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Malware Pandemic
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Symantec Report 2015



Malware is hard to detect!
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Key Challenge

• Statistics from Symantec WINE Dataset

– # of Detections <<< # of Infections
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# of infected hosts

# of detected hosts



Problem Statement
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Predict this value

Using these detections



Our Approaches

• Feature based prediction method

–Proposed a set of novel features

• Epidemic model inspired by SIR model

• Ensemble method that merges the 
previous two methods with other state-
of-the-art techniques.
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FEATURE BASED PREDICTION 
MODEL

1st Method
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Symantec Telemetry data

Each record= (Host, Malware, File name, Infection time, Detection time)

‘Detection and Patch ability’ of each host 

‘Detection and Patch hardness’ of each malware

2. Compute host-level features 

3. Compute country-level features

Aggregate host level features, e.g. Average

4. Train a prediction model with the features

Prediction model

Features / 
Infection Ratio

The expected number of 
infections in future

day Feature #1 Feature #2 …… Infected Host Ratio

80% Training

d

Ground Truthd+1

⁞

20% Test
d+n

Ground Truth vs. Predictions
⁞

~2 years 
data

‘Detection and Patch incompetence’ of each host 

Feature Based Method



Detection/Patch Incompetence
• Each record= (Host h, Malware m, File name f, 

Infection time i, Detection time t)

• Detection time – Infection time
– How good/bad is a user h at detecting malware m?

– How easy/hard is it to detect malware m?

• Patch time – Infection time
– How good/bad is a user at patching a vulnerability/malware?

– How easy/hard is it to patch a vulnerability/malware?

• Average these values for each host  host-level 
detection/patch incompetence

• Some other similar features, e.g., Detection time – Malware 
signature release time

91: These two are the most simplest features.

(Detection Incompetence1)

(Patch Incompetence1)



Detection Ability/Hardness

• Each record= (Host h, Malware m, File name f, 
Infection time i, Detection time t)

• Detection Ability (ADA) of host h is the weighted sum 
of Detection Hardness (ADH) of malware detected by 
h.

• Detection Hardness of malware m is the weighted 
sum of Detection Ability of hosts that detected m.
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A subset of WINE records, where Host = h



BiFixpoint Algorithm

11

Uniform initialization

Recursive calculation

We prove that convergence is 
always guaranteed!



Collaborative Features
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• Given two similar1 hosts h1 and h2

– Suppose h1 was infected by m.

– h2 is likely to be infected soon with prob ~ sim(h1, h2).

• cf(h,m) is the estimated prob. of host h being 
infected by m (considering similarity).

• cf(C,m) is the sum of cf(h,m), where h is a host in 
country C.

1: We defined various similarity measures based on calculated features.

Similarity 0.5
(0.9+0.5)/3



Time Lag Features

13

• Today’s infection ratio depends on not only 
today’s features but also past features.

• Very high dimensional feature space

day Feature #1 Feature #1 (-1 day) Feature #1 (-7 day) …… Infected Host Ratio

80% 
Training

d

Ground Truthd+1

⁞

20% Test
d+n Ground Truth vs. 

Predictions⁞



Recap of Features
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• Features from raw values
– Detection time – Infection time (Detection Incompetence)

– Patch time – Infection time (Patch Incompetence)

– Some features calculated from raw data

• Features from BiFixpoint Algorithm
– Detection ability, Patch ability for hosts

– Detection hardness, Patch hardness for malware

• Collaborative Features
– Infection numbers based on host similarity

• Country Human Development Index, …

• Time lag features

• Country level aggregation  Regression Problem



EPIDEMIC PREDICTION MODEL

2nd Method
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• SIR Model models the the dynamics of infectious disease.

• Sometimes used for social rumor diffusion.

• Does not fit the spread of malware.
– Recovered doesn’t precisely capture the dynamics of malware spread.

– Transition rate is not designed for malware.

– Network data may not always be available.

Epidemic Model



DIPS Epidemic Model

• “Recovered”  “Detected” and “Patched”

• Carefully designed transition rates

• S(t), I(t), D(t) and P(t) are the number of susceptible, 
infected, detected and patched hosts at time t

• S(t), I(t), D(t) and P(t) are recursively defined.
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S

IP

β(t): infection rates

γ(t) :  # detections in model
δ(t): patching rate

θ(t): patching rate 

1- δ(t)

𝜸(𝒕) = 𝜸𝟎 ∙ 𝑫𝑬𝑻(𝒕)

𝜷(𝒕) = 𝜷𝟎 ∙ (𝟏 + 𝑷𝒂 ∙ 𝐜𝐨𝐬
𝟐𝝅

𝑷𝒑
∙ (𝒕 + 𝑷𝑺) )

𝜽(𝒕) =
𝟎 (𝒕 < 𝒕𝒑)

𝜽𝟎 (𝒕 ≥ 𝒕𝒑)

𝜹(𝒕) =
𝟎 (𝒕 < 𝒕𝒑, 𝒕𝒅)

𝜹𝟎 (𝒕 ≥ 𝒕𝒑, 𝒕𝒅)

- S(t+1) = S(t) − β(t)·S(t)·I(t) + (1- δ(t))·D(t) − θ(t)·S(t) 

- I(t+1) = I(t) + β(t) ·S(t)·I(t) − γ0 ·DET(t)

- D(t+1) = γ0·DET(t)

- P(t+1) = P(t)+ δ(t)·D(t)+ θ(t)·S(t)

D



How to predict with DIPS

• Find the optimal set of parameters with Least Square 
Method to minimize the sum of (true-prediction)
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• Train with the target country-malware pair.

