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Abstract 

In this research, a thermally induced wedging-ratcheting mechanism for slope stability is 

investigated using a three-dimensional version of the numerical Distinct Element Method 

(3DEC). Our goal is to examine whether daily or annual surface temperature fluctuations 

can induce downslope, irreversible displacement and to create a quantitative model for 

thermally controlled block displacements. Problems of heat conduction are often too 

complex to solve using analytical solutions alone. Numerical approaches allow us to study 

complicated geomechanical problems for which exact analytical solutions do not exist or 

cannot be obtained. We construct a three-dimensional model in 3DEC to simulate the 

thermal expansion of a sliding block and the resulting block displacement down an 

inclined frictional slope. According to the proposed wedging-ratcheting mechanism, this 

displacement is assumed irreversible. Our results show that block displacement down the 

slope indeed occurs when the block boundaries are subjected to increased temperatures. 

Results of the numerical model are compared with a semi-analytical approach proposed 

by Pasten (2013) for the plastic displacement obtained in a single climatic cycle, and with 

experimental results obtained from a physical model in a climatically controlled room 

(Feldheim, 2017). 

We compare numerical simulations with monitored displacements of a slender block in 

the East slope of Mount Masada as up until recently the governing mechanism for this 

block displacement has been assumed to be seismically driven. By application of our 

numerical approach to the exact physical dimensions of the block in the field we find that, 

in fact, thermal loading alone can explain the mapped accumulated displacement. 

We believe this new, thermally-induced, failure mechanism may play a significant role in 

slope stability problems due to the cumulative and repetitive nature of the displacement, 

particularly in rock slopes in fractured rock masses that are exposed to high temperature 

oscillations. 
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Chapter 1 - Introduction 

Slope instabilities may pose serious threats to humans and to property. Slope instabilities 

can develop both in rocks or soils. In order to predict, or even prevent this geotechnical 

hazard, we must study the underlying mechanisms that affect slope stability and cause 

slope failure. 

In discontinuous rock masses, various environmentally controlled mechanisms can induce 

slope failure along pre-existing joints, such as seismic horizontal accelerations (e.g. 

Rodriguez et al., 1999), excessive pore water pressure (e.g. Iverson, 2000) and freeze-

thaw of cleft water in joints (e.g. Matsuoka, 2008). Yet, many rock slope failures seem to 

be spontaneous, and cannot be explained by either of the mechanisms above. 

There are other environmentally controlled mechanisms, thermally induced, that can 

affect slope stability. Thermal expansion and contraction of rocks close to the surface, 

due to seasonal warming and cooling, can change the state of stress at greater depths 

below the annual thermal active layer. Although stress changes are relatively small, they 

can cause slip on joints if the initial stress state is already close to failure (Gischig et al., 

2011). Collins and Stock (2016) monitored an exfoliating granite cliff and found that 

heating of rock surface can cause outward expansion in an exfoliating rock, and further 

fracture propagation and consequent detachment or rock slabs. Gunzburger et al. (2005) 

demonstrated that cyclic surface temperature fluctuations might be a preparatory factor 

for failure, with day-to-day cumulative effect. The daily temperature fluctuations may 

cause irreversible displacement on joints. They simulated the mechanical response of a 

block on an inclined slope (Figure 1.1) to temperature oscillations using the numerical 

code UDEC (Itasca, 1996). The authors claim that due to thermal expansion and 

contraction solely, plastic conditions are achieved across the sliding plane, and the block 

gradually slides down the slope. They found that the irreversible and cumulative “crawling 

motion”, is of a magnitude of millimeters per cycle (Figure 1.2). 
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Figure 1.1 – Conceptual model for thermally induced block displacement. The block boundary EF was 
subjected to temperature oscillations and the displacement of point F was recorded during the simulation 

with UDEC (Gunzburger et al., 2005). 

 

Figure 1.2 - Trajectory of point F during five cycles of heating and cooling (Gunzburger et al., 2005). 

1.1. The proposed wedging-ratcheting mechanism 

In previous work (Bakun-Mazor et al., 2013) the opening of joints in the rock slopes of 

Masada, Israel, was monitored for 2 years (Figure 1.3.) and a good correlation between 

surface temperature and joint opening was reported  (Figure 1.4). 
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Figure 1.3 - Monitoring system at the west side of Masada 

 

Figure 1.4 – Monitoring system output. Temperature and displacement vs. time (Bakun-Mazor et al., 2013) 

These observations lead the researchers to introduce a new thermally induced 

mechanism, in which daily and seasonal temperature fluctuations can cause opening of a 

tension crack and block displacement along an inclined, pre-existing discontinuity. In this 

model, rock blocks from the neighboring surroundings are assumed to fall into an open 

pre-existing tension crack that separates between the rock mass and the sliding block, to 

form wedges that drive the mechanism forward, hence the wedging-ratcheting 

terminology (Figure 1.5). 
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Figure 1.5 - Wedge inside a tension crack, Wadi Arugot 

When the temperature drops (during nighttime or winter season) the sliding block 

contracts, allowing the wedge to slide down the widening tension crack. When the 

temperature rises (during daytime or summer season), the sliding block expands, but the 

wedge is fixed in its previous place. In this state, compressive stresses develop around the 

wedge, pushing the sliding block down the slope. In the next cooling period, the sliding 

block contracts again, leading to opening of the tension crack, and further wedging down 

the tension crack, and the cycle completes with heating an expansion and sliding further 

down the slope. The proposed wedging-ratcheting mechanism is illustrated schematically 

in Figure 1.6. 
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Figure 1.6 - Illustration of the wedging-ratcheting mechanism 

An extensive research on the wedging-ratcheting mechanism was performed by Pasten & 

Santamarina (2013), who proposed a two-dimensional analytical solution to the problem, 

which is briefly reviewed here. 

 Assume the model presented in Figure 1.7. A sliding block of length 𝐿𝐵 is resting on an 

inclined slope at an angle of 𝜂, separated from the rock mass (the left side of the model) 

with a wedge of length 𝐿𝑤. 

 

Figure 1.7 -  Simplified block-wedge configuration (Pasten, 2013) 
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Under gravity only, the maximum force per unit width that the frictional strength of the 

sliding surface can sustain is: 

 𝐹𝑚𝑎𝑥 = 𝐻𝛾(𝐿𝐵 + 𝜃𝐿𝑊)(𝜇 cos 𝜂 − sin 𝜂) (1) 

Where: 

𝐻 = Block height [m]. 

𝛾 = Rock unit weight [N/m3]. 

𝜇 = Friction coefficient (= tan𝜙). 

𝜃 = A fraction of the wedge weight that is transferred to the sliding block (< 1). 

When the system is subjected to temperature change, the sliding block expands. The 

magnitude of this expansion depends on the heat propagation front in the rock: 

 𝑆𝑑 = {
√0.5 ∙ 𝐷𝑇 ∙ 𝑡𝑒𝑥𝑝 , 𝑡𝑒𝑥𝑝 < 0.5 ∙ 𝐿2/𝐷𝑇

𝐿/2, 𝑡𝑒𝑥𝑝 ≥ 0.5 ∙ 𝐿2/𝐷𝑇

 (2) 

Where: 

𝑆𝑑 = Thermal skin depth [m]. 

𝐷𝑇 = Thermal diffusivity, =
𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦

𝑑𝑒𝑛𝑠𝑖𝑡𝑦∙ℎ𝑒𝑎𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 [m2/s]. 

𝐿 = Block length [m]. 

𝑡𝑒𝑥𝑝 = Exposure time [s]. 

The displacement of the toe of the sliding block (𝛿𝑇 , 𝑚) depends on the thermal expansion 

of both the wedge and the sliding block itself: 

 𝛿𝑇 = {

𝛼Δ𝑇(4 ∙ 𝛽 ∙ 𝑆𝑑), 𝑡𝑒𝑥𝑝 < 0.5 ∙ 𝐿𝑊
2/𝐷𝑇 < 0.5 ∙ 𝐿𝐵

2/𝐷𝑇

αΔ𝑇(𝐿𝑊 + 2 ∙ 𝛽 ∙ 𝑆𝑑), 0.5 ∙ 𝐿𝑊
2/𝐷𝑇 < 𝑡𝑒𝑥𝑝 < 0.5 ∙ 𝐿𝐵

2/𝐷𝑇

αΔ𝑇(𝐿𝑊 + 𝜉 ∙ 𝐿𝐵 + 𝛽 ∙ 𝑆𝑑), 0.5 ∙ 𝐿𝑊
2/𝐷𝑇 < 0.5 ∙ 𝐿𝐵

2/𝐷𝑇 < 𝑡𝑒𝑥𝑝

 (3) 

Where 𝛼 is the thermal expansion coefficient (1/°𝐶) and Δ𝑇 is the temperature 

difference. 
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For short exposure time (𝑡𝑒𝑥𝑝 < 0.5 ∙ 𝐿2/𝐷𝑇), the temperature distribution within the skin 

depth 𝑆𝑑 is not uniform. The dimensionless coefficient 𝛽 ≤ 1 accounts for the non-

uniform diffusive temperature distribution within the sliding block. For long exposure 

time (0.5 ∙ 𝐿𝑊/𝐷𝑇 < 0.5 ∙ 𝐿𝐵/𝐷𝑇 < 𝑡𝑒𝑥𝑝) the temperature distribution within the blocks 

is uniform and the block expands to maximum. The dimensionless coefficient 𝜉 ≤ 1 

accounts for the thermal expansion of the right portion of the block that does not 

contribute to constraining the system thermal expansion (Pasten, 2013). 

As the block expands, thermal stress is accumulating on the interfaces between blocks. 

Thus, compressive stress is acting on the sliding block and it contracts elastically (𝛿𝜎, 𝑚) 

by the following equation: 

 𝛿𝜎 =
𝐹𝑚𝑎𝑥
𝐻𝐸

(𝐿𝑊 +
𝐿𝐵
2
) (4) 

 Where 𝐹𝑚𝑎𝑥  is described in eq. 1, and 𝐸 is the Young’s modulus of the rock (𝑃𝑎). 𝐿𝐵 is 

divided by 2 to account for the assumption that half of the sliding block towards the free 

surface is not contributing to the compressive stresses around the wedge. 

The joint elastic displacement (𝛿𝑗 , 𝑚) before any plastic displacement takes place is: 

 𝛿𝑗 =
1

𝑘𝑗
∙
𝐹𝑚𝑎𝑥
𝐿𝐵

 (5) 

Where 𝑘𝑗  [𝑃𝑎/𝑚] is the joint shear stiffness. 

If 𝛿𝑗 = 𝛿𝑇 − 𝛿𝜎 there will be no plastic displacement. Replacing in this equation the 

displacements described above (eqs. 3, 4, 5), the maximum temperature change required 

for imminent plastic displacement is: 

 Δ𝑇𝑚𝑎𝑥 =
𝐹𝑚𝑎𝑥

𝛼 ∙ 𝑑(𝑡𝑒𝑥𝑝) ∙ 𝐸
[
𝐸

𝑘𝑗 ∙ 𝐿𝐵
+
𝐿𝑊
𝐻
+
𝐿𝐵
2𝐻
] (6) 

Where 𝑑(𝑡𝑒𝑥𝑝) is the material length subjected to thermal expansion: 
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 𝑑(𝑡𝑒𝑥𝑝) = {

4 ∙ 𝛽 ∙ 𝑆𝑑, 𝑡𝑒𝑥𝑝 < 0.5 ∙ 𝐿𝑊/𝐷𝑇 < 0.5 ∙ 𝐿𝐵/𝐷𝑇
𝐿𝑊 + 2 ∙ 𝛽 ∙ 𝑆𝑑, 0.5 ∙ 𝐿𝑊/𝐷𝑇 < 𝑡𝑒𝑥𝑝 < 0.5 ∙ 𝐿𝐵/𝐷𝑇
𝐿𝑊 + 𝜉 ∙ 𝐿𝐵 + 𝛽 ∙ 𝑆𝑑, 0.5 ∙ 𝐿𝑊/𝐷𝑇 < 0.5 ∙ 𝐿𝐵/𝐷𝑇 < 𝑡𝑒𝑥𝑝

 (7) 

 

If the external temperature exceeds Δ𝑇𝑚𝑎𝑥, the sliding block will experience the following 

displacement: 

 𝛿𝑗
𝑝 = 𝛿𝑇 − 𝛿𝜎 − 𝛿𝑗 (8) 

Later, Pasten has further developed the research, and validated the proposed analytical 

expressions experimentally and numerically (Pasten et al., 2015a). He examined the 

expected displacement and the failure mode for a range of geometric configurations, such 

as the shape of the wedge and the inclination of the slope (Pasten et al., 2015b). Greif et 

al. (2014) measured the displacement response of small sandstone samples to thermal 

fluctuations, in order to validate Pasten’s equations for a range of block to wedge lengths 

ratios. The researchers also determined the threshold temperature change at which 

plastic deformation occurs, and their results are in agreement with the equations 

suggested by Pasten (2013). 

Taboada et al. (2017) also studied the wedging-ratcheting mechanism. They monitored 

the displacement of a massive dolostone rock column, underlaid by weak layers of marl, 

and the temperature in the Larzac Plateau, Southern France, for 30 months. They showed 

that intra-seasonal short-term thermal cycles (ranging between 2-15 days) can cause 

thermally induced displacement of the column. The mechanism is similar to the wedging-

ratcheting mechanism introduced by Bakun-Mazor et al. (2013), but Taboada et al. (2017) 

concluded that short-term temperature fluctuations are playing a more significant role 

than assumed previously. In Taboada’s work, the displacement vector in each short-term 

thermal cycle is decomposed into two components: a reversible thermal displacement, 

associated with thermal expansion or contraction; and a plastic deformation at constant 

temperature, referred to as “thermo-mechanical creep”. During autumn and winter 

seasons, short-term thermal cycles result in the most considerable plastic displacement 
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towards the free boundary. During spring, the plastic displacement is also towards the 

free boundary, but its magnitude is much smaller. During summer, the plastic 

deformation is negligible. The velocity of the rock, as obtained by Taboada et al. (2017) 

from field measurements, is ~1.2 mm per year. 

