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Abstract Ecosystem regime shifts are regarded as
abrupt global transitions from one stable state to an
alternative stable state, induced by slow environmental
changes or by global disturbances. Spatially extended
ecosystems, however, can also respond to local distur-
bances by the formation of small domains of the alter-
native state. Such a response can lead to gradual regime
shifts involving front propagation and the coalescence
of alternative-state domains. When one of the states is
spatially patterned, a multitude of intermediate stable
states appears, giving rise to step-like gradual shifts
with extended pauses at these states. Using a minimal
model, we study gradual state transitions and show that
they precede abrupt transitions. We propose indica-
tors to probe gradual regime shifts, and suggest that a
combination of abrupt-shift indicators and gradual-shift
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indicators might be needed to unambiguously identify
regime shifts. Our results are particularly relevant to
desertification in drylands where transitions to bare soil
take place from spotted vegetation, and the degrada-
tion process appears to involve step-like events of local
vegetation mortality caused by repeated droughts.

Keywords Regime shifts · Early indicators ·
Alternative stable states · Pattern formation ·
Bistability · Front dynamics · Homoclinic snaking ·
Vegetation patterns · Desertification

Introduction

The responses of ecosystems to small environmental
changes are generally divided into two categories: small,
slow, and reversible, or large, abrupt, and irreversible.
Various examples of the latter response have been
reported, including sudden losses of transparency and
vegetation in shallow lakes subject to human-induced
eutrophication, coral reefs overgrown by fleshy macroal-
gae, and desertification induced by climate changes
or human disturbances (Scheffer et al. 2001). Often
the abrupt response is detrimental to the ecosystem
because it causes loss of bioproductivity and biodi-
versity, which, in turn, affect ecosystem function and
stability (Yachi and Loreau 1999; Loreau et al. 2001;
Duraiappah and Naeem 2005). The heightened concern
about potential ecosystem deterioration from global
climate change has motivated vigorous research efforts
aimed at devising early indicators of impending degra-
dation processes (Scheffer et al. 2009).

Large sudden responses to small environmental
changes have been attributed to the coexistence of two
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Fig. 1 Bifurcation diagram showing a bistability range of zero
and nonzero (u = u+) uniform states in Eq. 1, bounded by fold
(λ = λf) and transcritical (λ = 0) bifurcations. Solid (dashed)
lines denote stable (unstable) solutions. Illustrated are two sce-
narios of regime shifts, a shift induced by environmental changes
(left arrow) and a shift induced by disturbances (right arrow).
Parameters used to produce the diagram: a2 = 2.2, a3 = 1. The
stability properties were evaluated with d2 < 0 and d4 = 0

alternative stable states in some range of environmental
conditions (Lewontin 1969; Holling 1973; May 1977;
Scheffer et al. 2001; Guttal and Jayaprakash 2007).
This bistability range is bounded by instability points1

where one alternative stable state either loses stability
or ceases to exist. A small environmental change that
moves the system across one of these instability points
can induce a transition to the other alternative stable
state as the left arrow in Fig. 1 illustrates. State tran-
sitions of this kind have been termed “critical transi-
tions”, or “regime shifts.”

Most studies of early indicators of regime shifts rely
on a basic property of a dynamical system undergoing
an instability, namely slow recovery of perturbations in
the vicinity of the instability point. This property, which
has been termed “critical slowing down” in analogy
to a similar concept in the theory of phase transitions
applies, in particular, to the instability points at the
edge of a bistability range (Scheffer et al. 2001). The
critical slowing down manifests itself in the increase
of temporal autocorrelation and variance (Carpenter
and Brock 2006; Dakos et al. 2008; Chisholm and
Filotas 2009) and in the skewness of time-series distrib-
utions (Guttal and Jayaprakash 2008). Monitoring such

1The term “instability point” refers to the threshold value of a
control parameter at which a system state becomes unstable, i.e.,
the point on the control parameter axis at which the instability
occurs. This term should not be confused with the term “fixed
point” which describes a stationary system state.

changes in empirical time series may indicate imminent
regime shifts. More recent studies have considered spa-
tially explicit models and have suggested an increase in
spatial variance and correlations and peaking of spa-
tial skewness as more feasible indicators for imminent
regime shifts (Guttal and Jayaprakash 2009; Dakos
et al. 2010; Donangelo et al. 2010; Dakos et al. 2011).
The discrete Fourier transform in space is yet another
method proposed recently for the identification of im-
pending regime shifts (Carpenter and Brock 2010).

Two important aspects of spatially extended ecosys-
tems have not been considered in these studies. The
first is local disturbances that form confined spatial
domains of the alternative stable state, even far from
the instability points. The second is spatial patterning
of one of the alternative stable states. These aspects
are particularly relevant to desertification processes in
drylands (Scheffer and Carpenter 2003). Model stud-
ies predict that transitions to the low bioproductivity,
or “bare-soil,” state following a precipitation down-
shift, never occur from a uniform vegetation state but
rather from a spot-pattern state (von Hardenberg et al.
2001; Rietkerk et al. 2004). Moreover, there is a wide
bistability range of the spot pattern and the bare-soil
states, due to positive feedback between biomass and
water (HilleRisLambers et al. 2001; Rietkerk et al.
2002) and between above-ground and below-ground
biomass (Gilad et al. 2004, 2007). In this range, lo-
cal vegetation disturbances, such as clear-cutting, fires,
overgrazing, and infestation, often in conjunction with
rainfall variability (Breshears et al. 2005), can induce
the formation of bare-soil domains.

