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Abstract 
 

Assignment games represent a tractable model of two-sided mar- 

kets with transfers. We study the likely properties of the core of 

randomly generated assignment games. When the joint productivity 

of every firm and worker has a noise element with a bounded dis- 

tribution, with high probability all  workers  who  have  approximately 

the same human capital level are paid roughly equal wages, and all 

firms of similar quality make similar profits. This implies that core 

allocations vary significantly in balanced markets, but that there is 

core convergence in even slightly unbalanced markets. The same phe- 

nomenon occurs when firms’ quality and workers’ human capital level 

are complementary factors in productivity. When the noise element 

is unbounded, there may be a large variation in payoffs. 
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1 Introduction 
 

The “law of one price” asserts that homogeneous goods must sell for the 

same price across locations and vendors. This basic postulate is assumed 

in much of the economic literature, and its origins can be traced to Adam 

Smith’s discussion on arbitrage (Smith, 1776, e.g., Book I, Chapter V). While 

many (sometimes consistent) deviations from this “law” have been observed 

and documented in the real world (see, for example, Lamont and Thaler, 

2003, and references therein), it remains an interesting and useful building 

block in economic theory, and serves as a benchmark for empirical studies. 

A crucial underlying assumption used in arguing for the validity of the law of 

one price is the homogeneity of goods and buyers: buyers do not care which 

of the goods they end up buying, or which seller they are buying it from, 

nor do sellers care about the identity of the buyers. In other words, any two 

instances of the good are perfect (or at least near-perfect) substitutes for the 

buyers, as are any two buyers from any seller’s point of view. 

However, there are many markets in which the assumption of homogeneity 

is highly implausible. For example, in labor markets there are some work- 

ers are skilled and some unskilled, and similarly some firms are generally 

considered better places to work. In addition to these measurable quality 

differences, workers may exhibit heterogeneous preferences over being em- 

ployed by different firms, due to personal likes and dislikes, location, values, 

and a variety of other individually determined factors. Firms may also have 

diverse preferences over workers, and may, for example, favor workers who 

seem to share their vision or fit well within their corporate culture. Sim- 

ilarly, in markets where buyers and sellers have heterogeneous preferences 

over trading with the other side, the law of one price generally should not 

hold. 

This paper makes the formal claim that even in the presence of hetero- 

geneous preferences, an approximate version of the law remains valid, and 

the approximation improves as the market grows large. We focus on labor 

markets as our leading example, and argue that a likely outcome of the mar- 

ket is that workers who are roughly equally skilled receive similar wages, 

and firms of similar quality garner similar profits. Because of the inherent 

heterogeneity in firms’ and workers’ preferences, the law of one price holds 

only approximately, with some workers being paid more than their peers with 

identical levels of human capital. 

To prove this result we use the assignment game model of Shapley and 
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Shubik (1971) in which there is a finite set of firms and a finite set of work- 

ers, and each firm is looking to hire exactly one worker in exchange for a 

negotiable salary. Each firm has a (possibly different) value for hiring each 

of the workers, and each worker has a (possibly different) reservation value 

for working for each of the firms, and utilities are assumed to be linear in 

money. Since transfers are freely allowed, we can describe the net produc- 

tivity of each firm-worker pair by a single number, and we assume that this 

productivity is separable in the firm’s quality, the worker’s human capital 

level, and an idiosyncratic noise element that is independently and identi- 

cally distributed according to some bounded distribution.1  We then provide 

a probabilistic analysis of the core of the game, and show that with high 

probability the differences in the payoffs of agents on the same side of the 

market behave like log n , where n is the size of the market (Theorem 1). We 

also prove that this bound is tight (Theorem 2). 

The fact that there are heterogeneous preferences in the market also im- 

plies that there are good and bad matchings between firms and workers, 

and that there is a surplus that is created by matching the right worker to 

the right firm.2 Our approximate law of one price helps us to analyze the 

distribution of this surplus between firms and workers in balanced and un- 

balanced markets. In an unbalanced market with more workers than firms, 

at least one worker will be left out, and that worker will be willing to trans- 

act with any matched firm even for a minuscule gain. This constrains the 

profit of the worker matched to any firm that has good idiosyncratic fit with 

the unmatched worker, and by the approximate law of one price, the rest of 

the agents on the long side will necessarily make very small profits as well 

(Corollary 4). This argument shows why most of the surplus goes to market 

participants on the short side, despite the assumed idiosyncratic nature of 

pairwise productivities. In a balanced market we show that the surplus can 

be distributed in a variety of ways (Corollary 3). 
 

1This assumption is similar in spirit to the one made in many papers in auction theory, 

where bidders’ valuations are assumed to be heterogeneous and determined according to 

some random distribution. However, unlike most of the literature on auction theory, we do 

not wish to study the effects of the random generation on agents’ beliefs and equilibrium 

behavior. Instead we take a different approach and characterize the likely outcomes in a 

typical complete information matching market created in that manner. 
2One interpretation of the productivities appearing in our model is to think of them 

as actual output of workers, which is likely to be affected by heterogeneous person- 

organization fit. See Kristof-Brown and Guay (2011) for a recent survey of most of the 

important contributions to the literature on this issue. 
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These two results extend our economic intuitions about competition and 

surplus distribution in markets for homogeneous goods. If there are 10 farm- 

ers trying to sell 10 bushels of wheat to 9 identical buyers, and each of the 

buyers is interested in buying exactly one bushel of wheat and is willing to 

pay up to $100 for it, then the price of wheat will be $0, and each buyer’s 

welfare is $100. In a market with 10 farmers and 10 buyers, the price of 

wheat can be as high as the buyers’ willingness to pay. 

As mentioned earlier, some of our results rely heavily on two assump- 

tions: separability of production factors and boundedness of the idiosyncratic 

noise factor. We relax the first assumption by considering a model with a 

Cobb–Douglas productivity function, in which the firm’s quality and the 

worker’s human capital level are complements. We prove that in this model 

the efficient assignment is with high probability approximately assortative 

(Lemma 6), and recover the approximate law of one price (Theorem 7). This 

analysis reveals that the argument for an approximate law of one price is at 

least to some extent robust to other forces in the market, such as efficiently 

matching good workers with good firms (and vice versa). 

We conclude by focusing on the boundedness assumption and show that 

it cannot be dispensed with. We consider a model with exponential noise 

and show that the differences in workers’ payoffs do not vanish as the market 

grows (Proposition 9). Nevertheless, we do present computer simulations 

and a partial argument for why surplus distribution under exponential noise 

may present similar properties to surplus distribution under bounded noise 

(Theorem 11). 

The rest of the paper is organized as follows. Section 2 reviews the liter- 

ature related to our paper. Section 3 introduces the model and the formal 

notation. Section 4 contains the statement and the proof of the main re- 

sult, as well as the tightness result, and an analysis of surplus distribution. 

Section 5 discusses the extension of the main result to a market with interac- 

tion terms in the joint productivity of firms and workers. Section 6 presents 

some results related to unbounded noise distributions. Section 7 provides 

simulation results, and Section 8 concludes. 
 
 

2 Related  Literature 
 

Assignment games were first introduced by Shapley (1955). Shapley and Shu- 

bik (1971) thoroughly analyze them and show that the core can be described 
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as the set of solutions to a linear program dual to the optimal assignment 

problem, and that it is therefore nonempty, compact, and convex. They also 

prove that it contains two special allocations: a firm-optimal and a worker- 

optimal core allocation. Demange and Gale (1985) extend the analysis and 

show, among other things, that the core has a lattice structure. They also 

point to the nonmanipulability by workers of the worker-optimal core al- 

location. Assignment games bear a great resemblance to the very familiar 

assortative matching model of Becker (1981), with the main difference being 

the lack of agreement of agents on one side over the ranking of agents on the 

other side in the more general assignment game model. In a slightly different 

interpretation, Demange et al. (1986) use the assignment game framework to 

describe auctions of heterogeneous items with unit demand bidders (with this 

interpretation in mind, core allocations are equivalent to Walrasian equilibria, 

and therefore our results provide insight into revenue acquired by multiple 

auctioneers under different market conditions). 

Within the literature that focuses on assignment games, a paper related 

to ours is Kanoria et al. (2014). They too study a random version of the 

assignment game and show core convergence in the sense of agents getting 

similar payoffs across different core allocations. The most striking difference 

between the models is that in theirs each agent has a type (out of a finite 

set of fixed types), and agents’ preferences depend only on the type of the 

agent to which they are matched, whereas in our model each agent may have 

a ranking over individual agents on the other side of the market. Other 

relevant papers within this literature are those that study the size of the 

core (in deterministic assignment games) such as Quint (1987) who defines 

two measures for core elongation and shows the relation between them, and 

Núñez and Rafels (2008) who investigate the dimension of the core based on 

the entries in the productivity matrix. 

Several recent empirical works estimate a model similar to ours (and even 

more closely related to Kanoria et al., 2014), with the caveat of using an 

extreme value distribution for the idiosyncratic component. Choo and Siow 

(2006) consider marital behavior in the United States and estimate a model 

in which each agent has a type, and idiosyncratic preferences over being 

matched with any type of agent on the other side of the market. Similarly, 

Botticini and Siow (2008) study whether there are increasing returns to scale 

in marriage markets, and Chiappori et al. (2011) study the marital college 

premium. 

From a broader point of view, this paper belongs to the theoretical liter- 
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ature on  matching  in  two-sided  markets.  This  literature  gained  prominence 

in the 1960s and early 1970s following the publication of the seminal papers 

by Gale and Shapley (1962) and Shapley and Shubik (1971), and research 

remained mostly divided (with some notable exceptions) into two parallel 

strands: with and without transferable utility (i.e., money). The bulk of the 

literature on matching markets without transfers, also known as the marriage 

market model (in the one-to-one case) and the college admissions model (in 

the many-to-one case), is focused on studying theory related to markets with 

fixed preferences, often under the additional assumption of complete infor- 

mation. Within this realm, two important papers for our discussion are 

Crawford and Knoer (1981) and Kelso and Crawford (1982). These papers 

describe the detailed connection between marriage markets and assignment 

games, and point to an auction process similar to the deferred-acceptance al- 

gorithm that produces an  approximation  to  a  side-optimal  core  allocation.3 

We employ a similar auction process in the proof of our lower bound  of 

variation  in  workers’  salaries  (Theorem  2). 

