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How Soft Is That Pillow? The Perceptual Localization of the
Hand and the Haptic Assessment of Contact Rigidity
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A new haptic illusion is described, in which the location of the mobile object affects the perception of its rigidity. There is theoretical and
experimental support for the notion that limb position sense results from the brain combining ongoing sensory information with
expectations arising from prior experience. How does this probabilistic state information affect one’s tactile perception of the environ-
ment mechanics? In a simple estimation process, human subjects were asked to report the relative rigidity of two simulated virtual
objects. One of the objects remained fixed in space and had various coefficients of stiffness. The other virtual object had constant stiffness
but moved with respect to the subjects. Earlier work suggested that the perception of an object’s rigidity is consistent with a process of
regression between the contact force and the perceived amount of penetration inside the object’s boundary. The amount of penetration
perceived by the subject was affected by varying the position of the object. This, in turn, had a predictable effect on the perceived rigidity
of the contact. Subjects’ reports on the relative rigidity of the object are best accounted for by a probabilistic model in which the perceived
boundary of the object is estimated based on its current location and on past observations. Therefore, the perception of contact rigidity

is accounted for by a stochastic process of state estimation underlying proprioceptive localization of the hand.

Introduction
An illusion is a distortion of the senses, revealing how the brain
organizes and interprets sensory stimuli. Although illusions are
subjective, they are generally shared by most people (Solso, 2001;
Levitin, 2002). [llusions can be referred to a single modality, e.g.,
Kanizsa triangle (Kanizsa, 1955; Renier and Volder, 2005), or
they may span multiple modalities and involve timing differences
between them, such as in the McGurk effect (McGurk and Mac-
Donald, 1976; Munbhall et al., 1996) or the rubber hand illusion
(Botvinick and Cohen, 1998; Peled et al., 2003). Various illusions
are known to appear within the sensory-motor system such as the
phantom limb (Halligan, 2002) and the cutaneous rabbit illusion
(Geldard and Sherrick, 1972). Here, we present a new illusion
involving the motor system. In this illusion, the perception of an
object’s rigidity or stiffness is distorted. The perception of rigidity
is very important in determining how we manipulate things in
our environment. For example, we apply different contact forces
to a glass versus a Styrofoam cup.

A variety of works in the field of haptics have demonstrated
the interaction between force and position information in stift-
ness assessment within the nervous system (Jones and Hunter,
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1990; Srinivasan and LaMotte, 1995; Pressman et al., 2007). Ad-
ditionally, a number of illusions within this field have been re-
ported (Jones, 1988) and, more recently, neural correlates to the
size—weight illusion and the material-weight illusion (Chouinard
et al., 2009) have been found. Here, we explore how the brain
estimates the stiffness of a contact by combining past and current
position information.

We applied an unexpected displacement of the object bound-
ary and evaluated its effect on the perception of rigidity. Based on
our previous studies (Pressman et al., 2007), we assumed that
after a prolonged interaction with a stationary object boundary, a
subject’s nervous system forms a representation of that bound-
ary’s location. This representation would then bias the percep-
tion of the object’s position with respect to the subject. Following
this view, a small displacement of the boundary would cause a
change in the perceived rigidity of the object because of the
change in perceived distance traveled inside the boundary. The
displacement would therefore create an illusion of a change in
stiffness, when actually no such change took place.

We found that subjects did indeed experience the illusion.
Then we considered the possibility that the brain derives the lo-
cation of the boundary by combining the ongoing sensory infor-
mation about the contact with a prior belief, derived from past
experience. We designed a second experiment in which the object
was smoothly shifted back and forth. Trial-by-trial learning in the
context of random force perturbations was found to be well rep-
resented by an autoregressive process (Scheidt et al., 2001), which
combines current input and performance with past performance.

Together, our findings demonstrate for the first time that the
same adaptive mechanisms that are used by the brain to optimally
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estimate the state of motion of the arm based on combining
current information and prior knowledge may also have a direct
impact on the perception of the mechanical properties of the
environment we come into contact with. Preliminary results re-
garding this illusion were presented in Pressman et al. (2008).

Materials and Methods
Setup

Thirteen human subjects (eight males; five females; age, 27 * 7 years)
participated in this experiment after signing the informed consent form
approved by Northwestern’s Institutional Review Board. Seven subjects
participated in the first experiment (constant reference experiment) and
six subjects participated in the second experiment (moving reference
experiment) (Table 1). Subjects held, with their dominant (right) hand,
the handle of a two-degrees-of-freedom robotic manipulandum, and
looked at a screen, placed horizontally above their hand (for further
details about the robotic manipulandum, see Shadmehr and Mussa-
Ivaldi, 1994; Conditt et al., 1997).

We used a forced-choice paradigm to assess the effect of boundary
displacement on the perception of stiffness. In
each trial, two surfaces were rendered by a ro- A
botic device (Fig. 1A), sequentially, one at a
time. Force was exerted perpendicular to the
coronal (frontal) plane, with the subject facing
the robotic device. Subjects were asked to alter-
nate contacts with both surfaces by moving the
handle of the manipulator against their bound-
aries. Movements were made in a sagittal plane
passing through the subject’s shoulder and
perpendicular to the transverse (horizontal)
plane (motion was limited to the transverse
plane due to the mechanical design of the ro-
botic device). We call these testing contacts
“probing motions.” After performing as many
probing motions as they wished, subjects were
to report which of the two surfaces they per-
ceived to be stiffer. Subjects were not in-
structed about extent of penetration inside the
boundaries.

