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Fronts and patterns in a spatially forced
CDIMA reaction

Lev Haim,ab Aric Hagberg,*c Raphael Nagao,de Asher Preska Steinberg,f

Milos Dolnik,d Irving R. Epsteind and Ehud Meronag

We use the CDIMA chemical reaction and the Lengyel–Epstein model of this reaction to study resonant

responses of a pattern-forming system to time-independent spatial periodic forcing. We focus on the 2 : 1

resonance, where the wavenumber of a one-dimensional periodic forcing is about twice the wavenumber

of the natural stripe pattern that the unforced system tends to form. Within this resonance, we study

transverse fronts that shift the phase of resonant stripe patterns by p. We identify phase fronts that shift

the phase discontinuously, and pairs of phase fronts that shift the phase continuously, clockwise and

anti-clockwise. We further identify a front bifurcation that destabilizes the discontinuous front and

leads to a pair of continuous fronts. This bifurcation is the spatial counterpart of the nonequilibrium

Ising–Bloch (NIB) bifurcation in temporally forced oscillatory systems. The spatial NIB bifurcation that we

find occurs as the forcing strength is increased, unlike earlier studies of the NIB bifurcation. Furthermore,

the bifurcation is subcritical, implying a range of forcing strength where both discontinuous Ising fronts

and continuous Bloch fronts are stable. Finally, we find that both Ising fronts and Bloch fronts can form

discrete families of bound pairs, and we relate arrays of these front pairs to extended rectangular and

oblique patterns.

1 Introduction

A canonical experimental model for studying stationary patterns
far from equilibrium is the chlorite–iodide–malonic acid (CIMA)
reaction.1 This model reaction was used to verify, for the first
time, the prediction of Alan Turing2 of a diffusion-induced pattern-
forming instability,3 and it has served as a major experimental tool
for studying pattern-formation phenomena in reaction-diffusion
systems ever since.4 A modified version of that reaction, the
chlorine dioxide–iodine–malonic acid (CDIMA) reaction,5 has been
used to study pattern-formation effects induced by periodic forcing.
The CDIMA reaction is photosensitive and can be forced in time or
in space by periodic illumination with white light. Periodic forcing
of this kind has been studied as a means of controlling patterns.

Periodic forcing can be used to lock and control the frequency
of periodic oscillations6–9 or the wavenumber of a periodic
pattern,10–14 to stabilize and enhance patterns,15 or to induce
new controllable patterns.6,10,11,15–19

There are two main mechanisms by which periodic forcing
can induce new patterns. The first is a new pattern-forming
instability of the original uniform state. In the case of temporal
forcing of an oscillatory system the forcing can induce a finite-
wavenumber Turing-like instability.8,17 In the case of spatial
forcing of a pattern-forming system the forcing can induce
rectangular and oblique patterns.18 The second mechanism is
multiplicity of stable phase states. The unforced system has a
continuous translational symmetry, in time for an oscillatory
system and in space for a pattern-forming system, which results
in a continuous family of periodic solutions (phase states) whose
phases span the whole circle. The forcing breaks this continuous
symmetry, leaving a discrete set of stable phase states. Multi-
stability of this kind allows for patterns comprising alternating
domains of different phase states.9,16,20,21

We restrict our attention here to pattern formation pheno-
mena associated with bistability of two phase states in spatially
forced pattern-forming systems. The two phase states describe
periodic stripe patterns with a phase shift of p with respect to
one another. Bistability of this kind can be achieved when the
wavenumber of a one-dimensional (1d) periodic forcing is
about twice the wavenumber of the natural stripe pattern that
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the unforced system tends to form. A characteristic feature of
bistable systems in general is the possible existence of stable front
structures that are biasymptotic to the two stable states. In the
present context, the fronts form localized transition zones that shift
the pattern phase by p. Because of the anisotropy of stripe patterns,
there are two types of such fronts: longitudinal fronts that are
parallel to the stripes, and transverse fronts that are perpendicular
to the stripes. Studies of a simple pattern formation model – the
Swift-Hohenberg equation – have uncovered two forms of each front
type; a front that shifts the phase discontinuously and a front
that shifts the phase gradually and smoothly.22 These studies
have also identified longitudinal and transverse front bifurca-
tions, as the forcing strength is decreased, which destabilize
fronts that shift the phase discontinuously and give rise to pairs
of fronts that shift the phase continuously, either clockwise or
anticlockwise. These front bifurcations are the spatial counter-
parts of the so-called nonequilibrium Ising–Bloch (NIB) bifurca-
tion in temporally forced oscillatory systems.23–26 We refer to
fronts that shift the phase discontinuously and continuously as
Ising and Bloch fronts, respectively.

