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Spatial instabilities untie the exclusion-principle constraint on
species coexistence
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H I G H L I G H T S

� Spatial patterns allow coexistence of two species, competing on one resource.
� Competition increases the precipitation range that supports spatial patterns.
� Invasion of a strong competitor can drive a patterned system to extinction.
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a b s t r a c t

Using a spatially explicit mathematical model for water-limited vegetation we show that spatial
instabilities of uniform states can lead to species coexistence under conditions where uniformly
distributed species competitively exclude one another. Coexistence is made possible when water-rich
patches formed by a pattern forming species provide habitats for a highly dispersive species that is a
better competitor in uniform settings.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Species coexistence and diversity are fundamental aspects of
community dynamics widely explored in the context of resource-
limited ecosystems (Shmida and Ellner, 1984; Chesson, 2000;
Levin, 2000; Turchin, 2003; Herben and Hara, 2003; Scheiter
and Higgins, 2007; Pronk et al., 2007; Nevai and Vance, 2007;
May et al., 2009; Díaz-Sierra et al., 2010). One of the main
theoretical results is the competitive exclusion principle, stating
that two species competing for the same limiting resource cannot
coexist if other ecological factors are constant (Hardin, 1960). This
easily verifiable mathematical statement rarely holds in real
ecosystems, which are often characterized by a wide abundance
of different species, apparently exploiting the same limiting

resource. Many mechanisms have been suggested to explain this
discrepancy between theory and reality, including niche differen-
tiation due to heterogeneous space and time (Goldberg and
Novoplansky, 1997; Tilman, 1994; Amarasekare, 2003), species
specific predation (Takeuchi and Adachi, 1984; Hulme, 1996),
species that affect each other directly (Vance, 1984) and others.
All these explanations make a step towards reality in breaking the
main assumption of the exclusion principle – uniform environ-
mental conditions and similar species behavior in all aspects
beside competition on a resource (Barot, 2004).

Despite the significance of environmental heterogeneity for
species diversity, studies of species coexistence have largely over-
looked an important driver of such heterogeneity – spatial
instabilities leading to self-organized patchiness (Gilad et al.,
2007a; Meron, 2012). A well studied context of such patchiness
is vegetation pattern formation in water limited ecosystems
(Deblauwe et al., 2008). Model studies of water-limited ecosys-
tems have identified local biomass-water feedbacks capable of
inducing instabilities of uniform vegetation that result in global
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regular and irregular vegetation patterns (Rietkerk et al., 2002;
Barbier et al., 2006; Gilad et al., 2007b; von Hardenberg et al.,
2010). These patterns can form even in the absence of any
environmental heterogeneity, such as micro-topography or differ-
ences in soil type.

Associated with vegetation pattern formation are resource
redistribution and ecosystem engineering, which may affect
inter-specific interactions (Gilad et al., 2004, 2007b). Studies of a
two species model representing a water-limited woody-herbac-
eous systemwith a pattern-forming woody engineer, have demon-
strated transitions from competition and exclusion of the
herbaceous life form at high rainfall to facilitation and coexistence
at low rainfall (Gilad et al., 2007a), consistently with field
observations (Holzapfel et al., 2006). These studies, however,
assumed the existence of a maximal standing biomass, a para-
meter representing constraints on above-ground biomass growth
such as plant-shoot architecture. This assumption, which breaks
the conditions of the exclusion principle, allows for species
coexistence even in uniform systems. In this paper we study
whether self-organized patchiness alone can induce species coex-
istence. That is, we consider a system that satisfies all the
assumptions of the exclusion principle, except that it is spatially
extended. We show that although the system's environment is
assumed to be homogeneous, spatial instabilities leading to
patterned states can induce species coexistence. This result is
implicit in a recent study on savanna ecosystems (Baudena and
Rietkerk, 2013), but has not been spelled out. We further
show various realizations of species exclusion and coexistence,
and we uncover the conditions that are required to yield these
realizations.