The elastic force generated by the manipu-
landum was proportional to the distance of the
subject’s hand from the surface boundary. On
average, the boundary of the object was 45 cm
from the subject’s shoulder, along the sagittal
plane. Occasionally, one of the two surfaces (D
surface) was slightly displaced toward or away
from the subject. The other surface (K surface)
was kept stationary across trials. The subjects did not see their hands. A
line perpendicular to the object’s border was presented to indicate the
lateral location of the hand, but no visual information was available to the
subject about the vertical distance of the hand to the border. A circular
disk (14 cm diameter) was projected on the screen in alternating red and
green colors (Fig. 1 B). The colors provided the subjects with an identifier
for two alternating virtual surfaces, referred to as “red surface” and
“green surface.” The shape and location of the disks were chosen not to
disclose any spatial information regarding the surfaces. The two colors,
however, were assigned randomly in each trial, so that each surface type
(K or D) was not uniquely associated with a color.

Subjects probed each of the two surfaces several times. They switched
between the two until they felt ready to give their response to the question
“Which surface is stiffer (green or red)?” by pressing one of two buttons
on a handheld device. A single probing sequence is shown in Figure 1C.
Switching took place once the subject had retracted his/her hand >8 cm
from the boundary (Fig. 1C, red squares).

We acquired three types of data, as follows: (1) the responses of the
subjects (green or red, for each trial); (2) the position of the hand along
the y-axis, sampled at a rate of 100 samples per second. Position data were
used in real time to generate the virtual surfaces; and (3) the interaction

Figure 1.
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Table 1. Log likelihood values for the CP and the VP model

Likelihood value

Model subject Displacement Mean

number Experiment direction (P model VP model VP —CP VP — (P
1 Constant reference + 46.68  44.56 =213 —6.01
2 + 3447 3401 —0.480
3 + 3976 21.67 —18.09
4 - 8275  88.94 6.20
5 - 6548  61.77 —372
6 - 63.10  56.75 —6.35
7 + 4812 30.55 —17.56
8 Moving reference  + 8043 5137 —29.07 —17.72
9 + 36.95  32.50 —4.45

10 + 7631 65.60 —10.71

N + 6267 3754  —25.14

12 + 6459  46.22 —1837

13 + 5298 3410 —18.89

Displacement direction is given for each subject as + (toward) or — (away) signs. VP — (P is the difference
between VP and CP. Mean VP — CP shows the mean value across VP — CP for all subjects in each experiment.
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A, Subject holding the handle of the manipulandum and interacting with the object. Object (orange rectangle) is
oriented parallel to the coronal plane and located ~40 cm away from the subject. Direction of force is toward the subject and it is
perpendicularto the coronal plane (arrows). Displacement of the object would keep it parallel to the coronal plane and would either
move it toward or away from the subject. Subjects were advised to probe the object by moving the hand within a plane parallel to
the sagittal plane and passing through their right shoulder. The motion was free, that is, no mechanical limits were deployed to
keep the subjects on this plane. B, Visualized environment during the experiment. The rectangle represents the screen on which
information was displayed. This screen blocked any visualization of the arm. The red circle represents the surface with which the
subject is currently interacting. The cyan line represents the lateral location of the arm and serves as the guideline to arm place-
ment. The green dot marks the advised arm configuration during probing. C, A typical probing of the boundary. Rectangles show
the different surfaces (pink, K; green, D). Note that the green D surface is displaced away from the subject in this case. The black line
shows the location of the boundary for each surface. Asterisks on the maximum points represent a single probing into the surface.
Red squares mark the swapping of the two surfaces as subjects retracted their arm by >8 cm away from the surface’s boundary.

force with the surface. This force was calculated in real time based on the
hand position, the displacement and the elastic properties of the surface
(stiffness and boundary).

Experiment 1: constant reference. The force exerted by the virtual sur-
faces was, in the y-axis direction, in proportion to the displacement from
the boundary, Y,", during the current (1) trial.

[~ HY- (Y, +H)] Y<Y/+H
F,= 0 Y=Y, +H ey

where F, is the force in the y-axis direction, k is the spring’s stiffness
constant, Y is the position along the y-axis, and Y, is the coordinate of
the boundary. During the first experiment, Y," = 0 for all n.

During each trial presented to the subject, the K surface took one of the
stiffness values drawn randomly from 150 to 600 N/m (in increments of
50 N/m). The stiffness of the D surface was set to 375 N/m. Therefore, the
stiffness of the K and D were never equal. The D surface was displaced
toward or away from the subject in a portion of the trials, which was
chosen randomly, during the course of the experiment and was the same
for all subjects. The displacement was implemented by changing the
value of H in Equation 1 for the whole extent of the specific trial. Values
for H were changed from zero to a value drawn from a Gaussian distri-
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Figure2. A, B, Baseline and displacements in both boundaries, K (orange line) and D (blue

line). A, Setup for the constant reference experiment, where the baseline position of both the
boundaries was not displaced. B, A sinusoidal displacement of both boundaries is evident start-
ing on trial 100.

bution (u = *£1.5 cm, o = 0.35 cm) only for the D surface. Each subject
(three toward, four away in the constant reference experiment; six to-
ward, none away in moving reference experiment) encountered either a
positive or a negative displacement (). The K surface was set to Y," and
was never displaced.

Experiment 1: constant reference consisted of two blocks. The first was
areference block in which no displacement of the D boundary took place
and lasted for 100 trials. During the second block (400 trials), on random
trials spaced two to six trials apart, the D boundary was displaced toward
or away from the subject (for a specific subject, the direction of displace-
ment was kept fixed during the whole experiment) (Fig. 2A).