1.2. Scope of research and objectives 

In this study, the validity of the proposed wedging-ratcheting mechanism is examined 

using numerical simulations with the three-dimensional distinct element code 3DEC. The 

numerical results are compared with data obtained from lab experiments conducted by 

another member of BGU rock mechanics research group, of a physical model in a 

climatically controlled room. 

The sensitivity of the model to geological and environmental variables such as duration 

of heating and cooling cycle, surface temperature amplitude, frictional properties of 

sliding interface, and thermal and mechanical properties of the host rocks are studied. 

The final goal of this research is to create a theoretically based, numerically calibrated 

and experimentally validated quantitative model for thermally controlled block 

displacements. The predictive capabilities of the model are tested in the last part of the 

thesis using the rock slopes of Mt. Masada as a case study.  
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Chapter 2 - Research methods 

To study realistic and complex heat transfer problems that apply to field cases, the 

solution must be expanded to two and preferably three dimensions. This can only be 

achieved by means of numerical approaches. 

In this research, the proposed wedging-ratcheting mechanism is numerically simulated 

using the Distinct Element Method (DEM) code 3DEC (Itasca Consulting Group Inc., 2013a) 

developed by Cundall and colleagues (Cundall, 1988, Hart et al., 1988, Cundall and Hart, 

1992). The theoretical foundation of this method is the formulation and solution of 

equations of motion of deformable blocks using explicit (using Finite Difference Method) 

time marching scheme (Jing, 2003). The code simulates the response of discontinuous 

medium to static, dynamic or thermal loading. 

2.1. Mechanical implementations in 3DEC 

The distinct element method is a way to numerically simulate the mechanical behavior of 

a rock mass (Cundall, 1988). The method has many other applications in rock and soil 

mechanics, structural analysis etc. (Jing, 2003). In this method, unlike continuum-based 

methods, the contacts between neighboring blocks are continuously changing with the 

deformation process. 

2.1.1 Representation of blocks and contacts 

Blocks in 3DEC are represented as convex polyhedra. Different blocks are formed by 

intersection of joints (or joint sets). Deformable blocks are further divided into a finite 

number of constant strain tetrahedra, which means that there is no stress or temperature 

gradient within a single zone. The tetrahedra have three translational degrees of freedom 

at each vertex (Cundall, 1988), to form a mesh of finite volume zones.  

Contact detection is done using the principle of common plane (Cundall, 1988). The 

common plane bisects the space between two blocks (Figure 2.1). The code tests each 

block separately for contact with the common plane. There are six types of block contacts 

in 3DEC, contrived by the combination of vertex, edge and face. Using the principle of 
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common plane, a single vertex-to-plane test is adequate, provided the blocks are convex. 

Face and edge contacts are recognized by counting the number of vertex-to-plane 

contacts. The algorithm for locating and moving the common plane is based on geometry 

alone and is applied at every time step. 

 

Figure 2.1 - Visualization for positioning of common plane in response to block geometry (Cundall, 1988) 

Contacts between two neighboring blocks are characterized by normal and shear stiffness 

constants, represented by springs applied at the contacts in the normal and tangential 

directions, and by friction angle, represented by a spring-slip surface series (Figure 2.2). 

 

Figure 2.2 - Representation of contacts (Jing, 2003) 
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2.1.2 Equilibrium equations  

Contact force update 

As the deformation progresses, the contacts (or sub-contacts) must translate or rotate 

continuously. Therefore, the relative velocity across a sub-contact is calculated by the 

velocities of two opposing faces 𝑉 and 𝐹 (𝑉𝑖 = 𝑉𝑖
𝑉 − 𝑉𝑖

𝐹). The velocity of tetrahedral 

vertex located on the face is calculated in eq. 16 (see below). 

For deformable blocks, the velocities 𝑉𝑖
𝑉 , 𝑉𝑖

𝐹 are calculated by linear interpolation of the 

velocities of the vertices of the face: 

 𝑉𝑖
𝐹 = 𝑊𝑎𝑉𝑖

𝑎 +𝑊𝑏𝑉𝑖
𝑏 +𝑊𝑐𝑉𝑖

𝑐 (9) 

Where 𝑊𝑎,𝑏,𝑐 are weighting factors, which can be determined by transforming the 

coordinates of the three vertices of the face to a local coordinate system, which is co-

planar to the face (e.g., the new coordinates of vertex 𝑎 are 𝑋𝑎, 𝑌𝑎): 

 𝑊𝑎 =
𝑌𝑐𝑋𝑏 − 𝑌𝑏𝑋𝑐

(𝑥𝑎 − 𝑋𝑐)(𝑌𝑏 − 𝑌𝑐) − (𝑌𝑎 − 𝑌𝑐)(𝑋𝑏 − 𝑋𝑐)
 (10) 

The other weighting factors (𝑊𝑏 ,𝑊𝑐) can be calculated by circular permutation of the 

superscripts. 

The increment displacement across a sub-contact with unit normal 𝑛𝑖  is: 

 Δ𝑈𝑖 = 𝑉𝑖Δ𝑡 (11) 

The displacement can be further resolved to normal and shear components along the 

common plane (Figure 2.1): 

 
Δ𝑈𝑛 = Δ𝑈𝑖𝑛𝑖 

Δ𝑈𝑖
𝑠 = Δ𝑈𝑖 − Δ𝑈𝑗𝑛𝑖𝑛𝑗 

(12) 

Using the incremental sub-contacts displacement, the force increment can be calculated 

(taking compressive force as positive): 

 
Δ𝐹𝑛 = −𝐾𝑛Δ𝑈

𝑛𝐴𝑐 

Δ𝐹𝑖
𝑠 = −𝐾𝑠Δ𝑈𝑖

𝑠𝐴𝑐 
(13) 



Chapter 2 - Research methods 

Numerical simulations of block displacement due to temperature fluctuations  
M.Sc. thesis, Yuval Keissar  13 
 

Where 𝐾𝑛 and 𝐾𝑠 are the normal and shear stiffness of the joint, respectively and 𝐴𝑐 is 

the sub-contact area. 

The total normal and shear forces are updated for the contact: 

 
𝐹𝑛 = 𝐹𝑛 + Δ𝐹𝑛 

𝐹𝑖
𝑠 = 𝐹𝑖

𝑠 + Δ𝐹𝑖
𝑠 

(14) 

 

Deformable block motion 

If blocks cannot be assumed rigid (as for the case of thermal expansion studied here), fully 

deformable blocks permit internal deformation. During deformation process, the 

acceleration of each vertex in the tetrahedral zone (often referred to as grid point) is: 

 �̈�𝑖 =
∫ 𝜎𝑖𝑗𝑛𝑗𝑑𝑠𝑠

+ 𝐹𝑖

𝑚
+ 𝑔𝑖  

(15) 

The acceleration is an integral around the surface 𝑠, which encloses the mass 𝑚 around 

the grid point. 𝜎𝑖𝑗 is the stress tensor and 𝑔𝑖 is the gravitational acceleration. 𝐹𝑖  is the 

resultant of all external forces applied on the grid point, and is a sum of three 

components: (1) 𝐹𝑖
𝑙  are the external applied loads. (2) 𝐹𝑖

𝑐 are the forces applied from sub-

contacts (only applies for grid points along block boundary). (3) 𝐹𝑖
𝑧 is the contribution of 

the internal stress of the zone next to the grid point. 

Velocity is calculated by central difference for each vertex, at each explicit time step, by: 

 �̇�𝑖
(𝑡+Δ𝑡/2) = �̇�𝑖

(𝑡−Δ𝑡/2) +∑𝐹𝑖
(𝑡) Δ𝑡

𝑚
 (16) 

Where the superscripts denote the time at which the corresponding variable is evaluated 

and: 

𝐹𝑖
(𝑡) = Grid point force (out-of-balance force), zero at equilibrium [N] 

Δ𝑡 = Time step [sec] 

𝑚 = Element mass [kg] 
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Strain (𝜖̇) and rotation (�̇�) related to the grid point displacement during each time step 

are calculated by the Green-Lagrange small strain tensor: 

 𝜖�̇�𝑗 =
1

2
(�̇�𝑖,𝑗 + �̇�𝑗,𝑖) (17) 

  

 �̇�𝑖𝑗 =
1

2
(�̇�𝑖,𝑗 − �̇�𝑗,𝑖) (18) 

Using the appropriate constitutive relations, we can obtain the stress increments (see 

2.1.3 for more information about constitutive models). The stress-strain relation is given 

by: 

 Δ𝜎𝑖𝑗
𝑒 = 𝜆Δ𝜖𝑣𝛿𝑖𝑗 + 2𝜇Δ𝜖𝑖𝑗 (19) 

Where: 

𝜆, 𝜇 = Lame constants [Pa]. 

Δ𝜎𝑖𝑗
𝑒 = Elastic increments of the stress tensor [Pa]. 

Δ𝜖𝑣  = Increment of volumetric strain. 

Δ𝜖𝑖𝑗 = Incremental strains. 

𝛿𝑖𝑗 = Kronecker delta function. 

Mechanical damping 

Adaptive global damping is applied to deformable blocks to absorb kinetic energy. This 

numerical “servo-mechanism” adjusts the damping automatically, using viscous damping 

forces that are continuously adjusted, so that the energy absorbed by damping is a 

constant proportion of the rate of change of kinetic energy. 

2.1.3 Constitutive model 

Rock mass response to internal and external loads primarily depends on the constitutive 

models of both the intact rock and the joints intersecting the medium. This section will 
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briefly introduce the basic concepts of the constitutive models that have been used in this 

research. 

Intact block constitutive model 

The intact material in this research is assumed elastic isotropic, i.e. stress-strain laws are 

linear and path-independent. This model was preferred to Mohr-Coulomb plasticity 

model because it is the simplest form of material behavior and, in this research, failure 

occurs exclusively on joints while intact rock deforms elastically under the applied thermal 

stresses but never reaches material failure. Another reason for choosing the elastic 

isotropic model is that it only requires three material properties instead of six parameters 

required for the Mohr-Coulomb plasticity model. 

In this model, stress increments depend on strain increments according to the linear and 

reversible Hooke’s law shown in eq. 19 (ITASCA Consulting Group Inc., 2013c). 

Joint constitutive model 

The model chosen to represent the material behavior of discontinuities in this research is 

the Coulomb-Slip joint model (ITASCA Consulting Group Inc., 2013c). This model 

represents a linear joint stiffness and joint shear strength (yield limit, Figure 2.3), based 

on the joint normal and shear stiffness (𝐾𝑛, 𝐾𝑠) and friction angle (𝜙). This model also 

allows consideration of interface cohesion, tensile strength and dilation angle, which in 

this research are all assumed zero. The interfaces modeled here are preexisting with no 

connecting forces between them, hence the zero cohesion and tensile strength; the 

discontinuities are perfectly smooth and hence the zero dilation angle. In addition, no 

surface degradation is assumed after the onset of plastic sliding across the interfaces. 

According to Coulomb friction law, the maximum shear force allowed before plastic 

deformation is: 

 𝐹𝑚𝑎𝑥
𝑠 = 𝐹𝑛 tan𝜙 (20) 
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Where 𝐹𝑛 is the normal force applied on the joint. When the shear force (𝐹𝑠) applied to 

the joint exceeds the force limit (𝐹𝑚𝑎𝑥
𝑠 ), shear failure will occur, and the shear force (𝐹𝑖

𝑠, 

eq. 14) will update again as follows: 

 𝐹𝑖
𝑠 = 𝐹𝑖

𝑠 𝐹𝑚𝑎𝑥
𝑠

𝐹𝑠
 (21) 

Since dilation is not allowed, no update in the normal force is needed. 

 

Figure 2.3 - Coulomb slip-joint model (ITASCA Consulting Group Inc., 2013c) 

 

2.1.4 Verification problem – sliding under gravity loading 

A 3DEC verification using a simple problem of block sliding on an inclined plane is 

presented below for a frictional interface subjected to gravitational loading only. The 

model is presented in Figure 2.4. The inclination angle of the sliding plane is 𝛼 = 25°, and 

the friction angle of the interface is 𝜙 = [5°, 10°, 15°, 20°]. The displacement of the block 

down the sliding surface, for 𝑡 = 1 𝑠𝑒𝑐𝑜𝑛𝑑, is given by: 

 𝑑(𝑡) =
1

2
𝑔(sin 𝛼 − cos 𝛼 tan𝜙)𝑡2 (22) 

Where 𝑔 is the acceleration of gravity. 



Chapter 2 - Research methods 

Numerical simulations of block displacement due to temperature fluctuations  
M.Sc. thesis, Yuval Keissar  17 
 

 

Figure 2.4 - Model configuration for sliding on an inclined slope verification 

3DEC simulations (Appendix A) of the problem were performed on the model presented 

in Figure 2.4, after initial equilibrium has been achieved (the sliding block starts at rest). 

The numerical input parameters are summarized in Table 1. To prevent internal 

deformation of the blocks during sliding, both blocks are assumed rigid in this verification. 

Table 1 - 3DEC model numerical data, sliding on an inclined slope 

Parameter Symbol Units value 

Shear stiffness 𝐾𝑠 GPa/m 0.5 

Normal stiffness 𝐾𝑛 GPa/m 5 

Damping factor 𝛽 - 0 

Time step Δ𝑡 Seconds 1.4752E-4 

 

A good agreement between the numerical (3DEC) and the analytical solution has been 

obtained (Figure 2.5). The numerical error (𝑒𝑁, defined in eq. 23) at the end of the sliding 

(𝑡 = 1𝑠𝑒𝑐) is 0.1% to 0.2%. 
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 𝑒𝑁 = |
𝑑𝐴 − 𝑑𝑁
𝑑𝐴

| ∙ 100% (23) 

Where 𝑑𝐴 and 𝑑𝑁 is the analytical and numerical solutions, respectively. 