2. The model

Vegetation pattern formation in drylands has been studied
using a wide range of mathematical models (see for example
Borgogno et al., 2009; Lefever and Lejeune, 1997; O. Lejeune and
Lefever, 2004; Rietkerk et al., 2002; Gilad et al., 2004). While
representing the soil-vegetation-atmosphere feedbacks at differ-
ent degrees of detail, most models produce the same basic
characteristics of vegetation patchiness, including the sequence
of vegetation states (uniform and patterned) along environmental
gradients, and bistability ranges between any consecutive pair of
vegetation states. This is largely due to the universal behavior of
dynamical systems near instability points. The relevant instability
in the present case is a stationary nonuniform instability of a
uniform vegetation state, which leads to stripe patterns and two
forms of hexagonal patterns (Cross and Greenside, 2009), repre-
senting spot and gap patterns.

A similar degree of universality is expected in models for two
competing species. We therefore use a fairly simplified version of
the model which was introduced in Gilad et al. (2007a) and Meron
(2011) for a pattern-forming species and a non-pattern forming
species that compete for a single limiting resource – soil water. We
first omit the maximum standing biomass limitation to regain the
validity of the exclusion principle in the absence of a pattern
forming instability. This will allow us later on to attribute species
coexistence to spatial self organization. We further keep only one
pattern forming feedback – a larger infiltration rate of surface water
into vegetated soil compared to bare soil, dropping the positive
feedback associated with root-shoot relations (Gilad et al., 2007b).
An additional simplification is the replacement of the nonlinear
diffusion term in the equation for the surface-water variable by a
linear diffusion term, as we will further explain below. Under these
simplifications the model can be regarded as an extension of the
model introduced by HilleRisLambers et al. (2001) to two species.

The simplified model version reads

∂tB1 ¼ ðC1W�M1ÞB1 þ D1∇2B1

∂tB2 ¼ ðC2W�M2ÞB2 þ D2∇2B2

∂tW ¼ JðB1ÞH�WðN þ Γ1B1 þ Γ2B2Þ þ DW∇2W

∂tH¼ P�JðB1ÞH þ DH∇2H ð1Þ
with JðB1Þ ¼ AðB1 þ Qf Þ=ðB1 þ Q Þ. The model represents vegetation
densities for two species, Bi (i¼1,2), the first pattern-forming and
the second not, with growth rates Ci, mortality rates Mi, and
diffusion (dispersal) rates Di. The two species compete for a single
resource, water, which is modeled by two layers. One is soil water,
W, which contributes linearly to biomass growth of both species.
The soil water is reduced by evaporation at a rate N and by water
uptake due to each species with rates ΓiBi. The soil water density
increases by infiltration from the surface water layer, H, at a rate
JðB1Þ. This biomass dependence simulates the higher infiltration
rate in vegetated areas due to the absence of a soil crust and, in
some cases, the formation of a soil mound that intercepts runoff,
as explained in Gilad et al. (2007b). In principle, the infiltration
rate should also depend on B2. However, in order for B2 to remain
non-pattern forming this dependence should be weak enough and
for simplicity we omit it. We verified that introducing a weak
dependence on B2, while remaining in a parameter range where B2
alone does not form patterns, does not change our qualitative
results. In the surface water equation overland water flow is
represented by a simple diffusive term ∇2H. This term, together
with the JðB1ÞH term, is responsible for the instability to periodic
vegetation patterns; the surface water flow towards vegetation
patches, because of higher infiltration rates at the patch areas,
provides a mechanism for short range facilitation and long-range
competition that favors nonuniform vegetation. In other papers,
such as Gilad et al. (2007b), a nonlinear diffusion term of the form
∇2H2 has been used. While this form is better motivated from a
physical point of view, the linear version used here allows for a
simpler numerical and analytical solution of the equations and we
verified that our results do not depend crucially on this detail.

