Spectroscopy of Wildfire Burned Products

Dar Roberts¹, Zachary Tane¹, Mingquan Chen¹, Anna Brook²

- 1. UC Santa Barbara, Dept of Geography
- 2. University of Haifa, Dept. of Geography & Environmental Studies

Why Map Wildfire Burned Products?

Burned Area

- Required for post-fire recovery efforts
- Hydrological/geomorphological modeling
 - Mass wasting, erosion, flooding
- Measures of Fire Severity
 - Post-fire recovery, soil hydrophobicity
- Biogeochemistry
 - Trace gas emissions (CO₂, CH₄), aerosols
 - Fuel Consumption
 - Ash transport
 - Soil chemistry

Typical Spectra of Burned Products

From Lewis et al., 2007: Fire Ecology, 3(1), 109-128

Objectives / Research Questions

Objective: To develop spectral libraries of ash from multiple fires using the post-fire AVIRIS data

Key Research Questions

- 1. Are ash spectral libraries portable between fires?
- 2. Is there a relationship between fire severity and ash type?
- 3. Is there a relationship between pre-fire fuels and ash?
- 4. What can ash spectral libraries tell us about fire properties?

Study Sites

Jesusita Fire

Start Date: 9 May 2009 Containment Date: 18 May 2009 Image Date: 26 August 2009

Fire Size: **35 km²** Cause: **Human (Accidental)** Fire Severity: **Primarily High**

Primary Fuels: 83% Shrub 11% Hardwood 3% Herbaceous 2% Urban 1% Other

Fuel Type Source: US Forest Service CWHR Layer

Study Sites

10

King Fire

Start Date: 13 September 2014 Containment Date: 9 October 2014 Image Date: 17 November 2014

Fire Size: **392.96 km²** Cause: Human (Arson) Fire Severity: Primarily High

Primary Fuels: 77% Conifer 13% Hardwood 5% Mix 4% Shrub 1% Urban

> **Fuel Type Source:** US Forest Service CWHR Layer

Spectral Libraries and Severity

- Spectra extracted from polygons within the image
- Fire Severity: dNBR (NBR=(ρ788-ρ2370)/(ρ788+ρ2370))
 - Pre-fire: King 19 September 2013
 - Pre-fire: Jesusita 6 August 2004

Library Pruning: Iterative Endmember Selection

- Iterative Endmember Selection (IES) (Schaaf/Roth)
 - Iteratively selects endmembers to maximize classification accuracy
 - Implemented in Viper Tools 2.0
- Fire specific and combined libraries

Roth et al., 2012

Complexity: 3,2,1 RGB

Multiple Endmember Spectral Mixture Analysis (MESMA)

Class (from model #)

Composition: NPV-GV-Soil RGB

- Extension of Linear Spectral Mixture Analysis
- Allows the number and types of Endmembers to vary per pixel
 - Candidate models must meet fit and fraction constraints
- Models Selected on minimum RMS
- Complexity level based on change in RMS

Results: Jesusita Spectra

• NPV (7), GV (11), Soil (19), Ash (5)

Results: King Spectra

- NPV (10), GV (12), Rock (14), Ash (7)
- Both: NPV (25 (12/13)), GV (19(15/4)), Soil/Rock (32(22/10)), Ash (13 (2/11))

Results: Mapping Fire Products with MESMA

dNBR

Jesusita Fire

Jesusita fire only spectral library:

King fire only spectral library:

Both fire spectral library:

NPV, GV, Ash: RGB

Results: Mapping Fire Products with MESMA

King Fire

dNBR

Both fire spectral library:

NPV, GV, Ash: RGB

Jesusita fire only spectral library:

King fire only spectral library:

Results: Spectral Library & Cover

King Fire

Jesusita Fire

Percent Pixels in Endmember

	Percent Pixels in Endmember				
	Class				
Library					No
Source	Ash	GV	NPV	Soil	model
King	44.2%	30.5%	14.9%	0.9%	9.5%
Jesusita	32.3%	42.4%	0.5%	6.2%	18.6%
Both	42.8%	30.7%	16.9%	0.6%	9.0%

Pixel Source for Both by Class					
	Ash	GV	NPV	Soil	
King	75.5%	71.1%	97.3%	37.8%	
Jesusita	24.5%	28.9%	2.7%	62.2%	

	Class				
Library					No
Source	Ash	GV	NPV	Soil	model
King	68.5%	7.2%	15.2%	6.3%	2.9%
Jesusita	61.5%	16.9%	1.3%	18.9%	1.4%
Both	64.7%	12.3%	8.6%	13.3%	1.1%

Pixel Source for Both by Class					
	Ash	GV	NPV	Soil	
King	78.5%	6.9%	70.8%	14.1%	
Jesusita	21.5%	93.1%	29.2%	85.9%	

Ash and Fuels: Jesusita Fire

Ash and Fuels: King Fire

Ash and Fuels

- Jesusita (M1-2)
 - M1: Conifers, King (30%)
 - M2; All Fuels, Jesusita (20-30%)

• King (M6, 9 and 11)

- M6: Hardwoods, King (40%)
- M9: Herbaceous, Jesusita (25%)
- M11: Shrub, Jesusita (20%)

Conclusions

- Burned product spectra were moderately portable between images
 - Fractions shifted by as much as 14%, with highest shifts between soils and NPV
 - Ash and NPV from the King fire were favored for both fires
 - GV and Soil tended to be fire specific
- A combined spectral library modeled the most area (least error?)
- The most common ash spectra were associated with specific fuels
- King fire had higher severity than Jesusita based on dNBR
- A subset of ash spectra were associated with the lowest fire severity based on dNBR
- Caveats
 - Images were acquired at different times of year and processed to reflectance differently
 - dNBR varies by vegetation type; Jesusita vegetation would favor lower dNBR
 - Only two fires were studied
 - Other measures of severity could be employed
 - Surfaces change quickly, so ash type and abundance likely changed by the time the fire was imaged