 

Figure 2.5 - Sliding block displacement vs time for friction angles ranging between 5°-20°. 

2.2. Heat conduction in 3DEC 

3DEC allows simulation of transient heat conduction and, consequently, the thermally 

induced displacements and stresses. Thermal volumetric strains are associated with 

incremental mechanical constitutive laws (eq. 19) to account for thermomechanical 

coupling (ITASCA Consulting Group Inc., 2013d).  

2.2.1 3DEC thermal formulation 

Fourier’s law of heat conduction is solved in 3DEC using an explicit finite difference 

method based on medium discretization to tetrahedral zones (2.1.1). A linear 

temperature gradient is assumed within each tetrahedron (ITASCA Consulting Group Inc., 

2013d), as follows: 
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 𝑇,𝑗 = −
1

3𝑉
∑𝑇𝑙𝑛𝑗

(𝑙)
𝑆(𝑙)

4

𝑙=1

 (24) 

Where 𝑛𝑗
(𝑙)

 is the unit vector normal to face 𝑙, 𝑆 is the face surface area and 𝑉 is the 

tetrahedron volume. 

The temperature difference of node 𝑛 in time 𝑡 is: 

 
𝑑𝑇𝑛

𝑑𝑡
=  −

1

∑[𝑚𝐶𝑝]
𝑛 [𝑄𝑇

𝑛 +∑𝑄𝑎𝑝𝑝
𝑛 ] (25) 

where 𝑚 is the mass, 𝐶𝑝 the specific heat, and 𝑄𝑇
𝑛 are the global nodal values of heat (out-

of-balance heat): 

 𝑄𝑇
𝑛 = 𝐶𝑛𝑗𝑇

𝑗  (26) 

where 𝐶𝑛𝑗 is the global matrix and 𝑇 is the global vector of nodal temperatures. 

∑𝑄𝑎𝑝𝑝
𝑛  is the known contribution of applied heat sources, and is irrelevant for this 

research (no heat sources in the host rock are assumed). 

Eq. 25 for all nodes forms a system of ordinary differential equations, solved in 3DEC using 

an explicit finite difference scheme. The temperature at a node is assumed to vary linearly 

over a time step Δ𝑡: 

 𝑇<𝑡+Δ𝑡>
𝑛 = 𝑇<𝑡>

𝑛 + Δ𝑇<𝑡>
𝑛  (27) 

where: 

 𝛥𝑇<𝑡>
𝑛 = 𝜒𝑛[𝑄𝑇

𝑛
<𝑡>

] (28) 

 

 𝜒𝑛 = −
Δ𝑡

∑[𝑚𝐶𝑝]
𝑛 (29) 

When using the explicit scheme, to ensure convergence, the time step Δ𝑡 must be 

sufficiently small and, based on empirical results, should be constrained by the following 

expression: 
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 Δ𝑡 ≤
1

𝑚

𝐿𝑐
2

𝐷𝑇
 (30) 

where 𝐷𝑇  is the thermal diffusivity, 𝑚 is a constant that depends on discretization, and 

𝐿𝑐 is the smallest tetrahedron characteristic length, defined as: 

𝑣𝑜𝑙𝑢𝑚𝑒

𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑖𝑛𝑔 ℎ𝑒𝑎𝑡
. The thermal strain increment due to thermal expansion is 

given by: 

 Δ𝜖𝑖𝑗 = 𝛼Δ𝑇𝛿𝑖𝑗  (31) 

Heat transfer is coupled to thermal stress by: 

 Δ𝜎𝑖𝑗 = −3𝐾𝛼Δ𝑇𝛿𝑖𝑗 (32) 

where: 

𝐾 = Bulk modulus [GPa] 

𝛿𝑖𝑗 = Kronecker delta. 

𝛼 = Thermal expansion coefficient [1/°C] 

Δ𝑇 = Temperature difference [°C] 

2.2.2 Verification problem – conduction in a plane sheet 

In this section a verification of 3DEC using a problem of heat conduction in a finite slab 

(modified after ITASCA Consulting Group Inc. (2013d)) is presented. A three-dimensional 

block of thickness 𝐿 = 0.8𝑚 is heated on the plane 𝑥 = 0 with a prescribed temperature 

𝑇 = 30°𝐶 for three different exposure times. The plane 𝑥 = 0.8𝑚 is kept at temperature 

of zero (see Figure 2.6). The initial temperature of the block is 0. The mathematical 

expression of the problem is: 

 

{
 
 

 
 
𝜕𝑇

𝜕𝑡
= 𝐷𝑇

𝜕2𝑇

𝜕𝑥2
, 0 ≤ 𝑥 ≤ 0.8, 𝑡 ≥ 0

𝑇(𝑥, 0) = 0
𝑇(0, 𝑡) = 30 = 𝑇0
𝑇(0.8, 𝑡) = 0

 (33) 

The analytical solution of this problem is given by Carslaw and Jaeger (1959): 
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𝑇(𝑥, 𝑡)

𝑇0
= 1 −

𝑥

𝐿
+
2

𝜋
∑

1

𝑛
𝑒−(

𝑛𝜋
𝐿
)
2
𝐷𝑇𝑡 sin

𝑛𝜋𝑥

𝐿

∞

𝑛=1

 (34) 

where 𝐷𝑇  is the thermal diffusivity of the block. 

 

Figure 2.6 - Temperature gradient in a block 

Temperature distribution profiles in the block are presented in Figure 2.7 for three 

different exposure times. The numerical solutions closely match the analytical solution. 

We find that the numerical solution is independent of tetrahedron size or thermal time 

step (Appendix B). 
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Figure 2.7 - Comparison between analytical (lines) and numerical (crosses) solutions for heat conduction in 
a plane sheet. Three different exposure times of the block to a constant temperature at x/L=0. The other 
end (x/L=1) is kept at zero temperature. 
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Chapter 3 - Validation of the wedging-ratcheting mechanism with 

3DEC using physical test results 

The research presented in this thesis is divided into two parts: (1) numerical calibration 

using laboratory experiments, and (2) examination of a case study from Mount Masada, 

Israel. As the main tool of examination in this study is numerical, we must verify our 

results with known solutions. Part of this process has been described earlier, in the 

mechanical (section 2.1.4) and thermal (section 2.2.2) verifications. However, an 

examination of a real case study requires a coupled thermo-mechanical approach, which 

was not compared with an analytical solution in the previous chapter, as there is no such 

solution available. Instead, we compare the numerical results with experimental results 

obtained from a physical model in a climatically controlled room. We then use the same 

numerical control parameters as calibrated in the validation study, in the analysis of the 

case study. A flowchart summarizing the working procedure is presented in Figure 3.1. 

 

Figure 3.1 - The working procedure of this research 

In his work, Feldheim (2017) – an M.Sc. student of the rock mechanics research group at 

BGU – modeled the proposed wedging-ratcheting mechanism experimentally using a 

Verification of 3DEC

using analytical solutions, mechanical and thermal

Validation of the numerical model and calibration of numerical control parameters

using a physical model in a climatically controlled room

Numerical simulation

A case study from Masada, Israel



Chapter 3 - Validation of the wedging-ratcheting mechanism with 3DEC using physical test results 

Numerical simulations of block displacement due to temperature fluctuations  
M.Sc. thesis, Yuval Keissar  24 
 

physical model. He built a large-scale concrete model (Figure 3.2) and conducted 

experiments in a climatically controlled room, to check the validity of the mechanism and 

the analytical solution suggested by Pasten (2013). 

 

Figure 3.2 - Concrete physical model (Feldheim, 2017). A sketch denoting the locations of the thermocouples 
and the joint meters is presented in the lower left corner (length in meters). 

3.1. Thermomechanical properties of the concrete 

Prior to the experiments in the climatically controlled room, a few tests were designed to 

find the thermal properties of the concrete. In addition, triaxial and direct shear tests 

were performed to determine the mechanical properties of the concrete material. 

3.1.1 Thermal diffusivity  

A block of concrete of length of 28 cm was subjected to a constant temperature of 50 °𝐶 

on its opposing faces. Seven thermocouples were installed in the concrete during its 



Chapter 3 - Validation of the wedging-ratcheting mechanism with 3DEC using physical test results 

Numerical simulations of block displacement due to temperature fluctuations  
M.Sc. thesis, Yuval Keissar  25 
 

solidification (Figure 3.3). To minimize heat flow through the side of the block, the block 

was covered with an isolation foam. 

 

Figure 3.3 - Model sketch for experimental determination of thermal diffusivity. 

During the experiment, a data logger records the temperature of all thermocouples with 

a time interval of one minute. Average values of two opposing thermocouples at the same 

location relative to the center (e.g. 1 and 7, 2 and 6, etc.) were calculated. The concrete 

temperature relative to the boundary temperature was plotted as a function of the 

relative location (dimensionless plot), for every hour. These curves were compared to 

time factor (𝑇) curves plotted using the following equation (Carslaw and Jaeger, 1959): 

 
𝑣

𝑉
= 1 −

4

𝜋
∑

(−1)𝑛

2𝑛 + 1
𝑒−

(2𝑛+1)2𝜋2𝑇
4 cos

(2𝑛 + 1)𝜋𝑥

2𝑙

∞

𝑛=1

 (35) 

where: 

𝑣 = Thermocouple temperature, °𝐶 

𝑉 = Boundary temperature, °𝐶 

𝑥 = Thermocouple location, 𝑚 

𝑙 = Block half-length, 𝑚 
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𝑇 = Time factor, dimensionless, depends on thermal diffusivity (𝜅,
𝑚2

𝑠𝑒𝑐
), time ( 𝑡, 𝑠𝑒𝑐), and 

block length (𝑙, 𝑚): 

 𝑇 =
𝜅𝑡

𝑙2
 (36) 

Correspondence curves for several values of time factor (𝑇) were matched to the 

temperature profiles in the block that were recorded during the test (Figure 3.4). Thermal 

diffusivity was then calculated using the time elapsed and the corresponding time factor 

(Table 2). 

 

Figure 3.4 – Temperature profiles in the block after several periods of heating (colors) and time factor curves 
plotted using eq. 35. 

Table 2 - Thermal diffusivity calculation. 

T t (seconds) 𝜿 (𝟏𝟎−𝟕𝒎𝟐/𝒔𝒆𝒄)  

0.3 3*60*60 5.444 

0.5 5*60*60 5.444 

0.6 6*60*60 5.444 
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This experiment suffers from some inaccuracies. Even though the concrete beam was 

covered with the insolation foam, heat could still flow through the block boundaries. The 

actual thermal diffusivity, therefore, can be expected to be greater than the diffusivity 

obtained in the laboratory experiment. 

3.1.2 Thermal expansion coefficient 

The same block, a diagram of which is presented in Figure 3.3, was heated in an oven to 

reach a uniform temperature of 50°𝐶. Then, it was put in a room under ambient 

temperature of approximately 20oC. Potentiometer displacement transducer recorded 

the block contraction as it cooled under ambient temperature. The block cooled relatively 

uniformly, and an average of all seven thermocouples was calculated. An average of 10 

temperature measurements at roughly one-hour intervals is used to plot Figure 3.5. 

 

Figure 3.5 - Axial strain vs. average temperature in cooled block. The thermal expansion coefficient is the 
slope of the linear trend line. 

The linear thermal expansion coefficient (𝛼𝐿) was calculated using the following equation 

(the slope of the trend line): 

 𝛼𝐿 =
𝑑𝐿

𝐿

1

𝑑𝑇
= 3.16 ∙ 10−6  (37) 
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where: 

𝑑𝐿

𝐿
= Axial strain 

𝑑𝑇 = Temperature change, °𝐶 

3.1.3 Uniaxial compression test 

A uniaxial compression test was performed using a TerraTek triaxial testing system, model 

FX-S-33090. The stiff load frame operates using a closed-loop, servo-controlled hydraulic 

piston of maximum axial force of 1.4 MN and stiffness of 5x109 N/m. The results of this 

test are presented in Figure 3.6. 

 

Figure 3.6 - Uniaxial compression test results of the concrete used in the physical model. A red line marks 
the elastic region from which the Young’s Modulus was determined. 

Young’s Modulus (𝐸) is defined as the ratio between the axial stress and the axial strain 

in the elastic region, and is calculated by the slope of the linear fit of the stress-strain 

curve, so that 𝐸 =
𝜎𝑎𝑥𝑖𝑎𝑙

𝜖𝑎𝑥𝑖𝑎𝑙
= 24.486 𝐺𝑃𝑎. 

Poisson’s ratio (𝜈) is calculated by the slope of the linear fit of the mean radial strain vs. 

axial strain curve in the elastic region, so that 𝜈 =
𝜖𝑟𝑎𝑑𝑖𝑎𝑙

𝜖𝑎𝑥𝑖𝑎𝑙
= 0.2513 (Figure 3.7). 



Chapter 3 - Validation of the wedging-ratcheting mechanism with 3DEC using physical test results 

Numerical simulations of block displacement due to temperature fluctuations  
M.Sc. thesis, Yuval Keissar  29 
 

 

Figure 3.7 – Mean radial strain vs. axial strain in the uniaxial compression test. Poisson’s ration is defined as 
the slope of the linear fit of the curve in the elastic region. 

