
Site response analysis with two-dimensional numerical
discontinuous deformation analysis method

Huirong Bao, Gony Yagoda-Biran and Yossef H. Hatzor*,†

Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel

SUMMARY

The capability of the numerical discontinuous deformation analysis (DDA) method to perform site response
analysis is tested. We begin with modeling one-dimensional shear wave propagation through a stack of hor-
izontal layers and compare the obtained resonance frequency and amplification with results obtained with
SHAKE. We use the algorithmic damping in DDA to condition the damping ratio in DDA by changing
the time step size and use the same damping ratio in SHAKE to enable meaningful comparisons. We obtain
a good agreement between DDA and SHAKE, even though DDA is used with first order approximation and
with simply deformable blocks, proving that the original DDA formulation is suitable for modeling
one-dimensional wave propagation problems. The ability of DDA to simulate wave propagation through
structures is tested by comparing the resonance frequency obtained for a multidrum column when modeling
it with DDA and testing it in the field using geophysical site response survey. When the numerical control
parameters are properly selected, we obtain a reasonable agreement between DDA and the site response ex-
periment in the field. We find that the choice of the contact spring stiffness, or the numerical penalty param-
eter, is directly related to the obtained resonance frequency in DDA. The best agreement with the field
experiment is obtained with a relatively soft contact spring stiffness of k= (1/25)(E� L) where E and L
are the Young’s modulus and mean diameter of the drums in the tested column. Copyright © 2013 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The analysis of seismic site response is very important because the amplification of seismic waves in
some specific areas can be very strong. Reflections and scattering of seismic waves near the surface, at
layers interfaces, or around topographic irregularities often strengthen the consequences of
earthquakes. The maximum amplification and corresponding resonance frequency depend on several
factors including the thickness of the overlying layers, their shear modulus, damping ratio, and
density. Although alternating layer stiffness in the soil column and geometrical basin effects have
been cited as the most common sources of amplification, topographic effect has been reported to be
a significant source of motion amplification as well. Whereas it is well established that soft soil
deposits may amplify ground motion, it is often assumed that hard-rock sites are safe. However,
recent studies suggest that rock sites may also exhibit significant amplification, possibly because of
their shear wave velocity.
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Ground motions developed near the surface are typically attributed to upward propagation of shear
waves from an underlying rock formation. If the ground surface, the rock surface or the boundaries
between different soil layers are inclined, analyses of the response of the soil deposit can only be
made by numerical techniques. If however the ground surface, the rock surface and the boundaries
between soil layers are essentially horizontal, the lateral extent of the deposit has no influence on the
response and the deposit may be considered as a series of semi-infinite layers. In such cases the
ground motions induced by a seismic excitation at the base are the result of only shear deformations
in the soil and the deposit may be considered as a one-dimensional shear beam. Site response in this
case may be estimated using well developed, one-dimensional computational approaches, such as
the program SHAKE [15, 22].

In this paper, we explore the possibility of performing two-dimensional site response analysis in a
discontinuous medium. We employ for this purpose the dynamic, implicit, discrete-element
numerical discontinuous deformation analysis (DDA) method [23]. We first verify wave propagation
modeling capabilities of DDA by comparing one-dimensional site response analysis results with
those obtained with SHAKE for the same horizontally layered medium. We then proceed with two-
dimensional site response analysis by comparing DDA results with an experimental site response
survey performed in the field for a tall and slender limestone multidrum column situated in a historic
monument dated back to the Hellenistic period.

As an implicit numerical method, DDA is similar in essence to the FEM. Both methods employ
displacement type unknowns and obtain governing equations from the total potential energy of the
system. Nevertheless, the difference between FEM and DDA is also significant. Whereas the
displacements of nodes are the unknowns in the FEM, in the DDA method, the unknowns are the
displacements and deformations of blocks. The displacement compatibility is automatically satisfied
by the displacement function in the FEM, whereas it is achieved by the contact conditions between
blocks in the DDA method. When the blocks are in contact in DDA, Coulomb’s law is applied to
the contact interface, and the simultaneous equilibrium equations are formulated and solved
repeatedly for each time step. The simultaneous equilibrium equations are obtained from
minimization of the total potential energy of the block system.

Discontinuous deformation analysis uses a penalty method to treat contacts. The penalties, in the
form of stiff springs, are applied at contact interfaces to prevent either penetration or tension
between blocks. It will be shown here that in dynamic DDA applications, the choice of the penalty
parameter is crucial for obtaining accurate results. To alleviate the strong dependency of the results
on the choice of the penalty parameter, alternative contact algorithms using for example the
Lagrange multiplier or augmented Lagrange methods have been proposed [13, 3, 21]. The purpose
of this paper, however, is not to enhance the original DDA contact algorithm but to test its
applicability to dynamic analysis of block systems by performing sensitivity analyses using
analytical solutions and field test data. We believe that testing the applicability of alternative contact
algorithms would require similar calibration studies, which are beyond the scope of this paper.

