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The Dynamics of Curved Fronts: Beyond Geometry
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We derive a new set of kinematic equations for front motion in two-dimensional bistable media. The
equations generalize the geometric approach by complementing the equation for the front curvature
with an order parameter equation associated with a nonequilibrium Ising-Bloch bifurcation. The
resulting equations capture the core structure of spiral waves and spontaneous spiral-wave nucleation.
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Traveling wave phenomena in reaction-diffusion s
tems often involve sharp interfaces or fronts separating
ferent reaction states. The dynamics of two-dimensio
sharp fronts has been studied successfully using a geo
ric approach [1–5]. Given a relation between the norm
velocity of the front and its curvature, the geometric th
ory consists of a closed integro-differential equation
the front curvature from which the front line shape in t
physical plane can be extracted. Inherent in this appro
is the assumption that the inner front structure does
change significantly in time. This assumption rules
major changes like spontaneous nucleation of spiral wa
along the front. Such phenomena have been observe
cently in numerical simulations of model equations d
scribing bistable reaction-diffusion systems. Very oft
the nucleation of spiral waves triggers spot replication
spiral turbulence [6–9].

In this Letter we present a new kinematic approa
for front motion in two-dimensional bistable media th
captures spontaneous spiral-wave nucleation along
front. A key step in this approach is the consideration
a parameter range including a nonequilibrium Ising-Blo
(NIB) front bifurcation. This parity breaking bifurcatio
renders a stationary planar front unstable and gives ris
a pair of stable counterpropagating fronts. The bifurcat
has been found in a number of models, including
forced complex Ginzburg-Landau [10] and FitzHug
Nagumo [11–13] equations, and in experiments w
chemical reactions [14] and liquid crystals [15].

Our kinematic approach consists of three equations
A geometric equation for the front curvature,k:

≠k

≠t
­ 2

µ
k2 1

≠2

≠s2

∂
Cn 2

≠k

≠s

Z s

0
kCn ds0 . (1)

An equation relating the normal front velocityCn, the
curvaturek, and the order parameter,C0, associated with
the NIB bifurcation:

Cn ­ C0 2 Dk . (2)
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An equation for the order parameter:

≠C0

≠t
­ sac 2 adC0 2 bC3

0 1 gk 1 g0

1
≠2C0

≠s2
2

≠C0

≠s

Z s

0
kCnds0. (3)

In these equationss is the front arclength, and the critica
parameter valueac designates the NIB bifurcation point.

The curvature equation (1) together with the eikon
equation (2), whereC0 is consideredconstant,constitute
the geometric approach used in earlier studies [2
Relaxing the requirement of constantC0 by adding Eq. (3)
allows for spontaneous local reversal of the directi
of front propagation. The reversals are accompanied
the nucleation of spiral-wave pairs. In the rest of th
Letter we describe the derivation of Eqs. (2) and (3) fo
particular model and use these equations to demonstra
mechanism of spontaneous spiral-wave nucleation.

We consider the FitzHugh-Nagumo model with
diffusing inhibitor,

≠u
≠t

­ e21su 2 u3 2 yd 1 d21=2u ,

≠y

≠t
­ u 2 a1y 2 a0 1 =2y ,

(4)

where u and y, the activator and the inhibitor, are rea
scalar fields and=2 is the Laplacian operator in two
dimensions. The parametera1 is chosen so that (4)
describes a bistable medium having two stable unifo
states: an “up” statesu1, y1d and a “down” statesu2, y2d.
Ising and Bloch front solutions connect the two unifor
statessu6, y6d as the spatial coordinate normal to th
front goes from2` to 1`. The parameter space o
interest is spanned bye, d, and a0, or alternatively by
h ­

p
ed, m ­ eyd, anda0. Note the parity symmetry

su, yd ! s2u, 2yd of (4) for a0 ­ 0.
© 1997 The American Physical Society
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FIG. 1. The NIB front bifurcation and transverse instabil
boundaries. The thick line is the NIB bifurcation,dFsed, and
the dashed lines are the boundaries for transverse instabili
Ising, dIsed, and Bloch,dBsed, fronts. The thin lines are th
linear approximations to the transverse instability bounda
near the codimension 3 point,P3. Parameters:a1 ­ 4.0,
a0 ­ 0.

