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 

Abstract— —“Knock, knock – who’s there?”  Here, we do 
not address this question but rather the underlying mechanism 
behind the perception of knocking impacts. When one knocks 
on a surface, her hand makes a forward-backward motion and, 
at the point of reversal, the knuckles collide with the rigid 
surface. How does one perceive the unity, or simultaneity, of 
the sensory events associated with this impact? Does this 
binding derive from a temporal estimate of simultaneity, or 
does the brain use some other mechanism?  

In this study, we ask whether the tap and the reversal of the 
hand are perceived as happening together, since both took 
place at the same time or at a particular state of motion. The 
aim of this research is to find out whether a tactile event and 
the flow of proprioceptive information regarding the state of 
the arm are matched within the central nervous system 
according to time or state. We tested this experimentally with 
subjects who actively moved one arm, as well as subjects who 
were servoed by a robotic device. Our results suggest that 
time is the mechanism used for judging the unity of the 
modalities for both active and passive movements. 

Taken together, these results provide a useful cue for 
neuroscientists as to the structure and function of the 
perceptual and motor systems and essential engineering 
knowledge for the development of effective and realistic 
augmented reality systems with haptics for the telerobotics, 
telesurgery, and telepresence applications of the future.  

 
 

Index Terms — haptic, motor system, motor learning,  
perception, active guidance  
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I. INTRODUCTION 

VASE  crashing to the floor generates visual and audio 
events, which are perceived as happening concurrently.  

If the vase falls on one’s foot, a tactile event would also be 
elicited. This tactile event would then be attributed to the 
former two, thus, creating a three modalities event (audio, 
visual, and tactile). If on the other hand, the tactile stimulus 
arrived later in time or at a different location on the body (e.g., 
a kick from the frustrated owner of the vase), the nervous 
system would not attribute the tactile event to the actual 
crashing of the vase. The difference between the physical 
event, which in this case is the actual crashing, and the 
perception of such an event should be stressed. The physical 
event takes place in the real world, and for simplicity, it is 
assumed that all physical attributes happen at the exact same 
time and place (sound, vision, etc.).  Those attributes might 
flow into the central nervous system (CNS) at different 
velocities due to different transmissions and processing 
durations and, therefore, will be perceived at different times.  
It is then the task of the CNS to restore the first event in order 
to match it with the second.  This time difference or window 
between two events perceived as happening together is 
considered the “width of now” [1-3]. The magnitude of such a 
window will define which two events are considered as 
happening together and which are regarded as two separate 
events. It has been shown that such a window is adaptable and 
can be modified by training [4, 5].    

Stone et al., as well as others, describe the notion of the 
“When is Now” in their work [1], where they tested the point 
of subjective stimulus between visual and auditory stimuli. 
This point was the relative time delay between the sound and 
light at which subjects, on the average, perceived the two as 
simultaneous. The two stimuli used in that work essentially 
involved no motion since both light and sound, were confined 
to a single location and the time difference between their 
occurrences was judged. The correspondence between color 
change in movement within the visual system has been 
extensively studied [6, 7]. Mouthoussis et al., claim the 
difference in perception of the two events (reversal and color 
change) is due to different neural paths and consequently, 
different delays. Nishida et al., claim that the mismatch 
between the two is due to a faulty correspondence match 
between color transition and position transition (detection of 
reversal).  In a dynamic system in which motion is involved, 
time and state are closely coupled through X = V*T, where X 
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is the position, V is the velocity, and T is time.  It is therefore 
not guaranteed that the metric which is used to judge 
simultaneity in such a system is time as opposed to, for 
instance, the location or velocity of the hand. Previous studies 
suggest the motor system adapts to state-dependent force 
perturbations but that it does not adapt to time-dependent 
forces that are not in a fixed relation with the state of motion 
of the arm [8] [9]. Diedrichsen et. al. [10] make a distinction 
between timing and coordination and suggest these are 
behaviorally distinct modes of motor control. Additionally, 
they see the anterior cerebellum as a crucial node in state-
dependent motor control. On the other hand, numerous earlier 
studies suggest the existence of explicit timing structures in 
the CNS (see [11]).  Witney et al. [12], show that temporal 
delays can be learned by the motor system in a grip force task.  

When the nervous system has to match two events, it can 
either match the time which has elapsed between the two 
events, or alternatively, due to the dynamic involved, it can 
match the location or velocity (or both) at the instant the 
events take place. Assuming we refer to judgment in the time 
domain as simultaneity and in state domain (referred to as 
position and velocity) as co-occurrence, one question which 
might be asked is whether we judge simultaneity or co-
occurrence in a dynamic system. A concrete example would 
be the event of tapping a rigid surface, such as knocking on a 
door, during which matching of two events within the motor 
system takes place. Such action involves a) the tactile event of 
the hand touching the surface (tapping) and b) the point in 
which the hand reverses at the point of contact (slicing 
motion). In the context of event matching, one might ask 
whether subjects judge the two events, tap and reversal, as 
happening at the same time (simultaneity) or at the same 
location/velocity (co-occurrence) of the hand. 