A comprehensive review of the essentials of DDA is provided by [9]. Results of a decade of DDA
validation and verification studies from all over the world are reviewed by [16]

1.1. Theoretical background

In the DDA method, the simultaneous equilibrium equations can be written as follows:

Md̈þ C ḋþKd ¼ f (1)

that can be derived from minimizing the total potential energy of the system, Π . In Equation (1),M, C,
and K are mass matrix, damping matrix, and stiffness matrix, respectively, and d and f are the
displacement unknowns and force vectors. In a two-dimensional DDA model with n blocks, the
basic element is a block with six unknowns:

di ¼ u0 v0 r0 ϵx ϵy γxy
n oT

i
; i ¼ 1; 2;⋯; nð Þ (2)
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where (u0,v0) are the rigid body translations, r0 is the rotation angle of the block with respect to the
rotation center at (x0,y0), and ϵx, ϵy, and γxy are the normal and shear strains of the block. As shown
by Shi [23], the complete first order approximation of displacements at any point (x,y) take the
following form:

ux

uy

� �
i

¼ Tidi ; i ¼ 1; 2;⋯; nð Þ (3)

where

Ti ¼
1 0 � y� y0ð Þ x� x0ð Þ 0

y� y0ð Þ
2

0 1 x� x0ð Þ 0 y� y0ð Þ x� x0ð Þ
2

2
664

3
775
i

(4)

By adopting first order displacement approximation, the distribution of the stresses and strains are
constant in a block, a simplification that limits the accuracy of the DDA method when dealing with
wave propagation problems.

Assuming the velocity at the beginning of the time step, which can be obtained from the previous
time step, is ḋ0, and that the time interval of a single time step is Δt, then

d̈ ¼ 2
Δt2

d� Δt ḋ0
� �

ḋ ¼ 2
Δt
d� ḋ

0

(5)

By substituting Equation (5) into Equation (1), the simultaneous equilibrium equations can be
rewritten as

K̂d ¼ f̂ (6)

where K̂ is the equivalent global stiffness matrix. Equation (6) can be written in a submatrix form as
follows: "

K̂ 11 K̂
12

K̂
13

⋯ K̂
1n

K̂21 K̂22 K̂23 ⋯ K̂2n

K̂31 K̂32 K̂33 ⋯ K̂3n

⋮ ⋮ ⋮ ⋱ ⋮
K̂n1 K̂n2 K̂n3 ⋯ K̂nn

#
d1
d2
d3
⋮
dn

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

f̂ 1
f̂ 2
f̂ 3
⋮
f̂ n

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(7)

where K̂ij i; j ¼ 1; 2;⋯; nð Þ are 6� 6 submatrices, di and f̂ i i ¼ 1; 2;⋯; nð Þ are 6� 1 submatrices
corresponding to block i.

2. SITE RESPONSE ANALYSIS: DISCONTINUOUS DEFORMATION ANALYSIS VERSUS
SHAKE

The SHAKE program uses a lumped-mass type of approach to analyze the response of a soil deposit
consisting of irregularly varying, but linearly elastic, soil properties. The soft deposit, which may
consist of several layers of varying properties, is idealized by a series of lumped masses
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interconnected by springs that resist lateral deformations. These springs represent the stiffness
properties of the material between any two lumped masses. Damping is assumed to be linearly
viscous in SHAKE. When the layer is subjected to a horizontal seismic motion through its base, the
equation of motion of the system may be represented in a matrix form as follows:

Müþ C u̇þKu ¼ g tð Þ (8)

where M, C, and K are the mass, viscous damping, and stiffness matrices, respectively; g(t) is the
earthquake load vector, and u is the relative displacement vector. These matrices and vectors are of order
N, where N is the number of lumped masses used in idealizing the layer in a program such as SHAKE.

The basic mechanism of amplification is best illustrated by examining the effect of an un-damped
elastic surface layer on incoming bedrock motions.

For a uniform layer of isotropic, linear elastic, soil overlying a rigid bedrock unit as shown in
Figure 1, the amplification function for an un-damped soil layer is [12]

F1 ωð Þj j ¼ 1
cos ωH=vsð Þj j (9)

and for a damped soil layer is

F2 ωð Þj j ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 ωH=vsð Þ þ ξωH=vsÞ2

�r (10)

where H is the thickness of the soil layer, vs is the shear wave velocity, ξ is the damping ratio of the soil
layer, and ω is the angular frequency of the ground motion.

2.1. Finding an equivalent damping ratio in dynamic discontinuous deformation analysis simulations

One might think that it should be possible to determine the damping matrix for the modeled structure
from the damping properties of individual structural elements, just as the structural stiffness matrix is
determined. However, it is impractical to determine the damping matrix in this manner because there is
no obvious connection between the damping properties and the structural dimensions, structural
member sizes, and the structural materials [4]. Even if the damping properties of each structural
element were known, the resulting damping matrix would not account for a significant part of the
energy dissipated in friction at joint interfaces. The energy dissipation mechanism in a joint is a
complex process, which is largely influenced by the interface pressure and the joint properties.
Normally, a Rayleigh damping matrix, also known as classical damping matrix, is a standard choice
in numerical simulations. However, if the system consists of two or more components with
significantly different damping properties, a non-classical damping matrix must be used.

To simulate a real dynamic problem with DDA, damping should be considered. In the original DDA
code, a damping submatrix was not incorporated in the equilibrium equations. To account for
additional energy dissipation mechanisms, a so called ‘kinetic damping factor’ is provided in the
original code. The user specified ‘kinetic damping’ factor arbitrarily forces the velocities at the next
time step to be reduced by some percentage of that in the current step, to account for other energy

Figure 1. Linear elastic soil deposit of thickness H underlain by rigid bedrock.
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loss mechanisms that may take place during dynamic deformation in the block system, such as
fracturing and crushing at block tips, and shear heating during high velocity sliding. However, an
arbitrary application of ‘kinetic damping’ can completely distort the structural vibrations, even if
only 1% kinetic damping is applied. Consider for example, a cantilever beam clamped on one side,
10-m long and 1-m high, composed by 10 1 � 1 m blocks (Figure 2). A triangular impulse
(Figure 3) is applied at the free end of the beam as an initial disturbance. The resulting vertical
displacement time history of the free end of the beam is plotted in Figure 4. Theoretically, the
cantilever beam should start free vibrations after 0.02 s, as obtained with the ‘full dynamic’ solution;
yet, the motion is totally damped when even 1% kinetic damping is applied, as shown by the dashed
curve.

