract theoretical model inspired by such markets. We ask how can a firm

leverage its market share in order to maximize its revenue share.

Our theoretical abstraction captures markets with three main properties. First, each seller has a

fixed number of goods to sell. For example, increasing the market share of a search engine requires

increasing the number of users of the search engine. This is a long-term technological effort, not a

short-term strategic production decision. Thus, in our model, a firm’s market share is exogenously

fixed, and firms aim to maximize their revenue shares given their fixed market shares. Second,

the sales tools that we consider are quite general, and can capture various methods like bundling

and non-linear pricing, exclusive contracts, quantity discounts, etc., in addition to standard linear

pricing. In our model, a seller has a large and realistic strategy space to choose from, and a large

1The “items” in this market are ad slots on users’ search results pages. The “market share” of a certain search
engine is its number of available ad slots divided by the total number of available ad slots of all search engines. Its
“revenue share” is the budget spent on ads in this search engine relative to the budgets spent on all search ads. In
other industries, what we refer to as a market share is also commonly termed unit market share or volume market
share, and what we refer to as revenue share is also commonly termed dollar market share or value market share.

2Source: eMarketer, June 2013. Search advertising revenue share of leading search sites in the United States from
2011 to 2015. Available from http://www.statista.com/statistics/255863/search-ad-revenue-share-at-leading-search-
sites-in-the-us/.
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strategy space of the opponent to defend against. Third, we are interested to focus attention on the

supply side and study asymmetries, even extreme, among the sellers, while assuming the simpler

case of identical buyers on the demand side. An important property of the buyers that we do

capture is their budget-constraints. This is a significant characteristic of Internet advertisers that

influences most of their actions and considerations.

Previous literature studies revenue maximization (effort maximization) in a single contest, and

various settings of multiple contests (Blotto games) with exogenously fixed contest success functions.

The issue of competing contests that are endogenously designed to maximize revenue shares is

rarely touched upon. Other related literature on capacity-constrained competition mostly focuses

on standard linear pricing in contrast to contests that capture a much wider variety of sales tools.

The recently expanding literature on antitrust economics does study various pricing tools like

exclusivity contracts but focuses mainly on how to increase market shares endogenously. The issue

of market shares versus revenue shares is not dealt with in this literature. Section 1.1 provides

many references and a detailed discussion.

Our first result shows that a very simple, normative contest provides a strong safety level to

each seller that uses it. In the terminology of Blotto games, this is the well-studied “lottery contest

success function”. This contest uses a simple uniform-price rule to clear its supply. Friedman

(1958) shows that if all sellers happen to choose this contest, there is a unique pure NE in the

resulting Blotto game. In this NE, the revenue share of each seller is exactly her market share.

We generalize this result to incorporate the sellers’ strategic point of view, and show the following

result: If a specific seller, i, chooses this contest, then for any choice of contests of the other sellers,

the revenue share of seller i in any pure or mixed NE of the resulting Blotto game will be at least

her market share minus 1
n , where n is the number of buyers. Thus, if the fraction 1

n is negligible

relative to the market share of a certain seller, she can obtain a revenue share very close to her

market share in all possible (pure as well as mixed) Nash equilibria outcomes. Various tools like

exclusive contracts, quantity discounts, etc., cannot help her opponents in this case.

However, cases where the market share of a seller is comparable to 1
n should not be overlooked.

This can happen either because a seller’s market share is low, or because the number of buyers

is low, or both. In particular, in our motivating scenario of online advertising, the number of

buyers (advertisers) in a given market is usually quite small, as advertisers target very specific user

features.3 In such cases, the above result no longer provides a tight connection between market

shares and revenue shares. For example, if there are two extremely asymmetric sellers, the small

one has a market share below 1
n while the large one provides the rest of the supply, the above result

only provides a meaningless non-positive lower bound for a revenue share. This is no accident as,

in fact, we show examples where in similar cases an extremely large seller can obtain a revenue

3For example, there could be a market for advertisers who target users that searched “best pizza in NYC” and a
different market for advertisers who target users that searched “SFO to JFK flights”. These are two separate markets.
The thousands of Internet advertisers target such specialized markets, resulting in very few advertisers per market.
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share of 100%, effectively driving his much smaller competitor out of the market. Thus, our results

demonstrate a sharp contrast between the case of near-symmetric supply sizes and the case of

extremely-asymmetric supply sizes. In the former case, all sellers are able to obtain revenue shares

almost the same as their market shares, in all Nash equilibria outcomes, using a simple contest

structure and linear pricing. In the latter case, a large seller may decrease the revenue share of her

significantly smaller opponent substantially below her market share, using various sales tools like

exclusivity contracts.

What tools are most useful in our theoretical framework for a very large seller competing against

a very small seller? Does the answer vary according to the extent of differences in supply sizes?

How to quantify “very large” vs. “very small”? These questions turn out quite challenging and we

leave the full characterization of the powers of a large seller, as the market share of her smaller

opponent gradually increases from 1
n to 1

2 , for future research. In this paper we make a first step

towards answering these questions by characterizing the case when the large seller has a market

share of 1 − 1
n and the small seller has a market share of 1

n . We believe that the analysis of this

case is quite revealing. To begin with, we prove that any monotone contest (where a bidder that

increases his bid never receives a strictly smaller prize) used by the large seller cannot eliminate

the possibility that the small seller will end up with a revenue share close to her market share in

some Nash equilibrium outcome.

Despite this, our analysis of this case does identify a contest for the large seller that decreases

the revenue share of the small seller significantly below her market share, in a strong sense: for every

contest that the small seller uses, and for every pure or mixed Nash equilibrium of the resulting

game. This contest incorporates a certain non-monotonicity, alongside exclusivity, to overcome

the limitations of monotone contests. Broadly speaking, the non-monotonicity that we suggest is,

conceptually, somewhat related to realistic situations where a large seller offers attractive deals to

her rival’s customers, by this tempting them to switch over. We further discuss this in Section 5.2.

The fact that such a non-monotonic rule is helpful may seem to contradict an intuitive rule

of thumb, phrased by McAfee (2005) as follows: “If you offer discounts to your rival’s customers,

it will cause your rival to fight to hold onto his customers, and he will do this by cutting prices.

He will then take some of your customers away from you. In the end, you will get some of his

customers, he will get some of yours, and you will both be selling at lower prices. If, on the other

hand, you reward loyalty by offering a better deal to customers that have been with you for a while,

you make your customers expensive to poach. Your rivals are discouraged from poaching them, and

tend to respond in kind.” We view our analysis as suggesting that this argument (and in particular

the optimality of the stability that it suggests) depends on the underlying details of the market

more than what initially may seem.

The remainder of the paper is organized as follows. Related literature is discussed in Section 1.1.

Section 2 formally lays out our model and terminology. Section 3 discusses the proportional allo-
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cation policy. Section 4 discusses the general use of exclusivity and its impact on revenue shares.

Section 5 discusses the case of two extremely asymmetric sellers. Its shows how a very large seller

may significantly decrease the revenue share of her significantly smaller opponent. Section 6 sum-

marizes, and describes additional applications of our model. Some additional proofs are provided

in an Appendix.

1.1 Related Literature

We give more details on four strands of related literature: Blotto games, capacity-constrained

competition, antitrust economics, and single contest design.

The framework of Blotto games captures the exact setting that we study here: Colonels (buyers)

have a fixed number of soldiers (buyers’ budgets) which they need to partition among multiple

battlefields (sellers). Borel (1921) first studied a Blotto game with three battlefields (sellers) and

two colonels (buyers) that care about winning a majority of the battlefields, assuming an “auction

contest success function” (auction CSF) where the winner of any specific battlefield is the colonel

who sent the largest number of soldiers to this battlefield. Laslier and Picard (2002) generalize

Borel’s model to any number of battlefields. Motivated by the allocation of advertising expenditures

across different marketing areas, Friedman (1958) studies a similar model, but with a lottery CSF,

and assuming additive colonels’ utility functions (sum of battlefields won). Our model mostly

follows that of Friedman (1958), as our motivating example is an advertising market as well. In

particular, our results demonstrate the importance of the lottery CSF and its advantages, as a

result of the model rather than as an assumption in it. Snyder (1989) studies a class of CSFs that

generalize the lottery CSF, describing properties of NE and sufficient conditions for its existence

and uniqueness. His motivation comes from political campaigns that distribute advertising budgets

among different legislative districts (the “markets”). Myerson (1993) studies a version of the game

with a continuum of buyers. This early literature was focused mostly on the “demand side”, having

studied various aspects of the generals (which are the buyers) while treating battlefields (which are

the sellers in our case) as fixed exogenous entities. We on the other hand focus our attention on

the sellers, treating them as strategic entities. In particular, we study the effect that the contest

success function of a specific battlefield has on the number of soldiers being sent to this battlefield.