The significance of local domain formation is that
it may induce front dynamics (Hagberg and Meron
1994c), i.e., dynamics of the transition zones that sep-
arate adjacent domains of the two alternative states.
The dynamics may act to reduce the newly formed
domains, or to extend them. The latter process suggests
a third category of ecosystem response, which is neither
small and slow nor large and abrupt, but rather large
and slow involving gradual transitions between the two
alternative stable states, in the course of which newly
formed domains expand and merge (Fig. 9). This calls
for the re-examination of currently suggested indicators
of impending shifts and for the consideration of addi-
tional indicators.

A minimal model of alternative stable states
in spatially extended systems

We study gradual state transitions using a minimal
model for alternative stable states that captures an
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instability to a patterned state. The model consists
of a single state variable, u = u(x, y, t), which can be
thought of as providing some measure for the ecosystem
health (with u ≤ 0 representing unhealthy regions).
The model reads

ut = λu + a2u2 − a3u3 − d2∇2u − d4∇4u , (1)

where the subscript t denotes the partial time deriva-
tive, ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator,
and a2, a3, d2, and d4 are constant parameters. We
assume that a2 > 0, a3 > 0, and d4 ≥ 0. The parameter
λ, which will play the role of a control parameter,
represents the effect of the environment; high λ val-
ues account for environmental amelioration that allows
the growth of u, whereas low values (possibly nega-
tive) represent environmental stresses. The parameter
a2 represents facilitation and accounts for bistability
ranges of both two uniform states and of a uniform and
a patterned state, as will be explained below. The para-
meter a3 accounts for processes that limit the growth of
u, such as the depletion of a limiting resource. Finally,
the space derivative terms account for short-range fa-
cilitation and long-range competition, as produced, for
example, by the transport of a limiting resource toward
a growing patch of some life form (Lejeune et al. 1999,
2004; Rietkerk and van de Koppel 2008; Meron 2011b).
Such processes can induce pattern formation as will
be clarified below. For simplicity we will assume that
Eq. 1 is already in a non-dimensional form.

We wish to point out that the general conclusions
to be drawn from the study of this minimal model are
expected to apply to more detailed models of specific
ecosystems, as they rely on universal aspects of dynam-
ical systems such as instability phenomena. Detailed
models are significant for relating the general findings
to specific parameters and processes, as we explain in
the “Discussion” section.

Equation 1 has a zero solution, u = 0, representing
an unhealthy state. The stability of the zero state to
small perturbations can be evaluated by calculating the
growth rate σ(k) of sinusoidal perturbations (or Fourier
modes) with wavenumber k (or wavelength 2π/k). A
calculation of this kind (Cross and Greenside 2009;
Borgogno et al. 2009) yields the following expression:

σ(k) = λ + d2k2 − d4k4 . (2)

Figure 2 shows graphs of σ(k) for d2 < 0 (a) and for
d2 > 0 (b). In both cases, there exists a threshold value
λc below which any perturbation decays, implying the
stability of the zero state in the range λ < λc. In the
former case, the threshold is λc = 0 while in the latter
it is λc = −d2

2/(4d4). When this threshold is exceeded,
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Fig. 2 Growth rates of sinusoidal perturbations with wavenum-
ber k from the zero (unhealthy) state for a d2 < 0 and b d2 >

0. When d2 is negative, the first perturbation to grow, as λ

increases past a threshold value λc, is uniform (k = 0). When
d2 is positive, the first perturbation to grow has a finite wave-
number kc

a critical mode kc begins to grow. In the former case
kc = 0 implying that the zero solution becomes unstable
to the growth of spatially uniform perturbations, while
in the latter case kc = √

d2/(2d4), implying the growth
of nonuniform perturbations. This is an example of a
finite-wavenumber instability that leads to a periodic
pattern state.2 It is this case, d2 > 0, for which the
model captures short-range facilitation and long-range
competition. Indeed, growth rate curves of the form
shown in Fig. 2b have been obtained with dryland-
vegetation models that specifically capture physical
and ecological processes of facilitation and competi-
tion (Sherratt 2005; Gilad et al. 2007; Meron 2011b).
Note the stabilizing effect of the fourth-order derivative
term by reducing the growth rates of high-wavenumber
modes. This effect is essential when d2 > 0 but becomes
insignificant when d2 < 0. For simplicity, we will set
d4 = 0 whenever we consider the case d2 < 0.

