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The Dynamics of Curved Fronts: Beyond Geometry
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We derive a new set of kinematic equations for front motion in two-dimensional bistable media. The
equations generalize the geometric approach by complementing the equation for the front curvature
with an order parameter equation associated with a nonequilibrium Ising-Bloch bifurcation. The
resulting equations capture the core structure of spiral waves and spontaneous spiral-wave nucleation.
[S0031-9007(96)02049-2]

PACS numbers: 82.40.Ck, 47.20.Ma, 82.20.M;j

Traveling wave phenomena in reaction-diffusion sys- An equation for the order parameter:
tems often involve sharp interfaces or fronts separating dif-
ferent reaction states. The dynamics of two-dimensional 9Cy
sharp fronts has been studied successfully using a geomet- ot
ric approach [1-5]. Given a relation between the normal
velocity of the front and its curvature, the geometric the-
ory consists of a closed integro-differential equation for

the front curvature from which the front line shape in th(jjga these equationsis the front arclength, and the critical

Ehiﬁ’ |cz;I FS)Iar?f t?a: Pheate)t(ggci;id.r I]cr;hﬁtresrtl: 'ntLhr's 3ppr0ﬁc arameter value, designates the NIB bifurcation point.
€ assumptio er 1ro ucture does The curvature equation (1) together with the eikonal

ﬁ;g?ihzgnggﬁg); Igr:;;nneéoljshrligzsa?i?r?g?g ri?;?i‘v;):tequation (2), wher&, is considerecconstant,constitute
J 9 P P Pe geometric approach used in earlier studies [2,4].

along the front. .SUCh. phenpmena have been ob.served rﬁ‘elaxing the requirement of constary by adding Eq. (3)
Ceml.y In r_1umer|cal sn_nulat_lons. of model equations de'allows for spontaneous local reversal of the direction
scribing bistable reaction-diffusion systems. Very often

the nucleation of spiral waves triager i reolication an f front propagation. The reversals are accompanied by
€ nucieation ot spiral waves triggers spot replication angn e cleation of spiral-wave pairs. In the rest of this
spiral turbulence [6-9].

In this Letter we present a new kinematic approac Letter we describe the derivation of Egs. (2) and (3) for a

o : . ) . articular model and use these equations to demonstrate a
for front motion in two-dimensional bistable media that 9

. . mechanism of spontaneous spiral-wave nucleation.
captures spontaneous spiral-wave nucleation along the We consider the FitzHugh-Nagumo model with a

front. A key step in this approach is the consideration Ofdiffusin inhibitor
a parameter range including a nonequilibrium Ising-Bloch 9 '
(NIB) front bifurcation. This parity breaking bifurcation

= (a. — @)Co — BCy + yr + Yo

82C() . BCO $
ds2 as Jo

kC,ds'. (3)

Ju

renders a stationary planar front unstable and gives rise to rvi e Yu—u®—v)+ 6 'V,
a pair of stable counterpropagating fronts. The bifurcation (4)
has been found in a number of models, including the v _ U — av — an + V2o
forced complex Ginzburg-Landau [10] and FitzHugh- ot ! 0 ’
Nagumo [11-13] equations, and in experiments with
chemical reactions [14] and liquid crystals [15]. where u_and v, the a}ctivator and t_he inhibitor, are real
Our kinematic approach consists of three equations. Scalar fields andv? is the Laplacian operator in two
A geometric equation for the front curvature, dimensions. The parameter; is chosen so that (4)
describes a bistable medium having two stable uniform
Ik _ _<K2 4 8_2> Ik [* KC,ds'. (1) Staes:an “up” stater+, v+) and a “down” statéu—, v-).
at ast )" as Jo S Ising and Bloch front solutions connect the two uniform

states(u+,v+) as the spatial coordinate normal to the

; ; front goes from—x to +o. The parameter space of

curvaturefc, and' the order parametdf, associated with interest is spanned by, &, and ao, or alternatively by

the NIB bifurcation: n = Jed, u = €/8, anday. Note the parity symmetry
C,=Cy— Dk. 2 (u,v) — (—u,—v) of (4) foray = 0.

An equation relating the normal front velocity,, the
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FIG. 1. The NIB front bifurcation and transverse instability
boundaries. The thick line is the NIB bifurcatiofiz(e), and

the dashed lines are the boundaries for transverse instability d

Ising, 8;(e), and Bloch,8;3(€), fronts. The thin lines are the
linear approximations to the transverse instability boundarie
near the codimension 3 point?3. Parametersaa; = 4.0,
a0=(l

The NIB bifurcation line foray = 0 is shown in Fig. 1.
Foru < 1itis givenbys = 8r(e) = n2/e,orn = 7.,
wheren, = # andg®> = a; + 1/2[12]. The single
stationary Ising front that exists far > 7. loses stability
to a pair of counterpropagating Bloch fronts@at= 7..

