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1. Introduction

In 1965, Newmark [1] published his classic Rankine
lecture on ‘‘effects of earthquakes on dams and
embankments’’. In his paper, Newmark presented
solutions for displacement of a mass along circular or
planar sliding surface under earthquake loading. New-
mark made the assumption that the mass moves as a
single rigid body with resistance mobilized along the
sliding surface. Newmark further considered only a
single pulse of magnitude Ag lasting for a time interval
t0, arguing that introduction of a sinusoidal pulse would
complicate the expressions unnecessarily. Thus, the so-
called ‘‘Newmark method’’ provided an estimate for the
amount of mass displacement to be expected under
ground acceleration of constant magnitude and given
duration. Newmark admitted that his approach would
generally overestimate the actual displacement because
it ignores the earthquake pulse in the opposite direction.

Goodman and Seed [2] studied experimentally the
shear resistance of sand to cyclic loading and suggested
an expression for shear strength degradation as a
function of displacement. They used numerical integra-
tion to find the velocity and displacement of a block on
an incline subjected to a sinusoidal acceleration function
of the form

at ¼ A sinðotþ yÞ ð1Þ

in which y is the phase angle required to satisfy the
initial condition a ¼ ay at the instant sliding begins
(t ¼ 0), where ay is defined as the yield acceleration.
Goodman and Seed showed that for frictional sliding
only, where cohesion along the sliding surface is zero,
the down slope, horizontal, yields acceleration for a
block resting on a plane with inclination a and friction
angle f is given by

ay ¼ tanðfeq@aÞg; ð2Þ

where feq is a displacement dependent friction angle,
which for all practical purposes in rock mechanics could
be replaced by f. Similarly, it can be shown that for up
slope sliding the horizontal yield acceleration is given by

ay ¼ tanðaþ fÞg: ð3Þ

In Fig. 1 horizontal yield acceleration in units of g is
plotted as a function of friction angle and inclination of
the sliding surface. It is apparent that up slope motions
require significantly higher accelerations, and therefore
Newmark’s treatment of downhill motions only, seems
justified.

When real earthquake ground motions are consid-
ered, neither the originally proposed Newmark’s meth-
od nor the Goodman and Seed method are adequate
because the accelerogram will not follow a simple
sinusoidal function with constant amplitude and period
of oscillations. In the realistic case, application of
Newmark’s method requires double integration of the
acceleration record for every at > ay (e.g. [3]), and indeed
some computer codes have been developed in BASIC [4],
FORTRAN [5], and C [6] to enable a ‘‘Newmark’s type’’
analysis.

While application of Newmark’s type analysis re-
quires significant time and computing resources, it
should be remembered that the solution is only valid
for a single, rigid, block undergoing sliding deformation.
A real rock mass typically consists of several rigid
blocks, which interact with one another during shaking
at contact points or along common planes. Further-
more, different blocks in the rock mass may exhibit
different failure modes as a response to the same input
motion. Therefore, a Newmark’s type analysis will not
be valid for the more general case of a blocky rock mass.

In order to study realistic rock slope behavior during
ground shaking it would be desirable to check the
validity of existing numerical methods that solve for the
displacements in a block system under the application of
dynamic load. In this paper, we test the validity of
discontinuous deformation analysis (DDA) [7,8] by
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comparing its solution for dynamic block displacement
with analytical solutions. This by no means indicates
that we believe that the analytical solution produces true
block behaviour under dynamic load; it is, however, a
traditional method to address accuracry and short-
comings of numerical tools. Ultimately, a comparison
with a physical model such as shaking table output
would be desired.

We perform analytical integration of sinusoidal
functions of increasing complexity to find the velocity
and displacement function with time. We then compare
the analytical results with the numerical solution of
DDA for the displacement of a single block which rests
on an inclined plane with a given friction angle and is
subjected to the same acceleration function as solved
analytically. Naturally, the analytical validation of the
numerical method can only be performed for a single
block. In order to validate dynamic displacements,
determined by DDA for a system of blocks, comparison
with physical models on a shaking table would be
necessary. However, validation of DDA for a single
block experiencing relatively high dynamic loads and
undergoing very large displacements would be the first
necessary step in this broader task.