Indeed, the best way to model structural damping in DDA would be to incorporate a damping
submatrix in the simultaneous equations of equilibrium (Equation (1)). Proper implementation of a
structural damping submatrix in DDA is complex because it requires consideration of the contact
scheme, joint material, and block material. Furthermore, it requires determination of the viscosity

Figure 2. Configuration of the discontinuous deformation analysis cantilever beam model. F(t) is the
dynamic load applied at the free end.
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Figure 3. Time history of the input point load.
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Figure 4. y-direction displacement of the free end of the cantilever beam obtained with discontinuous defor-
mation analysis for un-damped (solid line) and 1% kinetic damping (dashed).
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coefficient of the elements in the block system, which in most cases is largely unknown. A
comprehensive treatment of these issues, which requires further research, is beyond the scope of this
paper. Instead, we present an alternative damping scheme that is equivalent to the ‘damping ratio’
that is used in SHAKE and similar programs, thus allowing proper comparisons between DDA and
SHAKE outputs.

In many numerical methods, inherent ‘numerical damping’, also referred to as ‘algorithmic damping’
[6], does exist. The numerical damping is typically associated with the time integration scheme used for
integrating second order systems of equations over time. Numerical damping stabilizes the numerical
integration scheme by damping out the unwanted high frequency modes. For the Newmark scheme,
numerical damping also affects the lower modes and reduces the accuracy of integration scheme from
second order to first order. Higher modes are more susceptible to error propagation than lower modes.
Therefore, numerical damping is desirable for suppressing higher mode errors. In DDA, the numerical
damping that is associated with the time integration scheme increases with increasing time step size. If
the time step is small enough, the numerical damping phenomenon is insignificant. However, a time
step size that is too small may cause difficulties in the convergence of the numerical solution. To obtain
an equivalent damping ratio for DDA, we utilize the algorithmic damping without any further
modifications, by seeking the time step size that will result in exactly the same damping ratio that
would have been assumed otherwise in the structural analysis.

Our suggested scheme for obtaining an equivalent damping ratio from the algorithmic damping in
DDA is further illustrated by the cantilever beam model shown in Figure 2. Two time step sizes are
applied to the beam when loaded with the same time history (Figure 3). The beam starts free
vibration after 0.02 s when the exciting force is removed. The y-direction displacement time history
of the free end is shown in Figure 5. A very significant attenuation of the amplitude is observed
when the time step size is increased by one order of magnitude from 1e�5 to 1e�4 s, confirming our
suggestion that the magnitude of algorithmic damping in DDA depends upon the size of the time
step used.

Generally, the damping ratio of an oscillating system in one direction (ζ ) can be obtained from the
attenuation of the steady free vibration using the following expression:

ζ ¼ 1
2πn

ln
A0

An
(11)

where A0 and An are amplitudes of the first and the n-th wave crests, respectively, and n is the number
of cycles. Utilizing Equation (11), we can now find the equivalent damping ratio obtained using the
algorithmic damping in DDA as a function of time step size.

When trying to find the equivalent damping ratio from DDA output, it is necessary to investigate
another numerical control parameter and its possible influence on the results—the stiffness of the
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Figure 5. Damping in y-direction as measured at the free end of the cantilever beam (Figure 2) utilizing the
algorithmic damping in discontinuous deformation analysis.
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contact spring used as penalty in DDA. Our numerical tests clearly show that the choice of the penalty
value has no obvious effect on the equivalent damping ratio that is obtained. We fixed the time step
size to 1e�5 s and varied the penalty value by three orders of magnitude, from 1E to 100E (where E
is Young’s modulus). With increasing penalty value, the natural frequency of the beam also
increased, whereas the maximum displacement decreased, as shown in Figure 6. The same result
would have been obtained had we changed the elastic modulus of the blocks comprising the beam,
as in either way, the effective stiffness of the beam is changed.

2.2. Finding the optimal numerical control parameters for dynamic discontinuous deformation
analysis simulations

In dynamic analysis, both temporal and spatial resolution of a numerical model are critical to ensure
convergence of the results. Similar to the FEM, the accuracy of the DDA method depends on the
ratio (η) obtained by dividing the length of the side of the largest element in the modeled domain by
the minimum wavelength of elastic waves propagating through the system:

η ¼ Δx
λ

(12)

where λ is the wavelength, and Δx is the side length of the element along the direction of wave
propagation path. Typically in FEM models, the optimal ratio η should be smaller than
approximately 1/12 for obtaining most accurate results [14]. Furthermore, in modeling nonlinear
propagation of sound waves, Kagawa et al. [10] recommended element size smaller than one-
twentieth of the primary wavelength. Considering computational efficiency, Moser et al.[19]
recommended the optimized size of elements to be one-twentieth of the shortest wavelength. To
avoid spurious reflections of elastic waves between elements due to the change of element sizes, the
largest element size is recommended to be smaller than one-tenth of the wavelength [2].
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Figure 6. Relationship between penalty value and numerical damping in discontinuous deformation analysis.
Time step size in all simulation equals 1e�5 s.
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Choosing a proper time step size is also very important for the stability and accuracy of the solution
in DDA [6]. In general, the accuracy of the model can be increased with the decrease of time step
intervals. With time step intervals that are too long, the high frequency components are not resolved
accurately enough. However, too small time steps may induce pseudo high frequency oscillations at
the wave front. Too small time steps also require significantly more computation time. A
compromise is therefore necessary between these conflicting considerations. In FEM simulation of
nonlinear sound wave propagation, Kagawa et al. [10] recommended the time step should be chosen
smaller than one-hundredth of the primary wave period. For Newmark time integration scheme, the
optimized time step size is one-twentieth of the smallest period of incident waves, which gives
accurate solutions in an efficient manner [19]. To avoid bifurcation in the DDA solution, the time
step size should satisfy the following requirement [6]:

Δt <
4

ωmax
(13)

whereωmax is the maximum un-damped frequency of vibration of the system described by Equation (1).
Equation (13) is a necessary condition for the stability of the solution. Because normally the natural
frequency of the system is not known in advance in DDA and is difficult to obtain from the system of
equilibrium equations (Equation (1)), application of this criterion is not always possible.

According to the Courant–Friedrichs–Levy condition [5] to ensure stability of numerical methods
when solving one-dimensional wave propagation problems, the time step size should satisfy

Δt <
Δx
v

(14)

where v is the wave velocity, and Δx has the same meaning as that in Equation (12). The CFL condition
is only a necessary condition for convergence when solving partial differential equations.

From Equation (12) earlier, we have Δx = ηλ; substituting into Equation (14) with λ= vT, we obtain

Δt <
ηλ
v
¼ ηT (15)

where T is the period of incident wave. Note that Equation (15) does not ensure accuracy, but
guarantees convergence of the numerical solution. Finally, in simulating P-wave propagation with
DDA,Gu and Zhao [8] recommended the block size to be one-sixteenth of the wavelength, for one-
dimensional P-wave propagation problems, considering both computation accuracy and efficiency.
There is no reference to S-wave propagation in their work, however. It is important to point out here
that in DDA even when the time step size does satisfy the requirement of Equation (15) algorithmic
damping may still be significant (Figure 5).

To study the effect of time step size and block size on the solution accuracy in DDA when modeling
one-directional shear wave propagation through a layered medium, consider the DDA model shown in
Figure 7. The shear wave is generated in the model by inducing horizontal movements at the base,
which is supported on four pin points, typically referred to as ‘fixed points’ in DDA. The four pin
points are loaded simultaneously by a horizontal motion with time history as shown in Figure 8.

A series of numerical tests with different η values is carried out. We find that the relative error with
respect to wave amplitude at measurement point M1 decreases with decreasing η as shown in Figure 9.

The relative error with respect to amplitude is defined here by

e ¼ A0 � Amj j
A0

� 100% (16)

where A0 is the analytical amplitude of the incident wave at the measurement points; Am is the
numerically obtained amplitude at the same measurement point with DDA. Because the DDA
blocks are linear elastic and un-damped, the analytical amplitude in the tests is the same amplitude
as that of the incident wave at the rigid base. The relative errors with respect to amplitude plotted in
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Figure 9 includes the numeric error caused by algorithmic damping. Because larger time step size
results in increased algorithmic damping, the obtained relative errors with time step size of 1e�4 s
are larger than with time step size of 1e�5 s, and the differences between them remains largely the
same for every ratio η. Moreover, inspection of Figure 9 also reveals that for both time step sizes
the rate of change of the relative error decreases with decreasing η. Therefore, we conclude that the
effect of the ratio η on the solution error is independent of the time step size.

The analysis of the numerical error thus far considered the amplitude only, and as can be inferred
from Figure 9 clearly, the numeric error decreases with decreasing ratio η. This is not true, however,
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Figure 8. Triangular incident wave time history used in discontinuous deformation analysis model for one-
dimensional shear wave propagation (Figure 7).
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when the wave velocity is used to obtain the numeric error using a similar expression as Equation (16)
and replacing amplitude with velocity. Recall that in DDA, a penalty method is employed to treat
contacts between blocks so that the displacement compatibility is satisfied. Yet, penalty methods can
only reach an approximate satisfaction of the displacement compatibility, which depends on the
choice of the penalty value (i.e., the stiffness of the contact spring). An increasing number of
artificial joints along the wave propagation path will therefore inevitably slow down the numerical
wave propagation velocity, especially when a low penalty value is employed. An optimal penalty
value that is typically recommended for DDA applications is 40 times the value of the Young’s
modulus of the blocks. Our experience with modeling one-dimensional shear wave propagation
problems (results not reported here for brevity) indicates that a penalty value higher than 100 times
the Young’s modulus of blocks would allow better accuracy of wave propagation velocity.

To minimize the effect of the number of contacts on the solution, we keep the number of interfaces
per unit length along the wave propagation path constant in our simulations. We therefore vary the
ratio η in each simulation by changing the wavelength λ of the incident wave. The wavelength of a
shear wave can be obtained by

λ ¼ T

ffiffiffiffi
G

ρ

s
(17)

where T is the period of the incident wave, G is the shear modulus of blocks, and ρ is the unit mass.
Although in principal the wavelength could be varied by changing any one of the three parameters
in Equation (17), changing T may induce errors due to the different frequencies. It would be better,
therefore, to change either the shear modulus or the unit mass to obtain different wavelengths in
each numerical test.