 
Haptic exploration is classified into active and passive types 

[13]. During active exploration, we dynamically roam the 
environment and gather information. In contrast, during 
passive exploration, we do not initiate action but monitor the 
inflow of data emerging from external actions [14].  Symmons 
et al. [15] characterize active and passive through the control 
of the movement and not by the activation of the muscles. In 
this framework active exploration would indicate that the 
subject is controlling her movement, while passive exploration 
would imply the subject is tracking some other entity (i.e., 
person or robotic device). In both cases, muscle activation 
would be evident, since the subject must generate motions. 
Active exploration has been shown to be more suitable in 
inducing an effect on the delay between tactile and visual 
effects [16].  Study of the motor system has revealed a 
difference in perceived information between active and 
passive exploration [17]. Symmons et al., [15] have shown an 
increase occurs in the ability to categorize virtual shapes when 
exploration of the space was active as opposed to passive. The 
notion of active and passive control of movement can be 
considered in the framework of the tapping task mentioned 
earlier. Such a task can either be carried out when the subject 

is actively moving her arm or alternatively guided by a robotic 
device throughout the motion.  

 
In this study, we have explored the use of state and time 

information in reporting the temporal order of two events 
during active and passive arm slicing movements (Fig 1, Panel 
A).  We asked whether subjects use time or state, namely, 
simultaneity or co-occurrence in reporting these events.  Fig 1, 
panel B displays the main question of the manuscript. Plotted 
are the location of the arm (red), velocity of the arm (green), 
and the force applied to the arm (blue). The reversal point is 
marked by black dots in the top and middle panels and by the 
vertical dashed line. The time of the tap is also marked in the 
top and middle panels by black dots and by a vertical dashed 
line. The key question is whether subjects match the reversal 
and tap using time (Δt) or state of the hand (ΔS = [Δx, Δv]).   

Such a question might be relevant both for the 
neuroscientist, as well as the engineer. It has been shown that 
the motor system does not adapt time to varying force fields 
[8, 9]. Might this be true for the perceptual system as well?  
Consider the engineer’s task of developing effective and 
realistic augmented reality systems with haptics in fields such 
as telemanipulation, telesurgery, and telerehabilitation [18-
20].  In such systems, a remote operator is interacting with an 
environment and for every motion the operator generates, the 
remote system should return adequate (assuming the 
environment is modeled as impedance) force feedback.  
Ensuring the quality of such a system would be critical and, 
therefore, the design engineer must decide whether the most 
important aspect of the signal to be captured would be its 
temporal or state aspects. The first aspect would imply the use 
of a wideband channel that would minimize the delay and 
communication protocols with minimum packet jitter [21, 22]. 
On the other hand, if state information is the more important 
aspect, this would call for the use of highly accurate 
movement encoders. 

 

II. METHODS  

A. Setup 

Eleven subjects participated in the first experiment (Robot- 
activated, mean age 24±4 7M/4F), and another group of 
thirteen subjects participated in the second experiment 
(Subject activated, mean age 23±5 9M/4F) after signing the 
informed consent form approved by Northwestern's 
Institutional Review Board. All subjects in both groups were 
right handed and none were excluded from the study. During 
the first experiment, seated subjects held the handle of a two-
degree of freedom robotic manipulandum with their dominant 
(right) hand, and looked at a screen, placed horizontally above 
their hand that displayed the instructions regarding the flow of 
the experiment (Fig. 1, Panel C). For further details about the 
robotic manipulandum, see [23, 24].  

A forced choice paradigm was implemented as follows: in 
each trial subjects held the handle of a robotic manipulandum 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

that was performing a protraction-retraction movement in the 
horizontal plane. Subjects were instructed to try to follow the 
motion the best that they could and they practiced in a short 
session prior to the actual beginning of the experiment. A 
visual cue (the word “GO”) was presented prior to movement 
initialization of the robotic device aimed at assisting the 
subjects in preparing for the motion.  During these 
movements, the manipulandum delivered a perturbation (“tap” 
- a sharp burst of force in a direction perpendicular to the 
movement) at a level which was significantly higher than the 
sensation threshold. This force pulse lasted 10 ms, equivalent 
to one sample interval. (The robot’s sampling rate was 100 
samples per second.) The subject was then asked whether the 
tap was delivered before (B) or after (A) the reversal point of 
the movement (the point at which the velocity changes sign – 
see Fig. 1, panel A). The answer was indicated by the subject 
pressing one of two buttons labeled B and A, accordingly. 
After each trial, there was no feedback provided regarding the 
correctness of the response. 

The actual time difference between the tap and the reversal 
point was drawn randomly and uniformly from the interval  
[-250, 250] ms with increments of 10 ms. Following a single 
protraction-retraction motion, the subject was asked if the tap 
had occurred before or after the reversal point. In order to 
minimize the chance of the subject foreseeing the impending 
tap, these perturbations were delivered only in roughly two-
thirds of the trials, the trials with a tap being randomly 
distributed. If no tap was delivered, the subject was asked to 
randomly press one of the buttons. Two types of data were 
acquired: 

1. The responses of the subjects (B or A, for each trial).  
2. The position of the hand along the X axis, sampled at a 

rate of 100 samples per second. 
The position of the arm was not visible to the subject. As 

the robotic device allowed measurements in the horizontal 
plane, only the position and velocity in the direction of 
movement in this plane are reported here. Prior to starting the 
actual experiment, subjects could practice for several tens of 
trials until they felt comfortable with the experiment’s 
instructions.  A Kalman filter [25] was used to estimate the 
first 3 derivatives and using a regression of the three, it was 
possible to estimate the forthcoming reversal point. This 
estimate was used to create a perturbation before the actual 
reversal. The information allowed us to create perturbations 
before the reversal in both conditions. 