Recent literature on Blotto games continues to focus its attention on various properties and

generalizations of the demand side (the colonels). For example, Weinstein (2012) and Roberson

(2006) study colonels with asymmetric budgets (while we study here the more basic case of sym-

metric budgets), Kvasov (2007) and Roberson and Kvasov (2012) study colonels’ utilities that are

quasi-linear w.r.t. their budgets (while we study the more classic case of “use-it-or-lose-it” budgets

that seems to be a better fit to advertising markets). Hart (2008) studies discrete (non-continuous)

budgets, which is a property that we also partly address by studying bid rigidity. Many additional

results and details are surveyed in Kovenock and Roberson (2012). Robson (2005) is the only other
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paper that we are aware of that studies (among other things) sellers/battlefields in a similar way

to our interest here. Specifically, he studies comparative statics when prize values and battlefield

CSFs change. However, he assumes only two buyers (while we allow any number of buyers) and

a class of CSFs that does not capture many CSFs that prove useful in our setting (while we do

not cast any restrictions on the possible CSFs). For example, exclusivity cannot be captured by

any CSF in his class, let alone non-monotonicity. As mentioned above, these two ingredients turn

up to be especially important in our analysis. More generally, our paper sheds light on several

new contest success functions that has not been analyzed previously and that turn up useful in the

context of revenue maximization.

A central aspect of our model is the capacity-constraints of the sellers, that have fixed sup-

ply sizes that cannot be changed. Earlier studies on competition between capacity-constrained

firms usually adopt the Edgeworth-Bertrand framework (Tirole, 1988). Two relevant examples are

Acemoglu, Bimpikis and Ozdaglar (2009), that study resulting market efficiency in a two-stage

competition model where sellers choose their capacities in the first stage and then engage in a price

competition in the second stage, and Dudey (1992), that studies a dynamic variant, where buyers

arrive one after the other, and two competing sellers may adjust prices after each sale. He shows,

quite surprisingly, that in the dynamic setting sellers earn positive profits in equilibrium, unlike

Bertrand’s original conclusion. Many additional generalizations have been studied, see for example

Ghemawat and McGahan (1998), Johari, Weintraub and Van Roy (2010), and Mart́ınez-de Albéniz

and Talluri (2011). Our work significantly differs from this literature in two main aspects. First,

on the sellers’ side, this literature focuses on pure price competition while our approach captures a

wide array of non-linear pricing aspects of the competition. The generality of our approach has the

additional advantage of endogenously incorporating modeling issues like the one raised by Davidson

and Deneckere (1986) regarding the importance of the rationing rule being assumed (when total

demand exceeds capacity). While the explicit choice of the rationing rule was a subject for debate

in previous literature, our model includes this choice endogenously. Second, on the buyers’ side, we

model the buyers as having budget-constraints (an unavoidable and important assumption given

our motivation) while most of the literature on capacity-constrained competition does not usually

discuss budgets.4

There is also a growing body of literature on competitive non-linear pricing and antitrust eco-

nomics. This literature studies the usefulness (and fairness) of various pricing tools like discounts

for purchases of larger volumes, exclusivity contracts, bundling, etc. Recent studies that analyze the

use of such tools and their resulting welfare effects include for example Chone and Linnemer (2015);

Calzolari and Denicolò (2013); Armstrong (2013), and Armstrong and Vickers (2010). Whinston

4Earlier capacity-constrained models like that of Levitan and Shubik (1972) do capture the possibility of budget
constraints since they model the buyers’ side using a simple aggregate demand curve. This only emphasizes the
importance of linear prices to previous models (as a demand curve takes into account only the unit price offered by
the competing firms), while we are interested in much more general selling policies.
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(2008) gives a survey to earlier literature on antitrust economics, including earlier studies on ex-

clusive contracts. The analysis in our paper gives rise to similar tools and pricing techniques, but

our setting differs significantly. In particular, we focus on a setting where firms compete for rev-

enue shares while having fixed market shares. In contrast, the literature on competitive non-linear

pricing mostly analyzes how firms increase market shares endogenously, i.e., how pricing decisions

enable firms to increase production on the expense of their opponents’ production. The issue of

market shares versus revenue shares is not dealt with in these models. These differences in settings

are important, and lead to qualitatively different conclusions. For example, O’Brien and Shaffer

(1997) and Bernheim and Whinston (1998) show that, with complete information, firms have no

incentive to offer exclusivity or market-share discounts. Indeed, in light of these results, all the

previously-mentioned recent studies assume incomplete information. In contrast, we do not need

to introduce incomplete information in our model since, as we show, the criticality and usefull-

ness of exclusivity and other non-linear pricing methods become apparent in our setting even with

complete information. More broadly, the entire context of our analysis is completely different from

these previous studies on antitrust economics, since they focus on the question of how to increase

the firm’s market share while we study how to increase the firm’s revenue share, given exogenous

market shares.

In contrast to the case of revenue maximization in multiple contests which is our focus here, the

case of revenue maximization in a single contest has been studied quite extensively under various

assumptions in the literature for all-pay auctions, rent-seeking competitions, and more abstract

contest design. For example, Siegel (2009) characterizes NE outcomes including player efforts in a

large class of “generic” contests; Moldovanu and Sela (2006) compare total effort (total revenue)

extracted by a static (one stage) contest versus a dynamic (multiple stages) contest; Che and

Gale (1998) analyze a political contest where caps on maximal bids are present; Clark and Riis

(1998) analyze a contest that allocates multiple prizes either sequentially or simultaneously; Barut

and Kovenock (1998) characterize revenue generated in Nash equilibria of a contest with multiple

prizes. Michaels (1988) explicitly studies how to choose a CSF from the family of Tullock CSFs in

order to maximize the revenue of the contest designer, and mentions a motivating situation where

“a monopoly politician sets the parameters of the rent-seeking operation in such a way that he

maximizes his residual income from the expenditures made by seekers”, which is a motivation very

similar to ours. However the contests that he analyzes are limited to the class of Tullock contests,

while we analyze arbitrary contests. See Konrad (2009) and Dechenaux, Kovenock and Sheremeta

(2014) for elaborate literature surveys for the case of a single contest.
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2 Setup

There are m sellers and n buyers. There is only one type of good, and this good is divisible.5 Each

seller has a fixed supply of the good. Since the good is divisible, by scaling (changing units) we

may assume without loss of generality that the total amount of the good is n. For convenience

we shall refer to this amount as being composed of n identical items, with the understanding that

each item is divisible as well. The number of items of seller j is denoted by qjn, where qj > 0 and∑m
j=1 qj = 1. Buyers have budgets, and in this work we consider the case of symmetric buyers in

which the budgets of all buyers are equal, say, to B. Without loss of generality, we assume that

B = 1. Throughout, we assume complete and perfect information. For convenience, we refer to

sellers as feminine and to buyers as masculine.

The action of a buyer is to distribute his budget among the sellers. We refer to this as placing

bids, where bij denotes the bid of buyer i at seller j, with bij ≥ 0, and
∑

j bij ≤ 1. The buyer’s

objective is to maximize the total number of items that he receives (this number need not be

an integer, because items are divisible), or in situations in which randomization is involved, to

maximize the expected number of items received. The buyer does not derive any utility from

unspent budget. The objective of a seller is to maximize her (expected) revenue – the total amount

of bids that she received. A seller does not derive any utility from left-over items. This setup gives

rise to the following extensive-form game with m+ n players and two consecutive steps:

1. First, sellers simultaneously design contests. Each seller designs a contest by announcing an

allocation policy aj : [0, 1]n → [0, qjn]n, i.e. a function from the submitted bids b1j , ..., bnj to

an allocation vector ~aj = ~aj(b1j , ..., bnj), where
∑n

i=1 aij ≤ qjn.6

2. Second, based on the announced allocation policies, buyers simultaneously choose bids to

sellers. In his bid bij , buyer i commits to pay bij to seller j.

3. Based on the allocation policies and the received bids, sellers allocate items to buyers. The re-

sulting utility of seller j is
∑n

i=1 bij and the resulting utility of buyer i is
∑m

j=1 aij(b1j , ..., bnj).

Regarding terminology, we use policies for sellers’ strategies and keep strategies for buyers. A

strategy is either pure or randomized (meaning non-pure). We use the convention that a pure

Nash has only pure strategies, and a mixed Nash has at least one randomized strategy. Fixing

sellers’ allocation policies results in a subgame among the buyers. We refer to this subgame as the

(resulting) buyers’ subgame.7

5Towards the end of this section we discuss the connection of our specific modeling choices to the motivation of
Internet search advertising.

6An allocation policy is termed a contest success function (CSF) in the standard terminology of Blotto games. We
prefer “allocation policy” as it seems more descriptive in our context.

7This is a Blotto game where each seller is a battlefield and each buyer is a colonel.
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While budget and items are divisible, we assume that there is some finite precision to bids and

quantities, so only a finite number of bids and allocation policies is possible. This makes the game

finite, and implies the existence of some subgame perfect equilibrium. Note that Nash equilibria

strategies in every fixed buyers’ subgame can be either pure or mixed. On the other hand, without

loss of generality, sellers’ policies can be assumed to be pure, namely, involving no randomization,

since the allocation of fraction of items combined with the assumption that buyers are expectation

maximizers implies that any randomized allocation policy can be replaced by a deterministic one

that averages over the random allocations.