As a first step in our analysis we non-dimensionalize the
equations and reduce the parameter space, using the mortality,
dispersal and growth rates of the first species to define scales for
time, space and water, respectively, and using the soil–water
uptake rates of both species to rescale their biomasses

∂tb1 ¼ ðw�1Þb1 þ ∇2b1
∂tb2 ¼ ðc2w�μ2Þb2 þ d2∇2b2
∂tw¼ Iðb1Þh�wðnþ b1 þ b2Þ þ dw∇2w

∂th¼ p�Iðb1Þhþ dh∇2h; ð2Þ
where Iðb1Þ ¼ αðb1 þ qf Þ=ðb1 þ qÞ, α¼ A=M1;n¼N=M1; p¼ PC1=M

2
1;

μ2 ¼M2=M1; c2 ¼ C2=C1d2 ¼D2=D1; dw ¼DW=D1; dh ¼DH=D1; q¼
QΓ1=M1b1 ¼ B1Γ1=M1; b2 ¼ B2Γ2=M1;w¼WC1=M1; h¼HC1=M1; x¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1=D1

p
X; t ¼M1T .

We study solutions of these model equations for different
parameter values, addressing the question how pattern formation
affects the community dynamics of the two competing species. We
will limit our analysis to one-dimensional systems and concen-
trate on the parameters which control water stress and competi-
tion. These are the precipitation rate p and the parameters
defining the second species, c2; μ2; d2. The parameters n; α; q; f ; dw
and dh, which control soil water dynamics and overland flow are
kept constant and appropriate values to represent dryland water-
vegetation interactions are chosen. The specific values we choose,
α¼ 40; q¼ 0:1; f ¼ 0:1; n¼ 1; dw ¼ 100; dh ¼ 10 000, have been
employed and discussed in Gilad et al. (2004, 2007b). We fix the
non-dimensional domain size to 400, equivalent to a domain of
D≃9:1 m in dimensional units when realistic values are chosen for
the dimensional parameters. The parameters c2 and μ2 both
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regulate the growth rate of the second species and we verified that
varying either of them has almost the same qualitative effect in
terms of the results described below. We therefore set μ2 ¼ 1,
which reduces the control parameter space to ðp; c2; d2Þ.

3. Results

3.1. No species interaction

We consider first the model equations for a single species by
setting the biomass of the other species identically to zero. The
simplest solutions of the single-species model describe stationary
uniform states. One solution of this kind describes bare soil. The
solution is stable up to a critical precipitation value p¼ pbi, where
pb1 ¼ n for the first species and pb2 ¼ nμ2=c2 for the second (here-
after we refer to the two species through their biomass variables
b1 and b2). The critical value designates a uniform stationary
instability (transcritical bifurcation) at which uniform perturba-
tions begin to grow monotonically in time. In the case of b2 the
instability leads to a stationary uniform vegetation state, which is
stable for all p4pb2, as the bifurcation diagram in Fig. 1 indicates.
The case of b1 is more intricate as the stationary uniform vegeta-
tion state that appears at p¼ pb1 is unstable to the monotonic
growth of nonuniform perturbations, leading to the emergence of
stationary periodic patterns. This instability, associated with the
infiltration feedback, occurs at high precipitation as p is decreased
below a threshold value ppat, whose analytical expression is too
long to display here; for the parameter values used in the
following simulations it is equal to 1.23. A bifurcation diagram
showing the two uniform solutions and a solution branch repre-
senting a periodic pattern is shown in Fig. 2. The periodic pattern
branch, calculated by a numerical continuation method using
AUTO (Doedel, 1981), extends to low precipitation values and
appears to terminate on the uniform vegetation branch at p¼ pb1.
The two instability points on the uniform vegetation branch at
p¼ pb1 and at p¼ ppat represent subcritical bifurcations; the stable
periodic solution extends to values plowopb1 and phigh4ppat at
which pairs of stable-unstable periodic patterns appear in fold
bifurcations (see Fig. 2). The ranges plowopopb1 and
ppatopophigh are bistability ranges of bare soil and periodic
patterns and of uniform vegetation and periodic patterns, respec-
tively. There are many additional periodic solutions with close

wavenumbers and with overlapping ranges of stability, but for
simplicity in the following we focus only on solutions with four
vegetation patches.