In this paper we study the spatial NIB bifurcation for transverse
fronts in a spatially forced CDIMA reaction and in the Lengyel–
Epstein (LE) model that describes this reaction.27 We further use
the LE model to study numerically the interactions between pairs
of Ising and Bloch fronts and relate the results of this study to the
existence of rectangular and oblique patterns.

2 Experimental setup for the spatially
forced CDIMA reaction

The patterns were studied in a continuously-fed, unstirred, one-
sided reactor (CFUR). The reactor consisted of a 0.3 mm thick 2%
agarose (Fluka) gel layer with diameter of working area 25 mm
placed between a glass window and a continuously-fed stirred
tank reactor (CSTR), which served as a feeding chamber. Between
the CFUR and the CSTR were two membranes: a cellulose nitrate
membrane (Whatman, pore size 0.45 mm, thickness 0.12 mm)
beneath the gel for enhanced contrast, and, to provide rigidity to
the gel and to separate it from the stirred feeding chamber, an
anopore membrane (Whatman, pore size 0.2 mm, impregnated
with 4% agarose gel, overall thickness 0.10 mm) placed under-
neath the cellulose nitrate membrane. The CSTR was fed with
three reagent solutions: (i) I2 (Aldrich), (ii) a mixture of malonic
acid (MA, Aldrich) and poly-(vinyl alcohol) (PVA, Aldrich, average
molecular weight 9000–10 000); and (iii) ClO2 prepared as described
in ref. 28. The PVA is a binding agent for triiodide ions and acts
as a color indicator.

The initial concentrations of reagents fed into the CSTR
were the same in all experiments: [I2] = 0.4 mM, [MA] = 2.1 mM,
[ClO2] = 0.14 mM, and [PVA] = 10 g L�1. Each of the input
solutions contained 10 mM sulfuric acid (Fisher). The residence
time of the reagents in the CSTR was 160 s. The temperature
was 4.0 � 0.2 1C. With these conditions, a labyrinthine pattern
develops spontaneously. A computer-controlled DLP projector
(Dell 1510X) was used to implement the uniform and spatially

periodic white light illumination of the CFUR. The light inten-
sity was measured with a Newport 1815 optical power meter.
A CCD Pixelink camera was used to record images of the patterns.
Snapshots were taken in ambient light of 0.6 mW cm�2 with no
illumination projected on the CFUR.

3 Mathematical model of the spatially
forced CDIMA reaction

We studied the modified Lengyel–Epstein (LE) model29 that
takes the effect of illumination into account:

ut ¼ a� u� 4uv

1þ u2
� wðxÞ þ r2u;

vt ¼ s b u� uv

1þ u2
þ wðxÞ

� �
þ dr2v

� �
:

(1)

Here u and v are dimensionless concentrations of iodide and
chlorite ions, respectively; a, b, d, s are dimensionless para-
meters, and w(x) denotes the rate of the photochemical reac-
tion. In the present study, w is a one-dimensional periodic
function of the spatial x-coordinate and is independent of the
y-coordinate.

