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Multiplicity of phase states within frequency locked bands in periodically forced oscillatory system
may give rise to front structures separating states with different phases. A new front instability is foun
within bands wherevforcingyvsystem ­ 2n (n . 1). Stationary fronts shifting the oscillation phase by
p lose stability below a critical forcing strength and decompose inton traveling fronts each shifting the
phase bypyn. The instability designates a transition from stationary two-phase patterns to travelin
n-phase patterns. [S0031-9007(98)06256-5]
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Periodic forcing of a single oscillator can lead to rich
dynamics including quasiperiodic oscillations, frequency
locked bands ordered through the Farey construction, a
low-dimensional chaos [1–4]. A typical feature of a
periodically forced oscillatory system is the multiplicity
of phase states within a given frequency-locked band [5
This feature becomes particularly significant in spatiall
extended systems where phase fronts separating differ
phase states may appear. The simplest situation aris
in a system that is forced at twice the natural oscillatio
frequency (hereafter the 2:1 band). A phase front (kink
connecting two uniform states whose phases of oscillatio
differ by p then exists (hereafter a “p front”). The
stability properties of this type of front are well studied
[6–9]. As the strength of forcing is decreased a stationa
front loses stability to a pair of counter-propagating front
through a pitchfork bifurcation. The instability, known
also as the nonequilibrium Ising-Bloch bifurcation [6,10]
is responsible for the destabilization of standing wave
and the onset of traveling wave phenomena includin
spiral waves.

The low resonance bands, 2:1 and 3:1, have be
studied both theoretically [5–8,11,12] and experimentall
[13]. All phase-front solutions in these bands shift the
oscillation phase by the same angle (in absolute value):p

in the 2:1 band and2py3 in the 3:1 band. At higher
resonance bands phase fronts that shift the phase
different angles may coexist; for example,p fronts and
py2 fronts in the 4:1 band. In this Letter we report
on a new front instability: Upon decreasing the forcing
strength ap front within the 2n:1 band (n . 1) loses
stability and decomposes inton interactingpyn fronts.
We analyze in detail the 4:1 resonance case and bri
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numerical evidence for the existence of this type
instability in higher resonances.

We consider an extended system that is close to a H
bifurcation and externally forced with a frequency abo
4 times larger than the Hopf frequency. The amplitud
of oscillations satisfies the parametrically forced comple
Ginzburg-Landau (CGL) equation [14,15]

At ­ sm 1 indA 1 s1 1 iadAxx

2 s1 2 ibdjAj2A 1 g4Ap3, (1)

where the subscriptst andx denote partial derivatives with
respect to time and space,Asx, td is a complex field, and
n, a, b, and g4 are real parameters. We first conside
the gradient version of Eq. (1) by settingn ­ a ­ b ­ 0
and then rescale time, space, and the amplitudeA by
m,

p
my2, and 1yp

m, respectively. Keeping the same
notations for the scaled quantities the gradient versi
takes the form

At ­ A 1
1
2

Axx 2 jAj2A 1 g4Ap3. (2)

For 0 , g4 , 1 Eq. (2) has four stable phase state
A61 ­ 6l and A6i ­ 6il, where l ­ 1y

p
1 2 g4.

Front solutions connecting pairs of these states divide in
two groups:p fronts connecting states with a phase sh
of p

A21!11 ­ A11 tanhx , (3)

A2i!1i ­ A1i tanhx , (4)

andpy2 fronts connecting states with a phase shift ofpy2
[see Fig. 2(a)]. Wheng4 ­ 1y3 thepy2 fronts are given
© 1998 The American Physical Society 5007
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f1 1 i 2 s1 2 id tanhxg ,

A2i!11 ­
1
2

s
3
2

f1 2 i 1 s1 1 id tanhxg , (5)

A21!2i ­ 2A11!1i and A1i!21 ­ 2A2i!11. Ad-
ditional front solutions follow from the invariance
of Eq. (2) under reflection, x ! 2x. For ex-
ample, the symmetric counterparts ofA1i!11sxd
and A11!2isxd are A11!1isxd ­ A1i!11s2xd and
A2i!11sxd ­ A11!2is2xd.

Stability analysis of thep fronts (3) and (4) shows that
they are stable forg4 . 1y3. To study the instability at
g4 ­ 1y3 we rewrite Eq. (2) in terms ofU ­ ResAd 1

ImsAd andV ­ ResAd 2 ImsAd:

Ut ­ U 1
1
2

Uxx 2
2
3

U3 2
d
2

sU2 2 3V 2dU ,

Vt ­ V 1
1
2

Vxx 2
2
3

V 3 2
d
2

sV 2 2 3U2dV , (6)

where

d ­ g4 2 1y3 .