2. The numerical discontinuous deformation analysis

DDA was developed by Shi [7,8] and its validity has
been tested and confirmed using simple problems for
which analytical or semi-analytical solutions exist
[9–13]. In all previously published validations, the block
or block system were subjected to gravitational loading
only. In this paper we attempt to validate DDA for
dynamic loading as well, namely by introducing time
dependent acceleration.

The DDA method incorporates dynamics, kine-
matics, and elastic deformability of the rock, and
models actual displacements of individual blocks in the
rock mass using a time-step marching scheme. The
formulation is based on minimization of potential
energy and uses a ‘‘penalty’’ method to prevent
penetration of blocks. Numerical penalties in the form
of stiff springs are applied at the contacts to prevent
either penetration or tension between blocks. Tension or
penetration at the contacts will result in expansion or
contraction of these springs, a process which requires
energy; the minimum energy solution is therefore one
with no tension or penetration. When the system
converges to an equilibrium state, however, there are
inevitable penetration energies at each contact, which
balance the contact forces. Thus the energy of the
penetration (the deformation of the springs) can be used
to calculate the normal and shear contact forces.

Shear displacement along boundaries is modeled in
DDA using the Coulomb–Mohr failure criterion. The
fixed boundaries are implemented using the same
penalty method formulation: stiff springs are applied
at the fixed points. Since displacement of the fixed points
requires great energy, the minimum energy solution will
not permit fixed point displacement. The blocks
are simply deformable: stresses and strains within a
block are constant across the whole region of the block.
This feature requires a minimum number of blocks in
the mesh in order to accurately calculate stress and
strain distribution throughout the medium. A sub-
blocking algorithm has been introduced to DDA [14]
and recently water pressures have been implemented as
well [15].

In this research a new C/PC version of DDA, recently
developed by Gen-Hua Shi [16], is used. In this new
version, earthquake acceleration can be input directly in
every time step. A necessary condition for direct input of
earthquake acceleration is that the numerical computa-
tion has no artificial damping because damping may
reduce the earthquake dynamic energy and the damage
may be underestimated. In DDA, the solution of the
equilibrium equations is performed without damping
[16]. There are three possible ways to input recorded
earthquake waves : time dependent acceleration, time
dependent displacement, and time dependent velocity.
The time dependent acceleration input is in fact a multi-
block Newmark type analysis. DDA in its two dimen-
sional formulation can take as input time dependent
displacements, and it may be possible to input time
dependent velocities as well. However, it is a common
practice in earthquake engineering to use accelerograms
as they are readily available for different fault systems
and earthquake events around the world. In this
research, therefore we input time dependent accelera-
tions directly and compare DDA displacements with the
analytical results.

Fig. 1. Horizontal yield accelerations for downhill and uphill motion

of a block on an inclined plane.
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3. A block on an incline subjected to gravitational load

only

This is a classic case of dynamics which was studied
by MacLaughlin [10] using an updated version of DDA
for Windowst environment [17]. MacLaughlin’s valida-
tion test is repeated here for calibration purposes only,
using the new DDA C/PC code [16]. For a single block
resting on a plane inclined at an angle a with friction
along the interface f, and subjected to gravitational
acceleration g, the analytical solution for displacement s
as a function of time t is given by

st ¼ 1
2 at

2 ¼ 1
2 ðg sin a@g cos a tan fÞt2: ð4Þ

A comparison between the analytical solution in Eq. 4
and DDA solution is shown in Fig. 2. The inclination of
the modeled plane is 22.61, this will be the inclination we
will use throughout the validation study in this paper.
Four friction angle values are studied, f ¼ 51, 101, 151,
201 and the accumulated displacements are calculated
up to 2 s. With 51 friction angle the block displacement
during the studied time period is very large with respect
to the case where the friction angle approaches the value
of the inclination angle (the f ¼ 201 case, see Fig. 3).
This trend will remain the same for smaller and smaller
time intervals, down to the actual time step size used in
the numerical model which is typically in the range of
0.001–0.1 s. While this has no effect on the accuracy of
the analytical solution, the numerical solution is very
sensitive to these differences.

