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Order parameter equations for front transitions: Planar and circular fronts
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Near a parity breaking front bifurcation, small perturbations may reverse the propagation direction of fronts.
Often this results in nonsteady asymptotic motion, such as breathing and domain breakup. Exploiting the time
scale differences of an activator-inhibitor model and the proximity to the front bifurcation, we derive equations
of motion for planar and circular fronts. The equations involve a translational degree of freedom and an order
parameter describing transitions between left and right propagating fronts. Perturbations, such as a space
dependent advective field or uniform curvatdagisymmetric spods couple these two degrees of freedom. In
both cases this leads to a transition from stationary to oscillating fronts as the parity breaking bifurcation is
approached. For axisymmetric spots, two additional dynamic behaviors are found: rebound and collapse.
[S1063-651%97)09904-2

PACS numbes): 05.70.Fh, 82.20.Mj, 05.4%.b

I. INTRODUCTION Since inhibitor diffusion is essential for spontaneous front
reversals induced by curvature, in this work we study the
Pattern dynamics in reaction-diffusion systems often in-more difficult case of a diffusing inhibitor. This calls for a
volve nonsteady front motions. These motions can be drivefifferent approach as described in Secs. Ill and IV. In Sec. V
by curvature[1,2], front interactiong3,4], convective insta- We study front reversals induced by two types of perturba-
bilities [5,6], and external field§7—9]. In some cases, fronts tions of planar fr_onts, an external advective _field and uniform
reverse their direction of propagation, as, for example, irfurvature. In this case, only planar and circular fronts are
breathing pulse§10—1§, where the reversal is periodic in stqdled; the derivation of the more gen.eral equations for non-
time, and nucleation of spiral-vortex pairs, where the reversagniformly curved fronts can be found in R¢27]. Some of
is local along the extended front lif@9—23. the results presented here have been briefly reported in Ref.
Earlier studies demonstrated that front reversals, as dé28l-
scribed above, become feasible near a nonequilibrium Ising-
Bloch (NIB) bifurcation [15,24], that is, a parity breaking Il. REACTION-DIFFUSION MODEL
bifurcation where a single stationary front loses stability to a
pair of new, counterpropagating fronts. The reversal phe- The model we consider is an activator-inhibitor reaction-
nomenon can be regarded as a dynamic transition betwedliffusion system describing a bistable medium. Models of
the left and right propagating fronts that appear beyond théhis type have been studied in various physical and chemical
front bifurcation. It is induced by intrinsic perturbations, like contexts[1,2,29—32. The specific form chosen here is
curvature and front interactiorfd9,25, or weak space de-
pendent external fieldg20]. Since the left and right propa- =€ Yu—ud—v)+ 6 tuy, (1)
gating fronts differ in internal structurel5], such a transi-
tion involves a new degree of freedom, in addition to the
translation mode: the order parameter associated with the V=UT a0 T Uk
bifurcation[20]. The effect of the perturbations is to couple
these two degrees of freedom in a way that allows for froniThe variablesu andv are scalar real fields representing the
reversal. activator and the inhibitor, respectively, with the subscripts
Our objective is to derive equations for front motion thatx and t denoting partial derivatives with respect to these
capture front reversal. Progress toward that goal has alreadariables. Fora;>1 system(1) has two stationary uniform
been made in Refd20,26 for a nondiffusing inhibitor. states, ¢. ,v.)=(*1—1/a;,+a; *y1—1/a;). Note that
the parity symmetry §,v)—(—u,—v) of Egs. (1) is re-
flected in these solutions. Generalizations of Efsto non-
*Electronic address: aric@lanl.gov symmetric forms in one and two space dimensions will be
TElectronic address: ehud@bgumail.bgu.ac.il considered in Sec. V.
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Ju= el 5. Stretching the spatial coordinate=r/u, to
expand this region Eq$2) become

C
U u
_v x Y x _ ——113_
€(Ui—2ZsU,) =U—U>—0v + Uy, 3)
; 77c‘ 77] M(vt_ifvz_u+alv):UZZa
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wherez;=x;/\/u and we recall thap. €. Expanding ine

U=Ugy+ €U+ €U+ - - -,

v=vo+ev1+62v2+ B

FIG. 1. The NIB (or nonequilibrium Ising-Bloch bifurcation
and internal structure of front solutions. The pitchfork diagram rep-
resents the speed of front solutions vs the parameter~or
7>, the Ising front is the single solution ang, the order
parameter representing the value of théeld at the front position
u=0, is zero. Beyond the bifurcatiom< 7., a pair of counter-
propagating Bloch fronts appears. The order paramgtés nega-
tive (positive for rightward (leftward) propagating fronts.

and inserting into Eq(3) we find at order unity the front
solution

Up=—tanh(z/\2), vo=0.