At d ­ 0 the two equations decouple and assume t
solutions U ­ s1A0sx 2 x1d and V ­ s2A0sx 2 x2d,
where A0 ­

q
3
2 tanhx, s1,2 ­ 61, and x1 and x2 are

arbitrary constants. Consider nowd fi 0 but small. The
coupling betweenU and V makes x1 and x2 slow
dynamical variables andU andV can be written as

U ­ s1A0fx 2 x1stdg 1 u ,

V ­ s2A0fx 2 x2stdg 1 y , (7)

whereu andy are corrections of orderd. Inserting these
forms in Eqs. (6) we obtain

H1u ­ s1 Ùx1A0
0sx 2 x1d

2
1
2

ds1fA2
0sx 2 x1d 2 3A2

0sx 2 x2dgA0sx 2 x1d ,

where H1 ­ 21 2
1
2

≠2

≠x2 1 2A2
0sx 2 x1d. A similar

equation is obtained fory with the indices 1 and 2
interchanged. Solvability conditions lead to the equatio

Ùx1 ­ 2
27
16

d
Z `

2`
dx

3 tanhsx 2 x1d sech2sx 2 x1d tanh2sx 2 x2d , (8)

and to a similar equation forx2 with the indices 1
and 2 interchanged. Defining a translational degree
freedom z ­

1
2 sx1 1 x2d and an order parameterx ­

1
2 sx2 2 x1d, we obtain from (8)

Ùz ­ 0 , Ùx ­ 2
27
16

dJsxd , (9)

where
5008
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Jsxd ­ Isad ­ 6sa21 2 a23d 1 s1 2 3a22dGsad ,

Gsad ­ s1 2 a22d ln

µ
1 1 a
1 2 a

∂
,

and a ­ tanh2x. Note that Eqs. (9) are valid toall
orders inx and to linear order aroundg4 ­ 1y3.

Figure 1 shows the potentialV sxd ­
27
16 d

Rx
Jszddz

associated with Eq. (9) ford . 0 (g4 . 1y3) andd , 0.
There is only one extremum point,x ­ 0, of V . For
d . 0 it is a minimum andx converges to zero. For
d , 0 it is a maximum andx diverges to6`. To see
how thex dynamics affect the front solutions we rewrite
the solution form (7) in terms of the amplitudeA and bring
it to the form

Asx, td ­ A2i!11sx 2 x1d 1 A11!1isx 2 x2d

2 l 1 R , (10)

where A2i!11 and A11!1i are given in Eqs. (5),R is
a correction term of orderd [related to u and y in
Eqs. (7)] and for concreteness we choses1 ­ 2s2 ­
1. Equation (10) describes two interactingpy2 fronts
centered atx1 and x2. When d . 0 jxj decreases in
time and the twopy2 fronts attract. Asx ! 0 (or x2 !

x1) the two py2 fronts collapse into a singlep front,
Asx, td ­ A2i!1isx 2 x1d 1 R, given by Eq. (4). When
d , 0 jxj increases in time and the twopy2 fronts repel.
Perturbing the unstablex ­ 0 solution, the singlep front
decomposes into a pair ofpy2 fronts. Figure 2(a) shows
phase portraits of thep and py2 fronts (dashed lines)
and the time evolution of an unstablep front for d , 0
(solid lines) obtained by numerical integration of Eq. (2)
The approach of the phase portrait to the fixed poin
A1i on the ImsAd axis describes the decomposition into

FIG. 1. The potentialV sxd. (a) Ford . 0 the extremum at
x ­ 0 is a minimum andx converges to0. (b) Ford , 0 the
extremum is a maximum andx diverges to6`.
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FIG. 2. Decomposition ofp fronts into pyn fronts within
2n:1 bands for (a)n ­ 2, (b) n ­ 3, and (c) n ­ 4. The
dots are the uniform phase states along the circle of const
amplitude jAj. The p fronts are the dashed lines connecting
the statesA11 and A21 on the ResAd axes. Thepyn fronts
are the dashed lines connecting the adjacent points alo
the circle. The time evolution of the front decomposition
obtained by numerical integration of Eq. (12) is shown as th
series of solid lines. Parameters: all undetermined coefficien
in Eq. (12) were set to zero except as indicated below
(a) g4 ­ 0.3, m4 ­ 21.0; (b) g6 ­ 0.9, m4 ­ 21.0, m6 ­
21.0; (c) g8 ­ 0.75, m4 ­ 20.5, m6 ­ 20.5, m8 ­ 21.0.

a pair of py2 fronts. This behavior persistsarbitrarily
closeto d ­ 0 and is related to the absence of minima i
the potentialV sxd for d , 0 [see Fig. 1(b)]. Atd ­ 0
there exists a continuous family of stationary solution
describing frozen (noninteracting) pairs ofpy2 fronts
with arbitrary separationsx2 2 x1. This solution family
spans the whole phase space inside the dashed trian
in Fig. 2(a). Because of the parity breaking symmetr
x ! 2x eachp front may decompose into one of two
pairs of py2 fronts with phase portraits approaching th
fixed pointsA1i andA2i .
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We extended the derivation of Eqs. (9) to the nongra
dient equation (1), treating the constantsn, a, b as small
parameters. Thex equation remains unchanged. Thez

equation takes the form

s2

s1

Ùz ­ nFnsxd 1 aFasxd 1 bFbsxd , (11)

where

Fn ­ 2
3
4

Gsad 2
3
2

a21 ,

Fa ­
3
4

Isad ,

Fb ­ 3a21

µ
1 2

3
2

a22

∂
2

9
4

a22Gsad .