The inset of Fig. 2 shows the spatial profiles of the biomass and
soil–water variables associated with the periodic solution. The
dotted line shows the soil–water level of the uniform bare-soil
solution. Notice the correlation between the biomass and the soil
water profiles; the higher soil–water content at vegetation patches
is a consequence of the infiltration feedback which induces over-
land flow towards the patches. This may not be the case if the
root-shoot feedback (Gilad et al., 2007b) is kept in the model: The
root-shoot feedback counteracts the infiltration feedback by
depleting the soil–water content under a vegetation patch. When
sufficiently strong, it may shift the balance between the two
feedbacks to form anti-correlated biomass and soil–water distri-
butions (Gilad et al., 2004, 2007b; Meron et al., 2007). Note also
that for popb1 and the chosen parameters the soil water content
in a vegetation patch is higher than the content associated with
the bare soil state (dotted line). This means that in forming water-
rich patches the pattern-forming species act as an ecosystem
engineer.

3.2. Two species competition and coexistence

When both species are allowed to compete, a richer picture
emerges. There are four stationary uniform solutions: bare soil
ðb1 ¼ 0; b2 ¼ 0Þ, uniform b1 ðb1≠0; b2 ¼ 0Þ, uniform b2
ðb1 ¼ 0; b2≠0Þ, and uniform coexistence ðb1≠0; b2≠0Þ. The latter,
however, exists only for parameter values for which μ2=c2 ¼ 1. In
fact, there is a continuous family of coexistence solutions given by
b1 þ b2 ¼ p�n. The constraint μ2=c2 ¼ 1 corresponds to two highly
similar species, having possibly different dispersal rates, but
characterized by the same equilibrium value of the resource,
w¼ μ2=c2 ¼ 1. This is a non-generic case, unexpected to be
observable in practice. As often discussed in the literature, only
states existing over a finite parameter range are expected to be
observable (Meszena et al., 2006). When μ2=c2 deviates from unity,
the only non-zero stable uniform solutions are those involving the

Fig. 1. Bifurcation diagram for a non-pattern-forming species (b2). The bare-soil
state (black line) loses stability to a uniform b2 state (red line) when the
precipitation p exceeds the threshold value pb2 ¼ nμ2=c2. Solid (dashed) lines
represent stable (unstable) states. Parameters used: c2¼1.2, α¼ 40; q¼ 0:1;
f ¼ 0:1; n¼ 1; dw ¼ 102 ; dh ¼ 104. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this article.)

Fig. 2. Bifurcation diagram for a pattern-forming species (b1). The diagram shows
three solution branches representing bare soil (black line), uniform b1 (red line),
and a periodic b1 patterns (green line). The periodic pattern solution appears in a
pair of subcritical instabilities that result in two bistability ranges: bare soil and
periodic b1 pattern plowopopb1, and uniform b1 and periodic b1 pattern
ppatopophigh . The vertical axis represents spatial biomass average. The inset
shows the spatial biomass and soil–water distributions at p¼0.88. For reference,
the dotted line represents the equilibrium soil–water level corresponding to bare
soil. Parameters used: α¼ 40; q¼ 0:1; f ¼ 0:1; n¼ 1; dw ¼ 102; dh ¼ 104. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)
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exclusion of one species, i.e. uniform b1 or uniform b2, consistently
with the competitive exclusion principle for a single limiting
resource. In this case the value of w associated with these
single-species solutions plays the role of the equilibrium value of
the resource, Rn, introduced, among others, by Tilman (1982).