The past two decades have seen the emergence of more models that al- 

low for stochastic markets and incomplete information. This new focus has 

revealed to market designers that some of the subtleties related to small mar- 

kets may very well become negligible once we consider large “likely” markets. 

Yet the works on large markets most relevant to our present study were al- 

ready written in the 1970s by Wilson (1972) and Knuth (1976), and were 

extensively developed by Pittel (1989, 1992). These papers analyze marriage 

markets with preferences that are determined uniformly at random and show 

that in a situation in which the number of men is equal to the number of 

women, with high probability the proposing side’s (in a deferred acceptance 

algorithm) mean rank of partners behaves like log n, whereas the other side’s 
mean rank of partners behaves like n

 . This particular strand of the liter- 

ature remained dormant for almost three decades, but several papers have 
recently used similar methods. Ashlagi et al. (2013) show that in unbalanced 
random marriage markets with high probability under any stable matching 

the short side’s mean rank of partners behaves like log n, whereas the long 

side’s mean rank of partners behaves like n
 . Coles et al. (2014) and Coles 

and Shorrer (2014) employ these results to study aspects of strategic behavior 
 

3For further generalizations of the marriage market model and the assignment game 

model see, for example, the works by Hatfield and Milgrom (2005), Ostrovsky (2008), 

Hatfield et al. (2013), and references therein. 
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in marriage markets with incomplete information. Lee (2014) and Lee and 

Yariv (2014) assume that preferences are derived from underlying cardinal 

utilities and study the issues of core convergence and efficiency, respectively. 

Using somewhat different methods, but still trying to explain core conver- 

gence using different modes of competition, Immorlica and Mahdian (2005) 

explain in a breakthrough paper why in a large random marriage market with 

one of the sides having rank-ordered lists of bounded length and with incom- 

plete information, truth-telling become an approximately dominant strategy. 

Kojima and Pathak (2009) extend this result to the college admissions model, 

and Storms (2013) extends it to many-to-one markets with substitutable pref- 

erences.4 Kojima et al. (2013) use a similar strategy to prove that in a market 

with “not too many” couples, a stable matching exists despite the comple- 

mentarities imposed by couples’ preferences. Ashlagi et al. (forthcoming) 

further improve this result, show that stability is also implied for groups 

that can contain more than two members, and provide a counterexample to 

the case of a similar number of singles and couples. 

Technically, our analysis is also related to what is known in the oper- 

ations research and computer science literature as the random linear sum 

assignment problem. Specifically, two results that are used repeatedly in our 

proofs are the calculation of the limit value of a large random assignment 

game (Aldous, 2001), and the bounding of the minimal productivity in the 

optimal assignment (Frieze and Sorkin, 2007). For a more exhaustive survey 

of the random linear sum assignment problem (and closely related problems) 

see Krokhmal and Pardalos (2009). 
 
 

3 Model and Notation 

Consider a sequence of markets {M n}∞
 

 
 

 
, such that each market can be 

described  as M n = (F n, W n, qn , hn
 , αn

 ), where F n is a set of firms of size n, 

W n is a set of workers of size n + k(n), with k(n) ∈ N and k(n) = O(n),5 

qn  is a vector of qualities related to firms in F n, hn  is a vector of human 
capital levels related to workers in W n, and αn is an |F n| × |W n| real matrix 

representing the value of pairs of firms and workers. We assume throughout 
 

4Related analysis was also applied by Manea (2009),  Che and Kojima (2010) and 

Kojima and Manea (2010) to the problem of optimal object assignments. 
5The latter assumption is introduced for mathematical convenience. 
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that each element of αn can be described as 

ij = u 
(
qi , hj 

) 
+ εij , 

αn n n n 

 

where u is the part of the production function that depends only on the 

firm’s quality and the worker’s human capital level, and εn
 is idiosyncratic 

noise representing the productivity related to the identities of the firm and 

the worker. εn
 is  independently  and  identically  distributed  according  to 

the cumulative distribution function G which has a continuous and strictly 

positive probability density function g.6 

For technical purposes we will assume (unless otherwise noted) that the 

elements of the vectors hn  are identically and independently distributed on 

the interval 
r
h, h

l 
according to the cumulative distribution function H. If 

h /= h we will also require H to have positive and continuous density on 

this 
interval.  This assumption can easily be relaxed, but it is kept for clarity. 

Note that it does not hold for the specific distribution we use in Appendix C. 
 

• The separable case: u(q, h) = q + h. 

• The interactive case: u(q, h) = qγ h1−γ . 
 

Note that while q and h appear without a transformation in both cases, 

any continuous transformation can be applied directly to their distributions. 

Therefore, the word “separable” accurately describes the domain of the first 

case. We also distinguish between several possible assumptions on G: 

• Bounded noise: G is bounded on the interval [0, 1] (G(1) = 1). 

• Unbounded noise: There exists no c ∈ R such that G(c) = 1. 

• Exponential noise: G = Exp(1) (special case of unbounded noise). 

We prove our main result for the separable case with bounded noise, and 

extend it (under a certain technical assumption to be mentioned later) to the 
interactive case with bounded noise.  We  show  that  an  approximate  law  of 

one price (properly formulated) does not hold in general for unbounded noise. 

Nevertheless, we explain why we believe some of our surplus  distribution 

results do hold (in a weak form), at least for the case of exponential noise. 
 

6In fact for our results to hold we only need that the density be continuous near its 

supremum. 
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In market M n, the value of a coalition of firms and workers S is given by 
 

v(S) = max 
r
αn

 

 

n 
i2j2 + · · · + αn  

l 
, 

 

where the maximum is taken over all arrangements of 2l distinct agents, 
f n n n n n n n n 

i1 
, . . . , fil  ∈ S ∩ F , wj1 

, . . . , wjl  
∈ S ∩ W , l ≤ min {|S ∩ F | , |S ∩ W |}. 

An allocation is denoted by (µ, u, v) with µ being a matching of firms to 
workers and vice versa, and u and v being payoff vectors for the firms and 

workers, respectively. We refer to u as firms’ “profits,” and to v as workers’ 
“salaries.” Formally, µ : F n ∪ W n → F n ∪ W n ∪ {∅}, and satisfies 

1. ∀f ∈ F n : µ(f ) ∈ W n ∪ {∅}, 

2. ∀w ∈ W n : µ(w) ∈ F n ∪ {∅}, and 

3. ∀f ∈ F n, w ∈ W n : µ(f ) = w ⇐⇒ µ(w) = f . 
 

An allocation is a core allocation if no coalition can deviate and split the 
resulting value between its members such that each member of the coalition 

becomes strictly better off. We denote the set of core allocations of M n by 

C (M n). As mentioned above, Shapley and Shubik (1971) show that the 

core is a nonempty compact and convex set, and that it is elongated in the 
sense that there is a firm-optimal core allocation in which salaries are at their 
lowest level among all core allocations, and a worker-optimal core allocation 
in which salaries are at their highest level among all core allocations. 

Most of our results are going to hold for “most” realizations of some 

stochastic matrices and vectors. We often use the technical term with high 

probability (or whp for short) to mean that some result holds for the sequences 

of markets M n with probability 1 − O 
( 

1 
)
. Whenever it is not mentioned, 

the term refers to realizations of the stochastic matrices αn  as well as the 

quality vectors qn  and hn.  However, in some places we explicitly mention 

that the term refers only to αn or only to the quality vectors. 
 
 

4 An approximate law of one price 
 

This section presents our main result, which shows that in the separable 

case with bounded noise there cannot be too much variation in the payoffs 

of the agents on either side of the market. We then proceed to improve 

our upper bound on this variation for the special case of side-optimal core 
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allocations, and establish a lower bound. These two proofs use a different 

method that relies on the salary adjustment procedure described by Crawford 

and Knoer (1981) and Kelso and Crawford (1982). The following subsection 

employs these results to characterize surplus distribution in these markets, 

and argues that the range of potential outcomes (i.e., payoffs in the core) 

crucially depends on whether the market is exactly balanced or not.7 If it is 

not exactly balanced, the short side keeps most of the created surplus (or at 

least the surplus due to the idiosyncratic noise). 
 
 

4.1 The main result 
 

In order to gain some intuition into the mechanics of the proof and the 

argument behind it, let us first assume that the market is balanced, that 

all firms have the same quality, and that all workers have the same level 

of human capital. In this specific scenario our result implies that whp all 

workers (for example) should earn a very similar salary. 

Suppose that worker w1 is employed by firm f1 and earns a salary of s1 

and worker w2 is employed by f2 and earns a salary of s2. Suppose further 
that s2 > s1. If workers and firms were homogeneous goods, firm f2 could 
offer worker w2’s job to worker w1  for any salary strictly between s1  and s2. 
That is the usual argument for the law of one price in a two-sided market. 
However, it may well be that the combination of f2 and w2 has much higher 

productivity than f2 and w1, and therefore there is no mutually beneficial 

opportunity for f2  and w1.  Nevertheless, we do know that there are about 
2 

n 3  workers in the market such that their productivity with firm f2 is no less 
than 1     1  . For each of those workers the original argument works perfectly, 

n 3 

and so none of these workers can be paid less than s2      
1 , because otherwise 
n 3 

2 

she and firm f2 might deviate. Now we have a set of size n 3 , each getting 
a salary of at least s2 

1  .  Consequently there are about n 3   firms paying 
n 3 

a salary of at least s2 
1  , and whp one of these firms, say f !, is a good 

n 3 

match with worker w1, in the sense that their joint productivity is more than 
1 −  1  .  By considering the possibility of deviation by f ! and w , we reach 

1 1 
n 3 

2 
1 

n 3 

The argument used above is not quite accurate, since we do not account 
 

7The term “balanced” is also used in the context of cooperative game theory to describe 

games with a nonempty core. This meaning is not used anywhere in this paper. 
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for the fact that firms in the intermediate set are not random, but are rather 

chosen in a specific way (i.e., they are matched to workers who are also pro- 

ductive when matched with firm f1). The formal proof handles this issue by 

considering the likely expansion properties of the directed graph induced by 

the random productivity matrix and showing that a path must exist between 

f2  and w1. 

As implied, the other difference from the informal argument above is 

that the proof uses the smallest possible expansion that still results in the 

necessary paths between all pairs of agents, i.e., a strongly connected digraph. 

