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Abstract

A mathematical model for plant communities in water-limited systems is introduced and applied to a mixed woody–herbaceous

community. Two feedbacks between biomass and water are found to be of crucial importance for understanding woody–herbaceous

interactions: water uptake by plants’ roots and increased water infiltration at vegetation patches. The former acts to increase interspecific

competition while the latter favors facilitation. The net interspecific interaction is determined by the relative strength of the two

feedbacks. The model is used to highlight new mechanisms of plant-interaction change by studying factors that tilt the balance between

the two feedbacks. Factors addressed in this study include environmental stresses and patch dynamics of the woody species. The model is

further used to study mechanisms of species-diversity change by taking into consideration tradeoffs in species traits and conditions giving

rise to irregular patch patterns.
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1. Introduction

The dynamics and spatial organization of plant com-
munities strongly depend on intraspecific and interspecific
interactions. Intraspecific interactions can lead to spatial
self-organization resulting in vegetation patterns of various
forms (Lefever and Lejeune, 1997; Klausmeier, 1999;
Okayasu and Aizawa, 2001; von Hardenberg et al., 2001;
Rietkerk et al., 2002; Gilad et al., 2004). A striking example
is vegetation bands on hill slopes in arid and semi-arid
regions (Valentin et al., 1999). Interspecific interactions can
induce species competition or facilitation resulting in local
exclusion or coexistence of species. Field studies of plant

interactions along environmental gradients reveal a change
from competition to facilitation (or from ‘‘negative’’ to
‘‘positive’’ plant interactions) as abiotic stresses or consumer
pressures increase (Bertness and Callaway, 1994; Bertness
and Hacker, 1994; Greenlee and Callaway, 1996; Callaway
and Walker, 1997; Brooker and Callaghan, 1998; Pugnaire
and Luque, 2001; Callaway et al., 2002; Bertness and
Ewanchuk, 2002; Maestre et al., 2003). In water-limited
systems such changes have been observed in woody–
herbaceous communities under conditions of increased
aridity. Facilitation in this case is manifested by the growth
of annuals, grasses and other species under the canopy of
woody plants (Pugnaire and Luque, 2001). Some other
studies (Casper, 1996; Tielbörger and Kadmon, 2000;
Pennings et al., 2003; Maestre and Cortina, 2004a, b) appear
to be in conflict with this reported shift in plant interactions
(Maestre et al., 2005).
Significant progress has been made in understanding

vegetation patterns by means of mathematical modeling.
Among the proposed models (Lefever and Lejeune, 1997;
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Klausmeier, 1999; von Hardenberg et al., 2001; Okayasu
and Aizawa, 2001; Rietkerk et al., 2002; Shnerb et al.,
2003; Gilad et al., 2004, 2007), most instrumental have
been those that include water–biomass feedbacks (Okayasu
and Aizawa, 2001; Rietkerk et al., 2002; Gilad et al., 2004).
Two feedbacks have been found particularly significant;
increased infiltration at vegetation patches (‘‘infiltration
feedback’’) and water uptake by plants’ roots (‘‘uptake
feedback’’). Any of these feedbacks alone can induce
spatial instabilities leading to biomass patterns; the uptake
feedback does that by capturing root augmentation in
response to biomass growth (Gilad et al., 2004, 2007).
However, including both feedbacks and changing their
relative strength can provide additional information about
the capacity of plants in water-limited systems to act as
ecosystem engineers (Gilad et al., 2004, 2007).

Despite the progress that has been made in under-
standing vegetation patterns (Rietkerk et al., 2004) and
plant interactions along environmental gradients (Brooker
and Callaghan, 1998), the spatio-temporal response of
plant communities to environmental stresses and the
underlying mechanisms are still poorly understood (House
et al., 2003). Mathematical modeling of vegetation pattern
formation has so far been limited to a single species
population (Lefever and Lejeune, 1997; Klausmeier, 1999;
Okayasu and Aizawa, 2001; von Hardenberg et al., 2001;
Rietkerk et al., 2002; Gilad et al., 2004) whereas most
models of interacting populations, beginning with the
Lotka–Volterra model (Murray, 1993), have focused on
competitive interactions (Tilman, 1982, 1988; Grover,
1997; Sommer and Worm, 2002), overlooking facilitation
(Brooker and Callaghan, 1998; Bruno et al., 2003). In
addition, cross-scale effects, such as the interplay between
patch dynamics at the landscape level and species
composition at the single-patch level, have hardly been
addressed.

In this paper we introduce and study a nonlinear
mathematical model for plant communities in water-
limited systems. The model captures the infiltration and
uptake water–biomass feedbacks and extends the single-
population model reported by Gilad et al. (2004, 2007) to
n-interacting populations. Using a two species version of
the model we elucidate mechanisms of plant-interaction
changes, induced by aridity stresses and disturbances, and
highlight the interplay between intraspecific and interspe-
cific interactions, and between landscape and single-patch
dynamics. We further study the relations between species-
interaction changes to species composition changes by
modeling herbaceous-species traits, such as tolerances to
shading and grazing.

2. A model for n-interacting plant populations

We consider a two-dimensional spatially extended
system where the limiting resource is water, and assume
the system contains n life forms of vegetation. Depending
on the particular context, a life form can represent a single

species or a functional group. We assume that the life
forms are affected by environmental factors such as
rainfall, topography, soil type, grazing, and clear-cutting,
but do not feed back significantly on the atmosphere or on
the topography and soil type (e.g. through erosion).

2.1. Description of the model

The model contains nþ 2 dynamical variables: n

biomass variables, BiðX;TÞ (i ¼ 1; . . . ; n), representing
biomass densities above ground level of the n life forms
in units of ½kg=m2�, a soil-water variable, W ðX;TÞ,
describing the amount of soil water available to the plants
per unit area of ground surface in units of ½kg=m2�, and a
surface water variable, HðX;TÞ, describing the height of a
thin water layer above ground level in units of [mm]. The
model equations are

qBi

qT
¼ Gi

B½Bi;W �Bið1� Bi=KiÞ �MiBi

þDBi
r2Bi; i ¼ 1; . . . ; n,

qW

qT
¼ IðfBigÞH � LðfBigÞW �W

Xn

i¼1

Gi
W ½Bi� þDWr

2W ,

qH

qT
¼ P� IðfBigÞH þDHr

2ðH2Þ þ 2DHrH � rZ

þ 2DHHr2Z, ð1Þ

where fBig stands for all biomass densities and
r2 ¼ q2X þ q2Y . The quantity Gi

B ½yr
�1� represents the

growth rate of the ith life form, Gi
W ½yr

�1� represents its
soil-water consumption rate, and Ki ½kg=m2� is its
maximum standing biomass. The rates Gi

B and Gi
W are func-

tionals of biomass and soil water as indicated (see Eqs. (3)
and (4)). The quantity I ½yr�1� represents the infiltration rate
of surface water into the soil, while L ½yr�1� represents the
evaporation rate of soil water. Both I and L are functions of
all biomass densities (see Eqs. (2) and (5)). The parameter P

[mm/yr] stands for the precipitation rate, and assumes in this
study constant values representing mean annual rainfall
rates. The parameter Mi ½yr

�1� describes the biomass-loss
rate of the ith life form due to mortality and various
disturbances (e.g. grazing). The terms DBi

r2Bi and DWr
2W

represent, respectively, local seed dispersal of the ith life
form, and soil-water transport in non-saturated soil (Hillel,
1998). Finally, the non-flat ground surface height [mm] is
described by the topography function ZðXÞ where the
parameter DH ½m

2=yr ðkg=m2Þ
�1
� represents the phenomen-

ological bottom friction coefficient between the surface water
and the ground surface.
The equation for H was motivated by shallow water

theory. The shallow water approximation is based on the
assumption of a thin layer of water where pressure
variations are very small and the motion becomes almost
two-dimensional. In deriving the equation for H a linear
dependence of the bottom friction on the velocity of
surface water has been assumed (Gilad et al., 2004).
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2.2. Modeling biomass–water feedbacks

Three biomass–water feedbacks are modeled in Eqs. (1)
as described below:

(1) infiltration feedback: increased infiltration at vegetation
patches,

(2) uptake feedback: water uptake by plants’ roots, and
(3) shading feedback: reduced evaporation at vegetation

patches.