The existence and stability ranges of the other three stationary
uniform solutions can be obtained performing a linear stability
analysis of Eqs. (2). The bare soil state is given by
b1 ¼ 0; b2 ¼ 0; w¼ p=n; h¼ p=ðαf Þ. It is stable at low precipitation
rates and loses stability to the growth of b1 at pb1 ¼ n when
μ2=c241, and to the growth of b2 at pb2 ¼ μ2n=c2 when μ2=c2o1.
The uniform b1 solution is given by b1 ¼ p�n; b2 ¼ 0;
w¼ 1; h¼ p=Iðb1Þ. It is stable at high p and low c2 and loses
stability to the growth of non-uniform perturbations as p
decreases below a certain threshold, ppat ¼ 1:23 for the parameters
used in this study, and to the growth of b2 as c2 exceeds μ2. The
uniform b2 solution is given by b1 ¼ 0; b2 ¼ pðc2=μ2Þ�n;
w¼ μ2=c2; h¼ p=ðαf Þ. It is stable at high p and high c2 and loses
stability to bare soil as p decreases below the threshold
pb2 ¼ μ2n=c2, and to the growth of b1 as c2 decreases below μ2.
Note that the results for the thresholds pb1, pb2 and ppat coincide
with those obtained for the single-species model (see Section 3.1
and Fig. 2). Together with the threshold c2 ¼ μ2 they define
boundary lines in the ðp; c2Þ parameter plane that separate
domains of different stable uniform states:

(1) Uniform b1: (p4ppat and c2oμ2).
(2) Uniform b2: (p4pb2 and c24μ2).
(3) Bare soil: (popb1 and c2oμ2), (popb2 and c24μ2).

The domains described above leave out uncovered the domain
(pb1opoppat and c2oμ2), where no stable uniform states exist
and stable periodic b1 patterns prevail.

The picture, however, is far richer because of the existence of
nonuniform states whose stability domains overlap with those of
the uniform states, as the state diagram in Fig. 3 shows. The
uniform states in this diagram occupy the colored domains 1–3,
delimited by the dashed lines, which denote the stability bound-
aries presented above. The additional colored domains denote
alternative non-uniform stable states, among them patterned
states of species coexistence.

The stable periodic b1 patterns in domain (pb1opoppat and
c2oμ2) (designated 4b in Fig. 3) extend also to the range
plowopophigh, as in the single species problem (see Fig. 2). This
implies bistability domains of bare soil and periodic b1 patterns
(4a), and of uniform b1 and periodic b1 patterns (4c). The domain
of stable periodic b1 patterns also extends to c2 values above μ2.
This results in bistability of uniform b2 and periodic b1 patterns.

A further detail is that there exists a family of stable periodic b1
patterns in domain 4 with different wavenumbers, some of them
extending to other domains as will be discussed in Section 3.3 in
the context of state transitions induced by an invading b2 species.

Two additional bistability domains of uniform and nonuniform
states exist (domains 5 and 6 in Fig. 3). In both domains the
nonuniform state is spatially periodic and involves both species,
however in domain 5 the pattern is stationary whereas in domain
6 it is oscillatory. The alternative stable state in both domains for
p4phigh is uniform b2. Below phigh periodic b1 patterns are also
alternative stable states, and below pb2 bare soil becomes an
alternative stable state instead of uniform b2. Two factors are
responsible for this coexistence. The first is the capability of b1 to
act as an ecosystem engineer, i.e. the capability to increase the soil
water content in its patch areas beyond the level of bare soil (see
Fig. 2). Such patches create new niches for b2 that favor species
coexistence. This factor alone, however, cannot induce stable
species coexistence because of the local competitive advantage

of b2; the growth of b2 can lead to the local extinction of b1 and of
the niches it creates. The additional factor that is needed for stable
coexistence is a higher dispersal rate of b2. In patchy and
fragmented environments high dispersal rate has a negative effect
on the growth within the patch since much of the reproductive
effort is wasted on non-productive areas such as the water
deficient soil located between patches. In that case, the b2 growth
within the patch will be limited by the strong dispersion out-
wards, allowing it to coexist with b1 for a range of c24μ2. We have
verified that the width of this range increases for increasing d2.

3.3. Invasion induced dynamics

The multiplicity of stable states allows for interesting dynami-
cal behavior involving state transitions which we explore in the
context of a species invasion problem. That is, we study the
responses of well established b1 populations to the local invasion
of b2. To study such responses we consider periodic or uniform
initial conditions for b1, and a small hump-shape initial perturba-
tion for b2 centered at one of the b1 patches. The periodic initial
conditions for b1 are obtained by solving the single-species model.