This minimality is also formally established in our derivation of a lower bound 

for the variation in agents’ payoffs. The technical element of the proof that 

allows for constructing high-probability paths is based on the result of Frieze 

and Sorkin (2007), which we extend here to deal with unbalanced markets 

as well as bounded distributions other than the uniform distribution. 

The intuition behind proving the result for unbalanced markets is pretty 

straightforward given our understanding of how to utilize improvement paths, 

as previously described. We first show that whp all workers above a certain 

level of human capital are matched. Otherwise, one could replace a low- 

quality worker with a high-quality worker, and then reshuffle the matched 

workers such that the impact on the efficiency coming from idiosyncratic 

noise component will not be too substantial. We next show that the same 

logic that was used in the balanced case can be applied to the unbalanced 

case, if we focus only on agents above a certain level of human capital. 
 

 

Theorem 1. In the separable case with bounded noise, there exists c ∈ R+ 

such that whp for any (µn, un, vn) ∈ C (M n) we have 

1. ∀i, j ∈ {1, . . . |F n|} : un − un ≤ 
(
qn − qn

) 
+ c log n , and 

i j i j n 

2. ∀i, j ∈ {1, . . . |W n|} , µn(wn), µn(wn) ∈ F n  : vn − vn
 ≤ 

(
hn − hn

) 
+ 

 

c log n 
n 

i j i j i j 

 

Proof. See Appendix A. 
 
 

Theorem 1 demonstrates that in a large random assignment game, all 

firms make approximately the same profits, and all matched workers earn 

approximately the same salary. In a sense, this theorem states that the core 



 

 
 
 
 
 

is not only elongated, as implied in Shapley and Shubik (1971) and Demange 

and Gale (1985), but that it is also narrow. 

The bounds already provided do not leave much room for further im- 

provements (let alone the constants used in the proof), but we still wish to 

verify that they are tight, at least in terms of order of magnitude. The fol- 

lowing theorem shows that they are. We focus on balanced markets with all 

firms having the same quality and all workers having the same human capital 

level, governed by a specific core allocation, namely, the firm-optimal core 

allocation. We know that we can find the firm-optimal core allocation via the 

auction-like algorithm proposed by Crawford and Knoer (1981). When firms 

propose to workers, the auction process ends when all workers have received 

an offer. We can compute the probability that at each stage a worker who 

has not received an offer so far receives an offer, and then calculate the num- 

ber of discrete steps required to reach the last worker. The approximation is 

possible thanks to our bounds from Theorem 1. This gives us a lower bound 

for the expected sum of workers’ salaries, which implies a lower bound on 

what the top earner gets with high probability. Since we know the lowest 

earner gets zero, we are done. We note that the same procedure can also be 

used to provide better constants in Theorem 1 for the specific cases of the 

side-optimal core allocations. 

Theorem 2. In the separable case with bounded noise, if k(n) ≡ 0, qn  ≡ 0 

and hn  ≡ 0, there exists c ∈ R+  such that whp there exist (µn, un, vn) ∈ 
C (M n) and i, j ∈ {1, . . . |W n|} for which vn − vn ≥ c log n . 

 

 

Proof. See Appendix B 

i j n 

 
 

We conclude this subsection by suggesting an interpretation of our results 

in terms of the shape of the core. As mentioned above, Shapley and Shubik 

(1971) already noticed that the core is compact and convex, and that it is 

shaped like a nut, in the sense that it contains firm-optimal and worker- 

optimal core allocations. Our results suggest that in large markets the core 

tends to be almost one-dimensional in the sense that one parameter defines it 

up to very small perturbations. In balanced markets, once we know what is 

the average profits of firms, we also approximately know the average salaries 

of workers, and what every firm and worker makes under that core allocation. 

The same holds for unbalanced markets. However, as we will see in the next 

section, workers’ salaries in unbalanced markets are in fact determined by the 
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human capital levels of those workers who are left unmatched, and therefore 

the core actually has no real variation and resembles a point more than a 

line. An interesting exercise would be to calculate the elongation measures 

suggested by Quint (1987) for large unbalanced markets and show that they 

indeed converge to zero. 
 
 

4.2 Surplus distribution 
 

With the results from the previous subsection at hand, we are now ready to 
explore their implications for surplus distribution. However, before doing so 

it is important to understand how much surplus is created in a large market. 
Aldous (2001) proved that in a large balanced random market with all firms 
having a quality of zero, and all workers having a human capital level of zero, 

and noise being distributed according to the uniform distribution on [0, 1], the 
2 

expected surplus created is n − π . This result can be easily extended both to 

general bounded distributions (with positive and continuous density) and to 
unbalanced markets, and in general we know that the surplus to be divided 

between firms and workers is Ω(n). As for qualities and human capital, our 

analysis suggests that with high probability the workers who will take part 
in the optimal assignments are all those above a certain human capital level 
(see Lemma 16 in Appendix A), and so we can tell from the distribution of 
qualities and human capital levels what is going to be the surplus created 
due to those factors. 

 

Our main result in this subsection is that when the market is exactly 
balanced (i.e., k(n) ≡ 0) the surplus that is created from the idiosyncractic 

matching between firms and workers can be divided in very different ways. 

However, in the presence of even a slight imbalance, most of the surplus 

related to the noise goes to the short side (the firms). This indicates that 

a large core is a knife-edge case that is not likely to be found in any real 

applications. This result is the assignment games parallel to Ashlagi et al. 

(2013), who prove that in the realm of matching without transfers a large 

core is only possible if the number of men and women is exactly equal, and 

that in unbalanced markets the short side has a big advantage in determining 

the resulting matching. 
 

 

Corollary 3. In the separable case with bounded noise, let k(n) ≡ 0 and let 
(
µn, un,F , vn,F 

) 
be the firm-optimal core allocation. Then there exist c ∈ R+ 
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Intuition for the proof. Under the firm-optimal core allocation there  is  at 

least one worker who gets a salary of exactly zero; otherwise we could re- 

duce all salaries by a small constant without violating any of the inequalities 

defining the core. This worker’s human capital level cannot be too high 

(otherwise, by the approximate law of one price, others with lower human 

capital levels would get negative salaries). Then, by the approximate law 

of one price, all workers must get only the difference between their human 

capital level and that worker’s human capital level. For the full proof see 

Appendix B. 
 
 

A similar argument to the one we used for balanced markets can be 

applied to unbalanced markets. In this case, a worker who is left unmatched 

gets a salary of zero, and this constrains at least some of the salaries of the 

workers who are matched. Then, by the approximate law of one price, we 

get bounds on the salaries of all workers. 
 

Corollary 4. In the separable case with bounded noise, let k(n) > 0 for all 

n. Then there exist c ∈ R+  such that whp for all (µn, un, vn) ∈ C (M n) and 
for all wn ∈ W n  such that µ(wn) ∈ F n, 

j 

 

vj  ∈ 

 

( 

hj  − hn
 

j 
 

[n]
) 
− 

 

 

clog n n n 

n 

 

 

[n]
) 
+ 

 

clog n 
\

 
, 

n 

where hn[n] signifies the n-th highest element in the vector hn. 

Proof. See Appendix B. 

Corollary 3 implies in particular that in a balanced market the expected 

division of surplus is such that the workers get the contribution of their ex- 

cess human capital (above h) and then only O 
( 

log n 
) 

out of the part of the 
surplus that is related to the noise distribution. Note that while Corollary 3 

is put in terms of the firm-optimal core allocation, it is completely symmet- 

ric, and therefore the same applies to the opposite case of the worker-optimal 
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core allocation. The convexity property of the core ensures that any compro- 

mise distribution is also possible in a core allocation. Unlike the long (and 

narrow) core characterization in balanced markets, Corollary 4 shows that 

in unbalanced markets the core quickly converges to almost a point. The 

resulting surplus division is such that under any core allocation, the agents 

on the long side (the workers) get the contribution of their excess quality 

(not above the lower bound of the distribution, but rather above the highest 

quality of an unmatched agent) plus a O 
( 

log n 
) 
fraction of the surplus created 

by the idiosyncratic matching. 
 
 

5 Extension to Cobb–Douglas productivities 
 

In the previous section we showed that an approximate law of one price holds 

for markets in which both firms’ quality and workers’ human capital affect 

the productivity of each matched pair, but we did not allow for any inter- 

action between those two properties. In other words, good workers provided 

the same output regardless of whether they were working in a good firm or 

in a bad firm. While mathematically convenient, it is not a very plausible 

assumption. In this section we wish to relax our previous separability as- 

sumption and consider also the family of productivity functions suggested 

by Cobb and Douglas (1928). 

Our main concern when considering interaction is that workers and firms 

will tend to ignore their idiosyncratic productivity noise and will match solely 

on the basis of their respective qualities. This is known in the economics 

literature as “assortative matching,” and within the matching literature it is 

most identified with the work of Becker (1981). If firms and workers match 

assortatively, there will not be any chance of having an approximate version 

of the law of one price, since the idiosyncratic productivities can tilt the 

profits of matching pairs. 

We find that as the market grows large (and under certain technical as- 

sumptions on the qualities of firms and workers), there is a trade-off between 

matching assortatively on the quality dimension and matching efficiently on 

the noise dimension. We define the concept of “approximately assortative 

matching,” which means that all firms are matched to workers who have 

approximately the same level of human capital as the firms’ quality. The 

fact that the matching is only approximately assortative and not completely 

assortative allows for more efficient matching in terms of idiosyncratic noise. 



 

 
 
 
 
 
 

Definition 5. A model exhibits approximately assortative matching if there 
exist c ∈ R+ and a ∈ (0, 1) such that whp for any (µn, un, vn) ∈ C (M n) and 

i i 
1  

i j 

1
 for any i, j such that µn(f n) = wn we have 

1
qn − hn1 ≤ cn−a. 

 

We now turn to a specific model, which we refer to as the Cobb–Douglas 

benchmark model.  The Cobb–Douglas benchmark model consists of a bal- 
anced market (k(n) ≡ 0) in which productivities are given by αn

 = 2
j
qnhn + 

 

εn n n k ij i  j 

ij , and qk = hk = n , i.e., qualities of firms and human capital levels of work- 
ers are evenly spaced. 

 

Lemma 6. The Cobb–Douglas benchmark model exhibits approximately as- 

sortative matching. 
 

Proof. See Appendix C. 
 