The infiltration feedback is modeled through the explicit
form of the infiltration rate I. A monotonously increasing
dependence of I on biomass density is assumed in order to
capture the positive nature of this feedback; the larger the
biomass density the higher the infiltration rate and the
more soil water available to the plants. Various factors
contribute to the higher infiltration rate of surface water
into vegetated soil as compared with bare soil, including
biological crusts that grow on bare soil and reduce the
infiltration rate (Campbell et al., 1989; West, 1990), and
soil mounds, formed by litter accumulation and dust
deposition, that intercept runoff (Yair and Shachak, 1987).

The explicit dependence of the infiltration rate on the
biomass density is a generalization of the form used in
Gilad et al. (2004):

IðX;TÞ ¼ A

P
iY iBiðX;TÞ þQfP
iY iBiðX;TÞ þQ

, (2)

where A ½yr�1�, Q ½kg=m2�, Y i, and f are constant
parameters and Y 1 ¼ 1. The dependence of the infiltration
rate on the weighted biomass-density sum,

P
iY iBi, is

shown in Fig. 1. Two distinct limits of this quantity are
noteworthy. When

P
iY iBi ! 0, this quantity represents

the infiltration rate in bare soil, I ¼ Af . When
P

iY iBibQ

it represents infiltration rate in fully vegetated soil, I ¼ A.

The parameter Q represents a reference biomass density
beyond which the vegetation density approaches its full
capacity to increase the infiltration rate. The infiltration
contrast (between bare and vegetated soil) is quantified by
the parameter f, defined to span the range 0ofo1. When
f51 the infiltration rate in bare soil is much smaller than
the rate in vegetated soil. Such values can model bare soils
covered by biological crusts (Campbell et al., 1989; West,
1990). As f gets closer to 1, the infiltration rate becomes
independent of the biomass densities Bi. The parameter f

measures the strength of the positive feedback due to
increased infiltration at vegetation patches. The smaller f

the stronger the feedback effect.
The uptake feedback is modeled through the explicit

forms of the growth rate Gi
B and the consumption rate Gi

W .
These forms capture the non-local nature of the uptake
process by the root system, as well as the augmentation of
the root system in response to biomass growth (Gilad et al.,
2004, 2007). Water uptake obviously acts as a negative
feedback; water availability increases biomass growth but
biomass growth decreases water availability through water
consumption. The uptake process, however, also act as a
positive feedback when root augmentation is taken into
account; as the biomass grows the root system extends in
size, probes larger soil volumes, and take up more water.
Besides providing a mechanism for vegetation pattern
formation, independent of the infiltration-feedback
mechanism, this aspect of water uptake is crucial for
studying interspecific interaction changes in stressed
environments.
The growth rate Gi

B at a point X at time T is modeled by
the following non-local form:

Gi
BðX;TÞ ¼ Li

Z
O

GiðX;X
0;TÞW ðX0;TÞ dX0,

GiðX;X
0;TÞ ¼

1

2pS2
i

exp �
jX� X0j2

2½Sið1þ EiBiðX;TÞÞ�
2

� �
, ð3Þ

where Li ½ðkg=m2Þ
�1 yr�1� represents the plant’s growth

rate per unit amount of soil water, the Gaussian kernel
GiðX;X

0;TÞ represents the distribution of the root system,
and the integration is over the entire physical domain O.
According to this form, the biomass growth rate depends
not only on the amount of soil water at the plant location,
but also on the amount of soil water in the neighborhood
spanned by the plant’s roots. A measure for the root-
system size [m] is given by Sið1þ EiBiðX;TÞÞ, where
Ei ½ðkg=m2Þ

�1
� quantifies the root augmentation per unit

biomass, beyond a minimal root-system size Si. The
parameter Ei measures the strength of the positive uptake
feedback due to root augmentation; the larger Ei the
stronger the feedback effect of the ith species.
The soil-water consumption rate at a point X at time T is

similarly given by

Gi
W ðX;TÞ ¼ Gi

Z
O

GiðX
0;X;TÞBiðX

0;TÞ dX0, (4)
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Fig. 1. The infiltration rate I ¼ Að
P

iY iBi þQf Þ=ð
P

iY iBi þQÞ as a

function of the weighted biomass-density sum
P

iY iBi. When the biomass

is diminishingly small (
P

iY iBi5Q) the infiltration rate approaches the

value of Af. When the biomass is large (
P

iY iBibQ) the infiltration rate

approaches A. The infiltration contrast between bare and vegetated soil is

quantified by the parameter f, where 0ofo1; when f ¼ 1 the contrast is

zero (dashed line) and when f ¼ 0 the contrast is maximal. Small f values

can model biological crusts which significantly reduce the infiltration rates

in bare soils. Disturbances involving crust removal can be modeled by

relatively high f values.
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where Gi ½ðkg=m2Þ
�1 yr�1� measures the soil-water con-

sumption rate per unit biomass of the ith species. The
soil-water consumption rate at a given point is due to
all plants whose roots extend to this point. Note that
GiðX

0;X;TÞaGiðX;X
0;TÞ.

The shading feedback is captured by the following
biomass dependence of the soil-water evaporation rate:

LðX;TÞ ¼
N

ð1þ
Pn

i¼1RiBi=KiÞ
, (5)

where N ½yr�1� is the evaporation rate in bare soil. The
reduction in evaporation rate due to shading by the ith
life form is quantified by the parameter Ri. Throughout
this study we assume that the shading feedback is
sufficiently weak for the following linear approximation
to be valid:

LðX;TÞ � N 1�
Xn

i¼1

RiBi=Ki

 !
. (6)

The shading feedback is positive, but unlike the infiltration
feedback, the increased soil-water density under a vegeta-
tion patch, due to reduced evaporation, does not involve
depletion of soil water in the patch neighborhood. As a
consequence, the shading feedback is not expected to
induce spatial instabilities leading to vegetation patterns.

2.3. Non-dimensional form of the model

It is advantageous to express the model equations (1) in
terms of non-dimensional variables and parameters as
defined in Table 1. The non-dimensional form of the model

equations is

qbi

qt
¼ Gi

bbið1� biÞ � mibi þ dbi
r2bi; i ¼ 1; . . . ; n,

qw

qt
¼ Ih� n 1�

Xn

i¼1

ribi

 !
w� w

Xn

i¼1

Gi
w þ dwr

2w,

qh

qt
¼ p� Ihþ dhr

2ðh2
Þ þ 2dhrh � rzþ 2dhhr2z, ð7Þ

where r2 ¼ q2x þ q2y and t and x ¼ ðx; yÞ are the non-
dimensional time and spatial coordinates. The infiltration
term now reads

I ðx; tÞ ¼ a
P

icibiðx; tÞ þ qfP
icibiðx; tÞ þ q

, (8)

the growth-rate term Gi
b is

Gi
bðx; tÞ ¼ nli

Z
O

giðx; x
0; tÞwðx0; tÞ dx0,

giðx; x
0; tÞ ¼

1

2ps2i
exp �

jx� x0j2

2½sið1þ Zibiðx; tÞÞ�
2

� �
, ð9Þ

and the soil-water consumption rate is

Gi
wðx; tÞ ¼ gi

Z
O

giðx
0;x; tÞbiðx

0; tÞ dx0. (10)