The stability range of the zero solution, λ < λc,
may include another stable solution provided a2 �= 0.
A straightforward calculation for the case d2 < 0 and
a2 > 0 shows that in the range λf < λ < 0, where

2The term “finite-wavenumber instability” refers to an instability
to the growth of a nonuniform perturbation as Fig. 2b illustrates.
Many other examples of finite wavenumber instabilities exist,
including the Turing instability in reaction–diffusion systems and
the Rayleigh–Bénard instability in thermal convection (Cross and
Greenside 2009).
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λf = −a2
2/4, both the zero solution and the constant

solution,

u = u+ = 1
2a3

(
a2 +

√
a2

2 + 4a3λ

)
, (3)

are stable, as the bifurcation diagram in Fig. 1 indi-
cates. We will refer to the constant solution u+ as
the “nonzero state”. The bistability range is bounded
from above at λ = λc = 0, where the zero solution loses
stability in a transcritical bifurcation, and from below
at λ = λf = −a2

2/4, where the u = u+ solution ceases
to exist in a fold (saddle-node) bifurcation. For the
case d2 > 0, the zero state loses stability in a subcrit-
ical finite-wavenumber instability, which results in a
bistability range of a uniform zero state and a peri-
odic pattern state, u = up, as the bifurcation diagram
in Fig. 7 shows. The bistability range in this case is
bounded from above at λ = λc = −d2

2/(4d4), where the
zero state loses stability, and from below at λ = λf,
where the periodic pattern state ceases to exist in a fold
bifurcation. The threshold λf in this case is evaluated
numerically.

In summary, the minimal model (Eq. 1) captures two
distinct cases of regime shifts. The first applies to neg-
ative values of d2 and involves transitions between two
uniform states, u = 0 and u = u+, whereas the second
applies to positive d2 values and involves transitions
between a uniform state, u = 0, and a patterned state,
u = up. We will see in the next section that the second
case is much more complicated because the bistability
of uniform and patterned states implies the existence
of many more intermediate stable states. Some of them
are shown in the bifurcation diagram of Fig. 7.

Pattern formation background

Pattern formation theory provides results about front
dynamics in bistable systems that are essential for un-
derstanding gradual state transitions. We describe these
results below and refer the interested reader to the vast
literature on this topic for more details as we proceed.

Potential systems

Equation 1 represents a potential system (Strogatz
1994). A functional3 V = V[u] can be defined with the
property that it can never increase in time. We refer to

3A functional is a map that associates a number with a function,
such as the value of a definite integral of some function.

V as a potential functional4. To see how this property
emerges from the model Eq. 1, consider a simpler
version of this equation that does not contain the space
derivative terms. This simpler form can be written as

du
dt

= −dV
du

, (4)

where

V = −λ

2
u2 − a2

3
u3 + a3

4
u4 + V0 , (5)

and V0 is an integration constant. Consider now the
time derivative of V(u). The function V does not have
an explicit time dependence, but it does depend on time
implicitly through the time dependence of u(t). Using
the chain rule and then Eq. 4, we obtain

dV
dt

= dV
du

du
dt

= −
(

du
dt

)2

≤ 0 . (6)

Thus, V can only decrease or remain constant in time,
and therefore is a potential function. Since the sys-
tem tends to minimize its potential function, once it
reaches a potential minimum it cannot escape from it;
any sufficiently small perturbation must decay in time.
Thus, minima of a potential function represent stable
stationary states. The potential functional of Eq. 1 is
more complicated since it contains a spatial integral
over a function of u and its spatial derivatives (Cross
and Greenside 2009), but the general principle of dy-
namics that act to minimize the potential still holds5.

Bistability of uniform states

Pattern dynamics associated with the bistability of
uniform states has been the subject of intense study,
both in potential and non-potential systems (Fife 1988;
Hagberg and Meron 1994c; Pismen 2006; Cross and
Greenside 2009). The building blocks of these patterns
are fronts that separate domains of different states,
as Fig. 3c illustrates, and much of the overall pattern
dynamics can be understood in terms of the dynamics
of single fronts and their mutual interactions.

In the context of Eq. 1, the bistability of uniform
states amounts to d2 < 0, in which case we can set d4 =

4Several alternative terms have been used in the literature to
refer to potential systems and functionals. Potential systems are
also called variational and gradient systems, and the functionals
are also called Lyapunov and energy functionals.
5It should be noted that dynamical systems are not necessarily
potential. It is often the case, however, that a system is potential
in some parameter range and non-potential outside this range.
Changing a parameter across the boundaries of this range is gen-
erally accompanied by the appearance of “non-potential effects”,
such as temporal oscillations.
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Fig. 3 Fronts as building blocks of spatial patterns for bistability
of uniform states (d2 < 0). a, b A pair of symmetric front so-
lutions of Eq. 7 representing a nonzero state propagating into
the zero state for c > 0 and vice versa for c < 0. The arrows
denote the direction of front propagation for c > 0. c A pattern
consisting of nonzero-state and zero-state domains separated
by the two types of fronts. Parameters: λ = −1.0, a2 = 2.2, a3 =
1, d2 = −1, d4 = 0

0 (see the “A minimal model of alternative stable states
in spatially extended systems” section). Equation 1 can
then be written as

ut = −V ′(u) + |d2|∇2u , (7)

where V is given by Eq. 5 and the prime denotes
the derivative with respect to the argument, that is,
V ′ = dV/du. In the following, we restrict the analysis
to rectilinear fronts. For treatments that include front
curvature, we refer the reader to (Hagberg and Meron
1998; Pismen 2006).

