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1. Introduction

A variety of pattern formation phenomenain nonequilibrium systemsresult from the interplay
betweenlocal dynamicalprocessesand diffusive transport. Autocatalyticchemical reactionsprovide
someof themost studiedexamples[FIB].The possibleappearanceof stationaryconcentrationpatterns
in chemical reactionshas already beenpredictedby Turing [TUR] (in 1952). Stationarypatterns,
however,havenot beenobservedin experimentsuntil very recently[CDB].Whathasbeenobserved,
instead,wastravelingwavepatterns[ZAZ1,WIN1] whosepropertiesbearstrikingsimilarities to electric
pulse (action potential) propagationalong excitable membranes.The relation betweenthe two
phenomena[WIN2,TRO]was realized after the works of Hodgkin and Huxley [HOH] on nerve
conduction and of Field et al. [FKN] on the mechanismof the Belousov—Zhabotinskyreaction
[BEL,ZHA]. The fact that both phenomenabelongto the sameclass of reaction—diffusionsystems
openedthe way for an intensive interdisciplinarystudy of wavepatternsin systemsthat havebecome
knownunder the name“excitable media”.

The simplestpatternsthat appearin excitablemedia are solitary wavesthat propagateat constant
speeds.Thesewavespreservetheir formsduring propagationbut, unlike solitons,annihilateeachother
upon face-to-facecollisions. Excitable media also supportcontinuousfamilies of periodicwavetrains.
The speedsof these wavetrainsare related to their periods (or wavelengths)through dispersion
relations,which at short periodsbecomemonotonic,theshortertheperiodthesmallerthepropagation
speed.In two dimensions,expandingconcentriccircular waves(“target” patterns)and rotatingspiral
wavesare commonly observed(fig. 1). Target patternsare generatedby small oscillatory domains
(“pacemakers”)whoseperiods determinetheir asymptoticwavelengths.This leadsto patternswith
varying wavelength as seen in the upper part of fig. 1. The asymptotic wavelength,or rotation
frequencyof spiralwaves,on theotherhand,cannotassumeanyvalue; in a mediumthat gives riseto a
monotonicdispersionrelation a uniquefrequencyvalue is selected(lower part of fig. 1). Target and
spiral wavesgeneralizein three dimensionsto expandingsphericalwaves and rotating scroll waves,
respectively.The axis of thescrollwave (or vortex line) canterminateat theboundariesor closeupon
itself in a variety of ways to form vortex rings.

A reviewof traveling-wavephenomenain excitablemedia appeareda few yearsago, emphasizing
singularperturbationaspects[TYK1].Numerousstudieshaveappearedsincethenandonepurposeof
the presentreview is to describethe theoretical,numericaland experimentalprogressthat hasbeen
madein theseworks.Anothergoal is to describeanalyticalapproachesotherthansingularperturbation
theory (in thesenseof [TYK1]).Theseincludeextensivestudiesby Russiancolleaguesthat havebeen
describedin the Western literature only recently. Part of the recent progresspertainsto three-
dimensionalpatterns. These are beyond the scope of the present review, however. For recent
developmentsin threedimensionswe refer the readerto refs. [KET1].

We beginin section2 with a brief explanationof whatexcitablesystemsareandwheresuchsystems
are encountered.We will avoid a detailedexpositionof thenumerousmathematicalmodelsthathave
beenproposedto describeexcitablesystemsandwill focus,instead,on genericfeaturescapturedby all
suchmodels.We will also describein detail only onephysicalexampleof an excitablesystem,namely,
theBelousov—Zhabotinskyreaction,as mostexperimentalstudieswerecarriedout on that system. In
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E. Meron, Patternformation in excitable media 5

section3 weconsiderone-dimensionalpatternsandaddressfirst pulse-like solitary waves(section3.1).
We thenproceedto extendedpatterns(section3.2).Wedescribethederivationof dispersionrelations
for periodic travelingwavesusing singularperturbationtheory(section3.2.1),andpresenta different,
kinematical approach to traveling waves in excitable systems (section 3.2.2), which allows the
considerationof relaxationalaspectsand the emergenceof spatial complexity (section 3.2.2). An
accountof experimentalstudiesis given in section3.3.

Two-dimensionalpatternsare consideredin section 4. We discuss first the role of curvature in
two-dimensionalpatterning, present derivations of curvature—speedrelations and describean ex-
perimental test of such relations(section 4.1). Instabilities of planar traveling waves to transverse
structureareconsideredin section4.2 whereastherestof section4 is devotedto spiral waves.Wefocus
on two outstanding problems, the selection of a unique frequency of rotation and the onset of
nonsteadyrotation, anddescribeexperimental,numericaland theoreticalprogressthat hasbeenmade
on theseproblems.Many additionalaspectsof patternformation in two dimensionsarenot coveredin
this review. Theseinclude spiral-waveinteractions,theonsetof turbulence,cellular-automatonmodels
etc. We briefly discussthesetopicsin section5.

2. Excitablesystems

2.1. A simplemodel

In order to understandwhat we meanby “excitable” systems,it is instructive to consider first a
simple model of a bistablesystem,

ü=—u(u—a)(u—1)—v, (2.la)

where the dot denotesdifferentiationwith respectto a dimensionlesstime and a and v are constant

parameters.Equation(2. la) is derivablefrom a potential,
u = —&~I~u. (2.2)

In a rangeof parametervalues,vmin(a) < v < vmax(a), ~ is adouble-wellpotential. In generalthe two
wells will be of different depths.The deeperthe well themore stabletheattractorandthe largerthe
basinof attraction.We will refer to theshallowerwell asdescribinga metastablestate.The forms of .~

for increasingvaluesof v anda fixed valueof a E (0, ~),areillustratedin fig. 2a. For v = 0 the well on
the left, centeredat u = 0, describesa metastablestate. If we preparethe systemin this stateand
perturbit by increasingthe value of u beyondthe potential barrierat u = a, the systemwill evolve
toward the stablestateu = 1. As v increases(a held constant),the original metastablestate,u = 0,
becomesmorestableanddrifts towardnegativeu values.The well on the right becomesshallowerand
eventuallydisappears.

Imaginenow that u is not a constantparameterbut, instead,a dynamicalvariablethat evolveson a
time scalemuchlongerthanthat ofu. *) It is importantthat v will respondto variationsin u in a certain
way, and thesimpledifferential equation

v=eu, 0<s’~1, (2.lb)

*) Theview of dynamicalsystemsasslowly deformingpotentialsystemshasproveduseful in othercontextsaswell [MSP].
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(a) (b)

._ 0.12- ~,! 2!

Fig. 2. a. Thepotential.~(u)of eq. (2.la) at increasingconstantvaluesof v (denotedon theright sideof thepotential). b. Thelocusof extremal
potentialvalues, bSrlbu, in the (u, v) plane.

is sufficient for that purpose(for generalizationsseesection3.1.1).Thenewdynamicalsystem(2.la,b)
is no longerpotential, but it is still useful to keep in mind the form of ~ as time evolves.It is easyto
checkthatu = v = 0 is a stationarystablestateof thenewsystem.Supposethat we preparethesystem
in this stateandperturbu beyondthe thresholdvalueu = a (the locationof thepotentialbarrierof ~).

On a short time scale [of 0(1)] the systemconvergestoward the deepwell on the right asif e were
zero. On a longer time scale[of O(e_1], however,v starts increasing(sinceu is now positive)and, asa
result, the right well becomesshallowerand shallower(see fig. 2a). The fast variable u follows this
changeadiabaticallyand the systemremains“inside thewell” until thewell disappears.At this moment
thesystem“falls” down into thedeepwell that hasdevelopedon the left. This well is locatednow at a
negativeu valueand, consequently,v startsdecreasingwhile u adiabaticallyadjustsitself to thevarying
well position.This processcontinuesuntil.completeconvergenceto the original stablestateu = v = 0 is
achieved.Thus, perturbationslarger than a thresholdvalue do not immediately decaybut, instead,
drive the system to long excursionsin the (u, v) planebefore relaxationback to the stationarystate
occurs.We say that suchperturbations“excite” the system.

A convenientway to follow the dynamicsin the (u, v) plane is to look at the locusof extremal
potential values,~ = 0, shown in fig. 2b.*) The right and left branchescorrespondto the two
potentialwells, while the middle branchdescribesthe locationof thepotentialbarrier.Figure 3 shows
the rapid decay of a subthresholdperturbation(trajectoryA) and the long excursioninitiated by a
superthresholdperturbation(trajectoryB). The final stageof this excursioninvolves the relaxationof
the systemback to the stationarystatealongthe left branch(or well). During theearly stagesof this
relaxationprocessthesystemis refractory to perturbations,despitethe fact that it hasalreadyreturned
to thebranchof the stationarystate.The reasonfor thatbecomesevidentwhenwe look at figs. 2 and3.
At high v valuesthe thresholdis too large,or the left well too wide, for smallperturbationsto inducea
transitionto the right branch.The refractoryphasein therelaxationprocessis extremelysignificant for
patternformation in excitablemedia.

The double-well-potentialpicture drawn above applies in the limit of small r. In this limit the
potential barrier dictatesa sharp thresholdof excitation. When r is not too small the thresholdof
excitationis no longer sharp[FIT1,CGB] andone mayspeakof a thresholdzone[MNS].The response
of the systemto perturbationsthat lie within thatzonevariescontinuouslyfrom immediatedecayto fast

*) This locusis often referredto in theliterature as the “slow manifold” or the nullcline associatedwith thevariableu.
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Fig. 3. Phaseportraitsof eqs.(2.1) showingtheresponseof thesystemto subthreshold(A) andsuper-threshold(B) perturbationsof thereststate
S.

growth. A sharpthresholdcanalso beobtainedin systemsthat undergosaddle-nodebifurcations.The
thresholdis thendictatedby the stablemanifold of thesaddlepoint [RIE,MNS].

2.2. Examples

The most studiedexampleof an excitablesystem,at leastas far as patternformation aspectsare
concerned,is theBelousov—Zhabotinsky(BZ) reaction[BEL,ZHA].The overalleffect of this reaction
is acatalyticoxidationof malonic acid in an acidic bromatesolution.The catalystin this reactionis a
metal ion, usually ferroin (Fe2~)orcerium(Ce3~).The factthat the two oxidationstatesofthecatalyst
havedifferent colors makesthe reactionclearlyvisible (seefig. 1). Accordingto a mechanismproposed
by Field et al. [FKN],the reactioninvolves threemain processes.

ProcessA

Br0 + Br + 2H~#s’HBrO
2+ HOBr (A.1)

HBrO2 + Br + H~~2HOBr, (A.2)
HOBr + Br + H~~Br2 + H20. (A.3)

ProcessB

Br0 + HBrO2+ 3H~+ 2Fe
2~t-~2HBr0

2+ 2Fe
3~+ H

20, (B.1)
2HBrO2*-* Br0 + HOBr + H~. (B.2)

ProcessC

Br2 + CH2(COOH)2—.*BrCH(COOH)2+ Br + H~, (C.1)
10Fe

3~+ CH
2(COOH)2+ BrCH(COOH)2+ 4H20+ 2Br2—* 10Fe

2~+ 5Br + 15H~+ 6C0
2. (C.2)

We notethat not all of the reactionstepsdisplayedaboverepresentelementaryreactions.Forexample,
the single-electronoxidation reaction (B .1) involves a free radical intermediate,BrO;. A detailed
considerationof thesereactionstepsis given in refs. [FKN,FIE,TYS1].

The key stepsin theFKN mechanismaretheautocatalyticproductionof bromousacid (HBrO2) in
reaction(B .1), and theeliminationofbromousacidby bromideions (Br) in reaction(A.2). Whenthe
initial concentrationof Br is sufficiently large,reaction(A.2) removesHBrO2 beforeit canenterthe
autocatalytic step (B.1), and a steady state results (concentrationsof intermediate speciesare
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independentof time). Whentheconcentrationof Br - dropsbelow a critical value therearenot enough
bromideions to suppresstheautocatalyticreaction(B.1) and the concentrationof bromousacidstarts
to accumulateexponentially.The rapid increasein bromous-acidconcentrationeventuallysaturates
becauseof reaction(B.2). The bromine(Br2) andthe oxidizedform of themetalcatalyst(Fe

3~),that
are producedin processesA andB, respectively,cannow triggerprocessC whoseeffect is to reduce
Fe3~back to Fe2~and to producebromide ions. The latter react with bromous acid [step (A.2)]
to bring back the concentrationsof both reactantsto their initial valuesand a new cycle can now
start.

Thus,dependingon the initial level of bromideions, the reactioncan be either in a steadyor in an
oscillatory state.Excitability is achievedwhenthebromide-ionconcentrationis only slightly abovethe
critical level below which spontaneousoscillationsset in. Decreasingtheconcentrationof bromideions
below the critical level will free the way for step (B .1) and a whole cycle of oxidation—reductionwill
takeplace before the steadystateis re-established.

The mass—actionequationsfor the full FKN mechanismyield a complicateddynamicalsystem. A
reducedmechanism,consistingof only five essentialsteps,hasbeenproposedin [FIN1].It leadsto a
three-variabledynamicalsystem,known as the Oregonator,which in appropriateparameterregimes
hassolutionsdescribingboth oscillatory [FIN1 ,HAM] andexcitablestates[TRF].The three-variable
model hasbeenfurther reducedto a two-variablemodel that hasthegrossstructureof (2.1) with the
concentrationsof HBrO

2 and Fe
3* playing the roles of u and v, respectively[TYF]. Other reduced

versionsof the FKN mechanismhavebeenproposed.Thesemodelsare reviewedin [TYS1].
Anotherwell studiedexampleof an excitablesystemis theaxon of a nervecell [AID,KAS]. Here,

the fast variable is the transmembranepotential difference. At the non-firing reststateit assumesa
constantvalue that reflects a balancebetweenelectrical and ion-concentrationgradientsacrossthe
membrane.The excitation processin this system amounts to a change of about 100 mY in the
transmembranepotentialdifference.The potentialchangeandthe subsequentrecoveryof thesystemto
the reststatearedue to nonlinearresponsesofthevariousionic conductancesto potentialvariations.In
their seminalwork Hodgkin and Huxleyproposeda phenomenologicalfour-variablemodelto describe
the processof membraneexcitation.Theystudiedtheir model numericallyanddemonstratedquantita-
tive agreementwith experimentalobservations[HOH]. The complexity of the model, however,
motivatedthe formulation of simpler modelswhich still capturethe key qualitative featuresof the
original system[RIN1]. The most familiar one is the FitzHugh—Nagumomodel [FIT2,NAY] of which
(2.1) is a specialcase.

Much effort hasbeendevotedto thestudy of excitablecardiac cellsas well. We will returnto this
examplewhenwe discusswave-propagationphenomenain two spacedimensionsas thesebearon the
importantproblemof ventricularfibrillation [KRI,WIN3]. Othersexamplesof excitablesystemsinclude
biochemical reactionssuch as cyclic AMP production in the slime mold dictyosteliumdiscoideum
[GER,MGO,LER] and predator—preymodelsof populationdynamics[MUR].

3. Patternsin one spacedimension

3.1. Solitarywaves

3.1.1. General
So far we haveconsideredhomogeneousstateswhose temporalevolutionsaredescribedby excitable

systemssuchas (2.1). Whenspatialgradientsdevelop,dissipativetransportprocessestakeplacein the
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form of moleculardiffusion (chemicalsystems)or ion conduction(biologicalmembranes).Thecoupling
of excitability anddiffusion can leadto wavepropagationphenomena.Onemay imagine anextended
chemicalsystemat rest that is locally perturbedbeyondthe thresholdof excitation.Thefast growthof
the autocatalyticspeciescreatesa steepconcentrationgradient. Diffusion to the adjacentareathen
providesthe superthresholdperturbationneededto trigger theautocatalyticreactionin that area,thus
spreadingthe excitation. Eventually,any excited regionrelaxesbackto the rest state.The outcome,
therefore,is two counter-propagatingsolitary wavespropagatinginvariably atconstantspeeds.Typical
propagationspeedsare of the order of iO-3 cms’ for chemical waves in the BZ medium, and
i03 cms for action potentialsin squid axons.Propagatingwaves in excitablemedia are sometimes
referredto as “trigger waves” becauseof the triggering effect of diffusion.

To accountfor transportprocesses,diffusion termsshouldbe addedto the right handside (rhs) of
(2.1). More generally,we will considerdimensionlessreaction—diffusionequationsof the form

~9,u= f(u, u) + V2u, 9~v= sg(u,u) + 6V2v , (3.la,b)

S—T~/T~, 6=D
0ID~, (3.lc)

where r~and r~are the time scales associatedwith the fast u variable and the slow v variable,
respectively,andD~andD~are the correspondingtransport coefficients. The variablesu and v are
sometimesreferredto as the propagatorandcontroller variables,respectively[FIF1,FIF3]. To resume
dimensionsthe transformationst—~ tIr~andx —~ xI(’r~D~)1/2 should be made.The time-scaleratio e is
usuallymuch smallerthanunity. The valueof the transport-coefficientratio, 6, dependson thecontext;
in chemical systemsnormally 8 — 0(1), whereasin the context of excitable membranes6 = 0, as u
representsion-channelopenness,a propertythat doesnot diffuse. The otherextremity,6 ~ 1, hasbeen
usedin activator—inhibitor type modelsto accountfor stationarybiological patterns[ME!]. We will
considerthe lattercaseonly briefly (seesection3.1.5).The qualitativeforms of the functionsf(u, v)
andg(u, v) areillustrated by thedashedcurvesin fig. 4b. The u-nullcline,f(u,v) = 0 is N-shapedwhile
thev-nullcline, g(u, v) = 0 is monotone.They intersecteachotheron the left branchof the u-nullcline
at apoint S = (U,, U,) which describesthe reststateof themedium.To guaranteeexcitabledynamicsas
describedin section 2.1., the function f is chosen to be negative(positive) above (below) the
u-nullcline, whereasg is chosento be positive (negative)on the right (left) of the v-nullcline.

Anotherform of excitablereaction—diffusionequations,commonlyusedin the literature,is obtained
from (3.la—c) by rescalingspaceand time accordingto t’ = si andx’ = sx. It reads

e ~u =f(u, v) + e
2V’2u, ~,,v= g(u, u) + e 6V’2v, (3.ld, e)

where V’2 is the Laplacianoperatorin termsof the rescaledspatialcoordinates.Throughoutthis paper
we will be using the original form (3.la—c) unlesswe mention otherwise.

The structureof a solitary wavesolutionof (3.la,b), for s valuessufficiently small, is illustratedin
fig. 4. It consistsof a wave-frontwhich drives the systemfrom the rest stateon the left branch of
f(u, v) = 0 to the right branch(S—~ a), anexciteddomain(a—~ b), a wave-backwhich brings thesystem
back to the left branch (b—~c),and a refractory tail (c—~S)which terminatesat the rest state
Noticethat the slow variable v hardly changesin the transition zones,S—~ a and b —* c. For higher e

~ Therefractorytail amountsto aphasein the localdynamicsduringwhichthesystemis recoveringfrom excitation. It is sometimesreferredto
as a“recoveryregion” and we will use both termsinterchangeably.
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(a) (b)
0.15-

a- g<0 /9>0

T C\i.~__I

0 Xb X~ ~ —0.5 1.5

X (x10
2)

Fig. 4a. u(x) (solid curve) and v(x) (dashedcurve) for asolitary wavesolution of (3.1) with f(u, v) as in (2.1) and g = u — by. The abscissa
representsx = x — Ct. Parametersused:E = 3 x iO~,a = 0.3, b = 3.0. The singularstructureis clearly seen;narrowfront (S—pa) andback (b—* c)
regionsseparateexcited (a —*b) and refractory (c—* S) domains.b. Phaseportrait of thesolitary wave solution (homoclinicorbit) in the (u, v)
plane.

values the variation of v in the transition zones may not be negligible. For yet higher valuesthe
decompositionof a solitary wave into a wave-front, anexciteddomainanda wave-backmayno longer
apply. The threeregions rathermerge togetherto form a single pulse-like structurefollowed by a
refractory tail asfig. 5 demonstrates.