Experiment 2: moving reference. In the second experiment (with six
subjects), an additional slow sinusoidal displacement was applied to
the position of both the K and D surfaces; specifically, the value of Y,
in Equation 1 was not constant across the whole experiment but
changed as a function of the trial number # as follows (units are in
centimeters) (Fig. 2B):

o 0 n < 100
Yo" = \sin@- - (n — 100)/75) -2 n=100" (2)

The slow trial-by-trial sinusoidal displacement applied to the objects in
this experiment resulted in a maximum step change (relative to the pre-
vious trial) of 0.17 cm. This was small compared with the mean of the
distribution from which standard object displacements were chosen (1.5
cm). However, the peak-to-peak amplitude of the slow sinusoidal dis-
placements was 4 cm and thus exceeded the mean standard object dis-
placement. As shown below in Results, these conditions allowed us to
distinguish between a model which can account for slow changes in
surface location and one which cannot.

Psychometric curves
Figure 3C schematically illustrates psychometric curves describing sub-
ject replies as function of the gap between the stiffness of the surfaces D
and K. These curves estimate the frequency with which subjects indicated
that the D surface was stiffer than the K surface, as a function of the actual
stiffness difference, K, — K. For two linear spring-like surfaces without
adisplacement (i.e., the value of H in Equation 1 for the D surface is equal
zero), we expected the answers to reach chance (value of 0.5) level when
the two values of the stiffness were equal. This is the point of subjective
equality (PSE) (Gescheider, 1997; Ohnishi and Mochizuki, 2007). A
sigmoid-shaped curve is expected, as answers are likely to be correct
when the stiffness levels are substantially different. If a change is made to
one of the surfaces that alters the perception of stiffness, the psychomet-
ric curve would not be centered on K, — K = 0 anymore, but would
shift to either side, depending on the perception being biased toward
stiffer or more compliant evaluation.

Specifically, we let A = K, — K be the difference between the D and
K stiffness values. Each point on the psychometric curve is an estimate of
the probability of the subject reporting that the D surface is stiffer than
the K surface as a function of A.

R(A)
2N
Dy(Reporting that K, > KylA) = ET) > (3)
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where
.1 reply: Kj, > K
N'= {0 reply: Kj, <Kj ’ )

and j is an index over the trials with stiffness difference A. R(A) is the
number of times this stiffness difference was encountered during the
current block. The caret over the stiffness of the K and D surfaces stands
for the stiffness perceived by the subject, as opposed to the actual nomi-
nal stiffness of the surface. The subindex S in Pg designates this function
for subject S. As described below, we derived similar functions for each
computational model.

The psychometric curves were estimated separately for three blocks for
each subject on both experiments. The first block was for reference, the
second block was either a trial with no displacement at the D surface or a
trial with displacement at the D surface.

The stiffness at the PSE (where P =~ 0.5) was evaluated using a maxi-
mum likelihood fit of a sigmoid function to the data points. The boot-
strap method was used to estimate the goodness of fit (Wichmann and
Hill, 2001a,b).

Logistic regression

As explained in the previous section, subjects became more uncertain in
assessing the relative rigidity of the surfaces when their stiffness became
more alike (Fig. 3C, shading). The logit transformation (Hosmer and
Lemeshow, 2000) provides us with a way to describe the probability of
the subject reporting that the D surface is stiffer than the K surface, as a
continuous function of the true stiffness difference:

1
T+ e 8B

P(A) (5)

Here, we assumed that:
g(A,B) = B"-4&; B=[Bi,B.]5 A =[1A]". (6)

Generally, the function P(A) has the shape of a sigmoid, approaching
zero for extremely negative values of A and approaching one for
extremely positive values. The transition between the two values takes
place in the intermediate region, whose size and location depends on
the vector B.

We estimated the parameter 8 using the logistic regression procedure.
There, the dichotomous response (r € {0,1}) by the subject regarding the
difference in stiffness between the two surfaces was regressed with the
continuous nominal stiffness differences between the two surfaces across
all trials (A) (Hosmer and Lemeshow, 2000). For each given dataset, we
used a nonlinear least-squares estimate to assess the values of the param-
eter. Once these values had been estimated, the probability that the given
dataset was consistent with the estimated parameters (or the likelihood)
was estimated by the binomial likelihood function:

n

1(B) = [Tpa)T1 = p(ay1—. 7)

i=1

Since the likelihood function is monotonically increasing and usually
takes very small values, it is more convenient to consider L = —2In(I).
Smaller values of L correspond to a better fit or a better description of the
data by the parameters.

The vector 8 offers a compact description of the dataset. As shown
above, this vector describes a sigmoidal curve. We used the likelihood
value to compare the performances of several models. To this end, we
estimated the likelihood to observe a response , assuming that a model
(B) is true and A is known: P( 1l B,A). We identify the model that achieves
the highest likelihood (lowest negative log of likelihood) as the best
model (MacKay, 2002).

Prediction
Based on previous studies we employ the following model for the per-
ception of stiffness (Pressman et al., 2007).
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tions with a surface at the same fixed position,
an internal representation of the surface’s
boundary was created within the nervous sys-
tem. This might have happened during the first
block of the experiment, where no displace-
ments took place. Such representation would
alter the perceived penetration when the
boundary of the surface was displaced away
from that previous zero point. This in turn
would influence the estimation of stiffness.

