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Abstract

In this research, a thermally induced wedging-ratcheting mechanism for slope stability is
investigated using a three-dimensional version of the numerical Distinct Element Method
(3DEC). Our goal is to examine whether daily or annual surface temperature fluctuations
can induce downslope, irreversible displacement and to create a quantitative model for
thermally controlled block displacements. Problems of heat conduction are often too
complex to solve using analytical solutions alone. Numerical approaches allow us to study
complicated geomechanical problems for which exact analytical solutions do not exist or
cannot be obtained. We construct a three-dimensional model in 3DEC to simulate the
thermal expansion of a sliding block and the resulting block displacement down an
inclined frictional slope. According to the proposed wedging-ratcheting mechanism, this
displacement is assumed irreversible. Our results show that block displacement down the
slope indeed occurs when the block boundaries are subjected to increased temperatures.
Results of the numerical model are compared with a semi-analytical approach proposed
by Pasten (2013) for the plastic displacement obtained in a single climatic cycle, and with
experimental results obtained from a physical model in a climatically controlled room

(Feldheim, 2017).

We compare numerical simulations with monitored displacements of a slender block in
the East slope of Mount Masada as up until recently the governing mechanism for this
block displacement has been assumed to be seismically driven. By application of our
numerical approach to the exact physical dimensions of the block in the field we find that,

in fact, thermal loading alone can explain the mapped accumulated displacement.

We believe this new, thermally-induced, failure mechanism may play a significant role in
slope stability problems due to the cumulative and repetitive nature of the displacement,
particularly in rock slopes in fractured rock masses that are exposed to high temperature

oscillations.
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Chapter 1 - Introduction

Chapter 1 - Introduction

Slope instabilities may pose serious threats to humans and to property. Slope instabilities
can develop both in rocks or soils. In order to predict, or even prevent this geotechnical
hazard, we must study the underlying mechanisms that affect slope stability and cause

slope failure.

In discontinuous rock masses, various environmentally controlled mechanisms can induce
slope failure along pre-existing joints, such as seismic horizontal accelerations (e.g.
Rodriguez et al., 1999), excessive pore water pressure (e.g. Iverson, 2000) and freeze-
thaw of cleft water in joints (e.g. Matsuoka, 2008). Yet, many rock slope failures seem to

be spontaneous, and cannot be explained by either of the mechanisms above.

There are other environmentally controlled mechanisms, thermally induced, that can
affect slope stability. Thermal expansion and contraction of rocks close to the surface,
due to seasonal warming and cooling, can change the state of stress at greater depths
below the annual thermal active layer. Although stress changes are relatively small, they
can cause slip on joints if the initial stress state is already close to failure (Gischig et al.,
2011). Collins and Stock (2016) monitored an exfoliating granite cliff and found that
heating of rock surface can cause outward expansion in an exfoliating rock, and further
fracture propagation and consequent detachment or rock slabs. Gunzburger et al. (2005)
demonstrated that cyclic surface temperature fluctuations might be a preparatory factor
for failure, with day-to-day cumulative effect. The daily temperature fluctuations may
cause irreversible displacement on joints. They simulated the mechanical response of a
block on an inclined slope (Figure 1.1) to temperature oscillations using the numerical
code UDEC (ltasca, 1996). The authors claim that due to thermal expansion and
contraction solely, plastic conditions are achieved across the sliding plane, and the block
gradually slides down the slope. They found that the irreversible and cumulative “crawling

motion”, is of a magnitude of millimeters per cycle (Figure 1.2).

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 1



Chapter 1 - Introduction

Tm

< >

F
A
M —
y
E

X 45°

Figure 1.1 — Conceptual model for thermally induced block displacement. The block boundary EF was
subjected to temperature oscillations and the displacement of point F was recorded during the simulation
with UDEC (Gunzburger et al., 2005).
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Figure 1.2 - Trajectory of point F during five cycles of heating and cooling (Gunzburger et al., 2005).
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1.1. The proposed wedging-ratcheting mechanism
In previous work (Bakun-Mazor et al., 2013) the opening of joints in the rock slopes of
Masada, Israel, was monitored for 2 years (Figure 1.3.) and a good correlation between

surface temperature and joint opening was reported (Figure 1.4).

