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Abstract: In the Turing test, a computer model is deemed to “think intelligently” if it can 

generate answers indistinguishable from those of a human. We proposed a Turing-like 

handshake test for testing motor aspects of machine intelligence.  The test is administered 

through a telerobotic system in which an interrogator holds a robotic stylus and interacts with 

another party – human, artificial, or linear combination of the two.  Here, we analyze and test 

experimentally the properties of three versions of the Turing like handshake test: Pure, 

Weighted, and Noise.  We follow the framework of signal detection theory, and propose a 

simplified model for the interrogator human likeness evaluation; we simulate this model and 

provide an assessment of the statistical power of each version of the handshake test.  Our 

simulation study suggests that the choice of the best test depends on how well the interrogator 

identifies a human handshake when compared with a model. The Pure test is better for 

intermediate and large levels of interrogator confusion, and the Weighted and Noise tests are 

good for low levels of confusion.  We then present the results of an experimental study in 

which we compare between three simple models for human handshake.  We demonstrate that 
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it is possible to distinguish between these handshake models, and discuss the relative 

advantage of each measure and future possible handshake models and Turing-like tests, in 

measuring and promoting the design of human-like robots for robotics rehabilitation, 

teleoperation and telepresence. 

1. Introduction 

As long ago as 1950, Turing proposed that the inability of a human interrogator to distinguish 

between the answers provided by a person and those provided by a computer would indicate 

that the computer can think intelligently (Turing, 1950). The so-called “Turing test” has 

inspired many studies in the artificial intelligence community; however, it is limited to 

linguistic capabilities. We argue that the ultimate test must also involve motor intelligence - 

that is, the ability to physically interact with the environment in a human-like fashion - 

encouraging the design and construction of a humanoid robot with abilities indistinguishable 

from those of a human being. It was suggested that robots that appear as more human-like, 

may be perceived as more predictable, and thus, people are more likely to feel comfortable 

while interacting with them (Hinds, Roberts, & Jones, 2004); naturally, when physically 

interacting with a robot, such human-likeness is even more important. However, an ultimate 

Turing-like test for motor intelligence involves an enormous repertoire of movements. In this 

paper, we discuss the methodology of performing a reduced version of the ultimate test, 

which is based on the one dimensional handshake test proposed in (Amir Karniel, Avraham, 

Peles, Levy-Tzedek, & Nisky, 2010; Amir Karniel, Nisky, Avraham, Peles, & Levy-Tzedek, 

2010). In this reduced version of the Turing-like test for motor intelligence, a model of 

human handshake is considered human if it is indistinguishable from a human handshake.  

The handshake is of interest not merely as a reduced version of the ultimate humanoid test, 

but also, due to its bidirectional nature, in which both sides actively shake hands and explore 

each other. Motor control research has concentrated on hand movements (T. Flash & N. 
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Hogan, 1985; A. Karniel & Mussa-Ivaldi, 2003; Morasso, 1981; Shadmehr & Mussa-Ivaldi, 

1994; Shadmehr & Wise, 2005; Wolpert & Ghahramani, 2000), generating a variety of 

hypotheses which could be applied to generate a humanoid handshake. In addition, the 

subjective perception of manual mechanical interaction with the external world was studied 

extensively (R. Friedman, Hester, Green, & LaMotte, 2008; Jones & Hunter, 1990, 1993; 

Srinivasan & LaMotte, 1995; Tan, Durlach, Beauregard, & Srinivasan, 1995). Last but not 

least, the greatest progress in telerobotic (Hannaford, 1989; Niemeyer & Slotine, 2004; 

Yokokohji & Yoshikawa, 1994) and haptic (Biggs & Srinivasan, 2002; El Saddik, 2007; 

Okamura, Verner, Reiley, & Mahvash, 2011) technologies involves arm movements. The 

telerobotic interface is necessary to grant the human-computer discrimination significance, 

much as the teletype was necessary to hide the computer from the questioning human in the 

original Turing test.  

Handshaking has been discussed in the social context (Chaplin, Phillips, Brown, Clanton, & 

Stein, 2000; Stewart, Dustin, Barrick, & Darnold, 2008), but the development of artificial 

handshake systems is still in its infancy (J. N. Bailenson & Yee, 2007; Jindai, Watanabe, 

Shibata, & Yamamoto, 2006; Kasuga & Hashimoto, 2005; Kunii & Hashimoto, 1995; 

Miyashita & Ishiguro, 2004; Ouchi & Hashimoto, 1997; Sato, Hashimoto, & Tsukahara, 

2007; Zheng  Wang, Peer, & Buss, 2009), and state of the art studies mostly explore very 

basic forms of haptic interactions and collaboration (J. Bailenson & Yee, 2008; Jeremy N. 

Bailenson, Yee, Brave, Merget, & Koslow, 2007; Durlach & Slater, 2000; Gentry, Feron, & 

Murray-Smith, 2005; Groten et al., 2009; Hespanha et al., 2000; Kim et al., 2004; 

McLaughlin, Sukhatme, Wei, Weirong, & Parks, 2003). The proposed Turing-like handshake 

test can be useful in identifying the aspects of the theories that are essential for producing a 

human-like handshake movement. In general terms, we assert that a true understanding of the 

motor control system could be demonstrated by building a humanoid robot that moves and 
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applies forces that are indistinguishable from a human. Therefore, a measure of our distance 

from such demonstration could be most useful in evaluating current scientific hypotheses and 

guiding future neuroscience research. 

Moreover, understanding the unique properties of healthy hand movements is important for 

clinical applications. For example, it will allow clinicians to discriminate between unimpaired 

hand movements and movements that are generated by motor impaired individuals, such as 

Cerebral Palsy patients (Roennqvist & Roesblad, 2007; van der Heide, Fock, Otten, 

Stremmelaar, & Hadders-Algra, 2005), Parkinson patients (van Den, 2000), etc. Such 

automatic discrimination can be useful for diagnosis as well as for assessment of treatment 

affectivity.  

The evaluation of human-likeness of haptic interaction with robotic manipulators received 

little, yet growing, attention in the recent years. Variable impedance control of robotic 

manipulator was compared to constant impedance control in terms of perceived human-

likeness (Ikeura, Inooka, & Mizutani, 1999) and human-like movements (Rahman, Ikeura, & 

Mizutani, 2002). The effect of visual and haptic rendering strategies on plausibility of social 

interaction was studied in the context of handshaking (Zheng Wang, Lu, Peer, & Buss, 2010). 

A recent study explored the human-likeness of feedforward and feedback based models for 

haptic interaction partners (Feth, Groten, Peer, & Buss, 2011). 

In our previous studies, we presented initial exploration of the Turing-like handshake tests 

(Avraham, Levy-Tzedek, & Karniel, 2009; Amir Karniel, 2010; Amir Karniel, Nisky, et al., 

2010), and proposed three different methodologies for assessing the human likeness of a 

handshake model (Amir Karniel, Avraham, et al., 2010): (1) a Pure test, (2) a Weighted test, 

and (3) a Noise test. The methodologies are similar in the general experimental architecture: a 

human interrogator shakes hands with another human, with computer software, or with a 

combination of the two. The handshake is performed through a telerobotic system, as 
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depicted in Figure 1. However, the three versions of the test are conceptually different: in the 

Pure test, handshake models are compared against human handshakes; in the Weighted test, 

combinations of model and human handshake with different weights are compared; in the 

Noise test, models are compared against human handshakes combined with noise.  

In the current paper, we set out to explore the differences between these three versions of the 

Turing-like handshake test in a simulation study based on the preliminaries from Signal 

Detection Theory (SDT). To further explore the methodological differences between these 

three versions, we present an experimental study that uses all three methods to compare 

between three simple models for human handshake. The main contribution of this work is 

methodological, and hence, we chose very simple, primitive, models for human handshake, 

and did not incorporate into the models any of the abundant recent findings in human motor 

control.  