3. Applying the model to woody–herbaceous ecosystems

Motivated by recent field studies of plant interactions in
woody–herbaceous communities along aridity gradients
(Pugnaire and Luque, 2001), we consider a system of two
species (n ¼ 2), representing woody vegetation (b1) and
herbaceous vegetation (b2). Accordingly we choose the
maximum standing biomass of the woody species to be an
order of magnitude higher than that of the herbaceous
species while its growth and mortality rates are taken to be
significantly slower. We confine ourselves to the case of
strong infiltration feedback (f51) and moderate uptake
feedback of the woody species (Z1�Oð1Þ). These conditions
are often realized in drylands where biological soil crusts
increase the infiltration contrast and the woody vegetation
consists of shrubs (Shachak et al., 1998). With this
parameter choice we find that the herbaceous vegetation
is strongly affected by the woody vegetation, but the
woody vegetation is hardly affected by the herbaceous one.
The specific parameter values used in this paper, except
otherwise mentioned, are: n ¼ dw ¼ 1:667, a ¼ 16:667,
q ¼ 0:05, f ¼ 0:1, dh ¼ 416:667, Z1 ¼ 3:5, Z2 ¼ 0:35, g1 ¼
2:083, g2 ¼ 0:208, r1 ¼ 0:95, r2 ¼ c2 ¼ 0:005, db1 ¼ db2 ¼

0:167, s2 ¼ 1, l2 ¼ 10 and m2 ¼ 4:1. These choices are
motivated by earlier studies of woody–herbaceous systems
in drylands (Sternberg and Shoshany, 2001; Hillel, 1998;
Rietkerk et al., 2002). In all simulations we used periodic
boundary conditions and domain sizes corresponding to
7:5� 7:5m2. We note that the model solutions described
here are robust and do not depend on delicate tuning of
any particular parameter.

ARTICLE IN PRESS

Table 1

Relations between non-dimensional variables and parameters and the

dimensional ones appearing in the dimensional form of the model

equations (1)–(4)

Quantity Scaling

bi Bi=Ki

w L1W=N

h L1H=N

n N=M1

li Li=L1

mi Mi=M1

a A=M1

q Q=K1

x X=S1

t M1T

p L1P=NM1

gi GiKi=M1

Zi EiKi

ri Ri

si Si=S1

dbi DBi
=M1S2

1

dw DW=M1S2
1

dh DH N=M1L1S2
1

ci Y iKi=K1

z L1Z=N

Note that according to these relations l1 ¼ m1 ¼ s1 ¼ 1.

E. Gilad et al. / Theoretical Population Biology 72 (2007) 214–230 217
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Eqs. (7) for n ¼ 2 have four stationary uniform
solutions:

� B: bare soil (b1 ¼ 0; b2 ¼ 0).
� V1: uniform woody vegetation (b1a0; b2 ¼ 0).
� V2: uniform herbaceous vegetation (b1 ¼ 0; b2a0).
� M: uniform mixed woody–herbaceous vegetation

(b1a0; b2a0).

These are displayed in the bifurcation diagram shown in
Fig. 2 with p as the control parameter. The bare-soil
solution, B, is given by

b1 ¼ 0; b2 ¼ 0; w ¼ p=n; h ¼ p=af . (11)

The linear stability of this solution is determined by the
dynamics of small non-uniform perturbations of the form
ðdb1; db2; dw; dhÞT ¼ a exp½yðkÞtþ ik � x� þ c:c:, where yðkÞ
is the growth rate of a perturbation characterized by a
wavenumber k ¼ jkj, a is a constant vector, and ‘‘c.c.’’
stands for the complex conjugate. We refer the reader to
the Appendix for the calculation of the growth rates
(eigenvalues) of perturbations along different modes. The
outcomes of this calculation are

y1ðkÞ ¼ p� 1� db1k2, (12)

determining the growth rate of woody vegetation, and

y2ðkÞ ¼ l2p� m2 � db2k2, (13)

determining the growth rate of herbaceous vegetation (two
additional eigenvalues are always negative and do not
affect the stability of the bare-soil solution).

Both y1 and y2 can become positive as p is increased
from zero, implying instabilities of the bare-soil solution to
vegetation growth. If m2=l2o1 (the case considered in this
work) the bare-soil solution first loses stability to the
growth of uniform herbaceous vegetation. The threshold of
this instability, p ¼ pb2

, is determined by the equation
y2ð0Þ ¼ 0 whose solution gives pb2

¼ m2=l2. Fig. 3a shows
the growth-rate curves, y2 ¼ y2ðkÞ, below, at and above pb2

.
The curve at pb2

shows that the first wavenumber to grow is
k ¼ 0 indicating an instability to uniform herbaceous
vegetation (V2). If m2=l241, the bare-soil solution first
loses stability to the growth of uniform woody vegetation
(V1) and the instability threshold is p ¼ pb1

¼ 1.
The calculation of the other solutions and their linear

stability analyses are described in the Appendix. The
bifurcation diagram in Fig. 2 shows the three solution
branches, bare soil (B), uniform woody vegetation (V1) and
uniform herbaceous vegetation (V2), and their stability
properties. Also shown is a non-uniform solution branch
(S) evaluated by numerically solving Eqs. (7). This solution
branch describes a woody spot pattern at relatively low and
high p values, and a mixed woody–herbaceous spot pattern
at intermediate p values. Throughout this paper we confine
ourselves to a parameter regime where stable spot patterns
coexist with stable uniform herbaceous vegetation. Not
shown in the diagram is the uniform mixed vegetation
solution (M) which is always unstable in the parameter
regime considered in this work.
The form of the V1 branch indicates that the bifurcation

of the bare-soil solution to uniform woody vegetation is
subcritical. The criterion for subcriticality and the asso-
ciated saddle-node bifurcation at p ¼ pSDN are discussed in
the Appendix. Subcritical bifurcations often imply bist-
ability of states and hysteresis phenomena. In the present
context, however, this is not the case (even when m2=l241)
because the part of the V1 branch that is stable to uniform
perturbations (dotted part) is unstable to non-uniform

ARTICLE IN PRESS

Fig. 2. Bifurcation diagram showing homogeneous and pattern solutions

of the woody–herbaceous system. The solution branches B, V1 and V2
represent, respectively, uniform bare soil, uniform woody vegetation and

uniform herbaceous vegetation. The branch S represents the amplitudes of

spots patterns. Solid lines represent stable solutions, and dashed and

dotted lines represent solutions unstable to uniform and non-uniform

perturbations, respectively. The thresholds pb2
¼ m2=l2 and pb1

¼ 1

correspond to 307:5 and 750mm/yr, respectively. The points p
SDN

and

p
T

denote, respectively, the saddle-node bifurcation and the finite-

wavenumber instability along the uniform woody-vegetation branch V1.

Fig. 3. Growth rates of non-uniform perturbations (a) about the bare-soil

solution B near the bifurcation point p ¼ pb2
, and (b) about the uniform

woody-vegetation solution V1 near the bifurcation point p ¼ p
T
(see Fig 2).

The growth rates, as functions of the perturbations’ wavenumbers k, are

given by the largest eigenvalues of the corresponding Jacobian matrices

(Eq. (A.29)). As p is increased past p ¼ pb2
a zero mode (k ¼ 0) begins to

grow, implying an instability of the bare-soil solution to uniform

perturbations (a). As p is decreased past p ¼ p
T

a finite-wavenumber

mode (k ¼ kc) begins to grow, implying an instability of the uniform

woody-vegetation solution to non-uniform perturbations (b).

E. Gilad et al. / Theoretical Population Biology 72 (2007) 214–230218
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perturbations due to a Turing-like instability at p ¼ pT .
Growth-rate curves demonstrating this instability are
shown in Fig. 3b.

4. Plant interactions in stressed environments

We consider plant interactions at three different levels:
single-patch, a few interacting patches, and landscape. At
the single-patch level we study how interspecific interac-
tions change along aridity gradients (Sections 4.1 and 4.2).
At the level of a few interacting patches we study the
impact of intraspecific woody competition on interspecific
interactions (Section 4.3). Finally, at the landscape level we
study how global pattern transitions feed back to the level
of a single patch and affect interspecific interactions.