Collecting terms of ordee gives

L:U]_:Ul_.ZfUOZ, E=&§+1—3US, (4)

In addition to the spatially uniform solutions there are
also front solutions connecting them. In the following we
will consider front solutions that connectu(,v,) at LUg,=0,
X=—o to (u_,v_) atx=o. The number and type of these
front solutions is determined by the two parameterand  solvability of Eq.(4) requires
5. For > 5.=3/2\20°, wherey= Jes andg?=a,;+1/2, a
single stable stationarlsing) front solution exists. This so- . 3
lution loses stability in a pitchfork bifurcation, at= 7., to zi=— —=v(1).
a pair of counterpropagatin@loch) front solutiong[15,31— V2
33] as shown in Fig. 1. The two Bloch front solutions differ Th f ion b infinitelv thin in the limi
not only in their propagation direction but in their internal e narrow front region becomes infinitely thin in the limit

structure. This difference can be represented by an order p§-_> 0. Thereforep(t) may be agsouated .W'th _the val_ue of

rameter associated with the bifurcation, which forv(r't) at the front position, that is(0.t). With this notation

u=¢€el6<1 can be taken to be the valug of thev field at the leading order relation is

the front position. For simplicity we define the front position

to be atu= 0. With this choicep ;=0 for the Ising front(the Xe=— 3

inset for > 7. in Fig. 1). Beyond the front bifurcationy; is 77\/5

nonzero and the sign indicates the direction of front propa-

gation: v;<0 for the front propagating to the right and  Away from x;, u—u®*—v~0O(e), and u varies on the

v;>0 for the front propagating to the leftiy< 7. in Fig. 1). same time and length scalestasGoing back to Eq92), we
find at order unity

wherev, is a yet undetermined function of time. Since

v(0t). 5

ll. FORMULATION OF THE FREE BOUNDARY .
PROBLEM Vi~ Xpo =Ui(v)—awtu,, r<0, (6)

In the ftzllowing we confine ourselves to the region vt_)'(fvr:u_(v)_alv+vrr =0,
e<1l, 6xe ! and we choosed values such that
€5~ 0O(n?). The small parameter allows the use of singu- where u. (v) are the outer solution branches of the cubic
lar perturbation methods to study front solutions to EGs. equationu— ui—v=0. Fora, sufficiently large we may lin-
The first step is to transform to a moving coordinate frameearize the branches. (v) aroundv =0
x—r=x—X(t), t—t, wherex; is the position of the front.
In this frame Egs(1) become Us(v)~=1-vl2. @

2) Substituting the linearizatio7) and the relation from the
inner problem(5) into Eq. (6) produces the free boundary
problem

Ui— XU, =€ Yu—ud-v)+46 u,,

Ut_).(fvrzu_alv+vrr )

3
where the dot ovex; denotes the derivative with respect to vt QP —v=1- \/Ev(oyt)vr
t. The front solution,u(r,t), v(r,t), is characterized by a K
strong variation of theu field over a distance of order v(—oot)=v,~q"

0, ®

2



4452

vt Qv —v = 1—7]—\/_1)(01)0r (=0
v(e,t)y=v_~—q ?
[v]i=0=[v]=0=0, 9

where the square brackets in Ef) denote jumps across the
free boundary. The solution to E¢8) leads to a dynamic
equation forv¢(t)=v(0}), the value of the inhibitor at the

front positionx;(t), which will complement Eq(5).

IV. SOLUTION OF THE FREE BOUNDARY PROBLEM

Near the front bifurcation# close toz.), the front speed
c is small and propagating front solutions can be expanded + V2
as power series in around the stationary front solution. The e
stationary front solution satisfies the boundary value problem

—g%v+1=0
v(—»)=q %} r=<0, (10)
v(0)=0

rr_qzv_]-:0

v(=)=-q"
v(0)=0

r=0,

with [v,],-,=0. The solution to Eq(10) is

vO(r)y=q73(1—-e), r=<0, (11)

v O(r)=q %(e""-1), r=0.