To study the dynamics of a single front, we look
for a solution u = u(χ) of Eq. 7 that propagates at
constant velocity c, where χ = x − ct. Consider first a
front that asymptotes to u = u+ as χ → −∞ and to
u = 0 as χ → ∞ as Fig. 3a illustrates6. Such a solution
describes a system occupied by the nonzero state far
to the left and by the zero state far to the right, with a
transition zone in between that moves at velocity c. The
velocity c can be found by inserting this solution form

6We consider in this front analysis the infinite line −∞ < x < ∞,
although a system of finite size L must be assumed in practice and
in the numerical studies to follow. The analysis on the infinite line
provides good approximations for “large” finite systems, i.e., for
systems much larger than the front width.

into Eq. 7, multiplying by u′ ≡ du/dχ and integrating
over the whole line. This gives7

c = A−1
∫ ∞

−∞
V ′u′dχ = A−1

∫ 0

u+
V ′du (8)

= A−1[V(0) − V(u+)] ,
where

A =
∫ ∞

−∞

(
u′)2 dχ . (9)

Along with this front solution, there exists a symmetric
solution that asymptotes to u = 0 as χ → −∞ and
to u = u+ as χ → ∞ and propagates in the opposite
direction, i.e., with velocity −c (see Fig. 3b).

According to Eqs. 8 and 9, the sign of the front
velocity depends on the relative value of the potential
V at the two alternative stable states. When V(u+) <

V(0), the velocity is positive, implying that the nonzero
state propagates into the zero state. Indeed, this process
minimizes the potential functional of Eq. 7 as it trans-
forms high-potential areas into low-potential areas.
When V(u+) > V(0), the zero state propagates into
the nonzero state, and when V(u+) = V(0), the front
is stationary (c = 0). Note that the same conclusions
also hold for the symmetric front; for V(u+) < V(0),
the nonzero state propagates into the zero state and
vice versa for V(u+) > V(0). The potential values of
the two states are affected by the control parameter λ

(see Eq. 5). The particular value, λ = λm, for which the
potential values of the two states are equal, is called
the Maxwell point (see, for example, Pismen 2006).
For λ > λm, the nonzero state propagates into the zero
state, and for λ < λm, the zero state propagates into
the nonzero state. A straightforward calculation gives
λm = −2a2

2/(9a3). More generally, we will define the
Maxwell point as the parameter value at which c = 0.
This definition will be useful for more complex models
of bistable systems, the potential functionals of which
are not known.

Consider now a domain of the zero state in a back-
ground of the nonzero state within the bistability range
λf < λ < λc. Above the Maxwell point (λ > λm), such
a domain will shrink in size and the two fronts that
enclose the domain will get closer to one another.
It is during this stage that front interactions become
significant. For the model Eq. 1, these interactions are
attractive, and the dynamics culminate in the collapse
of the zero-state domain and the convergence to a
uniform nonzero state as Fig. 4a demonstrates. At the

7In deriving Eq. 8, we use integration by parts and the fact that
u′ → 0 as χ → ±∞.
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Fig. 4 Space–time plots showing the dynamics of initial zero-
state domains a–c and nonzero-state domains d–f for bistability
of uniform states (d2 < 0). Dark shades represent the healthy
nonzero state. To the right of the Maxwell point (λ > λm), an
initially small zero-state domain shrinks a, while an initially
small nonzero-state domain expands d. Both initial conditions
culminate in the uniform nonzero state. To the left of the Maxwell
point (λ < λm), an initially small zero-state domain expands c,
while an initially small nonzero-state domain shrinks f. In that
case, both initial conditions culminate in the uniform zero state.
At the Maxwell point, the initial domains are stationary, provided
they are not too small for the attractive front interactions to
be significant b, e. Parameters: a2 = 2.2, a3 = 1, d2 = −1, d4 = 0,
a, d λ = −1.06, b, e λ = λm = −1.076, c, f λ = −1.12

Maxwell point, that is, at exactly λ = λm, the zero-state
domain will remain of constant size (Fig. 4b), while
below the Maxwell point (λ < λm), it will grow in size
until it occupies the whole system (Fig. 4c). A domain of
the nonzero state in a background of the zero state will
expand above the Maxwell point, remain of fixed size
at the Maxwell point, and shrink below it as Fig. 4d–f
shows.

Bistability of uniform and patterned states

The main difference between the bistability of uniform
and patterned states, and the bistability of two uniform
states is that the former generally implies a multi-
stability of states, at least in a subrange of the bistability
range. As we will see below, this subrange may involve
many stable patterned states, infinitely many in an
infinite system, that can be viewed as spatial mixtures
of the periodic pattern state and the uniform zero state.

As in the case of two stable uniform states, much
insight about the structure and dynamics of spatial pat-
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Fig. 5 Fronts as building blocks of spatial patterns for bistability
of uniform and patterned states (d2 > 0). a, b A pair of sym-
metric front solutions of Eq. 1 representing a patterned state
propagating into the zero state for c > 0 and vice versa for c < 0.
Unlike the case of two uniform states, there exists a control
parameter range, rather than a single value, in which the two
fronts are stationary (c = 0). c A pattern consisting of patterned-
state and zero-state domains separated by the two types of fronts.
Parameters: λ = −1.28, a2 = 1.82, a3 = 1, d2 = 2, d4 = 1

terns can be obtained from the dynamics of single fronts
and their interactions. The fronts separate domains of
uniform and patterned states as shown in Fig. 5. Such
fronts, however, behave differently in one important
respect compared with fronts that separate two uni-
form states—they are stationary in a range of the con-
trol parameter, λ1 < λ < λ2, that includes the Maxwell
point, rather than being stationary at the Maxwell point
only (Pomeau 1986).