3.1.2. Singularperturbation theory
An approximatesolitary wave solution, valid for s small enough,can be obtainedusing a singular

perturbationapproach[CCL,ORR,FIF2,KEE1,DKT,KEL1]. In this apprqacha distinction is made
betweena~outerregion in which u variessmoothlyin spaceand time, and an inner region whereu
variesabruptly.The formerincludestheexcited and the refractory regions,while the latterconsistsof
the narrow wave-front and wave-backzones. In the outer region u follows adiabaticallythe slow

(a) 0.15

X (x10’)

Fig. 5. Sameas figs. 4 exceptthat r = 1.5 x iO~is now five-fold larger.The singularstructureof thesolitary wavesolutionis lost; it consistsof a
pulsestructurefollowed by a refractorytail. Note thechangeof thex scale.
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evolutionof v. The temporalandspatialderivativesof u aresmalland(3. la) becomesto leadingorder
an algebraicequation,f(u, v) = 0, that can be solvedfor u. This amountsto settings= 0in the rescaled
system(3.ld, e). The left andright solutionbranchesof this equationcorrespondto the refractoryand
excitedregionsandare denotedby u_(v) andu~(v), respectively.For a solitary wave that propagates
at speedc,,~through a mediumat restwe have

u=u_(v), ~~<X<Xb; u=u÷(v), Xb<X<Xf;
(3.2)

uu.(v,)=u~, Xt<X<~~,X=x—c=t,

where X~and Xb are the wave-front and wave-back positions in a frame moving with speed c,
respectively.Using thesesolution branchesin (3.ib) and assumingthat 1) 1S a function of the single
variablex~we obtain

8v”+ cv’ + eG_(v)=0, —co<x <Xb; (3.3a)

6v” + c~v’+ sG+(v)= 0, Xb <x <Xt; G±(v) g(u+(v), v) (3.3b)

wherethe primedenotesdifferentiationwith respectto x. Equations(3.3) shouldbe supplementedby
the following continuity andboundaryconditions[DKT]:

v(x—*x~)=v(x~x~)Vb, v’(x—~x~)=U’(X~_*Xb),
(3.4)

v(x—3x~)= v(—c~)= u~, v’(~—~~~)=

where Ub is the wave-backvalue of v, and the superscripts+ and — denote the approachto the
designatedvalue from aboveand below,respectively.

The solutionsof (3.3) and(3.4) togetherwith (3.2) give the largelength scaleform of the solitary
wavesolution. The wave-frontandwave-backappearon this length scaleasdiscontinuitiesin the fast
variableu. On a smallerscalethesediscontinuitiesconstituteboundarylayerswhoseanalysisallows the
determination of the two unknown parametersc and Ub. In theselayers temporal and spatial
derivativesof u cannotbe neglectedbut, on the otherhand, v can be assumedto be constant.We
thereforeobtain from (3. la)

u’ + cc~u+ f(Uf, v,) = 0, u~+ ~ + f(ub, vb) = 0, (3.5a,b)

where Uf and Ub are the wave-front and wave-backsolutions, respectively.Since the solitary wave
propagateswithout changein shapethe samepropagationspeed,c,~,hasbeenassumedfor Uf and Ub.

The wave-frontandwave-backsolutionsshouldmatchtheouter solution(3.2). This can be achievedby
demanding

u (v) x—~i. u (v ) x—~
Uf(X - Xf) = {u(u~ X~-~, ub(X - Xb) = {U1(U:): ~ (3.6a, b)

in the limit s—*0.
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Equations(3.5a) and(3.6a) constituteaneigenvalueproblemfor c,,~.Oncec is known,eqs. (3.5b)
and (3.6b) can be usedto determineUb. Alternatively, multiplying (3.5a) and (3.5b) by u and u~,
respectivelyand integratingfrom x = —~ to x = we obtain

C = ~L(v~)= /~‘~(Ub), (3.7)

f~(~)f(u, U) du
= , 2 (3.8)

u (U) d~

In (3.8) u(U) is an interfacesolutionof (3.5) at a constantU value.We thushavetwo equationsfor the
two unknownsc and Ub. Ifl general,c = ~L(U,) is a monotonedecreasingfunction of v~crossingthe
zeroat a valueU = U * determinedby

u÷(u’)

J
u(v’)

For the system(2.1) one finds [CCL,MUR]

c,~=(l—2a)I\/~, (3.9)

or in dimensionalterms

c,,~= (D~I2r~)”2(l— 2a).

Thus, thespeedc decreasesfrom a magnitudeof orderunity at low thresholds,a ~ 1/2, towarda zero
value at thresholdvalues approaching1/2. We will see in the next section that deviationsfrom the
singularlimit s = 0 may havesignificant effects on the speedof propagation.For the generalsystem
(3.1) wefind it usefulto definethe quantity4 v* — U,. High thresholdvaluesthenamountto 4 values
approachingzero, or to U, valuesapproachingU*, the value at which c = ~(U,) = 0.

Thevalueof Ub obtainedfrom (3.7) is smallerthanUmax~In the languageof section2.1,a wave-back
at Ub < Umax amountsto a transition from the right well before it disappears.The perturbationthat
makes the transitionpossible is provided by diffusion of u from the excitedregion to the refractory
region behindit, thusreducingthe valueof u below the potentialbarrier, or beyondthe thresholdof
de-excitation.We can thereforerefer to a wave-backoccurring at Ub < Umax as to a trigger wave in as
muchas we do so for the wave-front.The speedof the trigger wave-backincreasesas the thresholdof
de-excitationdecreases,or as Ub increases.When the wave-back speed is still smaller than the
wave-front speed,c, as Ub approachesUmax~ the~‘ave-backbecomesa “phase”wave;the transitionto
the left branch(well) is forced by the local dynamicsat (approximately)Ub = Umax~ratherthanbeing
triggeredby diffusion [TYS2,FIF1,FIF4].

The analysis presentedin this section illuminatesa generalproperty of nonequilibriumsystems,
namely, that localized structuressuch as solitary waves often arise becauseof the nonvariational
characterof these systems (or the absenceof a free energy to minimize) [FAT]. When e = 0,
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U = constant is a stablesolution of (3.lb), and (3.la) becomesvariational. In that case only two
solutions exist that connect the u÷(U)and u(U) branches.They are related by the symmetry
transformationx—~ — x and c~—+ — c,,, and, consequently,propagatein oppositedirections. A local
perturbationwill thusleadto a growing “excited” domain, in asmuch asa “droplet” of astablephase
growsatthe expenseof a metastablephasein thermodynamicphasetransitions.When s>0 U evolves
in time and eqs. (3.la,b) are no longer variational. For an excited domain to retain its size, the
wave-frontandwave-backshouldpropagatein thesamedirection. This is exactly theeffectof the time
evolutionof U; thewave-frontandwave-backoccurat values,U~< U* and Ub > U*, respectively,where
v* is the value at which the speedof an interfacesolution of (3.5) changessign.

3.1.3. Deviationsfrom the singular limit
The solitary wavespeedcx, given by (3.7) has beenobtainedin the singularlimit s = 0. When the

time scaleseparationof u andv is not sharpenough,it is no longer justified to assumeconstantvalues
for v in the wave-frontandwave-backzones.Equations(3.la, b) do not decouplethenfrom (3.3) and
(3.5) and we must analyzethe full system.Such an analysishas beencarriedout in [CCL] (see also
[ZYK1]) for a nondiffusive v variable. It leadsto an s dependentpropagationspeedaswe now show.

A wave-front solution propagatinginvariablywith speedc satisfies

u”+c,~u’+f(u,U)=0, C~,U’+eg(U,U)0, (3.10)

where it hasbeenassumedthat 8 = 0. We now expandu, U and c,, in powersof e,

UU~+EU
1+~, UU,+EU1+~”, c,0=p.(U,)+8c1+..., (3.11)

where u~satisfies(3.5a) and v, is the constantrest value of U. Substitutingtheseexpansionsin (3.10)

and equatingterms to first order in s we obtain
= —c1u~— U1 ö~f(u,U)l~1~,, p~U,)v~= —g(uf,U,), (3.12a,b)

= + /L(U,) 0~+ a~f(u,U)I~~. (3.13)

The operator~ is singularas can be verified by deriving (3.5a) with respectto x,

A1~=0, ~=u. (3.14)

Solvability of (3.12a) requiresthen

J d~~t(ciu;+ U1 a~f(u,U)~~1,~)= 0, (3.15)

where~~is a null vectororzeroeigenmodeof theadjoint operator4~~The latterhasthesameform as
A~exceptthat the sign of the /.L(v,)a~term in (3.13) is reversed.The solution of ~ = 0 is

= uexp[j4U,)~]. (3.16)
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Equation(3.15) gives the first-ordercorrectionto the speed

f~d~~tUi 8rf(U, V)~
5~

c1=— f~dx~t~ , (3.17a)
where v1 can be obtainedby integrating (3.12b),

v1(x; v~)= d~’g(u1(x’), vs). (3.17b)

Notice that v1 —*0 as x —* ~ becauseaheadof the wave-front the mediumis at rest and U = v~.The
explicit form of the correction c1 can be evaluatedfor particular model systems.It is generallya
negativequantity, implying that as e is increasedthe speeddecreases.

We can write now the speedof a wave-front propagatingthrough a medium at rest as

c = p.(U~)+ c1(v~)s+ 0(52), (3.18)

where p.(v5) and c1(v,) are given by (3.8) and (3.17). In general, the speedcan be reducedby
increasingeither v~or s. The speedof propagationcan be usedas ameasurefor the excitabilityof the
medium; the higher the speedat which excitation spreads,the more excitable the medium. Thus,
sharpertime scale separations(smaller s values) and smaller thresholds(larger 4 = v * — v~values)
pertainto higher excitability.

In the singularlimit (s = 0) the wave-front speedgoes to zero as U~approachesv”. When e>O, a
stationarysolitary wavesolutionmaynot exist, for the slow local increaseof U mayeventuallyinduce
de-excitationand recoveryto the reststate(diffusion of v, however,may stabilizea stationarywave.
Seesection 3.1.5). In that casetherewill be a critical value v~= u~(e)< v” and a minimal speed,
Cmin(E, v~)>0 (for e fixed), at which forwardpropagationfails [RIK]. For anondiffusiveU variablethe
minimal propagationspeedhas beenfound to scalewith e like [RIK,KHR,ZYK1]

1/2
Cmin . (3.19)

This scalingform follows straightforwardlyfrom the requirementthat the size of the exciteddomain,
= Xf — Xb, is of theorderof the wave-frontwidth, w~— 0(1) [KAR3]. To seethis weintegrate(3.10)

betweenXb andXf,

= cT~, T÷= Vb G~(U) (3.20)

where T~is the duration of excitation. Expanding c(v~) and T+(v~)around v~= v’~we find
T~.— cjs + 0(1). Using (3.20) anddemandingA~-=0(1) we obtainc = Cmjn

Alternatively,onecan holdU, fixed andincreasee. Again, therewill be a critical value, e~(v~)anda
minimal speed,Cmjn(E~,U5)>0, at whichpropagationfails [ZYK1]. Figures 6a,b showschematicallyc
versusU, and c versuss curvesfor a nondiffusivev variable. Therearetwo solution branchesin each
figure representinghigh amplitude,stable solitary waves (solid lines) and low amplitude,unstable
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(a) (b)
Cc~~ c~

c~nc:c,~
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0
Uc ~~)“ 0 Cc C

Fig. 6. Failureof propagationat finite minimal speedc,,,for anondiffusivev variablemay be obtained(a) by increasingthethresholdor y, to a
critical value, y/r), or (b) by increasinge to a critical value~(u,).

solitary waves (dashedlines). The kneesat which the stable andunstablebranchesmerge definethe
critical points (Cmjn, U~)and (cmjn, ~ [RIK,ZYK1].

3.1.4. Thesolitary waveas a homoclinicorbit
From the point of view of dynamical-systemstheory [GUH] the solitary wave solution is a

homoclinicorbit of the system

u”+c,,,u’+f(u,U)=O, ÔU”+c,,U’+sg(u,U)=O, (3.21)

obtainedfrom (3.1) whenu and U are assumedto be functionsof x = x — c,,~talone. That is,

u(~)—*u,, U(x)—÷U,, as x—* ±o~. (3.22)

Notice that (u,, U,), the linearly stablerest stateof (3.1), becomesa saddlenodeof (3.21).Existence
proofs of homoclinic solutionsof particularmodel systemswere obtainedby severalauthors[CAR,
CON,HAS,JKL].

The asymptoticforms of the solitary wave solution can be obtainedfrom a linear analysisof (3.21)
aroundthe rest stateS = (u,, U,). In this analysisonly thoseeigenvectorspertainingto slowestgrowth
from x = —~ and slowest decay as x —~ ~ can be considered.All other eigenvectorswill contribute
exponentiallysmaller terms. The growth and decayrates are determinedby the real parts of the
correspondingelgenvalues.We denotethesereal partsby qeandq~,wherethe subscriptsstandfor left

(x —~ —co) and right (x—> o~)asymptoticforms. The imaginary parts,if they exist, representoscillations
superposedon the exponentialgrowth or decay. The tails of solitary wavesin excitablemedia are
sometimesaccompaniedby suchoscillations [SKW,AID].Theyare expectedto be foundat e values
sufficiently largeand thresholdvalues[a in model (2.la)] sufficiently small asfig. 7 illustrates.We thus
assumethe following asymptoticforms:

H(X)Ae exp(~�~)cos(v�~+~), x—*—~ H(x)Arexp(iirx), Xco, (3.23)

whereHan (h5, h5) is the homoclinicsolution of (3.21), Ae andAr areconstantvectorsand ~ and ~
are positive.
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C

OSCILLATORY
RECOVERY

MONOTONIC
RECOVERY

0 ___________________________

0
Threshold

Fig. 7. Schematicillustrationof parameterregimeswhere monotonicandoscillatoryrecoveries(tails) areexpectedto be found.

The discussionin section3.1.2 suggeststhat for excitablemedia~ is normally muchlargerthan~.

The reasonis that the headof thesolitary wave is describedby thewave-frontsolution, Uf, while the
tail (refractoryregion)is given by the muchsmoothersolution, ii (seealsofig. 4a). This propertyhasan
importantconsequencewhen the tail is oscillatory, that is, whenU,, $0. A theoremdue to Shil’nikov
implies then the existence of a strange set of recurrent trajectoriesnear the homoclinic orbit
[SHI,TRE,GUH]. We will return to this issue in section3.2.3.

3.1.5. Nonpropagatingsolitary waves
Wehaveseenin theprevioussectionsthat wave propagationresultsfrom thecouplingof excitability

and diffusion of the fastvariable u [see(3.9)]. The diffusion of the slow variable U did not appearto
play a crucial role. Indeed,propagatingsolitary waveshavebeen observedboth in chemicalsystems
[6 0(1)] and in electrophysiologicalsystems(6 = 0). Thesituationmightbe different,however,when
the diffusion length of the slow field, 1,, = (D5 r5 )1/2 becomessufficiently large with respectto the
correspondinglength, l,~,of the fast field, asa comparisonof the two termson the right-handside of
(3.lb) suggests[(6/c)= (l~/l~)2].For in that case,the diffusion of v aheadof the exciteddomaincan
inhibit furtherexcitationand, at thesametime, balancethe local productionof U, thus preventingthe
recovery to the rest state.The outcomeis a nonpropagatingexcited region [KOK,EHT,SUOI.This
region neednot be stationary;when the timescaleseparationis sufficiently sharpa Hopf bifurcation
may occur, leading to a nonpropagating“breathing” domainthat expandsandshrinksperiodically in
time [KOK,NIM].Lateral inhibition of an autocatalyticprocessby diffusion of a slow field hasbeen
suggestedas a basicprinciple thatunderliesavariety of stationary(Turingtype)patternsin biological
systems[MEl].

3.2. Extendedpatterns

3.2.1. Periodic traveling waves
In addition to the solitary wavesolution, eqs. (3.1) admit a continuousfamily of stable,periodic

traveling-wavesolutions.The targetand spiral-wavepatternsof fig. 1 (away from their centerswhere
curvature effects are negligible) are two-dimensionalphysical realizations of these solutions. A
considerableamountof informationaboutwave patternsin excitablemediacan be extractedfrom the
dispersionrelation of periodic travelingwaves,namely,the relationbetweenthespeedof propagation
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andthetraveling-waveperiod [RIK]. The singularperturbationapproachof section3.1.2can be used
to derive an approximateform of this relation. We sketchthis derivation,following primarily ref.
[DKT] (seealso refs. [ZYK1,DOK,KEL1]).

The repeatedstructurein a periodic travelingwaveconsistsof a wave-front centeredat Xf’ excited
region, a wave-backcenteredat Xb’ and a refractory region that terminatesat the location of the
successivewave-front,x,. The outer equationsare

6U”+cU’+CG..(v)=O, X,<X<Xb; 8v”+cU’+eG~(v)=0, Xb<X<Xf, (3.24a,b)

wherec is the speedof a periodictraveling wave,x = x — Ct andG±(U)= g(u±(U),U). Theseequations

shouldbe supplementedby the continuityand periodicityconditions
U(X—*X~) U(X~_*Xb) = Ub, U’(X—+X) = U’(X~*Xb),

(3.25)
U(XXf)U(XX~)Uf, U’(XXf)U’(X~~4X~),

whereUf is the valueof v at the wave-frontposition.The inner equationsand the matchingconditions
arethesameas(3.5) and(3.6) exceptthat thesolitary-wavespeed,c,,, is replacedby c, and U, by v~.In
analogyto (3.7) we obtain (in the singularlimit)

c = ~(v1)= —p~(vb). (3.26)

Equations(3.25)providesix constraintsfor two second-orderequations.Oneshouldthereforeview
the sizes of the excited and refractory regions,A÷= x1 — Xb and A = Xb — x~,respectively,as un-
knowns. A parametricform of the dispersioncurve in termsof Uf can then be obtainedby solving
(3.24), (3.25) and (3.26) to yield the wavelengthA = A÷(v~)+ A.(U~),and by evaluatingc = ~(U1) in
(3.26).

The nonlinearnatureof (3.24) makestheseequationsdifficult to solve, in general.The caseof a
nondiffusive v variable (6 =0) is obviously simpler. Even when 6 $0 (but not too large) there are
circumstanceswhich allow the neglectof thediffusion term: largewavelengthsor speedsc closeto the
solitary-wavespeed,c,,,. To seethis onecanlinearize(3.24a,b) aroundsomefixed valueof U, solvethe
linearizedequationsand usethe solutionsto estimatethe sizesof the diffusion terms. Assumingthat
c -= c,, 0(1) and that 6 is at most of order unity, one finds that the diffusion terms are of 0(s

2)
whereasthe other termsare of 0(c). Without the diffusion term (3.24) can be integrateddirectly to
yield

A~(Uf)= Xf — Xb = ~(U~)T~(v
1), T~ s I G±(U)’ (3.27à)

A(U~) Xb — = ~L(Uf)T(Uf), T = s I G(u)’ (3.27b)

where Vb is relatedto Uf through (3.26). Equations(3.26) and (3.27)give a parametricform of the
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dispersionrelation, c = c(A), valid for a nondiffusive U variable, or for large wavelengths[speeds
c — 0(1)1 in the diffusive case(6 $0). The limit Uf —* U, correspondsto the solitary-wavesolution(see
section3.1.2). Indeed,in this limit ~(U~)= c and A_(v~)—.*xsinceG_(U,)=0.Notice that the excited
region, A+(v,), remainsfinite, so that

as c—*c,,---O(1). (3.28a)

When c4 1 the diffusion of U cannot be neglectedin general. Indeed,assumingthe scalingform
c— ~h/2 [DKT]and transformingx—÷e~2xwe find for 8 0(1) that thediffusive termsin (3.24)have
the sameordersof magnitudeas the other terms. In this case, one may try to simplify (3.24) by
linearizing thenonlineartermsin (3.24) aroundthevalueU = U* at which the speedc = ~z(U) is zero,

G+(U)=±a+— b±(v_U*). (3.29)

Equations(3.24) can be solvedthen exactly,

U(X)U*{+++÷~)]P÷P[(~Y~~)} Xb<X<Xf , (3.30a)

—a/b_+a_exp[~(X—Xb)]+f&exp[~(X—Xb)] X,<X<Xb

= [—c+ (c2 + 4c6b+)1’2]/26, = [—c— (c2 + 466b+)]V2/26 . (3.30b)

The coefficientsa~and f3~in (3.30a) are determinedin termsof A~and c using the continuity and
periodicity conditions (3.25). Linearizing the speedrelation c = ~z(U) as well, and using (3.26) one
obtains

V(Xb)=Ub=U*_cI~l(U*), ~ (3.31)

or using (3.30a)

J
1(A~,A, c) = a~Ib÷+ a~exp(~~A~)+fi4~exp( ~A~)— c/~a~(v*)= 0,

(3.32)
J2(A~, A,c)=—ajb_ +a +f3_ +c/~i,i(v*)=0.