In addition to the amplitude error, it is necessary to verify the preservation of wave shape during
propagation. A one-cycle sinusoidal horizontal displacement function (Figure 10) is used as input
for each pin point in the model shown in Figure 7 and four different wavelength ratios, η� 1 = 4, 8,
16, and 32, are tested.

The displacement time history of measurement point M1 is shown in Figure 11. It is found that the
wave shape is well resolved for both wave crest and wave trough for η� 1 = 16 and beyond. We also
find that decreasing time step size has no effect on the preservation of the wave shape (data not
reported here for brevity) because the preservation of wave shape is a spatial resolution of the wave.

2.3. Verification of one-dimensional site response analysis with discontinuous deformation analysis
using SHAKE

To check the possibility to perform accurate site response analysis with DDA, with all the
considerations regarding optimal numerical control parameters and an equivalent damping ratio
discussed earlier in mind, we begin with a one-dimensional problem that can be computed by means
of an alternative, well established, computational method. We chose the program SHAKE for our
verification because its algorithm has been verified by many workers and its accuracy is well
established for the underlying assumptions and boundary conditions.
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Figure 10. One-cycle sinusoidal incident wave time history used to induce vertical shear wave propagation
in the discontinuous deformation analysis model shown in Figure 7.
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Consider the DDA model shown in Figure 12 with material properties and control parameters as
listed in Table I. The two-dimensional model is created with layer length to layer width ratio
sufficiently high (15) so as to simulate one-dimensional vertical propagation of shear waves from
the excited foundation block through the stack of the horizontal layers, topped by the surface layer.
A real earthquake time history (Figure 14) is applied to the four fixed points at the foundation block
as in the verification tests earlier, in the horizontal direction only. The shear waves are then allowed
to propagate vertically through the stack of 15 horizontal layers, each 15-m long and 1-m thick. The
response is measured at the two measurement points M1 and M2 at the foundation block and
surface layer, respectively. The same geometrical configuration is modeled with SHAKE
(Figure 13), with 15 horizontal layers of infinite lateral extent, each of 1m thickness. The only
difference in the loading scheme is that whereas in the DDA, model the foundation block is excited
by time dependent displacements, in SHAKE, the excitation at the bedrock layer is in acceleration.
In both methods, the excitation is restricted to the foundation block and the response is measured at
the top layer (M2) with respect to the foundation layer (M1). The two records used are shown in
Figure 14.

To compare between the two different computational methods, the obtained spectral amplifications
are plotted in Figure 15. For the DDA model, the maximum amplification is 29.07 and the resonance
frequency is 13.95Hz; for the SHAKE model, the maximum amplification is 28.93 at frequency
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Figure 11. Wave forms as obtained with discontinuous deformation analysis at M1 (for model shown in
Figure 7) for different wavelength ratios. The time interval in all four simulations is kept at Δt=1e�4 s.
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Figure 12. Configuration of the layer structure for the discontinuous deformation analysis model.
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14.21Hz. The agreement between the two methods for a homogenous layered medium is good,
suggesting that accurate site response analysis is possible with DDA, even when higher order terms
are neglected (first order approximation) and the blocks are assumed to be simply deformable.
Moreover, it is clearly demonstrated here that loading the foundation block with displacement or
acceleration time histories is equivalent, an issue that has focused some debate recently [25].

Finally, to verify the capability of DDA to perform one-dimensional site response analysis in an in-
homogenous layered medium, consider the DDA model shown in Figure 12 but with mechanical
properties for the layers as listed in Table II. The resulting response spectra are shown in Figure 16.
The equivalent damping ratio obtained in the DDA model is 2.3%, which is input to the SHAKE
model for comparison. Again, the agreement between the two methods is good: the resonance

Table I. Discontinuous deformation analysis parameters for the 15-layer model.

Joint material Friction angle 50˚
Cohesion strength (MPa) 100
Tensile strength (MPa) 50

Control parameter Dynamic factor 1.0
Penalty stiffness (GN/m) 1500
Time step size (s) 1� 10�3

Maximum displacement ratio 0.0008
Successive over relaxation factor 1.5
Total time steps 60,000

Block material Density (kg/m3) 2643
Young’s modulus (GPa) 4.788
Poisson ratio 0.25
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Figure 13. Schematic illustration of the SHAKE model
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frequency obtained with DDA is 14.23Hz and with SHAKE 14.50Hz; the maximum amplification
obtained with DDA is 28.76 and with SHAKE is 27.79, namely 3% difference. These results
confirm that accurate site response analysis with DDA is possible, provided that the assumed
damping ratio is implemented correctly and the numerical control parameters are well conditioned,
as explained earlier in this section.

3. DISCONTINUOUS DEFORMATION ANALYSIS VERSUS. GEOPHYSICAL FIELD
EXPERIMENT

3.1. Field experiment in the Avdat site

The field experiment was performed in Avdat National Park, a UNESCO world heritage site. Avdat, a
major ancient Nabatean road station along the Route of Spices, lies in the central Negev highlands of
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Figure 15. Spectral amplification obtained with discontinuous deformation analysis and SHAKE for 15 hor-
izontal layers of homogenous material properties.

Table II. Material properties of layers/blocks (Figure 16).

