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Propagation failure in excitable media
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We study a mechanism of pulse propagation failure in excitable media where stable traveling pulse solutions
appear via a subcritical pitchfork bifurcation. The bifurcation plays a key role in that mechanism. Small
perturbations, externally applied or from internal instabilities, may cause pulse propagation faibwe
breakup provided the system is close enough to the bifurcation point. We derive relations showing how the
pitchfork bifurcation is unfolded by weak curvature or advective field perturbations and use them to demon-
strate wave breakup. We suggest that the recent observations of wave breakup in the Belousov-Zhabotinsky
reaction induced by either an electric fi¢llJ. Taboadat al. Chaos4, 519(1994] or a transverse instability
[M. Markus, G. Kloss, and I. Kusch, Natuteondon 371, 402(1994] are manifestations of this mechanism.
[S1063-651X%97)11512-4

PACS numbgs): 05.45:+hb, 82.20.Mj

[. INTRODUCTION of pulse propagation or lead to pulse collapse and conver-
gence to the stable uniform quiescent sfatet shown in Fig.
Failure of wave propagation in excitable media very often2(b)]. The convergence to a uniform attractor is more likely
leads to the onset of spatiotemporal disorder. In the contexp occur for pulse structures than for fronts and has always
of electrophysiology it may lead to ventricular fibrillation. been observed in our simulations. Thus, in our study, the
Numerous studies have appeared in the past few years dem- c
onstrating conditions and mechanisms for failure of propaga- 17 a
tion in excitable and bistable media—9]. Failure may occur
by external perturbations or spontaneously by intrinsic insta- /_\L
bilities. Experimental examples include wave breakups in the
excitable Belousov-ZhabotinskidZ) reaction induced by an 1
electric field[1] and by a transverse instabilif2]. P
Recently we have attributed domain breakup phenomena
in bistable media to the proximity to a pitchfork front bifur-
cation illustrated schematically in Fig.(& [10,11]. As . j&
shown in Fig. 1b), near the bifurcation small perturbations,
such as an advective field or curvature, unfold the pitchfork
bifurcation to anS-shaped relation. If the perturbation is
large enough to drive the system past the end point of a 17 e b
given front solution branch the front reverses direction. A
local reversal event along an extended front line in a two- I
dimensional system involves the nucleation of a pair of spiral
waves and is usually followed by domain breakup. The front p
bifurcation illustrated in Fig. (8 has been referred to in the
literature as a nonequilibrium-Ising-BlogNIB) bifurcation 0 0.1
[12,13.
In this paper we extend these ideas to wave breakups in -0.5
excitable media. The NIB bifurcation is replaced in this case T
by a subcritical pitchfork pulse bifurcation as shown in Fig.
2(a). The typical unfolding of that bifurcation is shown in
Fig. 2b). Similar tc_’ the case _Of front solutions in bistable FIG. 1. Bifurcation diagrams for fronts in the bistable FHN
systems, perturbations that drive the system beyond the edgg,tion-diffusion systema) At the Nonequilibrium Ising-Bloch
point of a given pulse branch may either reverse the directioRjfyrcation a stationary front becomes unstable to a pair of counter-
propagating fronts as a control parametés varied. The solid lines
represent a branch of front solutions with speetb) Unfolding the
*Electronic address: aric@lanl.gov bifurcation near the critical poing, gives anS-shaped relation in
TElectronic address: ehud@bgumail.bgu.ac.il the unfolding parametd®.
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C Il. A BIFURCATION DIAGRAM FOR PULSE SOLUTIONS
1.0 7] a
We derive the pulse bifurcation diagram using an
activator-inhibitor model of the FHN type. We assume that

0.5 the activator varies on a time scale much shorter than that of
the inhibitor and use singular perturbation thepip—17.
00 €. € € Specifically, we study the pair of equations
0.02 0.03 0.04 Ut:€_1(U—U3—U)+5_1V2U, (1)
-0.5

vi=u—av—ag+ Vi,

-1.0 | whereu =€/ §<1 and the subscriptsdenote partial deriva-
tives with respect to time. We consider a periodic wave train
1o 1€ b of planar(uniform along one dimensigrpulses traveling at
constant speed in the x direction. Each of the excitetbr
. “up-state”) domains occupies a length bf, . The recovery