We begin the paper with a brief introduction to SDT and psychometric function evaluation in 

section 2.  We then describe the three proposed versions of the Turing-like handshake test in 

section 3; present our simulation study in section 4; and the experimental comparison of three 

models for human handshake using all three Turing-like tests in section 5. We conclude the 

paper with a discussion about the simulated and experimental results in section 6.  Part of the 

content of section 3 has been also reported in (Amir Karniel, Avraham, et al., 2010). 

However, here we add more definitions and assumptions required for the simulations in the 

following sections; moreover, the analysis and simulations reported in sections 4 and 5 are 

unique to this paper, and were only partly presented in an abstract form (Avraham, Nisky, & 

Karniel, 2011). 
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2. Preliminaries in psychophysics – Signal Detection Theory and the 

Psychometric function 

Signal Detection Theory (SDT) is a mathematical framework for analyzing human decision 

making in perceptual and cognitive tasks, that makes the role of decision processes explicit 

(Abdi, 2007b; Gescheider, 1985; Lu & Dosher, 2008; MacMillan, 2002). In particular, the 

theory provides computational tools for estimating the sensitivity and response bias of the 

participant in the task. In the original notion of STD, the task is to categorize ambiguous 

stimuli which can be generated either by a known process (signal) or be obtained by chance 

(noise); namely, a yes-no task. In another paradigm, the two-alternative forced choice 

(2AFC), the task is to sort two different stimuli into categories. In the current paper, we use 

the 2AFC paradigm in which the two stimuli in each trial are two different handshakes, and 

the categories are “more human-like” and “less human-like”.  

According to SDT, the response of the participant depends upon the intensity of a hidden 

variable – a continuously variable internal representation, and the participant makes the 

decision based on some objective criterion with regard to this representation. In the 2AFC 

paradigm, in each trial, the participant compares the magnitudes of the internal 

representations of both stimuli, and chooses the stimulus that generates the greater internal 

response to belong to a category with a higher expected internal response. Importantly, the 

scale of internal representations is arbitrary, and does not necessary correspond to some 

physical property of the stimulus. Errors arise when the distributions of the categories 

overlap, and the proportion of the correct responses is used to estimate the extent of overlap 

between the internal representations of the different categories.  In our case, the hidden 

variable is internal representation of human-likeness of a handshake, and we will designate it 

as h in the remainder of the paper. SDT, as a theoretical framework, does not specify the 

distribution of the internal representation; however, in most applications the distributions of 
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the representations are assumed to be Gaussian, and often, the variances of the different 

categories are assumed to be equal. We follow these common assumptions, and assume that 

)~ ,(h N µ σ ; namely, the probability density function of the internal representation of 

human-likeness of a handshake is: 

(1)     
2

2
( )
21(

2
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h
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σ π
− −
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where µ is the expected human-likeness of a specific handshake on an arbitrary scale, and σ

is the variance of the internal representation.  

A tightly related method of quantifying performance in psychophysical task is the 

psychometric curve. A common experimental design for fitting such curve is the method of 

constant stimuli: the task is similar to the classic description of SDT, but a standard stimulus 

(usually drawn from the middle of stimuli range) is presented in each trial together with one 

of ns comparison stimuli. The participant labels each as “larger” or “smaller” than the 

standard, and the function that quantifies the probability of answering “comparison stimulus 

was larger” is the psychometric function. The presence of standards does not tamper the 

analysis because it gives no information regarding which response is appropriate (MacMillan, 

2002).  

The general form of the psychometric function is: 

(2)     ( , , , , ) (1 ) ( , , )x F xψ γ λ γ γη ξ η ξλ= + − − ,     

where x is the physical property of the stimulus, and the shape of the curve is determined by 

the parameters , , , ][η ξ λ γ  and the choice of a two-parameter function F, typically, a sigmoid 

function (Wichmann & Hill, 2001).  γ and λ  are the rates of  lapse – incorrect response 

regardless of the difference between stimuli intensity, and η  and ξ  determine the shift and 

the slope of the sigmoid function, respectively. The choice of a specific function is 

determined by assumption about the distribution of the internal representation, by how its 
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parameters change with stimulus intensity, and by what the decision rule is (Garcia-Perez & 

Alcala-Quintana, 2011). Under the assumption in Equation (1), the psychometric function 

will have a logistic form, namely, ( )( )/

1, )
1

( , xF x
e η ξη ξ − −=

+
. The 0.5 probability point is 

interpreted as the point of subjective equality (PSE) – the comparison stimulus intensity that 

is perceived equal to the standard – a measure of bias, and it is estimated as the inverse of the 

sigmoid function at the 0.5 threshold, 1(0.5)F − . When the assumption in Equation (1) is not 

reasonable, it is still possible to estimate the PSE correctly by fitting other sigmoid functions, 

or using distribution-free methods, e.g. Spearman-Kraber (Miller & Ulrich, 2001).  

3. Three Turing-like tests – methods for Model Human-Likeness Grade 

assessment 

Following the original concept of the classical Turing test, each experiment consists of 3 

entities: human, computer, and interrogator. Two volunteers participate in the experiment: 

human and interrogator. Throughout the test, each of the participants holds the stylus of one 

haptic device and generates handshake movements (Figure 1). In all three methods (Pure, 

Weighted and Noise), each trial consists of two handshakes, and the interrogator is asked to 

compare between the handshakes and answer which of them feels more human. Based on the 

answers of the interrogator, we calculate a quantitative measure for the human-likeness of a 

handshake model, the Model Human-Likeness Grade (MHLG). This grade quantifies the 

human likeness on a scale between 0 and 1. The computer is a simulated handshake model 

that generates a force signal as a function of time and the one-dimensional position of the 

interrogator's haptic device ( )(inter tx ) and its derivatives: 

(3) ]),([)( intermodel ttxtF Φ=    Tt ≤<0 , 

where ]),([ inter ttxΦ  stands for any causal operator, and T is the duration of the handshake.  
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The force feedback to the human is generated purely by the interrogator in order to preserve 

as much as possible the natural characteristics of the human handshake movement. The 

nature of the force applied on the interrogator is the key difference between the three 

methods that are discussed in this paper. In general, it is either pure human, pure computer, or 

combined human and computer handshake (Figure 2). 

Pure Turing-like test 

The Pure Turing-like test is the most similar to the original notion of the Turing test for 

intelligence. In each trial, the interrogator is presented with a pure computer, Figure 2(a), and 

a pure human, Figure 2(b), handshake. Namely, the force that is transmitted to the 

interrogator is  

(4) modelF F=   or humanF F= .  

where, modelF is defined in Equation (3), and humanF is a function of the real-time position 

and/or force applied by the human and their derivatives, and its exact implementation 

depends on the teleoperation architecture. If we wish to compare nm models in a single 

experiment, each block consists of nm trials – one trial per model. Each experiment consists of 

N blocks, such that each computer handshake is repeated N times. The main purpose of the 

current study is to compare different methods for human-likeness assessment, and therefore, 

we choose N such that the total number of trials will be identical between different methods. 

In general, the choice of N affects the statistical power of the test, and should be determined 

according to the desired significance and power according to pilot studies. An analysis of 

statistical power of this test and how it is related to the number of blocks is presented at the 

end of Section 3. 

For each model, we calculate the proportion of handshakes in which the interrogator chooses 

the computer handshake (m) over the human handshake (h) as more human-like, pm>h. This is 
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an estimate of the probability of the interrogator to decide that the modeled handshake is 

more human than the human handshake. We follow SDT, and assume that after a completion 

of the probing phase of trial i, internal representations of human-likeness are formed for each 

of the individual handshakes, m
ih  and h

ih  (where the superscripts m and h indicate model and 

human handshakes, respectively). With this formulation, pm>h is an estimate of the probability 

)( m h
i ip h h> . When the model is indistinguishable from a human, 0( 5() ) .m h

m h i iE p p h h> = => . 

We calculate the Model Human-Likeness Grade of the Pure test (MHLGp) by multiplying 

this estimation by two, such that MHLGp=0 means that the model is clearly non-human like 

and HMLGp=1 means that the tested model is indistinguishable from the human handshake: 

(5) 2p m hMHLG p >=    .  