To study the implications of this front property,
we consider Eq. 1 with d2 > 08. Figure 6 a–c shows
numerical solutions of Eq. 1 describing the dynamics
of a zero-state domain in a background of a periodic
pattern within the range of bistability, λf < λ < λc. This
range can be divided into three parts where different
behaviors take place: (a) λ2 < λ < λc where the zero-
state domain diminishes in size and disappears, (b)
λ1 < λ < λ2 where the zero-state domain retains a fixed
size because the fronts are stationary, and (c) λf <

λ < λ1 where the zero-state domain expands until it
occupies the whole system. In the first range, the system

8Note that with d2 > 0, Eq. 1 is equivalent, with appropri-
ate rescaling of u and the space coordinates, to the Swift–
Hohenberg equation, ut =ru+αu2−u3−(∇2+k2

0
)2

u (Croos and
Greenside 2009).
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Fig. 6 Space–time plots showing the dynamics of initial zero-
state domains a–c and pattern-state domains d–f for bistability
of uniform and patterned states (d2 > 0). Unlike the case of
two uniform states shown in Fig. 4, a control parameter range
exists where the initial zero and pattern-state domains quickly
converge to stationary hole solutions b and localized solutions e,
respectively. The dynamics resemble that of two uniform states
only outside this control parameter range as a, c and d, f show.
Parameters: a2 = 1.82, a3 = 1, d2 = 2, d4 = 1, a λ = −1.22, b λ =
−1.28, c λ = −1.375, d λ = −1.18, e λ = −1.28, f λ = −1.355,
λ1 = −1.353, and λ2 = −1.266

converges to the stable periodic pattern state. In the
third range, it converges to the stable uniform zero
state. In the range in between, it converges to a stable
hole solution, that is, a solution describing a zero-state
domain of fixed size in an otherwise periodic pattern.
For a reason to become apparent shortly, the range
λ1 < λ < λ2 is called the snaking range. Analogous be-
havior is found for an initial pattern-state domain in a
background of the zero state as Fig. 6d–f shows. The
pattern-state domain of fixed size in the snaking range
(Fig. 6e) describes a stable localized solution.

The stable hole solution the system converges to in
Fig. 6b is just one example out of many other stable
hole solutions that exist in the range λ1 < λ < λ2. The
bifurcation diagram in Fig. 7 shows one family of such
solutions. The family emerges from the periodic pat-
tern branch near the fold bifurcation at λ = λf, snakes
down, and terminates at the unstable periodic pattern
branch near the zero state. The upper branches of this
solution family describe small holes in an otherwise
periodic pattern that widen in the descent toward the
zero state. The full bifurcation diagram of solutions is

Fig. 7 Bistability of a uniform zero state and a periodic pat-
tern state (u = up) in Eq. 1. The vertical axis, ‖u‖, represents
the L2 norm of u, a global measure involving the square root
of the spatial integral of u2. Specifically, ‖u‖ satisfies ‖u‖2 =
L−1 ∫ L

0 u2dx, where L is the system size. Solid (dashed) lines
denote stable (unstable) solutions. The bistability range, λf <

λ < λc, includes a snaking range, λ1 < λ < λ2, in which families
of localized and hole solutions exist. Shown is a family of hole
solutions that bifurcates from the periodic pattern solution and
snakes down, approaching the zero solution. The branches of this
family describe holes of increasing sizes as the insets on the left
show. The insets correspond to the solid circles on the stable
solution branches. The vertical line denotes the Maxwell point
λ = λm. Parameters: a2 = 1.82, a3 = 1, d2 = 2, d4 = 1. For these
parameters, λm = −1.31, λ1 = −1.353, and λ2 = −1.266

more involved and contains additional periodic pattern
branches and many more states that are intermediate
between the periodic and the zero states. We refer
the reader to (Kozyreff and Chapman 2006; Burke
and Knobloch 2007; Knobloch 2008; Bergeon et al.
2008; Chapman and Kozyreff 2009) for additional in-
formation and for fuller descriptions of the bifurcation
structure.

The solution structure described above for one space
dimension extends to two space dimensions with richer
solution forms (Lloyd et al. 2008; Avitabile et al.
2010; McCalla and Sandstede 2010). We illustrate some
of these solutions in Fig. 8. The leftmost and right-
most panels show the alternative stable states, peri-
odic hexagonal pattern (left) and zero (right). The
panels in between show intermediate states consist-
ing of hole structures of different sizes, combinations
of hole and localized structures, and localized struc-
tures of different size. Intermediate states of this kind
have been found in many other models with bistability
ranges of uniform and patterned states, including mod-
els of dryland vegetation (Meron et al. 2007; Gilad et al.
2007; Tlidi et al. 2008).



598 Theor Ecol (2012) 5:591–604

Fig. 8 Examples of 2D patterns in the bistability range of a
uniform state (e) and a periodic pattern state (a) in Eq. (1). The
examples include a spatial mixture of hole structures of different
sizes (b), a spatial mixture of localized structures of different

sizes (d), and a combination of localized and hole structures (c).
Dark shading indicates high u values. Parameters: λ = −1.7, a2 =
2.2, a3 = 1, d2 = 2, d4 = 1, x = y = [0, 50]

Gradual regime shifts

Two major scenarios of state transitions in spatially
extended ecosystems can be conceived: (a) changes
of a control parameter representing an environmental
factor, such as precipitation, across an instability point
and (b) disturbances of state variables, e.g., biomass
removal, that move the system outside the state’s basin
of attraction. The former scenario describes an abrupt
global transition occurring across the whole system
(left arrow in Fig. 1), but may not be realizable if the
system state is not sufficiently close to the instability
point. The latter scenario may also be regarded as
an abrupt global transition if the disturbance itself is
global, i.e., occurring across the whole system (right
arrow in Fig. 1). While global disturbances do occur,
more likely are disturbances of smaller spatial extent
that are strong enough to induce local state transitions,
that is, the formation of alternative state domains. The
expansion and coalescence of these domains result in
gradual global transitions.

