

From Diversity-based Prediction to Better Ontology & Schema Matching

Dr. Haggai Roitman

Lead Researcher, Master Inventor – Information Retrieval – Cognitive Analytics & Solutions – IBM Research - Haifa

Joint research with Prof. Avigdor Gal & Dr. Tomer Sagi Technion – Israel Institute of Technology

Schema Matching

- Given two schemata $S = \{a_1, a_2, ..., a_n\}$ and $S' = \{b_1, b_2, ..., b_m\}$, identify corresponding $\sigma_{i,j} = (a_i, b_j)$ attribute pairs
- Schema Matching is usually a two-stepped process
 - -First line matching: determines the similarity M_{i,i} between any pair (a_i,b_i)
 - -Second line matching: selects pairs to be included in a match σ

$\downarrow S_2 \xrightarrow{S_1 \longrightarrow}$	cardNum	city	arrival Day	checkIn Time
clientNum	0.84	0.32	0.32	0.30
city	0.29	1.00	0.33	0.30
checkInDate	0.34	0.33	0.35	0.64

$\downarrow S_1 \longrightarrow$	cardNum	city	arrival Day	checkIn Time
clientNum	1	0	0	0
city	0	1	0	0
checkInDate	0	0	0	1

 $\sigma = \{ (clientNum, cardNum), (city, city), (checkInDate, checkIn Time) \}$

Technion IEW

Schema Matching Performance Prediction

- Prediction Task: Given a pair (M,σ) of 1LM similarity matrix and a 2LM match determine how good the attribute correspondences σ_{i,i} are?
- A good match is one with both high Precision and high Recall
- Prediction is made in two main levels (Sagi and Gal)
 Matrix-level prediction
 - Given (M,σ), a good predictor should provide a prediction that correlates as much as possible with the actual match quality.
 - E.g.,: MAX/STDEV predictors have high correlation to Recall, while AVG/Dominants predictors have high correlation to Precision
 - -Entry-level prediction
 - Given entry $\sigma_{i,j}$, a good predictor should assign higher confidence to $\sigma_{i,j}$ whenever this is a true match (and low otherwise).

-This work propose a new diversity-based schema matching predictor

Match Diversity: Motivation

• Using MWBM as 2LM: $Q_{\text{MWBM}}(\sigma, M) = \sum_{(i,j)\in\sigma} M_{i,j} = 1.9$

$$M = \left(\begin{array}{rrrr} 0.9 & 0.1 & 0.9 \\ 0.1 & 0.1 & 0.1 \\ 0.9 & 0.1 & 0.9 \end{array}\right)$$

- Yet, pair (2,2) may be a risky selection!
 - -It has a relatively low confidence
 - -Its "competitor" pairs also have low confidence
- Pair (2,2) should be considered as a false-positive
 Higher chance for improving Precision than hurting Recall
- Hypothesis: a pair whose confidence deviates more from the confidence of its competitors is a better pair for match selection

Match Diversity: Motivation

• Using MWBM as 2LM: $Q_{\text{MWBM}}(\sigma, M) = \sum_{(i,j)\in\sigma} M_{i,j}$ =1.9

$$M = \left(\begin{array}{rrrr} 0.9 & 0.9 & 0.9 \\ 0.9 & 0.1 & 0.9 \\ 0.9 & 0.9 & 0.9 \end{array}\right)$$

- Yet, pair (2,2) may be a risky selection!
 It has a relatively low confidence
 - -Its "competitor" pairs also have low confidence
- Pair (2,2) should be considered as a false-positive
 Higher chance for improving Precision than hurting Recall
- Hypothesis: a pair whose confidence deviates more from the confidence of its competitors is a better pair for match selection

Match Competitor Deviation (MCD)

Single entry deviation:

$$\Delta_{i,j} = (M_{i,j} - \mu_{i,j})^2$$

$$\mu_{i,j} = \frac{1}{n+m-1} \left(\sum_{l=1}^{n} M_{l,j} + \sum_{l=1}^{m} M_{i,l} - M_{i,j} \right)$$