Solutionsof (3.32) give A~and A as functionsof c, or the dispersionrelation [DKT,DOK].
A differentscalingform for thespeed,c e

1t3, hasbeensuggestedin refs. [FIF1,FIF3] in the context
of spiral waves, and later used in [KEL1] to study dispersioncurves. This scaling allows further
simplification of (3.24) but is morerestrictive.Settingx = ~h/3~, c = e’’3EandU — U* = ~I/3~- we find
from (3.24) and (3.29) the leading-orderform

8~”+c~v~”±a~=0, (3.33)

which amounts to setting b+ = 0 in (3.29). The range of U 1S restricted, however, to an ~1/3

neighborhoodof v
In the largewavelengthregime,A÷/A_—*0 as c—* c,, [see(3.28a)].Equation(3.33) can be usedto

obtain the correspondingrelation for the short wavelengthsor c4 1. Solving (3.33) insteadof (3.24)
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Fig. 8. Dispersionrelationsfor the Oregonatormodel, calculatedby numericalintegrationof thereactiondiffusion equations(thin line) andby
solving (3.32) (thick line). (Adaptedfrom Dockeryet a!. [DKT] with permission.)

andapplyingthe continuity and periodicity conditionsonefinds [DKT,KEL1]

A~IA_=a_/a~, c41. (3.28b)

Thus, wavelengthvariations at low speedsinvolve variations of both the recoveryand the excited
domains.

The extentto which dispersionrelationsderivedfrom (3.32) fit direct numericalevaluationsis shown
in fig. 8 for the Oregonatormodel. Notice that thedispersionrelation in this figure hastwo branches.
Theycorrespondto two families of traveling-wavesolutions,high speedstablesolutionsand low speed
unstablesolutions[RIK,MAG1,MAG2].The knee where the two branchesmeet defines a minimal
wavelength,Amjn, or period, Tmjn, below which propagationfails, in asmuch as thereexists a critical
valuev,~of U abovewhich propagationbecomesimpossible(seesection3.1.3).The two branchesdo not
alwaysmergeinto eachother;at sufficiently large6 valuesthe two branchesintersectthe c = 0 axis at
different points. These intersectionpoints pertain to nonpropagatingperiodic solutions which are
actuallysolutionsin two one-parameterfamilies of nonpropagatingsolutions from which the traveling
wavesbifurcate.At still higher8 valuesthe traveling-wavesolutionsdisappearandonly nonpropagating
solutions exist. A bifurcation diagram of traveling and nonpropagatingwave solutions is given in
[DOK]. The stability of nonpropagatingwavesto breathingtype motion (seesection3.1.5) hasbeen
studiedin [OITJ. The interactionsbetweennearlyexciteddomainswere found to induce an in-phase
synchronizedoscillation.

3.2.2. Kinematicalapproach
So far we discussedperiodic traveling waves that propagateinvariably at constantspeeds.It is

known, however, that traveling wavesmay deform during propagation[RIN2J.In contrastto a few
otherphysicalcontextswheresuchdeformationsaredescribedin termsof largelength-scalephase.fields
[HOK,KUR,CRN],here,a kinematicalapproachseemsmore appropriate(see however[BER]). We
have alreadypointed out that in the large wavelengthregime [c -= c,, — 0(1)] the excited region,A~,
doesnot vary significantly asthe wavelengthof thepatternchanges.It is ratherthe refractory region
between two successiveexcited domainsthat shrinksor expandsas the pattern deforms. One can
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therefore view extendedsparsepatternsas many-bodysystemsof interactingexciteddomainsthat
accelerateor decelerateduring their motion but preservetheirshapes.Eachexciteddomain,or pulse,
is then characterizedby its instantaneousposition x,(t) or, alternatively,by the passagetime, t

1(x),
througha givenpointx (the particularpoint in theexciteddomainthat x.designatesis immaterialasthe
pulse shapeis preserved).The view of an excited domainasan integral entity is also usefulwhenthe
deviationsfrom thesingularlimit s 0 arerelatively large,for in that casethedecompositionof a pulse
into a wave-front anda wave-backmay not be valid (see fig. 5a).

A kinematicalapproachof this kind hasbeenadvancedin refs. [MIR,RIM].The basicassumptions
in thesestudies are that the velocity of a given pulse dependssolely on the time elapsedsince the
passageof theprecedingpulse,andthat this dependenceis given by thedispersionrelation, c = c(T),
where T is the (temporal) period of a periodic traveling wave. In mathematical terms,
dx1(t)/dt= c[t,(x) — t11(x)J or, using dt1(x)/dx= dt/dx1(t),

dt,/dx = c’[t~(x) — t~1(x)]. (3.34)

Equations(3.34) reproduceremarkablywell trajectories,x1(t), obtainedby direct numericalsimula-
tions [RIM].

More recently, a formal derivation of kinematic pulse equations has been presented
[EMS1,EMS2,EMR]. We outline now the main steps of this derivation. To simplify notationswe
rewriteeqs. (3.1) in the generalform

a,U=LU+N(U)+Da~U, U=(u,U), D=diag(l,6), (3.35)

where L and N are the linear and nonlinear reaction parts of (3.1),respectively.We confineourselves
to homogeneous media and thus assumethat (3.35) is invariant under space translations. To describea
general wavetrain of pulses a solution in the form of a superposition of solitarywave solutions,H, is
proposed,

U(x, t)=~H(~—x1), (3.36)

where x, is thepositionof the ith pulsein a framemoving with speedc00, andx1 > if i <j. For sucha
form to bevalid thepulsesshouldbe well separated.More specifically, if A0 is a typical spacingbetween
successivepulsesthen y asexp(—~,,A0)should be a small parameter.This conditionguaranteesthat at
each pulse position the fields of all otherpulsesaresmall. Despitethe smallnessof thesefields, their
effects on pulse positions can be significant because of the translationalinvarianceof the system.

To deriveequationsof motion for pulsepositions,an exactwavetrainsolution is writtenin the form

U(x, t) = ~ H(~— x~(t))+ R(~,t), (3.37)

where R is a small correction term and the following orders of magnitude are assumed:
d~,/dt R— — 0(y), and~,R-= 0(72). Inserting(3.37) into (3.35)one finds to leadingorderin y

= — ~ ~,H + I({H,}), (3.38)



E. Meron, Pattern formationin excitablemedia 21

where £~‘is the linear operator

(3.39)

and I is a pulse interactiontermgiven by

I=~N(H1)_N(~H1). (3.40)

In these equations H1 H(x — x1), A~,asd~1Idtand V~Nis the Jacobian matrix of N(U) with respect to
U. Notice that I is of 0(y). A consequence of the translationalinvarianceof (3.35) is that the operator

(3.41a)

has a null vector or zero eigenmode,

=0, E~ H. (3.41b)

Comparing (3.39) with (3.41) we find

(3.42)

where we used the fact that H is localized and therefore VUN(EI H,). H = VUN(HJ)H + 0(y).
Equations (3.38) and (3.42) suggest that R may contain a “small denominator” component. The

requirement that R remains of order ‘y leads to equations of motion for the x,. To see this let us define
an inner product

(P, Q) = J dxP(x). Q(x), (3.43)

where the dot denotes the usual scalar product in ~ ~. Theexistenceof anull vectorof 2, suggeststhat
the null space of the adjoint operator, ~, is nonempty as well. Weassume that a null vector of
indeed exists and denote it by E = Et(x — x,). Since H, is localized around x = x1 so should E~.It
therefore follows that

~t~~0(y) (3.44)

Taking the inner product of (3.38) with E’ we find that the left-hand side is of y 2) [if R is indeed of
0(y)]. The right-hand side contains, on the other hand, terms of 0(y). To leading order in y these
terms should cancel each other. Using the localized nature of H and E~we obtain

= (5, I)I(E;, 5,). (3.45)

The integral(5, I) in (3.45) canbe evaluatedby exploitingthe fact that thepulsesarewell separated
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and that next-nearest-neighborinteractionscan be neglected[EMS2,EMR]. Using the asymptotic

forms (3.23) we finally obtain

= q~(x~— x+1) + q,,(x1 — x,_1), (3.46a)

whereq~and q,, are given by

qr(x)= arexp(—~rX),x>O; q1(~)= a,, exp(~,,x)cos(v,x + 1//,,), x<O. (3.46b)

The quantitiesar, a,, and vi,, arerelatedto Ar, A,, and ~,,,respectively[EMR].
Equations(3.46) should be supplementedby initial conditionswhich specify the positions of all

pulses, {x,(t0)} at a given time t0. In biological applicationswavetrainsare oftengeneratedby local
pacemakers.The temporal behaviorimposed at the pacemakerlocation defines a boundaryvalue
problemwhich is not in gearwith (3.46). A way out of this difficulty is to reformulatethe problemin
termsof the setof timings {t,(x)} [EMR].This leadsto kinematicalequationsof the form (3.34). A
pacemakerlocatedat x0 then defines “initial” values, { t, (x0)} for the functions { t,(x)}.

The kinematicalequations(3.46) canbe usedto derivethe dispersionrelationin the limit of large
wavelength.Setting.~‘, = c — c,, and x1_1 — x = A for any i (recall that x, is thepositionof thejth pulse
in a framemoving with speedc,,) we obtain

c = c,.~+ q,,(—A)+ q~(A). (3.47)

Let us comparethis expressionwith thedispersionrelationobtainedin section3.2.1 using thesingular
perturbationapproach.We first simplify (3.47) by neglectingthe last termon the right-handside. This
is justified since~r is normallymuchlargerthanri,, (seesection3.1.4). If we furtherrestrictourselvesto
monotonicrecoveryfor which a’~= 0, we find (seealso ref. [GLE])

c = c,. + a,, exp(—~,,A). (3.48)

The exponentq,, can be obtainedfrom a linear analysisof (3.3a)aroundthe rest stateU = U,. Suchan
analysisyields i~,,= = — EGI(U,)/c,,,. Considernow eqs.(3.27). In the limit of large wavelengthUf

approachesv~.Oneconsequenceof this is that A_ ~- A÷becauseG_(U,) = 0. For the samereasonthe
main contribution to the integralin (3.27b) comesfrom U valuescloseto Uf. For suchvalueswe can
linearize G aroundU,. We thus obtain

A A —[~(U~)/sG~(U,)] ln[(Ub — US)/(vf— v,)] . (3.49)

Expandingjz(U~)around~x(U,) andusing (3.7) and (3.26)we find Uf — U, = (c — c)/,a’(U,). Using this

result in (3.49)we obtain
c c,, + p.’(v,)(U~ — U,)exp(—rj,,A)+ 0 (exp(—2~,,A)),

which coincideswith (3.48) oncewe identify a,, with ~‘(U,)(Ub — U,).
The kinematicalapproachpresentedaboveis valid for c 1. When c4 1 theexciteddomainsdo not

preservetheir sizesduring propagation,for accordingto (3.28b)A4/A. is constant,anda descriptionin
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termsof a single position variable,x,(t), is no longersufficient. In this caseoneshould introducetwo
variablesfor eachexciteddomaindescribingthe instantaneouswave-frontandwave-backpositions,or
alternatively,considerA÷and A_ independently[KEEl].

3.2.3. Homoclinic chaosin space
The dispersioncurve, c = c( A), provides a relation betweenthe constantvelocity of a periodic

wavetrainand the uniformspacing,A, betweensuccessivepulses.Constantspeedwavetrains,however,
neednot neccessarilybe equallyspaced.Whenthe recoveryto the reststateis oscillatory (i.e., when
v~$0) a multitude of nonuniformly spacedwavetrainsexist [KAK,EFF,HAS,RIM,MAG3,FER].For
such wavetrainsthe usefulnessof the dispersionrelation is no longer apparentas thereis no single
spacingto relate the speedto. We will seeat the end of this sectionthat undercertainsimplifying
assumptionssignificant informationcanstill be extractedfrom thedispersionrelation. Before resorting
to suchsimplifications,however,wewant to examinethekinematicalequations(3.46) asthey are,and
for that purposeanotherrelation proves useful. It is a map that relates successivespacingsin a
wavetrainof a given speed.To derivethis mapwe simply set~ = Ac= c — c~,for any j in (3.46).Using
thedefinition asqr(xj-i — x1) we obtain

Z1~1= f(Z1)anAc—bZ~cos(vlnZ1+~‘); fl=71�Iflr<l~ ~= v,,I~. (3.50a,b)

We assumethat
0r in (3.46b) is positive asthis seemsto be thecasefor excitablemedia;a givenpulse

facilitates (though very weakly) the propagationof its predecessor.Thus Z
1>0 for all j. The reader

shouldnot confusefin (3.50a)with the reactionpart, f, of (3.la).
One-dimensionalmapsof this form arewell known[ACS,GLS,COE,FOW]. Theyare obtainedas

approximatefirst return maps of low-dimensional flows that admit homoclinic orbits at critical
parametervalues[GUH]. In the presentcontext the low-dimensionalflow is given by (3.21) with c,,
replacedby the parameterc. The homoclinic orbit exists at the critical parametervalue c = c,,, or
Ac = 0, andpertainsto thesolitary wavesolution. To seehow(3.50) is relatedto this flow, considerthe
three-dimensionalspacespannedby the eigenvectors,X, Y, Z, that correspondto the threeeigen-
values,~,, ± i’,, and lir, respectively.Let theorigin be at the reststateS (the saddlefocusto which the
homoclinic orbit is biasymptotic as x —~ ±oc).A Poincarésectionat constantY nearS yields (after
proper rescalingof coordinates)a two-dimensionalmapof the form [ACS,GLS]

= 1— b1X,Z7sin(~lnZ1+~), (3.51a)

Z1~1= Ac — b2X,Z7cos(vln Z1 + ~2)~ (3.51b)

The homoclinic orbit is given by the fixed point X” = 1, Z* = 0 at Ac = 0. If we restrict ourselvesto
trajectoriesthat passcloseenoughto thehomoclinicorbit we cansetX, 1 in (3.51b) andthusobtain
(3.50a).Evidently, this restrictionamountsto consideringlargewavelengths,a presumptionthat indeed
hasbeenusedin deriving(3.46) andconsequently(3.50).

The relation between constant-speed wavetrainsolutionsof (3.1) andtrajectoriesof (3.50) is readily
seen.Wavetrainswith equalspacingsA, co.rrespond to fixed points, Z” f(Z*), where Z* = q,~(A). This
is just a different way ofwriting thedispersionrelation (3.47).The solitarywavesolution is obtainedin
the limit A—* oc and pertainsto thehomoclinic fixed point Z* =0 at Ac =0. Periodicwavetrainswith
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two alternatingspacingscorrespondto period-2orbits and soon. To find stablewavetrainsolutionsof
(3.1) we can first look for periodic orbits of (3.50) and then linearize (3.46) about theseorbits to
evaluatethe stability of thecorrespondingwavetrains.We will illustrate this strategywith fixed-point
solutionsof (3.50) [EMS1,EMS2].

When i~< 1 and v~$0, a result due to Shil’nikov [SHI] statesthat any neighborhoodof the
homoclinic orbit containsinfinitely many periodicorbits of thesaddletype. Whenwe allow for speeds
c$ c,,,, infinitely many more homoclinic orbits appear[EFF,HAS,GLS,GAS,FER], describingmulti-
pulse solitary waves.The structureof possiblesolutions is in fact far richer as (3.51) contains(for
Ac = 0) an infinite number of horseshoe maps, and trajectories of (3.51) can communicate between
different horseshoes. We referthe readerto refs. [GUH,GLS]for moredetailsconcerningsolutionsof
(3.51). Much of this picturecarriesover to the one-dimensionalmap (3.50). Figure9 showsthis map
for Ac = 0 and ~ < 1 (note that only positive Z1 valueshave physical meaning).Thereare infinitely
many intersectionswith the diagonal accumulatingnear Z =0. The slopes of the map at these
intersection points divergein absolutevalue as Z—* 0, suggestingthat completecascadesof period-
doubling bifurcations have developednearthesepoints. Thesecascadesare closely related to the
horseshoemaps of (3.51) [YOAJ.We thus recover the result that in any neighborhoodof the
homoclinic orbit Z = 0 thereare infinitely manyunstableperiodic orbits. To find n-pulsehomoclinic
orbits we look for Ac valuesfor which orbits of the form (Z1 = 0, Z2 = Ac,. . . , Z~~1= 0) exist. Thus,
double-pulseorbits (n = 2) occurat Ac valuesthat satisfy

Ac = bAc” cos(vin Ac + p). (3.52)

Evidently, thereareinfinitely many suchvalues.
Let us considernow a fixed-point solution of (3.50), Z~= q~(A),and study the stability of the

correspondingwavetrain,x~= Act — (f— 1)A + ~?(0).To that endwewrite x = 4 + 0,(t) where is
small, insertthis form into (3.46a) and keeponly termslinear in 0~,.We obtain

= 71r~’Ea0j_i— (1 + a)0, + 0,+~], (3.53)

f(Z)

0
0 1

z
Fig. 9. Themap (3.50) for b.c= 0 and~<1. Intersectionpoints of themapwith thediagonalcorrespondto equallyspacedwavetrains.
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where a = fI(Z*) is the slope of the map at Z”. The solutions of (3.53) are of the form
01 = e~exp(skt + 2ir ikjlN) + c.c.,where c.c. meanscomplexconjugate,N is thenumberof pulsesin
thewavetrainand k is an integer. Insertingthis form into (3.53) we obtain

Re(sk)= _~~Z*(l+ a)[1 — cos(2irk/N)]. (3.54)

The condition for stability, Re(sk)<O, is a> —1. Since aI_-*co as Z—*0, eachhump in fig. 9,
sufficiently close to Z = 0, contributesone fixed point that correspondsto a stablewavetrain. Wecan
thereforeconcludethat thereare infinitely manystable,equallyspacedwavetrains.

The stability analysis of higher-orderperiodic orbits of (3.50) is straightforward but tedious.
Numericalstudiessuggest[EMS1 ,EMS2] that thereexistsa rich structureof stablenon equally spaced
wavetrainsaswell (seealso below). This form of spatialcomplexity or “spatialchaos” is closelyrelated
to the low-dimensionalchaosexhibitedby (3.50). We wish to note,however, that while the irregular
natureof low-dimensionalchaosis primarily due to theexistenceof infinitely many unstableperiodic
orbits [CVI,PR0],spatialchaos,at leastasrevealedhereand in a numberof otherexamples[CER],
resultsfrom thecoexistenceof infinitely manystablepatterns.

The existenceof stableconstantspeedwavetrainssuggestsrelaxationalwave propagation;given
initial conditions for pulse positions,x,(O), convergencetoward uniform propagationwith a selected
speed,c = ~ generally occurs. The relaxationprocessmay involve multiple time scales.The basic
reasonfor that lies in (3.54); the relaxationtime associatedwith pulseinteractiongrows exponentially
with the spacing.When nonuniform spacingsdevelopdifferent time scalesappear.This may lead to
sequentialrelaxationas fig. 10 illustrates.Shownin this figure are“world lines”, X1(t), for an initially
unstableequallyspacedwavetrain. Accordingto fig. 9, this wavetrainlies betweentwo stableequally
spacedwavetrainswith smallerand largerspacings.The initial relaxationstagethereforeinvolvesthe
appearanceof the nearby “stable” spacings.The wavetrainconsequentlydecomposesinto groupsof
pulseswithin eachof which dynamicsoccurson a short time scale.The inter-groupspacings,in general,
will not be stableanddynamicson a longertime scale,involving groupsof impulses,takesplace. This
processcontinuesuntil all spacingsare stableandpertain to the samepropagationspeed.

Space
Fig. 10. Typical world lines, x,(t), of an initially unstable,equally spacedwavetrain,obtainedby integratingthe kinematicalequations(3.46).
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A moreintuitive understandingof pulsedynamicscan be obtainedoncecertainsimplificationsof the
kinematicalequations(3.46) are made. Using the fact that in excitablemedia ~,, is typically much
smaller than ~r’ we can neglect the first term on the right-handside of (3.46) and thus obtain the
simpler kinematicalequation,

,~1=q,,(x1—x1_1). (3.55)

If we further confine ourselves to finite trains propagatingalong an infinite line, the kinematical
equationsdecouple.The first pulsepropagateswith speedc,. asthereis no pulseaheadof it to hinderits
motion, and the effect of the successivepulsehasbeenneglected.Thus,k~= 0. The dynamicsof any
otherpulse is determinedby the known dynamicsof its predecessor.

