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Stratified Spatiotemporal Chaos in Anisotropic Reaction-Diffusion Systems
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Numerical simulations of two-dimensional pattern formation in an anisotropic bistable reaction-
diffusion medium reveal a new dynamical state, stratified spatiotemporal chaos, characterized by strong
correlations along one of the principal axes. Equations that describe the dependence of front motion on
the angle illustrate the mechanism leading to stratified chaos.
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Pattern formation in nonequilibrium systems ha
been extensively studied in isotropic, two-dimensiona
media [1]. Among the most prominent experimenta
examples are Rayleigh-Benard convection and th
Belousov-Zhabotinsky reaction in the contexts of fluid
dynamics and chemical reactions, respectively. Recent
there has also been considerable interest in systems w
broken rotational symmetry, such as convection in liqui
crystals [2] and chemical waves in catalytic surface rea
tions [3]. Experimental and theoretical studies of suc
anisotropic systems showed novel phenomena such as
dered arrays of topological defects [4], anisotropic pha
turbulence [5], reaction-diffusion waves with sharp cor
ners [6], and traveling wave fragments along a preferre
orientation [7]. Anisotropy is also often present in patter
formation processes in biological media, e.g., in cardia
tissue [8].

In this Letter we present a new dynamical state that
possible only in anisotropic media-stratified spatiotem
poral chaos. We demonstrate the phenomenon w
numerical simulations of the bistable FitzHugh-Nagum
equations with anisotropic diffusion and characterize
by computing orientation dependent correlation function
In addition, an equation for the dependence of fron
velocities on parameters, curvature, and the angu
orientation is derived. The mechanism leading t
stratified chaos is described in terms of these analy
results. It is tightly linked to the anisotropy of the system
and differs from the mechanism leading to spiral chao
in isotropic bistable media [9–11]. The findings her
are relevant to catalytic reactions on surfaces whe
anisotropy is naturally provided by crystal symmetry an
in biological tissue where anisotropy comes from fibe
orientation.

Many qualitative features of pattern formation in
chemical and biological reaction-diffusion systems ar
well described by FitzHugh-Nagumo type models fo
bistable media [12,13]. The specific model we choose
study is
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where u is the activator andy the inhibitor. The pa-
rametersa1 and a0 are chosen so that Eqs. (1) repre
sent a bistable medium with two stationary and unifor
stable states, an “up” state,�u1, y1�, and a “down” state,
�u2, y2�. Front solutions connect the two states. Th
number of front solutions changes, when a single front (
“Ising” front) that exists for values ofh :=

p
ed . hc

loses stability to a pair of counterpropagating fron
(“Bloch” fronts) for h # hc. The corresponding bifurca-
tion is referred to as the nonequilibrium Ising-Bloch bifu
cation, hereafter the “front bifurcation.” The anisotrop
of the medium is reflected through the parameterd.

Figure 1 shows the formation and time evolutio
of stratified chaos obtained by numerical solution
Eqs. (1). The initial state is isotropic spiral chaos. A
time evolves a clear orientation of up-state (grey) d
mains along they direction develops. The domains con
sist primarily of elongating stripe segments which eith
merge with other segments or shorten by emitting trav
ing blobs. The stratified chaos state is robust and devel
from a variety of initial conditions including a single spo

To gain insight we have followed the dynamics ofu and
y along thex andy axes and display them in the form o
space-time plots in Fig. 2. A nearly periodic nonpropaga
ing pattern along thex axis and irregular traveling wave
phenomena along they axis are observed. A characteristi
property of spatiotemporal chaotic patterns is correlatio
that decay on a length scalej much smaller than the sys
tem lengthL. We have computed the normalized spati
two-point correlation functions,Cy�r� andCx�r�, for the
u field in both thex and y directions, whereCy�r� �
�Du�x, y 1 r�Du�x, y����Du�x, y�2�, Cx�r� � �Du�x 1

r , y�Du�x, y����Du�x, y�2�, Du�x, y� � u�x, y� 2 �u�, and
the brackets� � denote space and time averaging. Figure
© 1999 The American Physical Society
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FIG. 1. The development of stratified spatiotemporal chaos
from an initial state of isotropic spatiotemporal chaos. The
thick contour line represents u � 0 and the thin contour line
y � 0. The shaded regions are up-state domains. Parameters:
a1 � 2.0, a0 � 20.1, e � 0.039, d � 1.7, d � 1.0, x �
�0, 80�, y � �0, 80�.

shows the results of these computations. Correlations in
the y direction decay fast to zero, whereas correlations in
the x direction oscillate with constant amplitude. This
observation may be used to define stratified chaos as a

(a)

(b)

FIG. 2. Space-time plots of cuts parallel to the x axis (top)
and the y axis (bottom) for the simulation of Fig. 1. The nearly
vertical columns on the top figure show instances of periodic
breathing motion of stripe segments (modulated continuous
segments) and periodic blob formation (spot arrays).
state that displays finite correlation length in one direction
(x) and infinite correlation length in the other ( y).