4.1. From competition to facilitation along aridity gradient

We first reproduce an interaction trend observed in field
studies, whereby competitive interspecific plant-interac-
tions change to facilitative as environmental stresses
increase (Bertness and Callaway, 1994; Bertness and
Hacker, 1994; Greenlee and Callaway, 1996; Callaway
and Walker, 1997; Brooker and Callaghan, 1998; Pugnaire
and Luque, 2001; Callaway et al., 2002; Bertness and
Ewanchuk, 2002; Maestre et al., 2003). We associate plant
competition (facilitation) with cases where the soil-water
density under a patch of woody vegetation is lower (higher)
than the density in the surrounding bare soil. Fig. 4a shows
results of simulating the model at decreasing precipitation
values starting the simulations with initial states including
no herbaceous (b2) vegetation. The line B shows the soil-
water content in bare soil while the line S shows the
maximal water density under a b1 patch. The two lines
intersect at p ¼ pf suggesting a crossover from competition
at high precipitation (p4pf ), where the soil-water density
under a b1 patch is lower than in bare soil, to facilitation at
low precipitation (popf ), where the soil-water density
under a patch exceeds that of bare soil.

Figs. 4b,c show examples of spatial profiles of b1 and w

in the competition range (c) and in the facilitation range
(b). Note that the line S terminates at some low
precipitation value. Below that value the woody vegetation
(b1) no longer survives the dry conditions and a cata-
strophic shift (Scheffer et al., 2001) to bare soil occurs.

The model offers the following explanation for this
crossover. As the system becomes more arid, the b1 patch
area becomes smaller and the water uptake decreases
significantly. The infiltration rate at the reduced patch area,
however, decreases only slightly because of its weak
biomass dependence for b1bq (see Fig. 1). As a result a
given area of a b1 patch in a more arid environment traps
nearly the same amount of surface water, but a significantly
smaller amount of soil water is consumed in that unit area
due to fewer b1 individuals in the surrounding region, as
demonstrated in Fig. 5. The outcome is an increased soil-
water density at the b1 patch area which the b2 species can

benefit from. Two factors prevent from the b1 species to
exhaust the soil water for its own growth; its maximum
standing biomass (K1 in the dimensional model)
which limits the local growth, and the depletion of soil
water in the immediate vicinity of the b1 patch which
prevents its expansion. We assume here that K1 represents
factors that limit the woody-species growth but do not
limit the herbaceous-species growth. A possible example
of such a factor is a developmental strategy of dryland
woody species to limit resource exploitation and growth
during wet seasons in order to survive the dry seasons that
follow.
Simulations of the model equations with small randomly

distributed initial b2 biomass, indeed show a transition
from competition at p4pf , where the b1 species excludes
the b2 species from its patches and their immediate
neighborhoods (Fig. 4e), to facilitation at popf , where
the b2 species cannot survive the aridity stress and can only
grow in patches of the b1 species (Fig. 4d). In this range the
woody vegetation acts as an ecosystem engineer (Jones
et al., 1994, 1997; Gurney and Lawton, 1996); it modifies
the physical environment by redistributing the water
resource, thereby creating habitats for herbaceous species.
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Fig. 4. Model solutions showing a transition from competition to

facilitation as precipitation decreases. The lines B and S in panel

(a) show, respectively, the soil-water density in bare soil and under a b1
patch (in the absence of b2) as functions of precipitation. Above (below)

p ¼ pf the water content under the b1 patch is lower (higher) than in bare

soil, implying competition (facilitation). Panels b–e show spatial profiles of

b1, b2 and w in the competition range p4pf (c,e) where an herbaceous

species b2 is excluded by the woody species b1, and in the facilitation range

popf (b,d) where b2 grows under the b1 canopy. Precipitation values are:

p ¼ 0:25 (187:5mm=yr) for b,d, p ¼ 0:6 (450mm/yr) for c,e, and pf ¼ 0:5
(378mm/yr).
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4.2. Back to competition

The transition from competition to facilitation as
precipitation decreases (Fig. 4) was obtained assuming
that the parameter Z1, measuring the capacity of the woody
vegetation to extend its roots as it grows, is independent of
the precipitation p. Most dryland plants, however, have
developed the capability to further extend their root
systems in response to aridity stresses (Bloom et al.,
1985). Fig. 6a shows a schematic dependence of Z1 on p

that accounts for such a capability. The increased value of
Z1 at low p improves the resilience of b1 plants to aridity
stresses as they are now capable of uptaking more soil
water from their surroundings. The improved resilience is
accompanied, however, by a decrease in the soil-water
density under a b1 patch (dashed part of the line S in Fig. 6b),
and when the increase in Z1 at low p is steep enough, another
crossing point, pc, of the B and S lines may appear. Thus,
depending on the particular Z1ðpÞ dependence, some woody
species may show a transition back to competition as the
aridity stress further increases.

The specific form of the S line may depend on other
species traits as well. A species with a higher growth rate,
for example, is characterized by an S0 line that is shifted to

lower precipitation values. Such a species may have a
crossing point p0f (competition to facilitation) close to the
crossing point pc (facilitation to competition) of another
species, as shown in Fig. 6b. In such cases both directions
of plant-interaction change, competition to facilitation and
facilitation to competition, can be realized along the same
environmental gradient, as field observations suggest
(Maestre et al., 2005).

4.3. Interspecific facilitation induced by intraspecific

competition

So far we considered interspecific interactions at the level
of a single patch. At the level of a few interacting patches,
competition over the soil-water resource among the woody
patches can exert water stress on each patch. The effect of
this ‘‘biotic’’ water stress is similar to the effect discussed in
the previous subsections of an abiotic aridity stress on a
single, isolated patch. Fig. 7 shows the response of an
herbaceous species b2 to sparse (a) and dense (b) woody
patches b1. When the patches are sufficiently sparse and
effectively isolated, the b1 species competes with the b2

species and excludes it (Fig. 7a). However, when the
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Fig. 5. Water balance under a woody patch along an aridity gradient,

calculated using the model equations. Shown are the water uptake rate Gw

(solid line) and the water infiltration rate I (dotted line) per constant area

size (hatched circles in upper panels) in a b1 patch as precipitation changes.

As the system becomes more arid, the b1 patch area becomes smaller (see

upper panels) and the water uptake from the same area size decreases

significantly. The infiltration rate, however, decreases only slightly.

Consequently, the soil-water density per unit area of a woody patch

increases as the system becomes more arid. The values of Gw and I are

normalized with respect to their maximal value and correspond to the

model solutions denoted by the S curve in Fig. 4. The asymptotic patches

shown in the upper panels (from left to right) were calculated at

precipitation values 0.25 (187.5mm/yr), 0.45 (337.5mm/yr) and 0.65

(487.5mm/yr).

Fig. 6. Transition back to competition at extreme aridity, obtained by

introducing a functional dependence of the root extension parameter Z1 on
the precipitation rate p (panel a). The increase in Z1 at low p (dashed line)

improves the resilience of b1 plants to aridity stresses, but decreases the

soil-water content under their patches (dashed part of the S line in panel

b). Transition back to competition occurs below the second crossing point

of the B and S lines, pcopf (pc corresponds to 140mm/yr). The S0 line
shows the soil-water content under the patches of another b1 species for

which the upper crossing point, p0f (competition to facilitation), is close to

the lower crossing point, pc (facilitation to competition), of the first

species. Under such circumstances both directions of plant-interaction

change, competition to facilitation and facilitation to competition, can be

realized along the same rainfall gradient.
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patches are dense enough, coexistence of the two species
within the patches becomes possible (Fig. 7b). The
competition for water reduces the b1 patch size and
consequently the soil-water consumption (see Fig. 5). As
a result, more soil water is left for the b2 species allowing its
coexistence with the b1 species.

The facilitation of the herbaceous species in the case of
dense woody patches can be a transient phenomenon
(Callaway and Walker, 1997) if the initial dense group of
woody patches is isolated, as shown in Fig. 8. The woody

patches at the group boundary tend to grow toward the
surrounding open space. As the b1 patches grow in size
they consume more water and exclude the b2 species. Along
with this process the distances between nearby patches
increase; the newly added woody individuals increase the
competition over the water resource and lead to the
dieback of woody individuals at any patch side that faces
other patches. Thus species coexistence within the patches
gradually turns into species exclusion, or facilitation turns
into competition. This transient dynamics can be very slow,
hundreds of years in the model simulations.