In the experiments described in Section 2, we used a spatial
square-wave forcing. This forcing form can be captured in the
model by the function

wðxÞ ¼ w0 þ
g
2
1þ sign cos kfxð Þ½ �ð Þ;

where kf is the forcing wavevector, g is the forcing strength and
w0 represents the ambient light. This form can be expanded as
a Fourier cosine series,

wðxÞ ¼ w0 þ
g
2
þ
X1
n¼1

gn cos nkfxð Þ;

where

gn ¼
2g
np

sin
np
2

� �
:

In the following, we will approximate w by considering only
the first and largest term in the expansion, (n = 1):

wðxÞ ¼ w0 þ
g
2
þ 2g

p
cos kfxð Þ: (2)

We have checked that taking instead the full expansion, or the
square wave form, does not have any qualitative effect on the
results, and the quantitative effect is insignificant.

The LE model (1) with no forcing (g = 0) has the stationary
uniform solution

u0 ¼
a

5
� w0; v0 ¼ 1þ u0

2
� 	 w0

u0
þ 1

� �
: (3)

This solution goes through a Turing bifurcation to stationary
periodic patterns as b is decreased below a critical value

bT ¼
u0dkT

4

5 1þ u02ð Þ; (4)
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where

kT
2 ¼ �5þ 2

ffiffiffi
5
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u0

2 � 1
� 	

v0

u02 þ 1ð Þ2
þ 1

s
; (5)

and kT is the Turing wavenumber. The stationary uniform
solution also goes through a Hopf bifurcation to uniform
oscillations as b is decreased below another critical value bH =
kT

2(kT
2 + 10)(1 + u0

2)/5su0. In all studies that follow, we chose
values of a, s, d so that bH o bT. This guarantees that the Turing
instability is the first to be encountered as b is decreased. We
focus on the 2 : 1 resonance, for which kf E 2kT. Since the
experiments are limited to kf o 2kT, we restrict ourselves to this
range also in the model studies. The range kf 4 2kT is interesting
because rectangular and oblique patterns are ruled out.18 This
case will be considered in a future study.

4 Bistability of fronts in the CDIMA
reaction
4.1 Data analysis

Ising and Bloch fronts are localized structures that separate one
resonant stripe pattern from a symmetric stripe pattern whose
phase is shifted by p. Assuming a forcing wavevector kf = kfx̂,
where kf is sufficiently close to 2kT, the common wavevector k =
kx̂ of the two symmetric stripe patterns is locked to the forcing
wavevector in a 2 : 1 resonance, (kf : k) = (2 : 1). This resonant
response occurs in a kf range whose size depends on the forcing
strength. A stripe pattern that contains an Ising or Bloch front
can be approximated as

u(x,y) E u0 + A(x,y)eikfx/2 + c.c. + . . ., (6)

where c.c. is the complex conjugate, the ellipses denote higher
order harmonic contributions, and u(x,y) represents the experi-
mental data, or the numerically computed u field in the LE
model (a similar expression holds for the v field in the LE
model with the amplitude factor A replaced by cA, where c is a
constant). Longitudinal fronts are captured by amplitudes A(x)
that are independent of y, while transverse fronts are captured
by amplitudes A(y) that are independent of x. We note that,
since the system sizes (both in the experiment and model) are
much larger than both the pattern wavelengths and the front
widths, any boundary effects are negligible.

Transverse Ising fronts can be distinguished from transverse
Bloch fronts by plotting phase trajectories in the complex-A
plane that are parameterized by y.9,16,23 Trajectories that go
through the origin (A = 0) describe Ising fronts,† whereas
trajectories that bypass the origin describe Bloch fronts. To
obtain the complex valued amplitude A, we project u(x,y) onto
exp(ikfx/2):

AðyÞ ¼ 1

L

ðL
0

uðx; yÞe�ikfx=2dx; (7)

where L is the system size, chosen to be an integer multiple of
the pattern’s wavelength.