Transitions between uniform states

The results of the “Bistability of uniform states” section
(Fig. 4) suggest two possible responses of the uniform
nonzero state u = u+ to confined strong disturbances,
depending on the control parameter value relative to
the Maxwell point: (a) a complete recovery to the
uniform nonzero state when λ > λm and (b) a grad-
ual global transition to the zero state when λ < λm.
The second response is shown in panel (a) of Fig. 9.
It involves the expansion and coalescence of zero-
state domains at a rate determined by the distance
to the Maxwell point; the closer λ to λm, the slower
the gradual global transition. As the downward arrow
in panel (c) indicates, such a gradual transition can

(a) (b)

(c)

Fig. 9 Gradual state transitions for bistability of two uniform
states. To the left of the Maxwell point, λ < λm, a disturbed
nonzero state gradually degrades toward the zero state, as the
snapshots in a show. To the right of the Maxwell point, λ > λm,
a near-zero degraded state gradually recovers and approaches
the nonzero state, as the snapshots in b show. The gradual
degradation can occur at λ values significantly higher than λf,
the threshold of abrupt degradation, as the downward arrow in
c shows. Likewise, the gradual recovery can occur at λ values
significantly lower than λ = 0, the threshold of abrupt recovery,
as the upward arrow shows. The solid circles on the arrows denote
the values of ‖u‖ at the times the snapshots in a and b were
taken. Parameters: a2 = 2.2, a3 = 1, d2 = −1, d4 = 0, a λ = −1.1,
b λ = −1.05. For these parameters, λm = −1.076
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occur far from the fold bifurcation of the nonzero
state at λ = λf, and thus well before early indicators
based on the proximity to the fold bifurcation become
effective.

Likewise, efforts to recover the uniform nonzero
state from the zero state by creating nonzero-state
domains can follow two scenarios: (a) decay of the
nonzero-state domains and the convergence back to
the zero state when λ < λm, and (b) expansion and
coalescence of nonzero-state domains, until a global
recovery of the nonzero state is attained, when λ > λm.
The second scenario is shown in panel (b) of Fig. 9. As
the upward arrow in panel (c) indicates, such a gradual
global recovery can occur well before the abrupt transi-
tion to the nonzero state at λ = 0.

Transitions between uniform and patterned states

In this case, the healthy state (u = up) is spatially pat-
terned, and the response to confined disturbances is
more involved. Outside the snaking range, the behav-
ior is similar to the case of two uniform states dis-
cussed above. For λ > λ2 > λm, domains of the zero
state shrink and disappear and the patterned state
completely recovers. For λ < λ1 < λm, such domains
expand, merge, and induce a gradual global transition
to the zero state. Inside the snaking range, λ1 < λ < λ2,
the impact of confined disturbances remains local as the
fronts that bound a newly formed zero-state domain are
stationary (see Fig. 6b, e). That is, a local disturbance
can only induce a transition to a stable hole structure—
one of the many stable intermediate states within the
snaking range (see Fig. 7).

In reality, ecosystems are subjected both to distur-
bances and to environmental variability. The combina-
tion of the two can lead to gradual global transitions
even within the snaking range, as we now demonstrate.
Consider the response of a hole solution, corresponding
to an intermediate state up the snaking range, to a
time-periodic modulation of the control parameter, λ =
λ0(1 + ε cos (ωt)). In the context of dryland vegetation,
for example, the hole solution may represent a vege-
tation pattern with locally removed biomass patches,
while the modulated control parameter may represent
a series of droughts. The two parameters λ0 and ε

are chosen such that λ0(1 − ε) < λ1 and λ0(1 + ε) < λ2,
where λ1 < λ0 < λ2. This choice amounts to a periodic
escape of the control parameter out of the left side of
the snaking range. A possible response of the system
is shown in Fig. 10a. The initial domain of the zero
state invades the adjacent domains of the pattern state
by eliminating a pair of edge humps. This process oc-

Fig. 10 Space–time plots showing gradual state transitions to the
zero state for bistability of uniform and patterned states, within
the snaking range under time-periodic modulation of the control
parameter. When the modulation time scale is comparable to the
transition time between adjacent hole solutions, the transition
involves hopping from one hole solution to the next at each mod-
ulation cycle (a). When the modulation time scale is sufficiently
longer than the transition time, the hopping is to every second
hole solution at each cycle (b). When the modulation time scale is
sufficiently shorter than the transition time, no transition is taking
place (c). Parameters: λ0 = −1.35, a2 = 1.82, a3 = 1, d2 = 2, d4 =
1, ε = 0.013, a ω = 0.07, b ω = 0.007, c ω = 0.7

curs every cycle of the periodic modulation, during the
time interval outside the snaking range. The result is
a step-like dynamics down the snaking branches with
extended pauses in each branch that is visited. For
this scenario to happen, the time scale of the periodic
modulation should be of the same order of magnitude
as the state transition time scale, or ω ∼ √

λ1 − λmin,
where λmin = λ0(1 − ε) (Burke and Knobloch 2006). If
the modulation is too slow, the dynamics can skip one
or more intermediate states in the descent toward the
zero state (Fig. 10b), and if it is too fast, the zero
domain remains confined and no global transition takes
place (Fig. 10c).