A prediction of the outcome can be made based on Equation 8 and is
shown in Figure 4. There, the stiffness profile on the force—position plane
during the interaction with an ordinary and shifted surface is depicted.
Each solid line in the figure represents a spring surface. The slope of the
green line represents the nominal stiffness of a surface, whose boundary
is at the origin of the plot. The solid red line has the same slope as the
green line, though it is displaced from the origin. If the stiffness were
estimated solely based on the maximum force over the actual amount of
penetration, there should be no evident change in the perception of
stiffness for the displaced surfaces. Assuming that there exists a prior
representation of the boundary of the surface (dashed red line), the per-
ceived surface boundary (cyan dot) might be altered by this prior belief.
A change in perceived boundary location would affect the perceived
penetration and modify the perception of stiffness, as in Equation 8. This
manipulation might affect both the reference (K) surface and the dis-
placed (D) surface, as the subject is not aware of which one of the two
surfaces is the displaced one. Note that the color of the surface was not
uniquely associated with either surface K or D. The association varied
randomly from trial to trial. Therefore, on a given trial, the subject was
not informed about which surface was actually displaced.

Figure 4 A shows an underestimation of the stiffness (the slope of the red
dashed line is smaller than that of the solid red line) if the boundary is
displaced away from the subject; Figure 4 B shows an overestimated stiffness.

Autoregressive interpretation of the prediction

Autoregressive equations are frequently used in adaptive control algo-
rithms and have been successfully used as a model for motor adaptation
during reaching movements (Scheidt et al., 2001; Emken et al., 2007).
Here, we use the following autoregressive equation to describe the inter-
nal representation of the boundary location:

"= o™ + (1 - )", )

where I is a state variable that describes the perceived penetration and Y
is the measured initial position in which the force changes from zero on
the mth surface probing (Fig. 1B). Y™ is the point at which the force
changes from zero on the mth probe. Note that index n is the trial number
at which two surfaces are presented to the subject. The m index is the
number of the probes into the surfaces. Since subjects probed the surface
more than once per trial, the number of probes is larger than the number
of trials, as in Figure 1C, where a single trial is presented (i.e., 7 is con-
stant) and 10 probes are made.

Models
We considered three computational models as predictors of the re-
sponses made by the subjects.

Nominal penetration. The nominal penetration (NP) model assumes
no change in perceived stiffness and therefore implies that the maximum

various blocks of the experiment. Red, First block; green, second block with no displacement; blue, second block with displacement.
The triangles show the estimated probability at each stiffness difference. The lines are the maximum likelihood fits of a sigmoidal
function; the horizontal bars on each curve are the 95% confidence interval for the estimation of the point of subjective equality. ,
Possible psychometric curves of the expectation of an answer indicating that D is stiffer than K. The x-axis is the difference in
stiffness between surface D and K. The dashed vertical line demonstrates the performance of a “perfect subject” who can accurately
estimate whether surface D is stiffer than K. The solid line shows the “regular subject”, who would make some mistakes in the
transition region (gray shading). A shift in this graph to the left or right, as seen by the dashed lines, would suggest the subject
perceives surface D or K, respectively, as stiffer than it really is.

interaction force is divided by the actual penetration into the surface. In
this case, Equation 8 changes to

max(Force)

KNP = 3 (10)

Constant prior. In the constant prior (CP) model, it is assumed that
subjects refer their penetration to a location that remains constant
throughout the experiment, i.e., a prior representation is created in the
reference block of the experiment (the first block) and from then on,
penetration is referred to that constant location. Equation 8 changes to:

B max(Force) _ max(Force)
;) ~ B+

K . (11)

perceived prior

Variable prior. In the variable prior (VP) model, the penetration length
is modified by I, in addition to X, which represents the perceived loca-
tion of the boundary by the subject (Eq. 9). Since the value of I is derived
through an autoregressive process, it might change throughout the
experiment.

max(Force) max(Force)

VP _
K B+H-I’

12
B perceived ( )

The values of w in Equation 9 and of Y, ;, in Equation 11 are fitted to the
data as described below. Given the NP, CP, and VP models, a specific
value of stiffness for the two surfaces is estimated by each of them. For
instance, the estimated stiffness for the D and K surfaces according to the
VP model is K})¥ and Ky, respectively.

Derivation of the models

During any given trial, the subjects were presented with two surfaces,
which they repeatedly probed. We assumed the subjects assessed the
stiffness of each one of the D and K surfaces as Kp, and Ky, respectively
(Eq. 2). Subjects were then asked to report in a binary fashion which of
the two they thought to be stiffer, i.e., to report whether the perceived
difference A = kD — kK was greater or smaller than zero (Eq. 3). The
subjects would report “D” if the stiffness of the D surface was perceived as
higher, i.e., A > 0. To account for noise or uncertainty in the decision
process, we assumed that the probability of the subject reporting the D
surface as stiffer (a binary variable) had a sigmoidal shape rather than a
step function, i.e.,

P(subject reporting that K;, > K¢IA,B%) = 15 o som

(13)
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Figure 4. A, B, Prediction of the stiffness change due to a displacement of the surface. 4,
(ase in which the surface was displaced away from the subject. The cyan point represents the
perceived position of the boundary; therefore, there is a change in perceived penetration. The
solid red and green lines show the nominal stiffness of the surface, which have an equal slope.
The slope of the dashed red line represents the perceived stiffness caused by the change in
perceived penetration. The change in perceived stiffness is evident, as the slope of the line has
become smaller. Bis the amount of actual penetration and H is the displacement in the bound-
ary. Below are the perceived penetration (B,e,ceiveq) and the assumed location of the boundary
(I™) by the VP model on the mth probing movement. B, Same as 4, but for the case in which the
surface is displaced toward the subject and the slope of the dotted red line becomes greater.

