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This is a study of the nonlinear interactions of solitary waves or impulses in homogeneous, extended
media. We obtain the set of ordinary differential equations for the positions of the impulses in the
nearest-neighbor approximation. Solutions with constant velocity lead to pattern maps that give the suc-
cessive spacings of the impulses. From among the infinitely many metastable patterns given by the
maps, the system chooses one asymptotically through a hierarchical evolution.

PACS numbers: 05.45.+b, 82.40.Fp

In this Letter we study spatiotemporal complexity in
traveling-wave patterns. We consider extended systems
with translational invariance that admit the propagation
of solitary waves at constant velocity. Behind our work
lie theories of defects in systems with broken, discrete
symmetries,l’2 of wave patterns in excitable media,’ and
of dynamical systems.* This work is especially applic-
able to excitable systems such as the Belousov-
Zhabotinskii medium, and cardiac fibers and axons that
propagate action potentials.®

We illustrate the questions of interest with a simple
model of an excitable medium =%

ev,=—w+30—v3+vxx, w, =p — L, 1)

where the subscripts denote partial derivatives and ¢ is a
small parameter. The steady, uniform solution of (1) is
unstable for |u| <1, and stable for |g| > 1. For |u]
slightly greater than unity, the system has threshold be-
havior: Large enough perturbations lead to the propaga-
tion of solitary waves through the medium,

Equations (1) are reduced to an ordinary differential
equation upon transformation to a moving coordinate
system and on the assumption that the solutions depend
on X=x+ct alone. Then

" —ecv"+3(1 —v2v' —c Mo —pu) =0, (2)

where the prime denotes differential with respect to %.
The stable, steady solution of Egs. (1) becomes a saddle
point or a saddle focus in the flow (2).'9 We concentrate
on the latter case, which is far richer. For c¢==cg, a
homoclinic solution, H(x), occurs,!! corresponding to a
solitary-wave solution of Eq. (1).

Three-dimensional flows, such as (2), passing near a
saddle focus have been extensively studied.*!%!? A not-
able theorem of Shil’nikov!>!'* states that under the
homoclinic condition, ¢ =cg, and with suitable eigenval-
ues, Eq. (2) admits an infinite number of unstable
periodic orbits. The wealth of behavior implied by this
result carries over to the constant-speed, traveling-wave
solutions of Eqgs. (1). Yet, solutions found in this way
are special in having a constant velocity, and their stabil-
ity in (1) is not apparent from (2) alone. In addressing

these issues, we are led into the study of spatiotemporal
complexity in traveling patterns.

Consider a general system described by the transla-
tionally invariant set of partial differential equations

9,U=L(3,)U+N(U), 3)

where U is a vector of state variables, L is a linear
differential operator, and N stands for nonlinear terms.
We assume that Eq. (3), of which (1) is a special case,
admits a solitary-wave solution, H(x), that corresponds
to a homoclinic orbit biasymptotic to a saddle focus for
the ordinary differential equation in the moving frame.'*
A complex wave pattern is conveniently represented by
interacting, coherent features in nonlinear wave theory.
This technique has been used in particle physics'® and in
condensed-matter theory, !¢ and has also proved valuable
for dissipative systems.! Here we use it to approximate a
general traveling-wave-train solution of Eq. (3) as a su-
perposition of solitary waves, or impulses:

U=Y H(x—x;t))+R, @)

where %; is the position of the jth impulse and R is a
correction term. Figure 1 illustrates the notation.

We assume that the waves are widely spaced with lit-
tle overlap. This approximation is realistic for excitable
media, where the refractory tails®®® of the impulses
keep them apart. If this is to be true, R should be small.
We can then use perturbation theory to calculate it.

Xjoft X X X

FIG. 1. Schematic illustration of a train of solitary waves
with oscillatory tails in the moving frame, ¥ =x+ct.
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When we introduce (4) into (3), we get

LiR=H}%;+N [Z,-H,-] — X:N(H;) +smaller terms,

(5)

where L;=co0;—~L—VN(H;), H;:=H( —%;), and the prime and overdot denote differentiation.