To demonstrate the difference between abrupt and
gradual state transitions, we numerically solved Eq. 1 in
two space dimensions, once for λ < λf and once for λf <

λ < λ1, starting from the same initial state. Animations
of these solutions are shown in Online Resource 1 and
Online Resource 2. In the former case, an abrupt tran-
sition takes place in which the system globally collapses
to the zero state on a short time scale. In the latter
case, a gradual transition takes place in which zero-state
domains expand and merge until a uniform zero state is
reached. The transition is global but occurs on a much
longer time scale.
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Indicators of gradual regime shifts

Gradual global transitions involve significant changes
in global measures of u, such as the spatial average uave,
or the area fraction, ucov, covered by patches of u > 0.
A transition down to the zero state involves the expan-
sion of zero-state domains, and thus a decrease of uave

and ucov, while a transition to the healthy state involves
an increase of these quantities. Gradual transitions are
also characterized by changes in spatial correlations.
The dynamics down to the zero state involve a decrease
of spatial correlations, for the nonzero-state domains
become more and more isolated from one another,
while the dynamics up to the healthy state involve an
increase of spatial correlations. To quantify changes
of spatial correlations, we define a correlation length,

, as


(t) = 1
L

∫ L

0
|C(x, t)|xdx , (10)

C(x, t) ≡
∫ L−x

0 u(x′, t)u(x′ + x, t)dx′
∫ L

0 up(x)up(x)dx
, (11)

where up is the stationary periodic solution at the same
parameter values of u, representing the original undis-
turbed state.

Figures 11 and 12 show graphs of uave, ucov, and 
 vs.
time for bistability of uniform and patterned states and
time-periodic modulation of the control parameter that
induces gradual state transitions. When the escape from
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Fig. 11 Temporal changes of the correlation length 
, the
spatial average uave, and the coverage ucov as indicators of
gradual degradation. Parameters: λ = −1.3475, a2 = 1.82, d2 =
2, d4 = 1, ε = 0.01, ω = 0.05
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Fig. 12 Temporal changes of the correlation length 
, the spatial
average uave, and the coverage ucov as indicators of gradual
recovery. Parameters: λ = −1.26, a2 = 1.82, d2 = 2, d4 = 1, ε =
0.0127, ω = 0.05

the snaking range is to the left of the Maxwell point,
these quantities decrease in time, indicating a gradual
degradation to the uniform zero state (Fig. 11). When
the escape is to the right of this point, they increase
in time, indicating a gradual recovery of the healthy
patterned state (Fig. 12). Monitoring temporal changes
of these quantities can give indications whether the
system is in the course of a gradual state transition.
Although these indicators provide information about
state transitions in process, rather than warning signals
of impending transitions, they can still function as early
warning signals, since the slow gradual nature of the
transitions leaves time for response or for preventive
measures to be taken.

Discussion

Bistable ecosystems are naturally subjected to local
disturbances of various kinds, some of which may be
strong enough to form small spatial domains of the
alternative stable state. The dynamics of such domains
can lead to gradual rather than abrupt regime shifts,
as discussed in the “Gradual regime shifts” section.
Gradual regime shifts are affected by the types of the
alternative stable states. When the two states are spa-
tially uniform, the shifts are determined by the value
of the control parameter relative to the Maxwell point.
Values smaller than the Maxwell point induce gradual
degradation to the zero state, while larger values in-
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duce gradual recovery to the uniform nonzero state.
When one of the alternative stable states is spatially
patterned, the system becomes multi-stable; a variety of
stable intermediate states (Fig. 8) appear in the snaking
range (Fig. 7), which includes the Maxwell point. Grad-
ual regime shifts occur only outside the snaking range,
but time-periodic variations of the control parameter
can drive the system out of this range and induce grad-
ual regime shifts with extended pauses in consecutive
intermediate states (Fig. 10).

These results shed new light on current efforts to
devise effective early indicators for impending regime
shifts. The results first suggest that indicators that are
based on the proximity to an instability point are
not effective in identifying gradual shifts, since such
shifts can take place well before the instability point is
reached. This conclusion particularly holds for the case
of two uniform stable states where gradual state transi-
tions can take place as far from the fold bifurcation (λ =
λf) as the vicinity of the Maxwell point (see down arrow
in Fig. 9c). In the case of bistability of uniform and
patterned states, the use of such indicators may not be
conclusive because of the multitude of fold bifurcations
associated with the snaking structure (see Fig. 7). An
approach to a fold bifurcation near λ2 may be accom-
panied by increasing temporal and spatial correlations,
very much like the approach to the fold bifurcation
at λf, but would imply an impending gradual recovery
rather than abrupt degradation. Likewise, increasing
spatial correlations may indicate a gradual recovery in
progress (see Fig. 12a) rather than impending abrupt
degradation.