The NIB bifurcation line fora0 ­ 0 is shown in Fig. 1.
Form ø 1 it is given byd ­ dFsed ­ h2

cye, or h ­ hc,
wherehc ­

3
2
p

2 q3 andq2 ­ a1 1 1y2 [12]. The single
stationary Ising front that exists forh . hc loses stability
to a pair of counterpropagating Bloch fronts ath ­ hc.
Beyond the bifurcation (h , hc) a Bloch front pertaining
to an up state invading a down state coexists with ano
Bloch front pertaining to a down state invading an
state. Also shown in Fig. 1 are the transverse instab
boundaries (fora0 ­ 0), d ­ dIsed ­ eyh2

c and d ­
dBsed ­ hcy

p
e, for Ising and Bloch fronts, respectively

Above these lines,d . dI ,B, planar fronts are unstable t
transverse perturbations [7,8]. All three lines meet a
codimension 3 pointP3: e ­ h2

c , d ­ 1, a0 ­ 0.
The following assumptions are made to derive Eqs.

and (3):e andd are in the proximity of the codimensio
3 point,P3, with e ø 1; the radius of curvature is muc
larger than the front width, that is,k ø q. First, we trans-
form to an orthogonal coordinate systemsr , sd that moves
with the front, wherer is a coordinate normal to the fron
Let Xss, td ­ sX, Y d, the position vector of the front, co
incide with theu ­ 0 contour line. The relation betwee
the laboratory framesx, yd and the moving frame is
of

es

er
p
ty

a

2)

x ­ Xss, td 1 r
≠Y
≠s

y ­ Yss, td 2 r
≠X
≠s

. (5)

In the moving frame Eqs. (4) become

eD u ­ u 2 u3 2 y 1 mL u ,

D y ­ u 2 a1y 2 a0 1 L y ,
(6)

where

D ­
≠

≠t
1

≠s
≠t

≠

≠s
1

≠r
≠t

≠

≠r
,

L ­
≠2

≠r2 1 kF
≠

≠r
1 F

≠F
≠s

≠

≠s
1 F2 ≠2

≠s2 ,

F ­ s1 1 rkd21, and the curvature isk ­
≠X
≠s

≠2Y
≠s2 2

≠Y
≠s

≠2X
≠s2 [16]. The arclength changes in time by stretching

≠s
≠t ­

Rs
0 kCn ds0 [2,4].

Recalling thatm ­ eyd ø 1, we use singular per-
turbation theory and distinguish between an inne
region wherem

≠2u
≠r2 , O s1d, and outer regions where

m
≠2u
≠r2 , O smd. The inner region pertains to the front

core where the profile ofu in the normal direction is
steep. Introducing a stretched coordinatez ­ ryp

m and
expandingu ­ u0 1 eu1 1 e2u2 1 . . . and y ­ y0 1

ey1 1 e2y2 1 . . ., we obtain at order unityu0 ­
2 tanhzy

p
2, y0 ­ 0. At order e a solvability condition

yields

≠r
≠t

­
3

h
p

2
yf 1 d21k , (7)

whereyf ­ ys0, s, td 1 O se2d is the approximately con-
stant value of the inhibitory in the narrow [O spmd]
front core region. The first term on the right-hand side
of (7) is identified with the order parameter for the NIB
bifurcation:C0 ­ 2

3
h

p
2
yf . Since the normal velocity is

Cn ­ 2
≠r
≠t , Eq. (7) yields the eikonal equation (2) with

D ­ d21.
In the outer regions≠

2u
≠r2 , O s1d and the leading order

equation foru is u 2 u3 2 y ­ 0. The relevant solutions
areu ­ u1syd ø 1 2 yy2 for r , 0 andu ­ u2syd ø
21 2 yy2 for r . 0 (assuminga1 is sufficiently large)
[12]. To leading order ine we obtain for y the free
boundary problem
My ­ 11 2
3

