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Phase Front Instability in Periodically Forced Oscillatory Systems
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Multiplicity of phase states within frequency locked bands in periodically forced oscillatory systems
may give rise to front structures separating states with different phases. A new front instability is found
within bands wher@vsorcing / wsysem = 21 (n > 1). Stationary fronts shifting the oscillation phase by
7 lose stability below a critical forcing strength and decompose anti@aveling fronts each shifting the
phase byw/n. The instability designates a transition from stationary two-phase patterns to traveling
n-phase patterns. [S0031-9007(98)06256-5]

PACS numbers: 82.40.Ck, 05.45.+b, 47.20.Ma, 82.20.Mj

Periodic forcing of a single oscillator can lead to rich numerical evidence for the existence of this type of
dynamics including quasiperiodic oscillations, frequency-nstability in higher resonances.
locked bands ordered through the Farey construction, and We consider an extended system that is close to a Hopf
low-dimensional chaos [1-4]. A typical feature of a bifurcation and externally forced with a frequency about
periodically forced oscillatory system is the multiplicity 4 times larger than the Hopf frequency. The amplitude
of phase states within a given frequency-locked band [5]of oscillations satisfies the parametrically forced complex
This feature becomes particularly significant in spatiallyGinzburg-Landau (CGL) equation [14,15]
extended systems where phase fronts separating different ) )
phase states may appear. The simplest situation arises Ar=(p+iv)A+ (1 +ia)Aq
in a system that is forced at twice the natural oscillation — (1 — iB)IAIPA + y4A™, (1)
frequency (hereafter the 2:1 band). A phase front (kink) . . o .
connecting two uniform states whose phases of oscillation&¥here the subscriptsandx denote partial derivatives with
differ by 7 then exists (hereafter as* front”). The '€SPect to time and spacé(x,) is a complex field, and
stability properties of this type of front are well studied ¥» @ B8, andy, are real parameters. We first consider
[6—9]. As the strength of forcing is decreased a stationary€ gradient version of Eq. (1) by setting= a = 8 =0
front loses stability to a pair of counter-propagating fronts2nd then rescale time, space, and the amplitadby
through a pitchfork bifurcation. The instability, known #» ¥#/2, and 1/./u, respectively. Keeping the same
also as the nonequilibrium Ising-Bloch bifurcation [6,10], notations for the scaled quantities the gradient version
is responsible for the destabilization of standing wavedakes the form
and the onset of traveling wave phenomena including 1
spiral waves. A=A+ S A - |APA + y,A™. (2)

The low resonance bands, 2:1 and 3:1, have bee
studied both theoretically [5-8,11,12] and experimentall

[13]. All phase-front solutions in these bands shift theA=! = =4 and Ax; = *iA, where A =1/J1 = 7.
oscillation phase by the same angle (in absolute vakae): Front solutions connecting pairs of these states divide into

in the 2:1 band an@/3 in the 3:1 band. At higher two groups:7 fronts connecting states with a phase shift
resonance bands phase fronts that shift the phase

or 0 <y, <1 Eqg.(2) has four stable phase states:

different angles may coexist; for example, fronts and A_i_ 1 = A, tanhx, (3
/2 fronts in the 4:1 band. In this Letter we report
on a new front instability: Upon decreasing the forcing A iy = Ay tanhy (4)

strength asz front within the 2n:1 band ¢ > 1) loses
stability and decomposes into interacting s /n fronts.  andr /2 fronts connecting states with a phase shifirg2
We analyze in detail the 4:1 resonance case and bringee Fig. 2(a)]. Whew, = 1/3 the /2 fronts are given
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by
A+1—>+i = \/7[1 i — (1 - l)tanhx]
Ay = 2\/;[1 — i+ (1 + itanhx], (5)
Aojmj = —Ay1—4; and A4y = A4, Ad-

ditional front solutions follow from the invariance

of EQ.(2) under reflection,x — —x. For ex-
ample, the symmetric counterparts ofi;;,.4+(x)
and Ai——;(x) are Ai—+;(x) = A4+ i1(—x) and
Ao (x) = A —i(—x).