Match deviation:

$$\mathcal{Q}_{\mathsf{MCD}}(\sigma, M) = \sqrt{\frac{1}{|\sigma|} \sum_{(i,j) \in \sigma} \Delta_{i,j}}$$

- An optimal MCD match is <u>suggested</u>
- Main idea: find a match with both high confidence (MWBM) and high selection diversity (MCD)

MWBM vs. MCD Optimality Tradeoff

- Bad news: the optimality of MWBM may violate the optimality of MCD (and via versa)
- Moreover, we show that:

-For any possible match σ : $\mathcal{Q}_{MWBM}(\sigma, M) \ge \mathcal{Q}_{MCD}(\sigma, M)$

-If σ ' is MWBM optimal match and σ '' is MCD optimal match, then:

$\mathcal{Q}_{MWBM}(\sigma',M)$	\geq	$\mathcal{Q}_{MWBM}(\sigma'',M)$	(MWBM optimality)
	\geq	$\mathcal{Q}_{MCD}(\sigma'',M)$	(Proposition 1)
	\geq	$\mathcal{Q}_{MCD}(\sigma',M)$	(MCD optimality)

-MWRM ontimality ratio	$\alpha =$	$\mathcal{Q}_{MWBM}(\sigma'', M)$
www.bw.optimality.ratio.	$\alpha -$	$\mathcal{Q}_{MWBM}(\sigma', M)$

• Worst ratio:

$$\underline{\alpha} \leq \frac{1}{\min(n,m)}$$

MCD-based Match Regularization

- Main idea: find a match with both high confidence (MWBM) and high selection diversity (MCD)
 - -Essentially it is a <u>bi-objective optimization</u> problem:

$$\max_{\sigma \in \Sigma} \{ \mathcal{Q}_{\mathsf{MWBM}}(\sigma, M), \mathcal{Q}_{\mathsf{MCD}}(\sigma, M) \}$$

–For any given β in [0,1] this is equivalent to maximizing the weighted product mean:

$$\mathcal{Q}(\sigma, M) = \mathcal{Q}_{\mathsf{MCD}}(\sigma, M)^{\beta} \mathcal{Q}_{\mathsf{MWBM}}(\sigma, M)^{1-\beta}$$

- -Therefore, the effect of MCD on the optimization (and as a result, on the decisions made by MWBM) can be controlled.
 - Higher β will result in a more diverse match (with an expected increase in Precision)
- -Unfortunately, the maximization problem is NP-Hard

Match Quality Optimization as a Rare-Event Estimation Problem

Original deterministic optimization problem:

$$\gamma^* = \mathcal{Q}(\sigma^*, M) = \max_{\sigma \in \Sigma} \mathcal{Q}(\sigma, M)$$

Associated stochastic problem:

$$l(\gamma) = \mathbb{P}_{v}(\mathcal{Q}(\mathbf{\Sigma}, M) \ge \gamma) = \mathbb{E}_{v}(\delta_{[\mathcal{Q}(\mathbf{\Sigma}, M) \ge \gamma]})$$

- Yet, since the problem is NP-Hard, the estimation given γ^* becomes a rare event estimation problem
- Solution: Cross Entropy (CE) method

Cross Entropy Matcher (CEM)