h
p

2
yf

≠y

≠r
1 P1 1 P2, r # 0 ,

My ­ 21 2
3

h
p

2
yf

≠y

≠r
1 P1 1 P2, r $ 0 ,

ys7`, s, td ­ y6 ­
61 2 a0

q2 , fygr­0 ­

∑
≠y

≠r

∏
r­0

­ 0 ,

(8)

whereM ­
≠

≠t 2
≠2

≠r2 1 q2,

P1 ­ s1 2 d21dk
≠y

≠r
2 a0 1 F2 ≠2y

≠s2
2

≠s
≠t

≠y

≠s
, (9)
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P2 ­ F
≠F
≠s

≠y

≠s
, (10)

and the square brackets denote jumps of the quant
inside the brackets across the front atr ­ 0.

To solve this free boundary problem we consider
parameter range in the immediate vicinity of theP3 point
in Fig. 1. In that range the transverse instabilities of t
fronts involve only small wave numbers and therefore
can assume weak dependence ofy andk on the arclength
s. In addition, the front speed is small and vanishes
P3. This suggests using the speed of a planar Bloch fr
solution,c ~

p
hc 2 h, as a small parameter. The wea

dependence ofy and k on s is achieved by introducing
the slow length scaleS ­ cs and assumingX ­ XsS, td.
This assumption dictatesk ­ c3k0 where k0 , O s1d.
We also introduce a slow time scaleT ­ c2t to describe
deviations from steady front motion.
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Following Ref. [17], we solve the free boundary prob
lem (8) by expanding propagating curved front solution
as power series inc around the stationary planar Ising
front

ysr , S, t, T d ­ ys0dsrd 1
X̀
n­1

cnysndsr , S, t, T d , (11)

where ys0dsrd ­ s1 2 eqr dyq2 for r # 0 and ys0dsrd ­
se2qr 2 1dyq2 for r $ 0. Expanding h ­ hc 2

c2h1 1 c4h2 1 ... and using these expansions in (8
produces the set of equations

≠ysnd

≠t
1 q2ysnd 2

≠2ysnd

≠r2 ­ 2rsnd, n ­ 1, 2, 3, . . . ,

(12)
wherers1d andrs2d are as in Ref. [17] andrs3d is
rs3dsr , S, t, T d ­
≠ys1d

≠T
1

3h1p
2 h2

c

y
s1d
jr­0

≠ys0d

≠r
1

3
p

2 hc

∑
y

s1d
jr­0

≠ys2d

≠r
1 y

s2d
jr­0

≠ys1d

≠r
1 y

s3d
jr­0

≠ys0d

≠r

∏
1 a00 2 F2 ≠2ys1d

≠S2 2 s1 2 d21dk0
≠ys0d

≠r
1

≠S
≠T

≠ys1d

≠S
. (13)
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In (13) we assumeda0 ­ c3a00, wherea00 , O s1d, and
recall thatk0 ­ kyc3. Notice that ≠S

≠T , O s1d, and P2

contributes only at orders higher thanc3. The solution
of (12) with n ­ 1 gives the front bifurcation pointhc ­

3
2
p

2 q3 . The solution withn ­ 3 yields

≠ys1d

≠T
­

p
2 h1

qh2
c

ys1d 2
3

4h2
c

ys1d3

2
4
3

a00

2
2s1 2 d21d

3q
k0 1

≠2ys1d

≠S2 2
≠S
≠T

≠ys1d

≠S
,

(14)

or in terms of the fast variablest, s using the integral term
for ≠s

≠t , and the expansion (11),

≠yf

≠t
­

p
2shc 2 hd

qh2
c

yf 2
3

4h2
c

y3
f 2

4
3

a0

2
2s1 2 d21d

3q
k 1

≠2yf

≠s2 2
≠yf

≠s

Z s

0
kCnds0.

(15)

Equation (15) coincides with (3) once we make the f

lowing identifications:C0 ­ 2
3

h
p

2
yf , a ­

h
p

2
qh2

c
, ac ­

p
2

qhc
, b ­ 1y6, g ­ acs1 2 d21d, andg0 ­ 2acqa0.