3.1.4 Direct shear 

Joint parameters of the concrete-concrete interface were determined using two different 

direct shear apparatus: 

(1) A hydraulic, closed-loop, servo-controlled, direct shear system manufactured by 

TerraTek Systems, consisting of two servo-controlled pistons with normal and shear load 

capacities of 1000 kN and 300 kN, respectively. Vertical and horizontal displacements are 

monitored by four and two LVDT transducers, respectively, each of 50 mm range and 0.1% 

linearity full scale. Direct shear tests were performed under an imposed constant normal 

stress condition and once the normal load target was reached the interfaces were sheared 

under a controlled displacement rate to a target distance of 2 mm. Once the target 

displacement was reached the normal stress was elevated to a new target and shear 

resumed. These normal and direct shear test segments were repeated several times. A 

plot of the normal segments is shown in Figure 3.8. The normal stiffness (𝐾𝑛) is calculated 

in Figure 3.8 by the slope of the elastic region of the normal stress (𝜎𝑛) - vertical 

displacement (𝑢𝑣) curve, so that 𝐾𝑛 =
𝜎𝑛

𝑣
= 5𝑀𝑃𝑎/𝑚𝑚. 
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(2) Low load Digital Shear Machine, manufactured by ELE International, used to resolve 

as accurately as possible the shear stiffness for the tested concrete interfaces. Normal 

stress is applied in this test manually, by adding weights. After the normal stress is 

applied, shear force is applied to the shear box. Vertical and horizontal displacements are 

monitored by two LVDT’s. Shear stiffness (𝐾𝑠) is extracted from the slope of the shear 

stress (𝜏) - horizontal displacement (𝑢) curve for each normal stress segment in both 

experimental settings.  

Direct shear tests using both apparatuses allow us to determine joint parameters over a 

wide range of normal stresses. Since shear stiffness is dependent on the applied normal 

stress, a linear regression is used in Figure 3.11 to determine this parameter for the case 

of the physical model, where the normal stress between the sliding block and the sliding 

surface is 0.013 MPa, so that 𝐾𝑠 =
𝜏

𝑢
= 0.5 𝑀𝑃𝑎/𝑚𝑚. 

 

Figure 3.8 - Normal stress vs. vertical displacement. The Normal stiffness is defined as the slope of this curve 
in the elastic region (red line). 
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Figure 3.9 – Direct shear tests with the low force ELE system 

 

Figure 3.10 – Direct shear tests with the high force TerraTek system. 
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Figure 3.11 - Shear stiffness vs. normal stress. 

The friction angle for the tested concrete interfaces was determined from the results of 

the servo-controlled tests using linear regression and assuming Coulomb friction. The 

representative friction coefficient is thus the slope of the linear regression curve in Figure 

3.12. 

 

Figure 3.12 – Results of segment direct shear tests performed on the concrete interface in peak shear stress 
– normal stress space 
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3.2. Experimental settings in the climatically controlled room 

The physical model shown in Figure 3.2 was transferred to a climatically controlled room, 

where the experiments were carried out. The sliding surface was connected to a table 

inclined 15° with respect to the horizontal. The rock mass and the sliding surface were 

fixed during the experiment, and the wedge and the sliding block were free to move. 

During concrete preparation and solidification, thermocouples were installed inside the 

sliding block and the wedge block to monitor temperature propagation during the 

experiments. Two types of displacement monitoring devices were used to track sliding 

block and wedge displacement: (1) Vibrating Wire crack meter (VW) with a range of 15 

millimeters and non-linearity of 0.09% full scale, and (2) potentiometer with a range of 

10 millimeters and non-linearity of 0.1% full scale. 

Since displacement meters may be sensitive to temperature changes, at each location 

both types of displacement meters were installed (see Figure 3.2 for thermocouples and 

displacement meters configuration). The displacement meters measuring the wedge 

displacement were positioned on opposing sides of the model. In addition, a high-

resolution camera tracked the displacement across the joint that separates the sliding 

block and rock mass. A data logger (CR 1000) recorded all data and stored it in a computer. 

The course of the experiment was as follows: 

1. Room temperature increased to 35°C. 

2. Block temperature equilibrates with room temperature (uniform temperature 

distribution). 

3. Room temperature decreased to 5°C. 

4. Block temperature equilibrates with the new room temperature (uniform 

temperature distribution). 

5. Data logger records displacement and room temperature every three minutes. 

6. Next cycle of heating and cooling is initiated, etc. 

Thermo-mechanical properties of both intact concrete and concrete-concrete interface 

were determined experimentally and the results are summarized in Table 3 below.  
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Table 3 - Thermo-mechanical properties of the concrete used for experiments 

 Parameter Symbol Units Value 

Material 
properties 

Elastic modulus 𝐸 GPa 24.486 

Poisson’s ratio 𝜈 - 0.2513 

Bulk density 𝜌 Kg/m3 2140 

Joint 
properties 

Friction angle 𝜙 ° 21.28 

Normal stiffness 𝐾𝑛 GPa/m 5 

Shear stiffness 𝐾𝑠 GPa/m 0.5 

Thermal 
properties 

Thermal expansion 
coefficient 

𝛼 10-6/°C 3.16 

Thermal diffusivity 𝐷𝑇  10-7m2/sec 7.82 

Specific heat 
capacity (assumed) 

𝐶𝑝 J/kg/K 850 

 

3.3. 3DEC validation  

Mechanical and thermal verifications for 3DEC using analytical solutions were presented 

and discussed in sections 2.1.4 and 2.2.2. The physical model is used to calibrate and 

validate thermo-mechanical computations with 3DEC. 

The physical model geometry was reproduced in 3DEC as shown in Figure 3.13; the 

simulation code is provided in Appendix D. Blocks were discretized using a uniform mesh 

with an average edge length of 4 cm; for discussion of the sensitivity of the code to mesh 

and element size see section 3.4. Thermo-mechanical properties were assigned to the 

concrete and the interfaces as listed in Table 3, and boundary conditions, in particular the 

temperature time-histories, were applied on all exposed faces of the three-dimensional 

model. The model is fixed in the normal direction behind the rock mass, and in all 

directions at the bottom of the sliding surface. 3DEC simulations (see 3DEC code in 

Appendix C) began after initial equilibrium was obtained. Before any thermal loading, and 

under gravity only, the model was adjusted to block cutting, mesh generation, and to the 

applied boundary conditions. An elastic stress field was applied by running the model until 

force equilibrium was reached (Figure 3.14). During that process, blocks were settled, and 
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displacement took place across the joints. The unbalanced force (eq. 16) and the 

settlement of the sliding block as obtained for the vertex shown by red point in Figure 

3.13, were used to monitor the “stepping to initial equilibrium” phase. 

 

Figure 3.13 – Wedging-ratcheting 3DEC model. Location of sliding block settlement marked with a red 
sphere. 

 

Figure 3.14 - Model stepping to equilibrium. The left vertical axis (blue) is the maximum unbalanced force in 
the system (=zero when equilibrium obtained) and the right vertical axis (red) is the vertical displacement of 
the red sphere in Figure 3.13. 
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Displacement histories of the sliding block and the wedge were recorded for grid points 

or sub-contacts at the exact same locations as the displacement meters in the physical 

model (Figure 3.2). 

Displacements of the sliding block and the wedge (displacement meters 1 and 2 in Figure 

3.2, respectively) as obtained with 3DEC and in the lab, are plotted in Figure 3.15. 

 

Figure 3.15 - Comparison between lab and numerical results for sliding block (b) and wedge (c) 
displacements, due to temperature oscillations (a). Output from both types of joint meters and the camera 
are presented. In figure (b), displacement down the slope is defined as positive. In figure (c), wedge 
displacement down the opening crack is defined as negative. 

The temperature profile of the experiment as shown in Figure 3.15 (a) represents three 

cycles of heating and cooling, or three whole years (three cycles of summer and winter). 

The sliding block and the wedge block displacements computed by 3DEC are in 

accordance with the physical model displacements as obtained with the potentiometer 

and the VW transducers. When temperature is increased, the sliding block slides down 

along the sliding surface (Figure 3.15 (b)). As a result, the wedge slides down the opening 

joint (Figure 3.15 (c)). When temperature drops, the sliding block contracts a bit, allowing 

the wedge to slide further in the opening aperture. The wedge is not sliding up the joint 

and the failure continues in the same direction for the consequent cycles. Note that the 

wedge is sliding down in both heating and cooling phases. 
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It seems that the Vibrating Wire transducer is more sensitive to temperature changes. 

When temperature drops, the measurement shows that the sliding block contracts 

considerably so that the block toe, where VW 1 is located, slides up the surface a 

significant distance of ~ 0.6 mm. Still, a cumulative displacement down the sliding surface 

through the thermal cycles is clearly observed, and is equal to both displacement meters 

output, as well as the camera measurements (Feldheim, 2017).  

3.4. 3DEC sensitivity analysis to numerical control parameters 

The choice of the numerical control parameters used to validate 3DEC simulations against 

the laboratory experiment proved not a simple task. We found that the numerical results 

for different mesh sizes, time steps, and damping factors, could change significantly. 

In this section, we study the effect of the numerical control parameters on the cumulative 

displacement of the sliding block (Figure 3.15 (b)). This displacement was chosen for the 

sensitivity study because this is the critical displacement that causes slope failure, and 

because the two displacement meters (VW and potentiometer) are showing the same 

cumulative displacement (at the end of the experiment and at the end of each cycle). 

For all simulations, thermal and mechanical properties of the concrete and the interfaces 

remain constant. A range of mesh sizes, defined by the average edge length of the 

tetrahedral zones, was assigned to the model. For shorter edge length, the mesh is finer, 

and the model contains more zones. The zones in 3DEC are constant strain zones, which 

means that there is no stress gradient within a single zone. Sufficient discretization needs 

to be defined in order to represent the expected stress gradient with an adequate 

accuracy. Thus, a finer mesh should yield a more accurate result. 

Twelve mesh sizes were simulated, each with six different time intervals. The mesh size 

was scaled by the ratio between the tetrahedron length  and the length of the sliding 

block LB with ratios LB varying between 2% and 16%. The thermal time step interval was 

varied between 5 s to 30 s.  Clearly, with decreasing element size the numerical solution 

accuracy is expected to increase, however the CPU time also increases very significantly 
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with mesh refinement; therefore, a satisfactory balance must be sought. With the aid of 

the physical model results, the most representative solution can be found.  

The results of the sensitivity analysis to element and time step size are presented in Figure 

3.16. 

 

Figure 3.16 – 3DEC simulation sensitivity to numerical control parameters. Different edge lengths (upper 
horizontal axis) tested for different thermal time steps (colors). The lower horizontal axis expresses the size 
of edge length relative to sliding block length, in percent. The dashed line is the cumulative sliding block 
displacement obtained in the laboratory experiment by potentiometer #1. 

Inspection of the results displayed in Figure 3.16 reveals that the 3DEC solution is very 

sensitive to the thermal time step size and less sensitive to the element size. The 

cumulative displacement is much greater for smaller time steps. Moreover, the 

discrepancy in displacement between numerical and physical model results increases 

with decreasing thermal time step. For a constant thermal time step, especially smaller 

steps, the solution remains almost constant for different mesh sizes. For thermal time 

steps greater than five seconds, it seems that the solutions converge towards the physical 

test result with increasing discretization.  
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There are few possible explanations for the influence of thermal time step and mesh size 

on the numerical solution: 

1. Temperature changes are too rapid for the model to remain in mechanical 

equilibrium. 3DEC default is to execute one mechanical time step for every 

thermal time step. When multiple mechanical steps are executed between each 

thermal cycle, however, the results remain the same. 

2. Generation of more zones results in more sub-contacts between elements. Sub-

contacts in 3DEC are represented by springs (section 2.1.1). Excess number of 

springs may generate excess elastic energy as the block slides, adding to the 

system real energy, resulting in an artificial stresses and displacements, in our 

case, when the ration is smaller than 5%. 

3. For large number of zones, 3DEC solution requires more cycles. Rounding error 

may become considerable in problems that run for a large number of cycles with 

a low applied velocity (ITASCA Consulting Group Inc., 2013b). 

Considering the results of the sensitivity analyses, we find that a mesh discretized with 

tetrahedron length of about 5% of the sliding block length in the direction of sliding, 

namely an edge length of 4 cm, is sufficiently accurate; this mesh can produce valid results 

based on laboratory experiments. The explicit thermal time step is calculated by eq. 30 

and equals to 30 seconds. 

3.5. 3DEC sensitivity analysis to thermal and mechanical input parameters  

Once an appropriate mesh size and thermal time step were set for this model, and results 

were validated using laboratory experiments, we can explore the influence of rock 

thermal and mechanical parameters on the magnitude of displacement and how 

significant their role is in the wedging-ratcheting mechanism. To avoid solution instability, 

as discussed in the previous section, the applied temperature was smoothed as follows: 

 𝑇(𝑡) = 𝑇0 + 𝐴 ∗ sin𝜔𝑡 (38) 

where: 
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𝑇0 = Initial temperature (= 20°𝐶) 

𝐴 = Amplitude (= 15°𝐶) 

𝜔 = Daily frequency (=
2𝜋

1𝑑𝑎𝑦
) 

𝑡 = Time (= 10 𝑑𝑎𝑦𝑠) 

In the physical model experiment that was reproduced in 3DEC, heating and cooling cycles 

were long enough (approximately three days, Figure 3.15) for the entire model to reach 

a uniform temperature. Therefore, the sliding block and the wedge are expanding to 

maximum during each cycle. Shorter period ensures that the temperature distribution 

within the block will not be uniform, thus allowing differences in the depth of the heat 

front within blocks, and the sensitivity of the results to different thermal diffusivity can 

thus be tested. Here the rock mass and the sliding surface are fixed during all simulations, 

in contrast with the lab validation, where only the velocities parallel to the outward 

normal to the faces of the block were set to zero. The cumulative displacement, defined 

by the total displacement of the sliding block after ten days of heating and cooling, is 

compared for a typical range of the relevant parameters. 