Since the human handshake is the most human by definition, MHLGp is cut-off at 1.       

Intuitively, when the interrogator is very good in identifying the human handshake when 

compared with any computer handshake, this test will be ineffective in grading the different 

models relative to each other. This is because SDT is based on the assumption that mistakes 

are happening, and is not applicable otherwise. Therefore, we designed two additional 

versions of the Turing-like test. In both versions, the main idea is to present the interrogator 

with handshakes that are a mixture of human and computer-generated handshakes, Figure 

2(c-d). This increases the level of confusion of the interrogator, and allows an effective 

comparison between different models, even if each of the models, by itself, is quite far from 

being human.  

Weighted Turing-like test  

In the Weighted Turing-like test, the interrogator is always presented with a combination of a 

human and a computer handshake, Figure 2(c). Namely, the force that is transmitted to the 

interrogator is: 
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(6) human model( )1F F Fα α= + − ,  

where modelF and humanF are defined similarly to the definition after Equation (4). The exact 

value of alpha is determined according to a predefined experimental protocol. As in the Pure 

test, a single trial consists of two handshakes. In each trial, in one of the handshakes – the 

comparison stimulus – the interrogator interacts with a combination of forces according to 

Equation (6) with comparisonα α= , where comparisonα is one of ns equally distributed values from 0 

to 1, e.g: αcomparison= {0, 0.2, 0.4, 0.6, 0.8,  1}. The other handshake – the standard stimulus – 

is a also combination of forces, but with a fixed weight standard 0.5α α= =  , generated online 

from the human and a reference model, which is chosen before the experiment. 

In each experiment, we assess the human likeness of nm-1 test models and the reference 

model. In the trials in which we assess the human-likeness of the reference model, the 

interrogator is presented with the same model in both handshakes, but with different weights, 

and thus, these trials serve as control.  Each experimental block consists of nmns trials 

comprising each of the ns linear combinations of the model and the human for each of the nm 

model comparisons. 

The order of the trials within each block is random and predetermined. Each experiment 

consists of nb blocks, such that each combination is repeated nb times. We choose the number 

of blocks nb, such that, similarly to the Pure test, each stimulus model is presented to the 

subject in N= nbns trials. 

The next step in assessment of the human likeness of each model is to fit a psychometric 

curve, Equation (2), to the probability of the interrogator to answer that a comparison 

handshake is more human-like as a function of comparison standardx α α−=  (see Figure 11 for 

example of psychometric curves derived from experimental data). We assume that a higher 

weight of human handshake component in a combined handshake yields higher probability to 



12 

choose a handshake as more human-like. Thus, this probability approaches one as the 

difference comparison standard 0α α− >  becomes larger, and zero for a larger difference in the opposite 

direction, comparison standard 0α α− < . This is a necessary assumption for the Weighted test, and 

hence, should be validated for each class of new models that are tested with it. This 

assumption was validated in our previous studies (Avraham et al., 2009; Amir Karniel, 2010; 

Amir Karniel, Nisky, et al., 2010) as well as in the experimental study of the current paper – 

Section 5. However, in the general case, there might be models for human handshake that feel 

human-like when presented alone, but will be poorly combined with a human handshake, and 

vise versa. In these cases, the Weighted method should not be used.  

The PSE indicates the difference between the αcomparison and αstandard for which the handshakes 

are perceived to be equally human-like. We use the estimated PSE for calculating MHLGw 

according to: 

(7) 0.5wMHLG PSE= −  

Thus, a model that is perceived to be as human-like as the reference model yields the 

MHLGw value 0.5. The models that are perceived as least or most human-like possible yield 

MHLGw values of 0 or 1, respectively. Therefore, MHLGw is cut off at 0 and 1.  

The Weighted test is highly dependent on successful fitting of the psychometric function. In 

(Wichmann & Hill, 2001) it was shown that the fitting process is most effective when the 

stimulus intensities are distributed symmetrically around the PSE, at low as well as high 

performance values. Therefore, the Weighted method will be most effective for a reference 

model that is similar or slightly less human than the tested models.  

Noise Turing-like test 

The main methodological concern in using the Weighted test is the fact that it is not 

necessary that the model that is perceived most human-like when combined with a human 
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handshake is actually most human-like when presented alone. Therefore, we designed a third 

method for the assessment of computer models' human-likeness. In the Noise Turing-like 

method, the interrogator is presented with either a computer handshake, Figure 2(a), or a 

human handshake combined with a noise, Figure 2(d). This noise is chosen such that the 

resultant handshake is perceived as least human-like as possible, and such that the human 

handshake is perceived less human as the weight of noise increases. This allows effective 

comparison of pure model handshake with a human handshake corrupted by different levels 

of noise. The idea is that if more noise required for degrading the human handshake such that 

it will be indistinguishable from the model, then the model is less human-like. Such approach 

was suggested in the context of measuring presence in virtual environments according to the 

amount of noise required to degrade the real and virtual stimulation until the perceived 

environments are indiscriminable (Sheridan, 1994, 1996)  

The protocol of the Noise Turing-like handshake test is similar to the Weighted protocol. In 

each trial, the interrogator is presented with two handshakes. In one of the handshakes – the 

standard stimulus– the interrogator interacts with a computer handshake model. The other 

handshake – the comparison stimulus – is a handshake that is generated from a combination 

of the human handshake and noise. In the current study we chose the noise as a mixture of 

sinus functions with frequencies above the natural bandwidth of the human handshake 

(Avraham et al., 2009; Avraham, Levy-Tzedek, Peles, Bar-Haim, & Karniel, 2010; Amir 

Karniel, 2010; Amir Karniel, Nisky, et al., 2010), but the general framework is flexible, and 

any other function can be used instead, as long as it is indeed not human-like. The 

comparison handshake force is calculated according to: 

(8) human noise(1 )F F Fβ β= − +  
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where β  is one of ns equally distributed values from 0 to 1, e.g: = {0, 0.2, 0.4, 0.6, 0.8,  1}. 

Similarly to the previous tests, at the end of each trial the interrogator is requested to choose 

the handshake that felt more human-like. 

The rest of the methodological details, including fitting of the psychometric function, are 

similar to the Weighted test. However, the psychometric curve is now fitted to the probability 

to choose the standard handshake as more human-like as a function of  β  - the relative 

weight of noise in the comparison handshake. Namely, for a model that is indistinguishable 

from human the expected PSE is 0. For a model that is as human-like as the noise function 

(hence, the least human-like model) the expected PSE is 1. Therefore, the MHLGn is 

calculated according to: 

(9) 1nMHLG PSE= −  

Thus, models that are perceived as the least or the most human-like possible, yield MHLGn 

values of 0 or 1, respectively, and the estimations of MHLGn are cut off at 0 and 1.    

4. Simulation 

Intuitively, by design, the different methods that are described in the previous section are 

expected to be useful for different levels of sensitivity of the interrogator to the difference 

between human and computer-generated handshakes. In the current section, we set out to 

quantify the difference between the approaches in terms of statistical power of each method 

in various conditions.    

Methods 

For building a simulation of different psychophysical approaches we must make an 

assumption about the decision process underlying the answers of the interrogator. In the 

current work, we do not explore the decision process, and therefore, we make assumptions 
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that will allow us to explore the different experimental methodologies. The guiding principle 

behind our assumptions is maximal simplicity. Therefore, we do not simulate the actual 

handshake, and instead we simulate a simplified decision process.  

We follow the general framework of signal detection theory (SDT), and assume that after a 

completion of trial i, an internal representation of human-likeness (hi) is formed, and we 

assume Gaussian distribution for this internal representation, as specified in Equation (1). We 

also assume that for all computer, human, and combined handshakes this distribution has 

identical standard deviation, but different means, and that these means are consistent across 

subjects. The mean of this distribution is the actual human-likeness of the handshake and the 

variance represents the confusion level of the interrogator, namely decision variance (see 

Figure 3). We simulate the decision of the interrogator by choosing a random variable hi from 

the appropriate distribution for each of the handshakes in a single trial, and answering 

according to the magnitude of hi. The process is repeated for a number of trials, and the 

appropriate MHLG is calculated according to the simulated answers of the interrogator. We 

tested five models with {50,60,70,80,100}mµ = means of internal representation of human-

likeness of the models, and compared them to a completely human handshake, for which the 

mean of the internal representation human 100µ = . This simulation was repeated for different 

decision standard deviation values, {1,10,30,50,70,90}σ = . 