Note that v{¥=—q texp(—qr|) is not differentiable at
r=0.

In terms of the deviation from the stationary solution,

v=v-v, Egs.(8) are

vt q%—vy v(0t) (v, +0v!?), (12)

3
w2
v(*%2)=0.

We seek propagating solutions of E@L2) that involve
two time scales, the original timé and a slow time
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viV+qW—p!M=—pM n=1273 (15)
where
1 s (1) (0)
p= UIPEANIE (163
e
p(2)= [uﬁi oM +v2 w0, (16h)
37
1 (1 0
p®=pM+ 5 ol ®
277c
1 2 (2 1 3 0
[vfr)ov( )+v‘rl v! )+v|( ) out?].
(160

Equation(15) can be solved using an appropriate Green’s
function and assuming that the front motion is independent
of the fast time scalé ast— 2 [28]. A simplified derivation
of the solution follows from the gradient nature of Ed5)
when the source term™(r,T) becomes independent of
For thenv{"—0 ast—= for anyr and we can look for
stationary { independentsolutions.

Consider first v®. Inserting Eq. (163 in
v —g?®=p® and solving forv ™) we obtain

v(l)(r,T)=mv(l)(O,T)F(r), (17
where
F(r)=(1—qr)e¥, r=<0,
F(r)=(1+qr)e 9, r=0.
Settingr =0 we find
3
77C=T2q3- (18

The critical valuen.= n(c=0) determines the bifurcation
point where the propagating Bloch front solutions coincide
with the stationary Ising front. The expressi¢bg) is the

T=c?. The slow time dependence is a result of the slowsame as the one derived earlier using a different method
evolution ofv; (the value of the inhibitor at the front posi- [15.25. @ - _

tion) near the front bifurcation. It is easy to show that to  Using Eq.(17) to solvev ) —q* @)= p®) we find

linear orderv;x (7.~ 7)vs and for a pitchfork bifurcation
ne— n=c?, hence the? scale. Expanding(r,t,T) in pow-
ers ofc and 5 in powers ofc? (expecting a pitchfork bifur-

@(r, T)=[?(01)+30P (01 IF(r),

and using both Eqg17) and(19) in v{3)—q2®=p®, we

(19

cation, obtain
D tT)= S (LT, 13 VAT =0 0N+ A el
n=1 —B,r2ed —c,r3, | 7’
(20
n=ne—C2n+cipt -, (14)

v®(r,H=0v®0T)e "+A_re
r=0

and inserting in Eq(12) gives the sequence of equations —B_r?e 9—C_r3 9,
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where front bifurcation, however, the eigenvalue associated with
these statesh=—22(5.— 7)/q, approaches zero and

3 1 ; ;
4_0%_1)(0'-'-)_‘_ §q5v(1)(0,T)3 small disturbances can drive the system from one state to

A.=g>P0T)v?0T)* >
==a70 (0.0 another, thereby inducinfjont reversals

97

C

V. FRONT REVERSAL: OSCILLATIONS AND REBOUND

v PO —qu®0,T)

Equations(23) describe the motion of a freely propagat-

B.=30M(0,1) =g (0,T)v?(0,T), ing front in a uniform medium. In this section we show how
two different perturbations affect front propagation. The first
C.==iqvM(0T)3. is the addition of a space dependent advective field to the

v equation in the original systeifil). This type of differen-

Application of the(no) jump condition[v(®],_,=0 leads to  tial advection appears for example in chemical reactions in-
volving ionic species that are subjected to electric fields
[8,34]. The second is the intrinsic perturbation of uniform
curvature variations on the propagation of two dimensional
fronts. Both perturbations lead to a coupling of the two de-

Equation (21) still contains an unspecified parameter, grees of freedom in the order parameter Eg8) and allow
71. To identify 7, recall thatc is the speed of a front propa- for the nonsteady asymptotic motion of fronts.
gating at constant velocity. From E(p)

2 3
v P(0,T)= %vm(o,w— vPOD (@)

A. Space dependent advective field

|x¢|= clo™(0,T)|+0O(c?). To study the effect of an external advective fidlde add
Te the termJv, to thev equation in Eq(1),
Identifying | x| with ¢ givesv¥2=2%%9 for a front propa- U=e Yu—ud—v)+6 u,, (24)
gating at constant speed. This valuevéP? should coincide
with the nontrivial stationary solution of Eq.(21), vi=U—a0 —ap+ Juyt+Uyy.