Having established an approximately assortative matching, we can prove 

the approximate law of one price using the tools developed for the separable 

case, but not quite the same ones since we need to make sure that we limit 

the paths used in those proofs so that they do not go through firms or workers 

that have very different qualities. Even then a direct comparison between 

firms or between workers of different qualities is not straightforward, and so 

we restate our main result in terms of agents that have similar qualities. 

Theorem 7. In the Cobb–Douglas benchmark model there exist c1, c2 ∈ R+ 

and a, b ∈ (0, 1) such that whp for any (µn, un, vn) ∈ C (M n): 
1 

1  
i j i j • ∀i, j ∈ {1, . . . , n} such that 

1
qn − qn1 ≤ c1n−b: un − un ≤ c2n−a, and 

1 
1  

i j i j • ∀i, j ∈ {1, . . . , n} such that 
1

hn − hn1 ≤ c1n−b: vn − vn ≤ c2n−a. 
 

Proof. See Appendix C. 
 

 

5.1   Surplus distribution 
 

Still focusing on the Cobb–Douglas benchmark model, it is quite clear that 

while the analysis of surplus distribution is not as straightforward as the 

separable case, it is still not much different. The rough intuition for the next 

result is that we can compare the salary of any worker with that of a worker 

who has a slightly lower or slightly higher human capital level, if both work- 

ers have a relatively high joint productivity with the firm that employs one 
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of them. This allows us to build paths from any worker to one of the workers 

with the lowest human capital levels and deduct that the former can only 

make a salary that is the sum of the differences between productivities of 

workers along the path. In other words, the salary of a worker with human 

capital level hn is roughly the integral from 0 to hn of the marginal produc- 
j j 

tivities of workers. Since we know that there is approximately assortative 

matching, we also know the quality of firms matched to workers along the 

path. 
 

Corollary 8. In the Cobb–Douglas benchmark model let 
(
µn, un,F , vn,F 

) 
be 

the firm-optimal core allocation. Then there exist c, a ∈ R+ such that 
 

∀j ∈ {1, . . . , n} : vn,F
 

( 
j j 

∈ − cn−a, 

\ 

+ cn−a . 
 
 

Proof. Omitted. 
 

We note that the surplus created by worker wn is approximately 2j + 1, 
j n 

and so we learn that the workers get only the share of the surplus related to 
their own contribution to the correlated component, and none of the surplus 

related to the idiosyncratic component under the firm-optimal core alloca- 

tion. 

We conclude this section by noting that none of the technical steps we 

took seem to require balancedness. We therefore conjecture that in unbal- 

anced markets any worker’s salary under any core allocation will be bounded 

above by the integral of the marginal productivity from the highest human 

capital level of any unemployed worker to her own human capital level, plus 

an expression that behaves like O 
( 

1 
) 
for some a ∈ (0, 1). Simulation results 

presented in Section 7 also indicate that this conjecture holds. 
 
 

6 Unbounded noise 
 

Up until now we have established that an approximate version of the law of 

one price holds in two-sided economies with heterogeneous preferences. How- 

ever, one of the more restrictive assumptions that we used was the bounded- 

ness of the noise distribution, which obviously leads to a relatively high con- 

centration of “good enough” matches, and in particular allows an assignment 

so efficient that it misses a potential first-best only by a constant (Aldous, 
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2001). In this subsection we relax this assumption for the first time and try 

to understand what happens when the noise is unbounded. Apart from the 

mathematical elegance and conceptual difference of unbounded noise, under- 

standing the implications of this concept is also important for comparing our 

work with some of the empirical papers on two-sided matching markets with 

transfers, which are based on models with unbounded noise (e.g., Choo and 

Siow, 2006). 

When we discuss unbounded noise it is important to understand what 

it means to have “one price” in the market, since the average productivity 

may tend to infinity as the market grows large. Our interpretation is that 

an approximate law of one price holds if the variation among agents’ profits 

is a vanishing fraction of the average productivity. In the bounded case, the 

average productivity approaches a constant, and therefore any sub-constant 

differences in profits are considered as an approximate law of one price. In 

what follows we focus on the exponential distribution, under which the av- 

erage productivity behaves like log n, and we show that whp there are two 

workers in the market whose salaries differ by Θ (log n). Hence, we conclude 

that in the presence of unbounded noise the law of one price might not hold. 

The intuition for our “counterexample” is that unbounded distributions 

with a heavy tail may create “good” outliers,  i.e., agents that are highly 

productive compared to others, and such that agents from the other side 

fiercely compete to be matched with them. These agents share a significant 

portion of the surplus they help to create, and if they are common enough, 

they may offset other forces that would otherwise squeeze the surplus from 

their side (such as an adversarial core allocation, or a slight imbalance in 

favor of the other side of the market). Our example is based precisely on the 

existence of such agents. 

 
Proposition 9. In the separable case with exponential noise, let the market 
be balanced (k(n) ≡ 0), with all firms having the same qualities (qn ≡ 0), 
and with all workers having the same human capital level (hn ≡ 0). Let 
(
µn,F , un,F , vn,F 

) 
denote the firm-optimal core allocation of M n. Then aver- 

age productivity is Θ(log n), and there exists c ∈ R+  such that whp there are 
two workers wn  and wn  with 

1
vn,F  − vn,F 

1 
> c log n. 1 1 

i j 1  i j 1 
 

Proof. See Appendix B. 



19  

log n 

 
 
 
 
 

6.1   Surplus distribution under exponential noise 
 

Despite the fact that the law of one price does not apply in general to un- 

bounded noise, we would like to argue that at least some of the main con- 

clusions, i.e., the convergence of the share of the surplus that each side gets, 

continues to hold to some extent. By studying simulation data carefully (see 

Figure 11 in Section 7), one suspects that the behavior of the workers’ ex- 

pected share of the surplus in a balanced market under the firm-optimal core 

allocation is Θ 
( 

log log n 
\
. In what follows we assume the following mathe- 

matical conjecture is true, and show that indeed the share of the surplus 

behaves in that manner. 

Conjecture 10. In the separable case with exponential noise, let k(n) ≡ 0, 

qn  ≡ 0 and hn  ≡ 0.  Then there exists c ∈ R+  such that whp under the 
maximal assignment each firm is matched to one of the c log n workers who 
have the highest joint productivity with that firm. 

 
We note that Conjecture 10 parallels Theorem 2 of Frieze and Sorkin 

(2007), in the sense that it bounds the lowest possible element in the optimal 

assignment. While computer simulations suggest that it holds (see Section 7), 

we are not familiar with any work within the computer science literature or 

the operations research literature that tackles the problem of unbounded 

distributions.8 

 
Theorem 11. In the separable case with exponential noise, let k(n) ≡ 0, 
qn  ≡ 0, and hn  ≡ 0. Assume Conjecture 10 holds, and let ψF (M n) = 
(
µn, un,F , vn,F 

) 
be the firm-optimal core allocation. Then there exists c ∈ R+ 

such that n,F 
l 

  j vj   E clog log n 
n,F n,F 

≤ 
i ui +   j vj log n 

 
Intuition for the proof. In a balanced market governed by the firm-optimal 

core allocation, a worker cannot make more than the value she creates to- 

gether with the firm that employs her minus the lowest value that any other 

worker creates (Lemma 20). Given the assumption and the above claim, it 

remains to show that with high probability the lowest value created by any 
 

8Those two literatures focus on minimizing the sum of costs, and not maximizing 

productivity, and therefore unbounded distributions are less intuitive. 
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worker behaves like log n − c log log n (Lemma 21). The full proof appears in 
Appendix B. 

 

It is worth mentioning that by observing simulation results for unbalanced 

markets (Figure 11), one may arrive at the following conjecture. 
 

Conjecture 12. In the separable case with exponential noise, let k(n) > 0, 

qn  ≡ 0, and hn  ≡ 0, and let ψW (M n) = 
(
µn, un,W , vn,W 

) 
be the worker- 

optimal core allocation. Then there exists c ∈ R+  such that 
n,W 

l 
  j vj   

E 

clog log n 

n,W 

n,W 
≤ . 

i ui +   j vj log n 

In particular, this implies that for any core mechanism (that is, any func- 

tion from markets to core allocations) the expected surplus of the workers is ( 
log log n 

\
 

log n 

 

We conclude this section by suggesting that although we were focused 

on the study of the exponential distribution, much can be inferred about 

other unbounded distributions. Proposition 9 provided a counterexample to 

a theorem that held for the bounded case. The conjectures we discussed in 

this subsection were strictly about the exponential distribution, but it is our 

belief that other distributions that have similar tail behavior will exhibit the 

same phenomena (see also Figure 12 and Figure 13 in Section 7). 
 
 

7 Simulations 
 

In this section we present results of computerized simulations that demon- 

strate how quickly the dispersion of payoffs contracts, and how this affects 

the market. Unless explicitly noted, figures are based on averaging 400 trials 

for each market size, where the size of balanced markets ranges from (10, 10) 

to (300, 300) with jumps of 5 agents on each side, and the size of unbalanced 

markets ranges from (5, 6) to (300, 301) with jumps of 5 agents on each side. 
 
 

7.1 The separable case with bounded noise 
 

We first focus on the benchmark case of uniform [0, 1] distribution with all 
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firms having the same quality (qn   ≡ 0) and all workers having the same 
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human capital level (hn  ≡ 0), and study wage dispersion in balanced mar- 
kets under the firm-optimal core allocation.  Figure 1 shows that indeed in 

a balanced market the maximal difference between the profits of any two 

firms in any core allocation behaves like log n , as proved by Theorem 1 and 

Theorem 2.9 

 

 
 

Figure 1: Approximate law of one price in balanced markets 
 

 

The left panel of Figure 2 shows that in this case the maximum salary 

any worker gets under the firm-optimal core allocation also behaves like log n , 
and the right panel of the same figure exemplifies the fact that the core in 
balanced markets is long, as suggested by Corollary 3. 

 

 
 

Figure 2: Surplus distribution in balanced markets 

 
In unbalanced markets we expect the core to be much more narrow, per 

Corollary 4. The left panel of Figure 3 shows that even when the number 

of workers is only one more than the number of firms, the maximal salary 

any worker gets approaches zero rapidly, even under the worker-optimal core 

allocation.  Furthermore, as the right panel demonstrates, in this case the 
 

9Figure 1 is based on only 25 trials for every market size, since finding the maximal 
difference across all core allocations requires solving n(n−1) linear-programming problems. 
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workers’ share in the surplus approaches 0, even under the worker-optimal 

core allocation. Figure 4 parallels Figure 4 of Ashlagi et al. (2013), and 

depicts the workers’ share of the surplus when the number of workers is 

constant at 50, and the number of firms varies from 20 to 80. 
 

