

Topics in solar energy (001-2-4058)

3 credits

Teacher: Avi Niv, aviniv@bgu.ac.il, Room 014, Building 26 (solar energy)

Outline: Sunlight is characterized by its spectrum, angle, spatial dispersion, seasonal and geographical changes, and more. All these factors must be considered for a successful utilization of sunlight for illumination, heat, electricity, or any other form of power. In this introductory course we will study the different aspects that defines sunlight as a power source and the models that are used forsition changes introductory

• Solar spectrum and atmospheric transmittance. Objectives - The course aims to familiarize a student with the following topics:

Basics of solar power conversion

Prerequisites: Undergraduate Math and Physics

Grading: 25% homework, 75% final assignment

Schedule:

Торіс	Meeting	Covered matters
Sun-earth geometry	1-2	Sun-earth geometry, incident
		angles, tracking
The solar spectrum	3-4	Black body radiation and its
		relevance to solar applications,
		air-mass and atmospheric
		transmission
Optics of concentrators	5-6	Overview of solar
		concentrators, conservation of
		etendue, and the fundamental
		concentration bound
Solar thermal power	7-8	The operational principle of
conversion		solar thermal systems
Introduction to the PV effect	9-10	The diode model of a solar cell,
		the effect of spectrum,
		temperature, and light capture
Models and statistics of solar	11-13	Statistical models of solar
radiation		radiation

Recommended Books:

- 1. A. Rabl, Active Solar Collectors and Their Applications, Oxford Univ. press, 1985. (Textbook, TJ 812.R33; 4 copies in the library available for three days)
- 2. J. A. Duffie, and W. A. Beckmann, Solar Engineering of Thermal Processes, John Wiley, 2006 3rd ed. (TJ 810.D82 - first ed.)
- 3. J. F. Kreider and F. Kreith, Solar Energy Handbook, McGraw-Hill, 1981.(TJ 810.S6244)
- 4. D.Y. Goswami, F. Kreith, and J. F. Kreider, Principles of Solar Engineering, Taylor and Francis, 1999.
- 5. J.M. Gordon, Editor, Solar Energy The State of The Art, James & James, 2001.
- 6. J. C. Chen, The Physics of Solar Energy, Wiley, 2011.