Considernow a pair of pulses and let A = x1 — x2 be the spacing. We get A = —q,,(—A). For
monotonicrecoverywhereq,,(x)= a,, exp(~,,~)with a,, = ~‘(v,)(Ub— U,) <0 we find that the spacing
increaseslogarithmicallywith time. Thus pulsesare repelledby their predecessorswhenthe recoveryto
the reststateis monotonic.This repulsionis dueto the refractoryperiod imposedat the forefront of a
propagatingpulse by the tail of the precedingpulse. In the caseof an oscillatory recovery,thereare
manyzerosof q,,(A) [see(3.46b)], andconsequentlymanystationarysolutions,A = Ak = constant.The
stability condition, (dq,,/dA)IA~>0,implies that any secondsolution is stable.We thereforeconclude
that in mediathat give rise to oscillatoryrecoverypairs of pulsestend to lock at fixed distancesor to
form bound pairs. Physically, oscillatory recovery implies dampedoscillations of the thresholdof
excitationabout the thresholdvalue of the rest state.Stationarystatesare obtainedwhen pulsesare
locatedatpointspertainingto restthresholdvalues.Perturbationsabouttheselocationsdecaywhenthe
thresholdis locally a decreasingfunction of the spacing.

The decoupling of the kinematjcal equationssimplifies tremendouslythe stability analysis of
nonuniformly spacedfinite trains. Denoting by { A~} the nonequal spacings,a general finite train,
propagatingatuniform speedc can bewritten as4 = x? — ~ A,~,/ � 2 (noticethat in thissimplified
analysisall finite trainsassumethesameuniform propagationspeedc,,). Perturbingthe finite train by
small displacements,0~,, as before, and linearizing (3.55) we get 0~= (b~,— 01_1)q~—A1_1) or, using
(3.47) (with q1 neglected),~ = —(0~,— 0,) c’(A1_1). The characteristicequationis H~’~’[c’(Ak) + s] =

0, andthusweconcludethat a nonuniformfinite train is stableif andonly if c’(Ak) >0 for eachk. This
result makesthe dispersionrelation useful again, as illustrated in fig. 11. Considerthe intersection

C

C~ - - - x

Fig. 11. A typical dispersioncurvein thecaseof oscillatoryrecovery.Intersectionswith the line c = c~at positive slopesdefinestablespacings,
A,, A2,
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points of the dispersioncurvewith the line c = c. All points,Ak, at which the slopeof thedispersion
curveis positivedefinestablespacings.Thesespacingscan be usedto constructa greatvariety of stable
nonuniformfinite trains. Notice, however,that in this simplified picturethe fine horseshoestructureof
(3.51)hasdisappeared.

3.3. Experimentalstudies

Experimentalmeasurementsof propagationspeedsof solitary wavesin excitable BZ media have
beenreportedin refs. [FIN2,SHO,SEM1,WOR,KKP,KUK,NTH]. The speedwas foundto be sensitive
to the acidity of the solution, [H~} and to the bromate ion concentration,[BrOfl. This is not
surprising as bothspeciesparticipatein the autocatalyticstep(reactionB.1 in processB). The actual
dependencewasfound to be*)

(3.56)

Using the speedof propagationasa measurefor excitability (seesection3.1.3)we concludethathigh
acidity and/orhigh bromate-ionconcentrationpertain to high excitability.

Spatialprofiles of solitary waveshavebeenmeasuredin refs. [WOR,NMT] usingspectrophotometric
detectionmethods.In this typeof experiment,a sampleof a BZ solutionis placedin a closedcell (petri
dish) andilluminated with a monochromaticlight tunedat an absorptionline of thecatalyst,488 nm for
ferroin, 344 nm for cerium. The transmittedlight is detectedusing photodiodearray [WOR]or video
camera[NMT], and the imagesare processedto yield spatialintensity (concentration)distributionsof
the catalyst(oxidizedform thereof).In [WOR], the tail of a solitary wave profile couldhavebeenwell
fitted to an exponential function even for catalyst concentrationsdeviating significantly from the
rest-statevalue. In [NMT]wave profiles havebeenmeasuredfor variousinitial concentrationsof the
BZ reagents.A comparisonwith calculatedprofiles using a modified Oregonatormodel has been
presentedas well.

No systematicstudiesof dispersionrelationsor relaxationaldynamicsof wavetrainshaveappearedso
far. The lack of such studiescan be attributedin part to the fact that most experimentshavebeen
conductedin closedsystems.Suchsystemscannotbe controlledover long time scalesbecauseof the
ultimateapproachtowardthermodynamicequilibrium. A novel experimentalsetupthat overcomesthis
problemhas been proposedin ref. [NHM]. It consistsof an annularreactorcontinuouslyfed with
chemicalsat the inner andouterrims so as to maintainsteadyconditions.To dampconvectivemotion
the reactoris filled with an inert gel. This set up has beenusedwith the BZ reagentwherepotassium
bromateandsulphuricacid arefed through theouter rim while malonicacid [CH2(COOH)2]and the
ferroin catalystthroughthe inner rim. Wavetrainsof pulseswere initiated by local perturbationsof the
chemical composition so as to induce a sourceof pulses (pacemaker)and a barrier which blocks
propagationin one direction. After a desired number of pulses were createdthe composition
perturbationswere removed.An extensivequantitativestudy hasnotbeendoneyet with that system.It
is hoped,however,that experimentalsetupsof this kind will soonbe used for measuringdispersion
relations,for studyinginstabilitiesthat set in at low speeds[KEL2], andfor demonstratinghomoclinic
chaosin space.

*) Thereaderis referredto ref. [TYS1]for further discussionof (3.56).
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4. Patternsin two spacedimensions

4.1. Curvedsolitary wave-fronts

4.1.1. General
Thedispersionrelationreflectsthemannerin which thespeedof apropagatingwave-frontis affected

by previous activity. Another significant factor that affects wave propagation in two spacedimensionsis
the wave-front curvature. The effect of positive curvature (center of curvature is behind the propagating
front) is to reduce the speedof propagation;the convex geometrydefocusesdiffusion andthereby
reducesthe diffusion flux into the quiescent medium aheadof the propagating front. Negative
curvature,on theotherhand,speedsup thefront. This effectof curvatureactsto stabilizepropagating
wavefronts againstshort-wavelengthperturbationsas fig. 12 illustrates. The effect of curvatureon
wave-front speedhas beenstudiedfor a variety of interfacial phenomena,including crystal growth
[BCF,MBK]and flame propagation[MAR,FRS].In the context of excitablemedia,curvature—speed
relations were derived first in ref. [ZYK2] and later in refs. [ZYK1,KEE2,KET2,FIF4,TYK1,
BDZ1,MER1,MIZJ. Following these works we derive here the curvature—speed relation in thesingular
limit (section4.1.2)and for small and largedeviationsfrom that limit (section4.1.3).

4.1.2. Thecurvature—speedrelation in the singular limit
For s sufficiently small we can consider the wave-front and wave-backindependentlyand assume

that in theseboundarylayersthe slow field U is constant.Equation(3.la) thensimplifies to

a,u =f(u, uf) + V2u, ~3,u=f(u, Ub) + V2u, (4.la,b)

whereUf and Ub aretheconstantvaluesof U in the front andback,respectively.LetX(s, t) representthe
instantaneousposition vector of the wave-front in the (x, y) plane, where s is the arclength. It is
convenientto define a coordinatesystem(r, s) that moveswith the front

x=X(s,t)+r~(s,t), (4.2)

where~ = — Xj is a unit vectornormal to the curveX andthe subscripts denotespartialderivative

with respect to s. The curvedfront solution is now written as
u(r, s, t) = uf(r) + 6u(r, s, t) , (4.3)

Fig. 12. Curvatureacts to smoothout short-wavelengthperturbationsin the courseof propagation,for normal velocity (indicatedby arrows)
decreasesascurvatureincreases.
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whereu~is a planarfront solution propagatingat speed/L(U~) [see(3.26)] andsatisfying

u’ + p~U~)u~+f(Uf, Uf) = 0, (4.4)

and ~iuis a correctionterm. We assumethat the curvature,K = X,~ — ~ is sufficiently small so
that &u can be consideredas a perturbation.We should bearin mind thoughthat the main effect of
curvatureis to slow or speedthe front ratherthan to deform its spatial profile. This stemsfrom the
translationalsymmetryof thesystemandtheexistenceof a soft translationalmode.We maytherefore
expectthis perturbationtheoryapproachto remainvalid evenfor moderatelysmall curvaturevalues.In
additionwe assumethat K is a weak functionof s and t so that 8~~ -~ 3, 8U~~ 3~~

The curvedfront solution u satisfies(4.la) which in the moving framebecomes

+ [cr + (1 +rK)] ~ +f(u, Uf) =0, (4.5)

where c,. = I, ~is the normal velocity andweneglectedpartial derivativesof u with respectto s and t.
Equation(4.5) canbe written in the form

+ ~(U~) ö,u+f(u, Uf) = ôp, 8p = [~t(U~) — cr — KI(l + rK)] 3rU~ (4.6a,b)

Inserting(4.3) into (4.6) andusing the smallnessof Sp we find to leadingorder

146u = 6p(uf), (4.7)

where the operator4~is given by [cf. eq. (3.13)]

= + p.(~)‘~r+ 8~f(u,U)IUf Vf~ (4.8)

Since .At is singular,

~i1~0, ~asärUf, (4.9)

the right-handsideof (4.7) should be orthogonalto the null vector,~ of theadjoint operator41 ~• This

leadsto the relation
ff~,,,dr~t~(l+ rK)1\

cr=~(Ut)—~ J’~,,dr~t~)K.

If we denoteby Wf the (dimensionless)wave-frontwidth andassumeK 4 w~’ this relationsimplifies to

cr=c~K , (4.10)

or, in dimensional terms, to c,. = c — D~K,wherec = ~x(U~).A similar analysiscanbe carriedout for the
back. Equation(4.10) clearly reflectstheeffect of curvaturediscussedin theprevioussection;positive
(negative)curvaturedecreases(increases)the speedof propagation.The assumptionsunder which
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(4.10) hasbeenderived aresmall curvatureand weak curvaturedependenceon arclengthandtime.
When theseassumptionsdo not hold arclength-derivativetermsandnonlinearcorrectionswill appearin
the right-handside of (4.10).

4.1.3. Deviationsfrom the singular limit
When the time scaleseparationis not sufficiently sharp,it is no longer possibleto consider v as

constantin the front andbacktransitionzones,andonehasto resortbackto the full system(3.1). In a
frame moving with the front this systembecomes

+ [Cr + K/(l + rK)] 0rU +f(u, U) = 0, (4.lla)

6 9~U+[c~+6K/(l+rK)]0~v+sg(u,v)=0, (4.llb)

where we have neglected partial derivatives with respect to s and t. Following refs.
[ZYK1,ZYK2,MIZ],we consider a nondiffusive v variable (i.e., 6 = 0), assumesmall curvature,
K 4 w~,and write (4.11) as

+ (Cr + K) ~r’~ +f(u, v) = 0, (Cr + K) ärL’ + e*g(u, v) = 0, (4.12a,b)

= s(1 + K/Cr). (4.13)

Equations(4.12) describea planarfront propagatingat speed

c(s4) = Cr + K , c(s*) = IL(vf) + s*C
1 , (4.14)

where c1 is given by (3.17) with v~replacedby v1. Inserting (4.13) into (4.14) we obtain

Cr = c(s) — K + sc1K/[p.(v~)— K] + 0(s
2), c(s) = ~(v~) + cc

1 . (4.15)

Thus the curvature—speedrelationbecomesnonlinear evenwhenthe conditionK 4 w~
1is satisfied. It

reducesto the linear relation (4.10) as s—*0. The validity of (4.15) has been tested in refs.
[ZYK1 ,ZYK2] by comparisonwith direct numericalsimulations.Goodagreementhasbeenobtainedin
afairly broad £ range.The generalizationto a diffusing v variable has not yetbeenaccomplished(see
ref. [MIZ]), but the specialcase8 = 1 is easyto treat. Here,thereis no needto renormalizesand we
obtain at oncethe linear relation Cr = c(s) — K.

We now rederive (4.15) usingthe approachof the previoussection.Equations(4.11) can be written
as

+ p~vf)8rU +f(u, v) = 6p(u), Cr 0r!’ = —sg(u, v) , (4.16a,b)

where~p(u) is given by (4.6b) and,as before,we considerthe case6 = 0. In analogyto (4.3) we write
the curvedfront solution as

u(r, s, t) = u~(r)+ öu(r, s, t) , U(r, s, t) = Vf + 6v(r, s, t) , (4.17)
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andinsert this form into (4.16). We obtainto leadingorder

416u = 6p(u1) — 0~f(u,~ 6U, Cr ~r 8U = 5g(uf, vi), (4.18a,b)

where41 is given by (4.8). Equation(4.18b) can be integratedat onceto give [cf. eq. (3.17b)]

= sU~(r), U1(r) = dr’ g(uf(r’), vi). (4.19a,b)

Therequirementthat theright-handside of (4.18) is orthogonalto ~~thezeroeigenmodeof 41~ yields

Cr = ~~(U~)— K + [/J(Uf)Icrlscl(Uf), (4.20)

wherec1 is given by (3.17a)andwe haveassumedthat K 4 w~.Equation(4.20)can be broughtto the
form (4.15) using the relation c(s)= ~x(U~) + cc1. Notice that for small curvaturevalues, K 4
(4.15) assumesthe linear form

Cr = c(s) — DK, D = [1— sc1/~(v~)]. (4.21)

The curvature—speedrelation (4.15) generalizes(4.10) for small deviationsfrom the singular limit,
£ = 0, where it still makessenseto decomposea propagatingwave into a front and back. When these
deviationsaresufficiently largethesingularperturbationapproachof section3.1.2 mayno longerapply;
a propagatingwave should rather be regardedas one integral entity. We derive now a formal
curvature—speedrelationapplicableto that case.In this derivationweno longer restrictourselvesto a
nondiffusive U variable.

We denoteby U~,aplanarwave that propagatesat speedc = c(s), andwrite a curvedwave as

U(r, s, t) = U~(r)+ 6U(r, s, t). (4.22)

In analogyto (4.6) we obtain

D0~U+C8rU+LU+N(U)=6P, (4.23)

whereD, L andN are as in (3.35) and 6P hasthe components

6p~= [c — Cr — KI(l + rK)] ärtt’ ôP~= [c — Cr — ÔK!(1 + rK)] 0rU . (4.24)

Substituting(4.22) into (4.23) and using the fact that U~,solvesthe homogeneousproblemwe find to
leading order

8U= 6P(U~), (4.25)

where.5~is given by (3.41a)with r, c andU~replacingx~c and H1, respectively.From (3.41b) ~ is
singular,.5 = 0, 5 = U~.Solvability of (4.25) then implies
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— — —t — —t —
C=C—DK D=y-’ D~-’)/y-’ — 4.26abr ‘

whereE~denotesa null vector of the adjoint of ..~,. In deriving (4.26) we assumeda radius of
curvaturemuch largerthanthe wavewidth in order to neglectnonlinearcontributions.The coefficient
D, or morepreciselyits dimensionalform, is a weightedaverageof the two diffusion constantsD~and
D~.It reducesto (4.10) for D~= D~or 8 = 1, and should reduceto (4.21) for £ sufficiently small.
Analytical expressionsof D in termsof modelparametershavenot been evaluatedyet.

4.1.4. Thecritical curvature
In first orderphasetransitionsdropletsof the stablephasewhosesize is smallerthana critical value

shrink anddisappear[LIP]. A similarphenomenonappliesto excitablemedia;for anexciteddomainto
grow and evolve into a concentricwave (i.e., an expandingring) its initial size should be sufficiently
large. In the singular limit, the critical radius below which propagationfails can be estimatedfrom
(4.10)by settingCr = 0. This leadsto acritical curvature,K~= ~(v~).To obtainthe critical curvaturefor
small but finite s values,assuminganondiffusiveU variable,we exploit (4.20). SettingCr = 0, however,
leadsto a divergentcritical curvature.This suggeststhat failure of propagationoccursat finite speed.
Numerical simulations[ZYK1,MIZ] indeedindicatetheexistenceof a critical speed,CrC~below which
propagationfails. It hasbeensuggestedin refs. [ZYK1, MIZ] that Crc canbe estimatedasthevalueof
Cr at which dK/dCr = 0. Applying this conditionto (4.20) we find

c~= —~(U~)sc1 (4.27)

wherewe recall that c1 is a negativequantity. For the critical curvaturewe obtain

= IL(vf) — 2Crc. (4.28)

In the limit £ = 0, ‘ç = ~.t(U~), the valueobtainedfrom (4.10)by settingCr = 0. It shouldbe stressedthat
these considerationsprovide estimatesrather than exact values, for it may well be that wave
propagationbecomesunstablealreadyat curvaturevaluessmallerthan the abovevalueof K~[MIZ].
Nevertheless,a pretty good agreementwith direct numerical simulations has been reportedfor a
particularmodel [ZYK1, ZYK2]. Anotherpoint that deservesattentionconcernsthe specialcase6 = 1.
In that casethe curvature—speedrelationis linear evenfor finite £ (assumingK 4 w~’).The estimated
critical speedis thereforezero.

4.1.5. Experimentalstudies
An experimentalevaluationof the curvature—speedrelationfor chemicalwavesin the BZ medium

has beenreportedin [FMH]. To obtain a wide rangeof curvaturevalues cusplikestructureswere
producedby letting circular wave-frontscollide (suchcuspsareseenin fig. 1). Thesestructureswere
followed in time using a spectrophotometricmicroscopevideo imaging techniquesimilar to that
describedin section3.3. The wave-front velocity was determinedby recordingimagesat fixed time
intervals.The curvaturewas evaluatedby fitting isoconcentrationlinesnearthe cusps to hyperbolas.
The resulting data was fitted to a straight line yielding a value D = 2 X 10 cm

2s1.
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4.2. Plane wavesand targetpatterns

In section3.2 we studiedtraveling wave patternsin onespacedimension.In two dimensionsthese
patternsdescribeplanarwaves. We considernow the stability of such wavesto transversalperturba-
tions, following primarily ref. [KEL2].Relatedresultshavebeenobtainedin refs. [OMK,OHM].

It hasbeenfound in ref. [KEL2] that belowa critical propagationspeedandfor 6 valuessufficiently
large, planarwaves becomeunstablewith respectto a transversestructure.For small enoughs the
instability disappearsas the velocity is decreasedbelow a secondthreshold.In refs. [OMK ,OHM] a
similar instability has been found for nonpropagatingexcited domains (see section 3.1.4). Planar
domainsbecomeunstableto transversestructurewhentheir widths areincreased.A possibleexplana-
tion of this type of instability is the following. Imaginean outwardbulge in the front position. In the
quasistaticregime [LAN], wherefront dynamicsis slow in comparisonwith thediffusive relaxationof
thebulk field U, diffusion of U from the bulge to the sideswill slow downthe front at theneighborhood
and consequentlythe bulge will grow [OHM]. This destabilizingdiffusive effect competeswith two
stabilizing factors. The first is that of curvatureas fig. 12 illustrates. The other factor applies to
extendedpatternswhere a given front propagatesinto the refractory tail that follows the preceding
front. As the bulge grows it penetratesinto a highly refractoryregion which actsto dampthe growth
process(seesection3.2.3). The instability to transversestructuredisappearswhen 6 is decreased,for
then front dynamicsis not sufficiently slow. For such 8 values,planewaves may becomeunstableto
longitudinaloscillations[OMK,OHM,KEL2].