We repeated the process 10 times to estimate the variability of MHLG for different 

repetitions of the simulation, so as to simulate repetition of the experiment with different 

subjects. This procedure also allowed us to perform one-sided, paired t-test, and determine 

whether the MHLG of two simulated models are statistically significantly (p<0.05) different. 
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Pure test simulation 

For each model we repeated 80 trials where a single sample from a random variable 

( , )m
mh N µ σ: was compared to a sample from human( , )hh N µ σ: . We calculated pm>h – the 

proportion of trials in which m h
i ih h> , and used it to calculate MHLGp according to Equation 

(5).  

Weighted test simulation  

The Weighted Turing-like test is based on the assumption that a higher weight of human 

handshake component in a combined handshake yields higher probability to choose a 

handshake as more human-like. We incorporated this assumption into the simulation by 

choosing the mean value for human likeness of a combined handshake as: 

(10) combined human)( ( )1 mµ α αµ α µ= + − , 

without changing the standard deviation of the decision variable. We chose the least human-

like model, 40mµ = , as a reference model, and each of the tested models, 

{50,60,70,80,100}mµ = , as comparison models, and performed simulation of 10 blocks per 

interrogator. Within each block, for each model, αcomparison was assigned with 8 equally 

distributed values from 0 to 1: αcomprison= {0, 0.142, 0.284, 0.426, 0.568, 0.710, 0.852, 1}, and 

αstandard=0.5.  As in the Pure test simulation, each trial was simulated such that a single 

sample from a random variable comparison
combi compa ned rison( ), )(h N µ α σ: was compared to a 

sample from standard
combi stan rned da d( ), )(h N µ α σ: . Note, that 10 blocks of 8 levels of αcomparison 

yield total of 80 trials per model, similarly to the Pure test. This is important for 

comparability of the methods. At the end of the simulation, for each level of αcomparison, we 

calculated pc>s(αcomparison) – the proportion of trials in which comparison standardh h> for that 
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particular level of αcomparison. We used the Psignifit toolbox version 2.5.6 for Matlab, available 

at http://www.bootstrap-software.org/psignifit/ to fit a logistic psychometric function 

(Wichmann & Hill, 2001)  to the simulated answers of the interrogator and extract the PSE, 

and used it to calculate MHLGw according to Equation (7). In the special case when 

pc>s(αcomparison)>0.5 for all αcomparison, the fitting of psychometric function is not reliable. 

However, since this occurs only for models that are very human-like when compared with the 

reference handshake, we set MHLGw=1 in these cases.  

Noise test simulation 

The simulation of the Noise test was similar to the Weighted, with a few differences. We 

assumed that the noise that we add to the human handshake is equivalent to combining the 

human handshake with the least human-like model possible, namely, 40noiseµ = , and 

therefore: 

(11) noisecombined human) ( )( 1µ β β µ βµ= − + . 

Within each block, for each model, β was assigned with 8 equally distributed values from 0 

to 1: β = {0, 0.142, 0.284, 0.426, 0.568, 0.710, 0.852, 1}.  

As in the previous simulations, each trial was simulated such that a single sample from a 

random variable standard , )( mh N µ σ: was compared to a sample from

compariso
combined

n )( ( , )h N µ β σ: . At the end of the simulation, for each level of β, we calculated 

ps>c(β) – the proportion of trials in which comparisonstandardh h> . We extracted the PSE from a 

psychometric function and calculated MHLGn according to Equation (8). 
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Statistical power analysis 

To compare the performance of each of the tests for different levels of µΔ  and different 

levels of confusion of the interrogator, we performed a systematic statistical power and size 

of effect analysis by means of Monte-Carlo simulations (Abdi, 2007a). For each of the tests, 

we repeated 100 simulations, in which we repeated 5 calculations of the MHLG for each of 

the models {50,52,54,...,96,98,100}mµ = . Then, we performed a one-sided paired t-test 

between the MHLG of the worst model ( 50mµ = ) and each of the other models. This choice 

of particular comparisons was arbitrary, and actually, once an MHLG for each model was 

calculated, any pair of models could be compared. The power of each Turing-like test is the 

proportion of the simulations in which the difference in MHLG was significant at the 0.05 

significance level, and the size of the effect is the mean difference between the MHLG’s that 

were compared. In the current paper, we state that a test has sufficient statistical power when 

this proportion is 0.8 (Cohen, 1988, 1992).  Each of these procedures was repeated for 

different levels of standard deviation of hi, {1,4,7,10,...,97,100}σ = .  

Next, we used a similar procedure to assess the power of the different tests in detection of 

difference between the human-likeness of very similar models, 6µΔ = - a difference which is 

small enough when compared with mean values of 50-100, but large enough to be significant 

difference for the smallest level of interrogator confusion. Here, instead of comparing all 

models to the least human-like model, we compared between models with similar levels of 

human-likeness.  The idea here was to explore whether the performance of the test depends 

on how human-like are these two similar models; namely, whether there is expected to be a 

difference in performance between comparing two very human-like models and comparing 

two very not human-like ones. 
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In the last part of the simulation, we wished to explore the sensitivity of our approach to the 

number of handshakes in each experiment. We repeated the analysis of the Pure Turing-like 

test for different number of blocks – 10, 20, 40, 60, 80, 100, and 200.     

Results 

The results of the simulations of all three tests are depicted in Figure 4. In the left panels of 

the figure, the results of one repetition of the simulation, and in the right panels the mean of 

ten MHLG from repetitions of the simulation are presented together with 95% confidence 

intervals of the estimation of mean. Successful discrimination between the different models 

yields a statistically significant increase of the MHLG as the actual model human likeness 

increases. The results suggest that the Pure Turing-like test is successful for intermediate and 

large levels of decision variance of the interrogator, and completely useless for low levels of 

variance. This is not the case for the Weighted and Noise tests, which are best for low level of 

variance in the decision, and become less sensitive with increasing decision variance.  

Examining the right panels of the figure leads to the prediction that increasing the number of 

subjects is expected to increase the sensitivity of almost all tests, with the exception of the 

Pure test at the lowest levels of decision variance.  

Statistical power analysis for comparison between the Turing-like tests 

The results of the power and size of effect analysis for comparison between the least human-

like model and all other models are depicted in Figures 5 and 6, and support the qualitative 

observations from the previous paragraph. The results of power analysis for comparisons of 

similar models ( 6µΔ = ) for models with different levels of human likeness are depicted in 

Figure 7.  

The Pure test has zero power for very small decision variance, Figure 5(a) left. This is due to 

the lack of overlap between the distributions of the internal representations of human likeness 
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when the decision variance is small. As the confusion of the interrogator starts to increase, 

the power increases for large differences in human likeness. The test is best for intermediate 

levels of decision variance, 20σ ≈ ; for these and larger values the Pure test has sufficiently 

high power starting from / 3µ σΔ >  (Figure 6). Importantly, examining Figure 5(a) right 

suggests that the difference in MHLGp values is a monotonically increasing function of the 

difference between the hidden human likeness levels of each model. Analysis of comparison 

between similar models, Figure 7(a) reveals that the Pure test is sensitive to difference 

between similar very human-like models ( 80µ > ) when the decision variance is 

intermediate, namely5 20σ< < . In general, these observations are in accordance with the 

following intuitive reasoning: when comparing two models to each other, the Pure Turing-

like test is effective if at least one of the models is human-like enough such that there is some 

overlap between the distribution of internal representation of human-likeness, and the 

interrogator will make enough mistakes when asked to compare between the human and 

computer handshakes. However, if both models are very human-like it will be difficult to 

distinguish between them when the decision variance is large. 

