(3 credits)

001-2-4019

Lectures	Exercise	Laboratory	Field Trip
3			

The course includes:

· Basic Concepts

Symmetries and groups of transformations. One-parameter groups of point transformations and their infinitesimal generators. Invariants of a transformation group. Canonical coordinates. Extended group transformations (Prolongations) and their generators. Multi-parameter Lie groups of transformations.

· Point Symmetries of Differential Equations

Invariance of differential equations under a one-parameter Lie group of transformations. Infinitesimal criterion for invariance of a differential equation or a system of equations. An algorithm to determine the infinitesimal generators of a symmetry group (Determining Equations). Using symbolic software for the computation of Lie symmetries of differential equations.

• Applications of Point Symmetry Groups to the Study of Partial Differential Equations (PDEs)

Generating solutions by symmetry group transformations. Invariant (similarity) solutions and symmetry (similarity) reductions of a scalar PDE. Solutions invariant under multi-parameter symmetry group; multiple reduction of variables. Invariant solutions of a system of PDEs. Applications to boundary value problems.

• Some Other Methods Designed for Finding Similarity Solutions of PDEs Conditional symmetries and the "nonclassical methods". Direct reduction methods. Weak symmetries.

Symmetries More General than Lie Point Symmetries Contact transformations and contact symmetries. Lie-Backlund transformations and Lie- Backlund symmetries Potential (nonlocal) symmetries.

Lecturer: G.I.Burde

Recommended Reading:

Bluman, G.W. and S. Kumei. (1989). *Symmetries and Differential Equations*. Springer, New York.

trackfull degree