The stability analysisof periodic planewave solutions is basedon the curvature—speedrelation
(4.10) and on the outerequations

ä,U = Cö~V+ 6V2U + sG_(U), X,<X<Xb, (4.29a)

= C + 6V2V+ SG+(U), Xb <X <Xf, (4.29b)

whereU = v(x,y, t) andx = x — Ct. To simplify the analysisthe G~termsarelinearizedas in (3.29)
andthe scalingc—pc”3c, x—~s~3x,t—~s213tand U — U*~_s~s”3v, is usedto eliminatethe b.,. termin
(3.29) (seesection3.2.1).The rescaledequationshavethesameform as(4.29) exceptthateG+(v) are
replacedby ±a~. Theseequationsaresupplementedby thecontinuityandperiodicityconditions(3.2),
where to leading order[see(3.31) and (4.10)]

Uf = U

1, = c/p l(U*) = (c + K)I/.L~(U*). (4.30)

A planewave solution,periodic in x (or x) andpropagatingat speedc, hasthe form

~ Xb<X<Xf’
(4.31)

~ Xs<X<Xb,

whereB1, B2 aredeterminedusing (3.25) [theseconditions yield also (3.28b)]. To study thestability of
this solution with respectto transversalperturbations,the front and back are deformedin the y
direction accordingto
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X = Xf +
6~eu” cos(py), x = Xb + 6b e” cos(py), (4.32)

respectively.Thesedeformationswill inducenewtermsin the U field of the form

A
1 cos(py) exp[k1(~— Xb) + cot] + A2cos(py)exp[k2(~— Xb) + cot], Xb <X <Xf,

(4.33)
~ Xb<X<Xf,

k12= {—c±[c
2+ 46(w + 5p2)]1’2} /26 . (4.34)

Substitution of the full form of U into the boundaryconditions (3.25) and (4.30) yields six linear
equationsfor thecoefficientsA

1 to A4 and for thegrowthrate cv and modestructure
6~/63. Sincethe

instability is expectedto occur in thequasistaticregime,onecansimplify theseequationsby assuming
temporalgrowthratesco 4 6p2. Then, thespatial growth rates,k

1, becomeindependentof cv. Solving
theequationfor cv one finds an instability occurringatfinite wavevectorasthespeedc is decreased.As
c is decreasedfurther, a secondcritical valueis reachedwhere the instability disappears.

The stability analysisof planewave solutionshasbeenextendedin ref. [KEL2] also to arbitraryc
valueswhere G+ in (4.29) is given by (3.29) with b± $0 and to cv valuesfor which the quasistatic
approximationdoesnot hold. For large enough6 values the results of the previous analysiswere
recovered.When6 becomessufficiently smallaHopf bifurcation,describinglongitudinaloscillationsor
breathingmotion, is foundto precedethe instability to transversestructure.

Planewavepatternscanbe formedin anexperimentby forcing themediumperiodicallyalonga line.
The periodof the forcing determinesthewavelengthof thepatternand thusthespeedof propagation.
Instabilities to transversestructureor to longitudinal oscillations havebeen observedin numerical
simulations[OMK], but, so far, not in experiments.

Forcing the medium at a point insteadof a line leadsto target-like patterns.Such patternsare
commonlyobservedin chemicalsystems(seefig. 1). The forcingat thecenteris many times due to an
impurity (e.g. dust particle)which makesthe local reactionself-oscillating[WINS].Targetpatternshave
alsobeenobservedin dictyosteliumaggregation[ALM,GPT].Here,thecentersarebelievedto consist
ofspontaneouslyoscillating cells.A similar mechanismoperatesin theheartwherethesino-atrialnode,
a small core of oscillating cells, drives thesurroundingexcitableatrium [JFC].

Faraway from thecenterof a targetpatterncurvatureeffectsarenegligible and the resultsobtained
for planarwavesareapplicable.Near thecentercurvatureeffectsbecomeimportant.In fact, if thecore
radiusis smallerthanK~

1 D/c(e)targetpatternswill not form. For theBZ reactionD -~ i0~cm2s’
andc -~ i0~cm~ giving a minimal core sizeof the orderof 100pm.

4.3. Spiral waves

4.3.1. General
Another common patternin two-dimensionalexcitable media is the rotating spiral wave*). The

interestin this type of pattern derivesnot only from its wide occurrencein chemical and biological
media,but also becauseof its universalcharacter;spiral waves appearin spontaneouslyoscillating
media as well [HAG,KUR] and, from a topological point of view, are equivalent[YKP,LEGIto

~ In theRussianliterature spiralwavesare sometimesreferredto as “reverberators”.
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dislocationtype defectsin stripedpatternslike convectiverolls [SIZ].There are important respects,
however,in which spiral wavesin excitablemediadiffer from their counterpartsin theother pattern
forming systemsandwe will mentionthem as we proceed.

Spiral waves can be created by nonexcitable transient heterogeneitiesin the medium. Such
“obstacles”breakpropagatingwave-frontsand thus producefree ends.Any free endbecomesthe tip*)
of a rotating spiral wave. The processby which a broken wavefront evolves toward a rotating
spiral wavehasbeenaddressedin refs. [FIF3,FIF4,ZYK1,MEP]. As pointedout in ref. [FIF4],along
the interfaceseparatingthe excited and the recoveryregions,thereexists a point where the normal
velocity of the interfacechangessign (seesection4.3.5).This inducesa twisting actionon the interface
motion and, asa result, the interfacestartswrappingaroundsomecenterof rotation, to form a spiral
structure.Eventually (and in an appropriateparameterrange)a stateof steadyrotation is achieved
during which thespiral tip rotatesabouta disk-like coreregionat constantangularvelocity. The sizeof
the core dependson the medium excitability: highly excitablemedia give rise to pointwise cores,**)
whereaslessexcitablemediaallow for a whole rangeof coresizes.In the lattercasethecoreremainsat
restat all times (or closeto thereststateif diffusion of U is allowed)for thetip neverpenetratesinto it
[ZYK1].The failure of the tip to penetrateinto thecore hasbeenattributedto the high curvatureof
the front at the tip neighborhood;if that curvaturevalueassumesthecritical value,K~,propagationinto
thecore becomesimpossible[ZYK1].

While the initial stageof spiralwave formation is intuitively understood,no clearpictureasto what
factorsaffect the convergenceto steadyrotation, seemsto exist. More specifically, assumingthat it is
indeedthecritical curvature,,c~,thatpreventsthe tip from penetratinginto thecoreregion,onewould
like to understandwhy thecurvatureat the tip increasestoward K~as the front curls. For spiral waves
with large core sizes one may attempt the following explanation.The curvatureat the tip, ~ is
roughly determinedby thewidth of theexcited domainat a distanceof O(K ~) from the tip. The latter
is affected by thenormalvelocity of the front; the lower the front velocity the thinner is the excited
domain. The normalvelocity, in turn, is determinedby thecurvatureof the front and by U~,the front
level of U [seefor example(4.10)]. As the front curls, thecurvatureand thevalue of Uf at a distance of
O(K~)from the tip, both increase.Consequently,the normalvelocity decreases,the exciteddomain
becomesthinnerandthe curvatureat the tip higher.

Anotherway of creatingspiral waves is by meansof a spatially gradedperturbationapplied to a
mediumin the recoveryphaseafterexcitation[WIN3,WIN5].Both meansof creatingspiral waves(i.e.,
by breakinga propagatingwaveorby applying appropriateperturbation)havebeendemonstratedand
usedin experimentsand will be discussedin greaterdetail in section4.3.2.

The discussion above suggests the existence of unique core size and frequency of rotation for spiral
wavesin a given medium. This is indeedthe casefor a mediumthat recoversmonotonicallyfrom an
excitation (see fig. 1). Oscillatory recovery, on the other hand, allows for a discrete family of core sizes
and rotations frequencies[WIN6,WIN7].Spiral waves do not always rotate rigidly or steadily.
Nonsteadyformsof rotation, knownas “meander” [WIN3],havebeenobservedboth in experiments
[APR,JSW,SKS,PMH]and in numerical simulations [ROKYCD,ZYK1,ZYK3 ,LUG,JSW,
BKT,KAR1,JAW]. Figure 13 shows steady and nonsteady spiral-wave rotations observed in the BZ
medium.

~ The tip of a spiralwave andits immediate neighborhoodaresometimesreferredto as “rotor” [WIN3I.
~ By a “pointwisecore” we refer to a corewhose sizeis of theorderof the interfacewidth, thatis, of 0(1), or 0(e)for theresealedsystems

(3.ld,e).
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Fig. 13. Superposedsnapshotsof a spiral front in theBZ mediumduringsteadyrotation(top) andcompoundrotation(bottom).Thetransitionto
compoundrotation has been obtainedby increasingthe bromate-ionconcentration(increasingexcitability). The bars represent1 mm. (From
Skinnerand Swinney [SKS],reproducedwith permission.)

The selectionof a uniquefrequencyof rotation(in the caseof monotonicrecovery)andtheonsetof
nonsteadyrotation are two outstandingproblemsthat haveattractedmuchattentionrecently. In the
following we will describe thedifferent theoreticalapproachesthat havebeenproposedto attackthese
problems and the progress that hasbeen madeso far. Theseworks divide into two main categories:
kinematical theoriesin which evolution equationsfor the spiral arm are soughtwhile keeping the
analysisof the spiral tip at a phenomenologicallevel (section4.3.4),and free boundaryformulations
which attempt a fuller consideration of the tip but address mainly static aspects such as the shape of
steadily rotating spiral waves and the frequency selectionproblem (section 4.3.5). Other theories
[GRE,PMT,MKR,ZYK1,KEE2,KET2,TYK2,TAM]have beenreviewedin ref. [TYK1] and will be
describedonly in so far as we needthem for presentingthe above theoreticalapproaches.Before
embarkingon the theoryof spiral waves,however,we describefirst experimental(section4.3.2) and
numerical(section4.3.3) studies.
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4.3.2. Experimentalstudies
Most experimental studies of spiral waves in excitablemediahaveusedtheBZ reaction(seesection

2.2). Wewill therefore focus our attentionon this chemical medium and refer only briefly to other
excitablesystems.Experimentalobservationsof spiral wavesin BZ media havebeenreportedfor the
first time in refs. [ZAZ2,WIN1].In their simplest forms spiral waves rotaterigidly or steadily about
fixed centers.The spiral tip tracesa circular trajectoryand the curvatureof the spiral wave-front
remains constant in time (see fig. 13). Quantitative studies of steadily rotating spiral waves are
described in refs. [MPH1,MPH2]. They confirmed an earlier suggestion [WIN1]that spiralwaveshave
the geometries of involutes of circles (we will seelater on that deviationsfrom an involutemay become
significantnearthe tip), andexploitedspectrophotometricmethodssimilar to thosedescribedin section
3.3, to obtain two-dimensionalspatial distributionsof thecatalyst(oxidizedform). An exampleof such
a distribution, in the vicinity of the spiral core, is shownin fig. 14.

In another study [NTM] a similar experimental setup has been used to measurespiral wave
characteristics, such as speed, wavelength and rotation period,for variousinitial concentrationsof the
BZ reagents.In addition, minimal andmaximal valuesof the catalystwaveamplitudewere measured
andcomparedwith the correspondingquantitiesof a solitary or largewavelengthconcentricwave. A
conspicuouseffect thatcomesout of thedatais the increasingpenetrationdepthof a spiral wave-front
into the refractorywake aheadof it, asexcitability is increased. This is reflected by a higher minimal
amplitude value, an overall smaller wave amplitude and a shorterwavelength.Figure 15 shows wave
profiles of spiral and concentric waves for a highly excitablemedium;the amplitudeof spiral wavesis
considerably smaller than that of concentric waves. This is in contrastto the caseof low excitability
where the two wave profiles are comparablein size.

Another effect implicit in [NMT] is the divergence of core size at sufficiently low excitability. For
small enoughvaluesof [H~] and [Br0], brokenwavefrontswere found to retractat the tips rather
than curl into spiral waves. This suggests theexistenceof a critical concentration(of eitherspecies)at
which the tip neither grows nor decays, and consequently, a limit where the core size divergesto infinity
[PPM,DMZ]. This is one feature that distinguishes spiral waves in excitable media from their

Fig. 14. Spatialdistributionof fernin (Fe
3~),theoxidizedform of themetalcatalystin theBZ reaction,in thevicinity of thecore.(From Muller et

al. [MPH1], reproducedwith permission.).
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Fig. 15. Catalystwaveprofiles of spiral (solid curve) and concentricwaves(dottedcurve) for a highly excitableBZ medium,indicating that any
segmentof thespiralfront penetratesdeeplyinto thewakeof theprecedingfront. (From Nagi-Ungvaraiet at. [NTM], reproducedwith permission.)

counterparts in oscillating or convective patterns arising via supercritical bifurcations. Defects with large
core sizes, however,may exist in patternsthat haveemergedthrough subcriticalbifurcations [CGR].

Recently,a new experimentalsetuphasbeenproposedwhich, like the annularreactordescribedin
section 3.3, allows maintaining the reactionat a constantdistancefrom thermalequilibrium. It consists
of a reservoir to which reactants are delivered in a few separated feeds. The reservoir couples to a thin
layer of polyacrylamidegel by meansof a glass-capillaryarrayand a filter membrane.The reactants
diffuse throughthe capillaryarrayandpermeatethegel. The wavepatternsthat form within the thin
gel layer are illuminated and viewedfrom above. To obtain homogeneousfeed, the reactantsin the
reservoirare continuouslystirred. The capillary array actsboth asa feedto the gel that allows only
perpendicularmasstransportandas a hydrodynamicflow buffer; it preventspatternformationwithin
the feed anddampsoutconvectionfrom thestirring. The gel is introducedto preventconvectionwithin
the pattern layer. It is chemicallyinert and allows for unhinderedmoleculardiffusion. Such an open
reactor is particularly suitable for studying the long time scale dynamicsassociatedwith instability
phenomena.

Steadilyrotatingspiral wavesmaybecomeunstableby varying theexcitability of themedium.Three
studies [JSW,PMH,SKS]haverecently demonstratedsuch an instability in the BZ medium.*) The
resulting dynamicsinvolves two frequenciesand leadsto flowery tip trajectoriesas shown in fig. 16.
Such trajectorieshavebeen describedin refs. [ZYK3,JSW,LUG,SKS,PMH]in termsof epicycloids
whose forms can be written parametricallyas

x(t) = Rcos(~wt) + p0 cos(cvt), y(t) = Rsin(Aco t) + p0 sin(cvt).

Here, p0 is the radiusof a circle whosecenterlies on anothercircle of radiusR. The two circlesrotate
with frequenciescv and L~co,respectively.The coordinatesx(t) and y(t) describea point fixed on the
circle of radiusp0. A fit of an epicycloid to an experimental tip trajectory is shown in fig. 16. The radius

*) Nonsteadyrotation hasalso beenobservedin ref. [APR]but attributedto nonuniformexcitability alongthe vertical direction causedby

exposingthetop surface to oxygen.
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Fig. 16. Tip trajectory (solid curve) during compoundrotationin the BZ medium and a fitted epicycloid (dashedcurve). (From Skinnerand
Swinney [SKS],reproducedwith permission.)

and frequencyp0 and cv pertain to the original, primary tip rotation. The frequencyi~wis just the
differencebetweenthe primaryfrequency,cv, and the secondary frequency, w1, that modulatesthe
primarymotion [JSW].To seethis let t1 denotethe instanceof (say)largestdeparturefrom the center
of rotation and t2 the next suchinstance.From the parametricform abovewe find (~cv— cv)t1
(~w— cv)t2+ 2ir, or i~w cv — w~,wherewe have identified 2~rI(t2— t1) with cvi. Indeed,negative
(positive) ~cv values give rise to outward (inward) petal flowers as we expect for modulational
frequencieslarger(smaller)thantheprimaryfrequency[WIN8](seealsonext section).Therelationof
R to the primary andsecondaryfrequenciesis not obvious. It appearsthough that R mustdivergeas
i~cv—~ 0, for thenthemodulationof the tip trajectoryalwaysoccursin thesamedirectionthus yielding
an averageddrift of the tip alonga straight line.

Flowery tip dynamics is often referred to as “tip meander” [WIN3].In the following we will use the
term “compound rotation”, suggestedin ref. [SKS],for strict two-frequencydynamics and use
“meander”as a globalnamefor nonsteadyrotation.Tip meanderis anotherpropertyof spiralwavesin
excitable media that has no analog in smoothly oscillating systems or in defect dynamics.

In refs. [JSW,PMH]the transitionto compoundrotationwasobservedasexcitability wasdecreased.
In contrast,compoundrotation in [SKS]wasobservedby increasingexcitability. The main difference
betweenthe chemicalcompositionsin thesestudiesis that in ref. [SKS]thebromate-ionconcentration
wassmallerby an orderof magnitudethanthat in refs.[JSW,PHM].This maysuggestthat themediain
the latter studies were considerablymore excitable than the medium in ref. [SKS].Indeed,when
[Br0 ] in ref. [SKS]was sufficiently increaseda transition back to steadyrotation was observed.
Unfortunately, this transition was accompaniedby bulk oscillations in the reservoir (presumably
becauseof the small bromide ion concentrationused in that experiment).The picturethat emerges
from this comparisonis that there is a finite range of excitability at which compoundrotation is
observed.At sufficiently high or low excitabilitiessteadyrotation prevails.

The openreactorproposedin ref. [SKS]alloweda closerexaminationofthe transitionto compound
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rotation. Approachingthe transitionpoint from below and from above indicated no hysteresis.The
increasein relaxationtime asthe transitionpoint was approachedprovidedanotherindication for the
supercritical natureof the transition; bromate-ionconcentrationsdiffering by 5% or more from the
critical one led to relaxationtimes shorterthan5 hours,whereasconcentrationsdeviatingby no more
than 1% gaverelaxationtimes above24 hours. Anotherquestionthat could be investigatedwith that
kind of reactor is whethercompoundrotation is frequency-locked.If this was the case,intervals of
bromate-ionconcentrationcould befound that correspondto a constantwinding numbercv1/w. Within
the experimentalresolution such intervalswere not found, suggestingthat the observedrotation is
thereforequasiperiodic.

During compoundrotation the wave-front curvaturechangesperiodically in time. Figure 17 shows
images of the spiral wave-front at two phasespertainingto minimal (top) and maximal (bottom)
wave-frontcurvatures.The dramaticchangein curvatureis accompaniedalso by a changein the wave

1~
Fig. 17. Spiralwave-front in theBZ mediumat two phasespertainingto minimal (top) and maximal (bottom)front curvatures.Thebarsrepresent
1mm (From SkinnerandSwinney [SKS],reproducedwith permission.)
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profile; while in theupperfigure the profile is quiteuniform along thewave-front,in the lower figure
theexciteddomainnearthe tip becomeswider thanit is furtherbackfrom the tip. Thesevariationsin
curvatureand waveprofile affectboth normalwave-front velocity and tangentialtip speed.The latter
are also affectedby thenonuniformrefractorywake aheadof thepropagatingwave-front.

The creationof spiral wavesin refs. [JSW,PMH,SKS]hasbeenachievedby breakingpropagating
wave-fronts. In ref. [PMH},for example, a circular wave-front has been brokenmechanically,by
ejectinga gentle blastof air into a small sectionof the wave-front. In ref. [SKS]optical meanshave
been used. Exposureof the systemto UV light has the effect of reducingoxidation wave-fronts.
Illumination of one part of a wave-frontthereforeannihilatesthat part and leadsto thecreationof a
free end.

A different way of initiating spiral waveshas been suggestedin ref. [WIN4] and later in refs.
[WIN3,WIN5]in the contextof cardiacarrhythmias.It exploits a topologicalpropertyof spiral waves,
namely, that a line integralof thegradientof the local-dynamicsphaseover a closedloop that contains
thespiral core,doesnot vanish. Imposinginitial conditionsthat satisfythis topologicalconstraintyields
spiral waves.The heartmuscle is an excitablemediumthat can support spiral waves [ABS1,ABS2].
Such wavesinducefast heartbeat(tachycardia)which very oftendegradesinto ventricularfibrillation.
The onsetof fibrillation haslong beenassociatedwith theappearanceof aprematureelectricalstimulus
in the vulnerablephase*) [MIN]. It hasbeen pointed out in refs. [WIN3,WIN5] that the effect of
applying a concentricstimulusat the wakeof apropagatingwave-front is to set the initial conditions
neededfor the creationof phasesingularitiesor spiral waves.Thesesingularitiesshould occur at the
intersectionpoints of a circle of critical stimulusstrengthand a line of critical recoveryphase.There
should be, in general, two such intersectionpoints giving rise to two counter-rotatingspiral waves.
Theseideaswere successfullytestedin refs.[SCD,FWW]usingmultiple-electrodemappingtechniques,
andlater in refs. [DKC,DKJ]usingvoltage-sensitivedyesandphotodiodearraysto detectfluorescence
patterns.