 
 

Figure 3: Surplus distribution in unbalanced markets 
 

 
 

 
 

Figure 4: Surplus distribution with 50 workers 
 
 

We now wish to verify that adding qualities to the mix does not sub- 
stantially change any of these results.  We let qn  ∼ U [0, 1] for every i, and 

j ∼ U [0, 1] for every j. In a balanced market we expect each worker to 
get roughly her human capital level, and for all workers to take 25% of the 
surplus. Under the worker-optimal core allocation we expect workers to take 

about 75% of the surplus. This is indeed shown in Figure 5. In an even 

slightly unbalanced market, we expect each worker to get her human capital 

level under any core allocation, and for the whole population of workers to 

take 25% of the surplus. This is demonstrated in Figure 6. 
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Figure 5: Surplus distribution in balanced markets with qualities 
 

 
 

Figure 6: Surplus distribution in unbalanced markets with qualities 
 
 

7.2 Cobb–Douglas productivity with bounded noise 
 

We first try to demonstrate that assortative matching takes place in the 

model mentioned in Appendix C; i.e., each side of the market is characterized 

by evenly spaced qualities on the interval [0, 1], and the idiosyncratic noise 

is distributed according to U [0, 1]. In Section 5 we proved just one aspect 

of assortative matching, namely, whp no firm is matched to a worker whose 

human capital level is substantially different from the firm’s own quality 

(Lemma 6). The left panel of Figure 7 depicts the average and the maximal 

absolute quality difference between firms and the workers they employ under 

the optimal assignment. It is easy to see that these differences shrink as 

market size grows, and by looking at the logarithms of both axes (right 

panel) we can see that indeed these differences behave like a negative power 

of n. 

The surplus distribution described in Corollary 8 is depicted on the left 

panel of Figure 8. This panel shows the average absolute difference between 

workers’ salaries and workers’ human capital levels under the firm-optimal 

and the worker-optimal core allocations.  The right panel supports the con- 



 

 
 
 
 
 

 
 

Figure 7: Assortative matching when production factors are complements 
 
 

jecture we raised at the end of Section 5 by showing the same metric in 

unbalanced markets for both the firm-optimal and the worker-optimal core 

allocations. 
 

 
 

Figure 8: Surplus distribution when production factors are complements 
 
 

 
7.3 Unbounded distributions 

 

As mentioned in Section 6, unbounded noise distributions give rise to quite 

different phenomena than those mentioned with respect to bounded distri- 

butions. Figure 9 depicts the maximal difference between any two workers’ 

salaries divided by the average surplus created under the optimal assignment, 

in a balanced market with exponential noise governed by the firm-optimal 

core allocation. As predicted by Proposition 9, the difference does not vanish 

as n gets large. 

In Section 6 we also mentioned a conjecture about the behavior of the 

optimal assignment under the exponential distribution (Conjecture 10). Fig- 

ure 10 shows that indeed it holds for medium-sized markets. The left panel 

of Figure 11 exemplifies how this conjecture translates into the conclusion of 
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Figure 9: No law of one price under Exponential distribution 
 
 

Theorem 11, and the right panel of that figure suggests that Conjecture 12 

is true. 
 
 
 
 
 
 
 
 
 
 
 

Figure 10: Maximal rank of matched agents under exponential distribution 

We conclude this subsection by noting that while our discussion was 

mostly about the exponential distribution, there are many other distribu- 

tions that have similar tail behavior, and therefore are likely to exhibit the 

same phenomena. In particular, the extreme value distribution used in some 

empirical papers seems to have similar effects. Figure 12 parallels Figure 10 

and shows the maximal rank of any two matched agents in a balanced market 

with noise distributed according to an extreme value distribution, and Fig- 

ure 13 shows surplus distribution for both balanced and slightly unbalanced 

markets. 
 
 

8    Conclusion 
 

During the 1980s, as it became clear that real-life centralized clearing houses 

could be immensely improved using intuitions gained in the study of mar- 
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Figure 11: Surplus distribution under exponential distribution (balanced and 

unbalanced) 
 

 
 
 
 

 
 

Figure 12: Maximal rank of matched agents under extreme value distribution 
 

 
 
 
 

 
 

Figure 13:  Surplus distribution under extreme value distribution (balanced 

and unbalanced) 
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riage markets, the transferable utility strand of the literature became slightly 

neglected compared to its glorified non-transferable utility half-sibling. We 

decided to focus our attention in this paper on assignment games because 

it is our belief that they provide an excellent way to model decentralized 

markets, and that both strands of the matching theory literature can benefit 

from the continuous cross-fertilization. 

We have investigated the applicability of the law of one price in two-sided 

matching markets with transfers, when agents have heterogeneous prefer- 

ences over matching with the other side of the market. We have shown that 

an approximate law of one price holds, and that it implies core convergence 

and sharp predictions about surplus distribution in unbalanced markets. We 

have explained why the same kind of forces continue to work in markets in 

which there is interaction between the production factors, and why they fail 

to hold in markets in which the idiosyncratic noise is unbounded. These re- 

sults indicate that only in knife-edge cases, in which the markets are exactly 

balanced, can we expect to see any significant variation in core outcomes. 

We conclude the paper by noting that many of our assumptions were for 

expositional clarity only. The fact that firms had unit demand and workers 

supplied one unit of work is of course not crucial to our results, nor is the fact 

that all agents can possibly work in all the firms. The same results will hold in 

markets with discrete and finite demand and supply, and in markets that are 

less thick (at least to some extent). Nevertheless, some of the assumptions 

were crucial, and weakening them could lead to further understanding of 

markets with heterogeneous preferences. Specifically, the mechanism through 

which markets with unbounded noise converge remains a mystery, and the 

extent to which these results hold for markets with general utility functions 

(not quasi-linear) can be further studied. Finally, generalizing our results and 

the results of Ashlagi et al. (2013) to markets with substitutable preferences 

(with or without transferable utility) is another very promising direction for 

future research. 
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A Proof of Theorem 1 
 

Proof. For simplicity, the proof uses results that were proven for the uniform 

noise distribution G = U [0, 1]. However, all claims hold for more general 

distributions. A complete proof for general distributions (albeit one that 
provides slightly less tight bounds and only deals with balanced markets) 
can be found in the working paper version of the present work (Hassidim 
and Romm, 2014). 

The general structure of the proof is as follows. 
 

 
1. Given an arbitrary vector of workers’ human capital, show that whp 

(relevant to the distribution of 
{
εn 
�

) there are only finitely many work- 

ers above a certain human capital level who are unemployed, and sim- 

ilarly finitely many workers below a different human capital level who 

are employed (Lemma 13). 
 

2. Based on the previous step, show that a version of the result of Frieze 

and Sorkin (2007) holds, but with some restrictions on its applicability 

to workers (Lemma 14). 
 

3. Show that in fact whp all workers above a certain human capital level 

are employed, and all workers below a certain human capital level are 

not employed (Lemma 15). 
 

4. Improve the applicability of Lemma 14 to workers (Lemma 16). 
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bound 

Var[V −  

V ≤ qn + hn[j] + (n − 2) 

V n 

n 

 
 
 
 
 

5. Put everything together with the intuition presented in the main text 

to complete the proof. 
 
 

For a given a vector of human capital levels hn (of length n + k(n)), let 

us denote by hn[m] the m-th highest value. 

Lemma 13. For any E > 0 there exist M ∈ N such that 

 

1. whp there are at most M workers with a human capital level greater 

than hn[n] + E who are unemployed under the optimal assignment for 

M n; 
 

2. whp there at most M  workers with a human capital level less than 

hn[n] − E who are employed under the optimal assignment for M n. 
 

Proof. Denote by V n the value resulting from the optimal assignment in 

M n, and by V n the value resulting from optimally assigning the top n 

workers (in terms of human capital level) to the n available firms.   From 

Aldous (2001) we know that 
 

n n 2 

lim E[V n ] =     qn +     hn[j] + 

(

n 
π 
\ . (1) 

n→∞ bound i 

i=1 
− 

6
 

j=1 

Taking qn and hn as given, we know from Wästlund (2005) that 

n 
bound 

 

4ξ(2)    4ξ(3) 
] = + O 

n 

( 
1 
\ 

n2 
≈ 

 

1.7715 
+ O 

n 

( 
1 
\ 

n2 

 

 

. (2) 

 

By approximating the limit in (1), bounding the variance in (2), and using 

Markov inequality: 
 

/ 
n n 

\ 
 

Pr bound i 

 

 
13.6 

≤ 
n  

. 
i=1 

 

This also implies that whp 

j=1 

 

 
n 

opt ≥ 

n   
 

 
i=1 

n 

qi  +     hn
 

j=1 

 

[j] + (n − 2). 
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x,k i 

x,k j 

n 

n 

≤ 

 
 
 
 
 

Now assume that there are M workers with a human capital level greater 

than or equal to hn[n] + E who do not participate in the optimal assignment 

(or alternatively that there are M workers with a human capital level less 

than or equal to hn[n] − E who do participate in the optimal assignment). It 
must be that 

 
n 

opt ≤ 

n   
 

 
i=1 

n 

qi  +     hn
 

j=1 

[j] − M E + n, 

 

and therefore 
 

 
  

2 
  

M . 
E 

 

• 
 
 

Now, given some arbitrary matchings {µn}, construct digraphs Gn = 

(Vn, E� n), with Vn = F n ∪ W n and 

E� n = 
{
(wn, f n) | µn(f n) = wn

�
 

j i i j � 
∪ 

{
(f n, wn) | wn ∈ N n (f n) 

i j j hn[n]+E,40+M i 

∪ 
{
(f n, wn) | f n ∈ N n (wn)

� 
, 

i j i hn[n]+E,40+M j 

where N n 
f n 

(f n) represent the top k workers in terms of idiosyncratic fit to 
n 

i ) (i.e., εij ) out of those workers who have a human capital level above 
x, and similarly for N n (wn). We call the edges from F n to W n “forward 

edges” and the edges from W n to F n “backward edges.” The weight on each 
forward edge (f n, wn) is εn

 (and not αn ). 
i j ij ij 

 

 

Lemma 14. If h /= h,10  there exists c ∈ R+  such that whp there is an 

alter- nating path between every two firms with the sum of weights on the 

forward edges being less than or equal to c log n . Similarly, there is an 
alternating path from any matched worker to any worker with a human  

capital level above hn[n] + E with the sum of weights on the forward edges  
being less than or 
equal to c log n . 