These considerations suggest that a single indicator
may not be sufficient for identifying regime shifts and
that a combination of two types may be needed: indica-
tors sensitive to abrupt shifts and indicators sensitive to
gradual shifts. Applying spatial correlations as a single
indicator (Dakos et al. 2010), for example, may not
distinguish an impending abrupt degradation from a
gradual recovery process, but measuring additionally
the spatial average or coverage of a state variable can
resolve this ambiguity: No significant change in these
quantities would imply an impending abrupt degrada-
tion9, whereas a significant increase would indicate a
gradual recovery process. Applying gradual-shift indi-
cators alone may not be conclusive either if the system
state is not sufficiently disturbed to create domains
of the alternative state; the indicators may rule out

9This is because the increase in the spatial correlations as an
instability point is approached occurs within a narrow range
of the control parameter over which the system’s state hardly
changes.

gradual transitions but would not predict an impend-
ing abrupt shift. A deeper analysis of indicator com-
binations can be pursued for specific contexts, using
detailed models or actual field data.

We may expect the response of an ecosystem to
environmental changes and disturbances to be sensitive
to the snaking structure of intermediate states. The
model Eq. 1 has a rather simple snaking structure in
which all intermediate states are aligned to λ = λ1 on
the left and to λ = λ2 on the right. However, additional
snaking structures have been studied (Firth et al. 2007;
Dawes 2008), and many more can be envisaged; a few
of them are schematically illustrated in Fig. 13. The
slanted alignments of the intermediate states bear on
the degree to which state transitions are gradual. The
degradation to the unhealthy zero state is more gradual
in Fig. 13a and more abrupt in Fig. 13b, compared with
the case of vertical alignment. Likewise, the recovery
of the healthy state is more gradual in Fig. 13c and
more abrupt in Fig. 13d. The manner by which the
snaking structure is affected by various biotic and abi-
otic processes in specific ecosystems is an open prob-
lem that, to the best of our knowledge, has not been
addressed yet.

Water-limited vegetation provides an intriguing ap-
plication of the results reported here. Model studies
indicate that increased aridity can result in bistability
of a vegetation pattern state and a uniform bare-soil
state (von Hardenberg et al. 2001; Rietkerk et al. 2004).
The results of the “Gradual regime shifts” section
then suggest that variable environmental stresses, such
as a series of droughts, can gradually drive a global

u

(a)

λ

(d)

(b)

λ

u

(c)

Fig. 13 Schematic illustration of the expected effect of the
snaking structure on gradual degradation and recovery processes.
Compared to the snaking structure in Fig. 7, a represents more
gradual degradation, b more abrupt degradation, c more gradual
recovery, and d more abrupt recovery
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transition to the bare-soil state. The global transition
consists of a succession of local transitions which take
the system from one intermediate state to another
with a gradual loss of bioproductivity. The local tran-
sitions are characterized by step-like expansions of
bare-soil domains involving the mortality of vegetation
edge spots. Step-like transitions of this kind have been
found recently in a cellular-automaton type vegetation
model (Bailey 2010) and are consistent with field obser-
vations (Mueller et al. 2005). Gradual desertification of
this kind may not be easily noticeable because of the
long time intervals the system spends in the intermedi-
ate stable states and the local nature of the transitions
among these states. It can be identified, however, by
evaluating the correlation length and the fraction of
area covered by vegetation, using remote sensing data
and following them in time.

We restricted our study to the case where the pat-
terned state represents a periodic pattern, but this may
not always be the case. In the context of dryland vegeta-
tion, global competition for the limited water resource
allows for scale-free patterns, characterized by power-
law patch-size distributions (Scanlon et al. 2007; Kéfi
et al. 2007; Manor and Shnerb 2008; von Hardenberg
et al. 2010). The extent to which the concept of gradual
state transitions applies to this case requires further
studies. However, when conditions of global compe-
tition develop (von Hardenberg et al. 2010), increas-
ing stress results in the appearance of a characteristic
length, an observation that by itself can be used to
identify impending degradation (Kéfi et al. 2011).

The study presented here is based on a minimal
model that captures universal aspects of spatially ex-
tended bistable systems, such as gradual state tran-
sitions involving front propagation, and the snaking
structure of intermediate states. These universal as-
pects are expected to appear in more detailed ecosys-
tem models as well (Borgogno et al. 2009; Meron
2011a). Extending this study to such models can pro-
vide information about the dependence of the front
velocity and of the snaking structure on specific eco-
logical and physical parameters, such as various plant
traits, soil properties, topography, and environmental
stresses. This information, in turn, can shed light on
the nature of desertification and vegetation recovery
processes. For example, factors affecting facilitation,
such as increased runoff interception in vegetation
patches, may lead to slanted snaking, as shown in
Fig. 13d, and increase the abruptness of the recovery
process.

There are additional universal aspects of the bista-
bility of uniform states that are not captured by the
minimal model Eq. 1. These include repulsive front

interactions (Hagberg and Meron 1994c) and global
constraints (Meerson and Sasorov 1996; Kletter et al.
2012) that prevent the convergence to a uniform state,
and non-potential effects such as traveling waves and
spatiotemporal chaos (Hagberg and Meron 1994b, a).
These aspects can be studied using two-variable models
such as the FitzHugh–Nagumo model (see, e.g., Hagberg
and Meron 1994c). Another direction that calls for fur-
ther exploration is stochastic spatially extended mod-
els with non-smooth potentials (Hastings and Wysham
2010).
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