< (or “down-state”) domains are of lengthh _. In regions
whereu varies on a scale of order unity Eq4) reduce to

-0.04 -0.02 0.02 0.04 Uy tev,tui(v)—aw—ag=0, —N_<x<O0

> Uy tev,tu_(v)—aw—ag=0, O0<xy<k,, (2

where y=x—ct andu. (v) are the outer solution branches
of the cubic equation— u®—v=0. Fora, sufficiently large
we may linearize the branches (v) aroundv =0,

FIG. 2. Bifurcation diagrams for pulse solutions in the excitable
FHN system.(a) A typical relation for the pulse speed vs the U.(v)~*1-v/2. 3
system parametee gives a subcritical pitchfork bifurcation(b)
Unfolding the bifurcation near the critical poiat gives a multiple ~ We solve Eqs(2) using the boundary conditions
S-shaped curve foc in the unfolding parametep.

\

-1.0

U(_)\_)zl)b, (4)

critical value of the bifurcation parametef, at which the
upper and lower branches in Fig(a2 terminate, designates
the failure of propagation. Reversals in the direction of
propagation(rather than collapgéhave been observed in ex- v(Ay)=vp,
periments on the Belousov-Zhabotinsky reaction subjected to . .
an electric field14]. wher_evf.and v, are yet }Jndetermlned, and the linear ap-
In two space dimensions a local collapse of a spatiaII)Prox'mat'on(?’)' The solutions are
extended pulse amounts to a wave breakup. By numerically
integrating a FitzHugh-Nagumd@FHN)—-type model, we
demonstrate two scenarios of wave breakups: breakup in-
duced by an advective field, modeling an electric field in the
BZ reaction, and breakup induced by a transvéosdatera) with
instability. The two scenarios, observed in both experiments
[1,2] and numerical simulationg1,9], reflect the same c o2
mechanism: the ability of weak perturbations to drive transi- T1= =5 E \/Z +a;+1/2,
tions from one of the pulse branches to the uniform attractor
when the system is close to failure of propagation.
In Sec. Il we describe the derivation of a pulse bifurcation

v(0)=vy,

v=A,expox)+tBexpox)tv., —A_<y<O

v=A_expox)+tB_expox)tv_, O0<y<A\,,

_(vp=vs)—(vi—v.)eXP(F ooh <)

diagram for a FHN model. The derivation applies to both - expFohs)—expFohs)
excitable and bistable media. The information contained in

this diagram is used to draw the propagation failure line in an —(vp—ve)H(vi—vL)exp(F o)
appropriate parameter space. In Sec. Ill we consider the un- T exp(Foh=)—exp(Foo\-) !

folding of the pulse bifurcation by an advective field and

demonstrate wave breakup near the propagation failure. Thendv . =(*=1—a,)/(a;+1/2). Matching the derivatives of
unfolding by curvature is studied in Sec. IV and wavethe solutions ay=0,v’'(0")=v’(0"), and imposing peri-
breakup induced by a transverse instability is demonstrateadicity on the derivatives’(—\_)=v'(\.), we obtain two

We conclude in Sec. V with a discussion. conditions
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FIG. 3. Pulse failure propagation boundary in #1é parameter
plane for the excitable FHN model. To the right of the line pulses
fail to propagate. The parameters are=1.25 anday=—0.2.