We modeled this function using the logit transformation (Egs. 5, 6) with
the vector of parameters as 8%, which quantifies the uncertainty in sub-
jects’ ability to assess stiffness. Furthermore, we assumed the expected
value of subject’s reports to be Bernoulli distributed with parameter P(A,
B®) (Ludwig et al., 2005). If we label the binary response of the subject on
the nth trial as r, € {0,1}, we have Prob(r, = 1|A,) = P(A,, BS).

The expected value for the subject to report that the D surface was
stiffer than the K surface (report r, = 1) is P(A,, B%), as in Equation 13.
Note that P in Equation 13 is a function of A, the actual difference in
stiffness between the two surfaces.

Both experiments had three types of trials (see Setup, above): base line,
reference, and displaced. Within the baseline trials, the displacement of
both the K and D were set to zero, which allowed the assessment of the
subject’s baseline behavior. Therefore, the vector B° was estimated by
performing a logistic regression over the data of each subject that was
retrieved during the first part of the experiment.

Each of the models (Eqs. 10-12) was used to estimate the apparent
stiffness of the two surfaces. For example, with the VP model, we esti-
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mated K})" and Ki*. The tilde indicates an estimate and the subscript K
and D stand for the surfaces estimated on the current trial. For each
model, we assumed a level of uncertainty that was subject-specific. That
is, we assumed that the expected value of the model reporting the D
surface was stiffer than the K surface as follows:

Py(model reports K > K¥'1A,B%) = . (14)

+ e—g(KB 5

In this case, P(*) is a function of A, the assumed perceived stiffness dif-
ference of A = KJ¥ — K"
The uncertainty built in to each model is specific to each subject, due to
the dependence on B°. The equations essentially state that once the dif-
ference in stiffness between the two surfaces estimated by the model is
fairly close to the difference perceived by the subject, the model is prone
to make more errors. This is captured by the fact that for A = — gY/85
[g(A) = 0], there is a chance level (probability of 0.5) that the model will
report the D surface to be stiffer that the K surface.

Once the uncertainty is built into the model, the responses of a model
as a function of the actual difference in nominal stiffness (i.e., A in Eq. 3)
are used to assess the quality or likelihood of the model. We can therefore
evaluate Equation 13 for each model as follows:

Py (model reports Ki¥ > Ki'1A) = (15)

1+ e*s(lé“‘)'

A parameter vector, BM, was estimated from the input—output pairs of
the above equation (P and A) using nonlinear least-square minimization
(Bates and Watts, 1988). This process was iterated for each of the models:
variable prior (BMVF), constant prior (BM“?), and nominal penetration
(B,

The nominal penetration model includes no parameters. The constant
prior model includes a single parameter (Y,,;,,), which was estimated
from the data of each subject. The estimation of this parameter followed
the same lines as the estimation of w for the VP model (below). That is,
we chose the value of Y, that maximized the likelihood function. For
the autoregressive VP model, we sought to establish the likelihood of the
responses by the subjects, given the vector BMVP; in this case, the w
parameter was adjusted as in Equation 9. The values that were finally
used were those that maximized the likelihood function (minimum of
the negative log likelihood value).

The difference between the log likelihood values of two models pro-
vides us with a measure of superiority of one model over the other (Kass
and Raftery, 1995; Song and Lee, 2006). A difference of 10 is regarded as
highly significant. We followed this approach to compare the likelihood
value for the three models above and to determine which one better
described the data.

Results
Shift in perception
We found that the perception of stiffness was consistently and
significantly altered when the object location was unexpectedly
shifted, demonstrating the predicted illusion. Occasional dis-
placements caused a change in the perception of stiffness for all
13 subjects and the perceived change was in agreement with the
direction of the displacement applied to the object’s boundary. In
a second experiment, the surface was not fixed to a specific loca-
tion, but slowly displaced back and forth with a sinusoidal time
course (Fig. 2). This slow displacement did not affect the change
in perception due to occasional displacement of one of the two
surfaces.

Figure 3 shows the estimated probability of reporting that the
D surface was stiffer than the K surface as a function of the actual
stiffness difference for two typical subjects performing the first
experiment. The two central curves correspond to the probability
estimate with no displacement in the first (red) and second
(green) experimental blocks. The fact that these two curves over-
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Figure5. A, B, The amount of shift in the sigmoids for each subject across blocks in newtons

per meter for the two experiments (4, constant reference experiment; B, moving reference
experiment). The Xs correspond to a displacement (Displac.) toward the subjects and asterisks
show data for displacements away from the subject.

lap demonstrates the stability of the subjects’ responses in this
static condition. The blue curves represent the probability esti-
mates in the second experimental block, with displaced bound-
aries. Figure 3A shows the effect on probability estimates of
displacing the boundary away from the subject. In this case, the
probability curves shifted to the right, indicating that the subjects
assessed the displaced surface as being less stiff than the reference
K surface. Figure 3B shows the effect of displacing the boundary
of the D surface toward the subject. In this case, the effect on
stiffness estimation was in the opposite direction. The curve shifts
to the left, corresponding to an overestimation of the stiffness of
the D surface (Fig. 3C).

The amount of shift of each logistic curve estimated for each
subject is shown in Figure 5. The Xs indicate the data for subjects
who experienced a shift toward them; the asterisks correspond to
the data of subjects who experienced a displacement away from
them. To perform a statistical analysis regarding the significance
of the PSE’s absolute shift, the values of the PSE for subjects who
experienced a backward shift (X) were taken with a negative sign.
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This would cause all PSE point to have a positive sign (X by
flipping the sign; asterisk by construction). Figure 5A shows the
shifts in the first experiment, in which the baseline conditions
were kept constant. Figure 5B shows the shifts in the second
experiment, in which the boundary slowly moved back and forth
with a sinusoidal time—function (for detailed direction of dis-
placement, see Table 1). We tested both scatters for a significant
shift in respect to baseline performance. Both had a mean that
was statistically different from zero (paired ¢ test, p < 0.05). This
demonstrates that the unexpected displacement of a surface, either
stationary or in slow and predictable motion induces, a change in
stiffness perception. There was no significant change in the size of
displacement between the two experiments (¢ test, p = 0.19).