As we examine a thermally induced mechanism, we would like to study the effect of the 

thermal properties of the rock. The effect of the combination of the mechanical and 

thermal properties on the displacement will be further discussed in section 5.1. 

3.5.1 Thermal expansion coefficient 

This parameter determines the amount of dilation of the block in response to 

temperature change. Greater values of thermal expansion coefficient produce greater 

thermal strains in the rock. 

In the model, thermal strain works in both directions. During heating phase, the blocks 

are expanding, resulting in a dip direction displacement of the sliding block, since the 

wedge prevents its expansion in the other direction. When the blocks are subjected to 

decreasing temperature, they contract. The sliding block contracts on both sides, 
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including some contraction of the sliding block’s toe “up the slope”. The cumulative 

displacement after ten days of heating and cooling for typical rock thermal expansion 

coefficient values is shown in Figure 3.17. 

 

Figure 3.17 – Cumulative displacement as function of the thermal expansion coefficient. Red cross marks 
the concrete thermal expansion coefficient used for the physical model. 

As expected, the cumulative displacement is greater for greater values of thermal 

expansion coefficient. In each cycle, the sliding block expands more with increasing value 

of thermal expansion coefficient, consequently leading to greater cumulative 

displacement. Furthermore, with increasing thermal expansion coefficient the sliding 

block contracts more during cooling cycles, prompting larger joint opening, and allowing 

further downward displacement of the wedge. Greater thermal strains lead to greater 

plastic displacement, even though the thermal strain itself is reversible, due to the 

wedging mechanism. 

3.5.2 Thermal diffusivity 

The thermal diffusivity parameter (𝐷𝑇) determines how fast heat propagates in the 

medium, defined by: 
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 𝐷𝑇 =
𝑘

𝜌 ∗ 𝐶𝑝
 (39) 

where: 

𝑘 = Thermal conductivity (𝑊/𝑚/𝐾) 

𝜌 = Bulk density (𝑘𝑔/𝑚3) 

𝐶𝑝 = Specific heat capacity (𝐽/𝑘𝑔/𝐾) 

 In the sensitivity analyses, the thermal diffusivity of the blocks in the model is varied 

between simulations, in the range of typical rocks. All other parameters remain constant 

(Table 3). 

The minimum thermal time step allowed is inversely proportional to the thermal 

diffusivity (eq. 30). The time step must be reduced with increasing thermal diffusivity, and 

therefore cannot be set to the optimal 30 seconds for high values of thermal diffusivity, 

as determined in the 3DEC sensitivity analysis to numerical control parameters section. 

For this section only, and for the sole purpose of studying the influence of thermal 

diffusivity on the displacement, the thermal time step was decreased to 10 seconds in 

this sensitivity analysis. This way we can prevent the influence of numerical parameters, 

e.g. the thermal time step, on the displacement as discussed in section 3.4. The mesh size 

was not changed, and was fixed at an average edge length of 4 cm. The result of this 

analysis is shown in Figure 3.18. 
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Figure 3.18 - Cumulative displacement, after ten cycles of heating and cooling, as function of thermal 
diffusivity. Red cross marks the thermal diffusivity of the concrete used for the laboratory experiment. 

Heat wave propagates further in the rock with greater diffusivity as is illustrated in Figure 

3.19. As more elements within the block are subjected to change in temperature, the 

block expands more in the model with higher conductivity, and therefore the 

displacement is expected to be larger. Figure 3.19 presents temperature distribution 

within blocks when boundary temperature reaches maximum value. 
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Figure 3.19 – Cross-section of 3DEC model that simulates the physical model (Figure 3.13) with temperature 
distribution within the blocks in the middle of the second heating cycle, when boundary temperature reaches 
maximum value (red circle in the upper panel). Heat propagates further in the block with higher thermal 
conductivity (right panel). 

3.5.3 Joint parameters 

In this section, we discuss the sensitivity of the numerical model to input joint parameters, 

specifically the shear stiffness and peak friction angle. Clearly, the frictional resistance to 

sliding is expected to increase with increasing value of these two interface material 

parameters. 

With increasing shear stiffness, as would be characteristic of rough interfaces with 

relatively strong asperity material, during application of shear load the joint can absorb 

more elastic strain that would have been otherwise translated to block displacement. The 

amount of plastic displacement, therefore, is expected to be much higher under the same 

remote loading configuration when the shear stiffness is lower, as would be characteristic 

of smoother surfaces or interfaces with weaker asperity material.  

Results of 3DEC simulations of the physical model under a range of joint stiffness values 

characteristic of rock joint interfaces are presented in Figure 3.20. The modeled 

cumulative displacement of the sliding block is rather sensitive to the input shear stiffness 
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value up to shear stiffness of about 1 MPa/mm, beyond which the results are not affected 

by the stiffness of the interface. 

 

Figure 3.20 – Modeled cumulative displacement as function of the shear stiffness of the joint. Red dot marks 
the concrete shear stiffness used for the laboratory experiment. 

The estimated variance in displacement in the numerical model to input friction angle is 

intuitively expected. For smaller friction angles, the frictional resistance of the sliding 

surface is reduced, and the sliding block therefore would be expected to exhibit larger 

displacement. 3DEC results simulating the physical model for a range of interface friction 

angles and a joint stiffness value of 0.5 GPa suggest otherwise, however. The results of 

the simulations (Figure 3.21) reveal that the total cumulative displacement of the block 

for the tested range of friction angles is not affected very much by the actual value of the 

input friction angle. Since all values of friction angles tested in the simulations are higher 

than the inclination of the sliding surface, the obtained displacements are clearly 

thermally induced. Note also that the friction angle in the numerical model cannot be 

reduced below 20° even though the interface inclination is 15 degrees, because in reality 

the wedge applies an additional horizontal force on the sliding block that could prompt a 

displacement of the sliding block in the numerical model. In the physical model the 
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available friction angle of the sliding interface was greater than 20 degrees thus arresting 

this driving mechanism in the laboratory experiment.  

The influence of interface friction on the amount of plastic displacement appears to be 

rather small in the wedging-ratcheting mechanism. Although this result is not 

immediately intuitive, we can explain it if we consider that thermal expansion and 

contraction remain the same for any given temperature gradient, regardless of interface 

friction. The main parameter that drives the thermally induced displacement, the 

expansion and contraction of the sliding block and of the wedge, remains unchanged, 

because in contrast to the shear stiffness of the interface, the friction angle cannot absorb 

the thermally induced elastic displacements. 

 

Figure 3.21 - Cumulative displacement as function of joint friction angle. Red dot marks the friction angle of 
concrete-concrete interface used in the laboratory experiment. Joint stiffness (𝐾𝑠) was kept constant at 0.5 
GPa for all simulations. 
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Chapter 4 - Application of the wedging-ratcheting mechanism to a 

field case study 

4.1. Introduction 

The Masada world heritage site is an old fortress located in the Judean Desert in Israel. It 

was built on a steep mountain by King Herod the Great more than 2000 years ago. This 

important monument attracts nearly one million tourists each year. Twenty years ago, 

during the construction of a new cable car station at the top of the snake path cliff a block 

displacement was observed, threatening the safety of the workers and the project. 

Mount Masada is an uplifted horst located on the western margins of the Dead Sea rift 

valley. This area is seismically active and experienced many earthquakes in its history 

(Figure 4.1). The mountain consists mainly of strong carbonate rocks (limestone and 

dolomite). The rock mass, however, is highly discontinuous and consists of several 

intersecting joint sets (Hatzor, 2003), creating several removable keyblocks that endanger 

the designed bridge that connects between the new cable car station and the Snake Path 

Gate. A particular block, resting directly above the proposed bridge, was marked as 

hazardous during site investigations in the late 1990’s, and an extensive research was thus 

conducted to investigate potential failure modes, current factor of safety, and alternative 

support measures. Block displacement was monitored using four different LVDTs that 

were positioned in various locations between the block and the rock mass for the duration 

of the construction period. 
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Figure 4.1 - Earthquakes locations since 1950 (The Geophysical Institute of Israel, 2017) 

4.2. Geometry and material properties of the removable block 

The steep east face of Mount Masada (Snake Path Cliff) is intersected by two orthogonal 

sets of sub vertical and persistent joints, one striking NNE and the other striking ESE. 

Spacing between joints in each set is ranging between 5 to 10 meters. Bedding planes are 

dipping 20° SE. Intersection of members from all three joint sets generate the removable 

block (Figure 4.2) on which this section is focused (Hatzor, 2003). The study on the East 

face by Hatzor (2003) of Mount Masada was complemented by Bakun-Mazor et al. (2013) 

for the West face of Masada. These two studies provide joint displacement monitoring, 

mechanical and physical parameters of intact rock and discontinuities (Table 4). The 

geometry of the keyblock in the East face which is used here (Figure 4.3) is adopted from 

Hatzor (2003).  

 

Masada 
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Figure 4.2 - The removable block and the upper cable car station. 

 

Figure 4.3 - Block geometry. Faces (fi) and joints (ji) are marked on the surfaces. 

J3 

J1 

𝑨

f1 

f2 

J2 
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Table 4 - Properties of the removable block in Masada. 

 Parameter Symbol Units Value Source 

Block 
geometry 

Bedding plane 𝐽1 
dip/dip 

direction 
20/124 

Hatzor 
(2003) 

Joint 2 𝐽2 - 84/107 

Joint 3 𝐽3 - 75/052 

Face surface 1 𝑓1 - 84/060 

Face surface 2 𝑓2 - 90/126 

Block volume 𝑉 m3 563 

Material 
properties 

Elastic modulus 𝐸 GPa 40 

Bakun-Mazor 
et al. (2013) 

Poisson’s ratio 𝜈 - 0.2 

Bulk density 𝜌 Kg/m3 2600 

Block weight 𝑊 106kg 1.465 

Joints 
properties 

Peak friction angle 𝜙𝑝 ° 41 Hatzor 
(2003) 

 
Saw-cut friction angle 𝜙𝑠𝑎𝑤  ° 28 

Residual friction angle 𝜙𝑟𝑒𝑠 ° 23 

Normal stiffness 𝐾𝑛 GPa/m 5 Bakun-Mazor 
et al. (2013) Shear stiffness 𝐾𝑠 GPa/m 1 

Thermal 
properties 

Thermal expansion 
coefficient 

𝛼 10-6/°C 6-8 Bakun-Mazor 
et al. (2013) 

Thermal conductivity 𝜆 W/m/k 1.7 

Specific heat capacity 𝐶𝑝 J/kg/K 810 
Rohsenow et 

al. (1998) 

 

The studied block is massive with height of 15 meters and width of about 10 meters. It is 

resting on a moderately dipping bedding plane and is separated from the rock mass by 

two sub vertical joints. Across Joint no. 2 (a member of joint set 2) there is a displacement 

of 20 - 40 cm (Figure 4.4) that has accumulated over its geological history. The tension 

crack is filled with rock fragments with various sizes in its upper part, and with softer rock 

and soil at the bottom. 
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Figure 4.4 - The removable block and the opened joint J2. 

Joint no. 3 (a member of joint set 3) that separates the block from the rock mass is tightly 

closed (Figure 4.5), and it appears that no opening occurred across it over its geological 

history. 
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Figure 4.5 - The removable block and the closed joint J3. 

Four joint meters (LVDT) were installed on both joints to measure relative displacement 

between the rock mass and the removable block (Figure 4.6). Joint meters were mounted 

in direction normal to the joints and measured joint opening and closure. The LVDTs were 

active from January to November 1998, when the block (and many others) was anchored 

to the rock mass with cable bolts. The block displacement, therefore, was monitored for 

only half of a complete thermal cycle. 
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Figure 4.6 - "Block 1" and the configuration of the joint meters (Hatzor, 2003) 

In April 1998, there was a sudden increase in temperature (Figure 4.9), followed by an 

abrupt displacement across the joints, as inferred from the output of the four joint 

meters. During this heating cycle it is reasonable to assume that the removable block 

expanded in all directions, including upwards, resulting in boundary - joints closure. 

Comes August, temperature gradually decreases, followed by thermal contraction of the 

removable block, resulting in a progressively opening of the joint (J2), as nicely depicted 

by the output of joint meter 3 (see Figure 4.7). 
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Figure 4.7 - Displacement of the “Block 1” in the east face of Masada cliff, as recorded by JM3 (Hatzor, 2003). 
Sudden increase in Temperature (blue line) is followed by ~1 mm displacement (red line). 

4.3. 3DEC model 

The geometry of the block and its surrounding were reproduced in 3DEC using the data 

from Table 4. Two friction angles were chosen to represent the sliding surface, peak and 

saw-cut values (the residual friction angle is slightly lower – see Table 4). The saw-cut 

friction angle is also considered in the analysis in addition to the peak value on account 

for the fact that the block has displaced in its past and the assumption that the sliding 

surface has deteriorated somewhat in the course of this historic displacements. For 

simplicity, the filling material inside the tension crack 𝐽2 (Figure 4.4) is modeled here as a 

single prismatic wedge, occupying the full width of the crack, and its upper two thirds of 

height (Figure 4.8). The rock mass is fixed (no velocity in all directions) for the entire 

simulation, whereas the removable block (referred to as “Block 1” following Hatzor, 2003 

notation) and the wedge are free to move. The initial temperature of the blocks is 

assumed uniform.  

Blocks are discretized using a uniform mesh with an average tetrahedron edge length of 

30 cm, which is about 5% of the sliding block length in the direction of sliding, as per the 

optimized ratio obtained in section 3.4. Since the scale of this model is much larger than 
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the physical model tested in the previous chapter, the explicit thermal time step is larger 

and is set to 400 seconds (see simulation code in Appendix E). The temperature log 

obtained by Hatzor (2003) is partial and does not comprise of a complete cycle of heating 

and cooling because the block was reinforced with cable bolts in the middle of one 

thermal cycle. After initial equilibrium is obtained in the model (as in section 3.3), the 

temperature history obtained through three consecutive years, between 2012 and 2015, 

measured by the Israel Meteorological Service (2017) in Ein-Gedi station (15 km from 

Mount Masada), was applied to the outer boundaries of the blocks, to simulate the 

response of the system to a full cycle of heating and cooling. 