0'1A++0'28+20'1A,+0'28,, (53)
oAexp(— oA )+ 0B exp—ooh )
:UlA,eXF((Tl)\Jr)‘FUzB,eX[xo'z)\Jr). (Sb)

Two more conditions are obtained by studying the “front”
and the “back,” that is, the leading and trailing border re-
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gions between the excited and recovery domains. Stretching FIG. 4. Solutions of the speatlvs advection] relation(12). (a)

the spatial coordinate according & x/\/u gives the non-
linear eigenvalue problems

Uz +cnpu+u—ud—v¢=0, (6)
u(g)—u_(vy) as {—,
u(f)—u.(vy) as {——,
for the narrow front region and
Uz +Cpu+u—ud—v,=0, (7)

u(y)—ui(vp) as {—,
u({)—u_(vp) as {——x,

for the narrow back region. Herg= Jes. Solutions of Egs.
(6) and (7) yield

3 ®
Cny \/Evfy
3 ©
C = — ,
7] \/Evb

respectively.
Substituting relation$8) and(9) into Egs.(5) leaves two
equations for the three unknowiRs , A _, andc. The one-

Away from the bifurcation point, variations ihhave little effect on
the pulse speede=0.01). (b) Near the bifurcation point, small
variations inJ may drive the system past the end point of the
solution branch and cause pulse collapse 0.05). Other param-
eters area; =1.25,a,= —0.2, and5=1.0.

curve obtained in earlier studi¢$5,16. Our interest here is
with the behavior of a single pulse and therefore only the
limit of large A will be considered. We remind the reader
that in deriving these equations we have assumed
un=¢€l <1, which excludes very smadl values.

We solved Egs(5) numerically for both excitable and
bistable systems at large values of the pefiodThe solu-
tions were computed by numerical continuation of known
solutions wheray=0 and\ . =\ _. They yield the typical
bifurcation diagram for the speedin terms of the parameter
€ as shown in Fig. @). At some critical values , the branch
of solutions terminates and past that point pulses fail to
propagate. The value @&f depends on the other system pa-
rameters as well. Figure 3 shows a grapteefe;(5) for an
excitable system.

Note the inherent subcritical nature of the bifurcation
[18,19. The bifurcation becomes supercritical only in the
limit ap—0 (pertaining to a bistable mediynwhere the
pulse size tends to infinity. In that limit Eg&) can easily be
solved. The solutions are=0 andc= *(2q/ 7])\/%2— 7°
for »< 7. and coincide with the nonequilibrium Ising-Bloch
bifurcation for front solution$20].

parameter family of solutions describes periodic wave trains

of pulses traveling with speed
c=C(\;7n,aq,8;), (10

whereN =\, +\_ is the varying wavelength of the family.
The graph ofc versus\ provides the dispersion relation

Ill. WAVE BREAKUP BY AN ADVECTIVE FIELD

Application of an electric field to a chemical reaction in-
volving molecular and ionic species, like the BZ reaction,
results in a differential advectidr21]. Differential advection
in the FHN equations can be modeletithout loss of gen-
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FIG. 5. Numerical solution of Eqg11) with a weak advective
field J=Jx. The thick and thin lines pertain ta=0 andv=0 -2.0
contour lines, respectively. The initial circular pulse fails to propa- — ]
gate along the direction of the advective field and the pulse breaks. 40

The pulse continues to propagate in directions different from the

advective field. The equation parameters are the same as in Fig. 4. .
vective di quation p n g FIG. 6. Solutions to the speed vs curvature relatitd). (a)

) ) ] o _Away from the bifurcation pointtop), the speed varies approxi-
erality) by adding an advective term to the inhibitor equationmately linearly with the curvature (e=0.003).(b) Near the bifur-

cation point, small curvature variations may drive the system past

_ 13 —1w2 the end point of the solution branch and cause pulse collapse
Up=e (U=u’—v)+ 5V, (11) (e=0.022). Other parameters aag=1.25,a,= — 0.2, ands=2.5.
vi=u—av—ag+J-Vo+V?, IV. WAVE BREAKUP INDUCED

BY A TRANSVERSE INSTABILITY

where J is a constant vector. Looking for planar solutions Spatially extended pulses, such as stripes or disks, may be

propagating at constant speeds in dheirection and rescal- unstable to transverse perturbations along the pulse line.
ing e andé by the factorc/(c+J) we find the influence on Ohta, Mimura, and Kobayashl studied the case of deforma-

the pulse speed by the advection

: 12

C
c+J=C()\,m7;,a0,a1

where( is defined in Eq.(10). Figure 4 shows the depen-
dence of the pulse spe&don the advection constadtob-
tained by numerically solving Eq12) for large . Away
from failure of propagation { is significantly smaller than
€¢) small variations ofJ have little effect on the pulse mo-
tion [Fig. 4(@]. However, close to failure, such variations
can induce wave breakup by driving the system past the end y
point J=J. [Fig. 4(b)].