 
The primary experiment consisted of two blocks in which 

the limb of the subject was actuated by the robotic device and 
the subject was instructed to try and follow the motion of the 
manipulandum. In each block, the arm was moved at either a 
fast or a slow pace. The order of the blocks was randomly 
interchanged across subjects (6 began with high velocity, 5 
began with a low velocity block).  On a given visual cue 
(“GO” sign), the manipulandum moved the subject’s hand in a 
predefined forth-and-back trajectory (See Fig. 1, panel C). In 
Fig 1, panel A, the position during the two trajectories as a 

function of time is shown. It can be seen that the fast 
movement lasted for approximately one second and the slow 
movement for two seconds. Subjects performed roughly 250 
trials at each velocity, and the entire experiment lasted for 
about one hour. 

 
 Subjects were asked to use earplugs and wear a pair of 

head phones which sounded a static hum, in order to cancel 
out any acoustical information coming from the motors of the 
manipulandum as it delivered the tap.   

During a second experiment, 13 subjects were asked to 
move one hand in a self initiated forth-and-back trajectory at 
either a slow or fast pace (i.e., the manipulandum was only 
delivering the tap and not moving the limb). Data was 
collected in the same fashion as described above (i.e., forced-
choice responses and data logging of hand motion). 

 

B.  Psychometric Curves 

Psychometric curves were generated by estimating the 
frequency with which subjects indicated that the tap was 
delivered after the reversal, as a function of the actual time 
difference between the two events. Fig 2 illustrates possible 
psychometric curves describing subject replies as a function of 
the time gap between the two events. 

Assuming the two events occur at the same time, we would 
expect the answers to reach chance level when the two events 
are perceived as happening at the same time. In this case a 
sigmoid shaped curve is expected, as answers are likely to be 
correct when the time difference is substantially large. For a 
time difference which is extremely positive, the time of the tap 
is much bigger than the time of the reversal, and the chances a 
subject will report it as correct (i.e., report that the tap 
occurred after the reversal – A) is very high. The 
psychometric function would get the value of one in this case. 
On the other hand, if the difference is highly negative, the 
chances that the subject will report the tap occurring after the 
reversal are low and, therefore, the function would have the 
value of zero (or almost zero). These probabilities are 
estimated by applying the same differences numerous times 
and then taking the ratio of the number of times the subject 
reported A and the total number of times the difference was 
encountered. 

Specifically, let Tt be the time the tap was delivered, Tr the 
time when the reversal occurred, and Δ the time difference 
between these two values. Each point on the psychometric 
curve in Fig. 2 is an estimate of the probability of the subject 
reporting that the tap was delivered after the reversal, as a 
function of the actual Δ: 
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j is an index over the trials with time difference Δ.  R , 

the number of times this time difference was encountered 
during the entire experiment. 

The time at the crossover point (where 5.0ˆ P ) is 
evaluated using a maximum likelihood fit of a sigmoid 
function to the data points. The bootstrap method was used in 
order to estimate the goodness of fit [26, 27]. 

 

C. Reversal Duration Estimation  

Reversal duration (RD) of a probing motion, as a function 
of time, is highly correlated with the velocity in which the arm 
is moved. During the experiments, subjects were required to 
move at two different velocities and report which of the two 
events, tap or reversal came first. By comparing the mean RD 
between these two conditions (slow and fast motion), we can 
verify that there was an actual change in velocity. Other 
measures can be used such as the maximal velocity during the 
motion, but RD is more accurate during the reversal part 
where the velocity is decreased up into a full stop during the 
actual reversal point. 

In order to assess the RD of the motion, duration of each 
reversal event was measured by estimation of the time it took 
the subject to twice visit a point distant L centimeters from the 
maximal protraction point. More specifically, assuming a 
subject reached the maximal extension point Y(tm) at time tm, 
on the forward portion of the motion and on the backward 
part, she visited the point Y(tm)-L at times ti and to 
correspondently (see Fig 3). The duration on trial j was 
estimated by:  

       i
j ttD  0       ( 3) 

III. MODELS 

 

We considered a number of computational models and 
compared their prediction to the subjects’ behavior. As input, 
all models use some or all of the following variables: 

• ΔT: the difference between the tapping time and the 
reversal time 

• ΔX: the difference in hand location at the instance of 
tapping and reversal. 

• ΔV: the difference in hand velocity at the instance of 
tapping and reversal. 

 
The logistic regression is a standard way to match 

continuous independent quantities with singular dependent 
responses. Its closed form and rather tractable likelihood 
estimation makes it a rather comfortable candidate for our 

modeling scheme. Due to the dichotomous/binary nature of 
the responses reported by the subjects, this method was used 
to model the expected response by the subject [28], namely:   

         dge
dYE 


1

1
|      ( 4)   

where E stands for the expected value of Y (response) given 
the data (d). The function g(d) has the following form 

        011...   dddg nn   ( 5) 

    
The data variables (di) are ΔT, ΔX, and ΔV, depending on the 

specific model. 
In general, an adequate model would generalize across 

different conditions, and more specifically, across two 
different velocities in which subjects are moving their hands, 
as in this experiment. A way to verify the goodness of a model 
would, therefore, be to fit it to a data set that consists of the 
two (slow and fast) movements and then verify the goodness 
of the fit. We regarded the vector ds as a measurement made 
during slow movements. Such a measurement could be the 
time elapsing between the tap and the reversal or the distance 
traveled by the hand from the instant of the tap to that of the 
reversal (see Fig. 1). The vector Ys contains ones and zeros 
which reflects the response of the subject for each trial. 
Accordingly, the vectors df and Yf are the corresponding ones 
for the fast velocity.  The full data set is defined as: 
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Essentially these are the data sets from the two parts of the 
experiment, combined into an augmented vector. 