4.3.3. Numericalsimulations
The dependenceof the period of rotation, T= 2irlw, on e hasattractedconsiderabletheoretical

attentionaswe shall seelater on, but only a limited amountof numericaleffort [MIZ,WIN8]. It hasa
characteristicU-shape,theperioddivergingat relatively larger valuesbecauseof tip retraction,and in
the limit s—*0, becauseof unboundedincreasein thedurationof excitationandrecovery,T~andT_,
respectively.* *) A relatedsignificantobservation[WIN8],madefor a nondiffusiveu variable,is that the
levels Vf and Vb along the spiral arm (but not too close to the tip) approachthe value u’ as s is
decreased.For e sufficiently small the scalingform, u * — e1~, hasbeenobtained.

Most numerical studies in recent years have focused on the problem of nonsteadyrotation.
Simulationson simple model systems(FitzHugh—Nagumo,Oregonatorandothers)areconsistentwith
the experimentalobservationthat compoundrotationprevailswithin a finite rangeof excitability, and
can be reachedeither by lowering the excitability of a highly excitablemediumor by increasingthe
excitability of a barelyexcitablemedium. Variousquantitieshavebeenusedascontrol (or bifurcation)
parametersin thesesimulations,and in order to relatethem to thesomewhatlooselydefinedproperty
of excitability (seesection3.3) we examinethemannerin which they affect thespeedof propagation.
One parameterthat hasbeen widely used is the thresholdof excitation [a in model (2. la), or the

*) A period in therecoveryphaseduringwhich a relatively small perturbationcan triggerfibrillation.
*a) Otherspaceand time scalings,however,may yield different shapesfor the T—s curves.
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relatedquantity LI’ where LI = v~— uj. This parameterobviouslyaffectsthe propagationspeedas is
evident from (3.7), (3.9) or (3.18); the higher the threshold,the smaller the speed.High threshold
valuescan thusbe associatedwith low excitability. In ref. [BKT] the onsetof compoundrotationwas
observedas the thresholdwas increased(or excitability decreased),whereasin ref. [KARl] compound
rotationwas obtainedby decreasingthe threshold(or increasingexcitability).

Another parameterthat is commonly varied in numericalsimulationsis the time scale ratio E.

Accordingto (3.18) increasing~ reducesspeedand thus excitability. This raisesthe questionto what
extentE andthresholdvariationsareequivalent(asboth quantitiesaffectexcitability). The clue to this
questionseemsto lie in a significant distinction madein ref. [ZYK3] betweentwo slow time scales,
governingthe time evolutionof the slow variablev alongthe right andleft branches,u+(v) andu_(v),
respectively.Denotingthe correspondingtime scaleratioswith respectto the fastvariableby e~and

we replace~g(u,v) in (3.la—c) by E+g(u, v) for g>0 and E_g(u,v) for g<0. The speedof
propagationis affectedby t~ but is insensitiveto r_. The latter affectsthe time the systemspendson
the left branch,or the durationof the refractoryperiod.Thus,we mayassociates with excitability,
and in this senseregard it as equivalent to the inverse threshold,but we must consider E~as an
independentparameter.

In refs. [ZYK3,LUG] a semiqualitativephasediagramfor spiral wave dynamicsin the (e~,r_Ie~)
planeis evaluated.Transitionsto compoundrotation have beenobtainedeither by decreasinge~at
constantratio E_/E~,or by decreasingthat ratio atconstantr~.The former transitionis consistentwith
the experimentalobservationsin ref. [SKSIof inducingcompoundrotation by increasingexcitability.
The latter transition cannot be directly related to the experimentalobservations.It amounts to
obtainingcompoundrotation by increasingthe refractoryperiod (decreasinge_Ie~)at constantspeed
(constante~).Recently,two othernumericalstudies,exploring spiralwavedynamicsin two-parameter
planes, have appeared[JAW,WIN8I.The two parametersused are (original) e and threshold of
excitation (from the abovediscussionboth can be regardedas independent).In that parameterspace,
compoundrotation appearsin a tongue-likedomain surroundedby a domain of steady rotation, as
shownin fig. 18. In a wide r range,increasingthreshold(decreasingexcitability) at constantr leadsto a
transition from steadyto compoundrotation,a reversetransitionto steadyrotationand finally to the
disappearanceof spiral waves (by tip retraction). This qualitative picture is consistent with the
experimentalobservations.At smaller E values the onset of compound rotation is followed by a
transition to more complex forms of nonsteadyrotations(see also ref. [ROK]). The exact natureof
thesenonsteadyrotationshasnot beenstudiedyet. At still smallerevaluesnonsteadyrotationprevails.
In all these studies a crossover has been observedin the domain of compound rotation from
outward-petal flowers to inward-petal flowers. The borderline is reachedwhen the primary and
modulational frequenciesbecomeequal, and is characterizedby a drift of the spiral wave along a
straight path.**)

The onsetof compoundrotation has been carefully examinedin refs. [BKT,KAR1]. Decay rates
slightly belowthe transitionand amplitudesof the oscillatorymodesslightly abovethe transitionwere
calculatedas functionsof the control parameters(thresholdof excitation).The oscillatory modeswere
found to grow from zeroat thesamecritical parametervalueswherethedecayratescrossthe imaginary
axis. The decayrateswere linear in the deviationsof the control parametersfrom their critical values,
whereasthe amplitudesfollowed squareroot laws.Thesefindingsindicate that compoundrotationsets
in via a supercriticalHopf bifurcation.

*) The parameterse~and e. correspondto r andeke, respectively,in ref. ~ZYK3].

**) Similarbehaviorresultswhena steadily rotating spiralwaveis subjectedto an externalperiodic force EADMI.
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Fig. 18. Phasediagramfor spiralwavebehaviorin aFitzHugh—Nagumotype model. The parameter$ is a measureof thethresholdof excitation
whereas‘e = ‘V~(notethe logarithmicscaleof ‘e). Shownarefive regimespertainingto failure of planarfrontpropagation(below 3P), failureof
spiralwavepropagation(between3P and3R), steadyspiralwaverotation(between3Rand 3M), compoundrotation(between3Mand 3C), and
irregularrotation.The patternsshowndescribetypicaltip trajectoriesin therelevantregimes.For moredetailsthereaderis referredto ref. [W1N8].
(From Winfree [W1N8],reproducedwith permission.)

Thespatialstructureof the unstableeigenmodehasbeenstudiedvery recentlyin ref. [BAR1] for an
instability that setsin as thethresholdof excitationis increased.At the bifurcationpoint, this modehas
beenfoundto developamaximum at thepoint of zero curvatureon the spiral interface,andto follow a
power-lawdecayaway from this point. This suggeststhat the instability is not localizedat the tip.

The experimentaland numerical studiesdescribedso far pertain to spiral waves in media that
recovermonotonicallyafter excitation.We haveseenin section3.2.3that oscillatoryrecoverygives rise
to a multitude of nonuniformly spacedstablewavetrains.What is the effectof oscillatoryrecoveryon
spiral wave dynamics? This question has been addressedrecently in refs. [WIN6,WIN7] where
numericalsimulationson aFitzHugh—Nagumotypemodelwerecarriedout. Theinterestingoutcomeof
this studyis the possibleexistenceof adiscretefamily of stable~piralwavesolutionsdiffering from each
other in rotation frequenciesand core sizes.*) This is in sharpcontrastto the caseof monotonic
recoverywhereuniquefrequencyand coresize areselected.We turnnowto theoreticalstudiesof spiral
wave dynamics.

*) The sameresultappearsimplicity in ref. [KARl]. Parametervaluesthathavebeenusedin this studygive rise to oscillatoryrecovery.It has
beensuggestedin that work that the secondarymodethat appearsin compoundrotationis closelyrelatedto a coexisting,longerwavelength,spiral
wavesolution. It shouldbestressed,however,that althoughcrosseffectsof nonsteadyrotationandmultiplicity of spiralwavesolutionsmay exist,
the latter is not a prerequisitefor the former.
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4.3.4. Kinematicaltheories
4.3.4.1. Thegeometricalapproach. The essenceof the geometricalapproachis to describethe spiral

arm in termsof a one-dimensionalcurvewith a free end, whosenormalspeedandtangentialfree-end
speedare determinedby the local curvaturealone. The temporal evolution of the spiral arm follows
thenfrom a partial differentialequationfor the curvature.The first formulationof suchan approachin
the contextof excitablemedia*)was presentedin ref. [ZYK4]. Many otherstudieshaveappearedsince
then[BDM,BDZ1,DMZ,MIK1,BKK,MEP,MIz,ZYM]. We first outline the derivationof the curvature
evolution equationusing purely geometricalconsiderations.We then describea phenomenological
theory of spiral waves that has emergedfrom the earlier work [ZYK4] and the subsequentworks
[BDM,BDZ1,MIZ,ZYM]. *

Considera curve,X(s, t), in the (x, y) planewith a freeendat arclengths = 0 as illustratedin fig. 19.
Let O(s, t) be the anglebetweenthe tangentto the curveanda fixed direction,say,the x axis. The unit
vectorsalong and normal to the curve are given by

i=cosO~+sinO9, ~= —sinOI+cosO9, (4.35)

respectively.At anypoint s >0 the curvepropagatesin the normal direction,

dX(s,t) Idt = Cr(S, t)~(s,t) . (4.36)

The normal propagationelongatesor shortensthe curve accordingto the sign of its curvature.As a
result the arclengthof the curve variesin time. Taking this into accountwe find from (4.36)

(aXIat)~ Cri~— (ds/dt)1, (4.37)

wherethe subscripts denotespartial derivativeat fixed s andwe used the identity 8X/ t9s = 1.
Considernow the total time derivativeof i. From (4.35) we find

d~Idt= (dOIdt)f~. (4.38)

On the otherhand,

~1~L

Fig. 19. Geometricalrepresentationof a front, X(s, t), with a free end(tip) at arclength.s = 0. The unit vectorsnormalandtangentto thefront are
denotedby ? and1, respectively.The anglethat i makeswith a fixed direction is denotedby 8(s, t).

*) A similar approachwasusedearlier in thestudyof spiral screwdislocations[BCF].

**) The readeris also referredto arecentbook by A.S. Mikhailov [MIK2] wherethis theory is reviewed.
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dI/dt = (d/dt) OX/Os= (O/Os)(OX/Ot)5— K(dS/dt)r, (4.39)

where the curvatureis given by K = —t30/Os. Using (4.37) in (4.39) and comparing(4.39) with (4.38)
we find

(3/Os) ds/dt= KCr~ dO/dt= 0c~/0s. (4.40a,b)

Taking the partial derivativeof (4.40b) with respectto s at constantt we find

= —(K
2 + 02Ias2)c~— (0K/Os) ds/dt, (4.41)

whereaccordingto (4.40a),

ds I fds\
~— —j ds’ KC,. + C~, C~ ~ (4.42)

The first term on the right-hand side of (4.42) representsthe changein arclengthdue to normal
expansion.The secondterm, c

5, representsthe growth rateof the free end,or the tangentialtip velocity
[BDM,BDZ1 ,ZYM]. In general,both c,. andc~areassumedto be functionsof the curvature.

Equations(4.41) and(4.42) determinethe curveX(s, t) up to rotationsandtranslationsin the plane.
To determinethis curve completelywe use (4.35) andthe identities~= 0~Xand K = — 0ç 0 to write

X(s, t) = Jds’ cos6(s’, t) + X0(t), Y(s,t) = / ds’ sin 0(s’, t) + Y0(t), (4.43)

0(s, t) = — Jds’ K(s’, t) + 00(t). (4.44)

The tip coordinates(X0, Y0) areobtainedfrom (4.37)oncewe identify X0 0,X~0and V0

X0 = ~Cro sin 0~— c~cos0~, ~ = cos6~— c~sin 6~, c~0= CrIs=O• (4.45)

The angle 60 is obtainedfrom (4.40b),

060/Ot = (ac~/0s)5.0+ Koc~. (4.46)

Equations(4.41)—(4.46) providea geometricalframeworkfor stu4yingspiral wave dypamics.
Two questionsarisewhenwe cometo apply this framework. Fir~t,underwhat conditionsis suchan

approachapplicable,andsecond,what forms should we usefor c,. andc~in (4.41)and(4.42). For the
geometricalapproachto be valid, the dynamicaleffects dueto nonuniformdistributionof u along the
spiralarm shouldbenegligible.Suchasituationis realizedif the width of the spiral armis muchsmaller
than the spiral wavelengthor pitch. Then, practically, any portion of the arm propagatesthrough a
medium at rest, for which u = u~.One way to achievethis “thin arm” regimeis to considerr values
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sufficiently large. We know from the discussionin section4.1.4that thereexistsa critical curvature,K~,

beyondwhich forwardpropagationfails. We also know that the critical radius,K~
1, increasesas E i5

increased[see(4.27) and(4.28)]. The radiusof curvatureatthe tip is of the orderof the width, A~,of
the exciteddomain.The latter decreasesas epsilonincreases[see(3 .27a)].Thus,uponincreasinge the
radiusof curvatureat the tip decreaseswhile the critical radiusincreases.Evidently there will be a
critical value,r~

2,at which thetip canno longer growor sprout[PPM,DMZ,MIZ].*) Beyondthat value
the tip retracts. This phenomenonhas been observed in experiments [NMT] and in numerical
simulations[DMZ,KAR2,JAW] andis demonstratedin fig. 20. A brokenwavewill evolve into a spiral
waveonly if E < E~2.Large-wavelengthspiral wavesareobtainedfor r valuesslightly smallerthanE~2.

The width of the spiral arm dependson the size of the excited domain and on the decay rate,
= = EGI(v5)/c1,of the refractory tail. As eincreasesthe exciteddomainbecomessmallerand

the decayrate larger. The thin arm regimecan thereforebe obtainedby increasingr toward r~2.
The thin arm limit can alsobe obtainedby increasingthethresholdof excitation,or alternatively,the

rest valuev~of the slow field v (keeping ~ constant)[KAR2]. Again, therewill be a critical value,
> 0, of LI = v* — v~for which thespiraltip neithersproutsnorretracts.At this critical valuethe spiral

pitch diverges to infinity. As for the arm width, hereit also decreasesas the infinite pitch limit is
approached;the exciteddomain,A~,shrinksandthe decayrate, i~, increasessincec,,. ~t(v~)becomes
smallerthe closeru~andv* are[recallthat j~(u*) = 0]. We may concludethat the geometricalapproach
is applicablefor values of E or thresholdsufficiently high, or for barelyexcitablemedia.

nflnfln __

Fig. 20. Numerical simulation of spiralwavepropagationin the limit of low excitability where e is close to e~.Tip retraction(top-left), steady,
finger-like propagation(top-right), and spiralwaves(bottom) areobtainedwith e> e~,~= ~2 and ~< e~2,respectively.(From Mikhailov and
Zykov [MIZ], reproducedwith permission.)

*) The readershouldnot confusee~2with e~,the critical e valueat which planarsolitarywavesfail to propagate(seesection3.1.3).
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The secondquestionconcernsthe forms of c,. andc5 to be used in (4.41) and (4.42). For e values
sufficiently smallwe can usefor Cr the form (4.10). For higher s values eqs. (4.21) or (4.26)shouldbe
used. The questionof what form to use for c~is more subtle. In refs. [BDM,BDZ1] it has been
postulatedthat the tip velocity is determinedby the curvature, ,c0(t) K(O, t) of the (infinitely thin)
spiral arm at s = 0. More specifically, a linear relation

c~= d(K~2— I(~), (4.47)

hasbeenassumed,whered is a positive constantandK~2is a secondcritical curvature,definedas the
curvatureof the spiral arm at the tip for which the tip neither grows nor retracts.That c~should
somehowbe relatedto K0 can be understoodin the following way. In the thin arm regime, the tip
velocity, c~,is affected primarily by the width, A of the exciteddomainnearthe tip, as this width
determinesthe curvatureof the tip [the readershouldnot confusethecurvatureof thetip with 1(~which
is the curvature,K(s), of an infinitely thin spiral arm in the limit s—~ 01. This width, in turn, is affected
by the normal velocity of the spiral arm nearthe tip, and thus by its curvatureK0, for accordingto
(3.27) A÷is proportional to the speed.Onemaythereforeexpectc~to increaseas K0 decreases.

We are in a position now to apply (4.41)—(4.46) to spiral wave dynamics[BDM,MIZ]. Considera
steadilyrotatingspiral wave. Suchaform of rotation is shownin fig. 13 (top). Thespiral waverotates
as a whole with constantfrequencydenotedhereby w. During the rotation the tip tracesa circular
trajectoryaboutafixed coreregion.The curvatureof the spiral arm is independentof timeandthe tip
neithergrows nor retracts(i.e., c~= 0). Integrating(4.41) and (4.42) we find

K/dSlKCr+~L=W, (4.48)

wherew, the integrationconstant,is just the frequencyof rotation.This is readily seenoncewe notice
that w = OSCrI5=0 and that accordingto (4.40b), a5c,j~,0= dOIdtI50. The curvaturehasto satisfy the
boundaryconditions

1lmK(s)=K~2, hmK(s)=0. (4.49)

Theseconditionsmake (4.48) a nonlineareigenvalueproblem for the frequencyof rotation,w. To
determinecu it is convenientfirst to rescalequantitiesaccordingto i~= IC /iç~,I = SK~2and ~ = w /CKC2.

Equation(4.48) thentransformsinto

K/d5’K(1—~K)/3~-+cu, ~!~f~2 (4.50)

wherewedroppedthe tilde signsfor simplicity of notationandused(4.26) for C,. with c independentof
s. In the thin arm regimewhich is consideredhere,/3 is muchsmaller thanunity, for c/D 0(ç) is
roughly the curvatureof the tip, while ,ç2 is the much smaller curvatureof the spiral arm. We can
thereforeneglectthe term proportionalto /3 on the left-handsideof (4.50).Theterm on the right side
multiplies the curvaturederivativeandcannotbe neglected.Indeed,a boundarylayer, involving large
curvaturevariations,existsnearthe tip. To seethisconsider(4.50) awayfrom the tip where/3 05K ~
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andthe derivativeterm can be neglected.Then, (4.50) hasthe outersolution

K = (cv/2s)112 . (4.51a)

Evidently, 0
5k-~ s 3/2 growsunboundedlyas thetip is approached.Thus,nearthe tip, the derivative

term should be kept. In that region, however,s is small. Using the smallnessof s we find, to leading
order, the inner solution

K = 1 — (w//3)s. (4.5lb)

The rotationfrequency,cv, is determinedby matchingtheouterandinnersolutions.Continuity of the

solutionsand of their first derivativesat a point s = s~thenleadsto
cv = w/3U

2, s~= (3/3/8)1/2, w = (2/3)3/2 = 0.544. (4.52)

Direct numerical integrationof (4.50) yields the value w = 0.685. The dimensionalfrequencyreads

cv w(cD)”2K~2. (4.53)

The core radius can be obtainedusing the relation cup
0 = c,.0. This gives p0 = cw~+ O(/3). The

completesteadily rotating spiral solution is obtainedby using (4.51) in (4.44) and evaluating(4.43),
where 00(t) = cut + 4 with 4 beinga constantphase[see(4.46) and(4.48)], andX0 = —p0 cos(wt+ tf~),
V0 = p0 sin(cvt+ 4).

We discussnow the significance of theseresults. The outer solution (4.5la), or K = (cv /2sc)~
2in

dimensionalquantities,describesan involuteof a circle of radiusp
0, a form that hasalreadybeenused

to describespiral wavesin excitablemedia[WIN1]. This form holds down to arclengths~ f3p0~
where deviationsfrom the involute becomesignificant.The (unique) frequencyofrotation goesto zero
andthe core radius divergesasK~2—*0 in accordwith (4.47) and fig. 20.