Since we have an extensive-form game, buyer i’s strategy needs to specify his bid (or random-

ization over bids) for every tuple of sellers’ policies. Denote this as si(a1, ..., am). To simplify this

complicated object, our analysis will be based on finding (what we term) an extensive-form safety

level policy:

Definition 1. A policy a∗j of seller j provides an extensive-form safety level of x (for some real

number x) if the following holds. Fix:

1. arbitrary policies a−j of all other sellers, and,

2. buyers’ strategies s1(·), ..., sn(·) such that s1(a
∗
j , a−j), ..., sn(a∗j , a−j) is a Nash equilibrium of

the buyers’ subgame when seller policies are (a∗j , a−j).

Then, seller j’s revenue when sellers play (a∗j , a−j) and buyers play s1(a
∗
j , a−j), ..., sn(a∗j , a−j) is at

least x.

Finding an extensive-form safety level policy has immediate implications on equilibrium revenue:

Lemma 1. If there exists a policy a∗j for seller j that provides an extensive-form safety level of x

then j’s revenue in any subgame-perfect equilibrium is at least x.

Proof. Fix an arbitrary subgame-perfect equilibrium (aj , a−j , s). Therefore s is a Nash equilibrium

of every buyers’ subgame. In particular, s1(a
∗
j , a−j), ..., sn(a∗j , a−j) is a Nash equilibrium of the

buyers’ subgame when seller policies are (a∗j , a−j). By the definition of an extensive-form safety

level it now follows that the revenue of seller j is at least x when players play (a∗j , a−j , s). The

revenue of seller j when players play (aj , a−j , s) must be at least that as otherwise j will have a

benficial deviation, and the claim follows.

Our analysis in the following sections will proceed by identifying extensive-form safety level policies.

As we will see in the sequel, the bounds on equilibrium revenues that this analysis tool will provide

will be quite tight, especially when there are two competing sellers. In addition to providing bounds

on equilibrium revenues, one can argue that extensive-form safety level policies are conceptually

advantageous as they require less rationality assumptions, similarly to arguments in favor of the

standard definition of safety levels in normal form games.

9



Comparing the formal model that we have defined here to our original motivation of Internet

search advertising, we wish to discuss three issues. First, recall that the sellers in our model are

the search engines, the buyers are the advertisers, and the items are the ad slots. In reality, the

allocation policies of the search engines are quite complicated, as allocation policies are made in

an online fashion over a period of time. In addition, they are composed of various different levels,

from a sequence of auctions at the lowest level to determine the allocation of an ad to a specific

user’s search result, to the decisions of how to spread an advertiser’s budget over a period of time (a

month, a week, a day), to various rationing rules, etc. These details boil down to a single allocation

policy in our model. Since we allow arbitrary and general allocation policies, in principle our

theoretical construct is able to capture any realistic process, as complicated as it may be (though

we disregard uncertainties in the number of user searches to be performed over the coming period

of time and assume known supply). However, since these processes are so complicated and full of

details (to the point that most probably exact specifications of the global process do not currently

exist), we will not analyze any specific allocation policy that can be claimed “realistic” in this

work. Instead, we look for theoretically close-to-optimal safety level policies, and examine their key

principles.

A second issue is our choice to model items as identical across sellers (identical ad slots across

search engines). As mentioned in the Introduction, ad slots are characterized by very specific

properties, especially in search advertising. Thus, different search words can be treated as being

sold on separate markets. A specific abstract market in our model can correspond, for example, to

advertisers interested in searches related to “pizza in NYC”, or to searches related to “flights SFO

JFK”. The market does not include ad slots for both of these searches. As a result, all items in a

single market are treated as homogeneous. A-priori, as we are not aware of any empirical data that

indicates otherwise, it seems reasonable to assume that an ad slot related to a search for “pizza in

NYC” on Bing is similar to the same slot on Google.

A third issue is the assumption that buyers do not obtain utility from unspent budgets. This

is a standard assumption in models of advertising; it was already posed in the original model of

Friedman (1958), and it continues to be a standard assumption regarding advertisers in general and

regarding Internet search adevrtisers in particular, see for example a recent relevant paper by Sayedi,

Jerath and Srinivasan (2014). More specifically, in the practice of Internet search advertising,

advertisers are required to allocate budgets to “campaigns” which is the technical term for the

opertaion of assigning a budget (and other parameters) to a specific advertising need. Specific

ads are then sold via auctions, where losing bids cannot be confiscated. But campaigns usually

terminate when all allocated budget has been exhausted. Our model captures a situation where

advertisers assign budgets to campaigns mainly aiming to maximize the number of impressions

obtained during the campaign, caring less about any leftover budget.
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3 The Proportional Allocation Policy

Since the number of items is equal to the number of buyers (n), and each buyer has the same

budget (1), perhaps the first outcome in our abstract market that comes to mind is the unique

Walrasian equilibrium outcome: each buyer will be allocated one item, and the price of each item

will be 1. In such an outcome the revenue of each seller j will be qjn. We term this the fair share

revenue of seller j. However, since both buyers and sellers act strategically (and, furthermore, there

may be only few buyers and few sellers), it may well be that strategic issues will lead to a different

outcome.

In this section we show an allocation policy that obtains a revenue close to her fair share

revenue, for every seller j that uses this policy, regardless of the allocation policies chosen by her

competitors, and in any pure or mixed NE of the resulting buyers’ subgame. (I.e., we show a safety

level.) This is the following natural proportional allocation policy: Given bids b1j , ..., bnj , seller j

allocates to buyer i∗ a quantity that is proportional to the ratio of his bid to the sum of all bids.

More formally,

ai∗j(b1j , ..., bnj) =
bi∗∑n
i=1 bij

qjn.

This allocation policy is also termed the lottery contest success function, and it is in fact one of

the most well studied CSFs in the Blotto game literature. In our context, it has several natural

interpretations. In particular, given buyers’ bids, if a seller is required to fix a price per unit that

clears her supply (seeing the buyers’ bids), the resulting allocation will be exactly proportional.

Friedman (1958) was one of the first papers to analyze the proportional allocation policy, focus-

ing on the buyers’ side. I.e., he assumed as given that all sellers use proportional allocation, and

studied the resulting strategic aspects of the buyers’ subgame. In particular, he showed:

Theorem (Friedman (1958)). If all sellers use proportional allocation, there exists a unique Nash

equilibrium in the resulting buyers’ subgame. In this equilibrium outcome,

1. Every buyer i bids bij = qj at every seller j = 1, ...,m.8

2. The revenue of every seller j exactly equals her fair share revenue qjn.

Given the first property, one would indeed expect that if all sellers use proportional allocation, the

unique equilibrium outcome will indeed be reached, and the revenue split will be proportional as

well. However, looking at the sellers’ side, and since sellers are strategic, it is entirely unclear why

sellers will indeed choose proportional allocation. The obvious question is whether a strategic seller

can extract a higher revenue by using a different strategy. To some extent, this is indeed possible,

via nonlinear pricing tools, as the following example demonstrates.

8In fact, it can be shown (see Appendix A) that this is a safety level strategy that provides each buyer that uses
it in every equilibrium outcome a utility of at least 1, regardless of the strategies of the other buyers.
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Suppose two sellers 1, 2 with q1 = q2 = 0.5, and an even number of buyers n (and so each seller

has n
2 items). Seller 1 uses proportional allocation. Seller 2 uses the following policy: if a buyer

bids at least 1 − ε (ε to be determined later) he receives 0.5 item, otherwise he receives nothing.

Let us check for which values of ε it is a symmetric pure Nash for the buyers to bid ε for seller 1

and 1− ε for seller 2. In this case the utility of a buyer is 1 (0.5 from each seller). The only possible

deviation for a buyer is to bid his entire budget, 1, for seller 1 (no point to bid more than 1− ε at

seller 2 and if he bids less than 1− ε on seller 2 he might as well bid 0 there). If he indeed follows

this deviation he receives a fraction of 1
1+(n−1)ε of the supply of seller 1 which is n/2. We need this

to be smaller or equal to 1 so we need ε ≥ n−2
2(n−1) . Set ε to be equal to this expression. This results

in a pure NE and seller 1’s revenue at this equilibrium is nε = n(n− 2)/2(n− 1) < n/2.

Note, however, that seller 1’s revenue in this example is almost her fair share. In particular, it

is larger than n
2 − 1. As we next show, this is not an accident. When a seller uses proportional

allocation, her revenue in any equilibrium outcome will be very close to her fair share:

Theorem 1. If seller P uses proportional allocation while the other sellers use any arbitrary

policies, the revenue of seller P in any Nash equilibrium (either pure or mixed) will be strictly

larger qPn− 1.

Proof. Let Q = qPn. Consider an arbitrary Nash equilibrium (pure or mixed) and assume for the

sake of contradiction that the expected revenue of P is R ≤ Q − 1. Let x be a random variable

denoting the sum of bids to P . Then x is non-negative and its expectation satisfies E[x] = R.

Partition the buyers into three classes, good who deterministically place all their budget in P ,

bad who deterministically place no budget in P (though they may randomize how they split their

budget outside P ), and flexible.

Every good buyer has expected payoff Ex[ Q
(x−1)+1 ] ≥ Q

E[x] = Q
R > 1. The first inequality follows

from the fact that for every non-negative constant c, the function 1
x+c is convex in the domain

x > 0. As the total expected payoff of all good buyers is at most Q, there are strictly less than Q

good buyers.