Algorithm 2 Cross Entropy Matcher 1: input: similarity matrix M, N, ρ, λ 2: initialize: 3: for i = 1, ..., m; j = 1, ..., n do $v_{i,i}^0 = \frac{1}{2}$ 4: 5: end for 6: t = 17: loop Randomly draw N matches $\sigma \in \Sigma$ using v^{t-1} 8: $l(\gamma) = \mathbb{P}_{v_{\gamma}}(\mathcal{Q}(\Sigma, M) \ge \gamma) \ge \rho$ $\Sigma_{l} = \operatorname{sort}_{l=1,...,N}(\mathcal{Q}\left(\sigma_{l},M\right))$ 9: $\gamma_t = \text{quantile}_{1-o}(\overrightarrow{\Sigma_l})$ 10:Using importance sampling, on each 11: for i = 1, ..., n; j = 1, ..., m do $v_{i,j}^t := \frac{\sum_{l=1}^N \delta[\mathcal{Q}(\sigma_l, M) \ge \gamma_t] \delta[(i,j) \in \sigma_l]}{\sum_{l=1}^N \delta[\mathcal{Q}(\sigma_l, M) \ge \gamma_t]}$ iteration, we learn the next reference parameter that is based on an 12:estimation of a less-rare event which advances our target towards the $v_{i,j}^t := \lambda v_{i,j}^{t-1} + (1-\lambda) v_{i,j}^t$ 13:optimal match 14: end for 15:if γ_t converged then 16:stop and return random match σ^* sampled from $f(v^t)$ 17:else 18:t := t + 119:end if 20: end loop

Cross Entropy Matcher (CEM)

Algorithm 2 Cross Entropy Matcher

1: input: similarity matrix M, N, ρ, λ 2: initialize: 3: for i = 1, ..., m; j = 1, ..., n do $v_{i,j}^0 = \frac{1}{2}$ 4: 5: end for 6: t = 17: loop Randomly draw N matches $\sigma \in \Sigma$ using v^{t-1} 8: $\overrightarrow{\Sigma_{l}} = \operatorname{sort}_{l=1,\ldots,N}(\mathcal{Q}(\sigma_{l},M))$ 9: $\gamma_t = \text{quantile}_{1-o}(\overrightarrow{\Sigma_l})$ 10:for i = 1, ..., n; j = 1, ..., m do 11: $v_{i,j}^t := \frac{\sum_{l=1}^N \delta[\mathcal{Q}(\sigma_l, M) \ge \gamma_t] \delta[(i,j) \in \sigma_l]}{\sum_{l=1}^N \delta[\mathcal{Q}(\sigma_l, M) \ge \gamma_t]}$ 12: $v_{i,j}^t := \lambda v_{i,j}^{t-1} + (1 - 1)$ 13:14:end Reinforce those pairs that belong to "elite" samples that guarantee at 15:if γ least some minimum required level of match quality 16:st $\frac{\sum_{l=1}^{N} \delta \left[\mathcal{Q}(\sigma_l, M) \ge \gamma_t \right] \delta \left[(i, j) \in \sigma_l \right]}{\sum_{l=1}^{N} \delta \left[\mathcal{Q}(\sigma_l, M) \ge \gamma_t \right]}$ 17:else18:t 19:end 20: end lo

Datasets & Setup

Datasets:

Dataset	#Schemas	# Attr	#Pairs
Web-forms	147	10-30	247
Thalia	44	6-17	18
OAEI	101	80-100	100
Purchase Order	10	50-400	44
University Applications	16	50-150	182

ILMs:

Matcher	System	Type
Term	Ontobuilder [24]	Syntactic
Token Path	AMC $[25]$	Syntactic
WordNet $[29, 16, 28]$	ORE	Semantic

2LMs:

MWBM, Stable Marriage (SM), Dominants (Harmony), Threshsold(v), Max-Delta(δ)

CEM

https://bitbucket.org/tomers77/ontobuilder-research-environment/wiki/Home

MCD as Matrix-level Predictor

- Prediction over 960 matrices generated by running all 1LMs on 90 different schema pairs sampled from the three datasets.
- 2LMs: Max-Delta(0.1), Threshold(0.5), MWBM and SM.
- Quality of prediction measured by Pearson's r correlation to actual match quality measures
- MCD has the best correlation to Precision
- The MWBM/MCD bi-objective is expected to yield good quality results (while MAX is highly correlated with Recall, MCD is highly correlated with Precision)