Application of the forward modeling code of DDA
(DF-code) requires as input the assumed maximum
displacement ratio (referred to herein as g2) where
(g2)(H/2) is the assumed maximum displacement per
time step and where H is the height of the analysis
domain measured in the vertical direction. The actual
displacement computed by DDA within a time step is limited to the assumed maximum displacement which is

defined by the user. This ensures that the assumption of
infinitesimal displacement is nearly satisfied and that
convergence of the open close iterations [7,8] is achieved.
Similarly, the maximum displacement per time step is
limited by the upper limit of time interval used in each
time step. This quantity, referred to herein as g1, is also
user defined.

As in the case of g2 the chosen time interval size g1
should also conform with the assumption of infinitesi-
mal displacement per time step.

A good way to verify the suitability of the numerical
parameters g2 and g1 is to check the ratio between the
actual, or ‘‘real’’, displacement per time step as
computed by DDA (referred to herein as R), and the
assumed maximum displacement per time step (referred
to herein as A, where A ¼ ðg2 HÞ=2. At the end of an
analysis the obtained ratio R/A should be close to 1 if
great accuracy is sought. The obtained failure modes in
the multi block case are much less sensitive to the user

Fig. 2. Block displacement on an inclineFgravitational loading only.

Comparison between analytical solution (solid line) and DDA results.

Fig. 3. The single block on an incline model used in this study. Dashed

lineFinitial position of block. Plane inclination 22.61. Gravitational

loading only (a) friction angle 201, g1=0.1, g2=0.01, total time 2 s (b)

friction angle 51, g1=0.1, g2=0.01, total time 2 s.
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defined parameters g1 and g2, and their optimization for
a failure mode analysis should not be necessary.

In the apparently simple case of a single block on an
incline the value of g1 had to be changed for each case to
achieve optimal accuracy (see Fig. 2) while g2 was kept
at a constant value of 0.01 corresponding to a maximum
displacement of 25 cm per time step. It can be seen in
Fig. 2 that for a rapidly sliding block (f ¼ 51) g1 was set
to 0.002 s whereas for a slowly sliding block (f ¼ 201) g1
was increased to as much as 0.1 s in order to get an
accurate solution. This sensitivity of the numerical code
is inevitable, as was explained above, however, this
simple case illustrates the care and responsibility which
must be exercised by the user in any attempt to perform
dynamic calculations using DDA.

4. A block on an incline subjected to dynamic load

4.1. A simple dynamic function

The simplest form of a sinusoidal function would
have the form

at ¼ A sin t; ð5Þ

where at is time dependent acceleration and A is
amplitude of oscillations. In order to find the velocity
and displacement generated by this acceleration func-
tion the acceleration has to be integrated twice over a
range from y to t, where y is the time at which at ¼ ay.
The corresponding analytical solutions for the velocity
vt and displacement st are given by Eqs. 6 and 7 below

vt ¼
Z t

y
at dt ¼ Að@cos tþ cos yÞ; ð6Þ

st ¼ A
Z t

y
ð@cos tÞdtþ cos yðt@yÞ

�
:

¼ A½@sin tþ sin yþ cos yðt@yÞ� ð7Þ

The acceleration, velocity, and displacement function
derived in Eqs. (5)–(7) are plotted in Fig. 4a for an
amplitude A ¼ 9:81m/s2=1 g. Since the angular fre-
quency o in this case is 1, a complete cycle lasts 2p
seconds. Considering a plane which is inclined 22.61 and
has a friction angle of 30o, the yield acceleration would
be 0.1299 g according to Eq. (2) above, and the
corresponding time interval y until which no motion
should commence would be t0 ¼ 0:13 s, since in the
simple case of Eq. (5) t0 ¼ sin@1ðay=AÞ. A comparison
between the analytical solution, DDA and the Good-
man and Seed [2] solution is shown in Fig. 4b. The input
acceleration record for DDA was the horizontal East–
West component only, where the analyzed section (as in
Fig. 3) is an East–West cross section. The other
acceleration components (N–S, up–down) were set to
zero. The acceleration data points were input to DDA at

a rate of 200Hz, namely the input acceleration was
updated every 0.005 s. These conventions were main-
tained in all DDA calculations.