Consider now an arbitrary bad buyer b. If b were to become good, his expected payoff would

be Ex[ Q
x+1 ] ≥ Q

E[x]+1 = Q
R+1 ≥ 1. The best response property then implies that in the given Nash

every bad player has expected payoff at least 1. As the total expected payoff of all bad buyers is

at most n−Q, there are at most n−Q bad buyers.

The number of flexible buyers is strictly larger than n − Q − (n − Q) = 0. Hence there is at

least one flexible buyer. As the expected payoff of every non-flexible buyer is at least 1, there must

be at least one flexible buyer whose expected payoff is at most 1. Consider such a flexible buyer f

and let r > 0 be the expected bid of f in P . If f were to become good his expected revenue would

be Ex[ Q
(x−r)+1 ] ≥ Q

Ex[x]+1−r >
Q
R+1 = 1, contradicting the best response property of the assumed

Nash equilibrium.
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This result can be generalized to any set of sellers that use proportional allocation:

Theorem 2. Let P be a collection of several sellers {P1, . . . , Pk} and let Q =
∑k

i=1 qin denote

their total supply. If all members of P use proportional allocation then their total expected revenue

in every Nash equilibrium is strictly larger than Q− 1.

The proof of this theorem is given in Appendix B. As a direct corollary, we have:

Corollary 1. There is no allocation policy that provides seller j a total revenue of Qjn + 1 (or

more) in all Nash equilibrium outcome.

Proof. Let the collection of sellers P of Theorem 2 include all sellers besides j. By Theorem 2, the

sellers in P can jointly obtain a total revenue strictly larger than (1−Qj)n− 1 which implies the

claim.

Thus, we have established in this section that the optimal safety level of a seller that has total supply

Q lies in the interval [Q−1, Q+1]. Furthermore, we have shown that proportional allocation yields

a safety level of Q−1, and thus provides an almost optimal safety level. We leave for future research

the further identification of the optimal policy.

4 Exclusivity

Exclusivity as a pricing tool was already useful in the first example given in the previous section

and its importance will become even clearer in the sequel. This section makes some preliminary

comments and observations regarding this sales tool. We refer to a bid of value 1 as a rigid bid.

In such a case, the entire budget of a buyer goes to one of the sellers. Rigidity might be enforced

by a seller who attempts to force exclusivity via various technical or marketing actions.9 It may

also come from the buyer side, especially in more traditional markets like advertising in the printed

media. Rigidity is often termed “single-homing” (see e.g. Athey, Calvano and Gans (2011) and the

references therein). Ashlagi, Edelman and Lee (2011) give an empirical analysis of the number of ad

platforms (sellers in our terminology) that online advertisers (buyers in our terminology) use. They

show that small advertisers tend to single-home even in online advertising. Rigidity is very natural

in many settings in which there is some underlying cost to simultaneously work with several sellers,

e.g. because of technological differences (and a seller can deliberately make such additional costs

particularly high, by this implementing “rigid” bids). In the more broader context of an abstract

9To enforce rigidity, sellers must know buyers’ budgets (to infer that they are receiving these in full). Thus, the
possibility to exercise rigidity crucially relies on the assumption of complete information. While this assumption is
clearly restrictive, we note that it is a widely acceptable assumption in many studies on Internet search advertising.
E.g., this assumption was made already in Varian (2007) and in some parts of the analysis of Edelman, Ostrovsky
and Schwarz (2007).
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exchange economy, rigidity simply captures the case that buyers’ endowments are indivisible, e.g.,

in cases where it is not money.10

A natural policy that enforces exclusivity is what we term proportional allocation among rigid

bids: the seller divides her items equally among the buyers that place rigid bids (and non-rigid

bidders are ignored). The next result shows that if seller j uses proportional allocation among rigid

bids while the other sellers use any arbitrary policies, the revenue of seller j in any Nash equilibrium

(either pure or mixed) is strictly larger than qjn− 1. In particular, her revenue in any pure Nash

is at least bqjnc, which is slightly better than the revenue of proportional allocation.

Theorem 3. If seller j uses proportional allocation among rigid bids while the other sellers use

any arbitrary policies, the revenue of seller j in any Nash equilibrium (either pure or mixed) will

be strictly larger qjn− 1. In particular, her revenue in any pure Nash is at least bqjnc.

The proof of the first part of this theorem is identical to that of Theorem 1 and is therefore omitted.

The second part of the theorem is a direct consequence of rigidity, and is not true without it, as

the example in the previous section has demonstrated.

We note that Theorem 2 does not hold when a set of sellers P all use proportional allocation

among rigid bids (and not proportional allocation). Therefore, Theorem 3 limits by how much the

equilibrium revenue might drop below the fair share, but not by how much it may increase beyond

the fair share.

In fact, we wish to point out that rigidity typically favors larger sellers. If there are many small

sellers and very few large sellers, and all sellers use proportional allocation among rigid bids, the

increase in revenue of a large seller may be significant. In a pure Nash, if seller 1 has large supply

and all other sellers are small, a disproportionately large revenue for seller 1 may result from the

gap between n−
∑m

j=2bqjnc and q1n. For example, let n = 25, m = 9, q1n = 13 and qin = 3/2 for

2 ≤ i ≤ 9. Then the fair share of seller 1 is 13, but in every pure Nash her revenue is 17. Thus,

the use of proportional allocation among rigid bids gives large sellers a revenue significantly larger

than their fair share.

Moreover, the expected revenue of the large seller in a mixed Nash equilibrium may be signifi-

cantly larger than her revenue in a pure Nash. For example, suppose the that the supply of seller 1

is of size about
√
n while the size of the supply of all other sellers is exactly 1. Then Theorem 3

shows that in any pure Nash the revenue of a small seller is at least 1, implying that the large seller

does not obtain more than her fair share. Now consider a symmetric mixed Nash in which each

buyer bids at seller 1 with probability q. If the result of the coin toss is that the buyer does not

bid at the large seller, he bids at some small seller chosen uniformly at random among all small

sellers. Given a set of buyers that bid at the small sellers, we have a “balls in bins” process (see for

example Johnson and Kotz (1977)) where balls are uniformly at random being put in x bins. For

10One example for such a setting is given in our conclusions below; a second example naturally arises when Blotto
games are motivated by actual battlefield scenarios (as actual soldiers are usually indivisible).
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this random process, it is known that the expected number of empty bins is x
e . Since the supply

of the large seller
√
n is very small compared to the aggregate supply of all small sellers n −

√
n,

in equilibrium most buyers must end up at a small seller, and because a fraction of 1
e of the small

sellers will be empty, the expected utility of every buyer given that he ends up at a small seller will

be about 1− 1
e . Since this is a Nash equilibrium, his expected utility given that he ends up at the

large seller must be the same, implying that the expected number of buyers at the large seller will

be about e
e−1 times her supply, implying a similar increase in her revenue, relative to her fair share.

5 Two Extremely Asymmetric Sellers

When we have two nearly symmetric sellers, Theorem 3 shows that each of them is able to obtain

in any equilibrium outcome revenue which is very close to their fair share. However, in extremely

asymmetric cases, that is, when qjn is comparable to 1, the theorem no longer supports such a

statement. In particular, when qjn ≤ 1 the theorem does not provide any meaningful bound.11 It

turns out that the subtraction of 1 from the bound in the theorem is not a technical limitation of the

proof, but, rather, an accurate observation regarding the significant differences between the case of

near symmetries in supply and the case of extreme asymmetries in supplies. Consider the following

example, where L’s supply is 1 − 1
n and H’s supply is n − (1 − 1

n). In this case, H can offer each

buyer a fraction of 1
n of the total supply of H, provided that the buyer signs an exclusivity contract

with H, and bids his entire budget at H. With such a policy, every buyer will prefer exclusivity

with H, regardless of L’s policy, since L’s total supply 1− 1
n is strictly smaller than the number of

items that H is offering each buyer. As a result, H will attract the full budget of all buyers and L

will be driven out of the market.

How extreme should the differences in supply be, for the large seller to be able to reduce the

revenue share of the small seller significantly below her market share? While the example above is

fairly simple, the general case is much more complicated. The “first” extremely asymmetric case

which is far from trivial (as will soon become evident) is the case when L’s supply is exactly 1 and

H’s supply is n−1. On the one hand, Theorem 3 for L is still meaningless in this case. On the other

hand, it is no longer clear how the large seller should act, in order to reduce L’s revenue share below

her market share. In particular, it is easy to verify that the simple exclusivity method suggested

above no longer works. In fact, as the following result demonstrates, a large class of selling policies

for H (on top of exclusivity) cannot yield a very low revenue for L in all equilibrium outcomes.

Definition 2. An allocation policy aj is monotone if an increase in a buyer’s bid (fixing the other

bids) does not decrease his allocation.

11As discussed in the introduction, our motivation makes sense also in small markets. For example, n = 10 and
qj = 10% seems like a perfectly plausible scenario.
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Definition 3. The anti-competitive allocation policy (for L) is as follows. If exactly one buyer

places a rigid bid at L, that buyer receives L’s item. In any other case, L does not allocate her item.