The average amount of exerted force across all subjects in the
two experiments was 16.1 = 4.2 N. The average indentation was
4.27 = 1.3 cm. There was a significant change in endpoint loca-
tion during trials in which the boundary was displaced for all
subjects (f test, p < 0.001). An overshoot was evident in cases
where the boundary was displaced away from the subject and an
undershoot in the other case. Subjects performed as many prob-
ing motions as they wished before deciding which surface was
more rigid. Our data suggest that the number of probing motions
depended upon the similarity between the surfaces, with a signif-
icant increase in the number of probes as the stiffness difference
decreased (t test, p < 0.021). The total number of probes was also
significantly larger when the stiffness level was more similar (¢
test, p < 0.028).

Prediction of the models

The stiffness of an object is defined as the quasistatic interaction
force F normalized by the displacement Y inside the object’s
boundary; that is, K = F/Y. Therefore, the perception of stiffness
is likely to involve the perception of both tactile information and
position information. Studies of manual discrimination of stiff-
ness by Srinivasan and LaMotte (1995) found dissimilarity be-
tween the just-noticeable differences for compliant objects with
deformable surfaces and rigid surfaces. They concluded that
when a surface is deformable, the spatial pressure distribution
within the contact region between the hand and the surface is
dependent on object compliance. Thus, information from cuta-
neous mechanoreceptors is sufficient for discrimination of subtle
differences in compliance. When the surface is rigid, kinesthetic
information is necessary for discrimination, and the discrim-
inability is much poorer than that for objects with deformable
boundaries. The perception of stiffness has been addressed by a
number of psychophysical studies. Jones and Hunter (1990) had
subjects perform a contralateral limb-matching procedure, in
which subjects adjusted the stiffness of a motor connected to one
arm until it was perceived to be the same as that connected to the
other arm. This allowed the authors to assess the fidelity of
stiffness perception. Their study shows that the sensitivity to
stiffness discrimination is smaller than the sensitivities of
force discrimination and displacement discrimination. Un-
derstanding how the brain processes haptics will contribute to
the development of technological applications, including vir-
tual haptic environments as well as telerobotics, telerehabili-
tation, and telesurgery, in which the perception of touch must
be accurately reconstructed based on the bidirectional trans-
mission of motion and force information (Anderson and
Spong, 1989; Hannaford, 1989; Reiner, 2004; Griffiths et al.,
2008). As of now, it is not clear which neural mechanisms
allow the brain to estimate the rigidity of a contact from dif-
ferent sources of sensory-motor information.
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In previous studies (Pressman et al., 2007; Nisky et al., 2008),
we introduced a paradigm in which the interaction force with a
surface was either lagging or leading the position of the hand. Our
goal was to investigate how the relative timing between hand
position and force information affects the haptic perception of
their ratio, i.e., stiffness. We considered several computational
models of stiffness estimation. Some were refuted, but a few were
found to generate predictions consistent with reports made by
the subjects. All models estimated stiffness by regression of force
over hand position inside the object boundary. The relative time
shift between these data affects the predictably of the resulting
stiffness estimate. We compared different models of this time
shift and found that the reports of the subjects were best ac-
counted for by a regression model that matched the maximum
interaction force experienced along the trajectory, with the max-
imum amount of perceived penetration into the surface. Other
proxies to the stiffness estimation could be available. However, in
this study, we chose to use this model, as it showed the highest
agreement with subjects’ reports. The rationale for this model is
that the effective displacement of the boundary caused by the
delay in force reflection changes the perceived amount of pene-
tration into the surface and accordingly changes the perception of
stiffness. However, this hypothesis had not yet been put to the
test; thus, it is the objective of the present study.

Here, we used peak force for stiffness estimation and consid-
ered three alternatives to calculate the perceived penetration.

Nominal penetration

Perceived penetration is simply defined as the actual distance
from the boundary of the surface to the furthest point traveled
into it. Such a model cannot account for a change in perceived
stiffness because of the displacement of the boundary. The NP
model has no parameters and assumes that the subjects have
perfect information on the each trial regarding the location of the
boundary, ignoring information from previous trials.

Constant prior

This model derives the perceived penetration by assuming a fixed
location of the boundary throughout the experiment. The model
is capable of explaining the change in stiffness perception caused
by unexpected shifts of the object’s location. The CP model has a
single parameter: the subject’s estimate of the location of the
boundary. This location is assumed to be determined by the sub-
ject during the initial familiarization phase. It remains constant
through subsequent phases of the experiment.

Variable prior

This model assumes that the object may be moving in the envi-
ronment in a slow and predictable way. The location of the object
boundary is estimated by an autoregressive process that takes into
account previous and current locations. The model can account
for a constant boundary position (constant reference experi-
ment) and for a slowly moving boundary (moving reference ex-
periment). We used a first order autoregressive (AR) model,
which included only one parameter and could be compared with
the CP model without risk of overfitting the data.