Predictor	P Correlation	R Correlation
BMM	.379**	.206**
LMM	.246**	.338**
Max	.180**	.506**
STDEV	.124**	.630**
Avg	.565**	.077**
Dominants	.429**	.039
LC	.425**	.048
MCD	.568**	002

$$Max(M) = \frac{1}{n} \sum_{i=1}^{n} \max_{i}$$

MCD as Entry-level Predictor

- Based on sample obtained from two randomly selected schema pairs form the Web-forms dataset, matched using all 1LMs.
- Overall 5869 entries were obtained.
- Quality of prediction is measured by Goodman-Kruskal Gamma correlation
- MCD exhibits significantly better correlation
- Using MCD would allow to reduce the number of false-positively matched pairs

	M	CD	CF	۶V	CN	IV	Val			
	Γ	Γ sig.		Γ sig. Γ		sig.	Γ sig.		Γ	sig.
Term	0.98	0.018	0.91	0	0.95	0	0.96	0		
Token										
Path	0.93	0.002	0.67	0	0.67	0	0.34	0.042		
WordNet	0.93	0	0.51	0.01	0.59	0	0.67	0		

CEM Match Quality

 CEM compared with all other 2LMs (Threshold and Max-Delta parameters were further tuned so as to maximize F1)

	Threshold Max-Delta			ta	Dominants			SM			MWBM			CEM				
	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1
Token Path	.02	.03	.02	.20	.67	.30	.48	.45	.45	.27	.62	.36	.32	.58	.41	.29	.60	.38
Term	.51	.43	.41	.27	.78	.38	.09	.67	.15	.28	.64	.37	.41	.63	.48	.53**	.60	$.55^{**}$
WordNet	.36	.52	.38	.15	.67	.24	.20	.62	.29	.20	.45	.27	.26	.46	.32	.40**	.47	$.42^{**}$
							((a) We	eb-for	\mathbf{ms}								
	TI	nresho	ld	M	ax-Del	ta	Do	ominan	its		SM		Ν	NMBN	N		CEM	
	Р	R	F1	Р	R	F1	Р	R	F1	Р	R	F1	Р	\mathbf{R}	$\mathbf{F1}$	Р	R	F1
Token Path	.00	.00	.00	.25	.53	.33	.46	.46	.45	.31	.56	.40	.33	.54	.41	.42	.54	.45
Term	.53	.48	.48	.25	.55	.33	.44	.53	.47	.32	.58	.40	.30	.52	.37	.59**	.46	.50**
WordNet	.57	.51	.51	.34	.72	.45	.50	.63	.53	.39	.71	.50	.43	.66	.51	.67**	.52	$.56^{**}$
								(b) '	Thalia	ı								
	Т	hresho	ld	M	ax-Del	ta	Do	ominar	nts		SM		MWBM		CEM			
	Р	R	$\mathbf{F1}$	Р	R	$\mathbf{F1}$	Р	R	F1	Р	\mathbf{R}	F1	Р	R	$\mathbf{F1}$	Р	R	F1
Token Path	.43	.28	.22	.10	.69	.17	.61	.52	.55	.39	.47	.43	.50	.50	.50	.29	.27	.27
Term	.10	.61	.17	.07	.66	.13	.31	.61	.38	.37	.45	.40	.46	.45	.45	.48	.44	.46
WordNet	.13	.27	.16	.15	.54	.23	.22	.46	.29	.28	.34	.31	.39	.35	.36	.53**	.41	$.45^{**}$
(c) OAEI																		

- Up to 25% improvement in F1 (compared to second-best 2LM)
- Specifically, up to 35% and 55% improvement in F1 and Precision compared to MWBM

MCD and the Precision vs. Recall Tradeoff

- For all 1LMs, higher β gives more emphasis to the MCD objective yielding increased Precision at the expense of Recall.
- Trend is most notable for the Term 1LM (with R² = 0.93 and R² = 0.97 for the Web-forms and Thalia datasets, respectively) compared to the two other 1LM (with an average of R² = 0.92 and R² = 0.60).