This 3DEC model is less sensitive to changes in time step, compared to the reproduction 

of the physical model in section 3.4, since the block is much bigger and less sensitive to 

short periods of temperature changes; thus, the model remains in mechanical 

equilibrium. To avoid displacement artifacts resulting from immediate response due to 

thermal expansion of the boundaries, or elastic displacement of joint asperities via the 

input shear stiffness, the displacement of the center of mass of “block 1” was recorded 

and stored for further analysis. Note that field measurements performed with joint 

meters are not equivalent to the displacement recorded in 3DEC simulation, as the exact 

orientation of the LVDT’s is unknown.  
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Figure 4.8 – Masada 3DEC model. 

The results of the 3DEC simulations are shown in Figure 4.9. The displacement of the block 

occurs mostly during the heating phases. During that time, the block expands, 

compressive stresses develop around the wedge, and the position of the wedge in the 

joint prompts displacement of the block down the sliding surface (Figure 4.10). The 

cumulative displacement over the three years is between 0.7 to 1.3 mm depending on 

the assumed value of frictional resistance across the sliding plane. Thus, the expected 

annual displacement is 0.24-0.44 mm per year, depending on the exact value of the 

friction angle. 
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Figure 4.9 - Masada 3DEC model displacement for two friction angles, saw-cut (red dotted line) and peak 
(red continuous line). Temperature applied to block boundaries is in blue. 

 

Figure 4.10 – 3DEC model displacement of “Block 1” (𝜙 = 28°). (a) Temperature applied to block 
boundaries. (b) “Block 1” center of mass displacement. (c) Wedge displacement down the opening joint. (d) 
Compressive normal stress at the back of the wedge. 
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Chapter 5 - Discussion 

Numerical simulations of the wedging-ratcheting mechanism reveal the possible 

outcomes of a thermally induced failure mechanism in jointed rock slopes. The results in 

this research show that given certain conditions, such as the geometry of the problem, 

thermomechanical properties, and temperature oscillations magnitude, the wedging-

ratcheting mechanism can explain small annual displacements. A large-scale physical 

model, conducted in a climatically controlled room, supports these findings. 

This section provides further analysis to the previous sections, and presents a comparison 

of the results with other failure mechanisms.  

5.1. Rock types prone to wedging-ratcheting failure mechanism 

The magnitude of the displacement due to temperature fluctuations is dependent on rock 

and joint properties, as described in section 3.5. Below a brief comparative study is 

conducted to determine which rock types are more likely to exhibit thermally induced 

displacements. For that purpose, we use the 3DEC model that reproduces the physical 

model (section 3.3), since it was validated with experimental data, and because it is 

simpler and requires less computational resources.  

Rocks, even if are members of the same group (e.g. sedimentary or igneous), differ in 

their thermal properties, since the mineralogy varies significantly among the rock types. 

For instance, Schütz et al. (2012) studied the thermal conductivity of sedimentary rocks 

in Israel. For each formation examined in their study, the thermal conductivity range was 

found to be relatively wide. For the comparative examination in this study, a single value 

is assumed for each of the thermal and mechanical properties to represent its group 

(Table 5). 
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Table 5 – Typical thermomechanical properties of some rocks. 

Parameter Symbol Units Granite Basalt Sandstone Dolomite 

Elastic modulus 𝐸 GPa 50(1) 70(1) 20(9) 48(12) 

Poisson’s ratio 𝜈 - 0.2(2) 0.28(2) 0.25(10)  0.26(12) 

Bulk density 𝜌 Kg/m3 2650(1) 2870(5) 2640(5) 2550(12) 

Thermal 
expansion 
coefficient 

𝛼 10-6/°C 8(3) 5(6)  11(11) 8(3) 

Thermal 
conductivity 

𝑘 W/m/K 2.5(4) 1.2(7)  3.3(6) 4.5(6) 

Specific heat 
capacity 

𝐶𝑝 J/kg/K 840(4) 840(8)  900(8) 900(8) 

Thermal 
diffusivity 
(calculated) 

𝜅 10-6m2/sec 1.12 0.50 1.39 1.96 

References: (1) Turcotte and Schubert (2014); (2) Vutukuri et al. (1974); (3) Franklin and Dusseault 

(1991)_ENREF_20; (4) Heuze (1983); (5) Jaeger et al. (2009); (6) Naeser et al. (1989); (7) Blesch et al. 

(1983); (8) Eppelbaum et al. (2014); (9) Vásárhelyi (2003); (10) Gercek (2007); (11) Engineering Toolbox 
(2017); (12) Hatzor and Palchik (1997). 

The geometry of the model and the applied temperature remained constant for all 

simulations. Since it was observed earlier in this research that friction angle does not play 

a significant role in the mechanism, the same value of friction angle (32°) applied to the 

joints in all simulations.  Shear and normal stiffness of the joint were kept constant, and 

set to 1 and 5 GPa/m, respectively. The boundaries of the model were subjected to a 

sinusoidal input temperature with a period of one day for three days (three cycles of 

heating and cooling, red line in Figure 5.1). The exposure time was not long enough for 

the block to reach uniform temperature even in the model with the greatest thermal 

conductivity. The upper panel in Figure 5.1 presents the temperature log of the center of 

mass of the sliding block and it shows the difference in heat propagation within blocks in 

simulations with different thermal conductivity input.  The displacement of the center of 

mass of the sliding block down the inclined plane was recorded and the results are plotted 

in the lower panel of Figure 5.1. 
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Figure 5.1 - Displacement of the sliding block in the dip direction (lower plot). The center of the sliding block 
does not reach the temperature applied to the boundaries (red curve in the upper plot). 

It can be inferred from the results that the most significant parameter in the displacement 

is the thermal expansion coefficient of the block material. Of the rock types studied, 

indeed the sandstone appears to be the most sensitive to the wedging-ratcheting 

mechanism, since its thermal expansion coefficient is the greatest, even though its 

thermal conductivity is significantly lower than the dolomite. Surprisingly, the 

displacement exhibited by the dolomite is almost equal to the displacement exhibited by 

the basalt, even though the dolomite’s thermal conductivity is much greater. The 

different densities of both rocks can explain this. The density of the basalt is greater, so 

the wedge is heavier and applies greater force on the sliding block. That way, under 

gravity only, the basalt’s sliding block is closer to equilibrium state, and less thermal 

expansion is needed to achieve plastic displacement. The mechanical properties, 

therefore, are also playing a role in the thermally induced mechanism. 
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5.2. Case study – removable block on Mount Masada 

5.2.1 Annual displacement of “Block 1”, Masada 

The displacement of “Block 1” in Masada, as obtained with field measurements (4.2) and 

with 3DEC simulations (4.3), is rather minor, and for sustainability of engineering 

structures with a design life time of 50 – 100 years may be considered negligible. For 

natural rock slopes, however, this rate may lead to significant displacements over 

geological time scales that can advance the deterioration rate of the rock mass. We 

therefore wish to understand the cumulative nature of the wedging-ratcheting 

mechanism over long periods. 

The removable block slides down the slope, according to 3DEC analysis in section 4.3, at 

a rate of 0.24-0.44 millimeters per year, depending on the assumed frictional resistance 

across the sliding surface. The most important feature presented in Figure 4.9, however, 

is the irreversible nature of this displacement. In each phase of displacement, the wedge 

slides further down the opening joint, preventing block displacement back up the slope; 

once the wedge takes its place in the joint, it cannot move up, only down. Since the 

displacement is irreversible, the small magnitude of annual displacement and its slow rate 

is of no significance; the displacement can accumulate over years and decades, assuming 

the opening joint is continuously filled with new rock fragments. 

As predicted by the wedging-ratcheting mechanism, most of the displacement occurs 

when the temperature is rising (transition from winter to summer). However, some 

displacement can be observed during winter, due to short period of heating (for example 

the third shaded area from the left in Figure 5.2). This can be associated with 

displacement mode introduced by Taboada et al. (2017) described in section 1.1, in which 

short-term thermal cycles of between 2 to 15 days can cause thermally induced 

displacements. 

It is important to determine whether daily temperature fluctuations play a significant role 

in the total accumulated displacement. For this purpose the real temperature input 

record used in the 3DEC simulation described in 4.3 is now represented by a fitted  
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sinusoidal function (red line in the upper panel of Figure 5.2) to eliminate the short-term 

temperature changes, and the system response is reanalyzed.  

 

Figure 5.2 - Comparison between annual and daily temperature fluctuations. Temperature input for the 
simulations in the upper plot, displacement for each simulation in the lower plot. 

We find that displacements obtained in both 3DEC simulations are essentially the same, 

and it can be concluded, therefore, that daily temperature fluctuations do not play a 

significant role in the overall mechanism. Heat does not propagate deep enough in the 

rock in short exposure periods to cause significant expansion or contraction. However, 

the role of high frequency changes (daily temperature fluctuations) can be more 

significant in smaller blocks or rocks with greater thermal conductivity, as a larger portion 

of the block will be influenced by the temperature changes. The slight change in 

displacement between both simulations is maybe due to short periods of dramatic 

temperature change that are delineated as shaded areas in Figure 5.2. Such an effect can 

explain the relatively large displacement of ~1 mm measured by Hatzor (2003) during the 

5 months of monitoring in the field in 1998 (see Figure 4.7).  
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5.2.2 Comparison with other proposed models 

Thermal mechanisms 

Part of the accumulated displacement of the sliding block down the sliding interface is 

due to the so called “crawling motion” suggested by Gunzburger et al. (2005) and 

introduced in section 1.1. We want to compare the degree of influence of each 

mechanism (“crawling motion” vs. wedging-ratcheting) on the cumulative displacement 

of the block. 

The same block model from the snake path cliff in Masada (Figure 4.8) is used for this test. 

Two block configurations are simulated, one with a wedge in the tension crack and 

another without the wedge, the latter in order to represent a simple problem of a block 

on an inclined plane subjected to temperature oscillations. The 3DEC model used for this 

analysis is shown in Figure 5.3. 

 

Figure 5.3 – Masada 3DEC model with no wedge in the joint. This model was used to examine the amount 
of the “crawling motion” displacement.  

A three-year temperature log was applied on the boundaries in both models (with and 

without a wedge in the tension crack). To avoid the influence of dramatic temperature 

changes that occur over short periods during a cycle, we use here a smoothed 

temperature history, represented by a sinusoidal function. The input temperature history 

and the response of the two geometrical configurations as modeled with 3DEC is shown 

in Figure 5.4. 
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Figure 5.4 - Comparison of two different thermally induced failure mechanisms, the “crawling motion”, 
suggested by Gunzburger (red line with x symbols), and the wedging-ratcheting mechanism (red line with 
circles). Note the reversible displacement during cooling phases, marked by black lines. Since there is no 
wedge in the joint, during that time, the block contracts in all directions, including contraction up the 
slope. 

The results plotted in Figure 5.4 reveal that the displacement due to the wedging-

ratcheting mechanism is almost twice as much as due to the “crawling motion” when 

everything else is kept equal. Moreover, we can infer from the results that the self-weight 

of the wedge is not the reason for the difference in displacement between the two 

mechanisms. For each heating phase, when most of the displacement takes place, the 

amount of displacement for the two mechanisms is essentially the same. The difference 

between the two mechanisms, therefore, can be explained by the mere presence of the 

wedge in the joint, preventing contraction of the block’s toe of the sliding block “up the 

slope”. In the model without the wedge, during cooling phases, the block slides a little bit 

back up the slope, as there is no wedge to preclude such displacement. Thus, the wedging-

ratcheting mechanism has a considerable addition to the “crawling motion” mechanism. 

Seismic triggering 

The location of Mount Masada near an active fault calls for the consideration of a 

seismically induced displacement.  studied the response of the modeled block in this 
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thesis, “Block 1” in Masada, to dynamic loading using the numerical, discrete element 

Discontinuous Deformation Analysis (DDA) method (Shi, 1993). 

Using an input motion based on the 1995 Nuweiba earthquake (for details see Hatzor, 

2004), the researchers determined numerically the expected displacement of Block 1 that 

would have been caused by earthquake sources in the Dead Sea Transform, 1 km from 

Mount Masada, and their results for events of magnitude 6 to 7.5 are presented in Figure 

5.5. Note that the results shown in Figure 5.5 are the expected accumulated displacement 

of Block 1 during a single event based on the input motion that includes the topographic 

effect of Masada, for an earthquake source at a distance of 1 km from the site.  
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Figure 5.5 – The expected displacement of “Block 1” when subjected to a dynamic loading of four different 
earthquake magnitudes (Bakun-Mazor et al., 2013). 

The recurrence of moderate (Mw=6.5) and strong (Mw=7) earthquakes was assumed to be 

1100 and 4000 years, respectively, based on the local seismicity of the region (Begin, 

2005, and Shapira et al., 2007). The expected total accumulated displacement in a 5000 

years window can therefore be compared for both seismic and thermally induced 

mechanisms. Figure 5.6 presents a comparison of the expected seismic displacement 

obtained by Bakun-Mazor et al. (2013) and the expected thermally induced displacement 

found in this study based on the 3DEC model, namely 0.24 mm/year assuming a 

continuous supply of rock fragments filling the increased aperture and the lower bound 

of available friction across the sliding interface. It is important to point out that the slip 
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rate can change over such a long period of time, as the wedge volume is increasing, and 

the frictional resistance of the sliding surface can deteriorate over time. 

 

Figure 5.6 – A comparison between two different failure mechanisms, thermally induced wedging-ratcheting 
(blue) and seismic triggering (red), if each mechanism works independently. 