Equation (3) reproduces the NIB bifurcation for plan
fronts: setting k ­ 0 and a0 ­ 0 we find the Ising
front branchC0 ­ 0 and the two Bloch front branche
C0 ­ 6

p
sac 2 adyb. To test whether Eqs. (1)–(3

also capture the transverse instabilities we check the lin
stability of planar front solutions near theP3 point in the
a0 ­ 0 plane. Let C0 ­ C0

0 1 C̄0 expsst 1 iQsd and
k ­ k0 1 k̄ expsst 1 iQsd, wheresC0

0, k0d ­ s0, 0d for
-

ar

the Ising front andsC0
0, k0d ­ f6

p
sac 2 adyb, 0g for

the Bloch fronts. Inserting these forms in (3) gives th
following transverse instability lines, linearized aroun
d ­ 1:

Ising: e ­ h2
cd, Bloch: e ­ h2

c s3 2 2dd .

These lines are displayed in Fig. 1 (thin lines). To line
order around theP3 point they coincide with the exact
transverse instability lines.

As a first application of the kinematic equations (1)
(3) consider a “front” solution connecting the plana
Bloch front,C0 ­ C1

0 , k ­ 0, ats ­ 2` with the planar
Bloch front,C0 ­ C2

0 , k ­ 0, at s ­ 1`, whereC6
0 ­

6
p

sac 2 adyb, and we have assumed a symmetr
model, a0 ­ 0 or g0 ­ 0. Figure 2(a) shows such a
solution obtained by numerically integrating (1)–(3
As demonstrated in Fig. 2(b) this front solution of th
kinematic equations (1)–(3) represents aspiral-wave
solution of the FitzHugh-Nagumo model (4). Unlike th
geometrical approach [2,4] the spiral core is natura
captured by the new kinematic equations.

A second application of the kinematic equations
the study ofspontaneous spiral-wave nucleation. Spiral-
wave nucleation, induced by a transverse instability, h
been previously observed in direct simulations of (4) [7
Figures 3(a)–3(d) show the time evolution of a solutio
to the C0-k equations representing a planar front ne
the NIB bifurcation and beyond the transverse instab
ity boundary. The initial front pertains to an up state in
vading a down state (C0 . 0). The transverse instabil-
ity causes a small dent on the front to grow [Fig. 3(b)
The negative curvature then triggers the nucleation o
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FIG. 2. A front solution to the kinematic equations (1)–(3
(a) The order parameterC0 and the curvaturek along the
arclengths. (b) In thex-y plane the front solution correspond
to a rotating spiral wave. The shaded (light) region correspo
to an up (down) state. Parameters:a1 ­ 4, a0 ­ 0, e ­
0.012 34, d ­ 1.0.

region along the arclength where the propagation dir
tion is reversed (C0 , 0) [Fig. 3(c)]. The pair of fronts
in the kinematic equations that bound this region cor
spond to a pair of counterrotating spiral waves in t
FitzHugh-Nagumo equations [Fig. 3(d)]. With this ap
proach, the two-dimensional spiral-wave nucleation pro
lem is reduced to the considerably simpler problem of d
main, or droplet, nucleation in one dimension [18].

FIG. 3. Nucleation of a spiral-wave pair in the kinemat
equations (1)–(3). Left column: theC0ssd and kssd profiles.
Right column: the front line shape in thex-y plane. Parame-
ters:a1 ­ 4, a0 ­ 20.0001, e ­ 0.0115, d ­ 1.063. (a)–(d)
are att ­ 0, 116, 136, and142, respectively.
.

ds

c-

-
e

-
-

We have derived kinematic equations for front motio
in two-dimensional bistable systems near a NIB bifu
cation. The equations generalize earlier derivations a
capture both the core structure of spiral waves and
dynamic process of spiral-wave nucleation. Note th
front interaction effects are excluded by the choice
the boundary conditions,ys7`, s, td ­ y6, in Eqs. (8).
Such interactions, studied recently by Goldsteinet al. [19]
in the fast inhibitor limit, are not significant for the ini-
tial stages of spiral wave nucleation or for the symmet
(or nearly symmetric) low curvature spirals studied in th
Letter. They do become significant when highly curve
spirals develop, and might play an essential role in t
meander instability [20].
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