Consider first a stationary periodic b1 pattern in the range
plowopopb2 of domain 4 where bare soil is an alternative stable
state. Consider further a local invasion of a fast growing b2 species
with c24μ2 (point A in Fig. 3). The dynamics that result from such
an initial condition is shown in Fig. 4. The water-rich b1 patch pro-
vides favorable conditions for the growth of b2, which out competes
b1 and leads to its local extinction. Diffusion of b2 induces the
same process in the nearby b1 patches, leading eventually to the
extinction of both species and to the convergence to the alternative
stable state – the bare soil.

A different process occurs with a further decrease of c2 and an
increase of p (point B in Fig. 3). Under these conditions the local
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2: Uniform B2
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4: Pattern B1
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6: Osc. B1+B2

p=pb2

Fig. 3. State diagram showing domains of different states in the parameter plane
spanned by p and c2. The dashed lines denote the stability boundaries of bare soil
(p¼ pb1 ¼ n and p¼ pb2 ¼ nμ2=c2), uniform b1 (p¼ ppat ¼ 1:23 and c2 ¼ μ2), and
uniform b2 (p¼ pb2 and c2 ¼ μ2). The dotted lines are the boundaries p¼ plow and
p¼ phigh of a stable periodic b1 pattern. The colors denote different asymptotic
states according to the legend on the right. The black circles refer to the dynamical
behavior described in Figs. 4–7. The states appearing in the map where obtained by
following the solutions along the c2-axis in a stepwise manner, were the initial
condition in each step is the asymptotic solution of the previous step subjected to
random perturbations. The inset shows a blow up of the designated rectangular
area where invasion-type initial conditions have been used. The latter better reveal
the intricate structure of periodic b1 solutions of increasing wavenumbers. The
parameter values are as indicated in the model description and d2 ¼ 10. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)
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introduction of b2 in a b1 patch can no longer lead to patch
extinction, but does reduce its size. This in turn allows the
adjacent patches of b1 to grow larger, and possibly split into two
patches. The denser b1 pattern that results forms unfavorable
conditions for the growth of b2 and leads to a periodic b1 pattern of
higher wavenumber as Fig. 5 demonstrates. This scenario of
wavenumber increase occurs in a band-like domain in the ðc2; pÞ
plane as shown in the inset of Fig. 3. At higher c2 the same scenario
leads to a b1 pattern with a yet higher wavenumber (the upper
band-like domain in Fig. 3).

In the examples described above the overall role of b2 was to
trigger a transition from one stable state to another both of which
do not involve b2. Repeating the numerical invasion experiment in
domain 5 (at point C in Fig. 3) leads to an early stage behavior
similar to that found at point B (Fig. 5), in that the invaded b1 patch
shrinks in size and allows the adjacent patches to grow and split.
This time, however, the invading b2 species does not go extinct but
rather persists and keeps invading all other b1 patches to form a
coexistence pattern. The difference with respect to the behavior at
point B is that the b1 patch splitting occurs across the whole
pattern, doubling the pattern's wavenumber in this case. As a
consequence, the b1 patches are much smaller and while they are

still active in increasing the infiltration rate of surface water, their
water consumption is much reduced, thereby creating favorable
conditions for b2.

So far we discussed the local invasion of b2 into a b1 pattern.
Fig. 7 shows the result of a numerical experiment where b2
invades a uniform b1 state (point D in Fig. 3). In this case the
uniform b1 state is unstable to the growth of b2 perturbations (but
is stable in the absence of b2, i.e. in the single-species model for
b1). As the figure shows, the invasion results in an oscillatory
coexistence pattern (occupying domain 6 in the state diagram of
Fig. 3). This pattern appears in a Hopf bifurcation from the
stationary coexistence pattern that exists in domain 5. As c2 is
decreased towards μ2 the oscillation period becomes longer
and diverges in the limit c2-μ2. The oscillation period involves
two main phases as Fig. 8 demonstrates: (i) a long phase in

Fig. 5. Space–time plot describing a transition from one b1 pattern to another that
involves wavenumber increase. The transition is induced by local b2 invasion which
goes extinct in the course of the transition. The dashed line denotes the introduc-
tion time of b2. Darker shades denote higher biomass. The parameters correspond
to point B in Fig. 3.