Theorem 4. If L’s supply is exactly 1, H’s supply is n− 1, L uses the anti-competitive allocation

policy, and H uses any arbitrary monotone allocation policy, there exists a pure Nash equilibrium

in the resulting buyers’ subgame in which L’s revenue is 1.

Proof. Consider first a situation in which all buyers place their entire budgets at H. In this case, at

least one of the buyers must receive strictly less than one item. Let such a buyer be i. Note that i

bidding the full budget at L and all others bidding the full budget at H is a pure Nash equilibrium:

None of the others can improve their utility as they will not receive any item at L even if bidding

there, and any lower bid to H cannot increase their utility by the monotonicity of the policy of

H. Buyer i cannot increase her utility as bidding the full budget at H will result in strictly lower

utility (by our choice of i), and bidding less than the full budget at H can only result in an even

lower utility for i, because of the monotonicity of H.

This result demonstrates that the case where H has n− 1 items and L has 1 item is not a-priori

clear and simple. Can H limit the revenue of L to be close to 0 in any NE, similarly to the case

when L’s supply is 1 − 1
n? Or maybe L can obtain revenue almost proportional to her fair share

revenue, in all equilibrium outcomes or in some equilibrium outcomes? This section studies these

questions in detail to obtain a better understanding of this case. In particular, we will identify a

strategy the does manage to reduce L’s revenue share significantly below her market share in any

NE outcome.

5.1 Mixed Nash equilibria with rigid bids

Exclusivity and bid rigidity turn out to be of particular importance to our analysis of this case. In

this section we develop important observations regarding their role by analyzing the case where both

H and L use proportional allocation among rigid bids. In this case, every pure Nash equilibrium of

the resulting buyers’ subgame has the following structure: exactly one buyer bids his full budget

at L, while all others bid their full budget at H. In this outcome every buyer receives exactly one

item, and no buyer can deviate and receive more than one item. The revenue of both sellers in

such an equilibrium outcome is exactly their fair share and in particular L’s revenue is 1.

However, there are also mixed Nash equilibria in the resulting buyers’ subgame, including a

symmetric mixed Nash equilibrium in which each buyer submits his full budget to L with some

probability p (that depends only on n), and with probability 1 − p submits his full budget to H.

It turns out that L’s revenue dramatically drops in every mixed NE outcome compared to her fair

share: in every mixed NE L’s revenue is about 1
n (while in every pure NE L’s revenue is 1). We

prove this result for the case when H uses proportional allocation among rigid bids and L uses any

policy from the following class:

16



Definition 4. An allocation policy aj is:

• anonymous if for any bids b1j , ..., bnj and any renaming of the buyers (a permutation π :

{1, ..., n} → {1, ..., n}), aji(b1j , ..., bnj) = ajπ(i)(b̃1j , ..., b̃nj) where b̃ij = bπ(i)j.

• efficient if whenever the seller receives at least one positive bid, all items of the seller are

allocated.

• cross-monotone if an increase in a buyer’s bid (fixing the other bids) does not decrease the

allocation of another player.

Proportional allocation satisfies all the above properties (efficiency, anonymity, monotonicity and

cross monotonicity). Proportional allocation among rigid bids satisfies anonymity, monotonicity

and cross monotonicity but does not satisfy the efficiency property – if a seller receives only non-

rigid bids, her items are not allocated. However, it does satisfy a property that we shall call weak

efficiency, namely, that whenever the seller receives at least one rigid bid, all items of the seller are

allocated.

Theorem 5. Suppose that H uses proportional allocation among rigid bids and L uses any allocation

policy that is anonymous and in addition satisfies either one of the following two conditions: (1)

L’s policy is efficient, or (2) L’s policy is monotone, cross monotone, and weakly efficient. Then

in every mixed Nash L’s revenue is at most 4
n−2 +O(1/n3).

Proof. We shall assume throughout the proof that n > 4 (this simplifies computations, and if n ≤ 4

the theorem does not limit L to below her fair share). We shall present the proof for the case that

L’s policy is anonymous and efficient, without requiring any monotonicity properties. The other

case is easier to prove (the combination of the monotonicity properties of L and rigidness of H

allows us to assume that L too only receives rigid bids, simplifying the analysis), and its proof is

omitted. Let X be the set of players that have positive probability of going to L. Since we assume

a non-pure Nash equilibrium, X is not empty. The proof follows by several Lemmas.

Lemma 2. |X| ≥ 2.

Proof. Assume towards a contradiction that X = {i} for some buyer i, and let E[i|i→ H] denote

i’s expected utility given that she puts her budget at H (since H is rigid she cannot split her budget).

Nash equilibrium implies E[i] = E[i|i → H] = E[i|i → L]. Since the supply of H is smaller than

n, anonymity implies E[i] = E[i|i → H] < 1. However, efficiency (weak efficiency suffices) implies

that i can obtain a utility of 1 by deterministically bidding her full budget at L, a contradiction.

For any S ⊆ X, let Pr[S] be the probability that S is exactly the set of players that submit a

non-zero bid to L (in this case we say that S is the “colliding set”). Note that if a player submits a

non-zero bid to L then she cannot receive anything from H. Let u[i|S] be i’s expected utility, given
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that S is the colliding set. For any i ∈ X, define Si = {S ⊆ X s.t. |S| ≥ 2 and i ∈ S}, and let

ui =

∑
S∈Si

Pr[S]u[i|S]∑
S∈Si

Pr[S] . The denominator is the probability that i bids at L and there is a collision

at L. Denote this term as Pr[i]. Note that ui is the expected utility of i given that she bids at L

and there is a collision at L.

Lemma 3. If |X| ≥ 2, there exists a player i such that ui ≤ 1/2.

Proof. For every set of players S,
∑

i∈S u[i|S] ≤ 1, since L has only one item to offer. Thus,∑
i∈X

∑
S∈Si

u[i|S]Pr[S] =
∑

S⊆X s.t. |S|≥2

Pr[S]
∑
i∈S

u[i|S] ≤
∑

S⊆X s.t. |S|≥2

Pr[S]

≤ 1

2

∑
S⊆X s.t. |S|≥2

|S|Pr[S] =
1

2

∑
i∈X

Pr[i].

Therefore there must be a player i ∈ X such that
∑

S∈Si u[i|S]Pr[S] ≤ 1
2Pr[i], and the lemma

follows.

Let P ∈ X be a player with uP ≤ 1/2. Let x be the probability that a player besides P submits

a positive bid to L. If P submits all her budget to H she obtains a utility of at least n−1
n . Thus,

the expected utility of P given that she submits a positive bid to L must be at least that as well.

On the other hand, this expected utility is at most x1
2 + (1 − x) · 1. This implies that x ≤ 2

n .

Because each player tosses her coin independently, it follows that the expected number of players

besides P that go to L is very close to x. This is a standard argument and the next lemma is for

completeness.

Lemma 4. Let Li for i = 1...n−1 be random independent Bernoulli variables where Pr(Li = 1) =

pi and Pr(Li = 0) = 1− pi, and let L =
∑

i Li. Suppose that Pr(L ≥ 1) ≤ 2
n . Then E[L] < 2

n−2 .

Proof. Let E = E[L] =
∑

i pi. We have 2
n ≥ Pr(L ≥ 1) = 1−Πi(1− pi) ≥ 1− e−

∑
i pi = 1− e−E ,

where the second inequality follows since 1 − x ≤ e−x. Thus E ≤ ln(n) − ln(n − 2) < 2
n−2 (recall

that ln(a) =
∫ a
1

1
xdx), and the lemma follows.

Lemma 4 implies that the expected number of players at L (not counting player P) is at most 2
n−2 ,

and therefore this is at most the expected revenue that L obtains from all players besides P. To

complete the proof, it only remains to argue that the probability that P bids at L is small.

Lemma 5. Let p be the prob. that buyer P (as defined above) submits a positive bid to L. Then

p ≤ 2(n−2)
n(n−4) .

Proof. Recall that we used x to denote the probability that a player besides P submits a positive bid

to L. We have shown that x ≤ 2/n. Consider first the worst possible value for x, namely, x = 2/n.
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Lemma 4 implies that the probability that there are two or more players besides P that submit a

positive bid to L is at most 2
n−2 −

2
n = 4

n(n−2) = 2
n−2x. A similar argument shows (details omitted)

that for every x ≤ 2/n, the probability that there is exactly one player beyond P bidding at L is

at least n−4
n−2x. Consider now the optimal bid for P, conditioned on bidding in L. If no other player

bids in L, then every positive bid of P gives him the full item, by the requirement that L’s policy

is efficient. If exactly one other player bids in L, then from P’s point of view, he is in a two player

0-sum game situation, playing against one bid (P does not care which player is giving this other

bid), and trying to maximize his share in L’s item. By the anonymity of L’s policy, this two player

game is symmetric, and hence P has a bid that gives him expected value of at least 1/2. Hence

in a Mixed Nash equilibrium, P’s payoff conditioned on bidding at L is at least 1 − x + n−4
2(n−2)x.

This implies that P’s expected payoff conditioned on participating in a collision in L is at least
n−4

2(n−2) . By averaging over the other players, we conclude that there must be some player P ′ whose

expected payoff when participating in a collision with P at L is at most 1− n−4
2(n−2) = n

2(n−2) . Recall

that p is the probability that P bids in L. Then the expected payoff of P ′ when bidding in L is at

most 1 − p + p n
2(n−2) . As the expected payoff of P ′ at H is at least 1 − 1/n, it follows that in a

Nash equilibrium p ≤ 2(n−2)
n(n−4) .