4.2 Experimental results

We studied transverse Ising and Bloch fronts, varying the forcing
strength, starting both from Ising-front and Bloch-front initial
conditions. Initial conditions in the experiments were prepared
as follows. After a labyrinthine pattern of the unforced reaction
becomes stationary, the system is brought to a spatially uniform
steady state using homogeneous illumination for 2 min with
intensity 100 mW cm�2. Then a mask is placed between the
source light and the reactor, and the image of the mask is
focused on the surface of the gel. The illumination through the
mask is applied for 60 min, and the maximum light intensity
that reaches the gel is chosen to be 6.0 mW cm�2. The mask
consists of two patterns with a phase shift of p, as Fig. 1 shows.
Both patterns have wavenumbers kf equal to the intrinsic
(natural) wavenumber kT of the labyrinthine Turing patterns
that form in the absence of illumination. Two types of this mask
are used, one that mimics an Ising front (left panel in Fig. 1) and
one that mimics a Bloch front (right panel in Fig. 1). These mask
types create initial conditions that result in transverse Ising and
Bloch fronts, respectively, when the 2 : 1 forcing is applied. The
2 : 1 forcing is achieved by illuminating the gel for 60 min
through a second mask (not shown) with wavenumber twice as
large, kf = 2kT, and aligned with the patterns from the first mask.
The forcing strength is varied by changing the maximum inten-
sity of transmitted light.

Fig. 2 and 3 show examples of transverse Ising and Bloch
fronts observed in the CDIMA reaction after the second mask

Fig. 1 Masks used to create transverse Ising (left) and Bloch (right) fronts.
The mask shown is 10 wavelengths with wavelength l = 0.37 mm.

Fig. 2 An observed transverse Ising front in the CDIMA reaction with
forcing intensity I = 28 mW cm�2. The phase trajectory in the complex
amplitude plane goes through the origin (middle panel) and the modulus
of the amplitude vanishes there (right panel). The front shifts the pattern’s
phase discontinuously by p (right panel).

† Since Ising fronts involve a discontinuous phase jump, the modulus |A| must
vanish to avoid a singularity in A.
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has been used. While in Fig. 3 |A| is bounded away from zero,
indicating a Bloch front, in Fig. 2 it approaches zero at a point
(within the limited experimental resolution), indicating an
Ising front. The smooth phase change across the Bloch fronts
vs. the phase jump across the Ising front (which necessitates a
zero of the amplitude) is also seen in the patterns themselves.

Varying the forcing strength up and down, starting both
with Ising and Bloch fronts as initial conditions, we found that
both fronts are stable in the experimentally realizable forcing
range, as Fig. 4 shows. The bistability of Ising and Bloch fronts
allows for mixed-front patterns in which the transverse front
that separates the p-shifted patterns consists of both Ising parts
and Bloch parts.

5 A subcritical front bifurcation in the
LE model

We also found transverse Ising and Bloch fronts in numerical
studies of the LE model (eqn (1) and (2)), in a parameter range
that corresponds to the reaction conditions, as Fig. 5 and 6
show. By scanning a wide enough range of forcing strengths, we
were able to observe a NIB bifurcation. As Fig. 8 shows, the
bifurcation is subcritical, implying a bistability range of Ising
and Bloch fronts, as found in the experiment. Note that Ising
fronts destabilize to Bloch fronts as the forcing strength is
increased, unlike earlier studies of the NIB bifurcation, where
Bloch fronts appear as the forcing strength is decreased.17

The reverse nature of the spatial NIB bifurcation in the LE
model can be understood, at least partly, by deriving an ampli-
tude equation for stripe patterns in the LE model (assuming an
infinite system). Approximating a solution of the LE model as
in (6), the amplitude A satisfies the equation

t@tA ¼ mA� ZjAj2Aþ GA? þ @x � inð Þ � i
@y

2

2kT

� �2
A; (8)

where A* is the complex conjugate of A, m represents the
distance from the Turing bifurcation, n = kT � kf/2 is the
wavenumber detuning from exact 2 : 1 resonance, and G is a
function of the forcing strength g. The explicit forms of these
parameters, as well as those of a, t, Z, are given elsewhere.30

This equation cannot describe the observed patterns in the
CDIMA reaction in any quantitative manner, because the reaction
has been conducted far from the onset of the Turing instability.
It does show, however, that the coefficient G of the forcing term
A*, which in simple systems is proportional to the forcing
strength g, depends non-monotonically on g as shown in Fig. 7.
This implies the possible existence of forcing intensities in which
the effect of the forcing on the chemical reaction decreases upon
strengthening the forcing, which may explain the reverse nature
of the NIB bifurcation.