 
The parameters   01 ,,...,  n   of each model can be 

estimated using the maximum likelihood algorithm aimed at 
estimating the parameters vector, which corresponds to the 
highest likelihood value for the specific data set [29]. The 
likelihood value which is achieved using a certain model, can 
serve as a means to compare different models and infer which 
is the most plausible. Since models might include a different 
number of parameters, a model with a larger number can 
essentially fit the data better and, therefore, will show a higher 
likelihood value. The way to compensate for the different 
number of parameters and compare these models will be 
elaborated in section D below. 

A. Time Representation Model 

The time model makes use of the difference between the 
tapping time and the reversal time. The underlying hypothesis 
behind this model is that the brain represents the delay 
between the two events in units of time. This representation is 
used as the subject judges the order of the two events. The 
time delay between the two events is represented as ΔT: 

      rtT TT    ( 7) 

Essentially, the problem the nervous system is encountering 
is a binary decision in which it has to decide whether the tap 
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came a) before the reversal or b) after it. Such a decision can 
be represented by a single binary variable which will take a 
value of 0 if the tap came before the reversal or 1 if it came 
after, predicting a step function for the psychometric curve. In 
such experiments, one usually observes sigmoid function for 
the psychometric curve, indicating the existence of noise or 
uncertainty in the decision process. It is, therefore, beneficial 
to model the output using the logistic regression, rather than to 
look directly at the location of the transition in the step 
function.  

Assuming time is measured by subjects between the two 
events, (5) takes the following form: 

      01   TTg      ( 8) 

And the parameters αi can be estimated using the maximum 
likelihood algorithm. 

B. State Representation Model 

The state model makes use of the difference between the 
state variables of the hand at the tapping instance and the 
reversal instance, where 

   
rt TtTtX tXtX


 )()(  ( 9) 

is the difference in the positions of the tap and reversal. The 
underlying assumption for this model resembles the one made 
for the time representation model except for the fact that state 
information is used in judging the order of the two events.  

The second state variable that was used is the velocity, and 
more precisely, the difference in velocities on the tap and 
reversal times is: 

   rt TtTtV tVtV


 )()(
      ( 10) 

 
The formulation of this state model is similar to the time 

model in section A. In this case, the only difference is the 
function g(ΔX, ΔV) that has the following form: 

     012,   XVXVg   ( 11) 

The state model has an additional parameter which must be 
estimated. The rest of the derivation is the same as seen in the 
previous section for the time model. 

C. Combined Model 

The third model combines the two previous models.  It 
could be considered as an alternative hypothesis in which 
subjects use time and state information together to conclude 
which came first: the tap or the reversal.    

Such a model would have the same structure as the previous 
ones, except for the function  TXVg  ,, that will have the 

structure: 
     0123,,   TXVTXVg   ( 12)   

 
Table 1 below shows the three linear models discussed 

above and the number of parameters that should be estimated 
for each. 

D. Bayes Factor 

A way to compare the performance of the three models 
would be to compare the likelihood of the model given the 
data or: 

       iMxpL |      (13) 

 
where, in this case, the models Mi are a collection 

 01,,...,  n
  for each of the entries in Table 1. 

Since the models contain a different number of parameters, 
a model with a larger number should theoretically fit the data 
better and, therefore, show a higher likelihood. A way to 
adjust for these differences in number of parameters is to use 
the Bayesian Information Criteria (BIC), which adjusts the the 
likelihood value based on the number of samples and the 
number of parameters that are used in the model [29, 30]. 

        NkLBIC lnln2       ( 14) 

 
Here L is the likelihood of the model given the data, k is the 

number of parameters, and N is the number of samples used to 
estimate the model. A way to compare two models is to look 
at the difference in their BIC value. A value greater than 10 is 
considered significant [31, 32]. 

E. Alternative Comparison 

The following is an alternative for looking at the BIC or 
likelihood values of each fitted model. First, each of the 
models in Table 1 is fitted twice, once for the data for the high 
velocity movement, and once to the data for the slow 
movements. This fitting procedure is repeated for each 
subject. We label these two models Mih and Mil, where i is the 
index for the number of subjects (i = 1….N, N – total number 
of subjects) and the sub index h and l refer to the high and low 
velocities. In essence, each of the models M is a 
collection  01,,..., vv

n
v   , where v can either be l (low) 

or h (high). 
A collection of all the N models across subjects at a single 

velocity (low or high) can be regarded as a sample of some 
multivariate distribution, in which each model 
(  01,,..., vv

n
v   ) is a single point in the n+1 dimension 

space. For instance, for the time model which appears on the 
first row of Table 1, n would be 1 and the space would be of 
dimension 2. Since each model is fitted twice for each 
velocity, at hand are two of these distributions where each 
includes N points. A statistical test (such as MANOVA) can 
be used to verify whether the mean value of these two 
distributions is significantly different. A different value of the 
mean would imply that the models for the high and low 
velocities are different, and essentially there is no 
generalization between the two conditions or two velocities. 
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IV. RESULTS 

A. Subjects Able to Move at Two Different Velocities 

The very essence of our research question was to verify 
whether subjects tended to judge the two events of tap and 
reversal as happening together by means of state or time. 
Therefore, subjects were either servoed or they actively 
moved one hand at two different velocities. Comparing the 
mean reversal time (D, in (3), L = 2 cm) at the fast and slow 
conditions shows a significant change for both experiments (p 
< 0.001 for the first experiment, p < 0.005 for the second 
experiment). The outcome of significantly different velocities 
is more obvious for the first experiment in which subjects 
were actively servoed. In the second experiment, subjects 
were asked to maintain a fairly high velocity on the fast block 
to try to maintain a fairly low one on the slow block 
(randomly assigned as first or second blocks among subjects). 
Theoretically, subjects may have drifted to a similar velocity 
in both fast and slow conditions i.e., increasing their servoing 
speed on the slow block and decreasing it on the fast block. It 
turned out this was not the case, and evidently, they were able 
to maintain two different speed profiles. Fig 4 shows the 
results of the reversal duration for the two experiments. 