4.4. Spatial patterning effects

At the landscape level, symmetry breaking vegetation
patterns can appear (Gilad et al., 2004; Rietkerk et al.,
2004). At this scale environmental stresses or consumer
pressures may affect interspecific interactions by shifting
the system from one pattern state to another. Fig. 9 (top
row) shows a global transition from vegetation bands to
vegetation spots of the woody species on a slope as a result
of a local clear-cut along one of the bands. The mechanism
of this transition is as follows (Gilad et al., 2004, 2007). The
clear-cut allows for more runoff to accumulate at the band
segment just below it. As a result this segment grows faster,
draws more water from its surrounding and induces
vegetation decay at the nearby band segments. The decay
of the vegetation in the nearby segments allow for more
runoff to accumulate at the next band downhill. The whole
process continues repeatedly until the whole pattern
transforms into a spot pattern. As shown in Gilad et al.
(2007), the transition to spots is accompanied by higher
soil-water densities under vegetation patches for each spot
experiences a bare area uphill twice as large as the bare area
between successive bands, and therefore absorbs more
runoff.
Simulations of the model equations (7) indeed show that

herbaceous species (b2) that are excluded by the woody
species (b1) in the banded pattern can coexist with the
woody species in the spotted pattern (Fig. 9, bottom row).
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Fig. 7. Model solutions showing a transition from competition to

facilitation as a result of a biotic stress. Shown are the spatial distributions

of the two biomass densities, b1 and b2, for sparsely scattered b1 patches

(a) and for a closely packed hexagonal pattern of b1 patches (b). The biotic

stress results from intraspecific competition among b1 patches over the

water resource. The smaller b1 patch size in case (b) reflects a stronger

stress. For the chosen environment and species traits, the b2 species is

excluded from b1 patches and their close neighborhoods when the patches

are sparsely scattered, but coexists with b1 (within its patches) when the

patches are closely packed. The biotic stress, associated with intraspecific

b1-patch competition, leads to interspecific facilitation. The parameters

used are given in the text except for: n ¼ dw ¼ 3:333, a ¼ 33:333,
dh ¼ 333:333, g1 ¼ 8:333, g2 ¼ 0:833, db1 ¼ db2 ¼ 0:033, m2 ¼ 4:3 and p ¼

0:55 (82.5mm/yr).

Fig. 8. Interspecific facilitation induced by intraspecific competition as a transient phenomenon. Shown are snapshots of the evolution in time of an

isolated group of b1 patches. Due to intraspecific competition among b1 patches within the group they tend to grow toward the surrounding open space,

thus increasing the distances between them and reducing the stress they exert on one another by water uptake. As a consequence, the b1 patches grow in

size, consume more water and exclude the b2 species. Parameters used are as in Fig. 7 and t is in years.

E. Gilad et al. / Theoretical Population Biology 72 (2007) 214–230 221



Author's personal copy

The transition from banded to spotted vegetation involves,
in effect, a facilitation front propagating downhill; as bands
gradually break into spots patches with higher soil-water
density are formed, facilitating the growth of herbaceous
species. This is an example of a cross-scale effect where
pattern transitions at the landscape scale change inter-
specific interactions at the single-patch scale. The fact that
the transition from bands to spots takes place at constant

environmental conditions (including precipitation), indi-
cates it is a pure spatial patterning effect rather than a
single-patch facilitation induced by an aridity stress as
discussed earlier.

5. Mechanisms of species-diversity change in stressed

environments

Transitions from competition to facilitation as described
in Section 4.1 are likely to involve changes in species
composition. The results shown in Figs. 4d,e apply to
herbaceous species whose growth is solely limited by water
availability. Consider two additional factors that can limit
the growth of herbaceous species; grazing and shading. A
species sensitive to grazing can be modeled by assigning it a
relatively high biomass-loss rate except in woody patches,
where it is protected by the woody canopies. For simplicity
we choose a linear relationship, m2 ¼ m20 � m21b1. Similarly,
a species sensitive to shading (i.e. in need for abundant
sunlight) can be modeled by assigning it a relatively high
growth rate except in woody patches, l2 ¼ l20 � l21b1.

We repeated the model simulation shown in Figs. 4d,e,
once with a shading-sensitive herbaceous species whose
biomass density is denoted by b2S, and once with a grazing-
sensitive species whose biomass density is denoted by b2G.
We use the following parameter values: m20 ¼ 5:5, m21 ¼
2:25 and l20 ¼ l21 ¼ 10. The results are shown in Fig. 10.
The b2 species, whose growth is solely limited by water, is
excluded by the woody species b1 for p4pf but grows
under its canopy for popf (Figs. 10a,b). The b2S species,

that grow in the competition range (p4pf ) away from the
woody patches, cannot survive the shading under the
woody canopies in the facilitation range (popf ), and
disappears as a result of the transition from competition to
facilitation (Figs. 10c,d). By contrast, the b2G species, that
cannot survive the open areas in the competition range,
appears and grows under the canopies of the woody
patches in the facilitation range (Figs. 10e,f).
Interspecific facilitation of herbaceous species may also

result from intraspecific competition between woody
patches at fixed environmental conditions (see Section 4.3).
When the patches are far from one another, the woody
species competes with the herbaceous species and ex-
cludes them. In this case, the b2G species goes extinct,
for it cannot survive the grazing stress in the open areas
where it is not excluded by the woody species. The b2S

species, on the other hand, can grow in the unshaded open
areas where the soil-water density is high, as Fig. 11a
demonstrates (b2S marked in yellow). When the patches are
close enough, the intraspecific competition of the woody
species for water reduces the sizes of its patches and
consequently the soil-water consumption, giving rise to
facilitation of herbaceous species in these patches. In this
case, however, only the b2G species can survive as Fig. 11b
shows (b2G marked in purple). The b2S species goes
extinct for it cannot survive the shading under the mesic
woody canopies nor the dry unshaded open areas.
Herbaceous species insensitive to grazing and shading
(b2) are likely to appear both in sparse and dense b1 patch
patterns (see Fig. 7).
Irregular patterns, involving regions of sparse and dense

patches, can accommodate both types of species (b2S and
b2G) as Fig. 11c shows, thus increasing the diversity of
herbaceous species. This finding is consistent with the niche
approach to biodiversity theory (Silvertown, 2004) where
diversity is often linked to system heterogeneity. Irregular
patch patterns exist in bistability ranges of uniform
herbaceous vegetation and mixed spot patterns, and can
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Fig. 9. Facilitation induced by a pattern shift at the landscape level. Shown is a sequence of snapshots at different times (t is in years) describing a

transition from vegetation bands to vegetation spots on a slope induced by a local clear-cut along one of the bands (b2 is randomly distributed at t ¼ 0). In

the banded pattern the b1 species excludes the b2 species, but in the spotted pattern they coexist due to enhanced runoff concentration. The slope angle is

15	, the precipitation is p ¼ 1:6 (240mm/yr) and all other parameters are as in Fig. 7 except for g1 ¼ 16:667, g2 ¼ 1:667, and m2 ¼ 4:8.
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be maintained in the field by appropriate clear-cutting and
grazing management.
Variations in herbaceous-species composition can also

result from transients involving changes in woody-patch
density. The woody-patch ‘‘repulsion’’ shown in Fig. 8
implies, for example, the disappearance of a grazing-
sensitive species (b2G) on a time scale of hundreds of
years.