Technion

Conclusions & Future Work

- We presented a new schema and ontology matching predictor, MCD, discussed its properties, and used it to enhance the performance of an existing state-of-the-art matcher.
- Our empirical evaluation shows MCD to be more predictive than any known matching predictor in the literature so far. We also demonstrated empirically its usefulness for matching.
- Future work:
 - -Evaluate the impact of MCD predictor on additional matchers
 - -Explore additional match diversification methods
 - Develop new baseline 1LMs whose decisions include diversification considerations

Thanks

haggai@il.ibm.com

Backup slides

MCD Optimization

Algorithm 1 MCD 1: input: M(n,m)2: for $(i, j) \in M$ do 3: $\Delta_{i,j} := (M_{i,j} - \mu_{i,j})^2$ 4: end for 5: $k := \min(n, m)$ 6: $\sigma^* := \emptyset$ 7: for p = 1, ..., k do 8: $\sigma := \mathsf{MWBM}(\Delta, p)$ 9: if $\mathcal{Q}_{MCD}(\sigma, M) > \mathcal{Q}_{MCD}(\sigma^*, M)$ then 10: $\sigma^* := \sigma$ 11: end if 12: end for 13: return σ^*

Pareto Optimality

DEFINITION 2 (PARETO OPTIMAL MATCH). Given a similarity matrix M, match $\sigma \in \Sigma$ is a Pareto optimal solution to the bi-objective optimization problem (Eq. 5) if for any other match $\sigma' \in \Sigma$ one of the following holds:

 $\mathcal{Q}_{\mathsf{MWBM}}(\sigma, M) \leq \mathcal{Q}_{\mathsf{MWBM}}(\sigma', M) \Rightarrow \mathcal{Q}_{\mathsf{MCD}}(\sigma, M) > \mathcal{Q}_{\mathsf{MCD}}(\sigma', M),$

or

 $\mathcal{Q}_{\mathsf{MCD}}(\sigma, M) \leq \mathcal{Q}_{\mathsf{MCD}}(\sigma', M) \Rightarrow \mathcal{Q}_{\mathsf{MWBM}}(\sigma, M) > \mathcal{Q}_{\mathsf{MWBM}}(\sigma', M).$

Random Match Sampling

Odds for selecting a single edge:

 $\mathbb{P}_{v_{i,j}}(\delta_{i,j}) = v_{i,j}^{\delta_{i,j}} (1 - v_{i,j})^{1 - \delta_{i,j}}$

Odds for selecting a sub-set of E:

$$f(E';v) = \prod_{(i,j)\in E'} v_{i,j}^{\delta_{i,j}} (1 - v_{i,j})^{1 - \delta_{i,j}}$$

Adjustment for correct 1:1 match:

 $\mathcal{Q}'(E',M) = \begin{cases} \mathcal{Q}(E',M), & E' \in \Sigma \\ -\infty & otherwise \end{cases}$

Algorithm 3 Random Match Sampling 1: input: M, v2: $E := \{(i, j); i = 1, \dots, n; j = 1, \dots, m\}$ 3: $\sigma := \emptyset$ 4: while $E \neq \emptyset$ do 5:select next edge $(i, j) \in E$ to consider at random 6: draw $u \sim U[0,1]$ if $v_{i,j} \geq u$ then 7: 8: $\sigma := \sigma \cup \{(i,j)\}$ $E := E \setminus \{(i, j)\}$ 9:10:end if for $(i', j') \in S$ do 11: 12:if $i' = i \lor j' = j$ then $E := E \setminus \{(i', j')\}$ 13:14: end if end for 15:16: end while 17: return σ