To conclude: L’s expected revenue is at most the expected number of players besides P that bid at

L plus the prob. that P bids at L, which (by the above) is at most 2
n−2 + 2(n−2)

n(n−4) = 4
n−2 + 8

n(n−2)(n−4) .

This concludes the proof of the theorem.

If L uses a non-anonymous policy, the theorem no longer holds. For example, L can use the

following policy: Allocate a fraction of n−1
n of the item to buyer 1, if he bids his full budget at L.

In any case do not allocate anything to the other buyers. If H uses proportional allocation among

rigid bids, then the following is a mixed Nash: buyer 1 bids his full budget at either H or L with

equal probability 0.5, while all other buyers bid their full budgets at H. In this mixed Nash, L’s

revenue is 0.5, showing that the theorem no longer holds when L uses a non-anonymous policy.

5.2 An Optimal Policy

Two questions now present themselves: Can H achieve a similarly high revenue in all equilibria

(and not only in all mixed equilibria), and can H achieve a similarly high revenue when L chooses

an arbitrary allocation policy that does not necessarily satisfy the above-mentioned properties. We

next show a strategy that eliminates all pure equilibria, and yields a revenue in the order of n− 1
n

to the large seller (leaving very little revenue to the small seller), in all mixed Nash equilibrium

outcomes, regardless of the allocation policy of the small seller.

Definition 5. Fix any ε > 0. In proportional allocation among rigid bids with a gamble

bid, the seller allocates the items equally among all bids whose value is exactly 1 as in proportional

allocation among rigid bids, but with one exception: If the seller receives n− 1 bids of value 1 and
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one bid of value 1− ε (we term this bid a near rigid bid), give the near rigid buyer 1 + 3/n items,

and split the remaining items equally among the other n− 1 buyers.

Thus, proportional allocation among rigid bids with a gamble bid is identical to proportional

allocation among rigid bids, with one important exception (this is the “gamble bid”): one of the

buyers (the one that places a near rigid one) can receive more than one item, but only if all other

bids go to this seller as well, and are all rigid. Note that a near rigid bidder receives zero items in

all other cases (so it is a risky bid).

As mentioned in the Introduction, we interpret this policy as offering an “attractive deal” to

a buyer that might otherwise deterministically put his entire budget with L. This is a situation

where H receives n− 1 bids of value 1 and given this an additional buyer will benefit from bidding

his full budget at L. The strategy offers the gamble bid, which we view as an attractive deal, to

this buyer. Specifically, if this buyer will move to H he will receive more than all other buyers. Of

course, since our setting is of a one-shot game, by “this buyer” we generically mean any buyer that

considers deterministically putting his entire budget with L in a situation where all other buyers

deterministically put their entire budget with H. The gamble bid makes this option less profitable

for any buyer. Because of this, the gamble bid eliminates all pure NE from the game, leaving

only mixed NE. This contradicts McAfee’s recipe that suggests to foster stability and loyalty in

competitive situations. In our specific competitive situation, it turns out that H should promote

instability, expressed as a mixed strategy where buyers randomize between H and L. This will

significantly decrease L’s revenue.

A nice property of this allocation policy is that it is anonymous. Another interesting character-

istic of this policy is its non-monotonicity. In a situation where a near rigid bid wins, if this bidder

will increase his bid to his full budget, he will decrease the quantity that he receives. Theorem 7

below shows that non-monotonicity is unavoidable if H wants to obtain revenue above n− 1 in all

equilibrium outcomes. (Our model restricts attention to allocation policies that are functions of

bids only, with no extra bits. If we had an extra bit, we could replace the bid 1 − ε by a bid “1,

and I choose to gamble”. In this case, the effect of the extra bit would not be monotone, because

depending on the bids of the other buyers it may either cause the payoff of the bidder to increase

or to decrease.)

If H uses proportional allocation among rigid bids with a gamble bid and L uses proportional

allocation with rigid bids, the outcome in which one buyer deterministically bids at L while the

others deterministically bid at H is not a Nash equilibrium, because of the gamble bid: the buyer

that submitted his full budget to L can increase his utility by submitting a near rigid bid to H.

More generally, the gamble bid rules out all profitable pure Nash equilibria for the small seller:

with less than n−1 rigid bids to H, at least one of the remaining bidders can strictly gain by giving

a rigid bid to H (the total L can offer to the remaining bidders is too low to prevent defection),

and with exactly n − 1 rigid bids to H, the remaining buyer must give a near rigid bid to H.
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We conclude that if H uses proportional allocation among rigid bids with a gamble bid, then in

any pure Nash equilibrium of the resulting buyers’ subgame, H receives n − 1 rigid bids and one

near-rigid bid (leaving only ε to L). We next show that in every mixed Nash equilibrium the small

seller has very little revenue as well:

Theorem 6. Assume n ≥ 10. If H uses proportional allocation among rigid bids with a gamble

bid, L’s revenue in any Nash equilibrium (either pure or mixed) is at most 8
n−3 + nε, regardless of

her policy.

Proof. We already saw that in every pure Nash the claim holds. We now consider the revenue of

L in a mixed Nash, ignoring bids of value ε. We start with a useful lemma.

Lemma 6. If, in an equilibrium strategy, player j declares a near rigid bid to H with positive

probability, then the probability that all other players declare a rigid bid to H is at least 1 − 4
n−1 .

This implies that the expected number of players at L besides j is at most 4
n−3 .

Proof. Let y be the probability that all players (besides perhaps j) declare a rigid bid to H. The

expected utility of j given that she declares a near rigid bid to H is y(1+ 3
n)+(1−y)0. On the other

hand j can obtain a utility of n−1−(1+3/n)
n−1 by placing a rigid bid at H. Thus y(1+ 3

n) ≥ n−1−(1+3/n)
n−1

implying y > 1 − 4
n−1 . This proves the first part of the lemma. The second part follows by

Lemma 4.

To prove the theorem, consider the following three cases.

Case 1. Suppose there exist two distinct buyers i, j that declare a near rigid bid to H with

positive probability. Then, by Lemma 6, the expected number of players at L besides j is at most
4

n−3 , and the prob. that j bids at L is at most 4
n−1 (again by Lemma 6, since i also declares a near

rigid bid to H with positive prob.). Thus, the expected number of players at L is at most 8
n−3 ,

which implies the theorem for this case.

Case 2. The second case uses the notation of Theorem 5. Let X be the set of players that have

positive probability of going to L, and assume (this is the second case we are considering) that

|X| ≥ 2. In this case, we can use Lemma 3 from Theorem 5, as this lemma does not rely on any

of the assumptions made in that theorem, and conclude that there exists a buyer P ∈ X such that

the expected utility of P, given that she bids at L, and given that there is a collision at L, is at

most 1
2 . Let x be the probability that at least one buyer besides P bids at L. The expected revenue

of P, given that P bids at L, is therefore at most 1
2x+ (1− x)1, and at least n−1−(1+3/n)

n−1 (since P

can obtain this utility by placing a rigid bid at H). Thus x ≤ 2(n+3)
n(n−1) .

We argue that, in this case, there must exist a buyer j 6= P that bids a near rigid bid at H with

positive probability. To see this, assume towards a contradiction that if a player j 6= P bids at H,

her bid is rigid. Then, player P can obtain expected utility strictly larger than 1 by deterministically
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placing a near rigid bid at H, since with this action her utility is (1− x)(1 + 3/n) > 1 (for n ≥ 10,

and using the above inequality upper bounding x). This is a contradiction because P bids at L with

a positive probability and her expected utility given that she bids at L is at most 1. By Lemma 6

the expected number of all buyers besides j (but including P) that bid at L is at most 4
n−3 . The

probability that j bids at L is at most x. Thus, the expected number of players at L is at most
4

n−3 + 2(n+3)
n(n−1) <

8
n−3 , implying that the theorem holds in this case as well.

Case 3. Finally, suppose that neither of the above two cases hold. That is, at most one player

has a positive probability of placing a near rigid bid at H, and |X| ≤ 1. If X is empty, the theorem

immediately follows. Thus assume X = {i}. If there does not exist any buyer j that declares a near

rigid bid to H with positive probability, then since only i may bid at L, all others deterministically

place a rigid bid with H. But then i is not best responding by bidding at L, as she can obtain

utility strictly larger than 1 by placing a near rigid bid at H. Thus, assume there exists exactly

one buyer j that declares a near rigid bid to H with positive probability. If j = i, all others are

deterministically placing a rigid bid at H and once again i is not best responding when bidding at

L. Thus assume that j 6= i. By Lemma 6 the probability that i bids at L is at most 4
n−1 and since

i is the only one that bids at L, the theorem follows.

5.3 Restricting H to be Monotone

Non-monotonicity is a crucial ingredient in order to ensure a low revenue for L. To see this, recall

the anti-competitive allocation policy from above, which ensures the existence of a pure NE in

which L’s revenue is 1, as long as H uses any arbitrary monotone allocation policy. The gamble

bid manages to escape this problematic equilibrium of the anti-competitive policy, via its non-

monotonicity: If i bids 1− ε when all others are bidding rigidly at H, he will receive utility strictly

larger than 1, and this is sufficient to break the equilibrium.