B. Shift in Crossover Point 

The psychometric curve for a single subject is shown in 
Fig. 5, bottom panel. Comparing this figure with Fig 2 implies 
that the subject perceived the reversal as occurring after the 
tap. In Fig. 5, top panel, the crossover point that corresponds 
to the value of Δ in which (1) reached the value of 0.5 for both 
velocities is displayed. The figure shows the results for the 
two groups of subjects for both velocities. On the left is the 
data retrieved from the group that actively performed the 
slicing movement and on the right, the data of the group that 
was passively servoed by the manipulandum. The data on the 
left side shows a significant shift from zero  
(p < 0.01, t-test). The data on the right shows no such 
tendency (p > 0.1, t-test). The two scatters are significantly 
different (p = 0.01, t-test). A positive shift at the 0.5 point 
implies that the reversal event is perceived to occur later, 
which could imply a longer processing time for the reversal 
event. See Fig. 2 for more details regarding shifts of the 
psychometric curves.  The just noticeable difference (JND) is 
an estimate of the ability of a person to observe changes. It is 
estimated by taking the difference between the point in which 
the psychometric curve reaches the value of 0.75 minus the 
0.25 point [33]. We estimated JND for both experiments and 
found it to be 42 ms for the Robot Servoed experiment and 67 
ms for the Active Subjects experiment.  We assumed that once 
two events are within the JND, they are considered to be 
happening together. This value is smaller than the shift of the 
curve seen in Fig. 4 and, therefore, the shift can be assumed to 
be significant. The deviation of the crossover point which was 
estimated by the bootstrap method (see section II.B) was 22 ± 
13 milliseconds. 

In Fig. 4, it is evident that the effect for the active 

movement exists at both the slow and fast paces.  Therefore, 
though the velocity for the robot in the high speed condition 
was slightly higher than in the self-paced condition, the low 
velocity was in-between the high and low velocities in the 
self-paced condition. It can, therefore, be assumed that the 
effect of the perceived time of reversal was different for both 
conditions, as the velocity on average is comparable. 

 

C. BIC Values for Different Models 

The BIC (see (14)) values were estimated for all models 
elaborated in section 3, for each one of the subjects. Tables 2 
and 3 show the BIC value for each of the subjects, along with 
the mean value for each experiment (Robot-activated and 
Subject-activated) across subjects. The last row shows the 
mean of all the BIC values across subjects after subtraction of 
the BIC value of the time model.  If the time model is better 
than the other models, the mean values of the models should 
be larger than zero, which is the case here. 

In general, a model with a BIC value which is smaller by 
more than 10 from another model is considered significantly 
better [31, 32]. It is evident that the time model has a lower 
value of more than 10 from the state model (XV). The 
negligible difference in BIC values between the time and 
combined models for both active and passive groups is 
supported in the time model. Essentially, the similarity in BIC 
values for the models suggests that there is no additional 
information in the state data that is not evident in the time 
data. Additional modeling work which includes other 
combinations of state and time is presented in Appendix 1.  

D. Results for the Alternative Methods 

Table 4 below shows the P values for each of the models 
and for each group, as described in section III.E. 

The shaded part of the table shows the models that do not 
include the time information, and it is evident the P values are 
lower.  Low values imply that the two distributions (for the 
low and high velocities) are significantly different for the state 
model (XV). Table 5 shows the fitted parameters for the 
combined model (XVT). Essentially, the only parameter 
which should be different than zero is the time parameter and 
not velocity or position. This is true for the Robot activated 
experiment. In the Subject activated experiment, the velocity 
term is different from zero as well. This fact does not weaken 
the time model, as the best candidate time is included in the 
velocity term (X/t). Since correlation between time and 
velocity exists, we used BIC to quantify this difference. 

V. DISCUSSION  

The main result suggests simultaneity, i.e., the time 
difference between the reversal and the tapping, is much more 
likely to be the measure that is evaluated by the nervous 
system compared to other alternatives, such as position and 
velocity.  A second result implies that during active 
exploration, perception of the reversal event is delayed 
compared to the tap.  This delay was not observed when the 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

7

hand was moved (by the robot). 
Tap time and reversal time were estimated from each one of 

the subjects’ trajectories. Trajectories in which the tap was not 
in the ± 250 ms range around the reversal point were 
discarded and not included in the analysis presented here. 
Also discarded were the trials in which no tap was delivered 
(~ 1/3 of the trials, see Methods section). We found no effect 
on subjects’ hand trajectories between the trials where a 
perturbation was delivered and the ones where it was not. This 
implies that subjects were aware of the impending tap, but it 
did not affect their behavior. 
In this study, subjects performed slow and fast slicing 
movements under passive and active conditions and were 
asked to report which event came first, a tactile tap or the 
reversal of the arm movement.  In the active condition, 
subjects demonstrated a clear bias towards reporting that the 
tap occurred earlier; such bias was not evident in the passive 
condition. We fitted computational models using various 
linear combinations of velocity position and time variables 
and found that the time model was the best at accounting for 
the responses made by the subjects.  