Fig. 6. Space–time plot describing a transition from a b1 pattern to a stationary
coexistence pattern involving both b1 and b2. The transition is induced by local b2
invasion. The dashed line denotes the introduction time of b2. Darker shades
denote higher biomass. The parameters correspond to point C in Fig. 3.

Fig. 4. Space–time plot describing a transition from a b1 pattern to bare soil
induced by a local invasion of b2. The dashed line denotes the introduction time of
b2. Darker shades denote higher biomass. The parameters correspond to point A in
Fig. 3.

Fig. 7. Space–time plot describing a transition from a uniform b1 state to an
oscillatory coexistence pattern involving both b1 and b2. The transition is induced
by local b2 invasion. The dashed line denotes the introduction time of b2. Darker
shades denote higher biomass. The parameters (p¼1.46 and c2¼1.01) correspond
to point D in Fig. 3.
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the vicinity of the slow manifold, b1 þ b2 ¼ p�n, where the
community structure is nearly uniform and slowly changes from
a b1-dominated to a b2-dominated community, in accordance with
the competitive exclusion principle and (ii) a short phase of a
coexistence pattern in which the dominance of b1 is regained. The
termination of the uniform phase and the appearance of the
coexistence pattern can be related to a stationary nonuniform
instability of uniform coexistence states b1 þ b2 ¼ p�n when b1=b2
is smaller than some threshold value.

4. Discussion

Using a spatially explicit mathematical model for plant inter-
actions in water-limited systems, we reexamined the competitive
exclusion principle under conditions where one species is capable
of forming self-organized vegetation patterns. Our results suggests
that even in a uniform, time-independent environment self-
emergent spatial patterns can induce coexistence of two species
that compete on the same resource. Exhaustive exploration of the
parameter space (Fig. 3) reveals a wide range of possible dynami-
cal behaviors.

The primary result is that introducing a second species to a
water-limited system dominated by a pattern-forming species
leads to wide parameter ranges where stable coexistence (in the
sense of Chesson, 2000) is possible (domains 5 and 6 in Fig. 3). In
these parameter ranges the pattern forming species acts as an
ecosystem engineer by concentrating the water resource, while
the second species, which is not pattern forming by itself, is a
better competitor and characterized by a higher dispersal cap-
ability. Two forms of species coexistence were found, both repre-
senting periodic patterns with overlapping patches except that in
one form the pattern is stationary (Fig. 6) and in the other it is
oscillatory (Figs. 7 and 8).

It is interesting to note that this mechanism differs from the
classical competition-colonization tradeoff mechanism introduced
by Tilman (1994). The comparison between the two mechanisms
is not straightforward since competition in Tilman's spatially
implicit model is presumed and built into the model, whereas in
a spatially explicit model competition is mediated by the

instantaneous spatial distribution of the limiting resource, water
in our case. Moreover, colonization is interpreted differently: in
Tilman's approach it is regarded as the ability to disperse and to
germinate whereas in our approach it is only the ability to
disperse, while germination and growth are represented sepa-
rately. In fact, while in an implicit-space approach the only species
property which is represented is the fraction of spatial coverage,
explicit modeling of the spatial distributions adds the additional
property of biomass density, allowing to separate dispersion from
germination and growth. In any case, the implied result of Tilman's
model is that a negative correlation between competition and
colonization abilities is necessary to maintain coexistence, while
we find the opposite, coexistence occurs in a range in which the
better competitor is also the faster disperser. The explanation for
this mismatch is that in Tilman's approach an inferior competitor
species can only benefit from a higher colonization rate, while in
our approach high colonization rates (i.e. biomass-diffusion rates)
come at the expense of local growth. Heterogeneous soil water
distribution, caused by vegetation pattern formation, can thus lead
to a negative impact of a high dispersal strategy, which reduces
the growth rate of the better competitor and allows the coex-
istence of the weaker competitor.