Layer/block Density (kg/m3) Young’s modulus (GPa) Shear modulus (GPa) Poisson ratio

1–3 2403 4.5 1.8 0.25
4–6 2162 4.1 1.64 0.25
7–9 2243 4.2 1.68 0.25
10–12 2483 4.0 1.6 0.25
13–15 2643 4.8 1.92 0.25
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Figure 16. Amplification spectrum for in-homogenous stack of layers with mechanical properties as listed in
Table II.
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southern Israel, 655m above sea level and 80m above its surroundings. Avdat was established in the
third century BC and was annexed to the Roman Empire at AD 106 along with the entire Nabatean
kingdom [20]. Avdat was abandoned at AD 636, never to be occupied again. A strong earthquake
that struck the region between AD 631 and 636 is believed to have been the main reason for its
abandonment [7]. Indeed, Many buildings in Avdat show evidence of seismic damage, including
ones that have been used in the seventh century AD [18].

At the western part of the city, on an elevated terrace, a single multidrum column that was used for
supporting the roof of a Nabatean temple stands today following some restoration work (Figure 17).

Site response measurements were performed by the Geophysical Institute of Israel [27]. Four
velocity seismometers were placed on the column: two at the top of the column and two nearest to
its base. Each pair of seismometers was placed perpendicular to one another in north–south and
east–west directions (Figure 18).

The response of the column to three different loading modes was recorded with the velocity
seismometers positioned at the top and base of the column as follows: (i) ambient, background, or

Figure 17. The multidrum column at the western terrace of Avdat.

(a) (b) (c) 

Figure 18. (a) Velocity seismometers used in field experiment, (b) application of sledgehammer impacts to
the base of the column to induce ‘dynamic’ load, and (c) application of manual push and release to the top of

the column to induce ‘static’ load.
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noise; (ii) dynamic load applied at the base of the column by impact of a sledgehammer; and (iii) static
load obtained by application of manual push and release at the top of the column (Figure 18 ). The first
and second resonance modes obtained under the three different styles of vibration are similar, with the
first resonance mode at 3.0–3.8Hz and the second mode at 4.2–5.3Hz (Figure 19).

3.2. Discontinuous deformation analysis validation using field experiment

In this study,,we apply a very small disturbance to multidrum column, either by applying a gentle push
at the top or by applying a blow with a sledgehammer at the bottom of the column and compare the

Figure 19. Experimentally obtained Fourier velocity amplitude spectra in North (H332) and East (H748) di-
rections for ambient (a), dynamic (b), and static (c) excitation at the base and top of the column.
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response spectra computed with DDA and measured in the field. Because the disturbance is very small,
sufficient to induce vibrations but certainly insufficient to trigger rocking (two-dimensional—in plane)
or prompt wobbling (three-dimensional—out of plane) motions, we do not expect any out of plane
motions between the drums during column vibration. Therefore, a two-dimensional approach is
assumed valid in this case, and the calibration of the model is limited to the ‘linear’ response of the
column.

The two-dimensional-DDA mesh is comprised of 11 blocks: one large foundation block, fixed in
space by three fixed points and therefore cannot move, and 10 rectangular blocks, placed one on top
of the other with proportions similar to the actual column, representing the modeled multidrum
column of Avdat. The model is excited in either one of two loading points: one at the lowermost
drum, simulating the sledgehammer impacts, or ‘dynamic’ loading, and one at the uppermost drum,
representing the manual push, or ‘static’ loading (Figure 20).

Before performing simulations under external forces, several models loaded by gravity alone were
analyzed to optimize the user defined numerical control parameters, whereas the blocks settle under
their own weight. Simulations under gravity only were run for 15 s of real time. Two Δt values were
used: 0.01 and 0.001 s. The assumed maximum displacement per time step ratio [23] was set equal
to Δt, and sensitivity analysis was performed to optimize the penalty value (k). Two numerical
responses to gravitational load were investigated: (i) the time it takes for the initial oscillations of
the column in the vertical direction to stabilize, an effect referred to herein as ‘gravity turn-on’; and
(ii) numerically obtained horizontal displacements of the uppermost block, which naturally have no
physical explanation when subjecting the symmetrical column to vertical gravitational loading. The
physical and numerical parameters used in the simulations are listed in Table III.

Concentrated results of sensitivity analyses are presented in Table IV. Gravity turn-on is achieved
much faster when using the larger time step, because of the algorithmic damping effect discussed
earlier. Furthermore, the model experiences smaller horizontal displacements when using larger time
step, again, because of the numerical damping effect. The selection of the optimal penalty value for
forward modeling was made on the basis of the results of the sensitivity analyses for the smaller
time step as it is more sensitive to the change in penalty value. The range of optimal penalty value
is between 1� 108 and 1� 109N/m (bold in Table IV).

Figure 20. The two-dimensional-discontinuous deformation analysis mesh used in the numerical modeling
of the Avdat column. The lowermost block is fixed by three fixed points (grey circles), the mesh is loaded by

either of the two loading points (white circles).

Table III. Physical and numerical parameters used in the column simulations.

Parameter Value

Block density 2250 kg/m3

Block Young’s modulus 17GPa
Block Poisson’s ratio 0.22
Δt (time step size) 0.01–0.001 s
Maximum displacement ratio Value identical to Δt, dimensionless
k (penalty value) 1� 107–1� 1011 N/m
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As mentioned earlier, load was applied at either of the two loading points marked by white circles in
Figure 20. When simulating dynamic impact (sledgehammer blow), force was applied at a single time
step of the analysis by a pulse function (Figure 21(a)). When simulating static load (manual push),
force was applied as a step function (Figure 21(b)), for a time interval of 1 s.