  Numerous previous studies suggest the existence of neural 
time keepers or clocks within the nervous system (e.g., [11, 
12]). These mechanisms are presumably responsible for our 
ability to accurately perform different motor tasks, such as 
playing a musical instrument or hitting a tennis ball with a 
racket. Other studies suggest that the motor system adapts to 
state-dependent force perturbations but does not adapt to time-
dependent forces that are not in a fixed relation with the state 
of motion of the arm [8, 9]. The results here are supportive of 
the time representation during the tap/reversal order judgment 
task.  It might well be that within the motor system, the 
execution of a motion is state-based while the perception of 
motion or tactile information is time-based. 

Tables 2 and 3, as well as Table 4, show that the time model 
better explains the responses of the subjects regarding the 
order of the events. It is evident on Tables 3 and 4 that the 
combined model (XVT) explains the data nearly as well as the 
time model. This, of course, strengthens our claim that time 
and not state are used to match the two events, as the addition 
of state information to the time information does not improve 
the performance of the model. 

Our findings suggest it takes more time to perceive the 
reversal, on average, than the tap event in active motion (see 
Fig. 5).  Prior to actively moving the hand, it is presumable 
that the subject’s nervous system has encoded the afferent 
instructions of the upcoming movement. The posterior parietal 
cortex PPC is a neural structure that might serve as a 
candidate for holding these instructions [34]. Within this 
sequence of instructions, the reversal point, which is part of 
the sequence, should be encoded as well. Hence, prior to 
starting the motion, the nervous system is aware of the 
location of the upcoming reversal point.  Once completing the 
motion, the nervous system holds the information regarding 
the tactile event that was deployed at some point throughout 
the movement. These two events are compared and a decision 

regarding their apparent order is made. One can consider two 
possible strategies the brain may use to match these two 
events.  In the first possibility, the a priori known reversal 
information is compared to the sensed tactile event; since the 
reversal information is already known, the only expected 
delay is in the tactile information. In the second possibility, 
both the reversal and the tap information are sensed and then 
compared. In such a case, delay is expected in both modalities. 
The current findings, in which the reversal takes longer to 
process (on active tasks), are in clear contrast to the first 
possibility and suggest that under the second possibility, the 
processing of the reversal information takes longer. This fact 
is supported by previous studies of stiffness estimation [35] 
where the most plausible model suggested a measurement of 
the force and position during the action of stiffness estimation 
(generally a slicing movement into a spring-like surface).  

Simultaneity is defined as two events happening at the same 
time. In practice, due to different propagation paths in the 
nervous system among other factors, two events can be 
slightly shifted in time, but perceived as occurring 
simultaneously. In order to test this perceptual simultaneity, 
one can follow one of two paradigms. The first is to elicit two 
events with different time shifts and ask the subject whether 
the events occurred together or not. The second would be to 
ask the subject which of the events came first. Both methods 
can be used to test simultaneity by deliberately presenting two 
stimuli asynchronously. Moreover, both ways can be used to 
explore the question at hand and can be used to explain the 
results (time, state, or both). The work here made use of the 
second method, and the results support the notion that the 
difference in perceived simultaneity corresponds to a 
difference in processing time.  In general, it is well known that 
the nervous system is quite capable of taking such differences 
into account (e.g., perceiving visual and tactile events as 
synchronous despite their having very different processing 
delays). Here, we deliberately separated the tactile and motion 
stimuli and, therefore, we did not expect the nervous system to 
calibrate the two events during the experiment. 

The difference in temporal perception is known to be 
different for self vs. actuated motion. Stetson et al., [16] 
suggest that active exploration of the environment is more 
suitable to induce a temporal adaptation, which might imply 
involvement of different neural structures in tasks of temporal 
order judgment. That specific work concerns visual-haptic 
matching in which subjects were asked to match a visual 
stimulus by pressing a button. During the active portion, the 
subject actively hit a button and judged its simultaneity with a 
flashing light. In the passive part, the button moved and 
touched the subject’s hand, and once again, subjects were 
asked to report which event came first. The outcome of that 
work and the current study are consistent.  In both studies, 
active exploration induced a delay between the action (Button 
touch/Reversal) and the perception of events (Flash/Tap). 
Other studies have compared different tasks in which active 
and passive motions are involved. Dente et al., [17] report 
difference in tracking haptic patterns between active and 
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passive exploration. Symmons et al. show a difference in 
detection performance between active and passive exploration 
of virtual geometric shapes [15]. On the other hand, Vega-
Bermudez et al. did not find any differences between active 
and passive exploration during letter detection tasks [36]. This 
gap between active and passive exploration could be a reason 
for slower guidance of another person across new terrain. 
Understanding the different mechanisms of active and passive 
exploration is essential for the design of robotic assistive 
devices for various human machine interactions. 

The work presented here has only considered the two 
modalities of the motor system; proporioceptions and tactile 
force. A great deal of effort was taken to exclude all other 
cues, such as visual or acoustical. It can be assumed that 
supplying such information to the subject might alter their 
perception of simultaneity in different modalities [4, 37], but 
such work is out of the scope of this study.  

We have referred to one event as tactile and the other as 
proprioceptive, however, one should note that these two 
modalities might share neural pathways. Therefore, the 
ascending signal might not necessarily travel through different 
neural paths. Other explanations aside from different 
processing mechanisms can explain the difference in active 
versus robot-generated motion. One would be the amount of 
attention paid by the subject. Another might be muscle 
activation, which could influence the perceived reversal time. 
Additionally, this is likely to differ between self- and robot-
generated conditions, providing a possible explanation for 
differences in perceived timing.    