Beyond the bifurcationf < 7.) a Bloch front pertaining

IEW LETTERS 10 EBRUARY 1997
aY X
x = X(s,t) + r— y=Y(s,t) —r—. (5)
as as
In the moving frame Eqs. (4) become
eDu=u—uw —v+ulu,
(6)
Dv=u—av—ayg+ Lv,
where
DD 058 o
at Jat ds Jat dr
92 9 OF 9 5 92
= — + kF— + F— — —,
ar? ar ds ds 52
= (1 + rx)”!, and the curvature isc = %(:—Yf -

oy o°x [16]. The arclength changes in time by stretching

= = [y xC, ds' [2,4].

Recalling thatu = €/8 < 1, we use singular per-
turbation theory2 and distinguish between an inner
region Where,u% ~ O(1), and outer regions where

,u% ~ O(wn). The inner region pertains to the front
core where the profile of: in the normal direction is
steep. Introducing a stretched coordinate: r/,/w and
expandingu = uy + eu; + €*u, + ... andv = vy +
ev, + €v, + ..., we obtain at order unityu, =
— tanhz/\/i, vo = 0. At ordere a solvability condition

to an up state invading a down state coexists with anothefields

Bloch front pertaining to a down state invading an up

state. Also shown in Fig. 1 are the transverse instability

boundaries (foragp = 0), 8§ = 8;(¢) = €/n? and § =
dp(e) = m./+/€, for Ising and Bloch fronts, respectively.
Above these lines§ > &, p, planar fronts are unstable to

3
Bt_n\/i

wherev, = v(0,s,1) + O(e€?) is the approximately con-
stant value of the inhibitow in the narrow D (/w)]

ar _
= Uf + 6 lK,

(7)

transverse perturbations [7,8]. All three lines meet at &ront core region. The first term on the right-hand side

codimension 3 poinP3: € = 12,8 = 1,49 = 0.

The following assumptions are made to derive Egs. (2
and (3):e and é are in the proximity of the codimension
3 point, P3, with ¢ < 1; the radius of curvature is much
larger than the front width, that ig, < ¢. First, we trans-
form to an orthogonal coordinate systéms) that moves
with the front, where- is a coordinate normal to the front.
Let X(s,7) = (X, Y), the position vector of the front, co-
incide with theu = 0 contour line. The relation between
the laboratory framéx, y) and the moving frame is

|
Jv

3

of (7) is identified with the order parameter for the NIB
bifurcation: ¢, = —n%ﬁvf. Since the normal velocity is

C, = —%, Eq. (7) yields the eikonal equation (2) with
D=6l

In the outer region% ~ (O(1) and the leading order
equation fomwisu — u®> — v = 0. The relevant solutions
areu = us(v) =1 —-—v/2forr <0andu = u_(v) =
—1 — v/2 for r > 0 (assuminga, is sufficiently large)
[12]. To leading order ine we obtain forv the free
boundary problem

Mv=+1—- —zvy— + P + Py, r=0,
n\/2 far ! 2
M 1 3 v + Py + P =0 (8)
v=-—1— —=vr— , r=0,
n\/z f ’ 1 2
il e 9
v(F%,5,1) = ve = 72610, [v]=0 = [—vi| =0,
q ar lr=o
Where.’]\/l=%—;—;+q2,
d 9%v ds v
Pr=(01—-86YHYk— — F2 = =2 9
. e a0 9s2 9t os (©)
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oF ov Following Ref. [17], we solve the free boundary prob-
Py = 9s os (10)  |em (8) by expanding propagating curved front solutions

and the square brackets denote jumps of the quantmé%s power series i around the stationary planar Ising
inside the brackets across the front-at 0. ont

To solve this free boundary problem we consider a %
parameter range in the immediate vicinity of th& point v(r,$.,T) = v00r) + D "™ (r,8,0,T), (11)
in Fig. 1. In that range the transverse instabilities of the n=1

fronts involve only small wave numbers and therefore W&, here v(o)(r) — (1 — ¢7)/g? for r = 0 and vO(r) =
can assume weak dependences @nd « on the arclength o — )/

s. In addition, the front speed is small and vanishes a{ 9
P3. This suggests using the speed of a planar Bloch fro
solution,c « ./m: — 7, as a small parameter. The weak

for r=0. Expanding n =17, —
Zn + ¢*n, + ... and using these expansions in (8)
roduces the set of equations

dependence of and k on s is achieved by introducing 4, 20 92p™ -
the slow length scal§ = c¢s and assuming& = X(S, ). o tav Y= o P Y,on=1223,...,
This assumption dictates = ¢k, where ko ~ O(1).
We also introduce a slow time scale= ¢?t to describe (12)
deviations from steady front motion. | wherep™ andp®@ are as in Ref. [17] ang® is
v 3 y av© 3 y ov® 2 v 3 ov©
Oy S 1.T) = N () N [() 6 3) }
P (V, 51, ) oT \/577% Vir=0 or \/5770 V=0 or V=0 ar V|r=0 ar
ERIS aw® 98 gv®
+ ag — F? - (1 -8 + : 13
@00 a5z ¢ 00 T o Tas (13)