Given this state of affairs, anti-trust agencies and other regulatory bodies may consider restrict-

ing H to use a monotone policy, in order to limit its monopolistic power. In this context, one may

wonder whether there exists a policy for L that will obtain a revenue of 1 in all Nash equilibria (and

not only in some Nash equilibria), given that H is restricted to be monotone. The next theorem

shows that this is unfortunately impossible.

Theorem 7. For any n ≥ 4 and any allocation policy of L, there exists a monotone and anonymous

policy for H for which in at least one Nash equilibrium the revenue of L is at most 3/n (showing that

L cannot obtain a revenue of 1 in all equilibrium outcomes even if H is restricted to be monotone).

Proof. Fix an arbitrary policy for L. The policy that we will construct for H will accept only rigid

bids, and hence we can assume that a buyer either bids at L (not necessarily a rigid bid) or at H,

but not both.
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We first examine a different game that involves only L, as follows. Each player chooses which bid

to submit to L. For a parameter p = 3/n2, with probability p the bid of a player is indeed submitted

to L, and with probability 1 − p it is discarded and the player’s utility in this case is 0. This is

done independently for each player. The utility of each player who’s bid is being submitted to L

is determined by L’s policy, as a function of all bids that were submitted to L. As we assume that

buyers have only finitely many choices of bids, there is some Nash for the players on L (specifying

for every player a probability distribution over bids, conditioned on bidding at L). Fix an arbitrary

such Nash, s1, ..., sn, and let ri denote the expected revenue of player Pi conditioned in bidding at

L (i.e. conditioned on the result of the coin toss being that the player’s bid is submitted to L).

The expected utility of player i in this different game is pri and thus the total expected number

of items that L allocates is p
∑

i ri. With probability (1−p)n no item is being allocated, hence even

if in all other cases L allocated her full item, still the total expected number that L allocates is at

most 1− (1− p)n. We conclude that
∑

i ri ≤ (1− (1− p)n)/p. Our choice of p = 3/n2 implies that

(1− (1−p)n)/p ≤ n−1 (to verify this, one can use the inequality (1−p)n ≥ 1−np+
(
n
2

)
p2−

(
n
3

)
p3,

which follows from the binomial theorem).

Now consider the following policy for H: every player i that places a rigid bid at H receives

ri items, and nonrigid bids get nothing. This policy is feasible since
∑

i ri ≤ n− 1. The following

strategy for each buyer i forms a Nash equilibrium in the resulting buyers’ subgame: With proba-

bility 1−p submit a rigid bid to H and with probability p submit a bid to L according to si. This is

since the expected utility of a buyer given that she bids at H is equal to her expected utility given

that she bids at L; she has no better action at H because H receives only rigid bids, and she has no

better action at L since our construction implies that si maximizes a player’s expected utility given

that she bids at L and given that other players bid at L according to s−i, each one independently

with probability p. In this Nash equilibrium outcome, L’s expected revenue is at most np = 3/n,

and the theorem follows.

Therefore, no monotone policy of H can obtain in all equilibria of the resulting buyers’ subgame a

revenue strictly more than n− 1, but on the other hand no policy of L can obtain in all equilibria

of the resulting buyers’ subgame a revenue larger than an order of 1
n . How much revenue can H

obtain in all equilibria of the resulting buyers’ subgame, under the restriction of monotonicity?

Theorem 4 tells us that such an equilibrium revenue cannot be strictly more than n − 1, but can

she obtain at least that? The next theorem shows that H can obtain a revenue of almost n− 1 in

all equilibrium outcomes, but not n− 1. In this sense, putting restrictions on H, as the dominant

seller, can slightly help the small seller. She will not be able to obtain revenue proportional to her

market share in all equilibrium outcomes, and L might even obtain revenue share slightly larger

than her fair share in some equilibrium outcomes.

Theorem 8. If H uses proportional allocation among rigid bids, and regardless of the policy that L

uses, the revenue of H in any Nash equilibrium of the resulting buyers’ subgame is at least n−1− 2
n−2 .
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On the other hand, for any monotone policy of H there exists a policy of L such that, in at least

one Nash equilibrium of the resulting buyers’ subgame, the revenue of H is at most n− 1− 1
n2 .

We postpone the proof of this theorem to Appendix C.

6 Conclusions

Studying competition among firms with fixed market shares, we have analyzed how extreme supply

asymmetries can yield an advantage to large sellers. We have shown that exclusive contracts and

bid rigidity tend to work in favor of large sellers, that mixed Nash outcomes (as compared with pure

outcomes) tend to work in favor of large sellers, and that non-anonymity can be a counter-measure

for the small sellers. We have also shown that non-monotone policies can provide an equilibrium

revenue for the large seller that cannot be obtained by monotone policies, and that even if sellers

are restricted to monotone policies, the small seller might still land in Nash equilibria that result

in low utility for her. In sharp contrast, all these selling tools do not provide significant advantages

when sellers have similar supply sizes. In this case, simple selling policies provide near optimal

revenues in all equilibrium outcomes.

Our main motivating application is the market for Internet search advertising. This market is

divided to many small sub-markets, based on searched keywords. Our results demonstrate that

revenue shares in markets with such a structure might be significantly more asymmetric, biased

towards the larger seller. The following example demonstrate this point. Consider a grand market

with 800 buyers and 800 divisible items (i.e., an overall budget of $800), where a small firm L offers

10% of the total supply (i.e., 80 items), and a large firm H offers the rest. Theorem 1 shows that

the small firm can obtain an equilibrium revenue of $79 – very close to her fair share revenue which

is $80. If, however, the same grand market is actually composed of 100 small markets with 8 buyers

and 8 divisible items each (the same overall number of items, buyers, total budget, and market

shares), revenue shares can change drastically. In particular, L’s revenue drops to zero if H uses

proportional allocation among rigid bids in every small market.12 Aggregating the revenue over all

the small markets, L’s total revenue still remains zero, of-course. Thus, with such a structure of the

grand market, a large seller that has a 90% market share can obtain a 100% revenue share, leaving

no revenues for her smaller opponent. Such examples motivate the second part of our inquiry.

Theorem 6 for example demonstrates that H can still cut L’s revenue to less than one-fourth of her

fair share revenue even if the grand market above is composed of only 40 small markets with 20

buyers and 20 divisible items each.13

12Specifically, in every small market H offers at least 7.2
8

= 0.9 items to every buyer that puts his entire budget
with her. Since L has at most 0.8 < 0.9 items to offer, all buyers of the small market will choose to go exclusively
with H, leaving L with a zero revenue.

13Specifically, if H implements the strategy suggested in Theorem 6 in every small market then according to the
theorem L’s revenue in every such market will be at most 8

n−3
= 8

20−3
< 0.5. Aggregating over the 40 small markets

results in a total revenue of less than $20 for L.
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The important assumption that drives our results for the extremely asymmetric case is that the

large seller owns an extremely large fraction of the overall supply in the market. The number of

small sellers that compete against such a large seller is less important. If the large seller is large

only relative to any other seller in the market, and not relative to the total supply, she may not

be able to significantly decrease the aggregate revenue of the small sellers, below their aggregate

fair share. In this case, the small sellers can jointly obtain almost their fair share, simply by using

proportional allocation (each one in an independent way).

One weakness of our paper is the fact that a significant part of it deals with the clearly non-

generic case in which the share of capacity held by the low capacity seller is precisely 1
n (where

n is the number of buyers). That being said, we do believe that carefully analyzing this case is

important for two reasons. First, this case sheds light on interesting (and sometimes surprising

and non-intuitive) phenomena that are entailed in our model. Thus, it serves as a motivation for

a further more general analysis of the model. Second, the analysis here seems like a necessary step

that lays the foundation for the more general case, where the market share of the small seller varies

from 1
n to 1

2 .

We should also emphasize that there could clearly be a variety of reasons for differences in

revenue shares. Our work addresses and investigates only one such possible aspect. For example,

another possible reason why Bing’s and Google’s revenue shares differ from market shares could be

that the user characteristics across these search engines are different, which makes for example the

value of an ad slot for a search for “pizza in NYC” inherently different on Google and Bing. This

question should be investigated empirically. By assuming in our model that items are homogeneous,

we have assumed that these values are in fact similar across the two search engines.

As a final remark, we wish to mention a completely different connection of our abstract model

to the issue of seat allocation in a parliament system, based on election results. The question of

how to allocate the parliament seats to the various parties is of-course central in political science.