An important analytical tool for studying front dynam-
ics consists of relations between the normal front velocity
Cn and other front properties like curvature. Relations of
that kind have successfully been used in the study of pat-
tern formation in isotropic media [10], and we exploit this
tool for anisotropic media as well.

Velocity-curvature relations are derived here for
l :=

p
e�d ø 1. The first step in this derivation is to

define an orthogonal coordinate system �r , s� that moves
with the front, where r is a coordinate normal to the front
and s is the arclength. We denote the position vector of
the front by X�s, t� � �X, Y � and define it to coincide
with the u � 0 contour line. The unit vectors tangent
and normal to the front are given by ŝ � cosux̂ 1 sinuŷ
and r̂ � 2 sinux̂ 1 cosuŷ, respectively, where u�s, t�
is the angle that ŝ makes with the x axis. A point
x � �x, y� in the laboratory frame can be expressed as
x � X�s, t� 1 r r̂. This gives the following relations be-
tween the laboratory coordinates �x, y� and the coordinates
�s, r� in the moving frame: x � X�s, t� 2 r sinu�s, t�, and
y � Y �s, t� 1 r cosu�s, t� where we defined ŝ � ≠X�≠s
and ≠X�≠s � cosu, ≠Y�≠s � sinu. In terms of the
moving frame coordinates the front normal velocity
and curvature are given by Cn � 2

≠r
≠t and k � 2

≠u

≠s ,
respectively.

The second step is to express Eqs. (1) in the moving
frame and use singular perturbation theory, exploiting the
smallness of l. We distinguish between an inner region
that includes the narrow front structure, and outer regions
on both sides of the front. In the inner region ≠u�≠r �
O �l21� and ≠y�≠r � O �1�. In the outer regions both
≠u�≠r and ≠y�≠r are of order unity. In the inner region
y � yf is taken to be constant. Expanding both u and
yf as powers series in l and using these expansions in
the moving frame equations we obtain, at order O �l�, a
solvability condition that leads to the equation

Cn � 2
3

h
p

2
I�u�yf 2

1 1 d
dI�u�2 k , (2)
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FIG. 3. Correlation functions Cx�r� (solid curve) and Cy�r�
(dashed curve).
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where I�u� �
p

1 1 d cos2u. In the outer regions to
the left and to the right of the front region different
approximations can be made. Here ≠u

≠r � ≠y

≠r � O �1� and
to leading order all terms that contain the factor l can be
neglected. The resulting equations can be solved for y

in the two outer regions. Continuity of y and of ≠y

≠r at
the front position r � 0 yields a second relation between
Cn and yf . Eliminating yf by inserting this relation
into Eq. (2) gives an implicit relation between the normal
velocity of the front and its curvature

Cn 1
1 1 d
dI�u�2 k �

3I�u� �Cn 1 k�
h
p

2 q2
p

�Cn 1 k�2 1 4q2
1

3I�u�a0

h
p

2 q2
,

(3)

where q2 � a1 1 1�2. A complete account of this
derivation will be published elsewhere.

Figure 4 displays solutions of Eq. (3) showing the
dependence of the front velocity on front curvature and
propagation direction for the parameter values of Fig. 1.
In Fig. 4a Cn vs k relations are shown for two orthogonal
propagation directions. In the x direction, u � p�2
(dashed curve), there is only one planar front solution
with negative velocity (a down state invading an up state),
indicating an Ising regime. The negative slope of the Cn

vs k relation implies stability to transverse perturbations.
In the y direction, u � 0 (solid curve), there are three
planar front solutions indicating a Bloch regime. The
positive-velocity front (up state invading down state) is
unstable to transverse perturbations whereas the negative
velocity front is stable. The middle branch corresponds
to an unstable front.

Figure 4b shows the angular dependence of planar-front
velocities. Counterpropagating (Bloch) fronts exist in a
narrow sector around the y direction (u � 0). The other
directions support only a single (Ising) front. The Ising
front speed is smallest in the x direction (u � p�2) and
increases as u deviates from p�2.