The total displacement of “Block 1” due to temperature oscillations for the case of 

Masada is greater than the seismically induced displacement when everything else is 

equal. The cumulative nature of the wedging-ratcheting mechanism makes the thermally 

induced displacement significant in terms of long-term geomorphology, even when 

comparing with seismic triggering, in an area considered seismically active, such as the 

Dead-Sea Transform. Therefore, the wedging-ratcheting mechanism has an important 

role in shaping the landscape, and is indeed a failure mode that cannot be ignored when 

considering rock slope instabilities in the long term. 
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Chapter 6 - Conclusions 

The objective of this research was to examine the feasibility of the thermally induced 

wedging-ratcheting mechanism using the numerical distinct element method in three 

dimensions (3DEC). First, we validated the numerical results with laboratory experiments. 

Later, we studied a case study from Mount Masada, Israel. 

We obtained the following results: 

1. Thermally induced wedging-ratcheting mechanism is proved to cause irreversible 

displacement down an inclined slope. Heating phases are linked with dilation of 

the blocks in the system, resulting in compressive stress evolution around the 

joints, prompting block displacement down the sliding interface. Cooling phases 

are associated with contraction, resulting in joint opening and further sliding of 

the wedge down the aperture of the tension crack behind the sliding block.  

2. The numerical 3DEC platform used in this research is proved valid for the purposes 

of this study. Some issues that require further investigation have been explored, 

including the sensitivity of the results to the choice of numerical control 

parameters such as time step size and element size. Therefore, the verification 

and validation stages in the research were necessary for the calibration of the 

numerical control parameters, and consequently to produce reliable results. 

3. Some lithologies are more prone to thermally induced displacement, mainly due 

to their higher thermal expansion coefficient. This is because the primary factor 

that drives the mechanism forward is thermal expansion and contraction of the 

rock, both the wedge and the sliding block. 

4. The infinite possible configurations of the blocks system and properties makes an 

analytical solution that is not over-simplified hard to obtain. However, a 

comprehensive study of the configuration and geometry of a problem in the field, 

accompanied by laboratory tests and experiments to determine the thermo-

mechanical properties of the rock, can lead to an educated simulation that 

produces a reliable result. 
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5. The irreversible and cumulative nature of the displacement (on account of the 

wedge driving the mechanism in one direction) has an addition contribution to the 

total displacement of the block, compared with other known mechanisms, 

thermally or seismic induced (e.g. the “crawling motion” and earthquakes). 

6. The proposed failure mechanism may play a significant role in slope stability 

problems due to the cumulative and repetitive nature of the displacement.
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Appendix A – Sliding on an inclined slope, gravity only (.3ddat file, 3DEC) 

new 

mscale off 

title 

Sliding under gravity loading 

def setup 

 base = 3 ; length of base 

 lb = 0.8 ; sliding block length 

 h = 0.6 ; sliding block height 

 alpha = 25.0 ; sliding plane inclination 

 alpha2 = 90-alpha ; cutting plane for sliding block sides 

 def_right = 0.2 ; move the sliding block from the edge 

 y1 = -0.25 ; model width 

 y2 = 0.75 

 x1 = def_right ; x value of lower left corner of sliding block 

 z1 = (base-def_right) * tan(degrad*alpha) ; z coordinate of 

lower left corner of sliding block 

 x2 = x1 + lb*cos(degrad*alpha) ; x coordinate of lower right 

corner of sliding block 

 z2 = z1 - lb*sin(degrad*alpha) ; z coordinate of lower right 

corner of sliding block 

 x3 = x2 + h*sin(degrad*alpha) ; x coordinate of upper right 

corner of sliding block 

 z3 = z2 + h*cos(degrad*alpha) ; z coordinate of upper right 

corner of sliding block 

 ; Mechanical properties 

 E = 24.486e9 ; Young's modulus 

 nu = 0.2513 ; Poisson's ratio 

 K = E/(3*(1-2*nu)) ; Bulk modulus 

 G = E/(2*(1+nu)) ; Shear modulus 

 Ks = 0.5e9 ; Shear stiffness of the joint 

 Kn = 5e9 ; normal stiffness of the joint 

 rho = 2140. ; density 

 phi = 20. ; friction angle of the joint, change here for 

different simulation 

end 

@setup 

poly br 0 3 @y1 @y2 0 2 

jset dip @alpha dd 90 or @x1 0 @z1 id 1 ; cut sliding plane 

hide dip @alpha dd 90 or @x1 0 @z1 above 

group block 'Sliding surface' 

seek 

hide dip @alpha dd 90 or @x1 0 @z1 below 

jset dip @alpha2 dd -90 or @x1 0 @z1 ; cut back of sliding block 

(left side of the sliding block) 

delete dip @alpha2 dd -90 or @x1 0 @z1 above 

jset dip @alpha2 dd -90 or @x2 0 @z2 ; cut right side of sliding 

block 

delete dip @alpha2 dd -90 or @x2 0 @z2 below 

jset dip @alpha dd 90 or @x3 0 @z3 ; cut upper boundary of sliding 

block 

delete dip @alpha dd 90 or @x3 0 @z3 above 
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jset dip 90 dd 0 or 0 0 0 ; to avoid boundary problems, the sliding 

block is in the middle of the sliding surface 

delete dip 90 dd 0 or 0 0 0 below 

jset dip 90 dd 0 or 0 0.5 0  

delete dip 90 dd 0 or 0 0.5 0 above 

group block 'Sliding block' 

seek 

plot create plot 'Model' 

pl bl colorby group 

 

; ------------- Zoning for deformable blocks ------------- 

;gen edge 0.080 ; One can verify also for deformable blocks 

 

; ------------- Mechanical properties -------------------- 

prop mat 1 k @K g @G de @rho ; intact rock properties 

prop jmat 1 jkn @Kn jks @ks jfric @phi ; joint properties 

 

; ------------- Boundary conditions ---------------------- 

fix range group 'Sliding surface' 

grav 0 0 -9.81 

 

; ------------- Stepping to initial equilibrium ---------- 

hist id 1 unbal 

 

damp local 

solve ela only 

damp 0,0 

 

; ------------- Histories for solution -------------------- 

 

reset h ; reset all histories 

reset d ; reset previous displacements 

reset jd ; reset previous joint displacements 

reset t ; reset time 

reset v ; reset velocity 

set time 0 

hist id 1 time 

hist id 2 sd @x2 0.25 @z2 dip @alpha dd 90 ; dip direction 

displacement of the sliding block 

 

; ------------- Solution ---------------------------------- 

plot create plot 'Shear disp' 

plot hist 2 vs 1 

solve time 1. 

 

ret 
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Appendix B – Conduction in a plane sheet, after _ENREF_13_ENREF_24ITASCA 

Consulting Group Inc. (2013d) 

new 

; --------------------------------------------------------- 

; conduction in a plane sheet 

; explicit solution 

; --------------------------------------------------------- 

config thermal 

; 

title 

Thermal conduction in a plane sheet - explicit solution 

; 

poly reg 0 0.8  0 0.5  0 0.6 

plot create plot 'Blocks' 

plot block 

plot reset 

; 

prop mat 1 dens 2140.0 

prop mat 1 k 1.6409e10 g 9784224407 

prop jmat 1 jkn 5e9 jks 0.5e9 

; 

prop mat 1 cond 1.422458  spec_heat 850 

prop mat 1 thexp 3.16e-6 

; 

gen edge 0.040 

; 

apply thermal temp 30. range x -0.01 0.01 

apply thermal temp 0 range x 0.79 0.81  

; 

hist thtime 

hist temp 0 0 0 

hist temp 0 0 0.4 

hist temp 0 0 0.8 

; 

set mech off 

set thermal on 

; 

; --- fish constants --- 

def cons 

   c_cond = 1.422458        ; conductivity 

   c_dens = 2140.           ; density 

   c_sph = 850.             ; specific heat 

   length = 0.8             ; wall thickness 

   t1 = 30.                ; wall temperature, face 1 

   tabn = -1 

   tabe = 0 

   overl = 1. / length 

   d = c_cond / (c_dens * c_sph) 

   dol2 = d * overl * overl 

   top = 2. / pi 

   pi2 = pi * pi 
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   n_max = 100              ; max number of terms -exact solution 

   teps = 1.e-5             ; small value compared to 1 

end 

def num_sol 

   tabn = tabn + 2 

   t_hat = thtime * dol2 

   tp2 = t_hat * pi2 

  ib_ = block_head 

  loop while ib_ # 0 

    gp_ = b_gp(ib_) 

    loop while gp_ # 0 

      rad = sqrt(gp_z(gp_)^2 + gp_y(gp_)^2) * overl 

      if rad < 1.e-4 then 

         z = gp_x(gp_) * overl 

         table(tabn,z) = gp_temp(gp_) / t1 

      end_if 

      gp_ = gp_next(gp_) 

    end_loop 

    ib_ = b_next(ib_) 

  end_loop 

end 

def ana_sol 

   tabe = tabe + 2 

   t_hat = thtime * dol2 

   tp2 = t_hat * pi2 

  ib_ = block_head 

  loop while ib_ # 0 

    gp_ = b_gp(ib_) 

    loop while gp_ # 0 

      rad = sqrt(gp_z(gp_)^2 + gp_y(gp_)^2) * overl 

      if rad < 1.e-4 then 

         z = gp_x(gp_) * overl 

         n = 0 

         nit = 0 

         tsum = 0.0 

         tsumo = 0.0 

         converge = 0 

         loop while n < n_max 

            n = n + 1 

            fn = float(n) 

            term = sin(pi*z*fn) * exp(-tp2*fn*fn) / fn 

            tsum = tsumo + term 

            dddd = abs(term) 

            if dddd < 1.0e-20 then 

               nit = n 

               table(tabe,z) = 1. - z - top * tsum 

               converge = 1 

               n = n_max 

            else 

               tsumo = tsum 

            end_if 

         end_loop 

         if converge = 0 then 
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ii = out(' not converged: z= ' + string(z) + ' t = ' + 

string(thtime)) 

            exit 

         end_if 

      end_if 

      gp_ = gp_next(gp_) 

    end_loop 

    ib_ = b_next(ib_) 

  end_loop 

end 

; 

; --- settings --- 

set mech off 

set thermal on 

; --- test --- 

solve thtime 1e4 

@cons 

@num_sol 

@ana_sol 

solve thtime 5e4 

@num_sol 

@ana_sol 

solve thtime 10e4 

@num_sol 

@ana_sol 

; 

table 1 name '3DEC 10,000 sec' 

table 3 name '3DEC 50,000 sec' 

table 5 name '3DEC 100,000  sec' 

table 2 name 'Analytical 10,000 sec' 

table 4 name 'Analytical 50,000 sec' 

table 6 name 'Analytical 100,000  sec' 

plot create plot 'Table' 

pl table 1 style mark marks size 4 2 & 

3 style mark marks size 4 4 line style dash & 

5 style mark marks size 4 6 line style dot  & 
      xaxis label 'X/L' yaxis label 'T/T0' 

ret 
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Appendix C – Laboratory experiment simulation code (.3ddat file) 

new 

title 

Lab experiment validation 

config thermal 

; 

call model_geometry.3dfis ; import model geometry 

plot create plot 'Lab model' ; plot physical model 

pl bl colorby group color red blue yellow green 

; 

; ------------- Zoning for deformable blocks ------------- 

gen edge 0.040 

; 

; ------------- Mechanical properties -------------------- 

prop mat 1 k @K g @G dens @rho ; mechanical properties 

prop mat 1 thexp @txp cond @cond spec @Cp ; thermal properties 

prop jmat 1 jkn @Kn jks @Ks jfric @phi ; joints properties 

; 

; ------------- Boundary conditions ---------------------- 

bound nvel 0 range plane dip @alpha dd 90 or 0 0 @c1 dis 0.01 ;fix 

displacement in the bottom 

bound nvel 0 range plane dip @alpha dd 90 or 0 0 @c1 dis 0.01 ;fix 

displacement in the bottom 

          

 ;(twice for fix displacement in all directions) 

bound nvel 0 range plane dip @alpha2 dd -90 or 0 0 @c1 dis 0.01 ;fix 

normal displacement in the left side 

grav 0 0 -9.81 

ini temp 34.9 ; initial temperature 

; 

; ------------- Stepping to initial equilibrium ---------- 

set thermal off mech on 

hist unbal 

hist zdisp @c4x, 0, @c4z ; vertical displacement of upper right 

corner of the sliding block 

cyc 30000 

; 

; ------------- Histories for solution -------------------- 

set thermal on mech on 

set th_time 0 

set time 0 

reset disp 

reset jdisplacement 

reset hist 

hist unbal 

hist thtime 

hist sdisp @c4x 0 @c4z ; Shear displacement along the joint 

hist zdisp 0.489858 0 0.734281 ; vertical displacement of the wedge 

hist temp @c4x 0.25 @c4z ; applied temp 

; 

; ------------- Apply temperature history -------------------------- 

table 1 read 'tempHist_20_9.tab' ; temperature history of the 

experiment (DataLogger) 
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apply thermal temp 1.0 hist table 1 range y -0.001 0.001 ; apply to 

all faces of the model 

apply thermal temp 1.0 hist table 1 range y 0.499 0.501 

apply thermal temp 1.0 hist table 1 range plane dip @alpha dd 90 ori 

0 0 @c1 dis 0.001 

apply thermal temp 1.0 hist table 1 range plane dip @alpha2 dd -90 

ori 0 0 @c1 dis 0.001 

apply thermal temp 1.0 hist table 1 range plane dip @alpha2 dd -90 

ori @c4x 0 @c4z dis 0.001 

apply thermal temp 1.0 hist table 1 range plane dip @alpha dd 90 ori 

@c5x 0 @c5z dis 0.001 

; 