v(M2=4./27,/3q. Comparing the two expressions gives
The small parameteq is also introduced to break the parity
q77§ symmetry of Eq.(1). For simplicity we consider a linear
771:6\/5' (22)  spatial profileJ=— ax, 0<a<1. Proceeding as before, the
inner region analysis remains unchanged and culminates in
Eqg. (23b). The outer analysis leads to the additional terms,
—a(r+xs)v,—ay, on the right hand side of both partial dif-
ferential equations in EQq(8). Assuming a=a,c® and

Equations(22) and (14) provide the leading order form of
the front bifurcation diagram

) 62 ag=ao,C’, Whe_reao and ay, are of order unity_, Eqs(163
c :W( e 1), and(16b) remain unchanged, but E¢L6¢) acquires, on the
C

right hand side, two additional termez(r +x;)v {9+ ag.

which coincides for smalc with the earlier resul{6,9], As a result the order parameter E¢83) are changed to
2__ 2 2_ 2 2

c*=4q°(nc— 7)) n".

Multiplying Eq. (21) by ¢ and using the expansion$3) z}f=—22( De— M)Vi— %U% ;axf— %aO, (259
e q

and(14) gives the equation of motion for propagating fronts S/
: \/5 3 3 3
Uf_q_ng(ﬂc_ 7])1)1:_4__77(2:1)f' (233) Xf:—mvf. (25b)
. 3 i i i -
- (23b) Notice that the introduction of apace dependeridvec

B mv“ tive field couples the two degrees of freedom, and x; .
This coupling affects the front behavior in two significant

where the slow time derivative of; is expressed in terms of ways: for»> 7. (anda,# 0) it stabilizes a propagating front

a fast time derivative(;=c%v 7). at a fix_ed positionx;=2qgay/«, and for <17 it induces

According to Egs.(23) the dynamics of a propagating oscillations betv.vee'n the counterpropagating frpnts. The fre-

front involve two degrees of freedom: a translational degre@u€ncy of oscillations close to the Hopf bifurcation at

of freedom x;, determining the front position, and an order 7= 7c 1S

parametery;, determining the direction of propagation. The

latter has not been appreciated enough since most works to 0= iq\/; (26)

date[1,2] have focused on conditions far from the front bi- J3 '

furcation. In that case the two stationary states,

vi=*[4\2(n.— 1)/3q] 2 representing fronts propagat- We tested the validity of Eq<25) by numerically inte-

ing in opposite directions, are highly stable. Close to thegrating the original systerfl) and comparing the oscillating



4454 A. HAGBERG, E. MERON, |. RUBINSTEIN, AND B. ZALTZMAN 55

) solutions, there are now new types of solutions, including

200 fronts with uniform curvature(circular fronts or spots
These spots may be stationary or, for parameters near a NIB
150 - bifurcation, may collapse, expand indefinitely, or oscillate
periodically in time.
To derive equations for the motion of circular fronts, the
[T L f . : )
irst step is to transform into polar coordinates,
r=p—p¢(t), that move with the front. In this frame and
20 4 i assuming the radius of curvatupe is much larger than the
front width, Eqs.(27) are
0 . , U—(ps+ 6 k) u,=e Hu—ul—v)+ 6 u,,
-5 0 5 10 ]
x vi—(pst+tK)v,=u—aw—agtuv,,,

FIG. 2. Front positiony;, vs time for an oscillating front. The where k= p; ! is the front curvature. As before we assume
solid line represents the solution to the order parameter equatiors<1 and o= e ! and use singular perturbation theory.
(25) and the diamonds are from the numerical solution of the origi- Analysis of the inner, or front, region yields a relation
nal  partial differential  equations (1). Parameters: analogous to Eq.23b
a,;=3.0, €=0.01, 6=2.77, ayp=0, a=0.005.