6. Discussion

We presented here a mathematical model for the
dynamics of a plant community involving n-interacting
populations in water-limited systems. Two ingredients of
the model are particularly significant for understanding
plant interactions and their implications for species
diversity: the infiltration feedback and the uptake feed-
back. Each feedback, independently of the other, induces
intraspecific interactions that lead to similar spatial
patterns at the landscape level. The two feedbacks differ,
however, in the interspecific interactions they induce. The
infiltration feedback induces positive interactions (facilita-
tion) by trapping surface water in vegetation patches,
thereby increasing the soil-water resource in these patches,
and creating habitats for other vegetation species. The
uptake feedback induces negative interactions (competi-
tion) by exploiting the soil-water resource and depleting its
content in and around vegetation patches. Thus, dom-
inance of the uptake feedback leads to competition and
exclusion, whereas dominance of the infiltration feedback
results in facilitation and coexistence.
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Fig. 10. Herbaceous-species composition changes induced by a precipita-

tion drop from the competition range, p4pf , to the facilitation range,

popf . Panels a,c,e (b,d,f) show spatial profiles of the woody (b1) and the

herbaceous (b2) species below (above) pf . An herbaceous species whose

growth is solely limited by water, is excluded by the woody species for

p4pf but grows under its canopy for popf (a,b). An herbaceous species

b2S , whose growth is also limited by shading, survives away from a woody

patch for p4pf , but disappears for popf (c,d). A species b2G , whose

growth is limited by grazing, cannot survive the woody competition and

the grazing stress for p4pf , but can grow under woody canopies for popf

(f,g). Precipitation values are: p ¼ 0:25 (187.5mm/yr) for a,c,e, p ¼ 0:6
(450mm/yr) for b,d,f, and pf ¼ 0:5 (378mm/yr).

Fig. 11. Effects of woody-patch density on herbaceous-species composition. The green, yellow and purple shades represent, respectively, the spatial

biomass distributions of the woody species, b1, the shading-sensitive herbaceous species, b2S , and the grazing-sensitive herbaceous species, b2G. When the

woody patches are sparse (a) the woody species competes and excludes the herbaceous species. In the open space away from the woody patches the

grazing-sensitive species cannot cope with the high grazing stress and the shading-sensitive species prevails. When the b1 patches are dense (b) the woody

species facilitates the growth of the herbaceous species under its canopies. In this case the shading-sensitive species cannot survive and the grazing-sensitive

species prevails. When the pattern involves regions of sparse and dense patches (c), the two herbaceous species coexist, each in its own niche. The

precipitation is p ¼ 0:55 (82.5mm/yr) and all other parameters are as Fig. 7.
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The explicit modeling of the infiltration and uptake
feedbacks represents a ‘‘first-principle’’ approach whereby
community and landscape properties, such as spatial
structures, plant interactions and species composition,
emerge as solutions of the model equations rather than
being preset in formulating the model. For example,
positive or negative interspecific interactions are not
predetermined by the signs of coupling terms in the model
equations, as is the case with the Lotka–Volterra model
and with some other models (Sandvik et al., 2002), but
rather follow from the relative strength of the water–
biomass feedbacks that, in turn, is affected by a variety of
basic, measurable parameters describing species traits and
environmental conditions.

Our study of plant interactions in a mixed woody–her-
baceous ecosystem suggests new mechanisms of plant-
interaction change in water stressed environments. The
mechanisms involve changes in the balance between the
infiltration feedback and the uptake feedback (Fig. 5).
These changes may result in increased interspecific
competition or facilitation, or in complete transitions from
competition to facilitation and vice versa. Transitions from
competition to facilitation can be induced by aridity
stresses (Fig. 4), or by intraspecific patch competition over
the water resource (Fig. 7). Both factors act to weaken the
water uptake (by reducing the woody-patch size) while
leaving the infiltration rate almost unaffected, thereby
tilting the balance towards facilitation. Transitions back to
competition as the aridity stress further increases can result
from the capability of a plant species to further extend its
root system in response to an aridity stress (Fig. 6). We also
demonstrate how both directions of plant-interaction
change, competition to facilitation and facilitation to

competition, can be realized along the same environmental
gradient. These results shed new light on field observations
(Pugnaire and Luque, 2001; Maestre et al., 2005) that are
apparently in conflict, and provide possible resolution to
the conflict.
The two biomass–water feedbacks are processes that act

at the level of a single patch but affect pattern formation at
the landscape level by inducing spatial instabilities (Cross
and Hohenberg, 1993). Conversely, processes at the land-
scape level, such as transitions from one pattern state to
another, can feed back to the level of a single patch by
changing the local soil-water distribution, thereby affecting
interspecific interactions. An example of such a cross-scale
process (Levin, 1992, 2000) is shown in Fig. 9, where a
pattern shift from banded to spotted vegetation on a slope
results in the facilitation of herbaceous-species growth in
woody patches.
These mechanisms of plant-interaction change bear

on species composition as discussed in Section 5 and as
Figs. 9–11 demonstrate. Noteworthy is the result that
irregular vegetation patterns, involving regions of sparse
and dense patches, can support higher species diversity
than regular patterns.
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Appendix A. Linear stability analysis of stationary homogeneous solutions

A.1. Analysis of the general n-species model

We present here a linear stability analysis of homogeneous stationary solutions of the model equations (7)–(10) for the
case of plane topography. Denoting the homogeneous stationary solutions by U0 ¼ ðb10; . . . ; bn0;w0; h0Þ

T, the perturbed
solutions are written as

Uðx; tÞ ¼ U0 þ dUðx; tÞ,

dUðx; tÞ ¼ aðtÞeik�x þ c:c:; ðA:1Þ

where

U ¼ ðb1; . . . ; bn;w; hÞ
T,

dU ¼ ðdb1; . . . ; dbn; dw; dhÞT,

aðtÞ ¼ ½ab1ðtÞ; . . . ; abn ðtÞ; awðtÞ; ahðtÞ�
T, ðA:2Þ

and ‘‘c.c.’’ stands for the complex conjugate.
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Substitution of the perturbed solution (A.1) into the model equations (7)–(10) gives

ðdbiÞt ¼ Gi
bjU0þdUðbi0 þ dbiÞ½1� ðbi0 þ dbiÞ� � miðbi0 þ dbiÞ þ dbi

r2ðbi0 þ dbiÞ,

ðdwÞt ¼ I jU0þdUðh0 þ dhÞ � n 1�
Xn

i¼1

riðbi0 þ dbiÞ

" #
ðw0 þ dwÞ � ðw0 þ dwÞ

�
Xn

i¼1

Gi
wjU0þdU þ dwr

2ðw0 þ dwÞ,

ðdhÞt ¼ p� I jU0þdUðh0 þ dhÞ þ dhr
2½ðh0 þ dhÞ2�, ðA:3Þ

where i ¼ 1; . . . ; n. Expanding the infiltration term (8) up to first order in dbi we obtain

I jU0þdU ¼ I 0 þ
Xn

i¼1

qI
qbi

����
bi¼bi0

dbi ¼ a
P

icibi0 þ qfP
icibi0 þ q

þ a
Xn

i¼1

ciqð1� f Þ

ð
P

kckbk0 þ qÞ2
dbi þOðdb2

i Þ. ðA:4Þ

To evaluate the terms Gi
bjU0þdU and Gi

wjU0þdU we first expand the kernels, giðx;x
0Þ and giðx

0;xÞ up to first order in dbi:

giðx;x
0Þ ¼ g0

i ðx; x
0Þ þ g1

i ðx;x
0ÞdbiðxÞ þOðdb2

i Þ,

giðx
0;xÞ ¼ g0

i ðx
0;xÞ þ g1

i ðx
0;xÞdbiðx

0Þ þOðdb2
i Þ, ðA:5Þ

where

g0
i ðx; x

0Þ ¼ g0
i ðx
0; xÞ ¼ giðx; x

0Þjbi¼bi0
¼

1

2ps2i
e�jx�x

0j2=2x2
i ,

g1
i ðx; x

0Þ ¼ g1
i ðx
0; xÞ ¼

q
qbi

½giðx;x
0Þ�

����
bi¼bi0

¼
Zi

2psix
3
i

jx� x0j2e�jx�x
0j2=2x2

i . ðA:6Þ

Here, xi 
 sið1þ Zibi0Þ and jx� x0j2 ¼ ðx� x0Þ2 þ ðy� y0Þ2.
Substitution of these forms and the perturbed solution in Eqs. (9) and (10), gives