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 2
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Figure 1.3 - Monitoring system at the west side of Masada
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Figure 1.4 — Monitoring system output. Temperature and displacement vs. time (Bakun-Mazor et al., 2013)
These observations lead the researchers to introduce a new thermally induced
mechanism, in which daily and seasonal temperature fluctuations can cause opening of a
tension crack and block displacement along an inclined, pre-existing discontinuity. In this
model, rock blocks from the neighboring surroundings are assumed to fall into an open
pre-existing tension crack that separates between the rock mass and the sliding block, to
form wedges that drive the mechanism forward, hence the wedging-ratcheting

terminology (Figure 1.5).

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 3
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Sliding
block

Figure 1.5 - Wedge inside a tension crack, Wadi Arugot

When the temperature drops (during nighttime or winter season) the sliding block
contracts, allowing the wedge to slide down the widening tension crack. When the
temperature rises (during daytime or summer season), the sliding block expands, but the
wedge is fixed in its previous place. In this state, compressive stresses develop around the
wedge, pushing the sliding block down the slope. In the next cooling period, the sliding
block contracts again, leading to opening of the tension crack, and further wedging down
the tension crack, and the cycle completes with heating an expansion and sliding further
down the slope. The proposed wedging-ratcheting mechanism is illustrated schematically

in Figure 1.6.

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 4
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Wedge Block
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Figure 1.6 - lllustration of the wedging-ratcheting mechanism
An extensive research on the wedging-ratcheting mechanism was performed by Pasten &
Santamarina (2013), who proposed a two-dimensional analytical solution to the problem,

which is briefly reviewed here.

Assume the model presented in Figure 1.7. A sliding block of length Lg is resting on an
inclined slope at an angle of n, separated from the rock mass (the left side of the model)

with a wedge of length L,,.

Figure 1.7 - Simplified block-wedge configuration (Pasten, 2013)

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 5
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Under gravity only, the maximum force per unit width that the frictional strength of the

sliding surface can sustain is:

Enax = Hy(Lg + 0Ly ) (1 cosn — sinn) (1)
Where:

H = Block height [m].

¥y = Rock unit weight [N/m3].

u = Friction coefficient (= tan ¢).

6 = A fraction of the wedge weight that is transferred to the sliding block (< 1).

When the system is subjected to temperature change, the sliding block expands. The

magnitude of this expansion depends on the heat propagation front in the rock:

5, = f0.5 Dr*texp, texp <0.5-L*/Dr )

L/2, texp = 0.5 LZ/DT
Where:

Sq4 = Thermal skin depth [m].

thermal conductivity [mz/ ]

Dr = Thermal diffusivity, = , ,
density-heat capacity

L = Block length [m].
texp = Exposure time [s].

The displacement of the toe of the sliding block (6, m) depends on the thermal expansion

of both the wedge and the sliding block itself:

alAT(4- B - S,p), texp < 0.5+ Ly’ /Dr < 0.5 Lg*/Dy
87 = {aAT(Ly, +2-B Sy, 0.5 Ly”/Dr < texp < 0.5-Lp*/Dr  (3)
aAT(Ly + &Ly + B+ Sq), 0.5-Ly?/Dp <0.5:Lg*/Dr < toxp
Where a is the thermal expansion coefficient (1/°C) and AT is the temperature

difference.

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 6
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For short exposure time (tey, < 0.5 - L? /D7), the temperature distribution within the skin
depth S; is not uniform. The dimensionless coefficient § < 1 accounts for the non-
uniform diffusive temperature distribution within the sliding block. For long exposure
time (0.5 Ly /Dr < 0.5+ Lg/Dr < teyp) the temperature distribution within the blocks
is uniform and the block expands to maximum. The dimensionless coefficient £ < 1
accounts for the thermal expansion of the right portion of the block that does not

contribute to constraining the system thermal expansion (Pasten, 2013).

As the block expands, thermal stress is accumulating on the interfaces between blocks.
Thus, compressive stress is acting on the sliding block and it contracts elastically (6, m)

by the following equation:

Fmax LB
= —_— 4
5y E (Ly + 2) (4)

Where F,,, is described in eq. 1, and E is the Young’s modulus of the rock (Pa). Lg is
divided by 2 to account for the assumption that half of the sliding block towards the free

surface is not contributing to the compressive stresses around the wedge.
The joint elastic displacement (6;, m) before any plastic displacement takes place is:

1 Fmax
6- = —_— 5

Where k; [Pa/m] is the joint shear stiffness.