The Weighted test has high statistical power for the smallest level of interrogator decision 

variance, Figure 5(b) left, and Figure 6. As the decision variance increases the test looses 

statistical power, until it becomes not sensitive enough (power < 0.8) for 25σ > . Examining 

the size of effect analysis, Figure 5(b) right, reveals that this happens since the difference in 

the mean value of MHLG decreases. In addition, the difference in MHLGw values is a 

monotonically increasing function of the difference between the hidden human likeness 

levels of each model only in the range of interrogator decision variances where the statistical 

power is high. This indicates a potential caveat in the use of the Weighted test; however, 

since this only happens when the statistical power is very low it does not impose actual 

limitations. Namely, the Weighted test will not be used in this case both because of the lack 
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of statistical power and inaccuracy. Analysis of comparison between similar models, Figure 

7(b) reveals that the Weighted test is sensitive to difference between similar models that are 

not very human-like ( 75µ < ) for very low levels of decision variance 10σ < . These results 

are in accordance with the following intuitive reasoning: if both compared models are more 

human-like than the reference model handshake combined with the human handshake, they 

are both estimated as maximally human (MHLG=1), and therefore, there is no statistically 

significant difference between them.   

The Noise test, similarly to the Weighted test, has high statistical power for the smallest level 

of interrogator decision variance, Figure 5(c) left. As confusion level increases, the power is 

still high for / 2µ σΔ > , Figure 6.  Examining the right panel of Figure 5(c) reveals that 

similarly to the Pure test, the difference in MHLGn values is a monotonically increasing 

function of the difference between the hidden human likeness levels of each model. In 

addition, up to σ = 40 , this function does not change with interrogator confusion level, 

which suggests more consistent results between interrogators with different confusion level. 

Analysis of comparison between similar models, Figure 7(c) reveals that the Noise test is 

sensitive to a difference between similar models regardless to their level of human-likeness 

for low levels of interrogator decision variance, namely 15σ < .  

To summarize, for very low levels of decision variance it is appropriate to use either the 

Weighted or Noise Turing-like tests. Starting from 20σ = the Pure test outperforms the other 

tests. For very similar models, when the decision variance is low, the Noise test is appropriate 

for all levels of human-likeness, and the Weighted test is appropriate only for not very 

human-like models. For intermediate levels of decision variance the Pure tests should be 

used, but it is likely to distinguish only between similar very human like models. For large 

levels of decision variance none of the tests has enough statistical power to be able to make 

statements about the difference in human likeness between very similar models.  
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The effect of number of handshakes in an experiment 

The power of any statistical analysis increases with increasing sample size. This happens 

since the uncertainty in any estimation is reduced when more data is sampled. Our MHLG 

estimation is not an exception to this rule. Indeed, analysis of the power of the Pure test, 

Figure 8, reveals that using more handshakes in the assessment of MHLG yields smaller 

confidence intervals for the estimated MHLG, Figure 8(a), and increase the statistical power, 

Figure 8(b) and 8(c). The increase in the power is due to decrease in estimation uncertainty 

(not to confuse with the interrogator’s decision variance), and not in the size of the mean 

difference in MHLG, which is similar to Figure 5(a) right panel regardless to number of 

blocks. Importantly, we conclude from Figure 8(c) that the increase of power is not very high 

for more than 80 handshakes, and therefore, we chose 80 handshakes per model in our 

experimental studies that are described in the next section.    

5. Experiment 

In the current section, we present our experimental comparison of the three Turing-like tests 

while trying to assess the human likeness of three simple models for a human handshake.  

Models for human handshake 

A computer model of a human handshake is a force signal as a function of time, one 

dimensional position of the interrogator’s hand, xinter(t), and its derivatives. In the most 

general notation, such a function is presented in Equation (3). In our experimental study, we 

compared three simple versions of such a function, which are depicted schematically in 

Figure 9.  We considered three candidate models:  

i. Linear spring, K=50N/m, namely: 

(12) inter( ) ( )f t Kx t= − . 
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This model was chosen because it describes a very simple function between the movement of 

the interrogator and the force applied by the model that creates a form of interaction. 

ii. Linear spring and damper connected in parallel, K=20N/m, B=1.3Ns/m, 

namely: 

(13) inter inter ( )( ) ( )f t Kx t x tB= − − & . 

This model was chosen to represent the passive mechanical characteristics of human 

movement. It has additional parameter when compared with the previous model, and 

therefore, it is expected to be ranked higher on the MHLG scale. 

iii. Mixture of sinusoids with frequencies within the typical range of human 

movement, between 1.5 and 2.5 Hz (Avraham et al., 2009; Avraham et al., 2010; 

Amir Karniel, 2010; Amir Karniel, Nisky, et al., 2010), namely: 

(14) 
3

1
( ) 0.6sin(2 ); (1.5,2.5)

i
i if t t Uπω ω

=

=∑ :  

where  ( , )U a b is a uniform distribution between a and b, with the probability 

density function 
1

( )
0

a b
b ap

else

ω
ω

⎧ < <⎪= −⎨
⎪⎩

. 

This model was chosen to represent the class of active handshakes, where the force applied 

on the interrogator is actually not a function of his movements.  . 

Methods 

Experimental procedure, apparatus, and architecture 

Thirty volunteers participated in the experiments after signing the informed consent form as 

stipulated by the local Helsinki Committee. In each experiment two naïve participants – 

human and interrogator – held the stylus of a Phantom® Desktop haptic device (SensAble 

Technologies) and generated handshake movements, as depicted in Figure 1. Throughout the 
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experiment, the interrogator was requested to answer which of the two handshakes within a 

single trial felt more human by pressing the appropriate key on the keyboard. Both haptic 

devices were connected to a Dell precision 450 computer with dual CPU, Intel Xeon 2.4GHz 

processor. The position of the interrogator, ( )interx t , and of the human, ( )humanx t , along the 

vertical direction, were recorded at sampling rate of 600Hz. These position signals were used 

to calculate the forces that were applied at each of the devices according to the overall system 

architecture that is depicted in Figure 10. These forces were interpolated online and applied at 

1000Hz. The human always felt force that is proportional to the difference between the 

positions of the interrogator and the human himself, namely: 

(15)     ( ) ( ( ) ( ))human t inter humanf t K x t x t= − , 

where 150 /tK N m= . The interrogator felt a force that is a combination of this force, a 

computer-generated function, and damping, namely: 

(16)     ( ) ( ( ) ( )) ( )inter h t human inter c computer t interf t G K x t x t G f t B x= − + − & , 

where Gh and Gc are the gains of the human and computer force functions respectively, the 

computer generated force function ( )computerf t is either a handshake model or noise, 

Kt=150N/m is the gain of position-position teleoperation channel, and Bt=2Ns/m is damping 

that is added at the interrogator side to assure overall system stability. The gains and the 

computer-generated function were determined according to the exact protocols that are 

specified further.   

The experiments were divided into two sessions that were performed in two visits to the lab 

in different days. Each session started with practice of 60 handshakes in which the 

interrogator shaked hands with the human through the telerobotic system, namely Gh=1 and 

Gc=0. The purpose of these practice trials was to enable the participants to be acquainted with 

a human handshake in our system. 
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Experiment 1 – Pure 

Five pairs of volunteers participated in the experiment. Each experimental block consisted of 

3 trials in which we compared each of the three candidate models to a human handshake.  In 

each trial, the interrogator was presented with a pure computer handshake, namely Gh=0 and 

Gc=1, and pure human handshake, namely Gh=1 and Gc=0. The computer-generated force 

function was calculated according to one of the models, Equations (12), (13), or (14). Each 

block consisted of three trials such that each model was presented once. The order of the 

trials within each block was random and predetermined. Following our simulation, each 

experiment consisted of 80 test blocks. Two blocks were added at the beginning of the 

experiment for general acquaintance with the system and the task. The answers of the 

subjects in these blocks were not analyzed.  In order to preserve the memory of the feeling of 

a human handshake in the telerobotic setup, after each group of nine experimental blocks 

(twenty seven trials) the subject was presented with six human handshakes. To increase the 

motivation of the participants, they received a grade at the end of each block that was 

calculated based on their answers in the block. 