The dynamics of fronts as displayed in Fig. 1 are
affected by curvature, propagation direction, and front
FIG. 4. Two views of the relation (3) corresponding to the parameters of the simulation in Fig. 1. (a) The velocity-curvature
relation for fronts in the x direction (dashed curve) and y direction (solid curve). (b) The velocity of planar (k � 0) fronts at
different angles. Bloch fronts exist in narrow sectors around u � 0 and u � p. The wider sectors in between correspond to Ising
fronts.
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interactions. Equation (3) captures the effects of the first
two factors but does not contain information about front
interactions. The necessary information for our purpose
can be summarized as follows.

The time evolution of a pair of fronts approaching one
another is affected by the speed of noninteracting fronts
and by the diffusion rate of the activator u [assuming an
inhibitor diffusion constant equal to unity as in Eqs. (1)].
Consider a pair of fronts pertaining to up states invad-
ing a down state, propagating toward one another in an
isotropic medium (d � 0). If the distance between the
fronts decreases below a critical value, lc � O �

p
e�d�,

the two fronts collapse, leaving a uniform up state. The
accumulation of the inhibitor in the space enclosed by
the fronts, however, slows their motion. If the (noninter-
acting) front speed is low enough, or if l is small enough,
there is enough time for the inhibitor to slow the fronts
down to a complete stop before they reach the critical dis-
tance lc. In that case the subsequent evolution depends on
the front type. A pair of Ising fronts may form either a sta-
tionary pulse or, closer to the front bifurcation, a breathing
pulse. A pair of Bloch fronts reflect and propagate away
from one another [13]. Thus, high front speed or fast ac-
tivator diffusion (d small and lc large) lead to collapse,
whereas low front speed and slow activator diffusion lead
to strong front repulsion. A similar argument holds for
down-state invading up-state fronts.

Returning to anisotropic media we need to know
how the two factors that affect front interactions, front
speed and activator diffusion, depend on the direction of
propagation. The angular dependence of the front speed is
already given in Fig. 4b. The angular dependence of the
activator diffusion can be deduced by inspecting Eqs. (1).
It is 1�d in the x direction and �1 1 d��d in the y
direction. Since d . 0 the activator diffusion constant
increases as the propagation direction changes from the x
direction to the y direction.

We can discuss now the mechanism of stratified chaos.
As Fig. 4a shows, the x direction represents a system
that supports stationary or breathing planar stripe patterns.
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FIG. 5. Closeup of repeated blob formation. Shaded regions
are up-state domains. Thick (thin) lines are u � 0 (y � 0)
contours. The y � 0 line always lags behind the u � 0 line.
The tip of a stripe segment (a) grows outward (b),(c). A
pinching dynamics begins (d) which leads to blob formation
(e) traveling along the y direction (f). The blob formation
leaves a shortened stripe segment (e) whose tip grows outward
again (f ) and the process repeats. The parameters are the same
as in Fig. 1.

The y direction represents a system where traveling waves
prevail. The distinct characters of the medium along the
two principal axes is reflected in the space-time plots of
Fig. 2: nearly vertical columns in the x direction indicate
stationary or breathing motion, and diagonal stripes in the
y direction indicate traveling wave phenomena.

The irregular character of the dynamics comes from
blob formation events as shown in Fig. 5. The front speed
and activator diffusion in the x direction are sufficiently
slow for Ising fronts to repel one another (rather than
collapse). As the tip of the stripe segment grows outward
and forms a bulge, propagation directions deviating from
the x direction develop. At these directions both the front
speed and the activator diffusion are higher. As a result
approaching fronts may collapse. This is exactly the blob
pinching process in frames (c), (d), and (e) of Fig. 5.
The process is periodic for extended periods of time as
indicated by the vertical spot arrays in Fig. 2.

In summary, stratified chaos relies on two main ele-
ments: (i) stationary or breathing domains vs traveling
wave phenomena in orthogonal directions and (ii) an an-
gular dependence of front interactions that leads to blob
formation. Without the second element stripe segments
would merge to ever longer segments until a periodic
stripe pattern is formed. These elements suggest the pa-
rameter regime where stratified chaos is expected to be
found. The first element implies a regime along the front
bifurcation such that there is stationary or breathing mo-
tion in the direction with faster activator diffusion and
traveling waves in the other (slower diffusion) direction.
The width of this regime increases with the anisotropy d.
The second element implies that in the direction of breath-
ing or stationary domains the system is close to the onset
of breathing motion. Deviations from this direction which
move the system toward the traveling wave regime then
lead to front collapse. These expectations were verified
numerically.
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