Ben-Gurion University of the Negev Blaustein Institutes for Desert Research The Swiss Institute for Dryland Environmental and Energy Research Alexandre Yersin Department of Solar Energy and Environmental Physics

Can protein electronic conduction be a quantum effect?

Prof. David Cahen,

Department of Materials and Interfaces, Faculty of Chemistry, Weizmann Institute of Science <u>david.cahen@weizmann.ac.il</u>

Abstract:

Solid state electron transport (ETp), electronic conduction across junctions with an ultra-thin protein film as an active layer, can be surprisingly efficient. Lengthnormalized, ETp efficiency can be similar to, or even exceed that of, conjugated molecules; moreover, it can be temperature-independent down to 4K. If contacts do not limit, i.e., intra-protein transport dominates, we cannot measure a transport barrier. Such results have, nowadays, the banner "quantum" all over them and, yes, they are surprising: the system is disordered, and protein electron transfer, ET, occurs at RT in solution and/or membranes, and is ion transport-coupled. Still, understanding ETp may have relevance for ET (replace coupling to the contacts by electron injection/extraction). I will show experimental data, ours^{1,2} and those of others, which help define the puzzle that we try to solve.

* work done with M. Sheves & I Pecht, A. Vilan, students & PDs at the Weizmann Inst., J. Blumberger, London; G. Vattay. Budapest; J C Cuevas, Madrid +++.

1 C. Bostick et al. Rep. Prog. Phys (2018); 2 N. Amdursky et al., Adv. Mater. (2014)

Date & Location: Monday, April 27, 2021, 11:00