We compared the predictions of these three models to exper-
imentally derived curves in Figure 6. These predictions were gen-
erated so as to mimic the responses of the subject. On a given trial,
the model assesses the rigidity of the two surfaces and produces
an expected value for the response. By repeating this procedure
for various stiffness differences, we obtained the psychometric
curves of Figure 6 (for more details, see Materials and Methods,
above). The figure compares the prediction of each model with
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Figure6.  Psychometric curves of a single subject (dashed lines) and the three models (solid
lines) for the two experiments (exp). Blue shows data for the nondisplaced trials and red shows
displaced trials. The red lines were slightly shifted to the left along the x-axis to aid visualization
of both curves.

the performance of a single subject from each group (two differ-
ent subjects). The curves show the estimated frequency with
which a subject/model indicates that the D surface was stiffer
than the K surface as a function of the actual stiffness difference
(A = K, — Ky). The dashed lines (red and blue) represent the
subject’s responses and the solid lines are the predictions of the mod-
els. The red lines (dashed and solid) show the data for the trials in
which a displacement took place; the blue lines are for trials with no
displacement.

It is evident that the NP model cannot capture the behavior of
the subject in either experiment. The CP and VP models both
show some degree of agreement. Although the VP model appears
to better account for responses made by the subjects, the com-
parison between the two models must be based on more rigorous
analysis. We therefore performed a likelihood ratio test. The like-
lihood ratio estimates how likely one model is to be correct com-
pared with another, given some dataset. In our case, the dataset
contained the responses of the subject and the actual stiffness
difference in each trial (MacKay, 2002; Kording et al., 2007).

We compared the likelihood of the observed data given each
model, P(r|A, B), where r is the subject’s response that the dis-
placed surface is stiffer, A is the actual difference in stiffness and B
is model’s parameters. A judgment about the validity of the CP
and VP models is derived by comparing the likelihood of the
observed dataset under each model. We consider the model that
shows a higher log-likelihood value to be more accurate. This is
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actually the lowest value in Table 1, which displays negative log
likelihood values (MacKay, 2002). More specifically, Table 1
shows the estimate of the two values L(B™MY") and L(BM?) for all
subjects in both experiments for both CP and VP models.

The VP model was selected as the simplest AR model with one
parameter, I’ = oI ™' + (1 — w)Y" (Eq. 9). The results for this
model are shown in Table 1. A higher-order VP model (order
three) and the order-one model had similar likelihood values
across subjects (mean differences of 0.7 and 0.2 for constant ref-
erence and variable reference, respectively, which imply no sig-
nificant effect) (Kass and Raftery, 1995).

Table 1 shows the difference for the two experiments, along with
the mean value for each experiment. For 12 of 13 subjects, across
both experiments, the VP model yielded a better likelihood score
than the CP model. Following the guidelines regarding likelihood
ratios (or differences if logistic functions were used) given in Kass
and Raftery (1995), we can see that for the first experiment, the VP
model is substantially better (2—6) than the constant prior, whereas
on the second experiment it is decisive (>10).

The predictions of the models regarding the slope of the sig-
moid curves were also compared with the subjects’ data and were
found to significantly underestimate the actual slopes (predicting
a smaller slope, f test, p < 0.01). Since the models were derived
from the subject’s uncertainty during the first part (Eqgs. 14, 15), it
follows that the uncertainty should grow in such a case by con-
struction of the model. To keep our model as simple as possible,
we did not introduce additional parameters. Therefore, we re-
strict our prediction to the shift in the curve.

Noise hypothesis

In Materials and Methods, above, and, more specifically, in Equa-
tion 13, we introduced the idea of including the uncertainty of
subjects’ responses as a form of noise in the computational
model. By using the uncertainty of subjects’ responses within the
initial part of the experiment (baseline), we implicitly assumed
that there was constant uncertainty throughout the experiment.
In alogistic curve, the uncertainty of the responses is captured by
the slope of the sigmoid at the 0.5 probability level. This slope is
expressed by 3, parameter in Equation 6. To test the hypothesis
that the overall amount of uncertainty did not change, the (3,
values were compared between baseline trials and test trials in
which a displacement took place. There was no significant change
in the mean value across all subjects (t test, p > 0.5; mean refer-
ence, 0.045 * 0.018 and mean displaced, 0.049 = 0.023, across all
subjects in both experiments. Each experiment showed the same
trend).

Discussion

Psychophysical studies have revealed a multitude of perceptual
distortions that are connected to our estimate of primary visual
features of objects, such as length, orientation, and colors. Here,
we have investigated the perception of mechanical properties as
subjects formed them through object manipulation. We asked
subjects to touch the boundary of mechanically simulated virtual
objects and asked them to report their perception of the object’s
stiffness.

We found that an occasional displacement of an otherwise
stationary (or slowly varying) surface leads to an illusion of
change in stiffness of the surface. The displacement can be either
towards or away from the subject, resulting in an increase or
decrease of perceived stiffness, respectively.

Our findings suggest that an adaptive mechanism based on
combining current information and prior knowledge may have a
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direct impact on the perception of the mechanical properties of
the environment we come in contact. This appears to be a direct
consequence of the observations that the perception of an ob-
ject’s rigidity arises from a process analogous to a regression of
force over position information, and that the information about
the location of the object boundary is part and parcel of a mech-
anism of probabilistic state estimation.

We considered three computational models to account for the
responses of the subjects. The first, the nominal penetration
model, simply uses the maximum interaction force during the
penetration of the hand into the surface divided by the extent of
penetration (F/Y'). The next two models included a correction to
the extent of penetration, which accounts for the change in per-
ception of length due to prior knowledge. The CP model assumes
constant representation of the object location whereas the VP
model deploys an autoregressive process to model the memory
effect acquired on previous trials. Our results clearly refute the
nominal penetration model. The likelihood values for the VP
model show higher plausibility for such a model with respect to
the constant penetration model. This is especially evident in the
second experiment, where the boundary of the two surfaces was
slowly varied throughout the task.