A consequence of translational invariance is that .L; has a null vector (or zero mode): .L 7Hj;=0. We suppose that,
correspondingly, there exists a solution of L}P =0, where .,C,T is the adjoint operator defined in the usual way. The
right-hand side of (5) must be orthogonal to P; and when we allow for the peakedness of the impulses, we obtain equa-
tions of motion for them. In the case where the homoclinic solution drops off at comparable rates for x— = oo, we get

Zy=bexpl— &1 —x;)1+aexpl —nG; —x;— ) coslv(x; — xj-1) +¢. (6)

Here, £ and —#n = iv are the eigenvalues associated with
the saddle focus, @ and ¢ are constants which depend on
the specific form of Eq. (3), and the overdot stands for
differentiation with respect to an appropriately scaled
time variable. This scaling may be adjusted to make
b= 1= 1; for definiteness, we work with b =1.

In the derivation of Eq. (6), only nearest-neighbor in-
teractions have been included, in keeping with the as-
sumption of small overlap between successive impulses.
The structure of the right-hand side of (6) depends on
the assumed form of H with a decaying tail on one side
and a decaying oscillation on the other.!” More general
evolution equations are obtained with less restrictive con-
ditions on the homoclinic structure, as can be seen by a
detailed asymptotic analysis of the solvability conditions.

Equation (6) has separable solutions in the form of a
function of ¢ plus a function of j. These special solutions
have %; =Ac, and correspond to patterns traveling with
constant velocity ¢ =cp—Ac. If we now let

Z; =exp[—§(x,- =X, )]
(6) becomes a pattern map:
Zi+1=f(Z;):=Ac—aZfcos(wInZ; — ¢), (8)

where §=n/¢ and w=v/& This is just the first return
map for the flow (2) in a small neighborhood of the sad-
dle focus.*!® We recover the solutions of (2), but now
we can both study their stability as solutions of (1) and
consider more general patterns.

The simplest solutions of (8) are the fixed points,
Z;=2Z*, corresponding to a train of impulses with con-
stant spacing A, where Z* =exp(—¢£\). For any spac-
ing, we can use (8) to compute Ac. We then have a
velocity-spacing relation ¢(A) that agrees with results
from numerical experiments'? on (1) and, for § < 1, with
previous analytic work.2? To study the stability of these
simplest patterns, we write X; =jA+Acz+6;(z). Then,
on keeping only terms linear in 6;, we have

d@j/dt=§z*[—a9j—-1+(l+a)9j—9j+1], ()]

where a=/"(Z*) is the slope of the map at Z*. For
la| <1, fixed points of the map are stable.

Equation (9) admits solutions of the form 6;=A;
xexp(oxt+ikj)+c.c., where c.c. means complex conju-
gate, k ranges over integral multiples of 27/, and IV is

the (large) number of impulses in the pattern. This
leads to the dispersion relation

or =E(Z*[(1+a)(1 —cosk) +=i(l —a)sink]l.  (10)

For k=0 or Z*— 0 the regular lattice of impulses is
neutrally stable, as expected from translational invari-
ance.

Equation (10) implies that stable fixed points of the
map (8) correspond to unstable traveling patterns
(Reoy > 0). However, the converse is not true. Stable,
equally spaced traveling waves correspond to unstable
fixed points of the map only for ¢ < —1. Thus a< —1
is the necessary and sufficient conditon for stability of
the traveling-wave solutions that arise as fixed points of
the map. For general b, this condition implies
de/d).>2bEZ*. In the limit of large A this reduces to a
known criterion for instability, dc/dr <0.2! Another
vision of such results is provided by the continuum limit
of (6), which is a point of contact with work on phase in-
stability, 2223

Equation (8) is a cornucopia of constant-velocity solu-
tions at small Ac. The simplest are the fixed points
shown in Fig. 2 for the homoclinic case Ac=0 with

f@ L |

z

FIG. 2. The map (8) for the homoclinic case, Ac =0, with
8 <1. The intersections of the diagonal with the map corre-
spond to equally spaced traveling-wave solutions of Eq. (1).
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8 <1. There are infinitely many of them with a < —1
accumulating at Z =0. Hence there are infinitely many
metastable, equally spaced patterns, traveling with veloc-
ity co, with spacings A ranging up to infinity. In addi-
tion, we have the fixed points of the iterates of (8) of
higher and higher orders and multipulsed homoclinic
solutions.>?*® The former correspond to nonuniformly
spaced periodic trains, while the latter represent finite
trains. The stability problem of a wave train correspond-
ing to a fixed point of the iterated map in any order can
be reduced to the analysis of a characteristic polynomial
with the Routh-Hurwitz criterion. Sufficient conditions
for instability can be written simply, but the necessary
conditions are complicated. We leave the details aside
for now since they do not influence the essential con-
clusion that for an infinite system, there exist infinitely
many metastable periodic traveling patterns with all
length scales.