6 Front pairs as building blocks for
extended patterns

The periodic spatial forcing can induce extended rectangular
and oblique patterns, as shown in the simulations of the LE
model presented in Fig. 9. The power spectra of these patterns

Fig. 3 An observed transverse Bloch front in the CDIMA reaction with
forcing intensity I = 28 mW cm�2. The phase trajectory in the complex
amplitude plane bypasses the origin (middle panel) and the modulus of the
amplitude is bounded away from zero (right panel). The front shifts the
pattern’s phase continuously by p (right panel).

Fig. 4 Bistability of Ising and Bloch fronts in the CDIMA reaction. The blue
(upper) dots represent Bloch fronts while the black (lower) points repre-
sent Ising fronts.

Fig. 5 A transverse Ising front in the v field of the LE model. The phase
trajectory in the complex amplitude plane goes through the origin (middle
panel), and the modulus of the amplitude vanishes there (right panel).
Parameters: a = 12, d = 1, s = 50, w0 = 0, g = 0.6, kf = 1.8kT, and b = 0.38.

Fig. 6 A transverse Bloch front in the v field of the LE model. The phase
trajectory in the complex amplitude plane bypasses the origin (middle panel),
and the modulus of the amplitude is bounded away from zero (right panel).
Parameters: a = 12, d = 1, s = 50, w0 = 0, g = 0.6, kf = 1.8kT and b = 0.35.
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show the presence of the oblique modes, exp(ikxx � ikyy), and
the wave-vector components kx = kf/2 and ky satisfying kx

2 + ky
2 =

kT
2 indicate that these patterns are resonant.31 Note that the

difference between rectangular and oblique patterns lies in the
relative weights of the two oblique modes: equal (unequal) absolute
values of their amplitudes imply rectangular (oblique) modes.
We found extended resonant rectangular patterns in the CDIMA
reaction, too, as Fig. 10 shows. Note the strong presence of a
resonant stripe mode with wave-vector kfx̂, and its complex con-
jugate mode at – kfx̂, in the power spectrum of the rectangular
pattern, which imparts to this pattern a rhombic form. This can be
attributed to the resonance condition between this stripe mode and

the two oblique modes, k+ + k� + kfx̂ = 0, where k� ¼ �
kf

2
x̂� kyŷ.

The question we now address, using the LE model, is whether
there exists a relation between the extended rectangular and oblique
patterns and the localized Ising and Bloch fronts. The motivation for
this question is mainly visual – rectangular patterns appear similar
to arrays of Ising-front pairs, and oblique patterns appear similar to
arrays of Bloch-front pairs. The existence of two types of Bloch fronts
is consistent with the existence of two types of oblique patterns. In
order for an array of front pairs to form a stable extended pattern,
the front interactions cannot be attractive at any inter-front distance.
We therefore used the LE model to study the interactions between
pairs of Ising fronts and pairs of Bloch fronts in the range kf o 2kT

where rectangular and oblique patterns exist. Fig. 11 shows plots of
the asymptotic distance df between a pair of Ising fronts and the
initial distance (upper left panel) and similar plots for pairs of Bloch
fronts (lower left panel). At longer initial distances the fronts are too
far to interact significantly, and the final distance equals the initial
one. As the initial distance is decreased, a step-like graph appears for
both Ising and Bloch fronts, indicating the existence of discrete
solution families describing stable bound front pairs with decreas-
ing distances down to a typical minimal distance.

To test whether extended rectangular and oblique patterns
can be viewed, respectively, as arrays of Ising and Bloch front
pairs, we superimposed bound pair front solutions on the
extended solutions. As Fig. 12 shows, the spatial profile in
the y direction of the shortest-distance Ising-front pair nicely
overlaps the rectangular pattern and, similarly, the shortest-
distance Bloch-front pair overlaps the oblique pattern. These
results support the view of Ising-front bound pairs and Bloch-
front bound pairs as building blocks of rectangular and oblique
patterns, respectively, provided that we focus on the shortest-
distance bound pairs.