; ------------- Solution ---------------------------------- 

solve thtime 1930200 force 0 ratio 0 

plot create plot 'Sliding block displacement' 

pl hist 3 vs 2 xaxis label 'Time (seconds)' yaxis label 'Dip 

direction displacement (m)' 

ret 
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Appendix D – Lab model geometry (.3dfis file) 

title 

Lab model generation 

def setup 

 ; mechanical properties 

 phi = 21.28 ; friction angle 

 rho = 2140. ; density 

 E = 2.4486e10 ; Young's modulus 

 nu = 0.2513 ; Poisson's ratio 

 K = E/(3*(1-2*nu)) ; bulk modulus 

 G = E/(2*(1+nu)) ; Shear modulus 

 Ks = 0.5e9 ; shear stiffness 

 Kn = 10*Ks ; normal stiffness 

 ; thermal properties 

 Cp = 850. ; specific heat capacity 

 DT = 7.82e-7 ; thermal diffusivity 

 cond = DT*rho*Cp ; thermal conductivity 

 txp = 3.16e-6 ; thermal expansion coefficient 

 ;  model geometry 

 base = 1.5 

 alpha = 15. ; slope inclination 

 alpha2 = 90-alpha 

 alpha3 = 90+alpha-20.14 ; wedge angle 

 c1 = base*sin(degrad*alpha) 

 c2 = base*cos(degrad*alpha) 

 c3x = c2+0.2*sin(degrad*alpha) 

 c3z = 0.2*cos(degrad*alpha) 

 c4x = 0.8*sin(degrad*alpha)+1.22*cos(degrad*alpha) 

 c4z = base*sin(degrad*alpha)+0.8*cos(degrad*alpha)-

1.22*sin(degrad*alpha) 

 c5x = 0.8*sin(degrad*alpha)+0.42*cos(degrad*alpha) 

 c5z = base*sin(degrad*alpha)+0.8*cos(degrad*alpha)-

0.42*sin(degrad*alpha) 

 c6x = 0.8*sin(degrad*alpha)+0.2*cos(degrad*alpha) 

 c6z = base*sin(degrad*alpha)+0.8*cos(degrad*alpha)-

0.2*sin(degrad*alpha) 

 c7x = 

0.42*cos(degrad*alpha)+0.2*sin(degrad*alpha)+0.05*sin(degrad*alpha) 

 c7z = c3z+(1.5-0.42)*sin(degrad*alpha)+0.05*cos(degrad*alpha) 

 command 

  poly reg 0 2 0 0.5 0 2 

  jset dip @alpha2 dd -90 or @c2 0 0 ; right side of 

sliding surface 

  delete range x @c2 3 

  jset dip @alpha dd 90 or 0 0 @c1 ;bottom of sliding 

surface 

  delete dip @alpha dd 90 or 0 0 @c1 below 

  jset dip @alpha2 dd -90 or 0 0 @c1 ; left side of the 

model 

  delete dip @alpha2 dd -90 or 0 0 @c1 above 

  jset dip @alpha dd 90 or @c3x 0 @c3z ;top of sliding 

surface 



Appendix D – Lab model geometry (.3dfis file) 

 

X 
 

  jset dip @alpha dd 90 or @c4x 0 @c4z ; upper boundary of 

the model 

  delete dip @alpha dd 90 or @c4x 0 @c4z above 

  hide dip @alpha dd 90 or @c3x 0 @c3z below 

  jset dip @alpha2 dd -90 or @c4x 0 @c4z ; right side of 

the sliding block 

  delete dip @alpha2 dd -90 or @c4x 0 @c4z below 

  jset dip @alpha2 dd -90 or @c5x 0 @c5z ; left joint of 

the sliding block 

  hide dip @alpha2 dd -90 or @c5x 0 @c5z below 

  jset dip @alpha3 dd 90 or @c6x 0 @c6z ; left joint of the 

wedge 

  hide dip @alpha3 dd 90 or @c6x 0 @c6z below 

  group block 'Wedge' 

  hide 

  seek dip @alpha dd 90 or @c3x 0 @c3z above 

  hide dip @alpha2 dd -90 or @c5x 0 @c5z above 

  group block 'Sliding block' 

  seek 

  hide range group 'Sliding block' 

  hide range group 'Wedge' 

  hide dip @alpha dd 90 or @c3x 0 @c3z below 

  group block 'Rock mass' 

  hide dip @alpha dd 90 or @c3x 0 @c3z above 

  seek dip @alpha dd 90 or @c3x 0 @c3z below 

  group block 'Sliding plane' 

  hide 

  seek range group 'Wedge' 

  jset dip @alpha dd 90 or @c7x 0 @c7z  ; truncate wedge 

  delete dip @alpha dd 90 or @c7x 0 @c7z below 

  seek 

 end_command  

end 

@setup 
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Appendix E – Block 1 Masada simulation (.3ddat file) 

new 

config thermal 

call block1_new.3dfis 

; 

; ------------- Zoning for deformable blocks ------------- 

gen edge 0.3 

; 

; ------------- Mechanical properties -------------------- 

prop mat 1 k @K g @G dens @rho 

prop mat 1 thexp @txp cond @lambda spec @Cp 

prop jmat 1 jkn @Kn jks @Ks jfric @phi_peak 

; 

; ------------- Boundary conditions ---------------------- 

fix range group 'Rock mass' 

grav 0 0 -9.81 

ini temp 27.3 ; initial temperature 

; 

; ------------- Stepping to initial equilibrium ---------- 

set thermal off mech on ; switched thermal off for this step 

hist id 1 unbal 

hist id 2 zdisp @v8x @v8y @v8z ; vertical displacement of upper 

right corner of the sliding block 

hist id 3 zdisp 3.7 7.7 10.5 ; wedge vertical displacement, next to 

v1 

cyc 50000 

plot create plot 'Equilibriate' 

plot hist 1 ; plot unbalanced force vs step 

; 

; ------------- Histories for solution -------------------- 

set thermal on mech on 

set th_time 0 

set th_time 0 

reset disp 

reset jdisplacement 

reset hist  

hist id 1 thtime 

hist id 2 temp @v8x @v8y @v8z ; applied temperature 

hist id 3 sdisp @v4x @v4y @v4z ; Shear displacement of the sliding 

block 

hist id 4 sdisp 3.05 9.9 18.99 ; wedge displacement down the opening 

joint 

; 

; ------------- Temperature history -------------------- 

table 1 read ein_gedi_5yr.tab 

apply thermal temp 1.0 hist table 1 range plane dip 0. dd 0. ori 0 0 

@max_z distance 0.1 ; apply temp on top of the block 

apply thermal temp 1.0 hist table 1 range plane dip @f1_dip dd 

@f1_dd ori @v8x @v8y @v8z distance 0.1 ; face1 

apply thermal temp 1.0 hist table 1 range plane dip @f2_dip dd 

@f2_dd ori @v8x @v8y @v8z distance 0.1 ; face2 

; 

; ------------- Solution ---------------------------------- 
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plot create plot 'Block 1 displacement' 

plot hist 3 vs 1 

plot create plot 'Wedge displacement' 

plot hist 4 vs 1 

; 

set thdt 200 ; set time step to 200 seconds 

solve thtime 157842000 force 0 ratio 0 
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Appendix F – Block 1 Masada geometry (.3ddis file) 

title 

Block 1 Masada geometry 

def setup 

 ; --- list of vetex of "Block 1" from SBL --- 

 v1x = 4.55156100000000 

 v1y = 8.21467800000000 

 v1z = 4.49271900000000 

 v2x = 6.18025400000000 

 v2y = 13.7718220000000 

 v2z = 5.13231200000000 

 v3x = 8.32383600000000 

 v3y = 4.23436200000000 

 v3z = 2.54434200000000 

 v4x = 10.3756750000000 

 v4y = 7.05847500000000 

 v4z = 2.50000000000000 

 v5x = 2. 

 v5y = 5.12143800000000 

 v5z = 19.1038700000000 

 v6x = 4.58926800000000 

 v6y = 13.5905520000000 

 v6z = 19.1038700000000 

 v7x = 5.61066300000000 

 v7y = 0.500000000000000 

 v7z = 19.1038700000000 

 v8x = 9.25283400000000 

 v8y = 5.51301800000000 

 v8z = 19.1038700000000 

 min_x = 2. 

 max_x = 10.3756750000000 

 min_y = 2. 

 max_y = 15.2718220000000 

 min_z = 2.5 

 max_z = 19.1038700000000 

 ; --- f2 --- 

 f2_dip = 90. 

 f2_dd = 126.  

 ; --- J1 --- 

 j1_dip = 20. 

 j1_dd = 124. 

 ; --- J2 --- 

 j2_dip = 84. 

 j2_dd = 107. 

 ; --- J3 --- 

 j3_dip = 75. 

 j3_dd = 52. 

 ; --- f1 --- 

 f1_dip = 84. 

 f1_dd = 60. 

 ; --- gap between block 1 and rock mass --- 

 gap = -0.4 

 v9x = v5x + gap*(cos(degrad*10.5)/sin(degrad*62.5)) 
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 v9y = v5y + gap*(sin(degrad*10.5)/sin(degrad*62.5)) 

 v9z = v5z 

  

 ; --- thermo-mechanical properties (from Bakun-Mazor et al., 

2013)--- 

 E = 40e9 ; Elastic modulus, Pa 

 nu = 0.2 ; Poisson's ratio 

 K = E/(3*(1-2*nu)) ; Bulk modulus, Pa 

 G = E/(2*(1+nu)) ; Shear modulus, Pa 

 rho = 2600. ; Density, kg/m^3 

 phi_peak = 41. ; Peak friction angle, degrees 

 phi_res = 23. ; Residual friction angle, degrees (from Hatzor 

et al., 2004) 

 Ks = 1e9 ; Shear stiffness, Pa/m 

 Kn = 5e9 ; Normal stiffness, Pa/m (NOT in the paper) 

 txp = 6e-6 ; Themal expansion coefficient, 1/C (6-8) 

 lambda = 1.7 ; Thermal conductivity, W/m/k 

 Cp = 810. ; Specific heat capacity, J/kg/k (Rohsenow et al., 

1998) 

  

end 

@setup 

poly br 0 11 0 14.5 0 @max_z 

; --- J1 (bedding plane) --- 

jset id 11 dip @j1_dip dd @j1_dd or @v1x,@v1y,@v1z 

hide dip @j1_dip dd @j1_dd or @v1x,@v1y,@v1z below 

; --- J3 --- 

jset id 33 dip @j3_dip dd @j3_dd or @v5x,@v5y,@v5z 

hide dip @j3_dip dd @j3_dd or @v5x,@v5y,@v5z below 

; --- J2 (block 1) --- 

jset dip @j2_dip dd @j2_dd or @v5x,@v5y,@v5z ; cut block 1 

jset id 22 dip 82.9 dd @j2_dd or @v9x,@v9y,@v9z ; making the gap 

between the block 1 and the rock mass 

hide 

seek range x 4 4.5 

group block 'Wedges' 

seek blo 217 

; --- f1 --- 

jset dip @f1_dip dd @f1_dd or @v8x,@v8y,@v8z 

delete dip @f1_dip dd @f1_dd or @v8x,@v8y,@v8z above 

; --- f2 --- 

jset dip @f2_dip dd @f2_dd or @v8x,@v8y,@v8z 

delete dip @f2_dip dd @f2_dd or @v8x,@v8y,@v8z above 

hide range group 'Wedges' 

group block 'Block 1' 

seek 

hide range group 'Block 1' 

hide range group 'Wedges' 

join on 

group block 'Rock mass' 

seek 
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 תקציר

הנומרית השיטה מימדית של -תלתמכני ליציבות מדרונות באמצעות גרסה -נחקר מנגנון תרמו במחקר זה

Distinct Element Method (DEM .)היומיות או  ,מטרתנו היא לבחון האם תנודות טמפרטורת פני השטח

תזוזה הנובעת משינויי המתאר מודל כמותי  וליצור, כשל במדרון סלעיותזוזה בלתי הפיכה ליכולות לגרום  ,השנתיות

לבד. גישות באנליטיים  יםבאמצע לפתרוןמדי  ותלעתים קרובות מורכב ןחום ה ת. בעיות של הולכהטמפרטורה

פתרונות אנליטיים מדויקים. אנו בונים  להןאין  אשר ,נומריות מאפשרות לנו ללמוד בעיות גיאומכניות מורכבות

במדרון הפלסטית  ואת התזוזה גולש,הבלוק הההתרחבות התרמית של כדי לדמות את  3DEC-מודל תלת מימדי ב

על פי המנגנון המוצע, ההנחה היא שתהליך זה הוא בלתי הפיך. התוצאות שלנו מראות  .הנגרמת מכך כי נטויחיכו

. התוצאות של המודל משתנותמדרון אכן מתרחשת כאשר גבולות הבלוק חשופים לטמפרטורות  במורדכי תזוזה 

 (.Feldheim, 2017המתקבלות ממודל פיזי בחדר מבוקר אקלים )עבדה ניסויי מתוצאות למושוות  הנומרי

ההנחה עד לאחרונה ש ,במדרון המזרחי של הר מצדה בלוקשל  מדידות תזוזהעם  נומריותאנו משווים סימולציות 

ם הפיזיים המדויקים של על הממדי הנומריתסייסמי. על ידי יישום הגישה  הואבתזוזה מנגנון השולט הש הייתה

 שנמדדההמצטברת להסביר את התזוזה  התרמית לבדה יכול העמסהאנו מוצאים כי, למעשה,  בשדההבלוק 

 .בשדה

משמעותי בבעיות יציבות המדרון בשל האופי  גורם להיותהחדש עשוי  הכשל התרמיאנו מאמינים שמנגנון 

 .ותשנחשפים לתנודות טמפרטורה גבוה סדוקהסלע  במסת דרונות, במיוחד במוהחוזר של התזוזההמצטבר 
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