If §; = 67 — 8, there will be no plastic displacement. Replacing in this equation the
displacements described above (egs. 3, 4, 5), the maximum temperature change required

for imminent plastic displacement is:

Fmax E LW LB
ATpax = +—+—=
M @ d(texp) E|kj-Lg  H @ 2H

(6)

Where d(tcyp) is the material length subjected to thermal expansion:

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 7
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4.B.SdP texp<05LW/DT<05LB/DT
d(texp) = LW + 2 . :8 . Sdl 05 . LW/DT < texp < 05 - LB/DT (7)
LW+ELB+BS(1’ OSLW/DT<O5LB/DT<texp

If the external temperature exceeds AT, ., the sliding block will experience the following

displacement:

6}9 =67 — 65— 6 (8)
Later, Pasten has further developed the research, and validated the proposed analytical
expressions experimentally and numerically (Pasten et al.,, 2015a). He examined the
expected displacement and the failure mode for a range of geometric configurations, such
as the shape of the wedge and the inclination of the slope (Pasten et al., 2015b). Greif et
al. (2014) measured the displacement response of small sandstone samples to thermal
fluctuations, in order to validate Pasten’s equations for a range of block to wedge lengths
ratios. The researchers also determined the threshold temperature change at which
plastic deformation occurs, and their results are in agreement with the equations

suggested by Pasten (2013).

Taboada et al. (2017) also studied the wedging-ratcheting mechanism. They monitored
the displacement of a massive dolostone rock column, underlaid by weak layers of marl,
and the temperature in the Larzac Plateau, Southern France, for 30 months. They showed
that intra-seasonal short-term thermal cycles (ranging between 2-15 days) can cause
thermally induced displacement of the column. The mechanism is similar to the wedging-
ratcheting mechanism introduced by Bakun-Mazor et al. (2013), but Taboada et al. (2017)
concluded that short-term temperature fluctuations are playing a more significant role
than assumed previously. In Taboada’s work, the displacement vector in each short-term
thermal cycle is decomposed into two components: a reversible thermal displacement,
associated with thermal expansion or contraction; and a plastic deformation at constant
temperature, referred to as “thermo-mechanical creep”. During autumn and winter

seasons, short-term thermal cycles result in the most considerable plastic displacement

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 8
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towards the free boundary. During spring, the plastic displacement is also towards the
free boundary, but its magnitude is much smaller. During summer, the plastic
deformation is negligible. The velocity of the rock, as obtained by Taboada et al. (2017)

from field measurements, is ~1.2 mm per year.

1.2. Scope of research and objectives
In this study, the validity of the proposed wedging-ratcheting mechanism is examined
using numerical simulations with the three-dimensional distinct element code 3DEC. The
numerical results are compared with data obtained from lab experiments conducted by
another member of BGU rock mechanics research group, of a physical model in a

climatically controlled room.

The sensitivity of the model to geological and environmental variables such as duration
of heating and cooling cycle, surface temperature amplitude, frictional properties of

sliding interface, and thermal and mechanical properties of the host rocks are studied.

The final goal of this research is to create a theoretically based, numerically calibrated
and experimentally validated quantitative model for thermally controlled block
displacements. The predictive capabilities of the model are tested in the last part of the

thesis using the rock slopes of Mt. Masada as a case study.

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 9
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Chapter 2 - Research methods

To study realistic and complex heat transfer problems that apply to field cases, the
solution must be expanded to two and preferably three dimensions. This can only be

achieved by means of numerical approaches.

In this research, the proposed wedging-ratcheting mechanism is numerically simulated
using the Distinct Element Method (DEM) code 3DEC (Itasca Consulting Group Inc., 2013a)
developed by Cundall and colleagues (Cundall, 1988, Hart et al., 1988, Cundall and Hart,
1992). The theoretical foundation of this method is the formulation and solution of
equations of motion of deformable blocks using explicit (using Finite Difference Method)
time marching scheme (Jing, 2003). The code simulates the response of discontinuous

medium to static, dynamic or thermal loading.