In (13) we assumed, = c3an, whereagy ~ O (1), and | the Ising front and(Cd, k%) = [+ /(a, — a)/B,0] for
recall thatxy = «/c3. Notice that% ~ O(1), andP, the Bloch fronts. Inserting these forms in (3) gives the
contributes only at orders higher thad. The solution following transverse instability lines, linearized around
of (12) withn = 1 gives the front bifurcation poing, = 6 =1

2\/%(]3. The solution withn = 3 yields

av(l) \/2 7]1 (1) _ 3 (1)3 4

Ising: e = 728, Bloch: € = 72(3 — 26).

9T qn? 47% 3 400 These lines are displayed in Fig. 1 (thin lines). To linear
201 — 871 2o 55 gp® order around theP3 point they coincide with the exact
e e— ) > T oo ; transverse instability lines.
34 95 or 95 (14) As a first application of the kinematic equations (1)—
(3) consider a “front” solution connecting the planar
or in terms of the fast variabless using the integral term  Bloch front,Co = Cy, k = 0, ats = — with the planar
for %, and the expansion (11)’ Bloch front, Cy = C(;, k =0,ats = +x, WhereC()_ = .
5 3l — 4 +/(a. — a)/B, and we have assumed a symmetric
vy _ V2ne —m) vy — i,ﬂ - Za model, ag = 0 or yo = 0. Figure 2(a) shows such a
at qn? oA 3 solution obtained by numerically integrating (1)—(3).
2(1 — 871 vy vy [ , As demonstrated in Fig. 2(b) this front solution of the
- 3q K+ 0s2 Kfo Kk Cnds kinematic equations (1)—(3) represents spiral-wave

(15) solution of the FitzHugh-Nagumo model (4). Unlike the
geometrical approach [2,4] the spiral core is naturally
Equation (15) coincides with (3) once we make the fol-captured by the new kinematic equations.

lowing identifications:Cy = _i\/_vf, a = %ﬁ @, = A second application of the kinematic equations is
A 7 the study ofspontaneous spiral-wave nucleatiotspiral-
o B = =1/6,y = a.(1 — 67"), andy, = 2a.qao. wave nucleation, induced by a transverse instability, has

Equation (3) reproduces the NIB bifurcation for planarbeen previously observed in direct simulations of (4) [7].
fronts: settingx = 0 and ap = 0 we find the Ising Figures 3(a)—3(d) show the time evolution of a solution
front branchC, = 0 and the two Bloch front branches to the Cy-« equations representing a planar front near
Co = */(a, — a)/B. To test whether Egs. (1)—(3) the NIB bifurcation and beyond the transverse instabil-
also capture the transverse instabilities we check the linedty boundary. The initial front pertains to an up state in-
stability of planar front solutions near ttR3 point in the  vading a down state(§y > 0). The transverse instabil-
ap = 0 plane. LetCy = C) + Coexplot + iQs) and ity causes a small dent on the front to grow [Fig. 3(b)].
k = k" + kexplot + iQs), where(Cy, k%) = (0,0) for ~ The negative curvature then triggers the nucleation of a
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00 We have derived kinematic equations for front motion
in two-dimensional bistable systems near a NIB bifur-
cation. The equations generalize earlier derivations and

- 100 capture both the core structure of spiral waves and the

dynamic process of spiral-wave nucleation. Note that

front interaction effects are excluded by the choice of

L 100 the boundary conditionsy(F~,s,t) = v+, in Egs. (8).
Such interactions, studied recently by Goldsetiml. [19]
in the fast inhibitor limit, are not significant for the ini-

. . : I . . —300 tial stages of spiral wave nucleation or for the symmetric

200 800 -100 100 (or nearly symmetric) low curvature spirals studied in this

] X Letter. They do become significant when highly curved

FIG. 2. A front solution to the kinematic equations (1)—(3). spirals de_velop,_ .and might play an essential role in the
(a) The order parametef, and the curvature« along the =~ Meander instability [20].
arclengths. (b) In thex-y plane the front solution corresponds
to a rotating spiral wave. The shaded (light) region corresponds
to an up (down) state. Parameters; =4, a9 =0, € = *Electronic address: aric@lanl.gov
0.01234, 6 = 1.0. TElectronic address: ehud@bgumail.bgu.ac.il
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