To evaluatethe rotationfrequencyasa functionof e oneneedsto know howK~2is relatedto s. We
describenow how this relation is obtained in ref. [MIZ]. At E = s,2, the tip of a planar broken
wave-front neither grows nor retracts.One is motivated then to assumethe existenceof a broken
wave-front solution of

—c~0~u=f(u,v)+0~u+0~u,—c~a~u=e~2g(u,u), (4.54a,b)

wherex = x — *) Considernow s valuesslightly smaller than
5c2 that allow for large-wavelength

steadily rotatingspiralwaves.Transformingto polarcoordinates,p and ~, (4.54a) becomes
~ —c~0~v=rg(u,u), (4.55a,b)

wherenowx = p — c~,tandy= 1~/K~
2.In obtaining(4.55a)it hasbeenassumedthatcurvaturevariations

alongthe spiral arm are negligible, thus K = K~2.Equations(4.55a,b) canbe broughtto the form of
(4.54a,b) oncethe identification

*) We notethat the existenceof sucha solutionhas not been provenyet.
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5c2 = s(1 + K~
2/c~), c,~= + K~2, (4.56)

is made.Eliminatingc~one finds

K~2= (C~/E~2)(E~2— s) (4.57)

or using (4.53)

cu—=(s~2—~)3/2 (4.58)

Equations (4.53) and (4.57) have been tested in ref. [MIZ] by comparing the implied cu—s
dependencewith direct numericalsimulationson aparticularreaction—diffusionmodel. Unfortunately,
thenumericaldatawas too poorto testthescalinglaw (4.58) conclusively.Deviationsof thenumerical
data from the theoreticalcurve are reasonablysmall at large e values but become large as e is
decreased,presumablydue to refractorytail effectsthat becomeimportantasthespiralpitch decreases.
Anotherpossiblesourceof error (evenin the regimeof largee values)is thelargecurvaturevariations,
105K = cv/3-1 /31/2 ~ 1 (in dimensionlessquantities),in the boundarylayernearthe tip. The extent
to which such variations are compatible with the assumptionof weak curvature dependenceon
arclength,used in deriving the curvature—speedrelation, hasyet to be estimated.

Linear stabilityanalysisofsteadilyrotatingspiral waves,within theframeworkofthis theory,hasnot
beenperformedyet. It is easyto see,however, that the growth of the tip accordingto (4.47) hasa
stabilizing effect. Linearizing the correspondingterm in (4.41) and (4.42) abouta steadily rotating
spiral solution, ic(s), yields a contribution of the form d(dK~Ids)50to the growth rate of a
perturbation6K at s = 0. SincedK /dsis alwaysnegativefor steadilyrotatingspiral wavesandd >0 this
contributionis negative.We shall return to this questionin section4.3.4.3.

4.3.4.2. RefraCtorytail effects.When theexcitability of themediumgetshigherthe rotation period
decreasesand the valuev~of u at the spiral wave-front is no longer the rest-statevalue,v5 repeated
excitation occursbeforecompleterecoveryis achieved.In general,v~will not be constantalong the
spiralarm, and this nonuniformitywill affectthespiralwave dynamics.In the caseofsteadyrotationwe
may expectui(s) to be uniform, apartfrom a small neighborhoodof the tip, for any excited site is
visited againafter the sameperiodof time. Inside the core, on the otherhand, the mediumis never
excitedand thereforeu assumesthe (smaller) reststatevalue,u~.

Refractorytail effects(incompleterecovery)in thecaseof steadyrotationcanbe incorporatedinto
the kinematicalapproachdescribedin section4.3.4.1by letting c andK~2dependon theconstantperiod
of rotation, T= 2ir/w. Phenomenologicalforms for thesefunctions have been suggestedin refs.
[ZYK5,ZYM,MIK1,MIK2]. They take the forms

c(T) = c,~(1— F1/T), K~2(T)= K~2(Oo)(1— I~/T), (4.59a,b)

where fl and I~are phenomenologicalconstantsproportionalto Tmi,,~the minimal wavetrainperiod
below which propagationfails (see section3.2.1). We note that the form (4.59a) for the dispersion
relationc = c(T) doesnot coincideat long periodswith theasymptoticexponentialform (3.48). In the
caseof nonsteadyrotation, T becomesa field, T(s,t), representingthe time that haselapsedsincethe



50 E. Meron, Patternformationin excitablemedia

last passageof the spiral wave-front through a point which is presentlyat arclengths. This field is
constructedin refs. [ZYK5,ZYM]as

T= t — T*(X(s, t), Y(s,t)) , (4.60)

where T*, the last passagetime at (X(s, t), Y(s,t)), is determinednumericallyduring the integrationof
the kinematicalequations.

Another kinematicalapproach,intended specifically to addressrefractory tail effects, hasbeen
proposedin refs. [MER1,MER2]. It is basically an extensionof the one-dimensionalkinematical
approachof section3.2.2 to two dimensions.To makethe analogyto theone-dimensionalcasemore
apparent,a spiral coordinatesystemis introducedand split into parallel sectionsso as to map the
probleminto one consistingof an arrayof approximatelyplanarwave-fronts, as describedbelow.

The close similarity of spiral wave-fronts to involutes of circles (seesection4.3.2) motivatedthe
choice of a coordinatesystem in the form of an involute of a circle of radius p * and rotating at
frequencycv,

x = X1~(o,t) + r~1~(cr,t) , (4.61)

where i,,, is a unit vector normalto the involute spiral and

Xjn = p cos[~~(p)— cut], Y~= p sin[~~(p)— cut],
(4.62)

2 1/2
i3~(p)=o—arctancr, o=[(p/p~) —1]

The rangeof thenormalcoordinater is chosento be (—A~~/2,A~~I2)whereA1~= 21Tp~is the pitch of the
involute spiral. The rangeof if is <if <cc where >0 to avoid the singularity in the involute
curvature,K1~= (p~o)~at if = 0.

We now decomposethe rangeof a- into intervals,Si, representingparallel portionsof the involute
spiral

= [o~ +
21T(l — 1), a-tip + 2irl), 1 = 1,2,...,

andconstructsolitary wave-frontsthat are peakedon theseintervals

Hk(cr,r)nsH(r+n(a-)AIfl_kAIfl), k=1,2,...; n(cr)1 if a-ES
1. (4.63)

Thus,Hk(o~,r) = H(r) for a- E
5k andthereforeassumesmaximal valueson the kth segment.

To describethe spiral wave-front (in the rotating frame) we introduce a displacementfunction
r = ~(a-,t). In the laboratoryframethe spiral wave-front is given by

= X
1~(a-,t) + ~ t). (4.64)

In analogyto (3.36) we approximatea spiral wavesolution by

U(a-,r, t)~~Hk(o,r~k), ~k—~(a-k’ t), a-ka-+2~[kn(u)1. (4.65)
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To understandbetterthis form consider,for example,the first intervala- E S1.Onthis intervaln(a-) = 1
and

U(a-, r,t)~H[r— C(a-,t)]+H[r—A1~—C(a-+2ir, t)]+ , a-ES1.

Thus the main contribution comesfrom thewave-front that is peakedon S~.In addition, U contains
contributionsfrom the tails (or residualfields) of wave-frontsaheadof it.

In orderto proceedasin section3.2.2 we expressthe reaction—diffusionequations,

= LU + N(U) + DV
2U, (4.66)

in the involute coordinatesystemand recastthem in the form

LU+N(U)+D0~U+C0rU=P, (4.67a)

P= —DKl0,.U+OtU+QD0~TU—DK~0~U, (4.67b)

K
1(cr,r)=K1~/(1+rK10), flD(a-,r)=cu+p~DKl,

whereK~0(a-) = (p* a-) 1 is the involute curvatureandwe identified cup * with c, the speedof a planar
solitary wave-front.WerePnegligible,eq. (4.67a)wouldhavereducedto the one-dimensionalproblem
(3.35).The methodof section3.2.2 is still applicablefor smallP. Forthis to happenwehaveto exclude
the immediatevicinity of thetip from the rangeofa-, becauseat the tip 0~.U is of the sameorderas Or U.

Once this is done (seediscussionbelow) t
9~U, t3~U and 8~U aresmall in comparisonwith 0,. U, for the

involute spiral providesa goodzerothorderapproximation.If in addition, K
1~(o~1~)4 c,, [assuming~ is

at most of 0(1)], thenP canbe regardedasa perturbation.
Writing a spiral solution in the form

U(a-, r, t) = ~ Hk(a-, r — ~k) + R(a-, r, t) , (4.68)

whereR is a small correctionterm,andusingthis form in (4.67)we obtainthe spiral evolutionequation

= —DK1 — liD 0~+ DK~0~+ q~(~— ~+ A10), (4.69)

whereK1(a-, ~)= (p5a-+ ~ q~(—x)is given by (3.46b),~ ~(a-+ 2n-, t), D is given (4.26b) and

= cv + p~DK~.In deriving (4.69) we assumedK1~—~ y 4 c —-0(1), where y exp(—~~A10).Equa-
tion (4.69) has been studied so far only numerically. One consequence,however, is immediately
inferred;in the absenceof refractorytail effects (y 4 K1~)(4.69)admits aninvolute solution (~ = 0) as
a-—~ no.

To relatethe spiral evolution equation(4.69) to relationswith which we are alreadyfamiliar, let us
expressthis equationin termsof thenormal velocity,

Cr = ~ . ~ ~= [(Y~),~I~— (X~~)0.9]N’,

andcurvature,
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K = [(X5~)0.(Y~~)0.0.— (Y5~)0.(X5~)0.0.]N
3, N= [(X~~)~+ (Y

5~)~}”
2

of the spiral front X~,,wherethe subscripta- denotespartial derivativewith respectto a-. Using (4.62)
and (4.64) we find

Cr = c(A) — DK ; c( A) = c~.+ q~(A), A = — ~ + A,
0 - (4.70a,b)

This is justthe curvature—speedrelation(4.26)wheretheplanarwavespeedc is given by the dispersion
relation (3.48) evaluatedat A = — ~ + A10.

The kinematicalapproachdescribedaboveavoidsthe considerationof the two-dimensionalstructure
of the spiral tip and assumesconstantwave width (the solitary wavewidth). A consequenceof these
simplificationsis that the dynamicsof the tip in the tangentialdirection cannotrespondindependently
to variationsin therecoveryfield nor to variationsin wavewidth. The lattereffect could bemodeledas
in (4.47) and (4.59b)with T replacedby A = — ~ + A~.An extensionof the theory alongthis line,
however,hasnot beenattempted.Despitetheselimitations interestingresultscan alreadybe obtained
with this simplified approach,as we shall see in the nextsection.

4.3.4.3. The onsetof nonsteadyrotation. The two kinematical approachesdescribedin sections
4.3.4.1 and 4.3.4.2 allow the study of nonsteadyrotation. Both approachesgive in wide parameter
rangesstablesteadyrotationandboth exhibit a transitionto meander.Integrationof eqs. (4.41)—(4.46)
using(4.59) and (4.60) yields a transitionto meanderas the valuesof J~and17~in (4.59),or T,~10,are
increased[ZYK5,ZYM,MIK1,MIK2]. The explanationgiven in thesereferencesas to why an increase
in T~,,10shouldleadto meanderis thefollowing, Imaginethat initially Tmin/T 4 1 so that steadyrotation
prevails,and Tmjn/T=0 is ratheruniform. As Tm10 is increased,a gradient of Tmin/ T developsat the
tip, for inside the unexcitedcore T= no and Tmin/T remainszero.The tip thatrestson sucha gradient
has a tendencyto grow and penetrateinto the unexcitedcore region, for as it grows the critical
cprvature iç2 increasesand consequentlythe tangentialspeedc~increasesas well [see(4.47)]. The
forcesthat keepthe tip from doing that prior to the onsetof meanderarenot discussedin the above
references. -

Integrationof equation(4.69) yielded a transition to compoundrotation as the value of D was
increased[MER1]. In that referencea differentexplanationfor the onsetof meanderhasbeengiven.
As discussedin section4.1.1 andillustrated in fig. 12, curvatureacts to stabilizea propagatingfront
againstlocal or short-wavelengthperturbations.It hasbeensuggestedin ref. [MER1] that this is true
only away from the tip. Nearthe tip onemay imaginelocal perturbationsthat will growunderthe effect

Fig. 21. The destabilizingeffect of curvaturenearthetip. Perturbations(dashedcurves)nearthetip, like that depicted,may grow undertheeffect
of curvature,in contrastto local perturbationsawayfrom thetip that disappearin thecourseof propagation,
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of curvatureas fig. 21 illustrates;upon straighteninga small sectionof the spiral arm that includesthe
tip, curvature is reduced,normal velocity is enhanced,and further straightening is favored. This
destabilizing effect is counterbalancedby the refractory repulsion that the acceleratingwave..front
experiencesas it comescloser to the wave-front aheadof it. By increasingthe parameterD one
strengthensthe destabilizingcurvatureeffect. At a critical valueof thisparameter,the gain in normal
velocity becauseof reducedcurvaturejust balancesthe loss due to refractory repulsion.Beyond that
critical valueone mayexpectthe instability to set in. The tangentialspeedof the tip providesanother
stabilizingmechanismas we have alreadydiscussedat the end of section4.3.4.1. This mechanismis

expectedto be dominantin the regimeof long periodswhererefractory tail effects arenegligible.
The onsetof meandermayoccur either by increasingthe excitabilityof a barelyexcitablemedium,

or by decreasingthe excitability of a highly excitable medium (see sections4.3.2 and 4.3.3). The
explanationgiven in refs. [ZYK5,ZYM,MIK1,MIK2I emphasizestangential tip growth andappears
more applicableto the former transition.The explanationgiven in ref. [MER1] attributesanimportant
role to dynamicsin the normaldirection and seemsmore suitablefor the latter transition.Evidently
bothvelocity componentsplay active roles during meander.

The kinematicalapproachof section 4.3.4.2has beenused in ref. [MER1] to study the effect of
oscillatoryrecoveryon spiralwave dynamics.In awide parameterrangespiral coreshavebeenfoundto
expandin time. This behaviorhas beenattributedto uniform normal-velocityprofiles alongthe spirals
that becomefeasiblebecauseof the oscillatoryrecovery;the increasedexcitability (beyond that of the
rest state)at properwave-front spacingsmaycompensatefor the reductionin normal velocity due to
curvature and tip structure. We recall though that direct numerical simulationsso far revealeda
descretefamily of steadilyrotatingspiral waveswith increasingcoresizes ratherthanexpandingcores
(see section 4.3.3). It remains to be seenwhetherparameterrangescan be found that sufficiently
enhancethe velocity compensationeffect due to increasedexcitability.

4.3.5. Free boundaryformulations
In the free boundaryapproachthe spiral arm is conceivedas consistingof a front and a backthat

meetat a distinct point, the tip. The compoundinterfaceinteractswith a relaxationfield, v, whose
effect is most prominentnearthe tip. Such an approachwas advancedfor the first time in ref. [FIF1]
and later in ref. [TYK1] (seealso ref. [KEL3]). Both works pose free boundaryproblemsbut do not
solve them. Recently, successfulattemptsto solve similarly posed problemshave been reported
[PES1,KEE3,KAR2]. Since theyrely on earlier,time-independentgeometricaltheoriesof spiral waves
[KEE2,KET2,ZYK1,TYK1], we describethe latter first (following primarily ref. [KEE2}).

Considerthe wave-front of a steadily rotating spiral wave. The location of the wave-front can be
describedby

X=pcos[i~(p)—wt], Y=psin[i~(p)—cut], (4.71)

wherep is a radial coordinatewith respectto the centerof rotation,andi~is the polar angledescribing
the wave-frontposition. The curvatureand normalvelocity of the front aregiven by [KEE2]

K ~i’/(1+ ~2)3/2 + ~,/[p(l + ~,2)1/2] (4.72a)

= cup/(l + ~2)1/2 cli = pi~’(p). (4.72b)

Far from the tip wherecurvatureis negligible we can approximatec~ c. This leadsto a solutionin the
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form of an involute of a circle of radiusC/cu. Usingthe full form (4.10)of the curvature—speedrelation
(for s small enough)we obtain the shapeequation

p di~t/dp= (1 + ~i2)[cp(1 + cl’2)112 — cup2 — cl’]. (4.73)

For an infinite systemone should require

as p—*no, (4.74a)

as far from the corethe spiral wave becomesaninvolute of a circle, whichin turn, approachesthe form
of anArchimedianspiral. In addition, ifr( p) shouldbe specifiedat p = p

0, the radiusof the spiral core.
The latter boundarycondition posesa difficulty becausethe wave-front speedc = ~(v,) becomesa
strongunknownfunction of p as the tip is approached.Only away from the tip, can cbe regardedas
independentof p (seesection4.3.4.2).To avoid this difficulty a spiral wave rotating arounda holeof
radius p0 has been considered,with p0 chosento be large enough.At this boundary, the no-flux
boundarycondition

(4.74b)

was employed.
Equations(4.73) and (4.74) constitutean eigenvalueproblemfor cv, thus leadingto the so called

“critical relation”, *)

cv = ul(c, p0). (4.75a)

Some information about this relation can be obtainedat once using the symmetry transformation,
cl’—~cl’~ p—* Ap, cv—+ cu/A

2 and C—* c/A, which leaves (4.73) invariant [KEE2]. Applying this trans-
formation to (4.75) with A = c we find

cv = c211(cp
0), (4.75b)

wherewe droppedthe first constantargument.An explicit form for 11(x) has beenevaluatedin ref.
[KEE2] for c values sufficiently large. It reads11(x) = 11~— Q1x~

The critical relation expressesin a formal way the intuitive observationthat theremust be some
relation amongthe threequantitiescv, c andp0 were curvatureeffects negligible, this relationwould
have simply been c = cup0. In addition, cv and c should satisfy the dispersionrelation, C = c(27r1cv)
(expressedin termsof periodsratherthanwavelengths),for far away from the corethe travelingwaves
thatpropagateat speedc havethe spiral period of rotation.The intersectionpoint of the critical curve
(4.75) and the dispersion curve determinesthe rotation frequency as a function of p0. We can
understandnow why oscillatory recovery may give rise to a multiplicity of stable spiral solutions
[WIN6,WIN7,KEE2]; the critical curve may intersectthe nonmonotonicdispersioncurve at several
points. Intersectionpoints occurring on positive slopespertain to stable spiral solutions.

The theory just sketchedhasbeen testedby comparing the critical relation (4.75) with direct

*) In ref. [TYK1] this relationhasbeencalled the“curvature” relation.
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numerical simulations [PEP].Good agreementhasbeen found [TYK1]. The theory has also been
appliedto theBZ medium[KET2],using theOregonatormodel to evaluatethedispersioncurveandan
empirical valuefor p0. The agreementwith experimentaldatawas satisfactory.Notice that oncep0 is
given, the critical relation (4.75) is known irrespectiveof the particularreactionkinetics. Oneshould
bearin mind thoughthat (4.75) hasbeenderivedusing the curvature—speedrelation (4.10) which is
valid for sufficiently small s values. For higher s values the relation (4.21), which does contain
informationaboutthe particularreactionkinetics,hasto be usedinstead.Applicationsof the theory to
modelsdescribingthe myocardiumandslimemold aggregationhavebeenreportedin refs. [TYK2] and
[TAM], respectively.

We turnnow to the free boundaryformulationpresentedin refs. [PES1,KEE3] for steadilyrotating
spiral waves.As we shall see,it resolvesthe frequencyselectionproblemby determininguniquelythe
core radius, p0. We will follow here the more generalpresentationof ref. [KEE3]. The basic idea
[TYK1] is to view a spiral patternas excitedandrecoverydomainsseparatedby a compoundinterface
consistingof a front and back, as illustrated in fig. 22. To determinethe interface position one
introducesthe polar angles, ~~1~(p)and ~b(P), for the front and back, respectively,and use the
curvature—speedrelations

= — Kf, c~= p.(u~); Crb = Cb — Kb, Cb = P(vb), (4.76)

to obtain the interfaceequations

p dtfi1/dp = (1 + cl.r~)[C1p(1+ ~p
2)l/2 — cup2— i~], j = f, b, (4.77)

where,as before, ~. = p~.Noticethat the planarwave-backspeed,Cb, hasbeenchosento havethe
samesign as the wave-frontspeed,c~,for v~,< v* < Ub. Also noticethat both Kt andKb arepositive for
thefar spiral wave.