Stability analysis of ther fronts (3) and (4) shows that
they are stable fofy, > 1/3. To study the instability at
v4 = 1/3 we rewrite Eq. (2) in terms ot/ = Re(A) +

Im(A) andV = Re(A) — Im(A):
1 2 d
U=U+—U, - —U - —U*-3V)U,
' > 3 > U )
1 2 d
Vi=V 4+ —Vy — =V — v, 6
=V 3V 2(V UV,  (6)
where
d= 1y, —1/3.
At d = 0 the two equations decouple and assume th

solutions U = o1Ag(x — x1) and V = o,Ap(x —

where Ay = \/gtanhx, o1p = =1, and x; and x, are
arbitrary constants. Consider naiv# 0 but small. The
coupling betweenU and V makes x; and x, slow
dynamical variables antf andV can be written as

U= o01Alx — x1(1)] + u,
V = 0Aolx — x2(0)] + v,

whereu andv are corrections of ordef.
forms in Egs. (6) we obtain

.7‘[114 = 0'1).61146()6 - Xl)

1
= o don[Aj(x —x1) = 345(x — x2)JAp(x — x1),
where H, = -1 — %f—; + 243(x — x1). A similar
equation is obtained fow with the indices 1 and 2
interchanged. Solvability conditions lead to the equation
).61 = ——d

d
16 fw o

X tanh(x — x;)sech?(x — x;)tanH(x — x»),

(7)

Inserting these

(8)

and to a similar equation for, with the indices 1

and 2 interchanged. Defining a translational degree of

freedom/ = %(xl + x,) and an order parametey =
%(xz — x1), we obtain from (8)
(=0,

= —Zary. (©)

16
where
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Jx)=1I(a) =6 —a?) + 0 —-3a"HGC(a),
+ a

G@ = (1 = a )in( —2).

and a = tanh2y. Note that Egs. (9) are valid tall
orders iny and to linear order aroung, = 1/3.

Figure 1 shows the potentiaV (y) = %d [XJ(z)dz
associated with Eq. (9) faf > 0 (y4 > 1/3) andd < 0.
There is only one extremum poing = 0, of V. For
d > 0 it is a minimum andy converges to zero. For
d < 0 itis a maximum andy diverges to+e«. To see
how the y dynamics affect the front solutions we rewrite
the solution form (7) in terms of the amplitudeand bring
it to the form

Ax,1) = A imvi(x — x1) + Av—qi(x —
— A+ R,

x2)
(10)

whereA_;,_+; and A+ 1—+; are given in Egs. (5)R is
a correction term of ordee/ [related tou and v in
Egs. (7)] and for concreteness we chase= —o; =
1. Equation (10) describes two interacting/2 fronts
centered atx; and x,. Whend > 0 |y| decreases in
time and the twar /2 fronts attract. Asy — 0 (or x, —
xl) the two 7/2 fronts collapse into a singler front,
= A_;—+i(x — x1) + R, given by Eq. (4). When

?Z < 0 | x| increases in time and the twe/2 fronts repel.

Perturbing the unstablg = 0 solution, the singler front
decomposes into a pair af/2 fronts. Figure 2(a) shows
phase portraits of ther and 7 /2 fronts (dashed lines)
and the time evolution of an unstabte front for d < 0
(solid lines) obtained by numerical integration of Eq. (2).
The approach of the phase portrait to the fixed point
A4; on the ImM{A) axis describes the decomposition into

(a)
0.30 1

0.20 1

FIG. 1. The potentialV(y). (a) Ford > 0 the extremum at
x = 0is a minimum andy converges td. (b) Ford < 0 the
extremum is a maximum ang diverges to*oo.
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We extended the derivation of Eqgs. (9) to the nongra-
dient equation (1), treating the constantse, 8 as small
parameters. Thg equation remains unchanged. The
- equation takes the form

i j—jé = vF,(x) + aF.(x) + BFp(x),  (11)
| | where
—1.0 A = 3 3
° _ 2 3
| | | | | Fy 4 Gla) 2 a
(b) \
1.0 i Fo = —1I(a),

) e
] g 7
¥ 3 9
Fg = ‘1<1———2>———2 _
0.0 === i g = 3a 5@ e G(a)

Notice thatF,, F,, and Fg are odd functions ofy and
° ® do not vanish when? = 0. When |y| — o the right
-1.0 - hand side of (11) converges t%)(y + B), the speed of
a /2 front solution of Eqg. (1). They = 0 solution
(representing ar front) remains stationary(= 0) in the