Dynamic load was applied with values between 10,000 and 300,000N; column vibrations were not
always obtained under the lower load values. Static load was applied with values between 100 and
3000N; higher load values triggered some initial translation of the uppermost block in the horizontal
direction, followed by free vibrations of the column. FFT analysis of a typical result is shown
graphically in Figure 22 along with the average curve obtained from the physical experiments.

Note that the results of the field experiment indicate two modes, whereas DDA results indicate only
a single mode. This discrepancy could arise from soil structure interactions that may be present in the
field but are prohibited in the DDA model because the base block was fixed in the model (Figure 20).
For detailed description of the dynamics of multi column drums, see [11, 1].

Table IV. Sensitivity analysis of numerical control parameters for gravitational load only using the
two-dimensional-discontinuous deformation analysis model shown in Figure 20. All other input parameters

are listed in Table III. Legend: Δt = time interval in s, k= penalty value in N/m and u= horizontal
displacement in cm. Optimal penalty values are in bold.

k

Δt = 0.001 Δt= 0.01

Real time to gravity turn-on u Real time to gravity turn-on u

1� 107 Not stable N/A Not stable N/A
5� 107 8 0 1 0.000005
1� 108 5 to 6 0 1 0.000002
2� 108 3 to 4 0 0.5 0.000001
3� 108 2 to 3 0 0.7 0
4� 108 2 to 3 0 0.7 0
5� 108 2 to 3 0 N/A N/A
6� 108 2 to 3 0 N/A N/A
7� 108 2 to 3 0 N/A N/A
8� 108 2 to 3 0 0.6 0
9� 108 2 to 3 0 N/A N/A
1� 109 2 0 N/A N/A
2� 109 2 0 0.55 0
3� 109 2 0.000006 N/A N/A
4� 109 2 0 N/A N/A
5� 109 Not stable Not stable 0.5 0
6� 109 Not stable Not stable N/A N/A
1� 1010 Not stable Not stable 1 0
1� 1011 N/A N/A 1 0
1� 1013 N/A N/A 1 0

Figure 21. Input loading functions used as input in two-dimensional-discontinuous deformation analysis
simulations: (a) dynamic load function used to simulate sledgehammer impulse applied at the base of the
column and (b) static load function used to simulate the manual push and release applied manually at the

top of the column.
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Concentrated results of dynamic DDA simulations under static and dynamic loading are presented
in Table V with the obtaine different values of penalty. Inspection of the results in Table V reveals the
following conclusions:

1. The dominant frequency of the modeled system obtained with DDA is highly dependent upon the
penalty value. It increases with increasing penalty value from 2.3Hz with k = 1� 108N/m to
6.3Hz with k = 1� 109N/m.
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Figure 22. Response spectra of studied column: comparison between discontinuous deformation analysis
and experimental results. Discontinuous deformation analysis simulations were executed with penalty value

of 4x108N/m. (a) static loading and (b) dynamic loading.

Table V. Results of the column response to external ‘dynamic’ and ‘static’ forces. The choice of penalty
value which returns results that best agree with field experiment is in bold.

Penalty value (N/m)
Dominant frequency (Hz)

for dynamic loading
Dominant frequency (Hz)

for static loading

1� 108 2.3–2.4 2.4
2� 108 3.3 3.3
4� 108 4.2–4.3 4.3–4.5
7� 108 5.1 5.1–5.2
1� 109 5.9–6 5.9, 6.2–6.3
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2. The dominant frequency of the modeled system as obtained with DDA does not depend on the
loading mechanism or the magnitude of the applied force; similar values are obtained for both
static and dynamic loading for the entire range of simulated loads.

3. The dominant frequency of the modeled system as obtained with DDA does not depend on
the time interval used (a range of 0.01 to 0.0001 s was analyzed, results for Δt= 0.0001 s
not shown here).

4. Finally, all the dominant frequencies that were obtained with two-dimensional-DDA for the op-
timal range of penalty values are in the range of the two dominant modes obtained experimentally
at the site. This result confirms the validity of two-dimensional-DDA as a site response analysis
tool for earthquake engineering.

4. DISCUSSION

A well-known dilemma in dynamic numerical analysis is the best choice of the time step size, because
it is not only critical for the stability and efficiency of the solution, but also for its accuracy. In this
work, one criterion for selecting an optimal penalty value was the absence of horizontal
displacements when subjecting a multiblock column to gravitational load. Inspection of sensitivity
analyses results (Table IV) reveals that when using a relatively large time step size of 0.01 s no
horizontal displacements are obtained numerically for a larger range of penalty values than when
using a relatively small time step of 0.001 s. The absence of horizontal displacements when using
the larger time step results from the algorithmic damping effect, as discussed earlier. It should be
pointed out, however, that with increased time step size, the numerical error increases and, therefore,
a smaller time step would be more desirable, from an accuracy stand point. There is a price to pay;
however, when using a smaller time step: stability and gravity turn-on will be achieved after a
longer period of real time, because of a lesser algorithmic damping effect. This will require longer
CPU time before obtaining a stable solution, an issue that may be a problem when solving a
multiblock system, even with fast computers.

The issue of the optimal time step to be used may be studied also in relation to the proposed criteria
presented in the section dealing with one-dimensional shear wave propagation. Consider Equation (13)
that suggests the following criterion for Δt: Δt < 4

ωmax
. To obtain the lowermost upper bound on the

optimal time step size, we can use the highest dominant system frequency as obtained with DDA,
6.3Hz (Table V), yielding an upper bound of 0.1 s, which agrees with the two values used here in
forward analysis. The CFL condition (Equation (14)) when applied here for wave velocity of
3000m/s and element side length of 0.5m returns an upper bound value of 0.0002 s that is 1 to 2
orders of magnitude lower than used here for forward analysis.