_— 3
front solutions with those of Eq25). The agreement, as Fig. pit o tk=— Bl (28)
2 shows, is very good. In Fig. 3 we plotted the frequency of K

front oscillations vs the field gradient according to E26) In the outer region, instead of E(B) we must solve
and as obtained from EqL). Again, the agreement is excel-

lent, and remains good even foiof order unity. Note that in 3

the inner analysis we neglected contributionsgi?) to v vitqv—v,=*1- v(0t)v,+P,

at the front position, while in the outer analysis we kept ’7\/5

terms to O(c®). A quantitative comparison as dz?fcrlbed whereP=(1— 8 Y, /p;—ao. Assuming thalP is a small

above, therefore, requires thais much larger thar™. perturbation(of order|c|®) and proceeding as in Sec. IV we

obtain the order parameter equation
B. Uniform curvature

In two space dimensions the reaction-diffusion syst&m - \/E( - ivs_ i (1-67Y _ fa
becomes T e T 2% 3 py 390
(29)
u=e Yu—ud—v)+6 1V, (27
Writing Egs. (28) and (29) in terms of the curvature
vi=U—av—ag+Vv, k=p; ! gives the equations
where the small parametap has been added again to break - _£( o= —pi— —(1- 6 Yk—=a
the parity symmetry of Eq(1). In addition to planar front U2 T PO 42 3q et
(30a
1 1
K= 3 v+ 6 18 (30b)
m2
that describe the dynamics of large circular spots. The intro-
W 10— - 5 duction of curvaturecouplesthe two equations. Equations

(23), for planar fronts, are decoupled and only describe the
relaxation to steadily propagating fronts. The equations for
circular fronts additionally allow front reversals and non-
steady asymptotic motion such as oscillations.

Consider first the fixed point solutions obtained by the
intersections of the linear nullclinesk=0 and
k=—(368/7\2)v; of Eq. (30b) with the cubic nullcline of
Eqg.(309. The solutions corresponding to=0 describe pla-

FIG. 3. A log-log plot of the oscillation frequency vs the  Nar fronts propagating at constant velocities. Solutions with
external field gradient.. The solid line is the relation of Eq26)  Positive and negative; values pertain to down states invad-
and the diamonds represent numerical solutions of BgsParam-  ing up states and up states invading down states, respec-
eters:a;=3.0, €=0.01, 6=2.77, a,=0. tively. The number of«=0 solutions varies withy. Below

10 ;
10™ 107 !
«
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a

0.2 1 50 B

0.2 -0.15 0.0 0.15

FIG. 5. A trajectory of the order parameter equati¢®@ for a
spot that oscillates with growing amplitude until collaggiee cur-
vature « diverges to infinity. Parametersa;=4.0, ag=—0.1,
€=0.006, ands=2.0.

Crossing the front bifurcationny<<z.(ay), the spot re-

- bounds, i.e., the shrinking spot reaches a minimal size and
expands again indefinite[fig. 4(c)]. For largeray|, there is
another possibility for the dynamics of spots. In this case,
- shown in Fig. 5, the amplitude of oscillations grows in time
B until the spot eventually collapses as the curvature diverges
to infinity.

All three behaviors discussed above have been observed
in direct numerical solutions of Eq27). The quantitative
accuracy of the order parameter equations was tested by
computing numerical solutions to the circularly symmetric
version of Eqs(27)

5—1

FIG. 4. Three types of solutions to the order parameter equa- u=e Y(u—ud—v)+—u,+46 tuy,, (3D
tions (30) starting with initial conditions representing a large r
shrinking spot. The thin lines are the isoclines and the thick lines
are numerically computed trajectoriéa) Convergence to a station- _ 1
ary spot €=0.0063).(b) An oscillating spot ¢=0.006).(c) Spot vi=U—aw—agt rurtor,
rebound and expansion of the spot to infinite size=(.0052).
Parametersa; = 4.0, a,= —0.01, andé=2.0. and comparing them to solutions of Eq80) for spot dy-

namics. Spot solutions of Eq&1) produce the same quali-
the front bifurcation[ »> n.(ap) ], there is a single intersec- tative behavior as the pair of coupled equations for the spot
tion point representing an Ising front as shown by the thindynamics. When the parameters are chosen to satisfy the
lines in Figs. 4a) and 4b). Beyond the front bifurcation, assumptions made in the derivation of E), there is also
[ 7<m.(ao)], two more intersection points appear corre-quantitative agreement between the two solutions. Figure 6
sponding a stable and unstable pair of planar front solutionshows the curvature of an oscillating spot as a function of
[Fig. 4(c)]. The fixed point solutions fok+ 0 represent cir- time computed using both Eq&80) and(31). The two solu-
cular fronts. Foray<<O they describe spots of an up statetions agree within an accuracy of approximately 1% for the
domain and foray,>0 spots of a down state domain. For amplitude and 2% for the phase.