 
10This lemma also holds (with the proper adjustments) for the case where all workers 

have the same human capital level, but we omit the proof here since it can easily be 

recovered using the arguments presented in the more complicated case. 
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Proof. First, let us choose E > 0 such that whp the number of workers with 

a human capital level above hn[n] + E is no less than 0.99n. To see that this 

is possible, let us denote by νn  the fraction of workers who are unassigned 

in M n, i.e., νn  := k(n)
 , and let ηn  = H−1(νn).  Let E > 0 be such that 

sup(x,y)⊆(h,h),(y−x)<E H(y) − H(y) < 0.0049 (this is possible since we required 

the density to be continuous on 
r
h, h

l
, and it is therefore bounded). By 

Hoeffding’s inequality whp hn[n] ∈ (ηn − E, ηn + E). Then, using Hoeffding’s 

inequality again, we know that whp 0.99n of the workers have a human 
capital level above ηn + 2E ≥ hn[n] + E. 

Note that whp there exists c1 such that there is a directed path of length 
less than c1 log n between any two firms, using the same argument as Frieze 
and Sorkin (2007, Lemma 5). It is true that in our case some of the workers 

do not have related backward edges (since they are unmatched), but out of 

those workers who are connected to forward edges (with a human capital 

level above h − E) at most M do not have backward edges.  Therefore, by 
pointing to M + 40 workers we keep the expansion rate of at least 40. We 
also note that some of the constants have to be changed to account for the 
fact that only a constant fraction of the workers are connected by forward 

edges, and that the number of workers is not necessarily n but could rather 

be greater than that as long as it is O(n). We remark that E must have been 
chosen such that a large majority of the firms will be matched to workers with 

human capital levels above hn[n] + E; otherwise there would not necessarily 
be an overlap between the two “funnels” constructed in the proof. 

We then use Lemma 7 of Frieze and Sorkin (2007) which works as is, 

except that the number 40 is replaced by 40 + M whenever it appears in the 

proof there. This completes the argument for the firms. 

As for the workers, the same argument works, but we note that in order 
for a directed path to start from some worker, that worker must be matched, 
and in order for it to finish with some worker, that worker must have a human 

capital level above hn[n] + E.                                                                    • 
 

 

Lemma 15. If h /= h, then there exist c1 ∈ R+ such 

that 

1. whp all workers with a human capital level greater than hn[n] + c1 log n
 

are assigned under the optimal assignment for M n; 

2. whp no workers with a human capital level less than hn[n] − c1 log n
 

 

 
are 

assigned under the optimal assignment for M n. 
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Proof. Let c1 ∈ R+ be equal to (c+2), where c is the constant recovered in the 
proof of Lemma 14. Assume on the contrary that there exists an unmatched 
worker wn with human capital level hn > hn[n]+ c1 log n . Let wn be the worker 

1 1 n 2 

with the lowest level of human capital in M n that is matched. We want to 
argue that there exists a matching in which the set of matched workers is 
µn(F n)∪{wn}\{wn} and that this matching gives a larger value. Replace the 

1 2 
matching µn with the one in which µn(wn) is matched with wn. Note that this 

2 1 
matching gives a value greater by (hn − hn) ≥ (c+2) log n in human capital, but 

1 2 n 

might provide us with less than optimal noise compatibility between µn(wn) 

and wn.   Applying Lemma 14 to our new matching, find a directed path 

between wn  (which is now matched) and some worker who is also matched 

and who “likes” µn(wn) (in the sense of having joint productivity greater 
than 1 − log n ). Apply the directed path, in the sense that now each worker 

is going to be matched to the firm connected to her by a forward edge, and 

the last worker is connected to µn(wn). The value of the resulting matching 
is at least val(µn) + (c+2) log n − (c+1) log n n log n 

n n > val(µ ) + n   , a contradiction. 
The exact same reasoning applies when a matched worker has a human 

capital level below hn[n] − c1 log n , and is replaced by the best unmatched 

worker. • 
 
 
 

Lemma 16. If h /= h, there exist c, c1  ∈ R+  such that whp there is  

an alternating path from any matched worker to any worker with a human 
capital 

level above hn[n] + c1 log n
 with the sum of weights on the forward edges being 

less than or equal to c log n . 
 

Proof. Use the same logic of Lemma 14 but replace E with c1 log n , which will 

work by virtue of Lemma 15. • 
 
 
 

To complete the proof, let us first consider the firms. By Lemma 14 
whp for every i, j ∈ {1, . . . , |F n|} there exists an alternating path on Gn

 

(induced by µn, the optimal assignment for M n). Suppose one such path is 
(f n, wn, f n, wn, f n, . . . , wn, f n). Since µn is a core allocation, it must be that 

i 1 1 2 2 k j 
un n n 

i + v1 ≥ αi1, and therefore 
 

un n 
 

n n n 
 

n n n 
 

n n n n 

i ≥ αi1 − v1 ≥ qi  + h1 + (1 − εi1) − (α11 − u1 ) ≥ u1 + (qi  − q1 ) − εi1. 
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Similarly we get 
 

 
 

un n n n n 

i ≥ u1 + (qi − q1 ) − εi1, 
un n n n n 

1 ≥ u2 + (q1 − q2 ) − ε12, 

. . . 
k ≥ uj + 

(
qk − qj 

) 
− εkj . 

un n n n n 

 

Stacking all of those together we have 

i ≥ uj + 
(
qi − qj 

) 
−    εxy , 

un n n n n 

 

where the last sum goes over all the firms that alternate on the path, and 

therefore 
un n n n clog n 

i ≥ uj + 
(
qi  − qj 

) 
− 

n 
. 

 

Reordering terms we get 
 

 
un n n n clog n 

j − ui  ≤ 
(
qj − qi 

) 
+ 

n 
, 

 

which is exactly what we wanted. 

As for the workers, we need to be slightly more careful. The same line of 

reasoning tells us that whp for any matched worker wn  and any worker wn
 

with a human capital level above hn[n] + c1 log n
 

i j 

(as in Lemma 16) we have 
 
 

vn n n n clog n 

i − vj  ≤ 
(
hi  − hj 

) 
+ 

n 
. 

 
However, we also want to account for matched workers with a human capital 
level in the interval 

(
hn[n] − c1 log n , hn[n] + c1 log n 

)
. Let wn be some matched 

n n i 

worker and let wn
 be a matched worker in that interval.  Since whp there 

are Θ(n) workers with human capital levels above hn[n] + E (for any constant 
E), then whp one of them, say wn, is a good match for µn(wn) in the sense 

k 

that their joint idiosyncratic noise is above 1 − c2 log n
 

j 

for some constant c2. 
Consider now a path that goes from wn  to wn  (whp such a path exists) and 

i k 
then continues to µn(wn) and to wn, and perform the same calculation as 

j j 

before. 
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kl  − 

8p 

1 1 √ 

i 

n3 

 

 
 
 
 

B Other proofs 
 

B.1 Proof of Theorem 2 
 

Lemma 17. Let Z =   
n

 

 

Xk where each Xk is a geometric variable with 
stopping probability pk = ck . Then whp Z > 1

 n3 log n. 
n3 16c 

Proof. Let n!  be the largest number smaller thanψn such that 
√

n is an 

integer, i.e., n! = (l
√

nl)
2
. Z dominates Z! = 

 
 
√ 

nl    
√ nl 

X! , where each 
k=1 

X! l=1 kl 
ck

√
nl 

kl is a geometric variable with stopping probability pkl = n3    . Note that 
X!  1   1   1 

2pkl 
− 

2 

kl > 2pkl   
with probability 1 − (1 − pkl) 

Hoeffding’s inequality 
≈ 1 − e > 0.39, and so using 

 √
nl

 

Pr     X!   > 
1 √  

4 
n! · 

 
 1   

> 1 e−2(0.39−0.25) 
2pkl 

 

2
√

n
 

 
 
l 
> 1 − 

 
√ 

e−0.03 nl 

. 

 
Therefore 

l=1 
 
 

 

 

 
 

√
nl  √   

n! √ √ 

Pr Z! >
 

 ≥ 
(
1 − e−0.03

 
kl 

nl 
\ 

> 1 − n!e−0.03 nl 
.
 

k=1 
 

So with high probability 
√

nl  √  

 
 
 

√
nl

 

Z > 
 

 
n! 

= n3 
 

 1 1 n3 log n = n3 log n 
 

k=1 
8pkl 8c 

k=1 
k 

≈ 
8c 16c 

 

• 
 
 
 

Proof. For the sake of simplicity let us focus on the case of G = U [0, 1]. Let 

us take the variant of the approximation algorithm suggested by Crawford 

and Knoer (1981) to solve a generalized version of the assignment game, in 

which firms are ordered from f n to f n, and at each round only the lowest- 
1 n 

number firm that still wants to propose actually proposes. Take the step size 

to be E = 1 . We want to bound the minimal number of steps through the 

entire algorithm. 

We note that when it is firm f n’s to propose, and its previous aspiration 

level (i.e., the maximal utility it would get by giving some worker her current 
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1− c log n 

k + 1)E = 1.01(n−k+1) 

n 

16.16 

16.06 
log n 

log n 

n 

− 

n 

n 

 
 
 
 
 

salary was ui, and if for all unmatched workers wn ∈ W n we have εn
 ∈/ [ui − 

j ij 

E, ui), then some worker’s salary increases by E. The conditional probability 
of εn

 not being in [ui − E, ui) is 1 − E .  We know that in the firm-optimal 
core allocation at least one worker gets a salary of zero, and from Theorem 1 

we learn that all workers get no more than c log n .  Combining this with the 
results of Frieze and Sorkin (2007) gives us that whp ui ≥ 1 − c log n  for some 

constant c ∈ R+. Therefore the conditional probability mentioned before is 

at least 1 − E
 
n 

> 1 − 1.01E.11  This implies that when there are n − k + 1 

(k > 1) still unemployed workers, the probability of raising the salary of one 
of the employed workers by E is at least 

n−k+1 

(1 − 1.01E) > 1 − 1.01(n − k + 1)E, 
 

and the probability of employing a still unemployed worker is at most 1.01(n− 

n3 .  By Lemma 17, whp there are going to be at least 
   1       3 
16.16 log n steps, and multiplying by E we get that whp the sum of workers’ 
salaries is at least 1

 log n. This implies also that whp at least one of the 

workers has a salary that is at least 1
 · n  . As mentioned before, in each 

realization one of the workers has a salary of zero. Together this means that 

whp there are two workers such that the difference between their salaries is 
   1   

16.06 
· n   , and we are done. 