The agreement between DDA, Goodman and Seed
solution and the analytical solution is remarkable for a
distance of sliding of 40m. While this is not surprising
with respect to Goodman and Seed solution who used
numerical integration, it is indeed an excellent validation
of DDA performance under relatively high dynamic
load (up to 1 g) and for a very large displacement. At the
end of the cycle DDA solution is about 10% lower than
the analytical solution and this could probably be
improved by optimizing the numerical parameters g1
and g2; it was not attempted in this run.

4.2. A typical harmonic function at ¼ A sinot

The function at ¼ A sinot allows us to model
different ground motion frequencies using the parameter
o. The analytical solutions for the velocity and
displacement are given in Eqs (8) and (9) below

vt ¼
Z t

y
A sinot dt ¼

A

o
½@cosotþ cosoy�; ð8Þ

Fig. 4. The function aðtÞ ¼ A sin t. (a) analytical solution for accelera-

tion (heavy line), velocity (dashed line), displacement (dotted line). (b)

Comparison between analytical solution for displacement, DDA

solution, and Goodman and Seed solution.
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st ¼
A

o
@sinot

o
þ

sinoy
o

þ cosoyðt@yÞ
� �

: ð9Þ

The shape of the acceleration, velocity, and displace-
ment functions for A ¼ 1 g=9.81m/s2, and o ¼ 2, is
shown in Fig. 5a. Since o ¼ 2, a complete cycle lasts p
seconds only. The yield acceleration remains the same
because the inclination and friction angles of the plane
have been maintained, however, it is attained after
0.065 s only. A comparison between the analytical
solution, DDA, and the Goodman and Seed solution
is shown in Fig. 5b. Indeed the DDA solution tracks the
analytical solution remarkably well up to the end of the
cycle, while Goodman and Seed’s numerical integration
deviates slightly towards the end of the cycle.

4.3. A sum of two sines

A real earthquake will produce a train of oscillations
composed of sine components, which may be repre-
sented using a Fourier series. Because of the assumed
initial conditions (at time t ¼ 0 the acceleration is zero)
there will be no cosine terms in the series, and the
simplest case would be the sum of two sine functions

at ¼ A1 sino1tþ A2 sino2t: ð10Þ

The velocity and displacement corresponding to this
function are given by Eqs. (11) and (12) below

vt ¼
Z t

y
ðatÞdt ¼ a1

@coso1tþ coso1y
o1

� �

þ a2
@coso2t@coso2y

o2

� �
; ð11Þ

st ¼ a1
@sino1t

o2
1

þ
sino1y
o2

1

� �
þ a2

@sino2t

o2
2

þ
sino2y
o2

2

� �

þ
a1 coso1y

o1
t@yð Þ þ

a2 coso2y
o2

t@yð Þ: ð12Þ

This case cannot be solved using the Goodman and Seed
procedure which is restricted to harmonic oscillations as
in Section 4.2. In Fig. 6a the two sine functions and their
velocity and displacement functions are plotted for the
following constants: A1=2; o1=1; A2=3; o2=2. As in
the previous cases the yield acceleration remains the
same but it is attained here after 0.17 s of shaking. The
corresponding numerical solution for this dynamic case
is plotted in Fig. 6b together with the analytical solution
and a remarkably good fit is obtained. The numerical
parameters g1 and g2 did not need to be optimized and
the selected values here are g1 ¼ g2 ¼ 0:1.

Fig. 5. The function aðtÞ ¼ A sin t. (a) analytical solution for accelera-

tion (a), velocity (v), and displacement (s). (b) Comparison between

analytical solution for displacement, DDA solution, and Goodman

and Seed solution.

Fig. 6. The function at ¼ A1 sino1tþ A2 sino2t. (a) analytical solu-

tion for acceleration (a), velocity (v), and displacement (s). (b)

Comparison between analytical and DDA solution for displacement.
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4.4. A sum of three sines