6>1, depending on the choice ef these fixed points may In addition to the oscillatory instability spot, solutions
or may not be stable. Fat<1, all thex#0 fixed points are may also be unstable to transverse perturbat{@s-37.
unstable Numerical solutions of the fully two-dimensional mod2rr)

Figure 4 shows three different possibilities for the dynam-show that for the parameters of Fig. 6 spots are unstable and
ics of circular fronts. The thick trajectories represent dynamform nonuniformly curved fronts leading to a labyrinthine
ics computed by numerical solution of the coupled equationpattern. Since the order parameter equations derived here
(30). The initial conditions correspond to a large shrinking apply only for the case when the spots do not break perfect
up state spot. Far into the Ising regirfféig. 4@)] the initial  circular symmetry, for this choice of parameters they only
spot converges to a stationary spot. Moving closer to theapture the dynamics of the circular spot during the initial
front bifurcation and past a criticay value, 4> n.(ag), @  evolution. Order parameter equations for the dynamics of
Hopf bifurcation to a breathing spot occuffig. 4b)].  nonuniformly curved fronts are presented in Hef7].
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allow nonsteady asymptotic behavior. The coupled sets of
equations(25) and (30) exhibit Hopf bifurcations from sta-
tionary to oscillating frontgbreathing spojs Equationg30)
exhibit two additional behaviors pertaining to rebounding
and collapsing spots in the full equations.

Curvature effects on front dynamics near a NIB bifurca-
tion were also studied in Reff20,25 using a “quasistatic”
approximation. This approximation, where the front velocity
is assumed to adiabatically follow slow curvature variations
[1,2], yields analgebraicrelation between the front velocity
C and its curvaturec. As the bifurcation is approached the
C— k relation becomes multivalued, or hysteretic. The mul-

0.00 0.05 0.10 0.15 0.20 tivalued relations correctly predict spontaneous front transi-
K tions induced by curvaturg20,25, but cannot describe dy-
namics during front transitions. Differential order parameter

FIG. 6. An oscillating circular spot solution. The solid line is the gquatlons, like Eq_s(.30), give a more gccurate pharactenza-
solution of the order parameter equatia§), and the diamonds tion of the dynamics. These differential equations reduce to

represent the spot curvature vs time from the numerical solution t&" @lgebraicC — « relation when the time scale of front tran-
the circularly symmetric equation®1). The equation parameters Sitions becomes much shorter than the time scale of curva-

300

200

100 4

are e=0.006, §=2.0, a;=4.0, a,=—0.01. ture changes. Such a condition is realized, for example, with
very large spots away from the front bifurcation. Then the
VI. CONCLUSION right hand side of Eq(30g can be set to zero, an expression

. . , which together with Eq(28) gives an algebrai€ — « rela-
We derived the equations that govern the dynamics of. .
on, whereC=p;.

planar fronts in bistable systems near a parity breaking fron The phenomena of breathing, oscillating, and collapsing

bifurca}tion (the [\II.B bifurcation. In this case the context is spots appear to be quite general and can be induced by other
an activator-inhibitor model, but the normal form perturbations that coupl® and C. Referencg42], which
X=C (32 studies the effect of boundaries on spot dynamics, reports on
’ the observation of stationary, breathing, and rebounding
spots. Interaction between fronts may similarly lead to sta-
tionary, oscillating, and collapsing domaift0—1§. Recent
experiments on the ferrocyanide-iodate-sulfite reaction show
B small oscillating chemical spots away from the reactor
bifurcation occurs. Similar equations should apply, for ex_boundary that are most likely due to front interactions and/or

ample, to liquid crystals subjected to rotating magnetic ﬁeld§urvature[43].
[38—4(Q and have also been proposed in the context of parity
breaking traveling-wave bifurcatiorig1].

Uniform front curvature, or space dependent external This study was supported in part by the Israel Ministry of
fields, couple the two degrees of freedok,and C, and  Science and the Arts.

C=(a,—a)C—pBC8,

is general. HereX is the front positionC is the front veloc-
ity, and « is a critical parameter value for which a NI
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