 

B.2 Proof of Corollary 3 
 

Proof. As mentioned in the intuition for the proof, there must be at least 
one worker whose salary is exactly zero. If h /= h, let c1 ∈ R+ be such 

that for large enough n, H 
(
h + c1 log n 

) 
> log n (such c1 exists since H has 

positive 
n n 

and continuous density at h).  It follows that the probability of having at 
least one worker with a human capital level below c1 log n

 is at least 
( 

1 − 1 − 
log n 

\n
 

n 

 

≈ 1 − e−
 

 
log = 1 

1 
. 

n 
 

Let c2 be the constant we arrived at in the proof of Theorem 1, if the worker 

who gets zero salary has a human capital level above (c1+c2) log n ; then Theo- 

rem 1 implies that any worker with a human capital level lower than c1 log n
 

11We assume that G = U [0, 1]. When G /= U [0, 1] we have to approximate the 

density near the upper bound, and rely on Theorem 1 to approximate the conditional 
probability of choosing a still unmatched worker. 
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. Note that 

i ij n 
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k 

ij 
 

n n 

 
 
 
 
 

gets a negative salary. Therefore, with high probability the worker getting a 

zero salary must have human capital level below (c1+c2) log n . It follows from 

Theorem 1 that whp for every worker wn
 

 

( 
vn,F n (c1 + 2c2) log n n c2 log n 

\
 

j ∈ hj − , hj + . 
n n 

By taking c = c1 + 2c2 we reach the desired conclusion. 

 

B.3 Proof of Corollary 4 
 

Proof. We prove this corollary separately for the case of workers who have 

the same human capital level and for the case of workers with different human 

capital levels. In the first case (hn ≡ 0) we recall that the same line of proof 
used in Lemma 14 could have shown us that in this case the approximate law 
of one price holds for any two workers (and not just two matched workers). 

The proof follows immediately from Theorem 1 by comparing any matched 

worker to one of the unmatched workers (whose salary is 0). 

In the second case (h /= h), note that there exists c1 ∈ R+  such that whp 

all workers with a human capital level below hn[n] − c1 log n
 are  unmatched 

(Lemma 15).  Let c2  ∈ R+  be such that whp there exists a worker wn  with 
a human capital level hn

 ∈ hn[n] − c1 log n , hn[n] − (c1+c2) log n 
j n n 

there exists c3   ∈ R+   such that whp this worker has a good match with 

one of the matched firms; i.e., there exists f n such that εn
 

> 1 − c3 log n . 
It follows that the worker wn

 employed by that firm gets no more than (
hn

 n c3 log n n n (c1+c2+c3) log n 

k − hj 

)
+ n ≤ (hk − h [n])+ 

n . Now set c = c1 +c2 +c3 +c4, 
where c4 is the constant provided by Theorem 1, and we get the desired result 
using Theorem 1 (comparing matched workers to wn). 

 

 

B.4 Proof of Proposition 9 
 

Lemma 18.  
 

E 
 
 

 
 

αn  
≤ n(log n + 1) 

fi =µn (wj ) 
 

Proof. We want to show that for every worker the expected value of the maxi- 

mal element in the relevant column of the productivity matrix αn equals log n. 
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n n 

ij  − 

 
 
 
 
 

To see that, note first that the minimal element is distributed according to 

an exponential distribution with parameter n (think of the first arrival of one 

of n identical arrivals). Due to the memorylessness property of exponential 

random variables, the difference between the first minimal element and the 

second minimal element is distributed like an exponential distribution with 

parameter n − 1, and so on.  This implies that the expected value of the 
largest element is 

 

1 1 
+ + 

n n − 1 

1 

n − 2 
+ · · · + 

1 

2 
+ 1 ≤ log n + 1. 

 

• 
 
 
 

Lemma 19.  
 

E 
 
 

 
 

αn  
≥ 0.99n log n 

fi =µn (wj ) 
 

 

Proof. Let µ be a matching that results from running a greedy algorithm: 

firm 1 picks the worker it likes best, then firm 2 picks a worker from those 

remaining, and so on. The expected value of µ is 
 

 
 

E 
   
 
fi =µ(wj ) 

n n 

 
 

αn  
=E [max {X1,1, . . . , X1,n}] + E [max {X2,1, . . . , X2,n  1}] + 

 

· · · + E [Xn,1] , 
 

where {Xi,j } are i.i.d. Exp(1). Therefore 

 
 

E 
 
 
f n n 

 
 

αn  
= 

ij  

 
n−1 
  

 

 
i=0 

 
 

[log(n − i) + 1] ≈ n log n. 

i =µ(wj ) 

The result then follows from the optimality of µn. • 
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Proof. The first claim follows from Lemma 18 and Lemma 19. For the second 
claim, let pn denote the probability that for a given firm f n ∈ F n there exists 
a worker wn ∈ W n such that αn

 > 1.1 log n and maxk=j α
n

 < log n. Then 
j ij I ik 

( \n−1 

pn = n · e−1.1 log n · 
(
1 − e− log n

)n−1 
= 

1 
1 

1 − 
n
 

1 
≈ 

en0.1 
. 

This specifically implies that for any E > 0 whp there are Ω (n0.9−E) firms 
that meet the above condition. If the same worker is the outlier in any two 

of these firms, then this worker must get paid at least 0.1 log n under any 

core allocation. Since there are Ω (n1.8−2E) pairs, we get that there are many 

workers who get paid Θ (log n).   Finally, at least one worker’s salary is 0 

under the firm-optimal core allocation, and so we are done. 
 

 

B.5 Proof of Theorem 11 
 

Lemma 20. In an arbitrary balanced market with productivity matrix αn, let 
(µn, un,F , vn,F ) be a the firm-optimal core allocation. If f n = µn 

(
wn

) 
then 

 

 
n,F 
j ≤ 

i j 

( \ 

αn − min n
 

k =µn (w
n) 

 

 

Proof. Let α := minf n n 

 
(wn) .  Consider a core allocation (µ!, u! , v!) for a 

modified productivity matrix α! = αn − α. It is trivial that µ! = µn. Since 
this is a core allocation it must be that ∀i : u!

 ≥ 0, which means that 
f n n ! !   !  ! 

∀ i  = µ(wj ) : vj ≤ αij = αij − α.  Define ui  = ui 
+ α and v = v , and 

note that (µ, u, v) is a core allocation for α since all the constraints defining 
the core are preserved when we restore the constant. The result follows 

immediately from the worker-pessimality of the firm-optimal core allocation. 

• 
 
 
 

Lemma 21. If Conjecture 10 holds, then there exists c ∈ R+  such that whp 
 

min 
f n n n 

n  ≥ log n − log log n − log c. 
i =µ (wj ) 
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Proof. Let the constant used in Conjecture 10 be c1, and let c = c1 + 3. The 

probability that the c1 log n highest element out of n exponential random 

variables will be lower than log n − log log n − log c equals 
n 

 

P = 
 

 

m=n−c1 log n+1 

( 
n 
\ 
(
 

m 
− e

− log n+log(c log n)
)m (

e — log n+log(c log n)
)n−m 

( 
n 

\ ( c log n 
\n−c1 log n+1 ( c log n 

\c1 log n−1 

≤c1 log n · 1 
c1 log n − 1 n n ( 

en \c1 log n−1 ( c log n 
\n ( 

c log n 
\c1 log n−1

 

≤c1 log n 1 
c1 log n − 1 n n e e 1 ( \c1 log n−1 c log n ( \c1 log n−1     

≤c1 log n 
c
 e− = c1 log n 

c nc
 

c1(c1 + 3) log n 1 

≤ 
e n3 

≤ 
n2 

, 

where the transition in the fourth line is by Stirling’s approximation, and 

the one in the fifth line uses c = c1 + 3. Therefore the probability that after 

taking the c1 log n highest element out of n exponential random variables n 

times the minimal value is lower than log n − log log n − log c is bounded 
above by 

( 
1 
\n 

1 − 1 − 
n2

 

 

≈ 1 − 
( 

1
 

1 − 
n 

+ O 

( 
1 
\\ 

n2 

1 
= + O 

n 

( 
1 
\ 

n2 
. 

 

Conjecture 10 ensures that whp µn does not assign any firm to a worker who 

is ranked below c1 log n, and therefore whp the claim holds. • 
 
 

Proof of Theorem 11. Given Lemma 18, Lemma 20, and Lemma 21, we know 

that 
l 

    
n,F 
j 

( c1 
\ 

≤ n(log n + 1) −  1 − 
n 

· n · (log n − c log log n) , 
j 

 
where c1   is such that the statement in Lemma 21 holds with probability 
greater than 1 − c1 . This implies that 

l 
    

n,F 
j 

 

≤ cn log log n + n + c1 log n − 

 
cc1 log log n 

. 
n 

j 
 

Finally, use Lemma 19 to complete the proof. 
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· 

− 

 

 
 
 
 

C Analysis of the Cobb–Douglas benchmark 

model 
 

This appendix demonstrates how one can get results similar to Theorem 1 in 

the presence of interaction between firms’ quality and workers’ human capital 

level. 
 
 

C.1   Sketch of proof of Lemma 6 

Given any n, d, m ∈ N, let 

Sym (n, d, m) := {σ ∈ Sym(n) | |{i | σ(i) − i ≥ d}| ≥ m} , 
 

 
where Sym(n) is the symmetric group of size n. That is, Sym(n, d, m) is the 
set of all permutations σ of the set {1, . . . , n} such that there are at least 

m elements such that the difference between their images and themselves is 
equal to or larger than d.  For any σ ∈ Sym(n) we let 

 

 
val(σ) := 

 n 

i=1 

j
i σ(i) 

. 
n 

 

Lemma 22. If σ ∈ Sym(n, d, m), and there exist i < j such that σ(i) > σ(j) 

and σ(i) − i < d, then there exists σ! ∈ Sym(n, d, m) such that val(σ!) > 
val(σ). 