After completion of both sessions we calculated for each of the models the MHLGp according 

to Equation (5).  

Experiment 2 – Weighted 

Five pairs of volunteers participated in the experiment. In each trial the interrogator was 

presented with two different combinations of a human handshake and a model – standard and 

comparison handshake. The force that was applied on the interrogator was calculated 

according to Equation (15) with Gh=α and Gc=1-α. The values of α were comparisonα α= and 

standardα α= for the comparison and standard handshakes respectively. The model in the 

standard handshake was always the linear spring, Equation (12), and the model in the 

comparison handshake was one of our three candidate models, Equations (12), (13), or (14). 
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Each experimental block consisted of 24 trials comprising each of the 8 linear combinations 

of the stimulus and the human, Equation (6) with comparisonα α= , for each of the three models. 

The order of the trials within each block was random and predetermined. Each experiment 

consisted of 10 blocks. Thus, each of the models was presented to the interrogator in 80 

comparison handshakes. We added one practice block, namely twenty-four trials, for general 

acquaintance with the system and the task. The answers of the interrogator in this block were 

not analyzed. In order to preserve the memory of the feeling of a human handshake in the 

telerobotic setup, after each experimental block (twenty four trials), the subject was presented 

with six human handshakes. To increase the motivation of the participants, at the end of each 

block, they received a grade that was calculated based on their answers in the trials where the 

linear spring model was presented both in comparison and standard handshakes. In these 

trials, one of the handshakes is always composed of a greater weight of human forces than the 

other handshake. We assume that a handshake with larger weight of human versus computer 

handshake is perceived as more human, and therefore, if the same model appears in both 

handshakes with different weights, the participant should be able identify the handshake that 

is more similar to that of a human. 

After completion of both sessions, we used the Psignifit toolbox version 2.5.6 for Matlab to 

fit a logistic psychometric function (Wichmann & Hill, 2001)  to the answers of the 

interrogator and extract the PSE. We then calculated the MHLGw of each of the models 

according to Equation (7). 

Experiment 3 – Noise 

Five pairs of volunteers participated in the experiment. In each trial the interrogator was 

presented with a pure computer handshake, namely Gh=0 and Gc=1, which was one of the 

three candidate models, Equations (12), (13), or (14), and a human handshake combined with 
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noise, namely Gh=1-β and Gc=β.  The values of β were determined according to Equation (8). 

The noise function was calculated according to: 

(17) 
5

1
( ) 0.7sin(2 ); (2.5,3.5)

i
i if t t Uπω ω

=

=∑ :  

Note that the model for noise is similar to our mixture of sinusoids model, but the random 

frequencies were chosen above the typical bandwidth for human movements, between 2.5 

and 3.5 Hz (Avraham et al., 2009; Avraham et al., 2010; Amir Karniel, 2010; Amir Karniel, 

Nisky, et al., 2010). In addition, we used a mixture of five rather than three sinusoids to 

assure that the resultant signal will be perceived as noise by human subjects. We chose the 

amplitude of the sinusoids in the noise function such that the power of the noise signal was at 

least as high as the power that is generated during interaction with the tested models in the 

Pure test. 

Within each block, there were eight trials in which the combined human-noise handshake 

with Gh=1-β and Gc=β for each of the eight values of β was compared to a combined human-

noise handshake with Gh=0.5 and Gc=0.5. These trials were added to serve as data for a 

calibration curve for each subject, to make sure that indeed human handshake with higher 

noise component is perceived as less human-like. Overall, each experimental block consisted 

of 32 trials in which each of the 8 linear combinations of the noise and the human, Equation 

(8) were compared with each of the three models and the noise combined with human. Each 

experiment consisted of 10 blocks. Thus, each of the models was presented to the interrogator 

in 80 handshakes, similarly to the protocols in Experiments 1 and 2. One experimental block 

(32 trials) was added at the beginning of the experiment for general acquaintance with the 

system and the task. The answers of the subjects in this block were not analyzed.  In order to 

preserve the memory of the feeling of a human handshake in the telerobotic setup, after each 

experimental block, the subject was presented with six human handshakes. To increase the 
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motivation of the participants, at the end of each block they received a grade that was 

calculated based on their answers in the calibration trials.   

After completion of both sessions, we fitted psychometric functions to the answers of the 

interrogators, extracted the PSE, and calculated the MHLGn of each of the models according 

to Equation (9). 

Statistical analysis 

The values of MHLG are bounded in [0,1], regardless to the specific version of a Turing-like 

test that is used. Therefore, we used the nonparametric Friedman’s test (M. Friedman, 1937) 

in order to determine whether the difference between the MHLG values of the models is 

statistically significant. We used the Wilcoxon sign-rank test with Bonferroni correction for 

multiple comparisons in order to perform the comparisons between the individual models.  

Results 

Examples of psychometric curves that were fitted to the answers of two selected interrogators 

from the Weighted and Noise tests are depicted in Figure 11. First, as evident from the 

successful fitting of psychometric curves, we validated the assumptions that a handshake with 

higher weight of human handshake relative to a computer generated model for handshake or 

noise has higher probability to be chosen as more human-like. Moreover, the calibration 

curves (spring model in panel A and noise model in panel B) indeed yield PSE that is not 

statistically significantly different from 0 and 0.5 respectively. 

 Both interrogators perceived the linear spring model as least human-like (solid curves). 

However, the spring and damper model was identified as most human-like in the Weighted 

test (Panel A, dashed curve), while the mixture of sinusoids model was perceived as the most 

human-like in the Noise test (Panel B, dotted curve).  
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The MHLG of individual subjects for each of the Turing-like tests are presented in Figure 12. 

Estimations of the mean of MHLG of all models from all tests are presented in Figure 13, 

together with the 95% confidence intervals for these estimations. The Pure test was not 

sensitive enough for discriminating between the MHLG values of the three tested models, 

Figure 12(a), and there was no statistically significant effect of model (Friedman’s test, 

p=0.45). This was due to the fact that when each of the interrogators was introduced with one 

of the models and with a human handshake, he almost always correctly identified the human 

handshake, yielding very small MHLG values. This suggests that all three models of 

handshake were far from human handshake relative to the level of confusion of the 

interrogator, similarly to the simulated results for very low decision variance ( 20σ < ). 

Consistently with the predictions from our simulation study, the Weighted and Noise tests 

revealed significant effect of model on MHLG (Friedman’s test, p=0.049 and p=0.015 

respectively), as clearly evident in Figure 12(b-c) and Figure 13. This leads to the conclusion 

that for these models the more appropriate test is either the Weighted or Noise Turing-like 

test. Interestingly, while the “linear spring” model was least human-like according to both 

tests, there was no agreement about the most human-like model: the “mixture of sinuses” 

model was most human-like according to the Weighted test, and the “linear spring and 

damper” model was most human-like according to the Noise test.  

 

6. Discussion 

In this study, we considered three versions of a Turing-like handshake test: Pure, Weighted, 

and Noise.  In all these tests, a human interrogator interacts with different combinations of 

pairs of human, computer, or combined handshakes, and is asked which handshake felt more 

human. We presented a simulation study that quantified the differences between these tests in 

their ability to assess the human-likeness of computer-generated handshakes. We concluded 
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the paper with an experimental demonstration of testing the human likeness of three simple 

models for human handshake. 

The simulation study suggests that the choice of the best test to differentiate the human-

likeness of computer-generated handshakes depends on how well the interrogator identifies a 

human handshake when compared with a model, namely, the decision variance of the 

interrogator. The Pure test is better for intermediate and large levels of interrogator 

confusion, and the Weighted and Noise tests are good for low levels of confusion. While it 

seems that the Noise test outperforms the Weighted test, an important condition must be 

satisfied before an effective Noise test can be implemented: we have to define the noise 

function – the least human-like handshake possible. Therefore, the Weighted test is necessary 

at least for finding a model that is far enough from a human handshake to serve as noise.  