Two additional results are worth emphasizing. The first is the
extension of the precipitation range of patterned states once the
second, non-pattern forming species is introduced. While pat-
terned states of the first species alone cease to exist above phigh,
pattern states involving both species persist far beyond phigh.
Spatial heterogeneity has long been recognized as a driver of
species diversity (Tews et al., 2004). The result reported here
suggests that the opposite may also be true; higher species
diversity can increase spatial heterogeneity, forming a positive
feedback loop between landscape diversity and species diversity.

The second result we wish to stress is the different invasion
scenarios by which the second species can induce shifts between
different states that do not involve it. The first scenario, illustrated
in Fig. 4, is a transition form a patterned state of the first species to
bare soil. An additional scenario is a transition that change the
wavenumber of the pattern state of the first species, usually
increasing it (Fig. 5). While in the first scenario the first species
is vulnerable to the invasion of the second species and can go
extinct, in the latter it is resilient.

Spatial patterns of species coexistence have recently been studied
in the specific context of savanna ecosystems by Baudena and
Rietkerk (2013) using a model with a similar mathematical formula-
tion but in a different parameter range. As discussed above, our
study focuses on the manners by which pattern formation unties the
constraint of the exclusion principle on species coexistence, rather
than on model applications to specific ecosystem contexts, such as
savanna. Accordingly, the trait parameters that characterize the two
species are quite similar and do not fit the context of tree-grass
coexistence in savannas (the biomass density of the two species, for
example, is quite similar as Figs. 1 and 2 imply). We believe,
however, that the mechanism of species coexistence presented here
applies also to the coexistence patterns found in Baudena and
Rietkerk (2013). We note that the emergence of savanna landscapes
as a self-organization phenomenon has been studied earlier by Gilad
et al. (2007a). In that work an additional constraint has been taken
into account – a maximum standing biomass – which reflects
species-specific (genetic) limits on growth, such as stem strength
or canopy architecture. Choosing the maximum standing biomass of
the woody species to be an order of magnitude larger than that of
the herbaceous species played a major role in reproducing savanna
landscapes consisting of a uniform grassland interrupted by woody
patches. This type of patterns differs from the patterns found in this
study (and also in Baudena and Rietkerk, 2013), which are mosaics
of bare-soil patches and coexistence vegetation patches.

Fig. 8. Space–time plot showing the asymptotic dynamics of the oscillatory
coexistence pattern in domain 6, closer to the c2 ¼ μ2 threshold as compared with
Fig. 7. The oscillation period consists of a long, nearly uniform, phase, where the
composition changes from a b1 dominated community to a b2 dominated commu-
nity, and a short patterned phase. Darker shades denote higher biomass. The
parameters (p¼1.46 and c2¼1.001) correspond to point E in Fig. 3.
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Many of the domains depicted in the state diagram of Fig. 3
represent bistability of uniform and periodic-pattern states:
domain 4a, for example, represents bistability of uniform bare soil
and a periodic b1 pattern, domain 5 represents bistability of
uniform b1 and a stationary coexistence pattern, and so on.
Bistability of this kind often gives rise to a multitude of additional
patterned states (Knobloch, 2008), ranging from islands of the
periodic-pattern state in an otherwise uniform state (localized
structures) to islands of the uniform state in an otherwise periodic
pattern (hole structures). The stability of these additional states is
attributed to the pinning of the transition zones (fronts) that
separate areas occupied by the uniform and the periodic pattern
states (Pomeau, 1986; Meron, 2012). Thus, domain 5 and possibly
domain 6 too may give rise to many more coexistence patterns.
We focused in this study on water-limited competition between
two species, but the general results reported here are likely to be
found in other communities that show spatial self-organization.
Candidates for such communities include wetland vegetation (van
der Valk and Warner, 2009), mussel beds (van de Koppel et al.,
2008) and possibly plankton communities (Medvinsky et al.,
2002). Exploring the results of multi-species competition is also
very interesting and can be a goal for future studies.
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