Numerical simulations on (6) reveal that finite sys-
tems relax to a pattern with uniform velocity, the partic-
ular pattern selected being sensitive to initial conditions.
We conclude that the relaxation is toward one of the
many possible metastable states already mentioned.
Starting from a rather uniform, unstable initial pattern,
the relaxation proceeds with the formation of larger and
larger patches of impulses moving at nearly the same ve-
locity, and the evolution proceeds on longer and longer
time scales. We have followed this evolution numerical-
ly, starting from such equally spaced unstable patterns,
with x;(0) =, and a=f"[exp(— &)1 > —1. In Fig. 3,
we present some of the world lines, ¥;(¢), obtained by
numerical integration of (6).

We see that the uniform train breaks up into groups of
impulses, each with a local value of a smaller than —1.

Time

Space

FIG. 3. World lines, ¥;(¢), of an initially unstable, equally
spaced pattern. The pattern, computed with (6), contains 200
impulses but only a portion of it is displayed. Parameter values
used in this simulation are £=1.0, n=0.8, v=10.0, a=1.0,
and ¢ =0.0. Initial spacing is 2.204,
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This leads to the creation of larger spacings, or defects,
seen in Fig. 3 as white stripes.?* These larger spacings
introduce exponentially longer relaxation times, as sug-
gested by Eq. (10). Our interpretation is that, as the
subsequent evolution of the pattern proceeds on a longer
time scale, it is governed by the interaction between the
groups of impulses. The whole process repeats itself
hierarchically until the asymptotic state of a pattern with
uniform velocity is reached. In this final state the posi-
tion of every pulse is determined by the pattern map.
Hence X is a function of X;: The correlation length has
increased to be the size of the system:.

Another vision of this process is provided by Fig. 4(a)
which shows the spacing between successive impulses as
a function of the impulse number j for an asymptotic
metastable pattern. By the time that the largest group
of correlated impulses has attained the size of the sys-
tem, and the asymptotic form has been reached, four
generations of relaxation have occurred, represented by
the four lengths in the figure. The stabilization process
that the system performs is better understood in the light
of Fig. 4(b) which shows g(j):=Z;[1+a(Z;)]. This
function is a measure of the local growth rate of pertur-
bations for a given spacing [see Eq. (10)]. It arises in
the stability criteria for nonuniform, periodic patterns.
We suggest that B plays a role in the characterization of
the approach to an asymptotic state of the system. From

B()o -

100 200 300

Impulse Index, j

FIG. 4. (a) AX;:=X;—X;—1 and (b) B(j):=Z;[1 +a(Z;)]
as functions of j for an asymptotic, metastable pattern of 1000
impulses of which only a 360 are shown. The dashed line in
(b) represents the initial, equally spaced (A =2.191) unstable
pattern. Parameter values are as in Fig. 3.
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a constant positive value (dashed line in the figure) for
the uniform unstable initial pattern, it tends to an every-
where negative, irregular asymptotic form in the final
metastable traveling pattern.

These numerical results are perforce limited to rather
small systems. Nevertheless, they qualitatively suggest
the development of scaling structure that we propose to
elaborate in future work. We also hope to return to the
subject of experimental tests elsewhere. In particular,
some of our results can be tested in experiments where
the initial spacings are forced. For a system prepared
with uniform spacing, we would expect to find windows
(as a function of spacing) of regularly spaced patterns
interspersed with complex patterns. Further, Eq. (6) can
be modified to allow for the effect of a periodic stimula-
tion of the medium by a pacemaker. This variant of the
problem is related to a recent study of traveling patterns
in stimulated His-Perkinje fibers (of the heart system)
where the kind of complexity considered here has been
observed.?
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