In this work, we consider a simple model, which only accounts
for the bias in stiffness perception and does not address the issue
of noise within this process. A more general model would include
a term that describes not only the shift in perception but also the
variability in assessment of stiffness. We have verified that adding
the variance of a normally distributed noise does not change the
results about the bias in perception (i.e., the mean of this nor-
mally distributed shift) and its dependence on prior. Therefore,
we used the simplest model that can explain what we see as the
essence of this illusion—the overall shift in perceived stiffness.

The variable prior model described above is the preferred
model in this case. A key issue with such a model is the single
reference point or the single prior used throughout the probing
activity (Eq. 9). The alternative of two reference points, or two
priors (one for each surface), holds in the implicit assumption
that the nervous system can detect each of the surfaces and asso-
ciate them to the appropriate prior. This is contradicted by the
very existence of the illusion, since each surface would be associ-
ated to its prior and no misperception would be created. Thus,
our findings and the Occam’s razor argument support a simple
model with a single prior for all surfaces.

Theoretically, it would have been appealing to design an ex-
perimental condition without prior, in which the illusion is elim-
inated. In practice, the experimental removal of a prior is quite
difficult. If one were to present the objects in different locations,
one could still not rule out that a prior corresponding to the
average location is not formed. In our experiment, the prior for-
mation seemed to occur rapidly. A prior had been formed after a
single probing motion. Moreover, our workspace was limited by
the robotic manipulandum; therefore, the illusion was robust
and seemed to appear in all the possible conditions of our setup.
Future studies should also consider the transfer to the other hand
or to completely different configurations of the arm. However,
the existence or absence of such transfer does not undermine our
hypothesis.

There are similarities between the boundary—stiffness illusion
and two other notable haptic illusions: the size-weight illusion
(SWI) and the material-weight illusion (MWI). In the SWI
(Charpentier, 1891; Chouinard et al., 2009; Brayanov and Smith,
2010), subjects perceive smaller objects as being heavier. In the
MWI, objects that appear to be made of lightweight materials
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such as Styrofoam are perceived to be lighter than objects of equal
weight that appear to be made of heavier materials such as alu-
minum (Ellis and Lederman, 1999; Buckingham et al., 2009). In
both illusions, although perception is swayed by appearances, the
motor control system learns rapidly to operate correctly. So, for
example, as subjects repeat lifting two objects that have the same
weight but different sizes, they quickly learn to apply the same
grip forces. However, when asked about the objects’ weight, they
persist in reporting that the smaller object is heavier. Flanagan
and Beltzner (2000) considered this finding as evidence “that the
cognitive/perceptual system can operate independently of the
sensorimotor system.” Buckingham et al. (2009) recently re-
ported a similar discrepancy between motor and perceptual re-
sponses in the MWI. Brayanov and Smith (2010) have described
the perceptual effect in the SWI as an anti-Bayesian phenome-
non. They suggest that in the SW1 there is an enhancement of the
unexpected violation of the prior expectation that the smaller
objects weighs less than the large object. Chouinard et al. (2009)
suggested that the SWI is connected to the perception of density;
the smaller object is considered to have a higher density than the
large object. This interpretation is supported by the results of an
fMRI study, where the ventral premotor area shows activity while
subjects experience the SWI. The same area appears to integrate
weight and size information to represent the density of objects. In
contrast, no activity was observed during SW1 in sensory areas or
in M1, which appear to provide representations for size and
weight. As for SWIand MWI, the illusion reported here is related
to a discrepancy between prior expectation and sensory haptic
input. However, in our case, the prior does not arise from visual
information but from the proprioceptive experience of the arm
configuration at the point of contact with the virtual surface. In
our stiffness illusion, rather than a bias induced by the experi-
enced object properties, the perceptual effect appears to be di-
rectly connected with sensory-motor behavior. In our case, a shift
forward or backward of the boundary results in wrong estimate of
hand position at contact and this is reflected in a forward or
backward, respectively, shift of the whole probing motion. How-
ever, the effect on stiffness perception suggests that this shift is
not accounted for correctly when the stiffness is estimated by
regression of force over penetration. On one hand, the experience
of peak force is almost unaffected by the perturbation of the
boundary. On the other hand, however, a forward shift of the
boundary leads to an overestimation of the amount of movement
of the hand and a backward shift leads to an underestimation.
This error in estimation of the state of motion of the hand appears
to be the prime cause of the stiffness illusion. Therefore, in the
stiffness illusion, we would expect to observe a greater amount of
correlation between activities in sensorimotor and perceptual ar-
eas compared with the size-weight and material-weight illusions.

These findings support the general view that our ability to
assess the mechanical properties of the objects that we come in
contact with depend on our nervous system combining state and
force information (Venkadesan and Valero-Cuevas, 2008) and
carrying out a process that is analogous to statistical regression.
Sudden and unexpected displacements of the contact point result
in predictable effects on the perceived impedance. Earlier studies
(Ernst and Banks, 2002; Kérding and Wolpert, 2004) showed that
the nervous system combines prior information with current
sensory evidence to estimate the state of motion (position and
velocity) of the limbs. Our autoregressive model (VP) is consis-
tent with this probabilistic framework; it postulates that subjects
were constantly estimating the location of the boundary based on
a combination of current evidence and a priori information from
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the past experience of contacts. Here, we have shown for the first
time the consequence of such state estimation on the assessment
of mechanical impedance—the stiffness—at the point of interac-
tion with the environment.
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