Fig. 7 The dependence of the coefficient G in eqn (8) on the forcing
strength, g, for different values of the parameter a and for kf = 1.8kT (G is
independent of d and s).

Fig. 8 NIB bifurcation in the LE model (1). The blue (upper) dots represent
Bloch fronts while the black (lower) points represent Ising fronts. Para-
meters: a = 30, d = 1, s = 100, w0 = 0, b = 1.7 and kf = 1.8kT.

Fig. 9 Resonant 2 : 1 rectangular pattern (top row) and oblique pattern
(bottom row) in the LE model. The left and middle frames show the v and
u-field patterns in the (x,y) plane. The right frames show the corresponding
spatial Fourier transform of u in the (kx,ky) plane. The shading of the circles
in the Fourier plane indicates the strength of the modes (darker is higher).
Note the asymmetry in the strength of the two oblique modes for the
oblique pattern and the presence of the forcing wave-vector in the
rectangular pattern. Parameters: a = 12, d = 1, s = 50, w0 = 0, g = 0.6,
kf = 1.8kT, and b = 0.38 (rectangular pattern) and b = 0.35 (oblique pattern).

Fig. 10 Resonant 2 : 1 rectangular pattern in the spatially forced CDIMA
reaction (left) and the corresponding 2d Fourier plane, which shows the
strong presence of two oblique modes (right). Forcing parameters: kf =
1.67kT, Imax = 7.62. Snapshots were taken 2 h after the start of forcing.
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7 Conclusions

We studied here the NIB bifurcation for transverse fronts using
a spatially forced CDIMA reaction and the Lengyel–Epstein (LE)
model. We demonstrated the existence of a spatial NIB bifurca-
tion and showed that it is a subcritical bifurcation, implying
bistability of stable transverse Ising and transverse Bloch

fronts. Subcritical NIB bifurcations have been found earlier in
the context of temporally forced oscillations.32,33 Unlike earlier
studies of the NIB bifurcation, both in temporal and spatial
contexts, Ising fronts here were found to lose stability to Bloch
fronts as the forcing strength is increased rather than decreased.
We also studied the interactions between pairs of Ising fronts and
between pairs of Bloch fronts and found discrete families of bound
Ising-front pairs and of bound Bloch-front pairs22 with increasing
inter-front distance. We further showed that rectangular patterns
can be viewed as arrays of Ising-front bound pairs and oblique
patterns as arrays of Bloch-front bound pairs, where in both cases
the bound pairs are the shortest-distance ones. These findings
connect the two distinct mechanisms by which periodic spatial
forcing induces new patterns: a nonuniform instability of a
uniform state to rectangular or oblique patterns, and bistability
of phase states and patterns consisting of front pairs as building
blocks, i.e., patterns of alternating phase states.

The results described above imply the existence of a forcing
range where three different 1d front solutions, all shifting
the pattern phase by p, are stable: an Ising front and a pair of
Bloch fronts. Multiplicity of stable 1d front solutions allows for
2d localized structures, as front lines that shift the phase by p
can consist of different front solutions with an intervening
transition zone that forms the 2d localized structure. In temporally
forced oscillatory systems transition zones of this kind between
counter-propagating Bloch fronts form spiral vortices.34 In spatially
forced pattern forming systems, such transitions zones form
dislocation-type defects. The availability of a stable Ising front
allows for an additional type of 2d localized structure – a structure
that that forms a transition zone between the Ising front and one
of the Bloch fronts. Structures of this kind and additional
structures have been found both in the experiments and in the
model simulations and call for further studies.

The CDIMA reaction may be a good candidate for studying
dual-mode fronts. In the absence of fronts, decreasing b below
the Hopf bifurcation threshold, bH, may not give rise to
oscillations. This is because the large amplitude Turing mode
is likely to damp the small amplitude Hopf mode through
nonlinear coupling. However, in the presence of an Ising front,
where the amplitude A vanishes, the nonlinear damping may be
too weak to prevent the local growth of the Hopf mode. Such a
growth should lead to oscillating Ising fronts.35,36
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