– Initialization  local optimal  not stable learning

• Learning algorithm (two phases)

– First, train the parameters with all countries and malware

– Second, train again only for the target country-malware

Host state

I

S

D

P

Train with the first 80% 
infection/detection 
history

Detections, DET(t), for 
the last 20%

26Host state

I

S

D

P

Infections I(t)



DIPS - Susceptible
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S

I

D

P

β(t): infection rate

δ(t): patching rate

θ(t): patching rate 

1- δ(t)

𝜷(𝒕) = 𝜷𝟎 ∙ (𝟏 + 𝑷𝒂 ∙ 𝐜𝐨𝐬
𝟐𝝅

𝑷𝒑
∙ (𝒕 + 𝑷𝑺) )

- SI in between t and t+1: β(t)·S(t)·I(t)1

- DS: (1- δ(t))·D(t)

- SP: θ(t)·S(t)

- S(t+1) = S(t) − β(t)·S(t)·I(t) − θ(t)·S(t) + (1- δ(t))·D(t)

1: This is from SIR model.

𝜷𝟎: base infection rate
𝑷𝒂: amplitude of cycle
𝑷𝒑: period of cycle

𝑷𝑺: phase shift of cycle
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S

I

D

P

γ(t) :  # detections in model
δ(t): patching rate

1- δ(t)

𝜸(𝒕) = 𝜸𝟎 ∙ 𝑫𝑬𝑻(𝒕)𝜹(𝒕) =
𝟎 (𝒕 < 𝒕𝒑, 𝒕𝒅)

𝜹𝟎 (𝒕 ≥ 𝒕𝒑, 𝒕𝒅)

- ID: γ0 ·DET(t), where DET(t) is the true detection numbers at time t

- DS: (1- δ(t))·D(t)

- DP: δ(t)·D(t)

- D(t) = γ0·DET(t)

DIPS - Detected



• Modeling of “Birth” of the SIR model

• 𝝈 𝒕 is added.
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S

I

D

P

β(t): infection rates

γ(t) :  # detections in model
δ(t): patching rate

θ(t): patching rate 

1- δ(t)

𝜸(𝒕) = 𝜸𝟎 ∙ 𝑫𝑬𝑻(𝒕)

𝝈 𝒕 : inflow of additional hosts

𝜷(𝒕) = 𝜷𝟎 ∙ (𝟏 + 𝑷𝒂 ∙ 𝐜𝐨𝐬
𝟐𝝅

𝑷𝒑
∙ (𝒕 + 𝑷𝑺) )

𝜽(𝒕) =
𝟎 (𝒕 < 𝒕𝒑)

𝜽𝟎 (𝒕 ≥ 𝒕𝒑)

𝜹(𝒕) =
𝟎 (𝒕 < 𝒕𝒑, 𝒕𝒅)

𝜹𝟎 (𝒕 ≥ 𝒕𝒑, 𝒕𝒅)

- S(t+1) = S(t) − β(t)·S(t)·I(t) + (1- δ(t))·D(t) − θ(t)·S(t)+𝝈 𝒕
- I(t+1) = I(t) + β(t) ·S(t)·I(t) − γ0 ·DET(t)

- D(t+1) = γ0·DET(t)

- P(t+1) = P(t)+ δ(t)·D(t)+ θ(t)·S(t)

DIPS-exp Epidemic Model



ENSEMBLE PREDICTION MODEL

3rd Method
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Combine Prediction Models

• Combine Feature Method and DIPS.

• Use DIPS prediction results as additional features.
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ESM

Symantec WINE 
dataset

Host state

Infected

Susceptible

Detected

Patched
Malware downloaded

Signature released

…

…



Not Enough Training Data

• To predict number of hosts infected by malware m, 
train jointly with similar malware

• Discover similar malware with Dynamic Time 
Warping to calculate time-series similarity

• Lots of noise

24

ESM

Symantec WINE 
dataset

Host state

Infected

Susceptible

Detected

Patched
Malware downloaded

Signature released

…

…

Cluster of Similar Malware

m



Robust Regression

• Need a robust regression

• Gaussian Process Regression

– Very strong Bayesian regression method

– Less parametric (Parameters are calculated from 
data with maximum likelihood.)
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Linear Regression

Ridge Regression

Lasso Regression

Linear combination of weighted features + regularization term
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ESM

The expected number 
of infections in future

Symantec WINE 
dataset

Host state

Infected

Susceptible

Detected

Patched
Malware downloaded

Signature released

…

…

Cluster of Similar Malware

m

Feature #1 Feature #2 DIPS output …… Infected Host 
Ratio

80% Training (m)

80% Training (m1)

⁞

20% Test (m)

ESM Model

GPR



Experiment Environment

• Top 50 Most Infectious Malware, Top 40 
Country in GDP per capita  2000 Predictions

• 1.45M unique hosts, 2.99M records

• FBP

• DIPS, DIPS-exp

• FUNNEL: state-of-the-art epidemic model

• ESM0 (FBP + DIPS + DIPS-exp +Similar 
Malware)

• ESM1 (ESM0 + FUNNEL)
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Measurements
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• MAE*=|true infections - predicted infections|

• MSE = (true infection ratio - predicted infection ratio)
2

• RMSE = sqrt(MSE)

• NRMSE 

• Pearson Correlation Coefficient



FUNNEL (prior art)

• State of the art epidemic model for human 
disease

• C.C. between truths and predictions are very 
bad.
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Prediction for country-malware pair



Feature Based Prediction
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DIPS
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Not enough training data



ESM0
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Error Values
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