Taken together, our findings support a representation of 
coincidences based on temporal delays rather than on the 
position and velocity of the hand. Representation of time 
within the nervous system on the ascending tracks might have 
an impact on our understanding of various illnesses such as 
Huntington's or Parkinson’s disease. Furthermore, fields such 
as teleoperation, telerehabilitation, and telesurgery might 
benefit from understanding how such delays affect the 
perception of the remote operator during interaction with 
distant environments. 

APPENDIX 1. 

An important quantity of a logistic regression model is the 
uniqueness of the independent variables in regard to the 
response of the subject. For instance, the time model (T) uses 
the time difference between the tap and the reversal as the 
independent variable.  Therefore, it would show negative 
values if the tap occurred before the reversal and positive if 
after. As a consequence, there is a uniqueness of the values. 
On the other hand, the position variable would always 
receive positive values, as the reversal point is always greater 
than the tap point, regardless if the tap occurred before or 
after the reversal. This fact is apparent in the table below 
where the position model (X) is much worse than any other 
model. Actually, it is comparable to regression of this 
information with random data (see column “Rand”). 
As for the models reported in this article, all three have this 
uniqueness property. Time has been explained above. State 

[X,V] derives its uniqueness from the velocity variable 
(positive on the way to the reversal point and negative on the 
way from it.) The combined model then, of course, 
demonstrates this uniqueness.  
The location along the movement (L) can also be regarded as 
a position variable and would show the uniqueness property, 
after shifting by the reversal point. This variable together 
with the velocity was regarded as another state variable and 
was also tested. The table below (Table A1) shows the BIC 
value for all models after subtracting the value for the time 
model (the same as in Tables 2 and 3). 

ACKNOWLEDGMENTS 

The authors are grateful for the useful comments and 
suggestions of Dr. Vikram Chib regarding the data analysis 
and interpretation.  

 
Assaf Pressman was born in 1971 in Rehovot, Israel. He received his B.Sc. 
degree in 1998 and M.Sc. degree in 2001 in Electrical Engineering from Ben-
Gurion University of the Negev. During his undergraduate studies, he worked 
for Applied Materials Corporation, Rehovot, Israel. 
From 2000-2002, Pressman worked in Widemed, (Omer, Israel) developing 
algorithms for automatic sleep apnea identification. From 2002-2004, he 

worked as a system engineer and algorithm 
developer in the Israel Aerospace industry (Ashdod, 
Israel). Since 2004, he has been in the Robotics 
Laboratory at the Sensory Motor Performance 
Program, Rehabilitation Institute of Chicago, 
Chicago IL. Currently he is enrolled in the PhD 
program in the Department of Biomedical 
Engineering at Ben-Gurion University of the Negev, 
under the supervision of Dr. Amir Karniel. His 
research interests include Brain Theory, Biomedical 
Signal Processing, Motor Control, and Motor 

Learning. 
 
 
Amir Karniel was born in Jerusalem, Israel in 1967.  He received a B.Sc. 
degree (Cum Laude) in 1993, a M.Sc. degree in 1996, and a Ph.D. degree in 
2000, all in Electrical Engineering from the Technion-Israel Institute of 
Technology, Haifa, Israel.  He served four years in the Israeli Navy as an 
electronics technician and worked during his undergraduate studies at Intel 

Corporation, Haifa, Israel.    
Dr. Karniel received the E. I. Jury award for 
excellent students in the area of systems theory, and 
the Wolf Scholarship award for excellent research 
students.  For two years he had been a post doctoral 
fellow at the department of physiology, 
Northwestern University Medical School and the 
Robotics Lab of the Rehabilitation Institute of 
Chicago.  Since 2003, he is with the Department of 
Biomedical Engineering at Ben-Gurion University 
of the Negev where he serves as the head of the 
Computational Motor Control Laboratory and the 

organizer of the annual International Computational Motor Control Workshop.  
In the last few years his studies are funded by awards from the Israel Science 
Foundation, The Binational United-States Israel Science Foundation, the 
National Institute of Psychobiology in Israel, and the US-AID Middle East 
Research Collaboration.  Dr. Karniel is on the Editorial board of the IEEE 
Transactions on System Man and Cybernetics Part A, The Frontiers in 
Neuroscience, and a guest Editor for a special issue of the IEEE Transactions 
on Haptics. His research interests include Human Machine interfaces, Haptics, 
Brain Theory, Neural Networks, Motor Control and Motor Learning.  
 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9

 
Ferdinando A. Mussa-Ivaldi was born in Torino (Italy) in 1953. He is a 
member of the IEEE. He  has a degree (Laurea) in Physics from the University 

of Torino (1978) and a PhD in Biomedical 
Engineering from the Politecnico of Milano (187).  
He is Professor of Physiology, Physical Medicine 
and Rehabilitation, and Biomedical Engineering at 
Northwestern University. Mussa-Ivaldi is Senior 
Research Scientist at the Rehabilitation Institute of 
Chicago, where he founded and directs the 
Robotics Laboratory. His areas of interest and 
expertise include Robotics, Neurobiology of the 
Sensory-motor System, and Computational 
Neuroscience. Among Dr. Mussa-Ivaldi’s 

achievements are the first measurement of human arm multi-joint impedance, 
the development of a technique for investigating the mechanisms of motor 
learning through the application of deterministic force fields, the discovery of 
a family of  integrable generalized inverses for redundant kinematic chains, 
the discovery of functional modules within the spinal cord that generate a 
discrete family of  force-fields, the development of a theoretical framework 
for the representation, generation, and learning of limb movements, and the 
development of the first neurorobotic system in which the brainstem of a 
lamprey controls the behavior of a mobile-robot through a closed-loop 
interaction. 
Dr. Mussa-Ivaldi has 110 full-length publications and 85 abstracts. He is on 
the editorial boards of the Journal of Neural Engineering and The Journal of 
Motor Behavior and is member of the Society for Neuroscience and of the 
Society for the Neural Control of Movement. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10