1.0 = nongradient case as well. At = 1/3 (d = 0) it loses
stability and decomposes into a pair®f2 fronts which
S(a) i approach the asymptotic spe3§dy + B). Depending on
0.0 a the initial sign of y the pair may propagate to the left or
to the right.
] ° . - This behavior is different from that near the nonequilib-
10 ® | rium Ising-Bloch front bifurcation within the 2:1 band. In

that case, a stationary Ising front loses stability to a pair
; ; ; of counter-propagating Bloch fronts in a pitchfork bifurca-
-1.0 0.0 1.0 tion. Associated with the bifurcation is a transition from a
R(A) single-well potential (Ising front) to a double-well poten-
tial (pair of Bloch fronts). A comparison with the poten-
FIG. 2. Decomposition ofr fronts into 77/n fronts within  tials in Fig. 1 shows the essential difference between the
3’éé g?e”?ﬁef%i%m ?hzés(eb)stgt;s 3éloan”gd ﬂ(fe) - :-Oflgenstat\t/vo front instabilities. In the 2:1 band the Bloch fronts
amplitude|A|. The 7 fronts are the dashed lines connecting%lppro"JlCh the !smg f_ront a’.‘d C(.)m.CI.de with it as the dis-
the statesd.; and A_, on the R€A) axes. Ther/n fronts  tance to the bifurcation point diminishes to zero. In the
are the dashed lines connecting the adjacent points alord:1 band, on the other hand, the asymptotic solutions just
the circle. The time evolution of the front decomposition belowy, = 1/3 (the 7 /2-front pairs ag y| — «) are not
obtained by numerical integration of Eq. (12) is shown as thesmooth continuations of the stationaryfront (the y = 0
series of solid lines. Parameters: all undetermined coefficient;

in Eqg. (12) were set to zero except as indicated below§0|Utlo3n) atys = 1/3. In particular their speed remains

@) ys =03, s = —1.0; (b) y6 =09, us = —1.0, ug = finite [5 (v + B)] as y4 approaches /B from below. At
—1.0; (¢) ys = 0.75, pg = —0.5, ug = —0.5, ug = —1.0. v4 = 1/3, a whole family of propagating solutions ap-

pears with speeds ranging continuously frgrtw + B)

to zero (pertaining tor/2-front pairs separated by dis-

tances ranging from infinity to zero).
a pair of 7 /2 fronts. This behavior persis@rbitrarily The instability of = fronts aty, = 1/3 (d = 0) de-
closeto d = 0 and is related to the absence of minima intermines the structure of stable periodic patterns below
the potential V (y) for d < 0 [see Fig. 1(b)]. Atd =0 and above the instability. In the rangg > 1/3 two-
there exists a continuous family of stationary solutionsphasepatterns, involving domains separated byfronts,
describing frozen (noninteracting) pairs a&f/2 fronts  prevail. Belowy, = 1/3 four-phasepatterns dominate.
with arbitrary separations, — x;. This solution family Four-phase patterns are not stable §qr> 1/3 despite
spans the whole phase space inside the dashed triandglee stability of the 7 /2 fronts because of the attrac-
in Fig. 2(a). Because of the parity breaking symmetrytive interactions among these fronts. In the gradient case
x — —x eachs front may decompose into one of two [EqQ. (2)] all solutions are stationary. In the nongradient
pairs of 7 /2 fronts with phase portraits approaching thecase [Eq. (1)] the two-phase patterns are stationary while
fixed pointsA.; andA_;. the four-phase patterns propagate. Figure 3(a) shows a
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1
A= SAx H AT malAPA + uelAl*A

+ ,u,glAlﬁA + ’y4A:k3 + ’y6A*5 + ’ySA*7. (12)
Indeed 7= fronts within the 6:1 and 8:1 bands become
unstable asgys and yg, respectively, are decreased below
a critical value. Figure 2(b) shows the decomposition of
a 7 front into threew /3 fronts within the 6:1 band, and
Fig. 2(c) shows the decomposition into foat/4 fronts
within the 8:1 band. Our conjecture is that the instability
is general, occurring within andx:1 band ¢ > 1).

The phase front instability and the associated tran-
sition from stationary two-phase patterns to traveling
four-phase patterns within the 4:1 band may be tested
in experiments on the ruthenium-catalyzed Belousov-
Zhabotinsky reaction subjected to periodic (in time)
uniform illuminations [13].
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