Notice thatFn , Fa , and Fb are odd functions ofx and
do not vanish whend ­ 0. When jx j ! ` the right
hand side of (11) converges to32 sn 1 bd, the speed of
a py2 front solution of Eq. (1). Thex ­ 0 solution
(representing ap front) remains stationary (Ùz ­ 0) in the
nongradient case as well. Atg4 ­ 1y3 (d ­ 0) it loses
stability and decomposes into a pair ofpy2 fronts which
approach the asymptotic speed3

2 sn 1 bd. Depending on
the initial sign ofx the pair may propagate to the left or
to the right.

This behavior is different from that near the nonequilib
rium Ising-Bloch front bifurcation within the 2:1 band. In
that case, a stationary Ising front loses stability to a pa
of counter-propagating Bloch fronts in a pitchfork bifurca
tion. Associated with the bifurcation is a transition from a
single-well potential (Ising front) to a double-well poten-
tial (pair of Bloch fronts). A comparison with the poten-
tials in Fig. 1 shows the essential difference between th
two front instabilities. In the 2:1 band the Bloch fronts
approach the Ising front and coincide with it as the dis
tance to the bifurcation point diminishes to zero. In th
4:1 band, on the other hand, the asymptotic solutions ju
belowg4 ­ 1y3 (thepy2-front pairs asjxj ! `) are not
smooth continuations of the stationaryp front (thex ­ 0
solution) atg4 ­ 1y3. In particular their speed remains
finite [ 3

2 sn 1 bd] as g4 approaches 1y3 from below. At
g4 ­ 1y3, a whole family of propagating solutions ap-
pears with speeds ranging continuously from3

2 sn 1 bd
to zero (pertaining topy2-front pairs separated by dis-
tances ranging from infinity to zero).

The instability of p fronts at g4 ­ 1y3 (d ­ 0) de-
termines the structure of stable periodic patterns belo
and above the instability. In the rangeg4 . 1y3 two-
phasepatterns, involving domains separated byp fronts,
prevail. Belowg4 ­ 1y3 four-phasepatterns dominate.
Four-phase patterns are not stable forg4 . 1y3 despite
the stability of thepy2 fronts because of the attrac-
tive interactions among these fronts. In the gradient ca
[Eq. (2)] all solutions are stationary. In the nongradien
case [Eq. (1)] the two-phase patterns are stationary wh
the four-phase patterns propagate. Figure 3(a) shows
5009
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FIG. 3. Collapse of a rotating four-phase spiral wave in
a stationary two-phase pattern. The left column isjAj and
the right column argsAd. (a) The initial four-phase spiral
wave (computed withg4 , 1y3). (b) The spiral core, a four-
point vertex, splits into two three-point vertices connected
a p front. (c) A two-phase pattern develops as the thre
point vertices further separate. (d) The final stationary tw
phase pattern. Parameters:g4 ­ 0.6, n ­ 0.1, x ­ f0, 64g, y ­
f0, 64g.

grey-scale map of a rotating four-phase spiral wave
g4 , 1y3. Figures 3(b), 3(c), and 3(d) show the co
lapse of this spiral wave into a stationary two-phase p
tern asg4 is increased past1y3. The collapse begins at
the spiral core where thepy2 front interactions are the
strongest. As pairs ofpy2 fronts attract and collapse
into p fronts, the core splits into two vertices that propa
gate away from each other leaving behind a two-pha
pattern.

To test whether the instability ofp fronts exists at
higher resonances we integrated numerically the hig
order equation [16]
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At ­
1
2

Axx 1 A 1 m4jAj2A 1 m6jAj4A

1 m8jAj6A 1 g4Ap3 1 g6Ap5 1 g8Ap7. (12)

Indeed p fronts within the 6:1 and 8:1 bands become
unstable asg6 and g8, respectively, are decreased below
a critical value. Figure 2(b) shows the decomposition o
a p front into threepy3 fronts within the 6:1 band, and
Fig. 2(c) shows the decomposition into fourpy4 fronts
within the 8:1 band. Our conjecture is that the instability
is general, occurring within any2n:1 band (n . 1).

The phase front instability and the associated tran
sition from stationary two-phase patterns to traveling
four-phase patterns within the 4:1 band may be teste
in experiments on the ruthenium-catalyzed Belousov
Zhabotinsky reaction subjected to periodic (in time)
uniform illuminations [13].
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