Gi
bjU0þdU ¼ nli

Z
giðx;x

0Þwðx0Þ dx0 � nli

Z
½g0

i ðx;x
0Þ þ g1

i ðx;x
0ÞdbiðxÞ�½w0 þ dwðx0Þ� dx0

¼ nliw0

Z
g0

i ðx; x
0Þ dx0 þ nli

Z
g0

i ðx; x
0Þdwðx0Þ dx0 þ nliw0dbiðxÞ

Z
g1

i ðx; x
0Þ dx0,

Gi
wjU0þdU ¼ gi

Z
giðx

0;xÞbiðx
0Þ dx0 � gi

Z
½g0

i ðx
0;xÞ þ g1

i ðx
0; xÞdbiðx

0Þ�½bi0 þ dbiðx
0Þ� dx0

¼ gibi0

Z
g0

i ðx
0;xÞ dx0 þ gi

Z
g0

i ðx
0;xÞdbiðx

0Þ dx0 þ gibi0

Z
g1

i ðx
0; xÞdbiðx

0Þ dx0, ðA:7Þ

where the integration is over the entire domain. Finally, by solving the integrals in Eq. (A.7) we obtain to linear order in
the perturbation dU:

Gi
bjU0þdU ¼ nliw0ðxi=siÞ

2
þ nliðxi=siÞ

2e�k2x2
i
=2dwðxÞ þ 2nliZiðxi=siÞw0dbiðxÞ,

Gi
wjU0þdU ¼ gibi0ðxi=siÞ

2
þ giðxi=siÞe

�k2x2
i
=2½1þ Zibi0ð3� k2x2i Þ�dbiðxÞ, ðA:8Þ

where k ¼ jkj is the wavenumber of the perturbation. Using Eqs. (A.4) and (A.8) in Eq. (A.3) and the fact that the
stationary homogeneous solutions U0 ¼ b10; . . . ; bn0;w0; h0ð Þ

T satisfy

0 ¼ nlibi0ð1� bi0Þðxi=siÞ
2w0 � mibi0; i ¼ 1; . . . ; n,

0 ¼ ah0

P
icibi0 þ qfP
icibi0 þ q

� n 1�
Xn

i¼1

ribi0

 !
w0 � w0

Xn

i¼1

gibi0ðxi=siÞ
2,

0 ¼ p� ah0

P
icibi0 þ qfP
icibi0 þ q

, (A.9)

we obtain the following system of linear ordinary differential equations for the perturbation amplitudes aðtÞ:

dabi

dt
¼ nliw0ðxi=siÞ½1� 2bi0 þ Zibi0ð3� 4bi0Þ � mi � dbi

k2
�abi
þ nlibi0ð1� bi0Þðxi=siÞ

2ek2x2
i
=2aw; i ¼ 1; . . . ; n,
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daw

dt
¼
Xn

i¼1

ah0ciqð1� f Þ

ð
P

kckbk0 þ qÞ2
þ nw0ri

(
�w0giðxi=siÞe

k2x2
i
=2½1þ Zibi0ð3� k2x2i Þ�

)
abi

� n 1�
Xn

i¼1

ribi0

 !
þ
Xn

i¼1

gibi0ðxi=siÞ
2
þ dwk2

" #
aw þ a

P
icibi0 þ qfP
icibi0 þ q

ah,

dah

dt
¼ �

Xn

i¼1

ah0ciqð1� f Þ

ð
P

kckbk0 þ qÞ2

" #
abi
þ a

P
icibi0 þ qfP
icibi0 þ q

� 2h0dhk2

� �
ah. ðA:10Þ

Assuming exponential growth for the perturbation amplitudes, aðtÞ ¼ að0Þeyt, we obtain the following eigenvalue problem:

yaðtÞ ¼ J ðkÞaðtÞ, (A.11)

where J ðkÞ 2 Rðnþ2Þ�ðnþ2Þ is the Jacobian matrix whose entries are given by the terms of Eq. (A.10), and whose explicit
forms for n ¼ 1 and 2 will be given in the next two sections. By solving this eigenvalue problem we obtain dispersion
relations of the form y ¼ yðkÞ, from which we deduce the stability of the stationary homogeneous solutions.

Expressions for the stationary homogeneous solutions U0 ¼ ðb10; . . . ; bn0;w0; h0Þ
T can be obtained by solving Eqs. (A.9).

The bare-soil solution is obtained by substituting bi0 ¼ 0 (i ¼ 1; . . . ; n) in these equations which readily leads to w ¼ p=n
and h ¼ p=af . The other stationary homogeneous solutions are obtained as follows. Solving the third equation of (A.9) for
h0 we obtain

h0 ¼ p a
P

icibi0 þ qfP
icibi0 þ q

� ��1
. (A.12)

Using this equation in the second equation of (A.9) and solving for w0 we obtain

w0 ¼ p n 1�
Xn

i¼1

ribi0

 !
þ
Xn

i¼1

gibi0ð1þ Zibi0Þ
2

" #�1
. (A.13)

The biomass densities bi0 in Eqs. (A.12) and (A.13) are either zero or finite, depending on the solution considered. To find
the non-zero biomass densities we substitute Eq. (A.13) in the first equation of (A.9) and obtain

p ¼
mj

lj

1�
P

iribi0 þ
P

iðgi=nÞbi0ð1þ Zibi0Þ
2

ð1� bj0Þð1þ Zjbj0Þ
2

" #
, (A.14)

where we used the equality xj=sj ¼ 1þ Zjbj0, and the index | runs over the coexisting species (i.e. whose biomass densities
are non-zero). These are implicit equations that can be solved for the non-zero biomass densities.

A.2. Results for the n ¼ 1 case

According to Eqs. (A.12), (A.13) and (A.14) the stationary uniform solutions ðb0;w0; h0Þ
T of the model equations (7) for

the single species are obtained by solving

p ¼
1� rb0 þ ðg=nÞb0ð1þ Zb0Þ

2

ð1� b0Þð1þ Zb0Þ
2

, (A.15)

for b0, if b0a0, and substituting the value of b0 in

w0 ¼ p½nð1� rb0Þ þ gb0ð1þ Zb0Þ
2
��1 (A.16)

and

h0 ¼ p a
b0 þ qf

b0 þ q

� ��1
. (A.17)

In obtaining these equations we set l1 ¼ m1 ¼ s1 ¼ c1 ¼ 1 (see Table 1).
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The Jacobian entries, deduced from Eq. (A.10), are

J 11 ¼ ð1þ Zb0Þnw0½1� 2b0 þ Zb0ð3� 4b0Þ� � 1� dbk2,

J 12 ¼ nb0ð1� b0Þð1þ Zb0Þ
2e�k2ð1þZb0Þ

2=2,

J 13 ¼ 0,

J 21 ¼ ah0
qð1� f Þ

ðb0 þ qÞ2
þ rnw0 � gw0ð1þ Zb0Þe

�k2ð1þZb0Þ
2=2½1þ Zb0ð3� k2

ð1þ Zb0Þ
2
Þ�,

J 22 ¼ � nð1� rb0Þ � gb0ð1þ Zb0Þ
2
� dwk2,

J 23 ¼ a
b0 þ qf

b0 þ q
,

J 31 ¼ � ah0
qð1� f Þ

ðb0 þ qÞ2
,

J 32 ¼ 0,

J 33 ¼ � a
b0 þ qf

b0 þ q
� 2dhh0k2. ðA:18Þ

The bare-soil solution is given by

b0 ¼ 0; w0 ¼ p=n; h0 ¼ p=af . (A.19)

To study its linear stability we substitute Eqs. (A.19) in Eqs. (A.18) and obtain the Jacobian matrix for this solution:

J ðkÞ ¼

p� 1� dbk2 0 0

pð1� f Þ

qf
�

gpek2=2

n
þ rp �n� dwk2 af

�
pð1� f Þ

qf
0 �af �

2pdh

af
k2

0
BBBBBB@

1
CCCCCCA
. (A.20)

The eigenvalues of J ðkÞ are given by the diagonal terms

y1ðkÞ ¼ p� 1� dbk2,

y2ðkÞ ¼ � n� dwk2,

y3ðkÞ ¼ � af �
2pdh

af
k2. ðA:21Þ

The stability of the bare-soil solution is determined by the sign of the largest eigenvalue; negative (positive) sign implies
stability (instability). Obviously, y2o0 and y3o0 for any k, but y1 can cross the zero as p is increased, implying an
instability of the bare-soil solution. The instability occurs at p ¼ pc ¼ 1 and the first mode to grow has zero wavenumber,
k ¼ kc ¼ 0, as shown in Fig. 3a. A similar analysis can be done for the uniform vegetation solution. The analytic
expressions are too long to be displayed here, but the outcome of such an analysis is shown in Fig. 3b. The solution loses
stability as p is decreased below a critical value, pT , in a finite-wavenumber (or Turing-like) instability where the first
mode to grow has a non-zero wavenumber kc (Cross and Hohenberg, 1993).

A.3. Results for the n ¼ 2 case

The stationary uniform solutions for the two-species case are obtained by solving Eqs. (A.12), (A.13) and (A.14) as
follows. The bare-soil solution remains unchanged: b10 ¼ 0, b20 ¼ 0, w0 ¼ p=n and h0 ¼ p=af . The uniform woody-
vegetation solution V1 (b1a0, b2 ¼ 0) is obtained by solving

p ¼
1� r1b10 þ ðg1=nÞb10ð1þ Z1b10Þ

2

ð1� b10Þð1þ Z1b10Þ
2

, (A.22)

for b10 and substituting the solution and b20 ¼ 0 in Eqs. (A.12) and (A.13) to obtain h0 and w0.
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The uniform herbaceous vegetation solution V2 (b1 ¼ 0, b2a0) is similarly obtained by solving

p ¼
m2
l2

1� r2b20 þ ðg2=nÞb20ð1þ Z2b20Þ
2

ð1� b20Þð1þ Z2b20Þ
2

" #
, (A.23)

for b20 and substituting the solution and b10 ¼ 0 in Eqs. (A.12) and (A.13) to obtain h0 and w0.
The uniform mixed vegetation solution,M (b1a0, b2a0), is obtained by solving the coupled equations

p ¼
1�

P
iribi0 þ

P
iðgi=nÞbi0ð1þ Zibi0Þ

2

ð1� b10Þð1þ Z1b10Þ
2

, (A.24)

p ¼
m2
l2

1�
P

iribi0 þ
P

iðgi=nÞbi0ð1þ Zibi0Þ
2

ð1� b20Þð1þ Z2b20Þ
2

" #
, (A.25)

for b10 and b20 (the index { runs over the two species) and substituting the solutions in Eqs. (A.12) and (A.13) to obtain h0

and w0.
The points along the p axis where the V1 and V2 solutions bifurcate from the bare-soil solution B can be easily calculated

from Eqs. (A.22) and (A.23). Setting b10 ¼ 0 in Eq. (A.22) leads to the bifurcation point p ¼ pb1
¼ 1 in Fig. 2. Similarly,

setting b20 ¼ 0 in Eq. (A.23) leads to the bifurcation point p ¼ pb2
¼ m2=l2. Note that these results coincide with the linear

stability results obtained for the bare-soil solution in Section 3.
Eqs. (A.22) and (A.23) can also be used to determine whether the bifurcations at p ¼ pb1

and pb2
are supercritical or

subcritical, by evaluating the slopes of the V1 and V2 solution branches at zero biomass densities:

dpðbi0Þ

dbi0

����
bi0¼0

¼
mi

li

1� ri þ
gi

n
� 2Zi

� �
. (A.26)

A positive (negative) slope implies a supercritical (subcritical) bifurcation. For the parameters used in this work we find

1� r1 þ
g1
n
� 2Z1o0; 1� r2 þ

g2
n
� 2Z240, (A.27)

implying that the bifurcations at p ¼ pb1
and at pb2

are subcritical and supercritical, respectively. The saddle-node
bifurcation at p ¼ pSDN along the V1 branch (see Fig. 2) can be calculated by solving

dpðb10Þ

db10
¼ 0 (A.28)

for b10 and substituting the result in Eq. (A.22) to obtain pSDN ¼ pðb10Þ.
The linear stability of a stationary uniform solution, ðb10; b20;w0; h0Þ, is determined by the eigenvalues of the Jacobian

matrix whose entries are

J 11 ¼ nð1þ Z1b10Þw0½1� 2b10 þ Z1b10ð3� 4b10Þ� � 1� db1k2,

J 12 ¼ 0,

J 13 ¼ nb10ð1� b10Þð1þ Z1b10Þ
2e�k2ð1þZ1b10Þ

2=2,

J 14 ¼ 0,

J 21 ¼ 0,

J 22 ¼ nl2ð1þ Z2b20Þw0½1� 2b20 þ Z2b20ð3� 4b20Þ� � m2 � db2k2,

J 23 ¼ nl2b20ð1� b20Þð1þ Z2b20Þ
2e�k2½s2ð1þZ2b20Þ�

2=2,

J 24 ¼ 0,

J 31 ¼
ah0qð1� f Þ

ðb10 þ c2b20 þ qÞ2
þ nr1w0 � w0g1ð1þ Z1b10Þe

k2ð1þZ1b10Þ
2=2½1þ Z1b10ð3� k2

ð1þ Z1b10Þ
2
Þ�,

J 32 ¼
ah0c2qð1� f Þ

ðb10 þ c2b20 þ qÞ2
þ nr2w0 � w0g2ð1þ Z2b20Þe

k2½s2ð1þZ2b20Þ�
2=2½1þ Z2b20ð3� k2

½s2ð1þ Z2b20Þ�
2Þ�,
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J 33 ¼ � nð1� r1b10 � r2b20Þ � g1b10ð1þ Z1b10Þ
2
� g2b20ð1þ Z2b20Þ

2
� dwk2,

J 34 ¼ a
b10 þ c2b20 þ qf

b10 þ c2b20 þ q
,

J 41 ¼ �
ah0qð1� f Þ

ðb10 þ c2b20 þ qÞ2
,

J 42 ¼ �
ah0c2qð1� f Þ

ðb10 þ c2b20 þ qÞ2
,

J 43 ¼ 0,

J 44 ¼ � a
b10 þ c2b20 þ qf

b10 þ c2b20 þ q
� 2h0dhk2. ðA:29Þ

For the bare-soil solution, b10 ¼ 0, b20 ¼ 0, w0 ¼ p=n and h ¼ p=af , we obtain

J ðkÞ ¼

p� 1� db1k2 0 0 0

0 l2p� m2 � db2k2 0 0

p
ð1� f Þ

qf
�

g1e
k2=2

n
þ r1

" #
p

c2ð1� f Þ

qf
�

g2e
k2=2

n
þ r2

" #
�n� dwk2 af

�
pð1� f Þ

qf
�

pc2ð1� f Þ

qf
0 �af �

2pdh

af
k2

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
.

The eigenvalues of J ðkÞ are simply given by the diagonal elements

y1ðkÞ ¼ p� 1� db1k2,

y2ðkÞ ¼ l2p� m2 � db2k2,

y3ðkÞ ¼ � n� dwk2,

y4ðkÞ ¼ � af �
2pdh

af
k2. ðA:30Þ

The eigenvalues y3 and y4 are negative for any k. The eigenvalues y1 and y2, however, can cross the zero: y1 first becomes
zero for k ¼ 0 at p ¼ 1 whereas y2 first becomes zero for k ¼ 0 at p ¼ m2=l2. Thus, the bare-soil solution becomes unstable
to homogeneous perturbations at p ¼ pc ¼ minð1; m2=l2Þ.
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