It can be shown that the influence of higher order
terms in a series of sine functions is negligible and
therefore we will not proceed our validation effort
beyond the sum of three sine functions. We hence study
the function

at ¼ a1 sino1tþ a2 sino2tþ a3 sino3t ð13Þ

vt ¼
Z t

y
atdt ¼ @

a1
o1

coso1tþ
a1
o1

coso1y
� �

þ @
a2
o2

coso2tþ
a2
o2

coso2y
� �

þ @
a3
o3

coso3tþ
a3
o3

coso3y
� �

; ð14Þ

st ¼@
a1

o2
1

sino1t@sino1y½ � þ
a1
o1

coso1y t@yð Þ

@
a2

o2
2

sino2t@sino2y½ � þ
a2
o2

coso2y t@yð Þ

@
a3

o2
3

sino3t@sino3y½ � þ
a3
o3

coso3y t@yð Þ ð15Þ

The sum of three sines function is plotted in Fig. 7a with
the corresponding velocities and displacements for the
following parameters: A1 ¼ o1 ¼ 1; A2 ¼ o2 ¼ 2;
A3 ¼ o3 ¼ 3. The yield acceleration is attained in this
case after 0.093 s. The acceleration function under the
studied parameters seems to decay rather rapidly and
after 4.5 s the acceleration is about a third of the
maximum acceleration (5.35m/s2=0.54 g) which is
attained after 0.6 s.

A comparison between the analytical solution and
DDA is shown in Fig. 7b. Two sets of DDA output data
are plotted, one for maximum time step size g1 ¼ 0:1 s
and the other for g1 ¼ 0:01 s; the assumed maximum
displacement per time step is maintained constant at
g2 ¼ 0:1 (since H ¼ 50m the assumed maximum dis-
placement per time step ‘‘A’’ is 2.5m). Clearly the
numerical result is very sensitive to the user defined
maximum time step size g1, and/or to the user defined
assumed maximum displacement per time step g2. A
better R/A ratio (see Section 3 above) was reached with
g1 ¼ 0:01 and g2 ¼ 0:1 (the obtained R/A ratio
was=0.54) and indeed the agreement between the
analytical and numerical solutions is much better. The
general behavior of the time dependent displacement
function is matched by the DDA results and the
accuracy is within 15%. The accuracy could be further
improved by optimizing g1 and g2 in order to get an R/A
ratio closer to 1.0.

5. Discussion and conclusions

5.1.Limitation. of the classical Newmark’s method

Dynamic block displacement along a surface, for
which the shear resistance is provided by friction only,
has been estimated for many years by various applica-
tions of an approach proposed by Newmark in 1965 [1]
and Goodman and Seed [2]. The so-called ‘‘Newmark’s
method’’ is a straight forward application of principles
of classical mechanics, primarily statics and dynamics,
hence its widespread popularity among scientists and
engineers. The advantage of the method is its ability to
estimate the net displacement a mass would experience
as a response to earthquake induced ground accelera-
tions for a given duration of shaking. Provided that
sound double integration algorithms are available,
realistic and characteristic accelerograms for a given
location may be used to estimate displacement. There
are, however, two significant restrictions: (A) the
procedure is applicable for a single, continuous mass
of rock or soil, and (B) the failure mode is pre-assumed

Fig. 7. The function at ¼ a1 sino1tþ a2 sino2tþ a3 sino3t. (a) ana-

lytical solution for acceleration (a), velocity (v), and displacement (s).

(b) Comparison between analytical and DDA solution for displace-

ment.
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and is restricted to sliding. These limitations are not
necessarily a problem in soil mechanics applications.
Soils have negligible tensile strength and typically form
intact masses with little or no fractures. Therefore, an
unstable soil mass could be expected to undergo
dynamic displacements as a single, continuous body.
Furthermore, ‘‘active’’ failure planes in soil masses
typically have an inclination angle from several degrees
and up to 601. Soils masses resting on such planes indeed
tend to deform by sliding only. In rock masses, however,
vertical or sub-vertical joints are widespread alongwith
very steeply dipping shears, bedding, or foliation planes.
The mere existence of discontinuities in rock typically
results in a blocky structure; therefore any realistic
dynamic displacement computation for a rock mass
must consider inter block reactions during shaking.
Furthermore, the steeply inclined planes may yield
failure modes other than sliding, notably toppling or
block slumping [18], which cannot be modeled using
Newmark’s type analysis.