Numerical accuracy depends on the ratio η, defined eariler (Equation (12)) as the ratio between
largest element size and wavelength. The largest element size here is 0.5m. The wave length may
be obtained by Equation (17). For the material, we used the density was ρ= 2250 kg/m3, and elastic
parameters of E= 17GPa and ν = 0.22, yielding a shear modulus G= 6.97GPa. The period of the
incident wave was T= 0.004 s, yielding a wavelength λ ~ 7m and η of 1/14, which satisfies most of
the recommendations discussed earlier. Regarding the penalty value and its effect on numerical
results, we have shown that the obtained resonance frequency with DDA is highly dependent upon
the choice of k (Table V) with higher dominant frequencies obtained with increasing k values, as
illustrated in Figure 23. This is intuitive, because with increasing k value the modeled structure is
expected to behave more rigidly. Furthermore, the amplitude of the resonance modes clearly
decreases with increasing penalty value, as shown in Figure 23. To obtain an acceptable penalty
value for such problems, a preliminary calibration test may be necessary, as performed here
(Table IV). Indeed, the best fit penalty value for the field test of 4� 108N/m falls well within the
acceptable range of penalty values obtained from the preliminary calibration, where a range from
1� 108 to 1� 109N/m proved acceptable.

To choose the optimal k value, we may resort to previously published recommendations and
examine them in light of new findings reported here. Shi in his user’s manual [24] recommends that

SITE RESPONSE WITH DDA 243

Copyright © 2013 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2014; 43:225–246
DOI: 10.1002/eqe



k = (E)(L) where E is Young’s modulus and L is the average block diameter. In the multidrum column
problem modeled here, E = 17GPa and L = 0.6m, yielding a recommended k value by Shi of
1� 010 N/m2 , whereas the best fit penalty value found in this study is 1.5 orders of magnitude
lower (Table V). Using the recommended k value by Shi would lead to instability of the solution
with the Δt selected (Table IV). The reason for the low best fit penalty value with respect to Shi’s
recommendation could be related to the condition of the interface, its roughness, and the presence
of some infilling material between the drums. In the theoretical case of a layered models studied
here for comparisons with SHAKE, artificial joints were introduced to optimize the element size,
but by doing so, the overall stiffness of the model was reduced because of the springs that are
attached at the contacts between elements in DDA. We believe the higher best fit penalty value in
those simulations was necessary to offset this numerical artifact. Such a problem does not exist
when modeling real field conditions. An interesting note to be made here is that in a previous
study [26], we also found that whereas the recommended penalty value by Shi for the monolithic
columns studied there was 1.8� 109 N/m, the best fit between DDA and the analytical solution for
the rocking column problem [17] was obtained with a penalty parameter of 8.3� 107 N/m, also
some two orders of magnitude lower than recommended by Shi.

5. SUMMARY AND CONCLUSIONS

The ability of two-dimensional-DDA to perform site response analysis is tested in this paper. We begin
with comparisons to SHAKE and proceed with comparisons to geophysical field experiments. To
compare between DDA and SHAKE, we use the damping ratio that results in the numerical DDA
simulation because of the inherent algorithmic damping, as the assumed damping ratio in SHAKE.
We show that by controlling the time step size in DDA, we can actually control the resulting
damping ratio, where larger time step results in increased algorithmic damping. The obtained
agreement between the two completely different methods is good both in terms of the obtained
resonance frequency as well the amplification.

Regarding the optimal relationship between element size (Δx) and wave length (λ), we find that the
relative error decreases with decreasing ratio η, where η =Δx/λ. We find that this result is independent
of time step size. Furthermore, the preservation of the wave shape is also found to be independent of
the choice of the time step size. Regarding the optimal penalty value (k) for one-dimensional shear
wave propagation when compared with SHAKE, we find that a value of k = 21�EoLo (where Eo
and Lo are the Young modulus and diameter of the blocks) provides best accuracy. This is a higher
penalty parameter than the value of k =EoLo recommended by Shi. We believe the high value of the
best fit penalty parameter is necessary in this case to offset the reduction in overall stiffness of the

Figure 23. FFT spectra of the displacements of the uppermost block of the column, under five different
values of penalty.
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modeled system due to the introduction of artificial joints. Regarding the influence of the loading
mechanism, because we obtain good agreement between DDA, where induced foundation block
displacements are used to generate the shear waves, and SHAKE where cyclic accelerations are used
in the foundation block, we conclude that the two loading mechanisms are equivalent for site
response analysis.

A multidrum column from the World Heritage Site of Avdat is modeled with two-dimensional-
DDA, and its dynamic response is compared with experimental data obtained in a geophysical site
response survey. Results indicate that DDA returns a resonance frequency range that is very close to
the value obtained experimentally. We find that the contact spring stiffness, or penalty value, has a
great effect on both the resonance frequency as well as the amplitude as obtained by DDA. The
numerically obtained resonance frequency is found to increase with increasing penalty value, whereas
its amplitude decreases, as would be expected intuitively. The optimal k value as obtained by
comparison between DDA and the physical experiment is found to be k= (1/25)(EoLo), much lower
than recommended by Shi. Perhaps, this result reflects the softness of the physical column in reality
due to the interfaces between drums, which contain some infilling materials. As in the case of one-
dimensional wave propagation, the dominant frequency is found to be independent of the time step size.
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