In our simulation study, we assumed that the one-dimensional internal-representations of a 

handshake human-likeness has a Gaussian distribution, and that for all computer, human, and 

combined handshakes, and for all subjects, this distribution has an identical standard 

deviation. These assumptions are probably not correct: for example, the assumption of 

constant variance does not take into account the Weber and Fechner laws (Norwich, 1987). 

We did not take into account the possibility that the decision process concerning the level of 

human likeness of a handshake has a multiplicative rather than additive noise, and a 

particular structure of observer model (Lu & Dosher, 2008). In order to properly take these 

properties into account in our assumptions, we would have to choose the observer model (Lu 

& Dosher, 2008), the appropriate power function that relates the actual level of stimulus to 

the perceived human likeness, and even decide whether such function exists (Stevens, 1957). 

Since there is no established characterizing of perception of handshake psychophysics, we 

chose to start with the simplest assumptions. With future progress in psychophysical 

evaluation of human-likeness of computer-generated handshakes these assumptions would 
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probably be revised and additional methodological progress will be possible based on more 

true to life formulation.  

According to our experimental results, the Pure test was not successful in discrimination of 

human likeness of “linear spring”, “linear spring and damper”, and “mixture of sinuses” 

models for human handshake. This implies that the decision variance of the interrogator is 

low, and that the suggested models are far from being human-like. Therefore, when the 

interrogator is asked to compare human handshake and a model handshake, he mostly 

chooses the correct answer. However, consistently with our simulations, both the Weighted 

and Noise test successfully discriminated between these simple models. We expect that when 

we will test models for handshake that are more human-like, the Pure test will become more 

effective for the discrimination between them and for identifying the most human-like 

handshake model. This observation suggests additional methodological recommendation: for 

each new set of models, it is useful to perform a pilot study with small number of subjects but 

using all three Turing-like tests. The results of these tests taken together can be used as an 

operational estimation of the level of confusion of interrogator with respect to the human-

likeness of the tested models. For example, models that yield consistent estimation of 

MHLGp=0, MHLGw=1 and 0<MHLGn<1 indicate low level of interrogator confusion, and 

high level of human-likeness.    

Interestingly, while in our simulation study, the grading of different models was consistent 

between Weighted and Noise tests, this was not the case in the experimental study. The 

“linear spring” model was consistently perceived as the least human-like model, but there 

was a disagreement about the human-likeness of the “linear spring and damper” and “mixture 

of sinuses” models. One possible explanation for this observation is that the internal 

representation of human-likeness is multidimensional. Each interrogator might follow a 

different decision path in the space of human-likeness features when grading the models. An 
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example of such situation is when the human-likeness is determined according to a weighted 

average of the different features, as depicted in figure 14. According to this view, all the 

interrogators would correctly identify the least and the most human-like possible handshakes, 

but may have various opinions about the salient feature characterizing human-likeness.  

In particular, the “linear spring and damper” and “mixture of sinuses” represent two different 

classes of models – passive linear system, and active stochastic force generator, respectively.  

A-priori, it is difficult to predict which class is expected to be more human-like. A passive, 

linear, system creates forces only in response to the movement of the interrogator, and the 

frequency content of the resultant handshake never contains frequencies that did not exist in 

this movement. Hence, the resultant handshake is highly synchronized, but also very 

predictive.  Such a handshake would feel natural to an interrogator who is used to dominate 

handshakes, and always takes the leader role in a handshake. An active stochastic force 

generator introduces unpredicted frequency content, and initiates interaction even if the 

interrogator does not do so. Thus, such handshake might feel more human-like to an 

interrogator who is used to follow and comply with the other opponent movement during his 

everyday handshakes. However, it might feel out of synchronization and unpleasant if the 

interrogator tries to lead the handshake.  These two features could be examples for different 

dimensions of the overall human-likeness representation that were suggested in the previous 

paragraph, and the weighting between these features could be determined by the dominance 

of the interrogator in physical interactions (Groten et al., 2009). In future studies, these two 

features could be combined into one model of a handshake. In addition, it might be beneficial 

to identify the dominance of the interrogator in collaborative tasks in order to adjust the 

specific weight of active and passive components in the handshake.  

To further improve future models of handshake, in can be useful to include a few theories 

about the nature of the control of human movements. For example, the linear spring-damper 



33 

system can be replaced with a Hill-type mechanical model (Amir Karniel & Inbar, 1997) or 

one-fifth power damping (Barto, Fagg, Sitkoff, & Houk, 1999)  For the class of active 

models, it can be interesting to consider using trajectories that are the result of optimization 

with respect to some cost function, e.g. minimum jerk (T Flash & N Hogan, 1985), or 

minimum acceleration with constraints (Ben-Itzhak & Karniel, 2007), instead of the simple 

sinusoids that we used in the current study. In addition, it is possible to incorporate forward 

models for controlling the grip force (Flanagan & Wing, 1997) (Kawato, 1999) into the 

constrction of control law, or to adopt optimal feedback control strategies (Todorov & 

Jordan, 2002) and adaptive control.  In (Avraham et al., submitted), we utilized the Noise 

Turing-like handshake test, and compared the human likeness of three models that were 

based on different aspects of the human control of motion. 

The difference in grading might be the result of the subjective and declarative nature of the 

test. In order to overcome the differences between the cognitive processes across subjects, it 

can be useful to look at objective, physiologically related, measures, such as skin 

conductance response (Laine, Spitler, Mosher, & Gothard, 2009), heart rate (Anttonen & 

Surakka, 2005), postural responses (Freeman, Avons, Meddis, Pearson, & IJsselsteijn, 2000) 

or task performance (Feth et al., 2011; Schloerb, 1995). This is of special importance as 

declarative perception is not always consistent with motor responses (Aglioti, DeSouza, & 

Goodale, 1995; Ganel & Goodale, 2003; Goodale & Milner, 1992; Ilana Nisky, Pressman, 

Pugh, Mussa-Ivaldi, & Karniel, 2011; Pressman, Nisky, Karniel, & Mussa-Ivaldi, 2008). In 

particular, a declarative, subjective, evaluation of presence in virtual and remote 

environments was shown to be unreliable, and behavioral, objective, presence measures, such 

as postural responses, were suggested (Freeman et al., 2000). In the context of human-robot 

interaction, (Reed & Peshkin, 2008) showed that while participants who interacted with a 
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robotic partner reported that they interacted with a human in the verbal Turing test, they did 

not reach the same level of performance as in human-human dyad.   

The use of virtual reality, telepresence and teleoperation systems for the study of perception, 

is growing in the last few years (Jin, 2011; Zaal & Bootsma, 2011). In a recent research (Feth 

et al., 2011), human-robot interaction in a virtual environment was studied, and the human-

likeness of virtual partners with a predetermined or adaptive collaborative behavior was 

evaluated . They developed two psychophysical tests, using a predefined scale or a pair-wise 

comparison, to assess the similarity of the virtual partner to a human partner in terms of 

haptic perception. Our Pure test resembles their pair-wise comparison approach, but in our 

test, we compare each handshake model only to a human handshake, while they applied 

Thurstone’s law of comparative judgment, case V, and performed all possible paired 

comparisons between the different virtual opponents, as well as random and human opponent. 

These both approaches are based on Thurstonian scaling and SDT (MacMillan, 2002), but 

differ in the overall number of comparisons. While our method is more economical in terms 

of experimental burden, as it uses a minimal number of comparisons, the method of Feth et 

al. provides more direct assessment of the relative human-likeness of each pair of models, 

and hence, provides a more accurate estimation. In a future study, it will be interesting to 

compare these two approaches in a single experiment with identical number of overall 

comparisons and assess the statistical power of each of the methods in discrimination of 

human-likeness.  