Continuity of the field v throughthe tip requiresut( t
0) = Vb(p0), whereasaway from the tip Vt < V*

and Vb> u’. Evidentlyu~and Vb cannotremain constantnearthe tip. Since the interface equations
dependon Vt andVb throughtheplanarspeedsCf and Cb, theymust be coupledto the field equationof
u. To simplify the problema nondiffusivefield hasbeenassumedin refs. [PES1,KEE3].Thus

cvdv/di~= —eG_(u), v = u(~— cut; p), (4.78)

FRONT

Fig. 22. The free-boundary-formulationview of the spiral tip. The front and back meet at thetip tangentially to a circle of radius p0. The
compoundedinterfaceseparateexcited (dotted) andrecoveryregions.
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where the ± signs denote,as usual,the excited(+) and the recovery(—) regions. Integrating (4.78)
alonga circle of radiusp (see fig. 22) we find

ub(p) Vb(p)

T~(p)= ~t ~ = f G~(u)’ T(p) = T— T~(p)= — ~ I G(v)’ (4.79a, b)
Vf(p) u

1(p)

whereT~and T arethe durationsof excitation andrecovery,respectively,and T = 2ir/cv is the period
of rotation. Equations(4.79) can be used to determineu~and Vb as functions of T÷and cv, and
consequentlyCf and Cb: c~= C~(T+,cv), Cb = Cb(T+, cv). Substitutingtheseforms into (4.77)weobtain

p d~./dp= (1 + cli~)[C1(T÷,cu)p(1 + cl’
2)112 — cup2 — ~], j = f, b. (4.80)

In addition,using the definition (4.79) of T~we have

cup dT~/dp= lfrb — (4.81)

Equations(4.80) and (4.81) form a closed systemof ordinarydifferentialequationsthatcan be solved
for theshapefunctionscl’~and ~‘b onceappropriateboundaryconditionsarespecified.On theboundary
of the systemone mayrequireeither

cl’t(P)clJb(p)---kp as p—~no, (4.82a)

for very large systems,or the no-flux boundaryconditions

cl’t(PL) = cl’b(PL) = 0, (4.82b)

for smallersystems(of sizep3. At thetip the normalvelocitiesof the front andbackarezeroas the tip
movesalong a circle of constantradius,p

0 [PES].*)Thus from (4.72b) one obtains

cl’b(PO) — ~/tf(~)J)= (4.83a)

In addition,since ~t(Po)= ~~b(Po), we have

T÷(p0)=0. (4.83b)

Equations(4.80) and (4.81) subject to the boundaryconditions (4.82) and (4.83) constitutean
eigenvalueproblemfor both cv and p0. This eigenvalueproblemwassolvednumerically in ref. [PES1]
using a piecewise linear model. Rigorous argumentsfor the existenceof isolated solutions were
presentedsoonafterwards[KEE3]. We describenow somepropertiesof the computedsolutions.

Evaluationof the levels, u~andUb, of the field u alongthespiral arm revealsthat theyremainalmost

*) Notice that in this free boundary formulation zero normal velocity at the tip amountsto zero tangentialvelocity in the kinematical

formulationof section4.3.4. Thisstemsfrom thedifferentviews of thespiralarm in thetwo approaches;in theformer,it consistsof two curvesthat
meet at the tip, whereasin the latter it is conceivedasa single curvethat terminatesat the core.
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constanteverywhereexceptfor a small region nearthe tip whereboth quantitiesdropto the reststate
valueu~.The planarwave speeds,c~= j.~(Vf) and Cb = — ~(ub), behaveaccordingly;for mostof the
spiral arm Cf Cb, but asUb dropsbelow u”, Cb changessign andreachesthe value ~Cf = —~(u,)at the
tip. Similarly, awayfrom the tip I(~ Kb, but asthe tip is approachedKb reversesits sign so thatat the
tip, Kb = — Kf. The frequencyof rotation,cv, and thecoreradius,p0, werefound[PES1]to diminish and
to diverge, respectively,as s approachesa critical value which we identify with

5c2~This result is in
qualitativeagreementwith thekinematicaltheoryof section4.3.4.1.The value~c2wasfound[PES1]to
be a monotonedecreasingfunction of the excitation threshold.

Underwhat conditionsis the free boundaryformulationpresentedaboveexpectedto be valid?The
formulationis basedon the curvature—speedrelations(4.76).For theserelationsto be valid the radius
of curvatureshould be muchlargerthanthe wave-frontwidth, w~(see section 4.1.2), in particular, at
the point of highestcurvature,the tip. Thus

R
51~~ w~—0(1), R5~~= K(p0)

1. (4.84)

Largevaluesof~ in turn, canbe obtainedby decreasings, for thenthewidth of theexciteddomain
increasesand consequentlythe radiusof curvature.Thus,we expect (4.84)to hold for sufficiently small
e values.Another assumptionthat hasbeenmadein derivingthe curvature—speedrelations is that
curvaturevariationsalongthe interfacearenegligible. Near the tip curvaturevariationsareobviously
significant, but againwe might expect them to becomenegligible for s valuessufficiently small.

But howsmall shoulds bein order for (4.84)to hold,and is thereanyrestrictionon thethresholdof
excitation, the other significant control parameterin many numericalsimulations?We addressthese
questionsfollowing argumentsthat have been presentedin refs. [FIF4,KAR2,KAR3].At the tip,
normal velocity is zero and u~= u~.Consequently,c~= c,, — R~’.Since R

51~~ 1, we find c,,,, 4 1. The
latter inequalitycan be satisfiedonly if

LI=V*_u041, s41 (4.85)

(seesection3.1.3).Thus we mustconsidersmall LI valuesor high thresholds[KAR3]. High threshold
media give rise to long rotation periodsand consequentlyto v levelsu~ v5 and planarwavespeeds
Cf c~,awayfrom the tip aswell. Since theradiusof curvatureat the tip is of theorderof thewidth of
the excited domain, A~,evaluatedat a distanceof O(R51~)or greater from the tip, we obtain

c,,,T~— R~— c’ or

~ (4.86)

Using the smallnessof LI = v* — u~we find to leading order C~— eT.4. — u * — u~,which togetherwith
(4.86) yields the ratherrestrictiveconditionon s,

zl—s
1’341. (4.87)

In additionwe find

R
51~ —1/3 , T~— ~_2/3 , a,,, ~1/3 (4.88)
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Thus, it is only for very small s values,~h/3 4 1, that R~1~~h/3 satisfies (4.84). Note that c~-— c,,, is
muchlargerthan Cmjn ~1/2 the minimal speedbelow which propagationfails. Scalingsfor spaceand
time as in (4.88) were suggested for the first time in ref. [FIF1].

The scaling form (4.87) holds in particular for the critical value, LI = LI~(e),at which the spiral core
diverges to infinity, where s is assumedto be sufficiently small. The exactform of this relation (i.e.,
including the prefactor)hasbeenobtainedin ref. [KAR2]by solving the free boundary problem in the
limit of infinite core size. The calculated relation hasthen been comparedwith direct numerical
simulations.Good agreementhasbeenobtainedfor s= l0~corroboratingthe free boundaryformula-
tion in the rangeimplied by (4.88).

The considerationspresentedabovearebasedon the observationsthat at the coreu assumesthe rest
statevalue u~.This led to the conclusionthat in order for (4.84) (and thus for the free boundary
formulation) to hold, barely excitable media, satisfying (4.85), should be considered.In the other
extremeof highly excitablemediathe level of v~at the tip, Vt(PO), may no longercoincidewith the rest
statevalue, u5. This is not surprisingwhendiffusion of u is allowed, for in highly excitablemediathe
core size becomesof 0(1) and diffusion from the surroundingrecoveringmedium may significantly
raise the level of u. Recentnumerical studies [WIN8]suggestthat this might be the case for a
nondiffusiveu variable as well. In any event, it is then the condition u’ — Vt(po)41 that must be
satisfiedfor (4.84) to hold (for s41), and if Vt(po) deviatessignificantly from u~,no constraint on
excitability is imposed. In other words, the free boundaryformulation may be applicableto highly
excitablemediaas well, providedthe inequality u” — Vt(p0)4lis satisfied.

Highly excitable media give rise to short-wavelengthspiral waves for which repeatedexcitation
occurs well before complete recoveryis achieved,that is, at values u~closer to u”. This hasbeen
observedin numericalsimulations(seefor exampleref. [WIN8])and is also implied by theexperimen-
tal findings displayedin fig. 15. It is thereforereasonableto assumethat for sufficiently high excitability
the inequality u’’ — u~41 holds everywherealong the spiral. These considerationsmotivated the
hypothesisthat u * — u~scales uniformlywith s [FIF3,FIF4]. Using argumentssimilar to thosepresented
for the caseof barelyexcitablemediaone finds [FIF4]

V~— Vt~ 1/341 , c~---1/341 . (4.89)

Thesescalingforms arewidely referredto as ‘Fife scaling”. The simulationsreportedin ref. [WIN8]
indeedsuggestsuchscalingbehaviorat e valuessufficiently small. A consequenceof (4.89) is that at
small s values the frequencyof rotation scaleslike cv ~2/3 or cv’ ~-1/3 for the rescaledsystem
(3.ld,e).

Thereis anotherimportantconsiderationthat bearson thevalidity of thefree boundaryformulation.
The formulation is basedon theassumptionthat the singularperturbationapproachholds everywhere
alongthe spiral including the tip. Strictly speaking,this requirementcannotbe satisfied,for within a
radius of orderunity aroundthe tip the width of the exciteddomain,A~,becomescomparableto the
wave-front thickness,Wf, thus making the distinction betweenouter and inner regionsmeaningless.
Sincethis neighborhoodof the tip becomescomparativelysmaller(with respectto otherlengthscalesof
thespiral) as s is decreased,we might expectthe free boundaryformulationto work considerablywell
for s valuessufficiently small, asthe study of barely excitablemedia, reportedin ref. [KAR2]indeed
indicates.The caseof highly excitablemedia is moreintricate, for too small svaluesmay give rise to
nonsteadyrotation [WIN8].In any event, better resultsareexpectedoncethe finite thicknessof the
interface is takeninto account.An analysisalong theselines hasbeenpresentedin ref. [KEE3]. It
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retainsthe basicstructureof the original problem leaving eqs. (4.80) and (4.81) as they are but
improvestheevaluationof c~= C1(T+,cv) and Cb = Cb(T+, cv) asexplainedbelow.

Insteadof using (4.78) to evaluateVf(p) and Vb(p) one resorts to the original equation

cv du/di~ = —sg(u, u), (4.90)

and usean approximationfor u better than u = u+(u). The approximationusedin ref. [KEE3]is the
following. At eachpoint (x, y) in the planefor which eq. (4.90) is to be solved, the value of v is
assumedto be known and theone-dimensionalinterfaceequation

d
2u/dz2+ c(v) duldz+ f(u, v) = 0, (4.91)

is solved,where u(z;u)—÷u+(z) as z—*no and u(0;v) hasmaximal slope. The coordinatez(x,y) is
interpretedas the shortestdistancefrom the point (x, y) to the spiral wavefront and is takento be
positive (negative) if thepoint (x, y) lies in a recovery(excited)region. Once u(z(x,y); u) is knownit
can be usedin (4.90) to obtain Vt(p) = u(m~~p) and Vb(p) = u(8b; p) andconsequently,Cf = cf(uf) and
Cb = cb(ub). This modified problemhasbeen solved in ref. [KEE3]for symmetricspirals*) using a
numericaliterativescheme.For moderatelysmall s values(0.05) the resultsaresubstantiallyimproved
as comparedwith those obtained with the original formulation,demonstratingthe needfor a more
refined treatmentof the spiral tip.

Progressin that direction hasbeenmademost recently in refs. [KAR4,KLR1]for the caseof highly
excitablemedia,havingvery sharptime scaleseparations(~1/34 1) andgiving rise to pointwisecores.
The free boundaryproblemaspresentedaboveis regardedin theseworks asan outerproblemwhose
solution should match a short scale core solution. The outer problem was simplified by assuming
constantu levelsalongthe front andback,andby exploiting theboundarycondition(4.74b)with p

0 = 0
(pointwisecore) for the interfaceshapeequation[KAR4]. The inner coreproblemhasbeenobtained
from the full system (3.la—c) by consideringuniformly rotating solutionswith frequencycv ~2/ ~ and
spatialscalex 0(1) [KLR1]. It hasbeenemphasizedin refs. [KAR4,KLR1]that althoughthe inner
solutionis neededto match smoothlythe different u levelsat the front andback awayfrom the core,
the rotation frequencyis solely determinedby the outerproblem. We recall that for higher s values
significanterror can resultby consideringthe outerproblemalone[KEE3].

We haveconsideredso far free boundaryformulationsfor a nondiffusiveu field only. The analogous
problem, with diffusion of u allowed, hasbeen addressedvery recently in refs. [BER,KEE5].The
problem consistsof solving the interface equations(4.77) now coupled to a diffusive field equation,

cvduId~= —eG+(u)+ ~V
2u. (4.92)

Unlike thesingly diffusive case(6 = 0), this free boundaryproblemcanstill be valid at the tip region
providedthe diffusion lengthof u is large in comparisonwith the front width [BER].In ref. [BER]slow
diffusion of u hasbeenconsideredwhich allowed neglectingdiffusive effects far from the tip. Spiral
solutionshavebeenobtainedby matchingthecore,wherediffusion is significant,to thefar field. In ref.
[KEE5] aniterativenumericalschemehasbeenproposedfor symmetricspirals,that rapidly converges
to spiral wavesolutions.

Apart from informationaboutspiral shapesandrotationfrequencies,thefree boundaryformulations

*) Symmetricspiralsareobtainedwhen the nonlinearfunctionsf(u,o) andg(u, u) havea point of odd symmetry.
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can be usedto obtain stability boundariesfor steadyrotation in the small e portion of thes-threshold
parameterspace(seethe boundaryline 0M in fig. 18). Stability analysesof steadyrotation,for the case
of a nondiffusivev field, havenot yieldedso far an instability [PES2,PES3].In thesestudiestheouter
solution, that is, the solution of (4.77) and(4.78),has beenused.Thesefindings mayindicatethat the
outer solution is inadequateto describethe destabilizationof steadyrotation in the caseof singly
diffusive media, even for ~1/3 4 1. Stability analysisof steadyrotationin the caseof slow u diffusion, on
the other hand, has yielded an instability to compound rotation [KLR2].

5. Discussion

Two basictheoreticalapproacheshavebeendescribedthroughoutthis review; singularperturbation
theorythat makesa distinctionbetweenouter(excitedandrecovery)regionsand inner (front andback)
regions,andkinematicaltheorieswhichview solitary wavesasintegralentitiesthatpropagateinvariably
in space.The two approacheshavedifferentrangesof validity; the singularperturbationtheoryexploits
the smallnessof e, while thekinematicaltheoriesassumelong-wavelengthpatterns.Theyalso differ in
the typeof questionstheycan address.The singularperturbationapproachis concernedprimarily with
static aspects(constantspeedtravelingwaves,steadilyrotatingspiralwaves,etc.)while thekinematical
approachallows the study of dynamicalaspectsaswell, suchasrelaxationalpropagationandnonsteady
spiral wave rotation. On the other hand, the singular decompositionof the solitary wave structure
allows for the study of dispersionrelationsat short wavelengthsand the considerationof spiral tip
structures.The two approachesthereforecomplementeachotherin many respects.

There exists also a regime where the two approachesoverlap: long period, steadypropagationin
systemscharacterizedby very sharptime scaleseparations(small s). This regimeallows for comparison.
In one space dimensionboth approachessuccessfully describewave propagation,and dispersion
relationscoincidewhentheproperlimits aretaken(seesection3.2.2). In thecaseof spiral patternsthe
regimeof long periodandsmall s is attainablewith high thresholdvaluesor small LI. As LI approaches
the critical valueLI~pertainingto an infinite spiral a power law of the form cv — (LI — LI~)’~is expected.
Both approachesaccountfor frequencyselection,but it is not yet clear whetherbothyield the same
power law.

Comparativestudiesof the two theoreticalapproachesto rotatingspiral wavesare highly desired.
The kinematicalapproachis simpler and thusmore appealing,particularlyasfar as dynamicalaspects
areconcerned.Forrelatively largee valuesit is also theonly approachcurrentlyavailable.However,it
doesnot resolvethe tip structureand,unlike the singularperturbationapproach,cannotyield rigorous
results. This holds in particularfor the onsetof meanderwhich originates at the tip. The current
intensivestudyof the tip structure(using the singularperturbationapproach),will presumablyleadto
theresolutionof this problemin the not too far future, at leastfor somelimiting cases.This progress
shouldthenbe usedto re-examine,substantiateormodify certainassumptionsthat lie at the basis of
the kinematicalapproach,especiallythoseconcerningthe tangentialtip dynamics.

The scopeof this review hasbeenlimited to a few fundamentalphenomenaoccurringin homoge-
neous,isotropic, unforcedexcitablemedia.As a consequence,manytopicshavebeenleft aside.A few
of themare briefly discussedbelow.

Considerablework hasbeendevotedrecently to developingcellular automatontype modelsthat
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allow fast simulationsof wave propagationin excitablemedia [FEK,MAH,MKH,GST1,GST2}. These
modelsand othersare reviewedin ref. [RAY]. Many featurescharacteristicof excitablemediahave
beenobservedusing suchmodelsand their advantagein reducingcomputationtime is evident. The
main concernwith cellularautomatonmodelsis their degreeof reliability. A thoroughdiscussionof this
aspectappearsin ref. [GST1].A different approachto reducingcomputationtime hasbeenpresented
in ref. [BAR2].Starting from a particularlychosenreaction—diffusionequation,an algorithmis devised
for simulatingwavepatternsat variable spatio-temporalresolutions.For coarseresolutions,computa-
tion times comparablewith those of cellular automatonmodels are obtained, whereas for fine
resolutions,accuratesolutionsof the underlyingreaction—diffusionequationsare reproduced.

In sections3.2.2 and 3.2.3 we motivated the view of complexpatternsin one spacedimensionas
many-bodysystemsof interactingimpulses.In two dimensionsthe basic “building blocks” of complex
patternsarespiralwavesasfig. 1 suggests.How do spiralwavesinteract?When the two coresin a spiral
pair aresufficiently apart,interactionsarescreenedby thesurroundingspiral wave-fronts.At distances
of the order of the core size, however,boundspiral pairs mayform. Such pairs havebeenobserved
numerically in ref. [EPS];pairsof spiral wavesrotating in thesamedirectionprecessaboutfixed points
in space,while pairsof counterrotatingwavesdrift in directionsperpendicularto theaxesthatconnect
thecores.At yetsmallerdistancescounterrotatingspiralwavesattractandannihilate.Similar behavior
hasbeenobservedin numericalsimulationson oscillating media[SAK,AKW].Theinteractionbetween
counterrotating spiral wavesbearson the problemof ventricular fibrillation. The critical distanceat
which attractive interactionschangeinto repulsive ones has been used in ref. [WIN9] to define a
thresholdfor the onsetof ventricular fibrillation. The theoreticalderivationof spiral interactionsin
excitablemediais a hardproblemthat hasnot beensolvedyet. Considerableprogresshasbeenmade
thoughon the analogousproblemin oscillating media[ARR,RIT1,RIT2,ELM,AKW,PIN,WCK].

The emergenceof complex or turbulent patternsin two-dimensionalexcitable media has been
addressedprimarily in the context of inhomogeneousmedia. Inhomogeneitiescan be introduced
artificially [KSS,PAV,MAS1]or can be induced by coupling the reaction to convective flow [AKP,
WAL,MMP]. The main effect of an inhomogeneityis to break a wave-front with the consequent
outcomeof producinga pair of spiralwaves.Canspiral wavesnucleatespontaneouslyin homogeneous
excitablemedia?So far no direct observationshavebeenreportedin simple modelsor in controlled
experiments.Spontaneousnucleation, however, hasbeen observed[WIN11]in the Beeler—Reuter
model [BRE] and in discretemodels[GST3,ITG].The interest in this questionderivesin part from
recentobservationsof transitionsto turbulencein smoothly oscillating media that are mediatedby
spontaneousnucleationof spiral waves[KUR,CGL1,CGL2,BPJ,WUK}.Similar transitionshavebeen
obtainedin otherpatternforming systems[RRS,TRG] andit will comeasno surpriseif thesamekind
of transition is observedin most excitablemedia away from the singularlimit.

Other topicsthat haveattractedconsiderableattentioninclude wavepropgationon curvedsurfaces
[MAS2,DAZ,GOH],wave propagationin inhomogeneous[PEY,ZMH,MAS2,LIE]and anisotropic
[KEE4,YAM]media, periodically forced media [ADM,BDZ2],and chemical media subjectedto dc
electric fields [FSO,SCO,SEM1,SEM2,SSM].We also mention new reactor designs involving
inhomogeneousfeedof chemicalsthat haveproducednewtypesof patterns[TVS,TAS,OBR,OCB]and
renewedthe interest in Turing structures[TUR,ROV,CDB,BCD,OUS1,OUS2]. Further topics are
coveredin a recentvolume of PhysicaD [SWK]devotedto patternformationin chemicalandbiological
media and in a recent proceedingsof a workshop on nonlinear wave processesin excitable media
[HMO}.
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