 

Proof. Consider σ! ∈ Sym(n, d, m) defined by 

 

σ(j) if k = i, 
 
 
 
 

We get that 

σ!(k) = σ(i) if k = j, 

σ(k) otherwise. 

 

1 (j  j  j  j \ 

val(σ!) − val(σ) = 
n

 
iσ(j) + jσ(i) − iσ(i) − jσ(j) 

= 
1 (√

i 
n 

j
j
\ (j
σ(j) − 

j
σ(i)

\ 
> 0 

 
• 
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Lemma 23. If σ ∈ Sym(n, d, m), and there exist i < j such that σ(i) > σ(j) 

and σ(j) − j ≥ d, then there exists σ! ∈ Sym(n, d, m) such that val(σ!) > 
val(σ). 

 

 
Proof. The proof is similar to the proof of Lemma 22. The only difference is 
that now σ! ∈ Sym(n, d, m) because σ!(i) − i = σ(j) − i > σ(j) − j ≥ d and 
σ!(j) − j = σ(i) − j > σ(j) − j ≥ d.                                                           • 

 

 
 
 

Lemma 24. If σ ∈ Sym(n, d, m), m > 0, and n − σ−1(n) < d, then there 

exists σ! ∈ Sym(n, d, m) such that val(σ!) > val(σ). 

 
Proof. Let n! be the largest number such that (n! − 1) − σ−1(n! − 1) ≥ d 

(such n! exists since m > 1). Denote k := n! − σ−1(n! − 1). If there exists  

i such that i > k and σ(i) − i > d, then by Lemma 23 we are done. If 

σ(n!) /= n!, then by a simple counting argument there exist i < j such 

that σ(i) > σ(j) and σ(i) − i < d, and then by Lemma 22 we are done.  

Similarly, if σ(n! − k + 1) > n! − k, we can again find i < j such that σ(i) > 

σ(j) and σ(i) − i < d, and be done by Lemma 22. Define σ! ∈ Sym(n) as 
 

n!
 

 — 1 if i = n!, 

σ!(i) = n! if i = n! − k + 1, 

σ(n! − k + 1) if i = n! − k, 

σ(i) otherwise. 
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1 − 1
 1 − k  1 

1 

1 − 
k 

1 t+1 

1 − t
 1 − t+1 

∂t 

− 

− 

− − 1 − 1 

+ 

∂t  t 

2 

 
 
 
 
 

We now have: 
 

 

1 
/ 
( j j \ 

val σ! − val σ = 
n

 (n! − k) + 
 

(j 

(n! − k + 1)n! + 
 

j 

n!(n! − 1) 

\
\ 

− (n! − k)(n! − 1) + (n! − k + 1)(n! − k) + n!
 

 

n! 
/ / 

k
 

= 1 
n n! 

I 

+ 1 − 
k − 1 

n! 

I 
1 
\ 

+ 1 − 
n! 

/I 
k 
I 1 

I 
k−1 
I 

k 
\\

 

− 1 − 
n! 1 − 

n! + 1 
n! 1 − 

n! + 1 

n! 
/ 

k 
= 

n n! 

/I 
1

 

+ 1 − 
n! 

I 

+ 1 − 
k−1 

\ / I
 

n! 
k 
\\ 

n! 

 I/   

k nl 

=  

I/    
− 

nl 

 

− 1  
n 1 + 

I
 k 

— nl 

 

= ( 
n  1 + 

k 
I/ \ (F (k − 1, n!) − F (0, n)) , 

nl 

 

 
 

where F (t, n!) = 
I

 
 

t 

— nl 

I 

— 1 − nl  . Note that 
 
 

∂F (t, n!) 
=

 
 
  1   1   + = 

I/   
 

nl 

I/    

— nl , 
− I 

2n! 

I 
t+1 

I 
t 
I

  
t+1 

1 − nl 
2n! 1 − nl 

2n! 1 − nl 1 − nl 

and therefore ∂,l
 > 0 for all t ∈ (0, n! − 1).  This implies that val σ! > val σ 

as required. • 
 
 
 

Lemma 25. For all σ ∈ Sym(n, d, m), val(σ) ≤ n+1 − md . 
2 8n(n+d+1) 

 

Proof. Let val(n, d, m) := maxσ∈Sym(n,d,m) val(σ).  Given σ1  ∈ Sym(n, d, m) 
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n 

 
 
 
 
 

such that val(σ1) = val(n, d, m), we can define σ2 ∈ Sym(n + d + 1, d, m) by 
(
σ1(i) if i ≤ n, 

σ2(i) = 
 

i if i > n. 
 

Following the same logic used in the proof of Lemma 24, there exists σ3 ∈ 
Sym(n + d + 1, d, m) such that σ3(n + 1) = n + d + 1, σ3(i) = i − 1 for 

i ∈ {n + 2, . . . , n + d + 1}, and val(σ3) > val(σ2). However, this also implies 

that there exists σ4 ∈ Sym(n + d + 1, d, m) such that σ4 is identical to σ3 for 

inputs larger than n, and is identical to a permutation σ4 ∈ Sym(n, d, m − 1) 

that achieves val(n, d, m − 1) for inputs smaller than or equal to n. It follows 

that 

1 
/ 

val(n, d, m) = val(σ1) = 
n

 

 

(n + d + 1) val(σ2) − 
n+d+1 

\ 
   

i ≤ 
i=n+1 

1 
/ 

n 
(n + d + 1) val(σ4) − 

n+d+1 
\    

i = 
i=n+1 

1 
/
n+d+1 n+d   

 \ 

val(n, d, m − 1) − 
   

 
i=n+1 

i −  
 

 
i=n+1 

j
i(i + 1) − 

j
(n + 1)(n + d + 1) . 
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j 

i 
2
I 

ij j 

 
 
 
 
 

Now note that 
 

n+d+1    
i − 

i=n+1 

 
n+d   

 

 
i=n+1 

 

j
i(i + 1) − 

j
(n + 1)(n + d + 1) = 

 
n+d 

n + d + 1 − 
j
(n + 1)(n + d + 1) − 

 

(n + d + 1)2 − (n+ 1)(n+ d+ 1) 

  
 
i=n+1 

n+d   

(   \ 
i(i + 1) − i = 

 

 

  i   

n + d + 1 + 
j
(n + 1)(n + d + 1) 

−
 

(n + d + 1)d 

 
i=n+1 

d 

j
i(i + 1) + i 

≥
 

n + d + 1 + 
j
(n + 1)(n + d + 1) 

− 
2 

=
 

d 
/ 

(n + d + 1) − 
j
(n + 1)(n + d + 1) 

\
 

2 (n + d + 1) + 
j
(n + 1)(n + d + 1) 

=
 

  

d d(n + d + 1) d2
   /     

.
 

2 
 (
(n + d + 1) + 

j
(n + 1)(n + d + 1)

\2  ≥ 
8(n + d + 1)

 
 

Therefore 
 
 

 
and 

 

d2 

val(n, d, m) ≤ val(n, d, m − 1) − 
8n(n + d + 1) 

, 
 

 

md2
 

val(n, d, m) ≤ val(n, d, 0) − 
8n(n + d + 1) 

. 

To complete the proof, note that for m = 0 we know by Lemma 22 that 
val(n, d, 0) =   

n
 i = n+1 . • 

i=1 n 2 

Let µn  be an assignment for a certain market M n; we denote 

val(µn, M n) := 
 

 
µn(f n)=wn 

qnhn + εn . 

i j 

Lemma 26. Let µn be an assignment for M n such that 
1{

i : 
1 i − hµn(i)

1 �1
 

1 1qn n 1 > nb−1 1 ≥ na, 
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1 1 

εn 

2 

1 a 

 
 
 
 
 

for some a, b ∈ (0, 1); then there exists c ∈ R+  such that 

val (µn, M n) ≤ 2n + 1 − cna+2b−2
 

 

 
 

Proof.  Without loss of generality, assume that more than half the firms in the 
set   i : 

1
qn − hn

 

1 
> nb−1

1. 
are matched with workers whose human capital 

1 i µn(i)1 
level exceeds the firms’ quality. Now the maximal value is given when all 

the firms fit workers perfectly in terms of the idiosyncratic component (i.e., 

ij = 1), and then Lemma 25 bounds the sum of the interactive components, 

and we get 
 

 

val (µn, M n) ≤ 2 

/ 
n + 1 

2 

( 
1 na

) (
nb

)2 
\ 

− 
8n(n + nb−1 + 1) 

 

+ n ≤ 2n + 1 − 

 

1 

8.01 

 

na+2b−2. 
 

 

• 
 
 
 

Lemma 27. Let {µn} be a sequence of optimal assignments for M n. Then 

there exists c ∈ R+  and γ ∈ (0, 1) such that whp val (µn, M n) ≥ n − cnγ . 

 
Proof sketch. Use a greedy algorithm that divides the firms and workers into 
layers according to their quality/human capital level, where each layer con- 

tains n1/3 firms/workers. Then perform an optimal assignment within each 

layer based only on the noise dimension. The result approximates the effi- 
ciency on both dimensions, and gives a lower bound on the efficient assign- 
ment.                                                                                                         • 

 

 
 
 

Sketch of proof of Lemma 6. We deduce from Lemma 26 and Lemma 27 that 
for a + 2b − 2 > γ it must be that 

1  
i | 

(
qn − hn

 
\ 

> nb−1 
1.1 1 

< n .  Now 1 i µn(i) 1 
assume to the contrary that there is a firm that is matched under the optimal 

assignment to a worker who has a human capital level far higher than the 

firm’s quality (by “far higher” we mean nδ−1  for some δ ∈ (0, 1)), and show 
(using a somewhat involved counting argument) that there must be another 
firm that is matched to a worker with a human capital level far lower than 

the firm’s own quality, and such that a switch between the workers employed 
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by those two firms would yield an efficiency gain of c1n2−2δ  on the quality 
dimension for some c1   ∈ R+. Then for each new match,  try to find an 

alternating path (in the spirit of Theorem 1) to fix the efficiency on the noise 

dimension. This leads to an overall improvement in efficiency, which leads to 

a contradiction. 
 

 

C.2 Sketch of proof of Theorem 7 
 

Sketch of proof. The proof follows immediately from Lemma 6 and similar 

arguments to those used in Theorem 1, applied within a band of qualities of 

width Θ 
(
n−b

)
. 