A Belgian mathematician Victor D’Hondt suggested in 1878 a popular method that is being widely

used even today in many countries (see Balinski and Young (2001) for more details). This method

is defined as follows. Suppose that n is the number of seats to be assigned, and qj is the number of

votes received in the election by party j. Considering an arbitrary assignment of seats to parties,

a seat that is being assigned to party j is worth the overall number of votes for this party divided

by the number of seats assigned to this party in the current assignment. Denote an assignment as

stable if no seat can increase its worth by being reassigned to a different party. D’Hondt proposes

to use a stable assignment. (Ties are extremely unlikely when the number of votes is large, and

hence we omit the details of how to break ties if they occur.) Consider the following analogy with

our competition model. Parties can be viewed as sellers, and the supply of each seller is the number

of votes that the party received. Seats are buyers, each with a budget of 1. In this context, buyers

must be rigid, of course. Each party uses proportional allocation among rigid bids. It is not hard to
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verify that pure Nash equilibria in this setting exactly corresponds to all stable assignments in the

D’Hondt method. As discussed in Section 4, Nash equilibria outcomes tend to favor larger sellers.

Indeed, the D’Hondt method has a reputation of typically favoring the larger parties.

A A Simple Proof of Friedman’s Theorem

We start an auxiliary result:

Theorem 9. Suppose that all sellers use the proportional allocation policy, and fix a buyer i∗. Then,

if i∗ bids bi∗j = qj at every seller j = 1, ...,m, his resulting utility will be at least 1. Moreover, if

at least one of the other bidders uses a randomized (non-pure) strategy, or if there exists a seller j

such that
∑

i 6=i∗ bij 6= (n− 1)qj, then i∗’s utility will be strictly larger than 1.

Proof. For simplicity of notation we give a proof for two sellers (m = 2) and denote q1 = q. Let yi

be a random variable that denotes the bid of player i to seller 1 (so 1− yi is i’s bid to seller 2), and

y =
∑n

i=1 yi. Then,

u(y) =
q

y
qn+

1− q
n− y

(1− q)n

is the resulting utility of i∗. The derivative u′(y) is strictly negative for y < qn and strictly positive

for y > qn, hence the utility is minimal for y = qn where u(qn) = 1. This proves the claim for all

pure strategies of the other players. If some of the other players use a randomized strategy and y

is a non-degenerate random variable, then since u(·) is convex, Ey(u(y)) > u(E(y)) ≥ 1 where the

first inequality is Jensen’s inequality and the second inequality follows from our argument for pure

strategies. This completes the proof of the theorem.

An easy corollary is that when sellers use proportional allocation, proportional bidding bij = qj is a

Nash equilibrium in the resulting buyers’ subgame: every buyer obtains utility of 1 regardless of the

bids of the other buyers, and the sum of all utilities is at most n. Thus if a buyer deviates he cannot

obtain more than 1. In fact, Friedman (1958) shows that this is the unique Nash equilibrium:

Theorem 10. [Friedman (1958)] If all sellers use proportional allocation, proportional bidding is

the unique Nash equilibrium in the resulting buyers’ subgame. In this equilibrium, the revenue of

every seller j is qjn.

Proof. For simplicity of notation we again give a proof for two sellers (m = 2) and use the same

notation as above. First notice that in every Nash equilibrium (mixed or pure) of the resulting

buyers’ subgame, the expected utility of every buyer is exactly 1: the sum of all resulting utilities is

n, hence if some buyer has utility strictly larger than 1, another buyer has utility strictly less than

1, which implies that she can strictly gain by deviating to proportional bidding (by Theorem 9),

contradicting the equilibrium property.
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Now assume equilibrium bids yi and fix a buyer i∗. We have
∑

i 6=i∗ yi = (n− 1)q, otherwise by

Theorem 9 buyer i∗ can obtain a utility strictly higher than 1 by playing proportional bidding. In a

similar way we also have that all players play pure strategies. Summing over all n possible choices

of i∗ we have (n−1)
∑n

i=1 yi = n(n−1)q yielding
∑n

i=1 yi = nq. Thus, yi∗ =
∑n

i=1 yi−
∑

i 6=i∗ yi = q,

and the theorem follows.

B Proof of Theorem 2

Let P be a collection of several sellers {P1, . . . , Pk} and let Q =
∑k

i=1 qi denote their total supply.

We prove that if all members of P use proportional allocation then their total expected revenue in

every Nash equilibrium is strictly larger than Q− 1.

Consider an arbitrary Nash equilibrium (pure or mixed) and assume for the sake of contradiction

that the total expected revenue of all members of P is R ≤ Q − 1. Let x be a random variable

denoting the sum of bids to P . Then x is non-negative and its expectation satisfies E[x] = R.

Partition the buyers into three classes, good who deterministically place all their budget in P

(though they may randomize how they split their budget within P ), bad who deterministically

place no budget in P (though they may randomize how they split their budget outside P ), and

flexible.

Consider an arbitrary good buyer g. The balanced strategy for g is to bid qi
Q at each seller Pi. We

show that the balanced strategy has expected payoff at least Q
R > 1. Let xi be the random variable

expressing the total bids of all buyers other than g to seller Pi ∈ P . Then
∑
E[xi] = R − 1.

The payoff of g at Pi is Exi [qi
qi/Q

xi+qi/Q
] ≥ qi

qi/Q
E[xi]+qi/Q

(the inequality follows from the fact that

for every non-negative constant c, the function 1
x+c is convex in the domain x > 0). Hence the

total payoff for g is
∑

i qi
qi/Q

E[xi]+qi/Q
. Now a convexity argument similar to that of Theorem 3.1 in

our paper [one needs to add the details, assuming that they are correct] implies that the sum is

minimized (conditioned on
∑
E[xi] = R − 1) when E[xi] = (R − 1) qiQ for every i, giving a total

of
∑

i qi
1

(R−1)+1 = Q
R . The best response property then implies that in the given Nash every good

player has expected payoff more than 1. As the total expected payoff of all good buyers is at most

Q, there are strictly less than Q good buyers.

Consider now an arbitrary bad buyer b. If b were to become good and use the balanced strategy,

his expected payoff would be Ex[ Q
x+1 ] ≥ Q

E[x]+1 = Q
R+1 ≥ 1. The best response property then implies

that in the given Nash every bad player has expected payoff at least 1. As the total expected payoff

of all bad buyers is at most n−Q, there are at most n−Q bad buyers.

The number of flexible buyers is strictly larger than n − Q − (n − Q) = 0. Hence there is at

least one flexible buyer. As the expected payoff of every non-flexible buyer is at least 1, there must

be at least one flexible buyer whose expected payoff is at most 1. Consider such a flexible buyer

f and let r > 0 be the expected bid of f in P . If f were to become good and use the balanced
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strategy his expected revenue would be Ex[ Q
(x−r)+1 ] ≥ Q

Ex[x]+1−r >
Q
R+1 = 1, contradicting the best

response property of the assumed Nash equilibrium.

C Proof of Theorem 8

Proof of First Part. We prove that if H uses proportional allocation among rigid bids, and

regardless of the policy that L uses, the revenue of H in any Nash equilibrium of the resulting

buyers’ subgame is at least n− 1− 2
n−2 .

We use the notation of Theorem 5 (who also considers H that uses proportional allocation

among rigid bids). If |X| ≤ 1, the claim immediately follows. Thus assume that |X| ≥ 2, and let

P be the player that Lemma 3 identifies. The proof of Theorem 5 shows that the expected number

of players besides P that bid at L is at most 2
n−2 , hence L’s expected revenue is at most 1 + 2

n−2 ,

and the first part of the theorem follows.

Proof of Second Part. We prove that for any monotone policy of H there exists a policy of L

such that, in at least one Nash equilibrium of the resulting buyers’ subgame, the revenue of H is

at most n− 1− 1
n2 .

Fix an arbitrary monotone strategy for H. Let p1 be the utility of buyer 1 when all buyers bid

their full budget at H. W.l.o.g., p1 ≤ 1 − 1/n. Let p2 be the utility of buyer 2 when all buyers

except 1 bid their full budget at H. W.l.o.g., p2 ≤ 1. Let p3 be the utility of buyer 1 when all

buyers but 2 bid their full budget at H. Clearly, p3 ≤ n− 1, as H has only n− 1 items.

Consider the following strategy for L. It considers only rigid bids, and only from buyers 1 and

2. If 1 bids alone at L, she receives the full item. If buyer 2 bids at L (either with or without buyer

1), she receives p2 items and buyer 1 (if at L) receives the leftover 1− p2.
We will show that the following is a mixed Nash. Buyer 1 bids her full budget at L, buyers

3, ..., n bid their full budget at H, and buyer 2 bids her full budget at L with probability q = 1
n2 and

at H with probability 1−q. Buyers 3, ..., n will not deviate to a lower bid at H since H is monotone,

and they will not deviate to L since L offers them nothing. Buyer 2 is indifferent between H and

L since she obtains utility p2 in each one. Therefore any mix between the two sellers is a best

response of buyer 2.

It remains to verify that buyer 1 is best responding. Buyer 1 is bidding deterministically at L,

and obtains expected utility (1−q)+q(1−p2) ≥ (1−q). The only deviation that may be profitable

for her is to bid the full budget at H (since L accepts only rigid bids and H is monotone). If she bids

her full budget at H she obtains expected utility (1− q)p1 + qp3 ≤ (1− q)(1− 1
n) + q(n− 1). Since

q = 1
n2 we have (1− q) > (1− q)(1− 1

n) + q(n− 1), which implies that buyer 2 is best responding

as well.

In the outcome of this equilibrium play, L’s expected revenue is 1 + q = 1 + 1
n2 , and the second

part of the theorem follows.
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