5.2. DDA modeling

DDA has been proven to be very successful in
computing accurate block displacements in very simple
multi block configurations subjected to static loading
using analytical solutions [9,10,13,19] or using field case
histories [11,12]. Similarly, a multitude of different
failure modes have been accurately predicted by DDA
for a large number of blocks including sliding or
slumping on planar or curved surfaces [20], backward
rotation, forward rotation or toppling [21], and block
slumping [13]. It is therefore natural to extend DDA
validation for real dynamic computations in a blocky
structure. This paper presents the first necessary step of
analytical validation via the case of a single block on an
inclined plane with a given friction angle. Validation of
dynamic displacements in the multi block case must be
performed using physical models on a shaking table.
Several conclusions regarding dynamic DDA modeling
emerge from this study:

* Dynamic DDA solutions are extremely sensitive to
numerical parameters which must be entered by the
user, namely the assumed maximum displacement per
time step (g2) and the maximum time step size (g1 ). If
relatively large displacements per time step are
anticipated due to either high load or low shear
resistance, the maximum time step size should be
reduced for a given value of g2. This numerical
sensitivity is illustrated in the dynamic solutions
which are plotted in Fig. 2 for the case of gravita-
tional loading only.

* In order to optimize the numerical parameters the
ratio between the assumed maximum displacement
per time step (A) and the actual calculated displace-

ment during a time step (R) must be checked at the
end of the analysis and its value should be as close as
possible to 1.0.

* The initial g2 value was recommended by Shi [22] to
be in the range of 0.001–0.01. In this dynamic study
we find that the initial g2 value could be as high as
0.1. The optimal g2 value also depends, however, on
the selected value for g1.

* The maximum time step size g1 in this research was
found to be the most sensitive parameter for dynamic
calculations. Optimal g1 values spanned two orders of
magnitude from g1 ¼ 0:001 for cases of rapid sliding
to g1 ¼ 0:1 for cases of slow sliding. When an
inappropriate g1 value is used, the results of the
dynamic calculations may be erroneous.

* It has been shown (Fig. 7b) that the error due to
inappropriate g1 input value is on the conservative
side, as greater displacement is calculated with
increasing time step length. However, it is not
recommended to rely on that observation in any
attempted analysis. Rather, the input parameters g1
and g2 should be optimized as discussed above.

5.3. Analytical vs. DDA solutions

It is common to believe that the analytical solution
correctly represents the physical reality. This is not
necessarily so. The problem which is analyzed here
involves friction, a complicated physical phenomenon
not yet fully understood in rock mechanics context. In
DDA, sliding is initiated when Coulomb failure law is
reached along the contact between the block and the
plane, which is provided by springs [7,8]. When the
normal component of the contact force is compressive
and the shear component is large enough to cause
sliding, a stiff spring normal to the contact is applied to
allow sliding to take place along the contact. A sliding
force is hence applied against the sliding direction which
is defined by the normal force of the previous iteration.
However, when the normal component of the contact
force is compressive but the shear component is less than
required by Coulomb’s law the contact point is locked
by normal and shear springs, and sliding is not allowed.
Under dynamic loading, the block experiences stop and
go motions, and the block displacement at the end of
each time step will also be influenced by the energy of
the normal contact spring [23]. The analytical solution,
however, does not involve spring energies at all and the
calculated displacements are derived directly from the
integration of acceleration and velocity from t0 ¼ y to t.
The analytical solution therefore yields a smooth and
continuous displacement function whereas the DDA
solution goes through a series of open close iterations
[7,8], the final product of which results in net displace-
ment at the end of a time step. We have no way of telling
at present which approach is closer to the physical

Y.H. Hatzor, A. Feintuch / International Journal of Rock Mechanics & Mining Sciences 38 (2001) 599–606 605



reality. It is demonstrated in this paper that the
agreement between the spring analog in DDA and the
analytical solution can be quite good. However, devia-
tions from absolute agreement between the numerical
and analytical solutions should not be surprising, and
may even be expected, because of the different rationale
behind the two methods of analysis.

5.4. Recommended future research

Future research should be directed towards under-
standing the compatibility between numerical and
analytical solutions. The first task should be a compar-
ison between both DDA and the analytical solution,
with results from shaking table experiments performed
under the exact same modeled conditions (plane
inclination and friction, block stiffness, induced wave
function). Such a comparison will allow critical review
of the validity of the analytical solution, and will
provide constraints for the validity of DDA. Once this
basic issue is resolved, multi block tests in experimental
settings which can be modeled easily using DDA, should
be studied.
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