Reference Parameter Derivation

$$l(\gamma_t) = \mathbb{P}_{v^{t-1}}(\delta_{[\mathcal{Q}(\Sigma, M) \ge \gamma_t]}) = \mathbb{E}_{v^{t-1}}(\delta_{[\mathcal{Q}(\Sigma, M) \ge \gamma_t]})$$

$$\mathbb{E}_{v^{t-1}}(\delta_{[\mathcal{Q}(\Sigma,M)\geq\gamma_t]})\frac{f(\Sigma;v^t)}{f(\Sigma;v^t)} = \int_{\Sigma}\delta_{[\mathcal{Q}(\Sigma,M)\geq\gamma_t]}f(\Sigma;v^{t-1})\frac{f(\Sigma;v^t)}{f(\Sigma;v^t)}d\sigma$$

$$l_{LR}(\gamma_t) = \mathbb{E}_{v^t} \left(\delta_{[\mathcal{Q}(\Sigma, M) \ge \gamma_t]} \right) \frac{f(\Sigma; v^{t-1})}{f(\Sigma; v^t)}$$

$$\hat{l}_{LR}(\gamma_t) = \frac{1}{N} \sum_{k=1}^N \delta_{[\mathcal{Q}(\sigma_k, M) \ge \gamma_t]} \frac{f(\sigma_k; v^{t-1})}{f(\sigma_k; v^t)} \qquad \sigma_k \sim f(\cdot; v^t); k = 1, \dots, N.$$

$$f^*(\boldsymbol{\Sigma}) = \frac{\delta_{[\mathcal{Q}(\boldsymbol{\Sigma}, M) \ge \gamma_t]} f(\boldsymbol{\Sigma}, v^{t-1})}{l(\gamma_t)}$$

$$\begin{aligned} \mathcal{D}_{KL}(f^*(\mathbf{\Sigma}), f(\mathbf{\Sigma}; v^t)) &= \mathbb{E}_{f^*} \ln \frac{f^*(\mathbf{\Sigma})}{f(\mathbf{\Sigma}; v^t)} \\ &= \int_{\Sigma} f^*(\mathbf{\Sigma}) \ln f^*(\mathbf{\Sigma}) d\sigma - \int_{\Sigma} f^*(\mathbf{\Sigma}) \ln f(\mathbf{\Sigma}; v^t) d\sigma \end{aligned}$$

Reference Parameter Derivation

$$\max_{v^t} \int_{\Sigma} \frac{\delta_{[\mathcal{Q}(\Sigma, M) \ge \gamma_t]} f(\Sigma, v^{t-1})}{l(\gamma_t)} \ln f(\Sigma, v^t) d\sigma$$

$$\max_{v^t} \mathbb{E}_{v^{t-1}}(\delta_{[\mathcal{Q}(\boldsymbol{\Sigma}, M) \geq \gamma_t]}) \ln f(\boldsymbol{\Sigma}, v^t)$$

$$\max_{v^t} \frac{1}{N} \sum_{k=1}^N \delta_{[\mathcal{Q}(\sigma_k, M) \ge \gamma_t]} \ln f(\sigma_k, v^t) \quad \sigma_k \sim f(\cdot; v^{t-1}); k = 1, \dots, N$$

$$\frac{\partial}{\partial v_{i,j}^t} \ln f(\cdot, v^t) = \frac{\delta_{i,j}}{v_{i,j}^t} - \frac{1 - \delta_{i,j}}{1 - v_{i,j}^t} = \frac{1}{v_{i,j}^t (1 - v_{i,j}^t)} (\delta_{i,j} - v_{i,j}^t)$$

$$\frac{\partial}{\partial v_{i,j}^t} \left(\frac{1}{N} \sum_{k=1}^N \delta_{[\mathcal{Q}'(\sigma_k, M) \geq \gamma_t]} \ln f(\sigma_k, v^t) \right) = 0$$

$$\frac{1}{v_{i,j}^t (1 - v_{i,j}^t)} \frac{1}{N} \sum_{k=1}^N \delta_{[\mathcal{Q}'(\sigma_k, M) \ge \gamma_t]} (\delta_{i,j} - v_{i,j}^t) = 0$$

$$v_{i,j}^t = \frac{\sum_{k=1}^N \delta_{[\mathcal{Q}'(\sigma_k, M) \ge \gamma_t]} \delta_{i,j}}{\sum_{k=1}^N \delta_{[\mathcal{Q}'(\sigma_k, M) \ge \gamma_t]}}$$

Back

Technion IEM

DMBI'16

CEM Sensitivity Analysis