Figure 5 shows a numerical simulation of E¢&1) with
J=Jx and an initial condition of a curved pulse. Along the c
pulse the effective advection field is the projectionJainto
the direction of propagation at that point. With=0 the X X
curved_ pulse_propagates uniformly outward in a circular rirTg. FIG. 7. Breakup of a pulse by transverse instability. The thick
ChoosingJ slightly greater thad,, a WaAve breakup results: and thin lines pertain ta=0 andv =0 contour lines, respectively.
The part of the pulse propagating in tRedirection fails to  The initial almost planar pulse is unstable to transverse perturba-
propagate. Those parts propagating in significantly differentions and forms a dent. The dent grows and the pulse breaks at the

directions still propagate. These results explain earlier obseregion of high curvature. The equation parameters are the same as
vations of wave breakup induced by electric field$ in Fig. 6.
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tions of planar and disk-shaped stationary patterns in a piece- Equation(14) contains information also about the trans-
wise linear FitzHugh-Nagumo modg22]. Kessler and Le- verse stability of a pulse line. A positive slope ofcax
vine derived conditions for the transverse instability ofrelation atk=0 indicates an instability of a planar pulse.
traveling stripes in a piecewise linear version of the OregoFigure 7 shows a simulation of Eqdl) at parameter values
nator[23]. The curvature induced by a transverse instabilitypertaining to thec-« relation in Fig. @b). Starting with a
can lead to the formation of labyrinthine pattef824,29 or ~ near planar pulse, dents grow due to a transverse instability.
cause spontaneous breakup of a pulse as we will now showhe negative curvature that develops induces a wave
For the model of Egs(1), the effect of curvaturec on  Preakup.
pulse propagation can be obtained from Bd) by rewriting
the equations in a frame moving with the pu[&6]. Assum-
ing that the radius of curvature is much larger than the pulse We have identified a mechanism for breakup of waves in
width and assuming a negligible dependencei@ndv on  an excitable media. The key ingredient of this mechanism is
arclength and timéin the moving framgwe obtain the proximity to a subcritical pitchfork pulse bifurcatigas
shown in Fig. 2a)]. Near the bifurcation small perturbations
STH"+(ct o kU’ +e Hu—uP-v)=0, (13  pecome significant and may induce the failure of propaga-
tion. The nature of the perturbation is of secondary impor-
v"+(ctr)v' +u—aw—ap=0, tance. As illustrated in Figs.(8) and Gb), the effects of an

where the prime denotes differentiation with respect to a Cogdvec'uve field and curvature are similar; they both induce

ordinate normal to the front line. Rescalirkgand § by the wave breakup by driving the system past the end points of

) propagating pulse branches. A perturbation inducing breakup
factor ¢+ 8™ «)/(c+ «) Eq. (10) becomes can be externally applied, such as an electric field in the BZ

c+6 1k reaction, or spontaneously formed, such as curvature growth
c+k=C )\;Tn,ao,al . (14 by a transverse instability. An interesting question not re-
crx solved in this study is the observed preference of propagation

Figure 6 shows numerical solutions of Ed4) for ¢ in terms failure or collapse rather than reversal in the direction of
of k. Far away from the failure of propagatiffig. 6@]we Propagation.
find the usual approximate linear-« relations for right
(c>0) and left £<0) propagating pulsgs5,17. Close to
failure [Fig. 6(b)], small realizable curvature variations may  This study was supported in part by Grant No. 95-00112
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