 
 
 

Table 1: Model descriptions  
 

 
 

 

Table 2: BIC values for the Robot-activated group 

Robot Act T XV XVT 

1 140 173 149 

2 323 307 311 

3 271 283 275 

4 138 171 150 

5 235 249 238 

6 208 194 196 

7 160 191 165 

8 234 263 243 

9 186 217 197 

10 55 104 59 

11 115 156 122 

Mean 188 210 191 

Diff Mean 0 22 3 
 

 

 

 Table 3: BIC values for the Subject-activated group 

Subject 

Act 
T XV XVT 

1 253 262 262 

2 68 96 79 

3 133 148 129 

4 191 219 202 

5 163 182 173 

6 332 304 309 

7 213 250 220 

8 162 216 173 

9 149 162 149 

10 139 138 139 

11 82 109 93 

12 223 250 233 

13 216 231 215 

Mean 179 197 183 

Diff Mean 0 18 4 

 

Table 4: P values for the both Robot-activated and Subject- 

activated groups 

 T XV XVT 

Robot Act 0.74 0.01 0.75 

Subject 

Act 

0.76 0.01 0.71 

 

Table 5: Statistics of fitted parameters for the XVT model in 

both experiments. Each entry shows the mean ± standard 

error. In the shaded cells, the mean was significantly different 

than 0. 

Experiment X [1/m] V [S/m] T [1/S] # 

Robot Act 6.0±92.7 -0.7±5.6 32.7±44.8 0.9±1.3 

Subject Act 2.8±27.5 -0.9±0.8 19.9±15.9 -0.4±0.9 

Name Symbol Equation 
Number of 

Parameters 

Time T   01   TTg
 

2 

State XV 
 

012

,

 


VX

VXg
 3 

Combined XVT 

 
123

,,

 


TVX

TVXg

 

4 
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Table A1: BIC value for additional models 
Model T L V LV LT VT 

Robot act 0 13 22 12 1 1 

Subject act 0 19 18 14 2 1 

Model LVT X XV XT XVT Rand 

Robot act 3 246 22 3 4 253 

Subject act 4 169 19 3 4 194 

 
 

 
 
 
Fig. 1: (Panel A) The two trajectories for the experiment - position as a 
function of time. The curve describing the slow motion (blue) starts earlier 
than the fast one (red). XLow is the distance traveled from the reversal point to 
the tapping point at low velocity. The same follows for XHigh, but at high 
velocity. (Panel B) Hand position (top), velocity (middle), and applied force 
(bottom) are shown as a function of time. The question is whether the reversal 
and the tap are matched using time or state of the hand. Panel C shows the 
subject holding onto the robotic manipulandum. A horizontal screen obscured 
the subject’s arm and displayed instructions. The black arrow is a cartoon of 
the slicing motion subjects performed although the fro and back motion, in 
general, followed the same lateral location. 
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Fig. 2: Possible psychometric curves for the expectation of an answer 
indicating that the tap arrived after the reversal as a function of the difference 
in time between the two events. The gray dot-dashed line demonstrates the 
performance of a “perfect subject” who can accurately estimate whether the 
tap occurred after the reversal. The black solid line shows a typical subject 
who would make some mistakes in the transition region (marked as a gray 
rectangle). A shift in this graph to the left (right), as seen by the dashed black 
line on the left (right), would suggest the subject perceives the tap as 
occurring after (before) the reversal, although the tap actually occurred before 
(after) the reversal.  
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Fig. 3: RD (reversal duration) estimation. The bell-shaped (blue) line shows a 
typical trajectory in which the top point (red square) is the maximum 
protraction point. The length of the line between ti and to  (black line) would 

serve as proxy to the RD of the motion. 
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Fig. 4: The reversal duration for each one of the experiments. Each x axis 
corresponds to the median of the reversal duration of a specific subject. The 
red x’s (left side of each panel) are the values during the fast motions, and the 
blue (right side of each panel) are for the slow ones. The left panel shows data 
from the experiment in which the arm was moved by the robot. The right 
panel shows data of the self-activated motion. The mean of the data in both 
panels is significantly different (p < 0.005, t-test). 
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Fig. 5: (Top Panel) The shift of the crossover point in seconds (see part 2.2 in 
Methods section) for the two experiments as a function of the difference 
between the tap time and the reversal time (Tt – Tr). Each yellow x on the left 
side of the plot corresponds to the shifts during the self-actuated motion either 
for the fast or slow conditions for a single subject. On the right are the x’s 
corresponding to the shifts at the 0.5 point during the servoed motion. The 
active group has a mean significantly different from zero (p < 0.01, t-test). The 
gray square is the mean value for each group, and the wings are a single 

standard error over all subjects for fast and slow motion. (Bottom Panel): 
Psychometric curve for a single subject from the active group (left side of top 
panel). The horizontal axis is the difference between the time of the tap and 
that of the reversal. The vertical axis is the probability of responding that the 
tap came after the reversal. Dots (red) are the estimated probability for a 
particular subject. The sigmoid curve (blue line) is fitted to the data using the 
maximum likelihood procedure. The black point is the 0.5 probability point, 
and it is evident it is shifted to the right, which implies the reversal was 
perceived as occurring after the tap. The horizontal magenta line is the two 
standard errors confidence interval for the value of the shift. 
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