There are two fundamentally different approaches to the challenge of quantifying the 

perceived human-likeness of a particular model for handshake. One is to present the 

participants with various handshakes, and ask for quantitative grade on some predefined scale 

(Feth et al., 2011; Ikeura et al., 1999). The other is to use a two alternatives forced choice 

(2AFC) method: present the participant with two handshakes and ask which one is more 
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human-like (Feth et al., 2011; Amir Karniel, Avraham, et al., 2010). The main advantage of 

the latter approach is that it allows us to treat the problem within the well studied signal 

detection theory (Abdi, 2007b; Gescheider, 1985; Lu & Dosher, 2008; MacMillan, 2002), 

and use the methodological tools that were developed within this framework, e.g. fitting 

psychometric curves to the answers of participants, and assess perception thresholds and 

discrimination sensitivity. The 2AFC method followed by fitting of psychometric curves is 

used extensively in haptic exploration: they are used to assess perception of height (Ernst & 

Banks, 2002), shape (Helbig & Ernst, 2007), stiffness (Ilana Nisky, Baraduc, & Karniel, 

2010; I. Nisky, Mussa-Ivaldi, & Karniel, 2008; Pressman et al., 2008; Pressman, Welty, 

Karniel, & Mussa-Ivaldi, 2007), and more. It is very prominent technique for exploring 

perception in other modalities such as auditory (Warren, Uppenkamp, Patterson, & Griffiths, 

2003), visual (Hoffman, Girshick, Akeley, & Banks, 2008), and smell (Uchida & Mainen, 

2003). Importantly, the method is used not only for pure sensory modalities discrimination 

assessment, but also for quantifying cognitive representation, such as in the case of 

perception of numerical information in monkeys (Nieder & Miller, 2004), the effect of 

linguistic perception of motion verbs on perception of motion (Meteyard, Bahrami, & 

Vigliocco, 2007), or recognition of emotions (Pollak, Messner, Kistler, & Cohn, 2009).  

In the current study, we present three versions of the Turing-like test for handshake. These 

tests complement each other in their ability to discriminate between the human-likeness of 

different computer models for different levels of confusion of the human interrogator.  In our 

experimental study, we focused on a reduced version of a handshake: a one-dimensional 

point interaction through robotic handle. This approach allows exploring the simple 

characteristics of human motion that contribute to perception of human likeness. In the next 

step, additional aspects of human likeness should be explored, both within and outside of the 
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haptic modality, such as grip force, texture, temperature, and moisture, as well as vision and 

sound.  

We believe that the current study provides an important step in the process of building 

human-like humanoid robots, and will help to facilitate development of natural human-robot 

interactions, with its promising applications for teleoperation and telepresence. 

 

Acknowledgements 

This work was supported by the Israel Science Foundation Grant number 1018/08. IN was 

supported by the Kreitman and Clore foundations.  



37 

 

Figure 1: The Turing-like handshake test for motor intelligence is administered through a 

telerobotic interface. Each participant, the human and the interrogator, holds the handle of a 

haptic device, position information is transmitted between the two devices, and forces are 

applied on both devices according to the particular experimental protocol.   
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Figure 2: Illustration of the handshake test. The human interrogator (right) is presented with 

simulated handshakes (a), natural handshakes (b), combinations of natural and simulated 

handshakes (c), combinations of natural handshakes and noise (d). After two interactions the 

interrogator has to choose which of the handshakes felt more “human-like”. The Model 

Human Likeness Grade (MHLG) is then extracted from the answers of the interrogator 

according with one of the methods described in section II.   
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Figure 3: Simulation assumptions illustrated.  We assume that after each trial, an internal 

representation of the actual human-likeness is formed (hi). For simplicity of the simulation, 

we assume that hi is distributed normally, where the mean is the actual human likeness of the 

handshake and the variance represents the confusion level of the interrogator. Here, we 

illustrate probability density functions (pdf) of hi after four computer and one human 

handshakes for three levels of confusion: very low (top), intermediate (middle), and very high 

(bottom).  
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Figure 4: Results of MHLG assessment simulation for five models. The µ  value stands for 

the mean human likeness of each model, with m=50 for least human-like and m=100 for 

completely human-like model. The σ value stands for the level of confusion of the 

interrogator – the standard deviation of the human likeness distribution. Left panel – 

examples of a result of a single run of the simulation; right panel – markers are mean and 

error bars are the 95% confidence intervals for the estimation of the mean across 10 

repetitions of the simulation. (a) Pure Turing-like test, (b) Weighted Turing-like test, (c) 
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Noise Turing-like test. 
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Figure 5: Results of analysis of statistical power (left panels) and mean difference in MHLG 

(right panels) for pure (a), weighted (b), and noise (c) Turing-like tests for human likeness. 

For each of the tests we repeated 100 simulation of extraction of MHLG for models with 

{50,52,54,...,96,98,100}mµ =  and interrogator decision standard deviation of 

{1,4,7,10,...,97,100}σ = . In each of the left panels the power of a one-sided paired t-test for 

the difference between the MHLG of the least human model and each of the other models at a 
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0.05 significance level. The abscissa is the difference in mean human likeness between the 

models, and the ordinate is the standard deviation of human-likeness. The contour is at 0.8 

level of statistical power. In the right panels the mean size of difference in these tests is 

depicted.  
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Figure 6: Comparison of the Turing-like tests. The minimal difference between models that 

yield power of 0.8 in a paired one sided t-test is presented for all three tests: circles and solid 

line – pure test, squares and dotted line – weighted test, diamonds and dot dashed line – noise 

test.  
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Figure 7: The results of analysis of statistical power of pure (a), weighted (b), and noise (c) 

Turing-like tests for human likeness. The analysis is similar to the one that is described in 

Figure 5, but here the comparison was performed between each adjacent models, such that

6µΔ = . The abscissa is the human likeness of the more human-like model, and the ordinate 

is the standard deviation of human-likeness.  The contour is at 0.8 level of statistical power.   
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Figure 8: Simulation results for testing the effect of number of blocks in the pure test. (a) 

repetition of the simulation that is presented in Figure 4(a), but now for 10 (left) or 200 

(right) blocks, instead of 80. (b) repetition of the simulation that is presented in Figure 5(a), 

but now for 10 (left) or 200 (right) blocks, instead of 80. (c) The minimal difference between 

models that yield power of 0.8 in a paired one sided t-test for the pure test with 10, 20, 40, 60, 

80, 100, and 200 blocks.  
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Figure 9: Mechanical representation of our three proposed models for human handshake. (a) 

Linear spring. (b) Spring and damper in parallel. (c) Mixture of sinusoids.   
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Figure 10: Block diagram of the experimental system architecture. The different models and 

the noise are substituted in the “computer” block. Gh and Gc are the gains human and 

computer force function respectively. These gains have different values depending on the 

specific Turing-like test, and depending on the specific handshake. Kt=150N/m is the gain of 

the position-position teleoperation system, and Bt=2Ns/m  is damping that is added at the 

interrogator side to assure overall system stability. 
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Figure 11: Examples of psychometric curves that were fitted to the answers of one 

interrogator from the weighted test experiment (a) and one interrogator from the noise test 

experiment (b). Dots are data points, and the horizontal bars are 95% confidence intervals for 

the estimation of PSE. In general, in both tests, a model with higher MHLG yields a curve 

that is shifted further to the left (see section "Three Turing-like tests – methods for Model 

Human-Likeness Grade assessment" above). 
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Figure 12: Experimentally determined MHLG. The results of (a) pure, (b) weighted, and (c) 

noise Turing-like tests. Symbols are estimations of MHLG, and vertical bars are 95% 

confidence intervals.   
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Figure 13: Experimentally determined MHLG. Mean (symbols) and bootstrap 95% 

confidence intervals (bars) that were estimated using our three suggested versions of the 

Turing-like test for human likeness. 
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Figure 14: An example of grading human likeness according to a two-dimensional internal 

representation of two different subjects, who estimate human likeness as a weighted average 

of the features, each using different weight. Contours represent the level lines of the weighted 

human-likeness (from black – least human-like to gray – most human-like). Each subject 

chooses a feature that has higher priority in the decision process. Thus, both subjects identify 

the worst model, K, as the least human-like among the other presented models, but they don’t 

agree about the best model (Left panel – linear spring and damper, right panel – mixture of 

sinuses). This is because we did not present them with the most human-like handshake 

model. 
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