2.1. Mechanical implementations in 3DEC
The distinct element method is a way to numerically simulate the mechanical behavior of
a rock mass (Cundall, 1988). The method has many other applications in rock and soil
mechanics, structural analysis etc. (Jing, 2003). In this method, unlike continuum-based
methods, the contacts between neighboring blocks are continuously changing with the

deformation process.

2.1.1 Representation of blocks and contacts
Blocks in 3DEC are represented as convex polyhedra. Different blocks are formed by
intersection of joints (or joint sets). Deformable blocks are further divided into a finite
number of constant strain tetrahedra, which means that there is no stress or temperature
gradient within a single zone. The tetrahedra have three translational degrees of freedom

at each vertex (Cundall, 1988), to form a mesh of finite volume zones.

Contact detection is done using the principle of common plane (Cundall, 1988). The
common plane bisects the space between two blocks (Figure 2.1). The code tests each
block separately for contact with the common plane. There are six types of block contacts
in 3DEC, contrived by the combination of vertex, edge and face. Using the principle of

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 10



Chapter 2 - Research methods

common plane, a single vertex-to-plane test is adequate, provided the blocks are convex.
Face and edge contacts are recognized by counting the number of vertex-to-plane
contacts. The algorithm for locating and moving the common plane is based on geometry

alone and is applied at every time step.

~—elastic string
rigid plate

blocks moved
together without —
rotation

blocks now touching; plate
has rotated and moved in

response to geometry of
‘ ’ blocks that touch it

Figure 2.1 - Visualization for positioning of common plane in response to block geometry (Cundall, 1988)

Contacts between two neighboring blocks are characterized by normal and shear stiffness
constants, represented by springs applied at the contacts in the normal and tangential

directions, and by friction angle, represented by a spring-slip surface series (Figure 2.2).

R

&)

Figure 2.2 - Representation of contacts (Jing, 2003)
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2.1.2 Equilibrium equations

Contact force update

As the deformation progresses, the contacts (or sub-contacts) must translate or rotate
continuously. Therefore, the relative velocity across a sub-contact is calculated by the
velocities of two opposing faces V and F (V; = V' — V). The velocity of tetrahedral

vertex located on the face is calculated in eq. 16 (see below).

For deformable blocks, the velocities Vl-V, ViF are calculated by linear interpolation of the

velocities of the vertices of the face:

VE =WV + W,VE + WVf (9)
Where W, , . are weighting factors, which can be determined by transforming the
coordinates of the three vertices of the face to a local coordinate system, which is co-

planar to the face (e.g., the new coordinates of vertex a are X, Y, ):

W = chb _ bec (10)
© = e =X OP =¥ — (¥e — YO (X? — X°)

The other weighting factors (W}, W.) can be calculated by circular permutation of the

superscripts.
The increment displacement across a sub-contact with unit normal n; is:

The displacement can be further resolved to normal and shear components along the

common plane (Figure 2.1):

AU™ = AUini
(12)
Using the incremental sub-contacts displacement, the force increment can be calculated

(taking compressive force as positive):

AF™ = —K,AU™A,
AF? = —K,AUS A,

1

(13)
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Where K,, and K are the normal and shear stiffness of the joint, respectively and A, is
the sub-contact area.

The total normal and shear forces are updated for the contact:

F* =F" 4+ AF"

(14)
Fis = Fis + AFiS

Deformable block motion

If blocks cannot be assumed rigid (as for the case of thermal expansion studied here), fully
deformable blocks permit internal deformation. During deformation process, the

acceleration of each vertex in the tetrahedral zone (often referred to as grid point) is:

_ fs O'l'jnde + Fi

m

+ (15)

i

U
The acceleration is an integral around the surface s, which encloses the mass m around
the grid point. g;; is the stress tensor and g; is the gravitational acceleration. F; is the
resultant of all external forces applied on the grid point, and is a sum of three
components: (1) Fil are the external applied loads. (2) Ff are the forces applied from sub-
contacts (only applies for grid points along block boundary). (3) F{ is the contribution of

the internal stress of the zone next to the grid point.

Velocity is calculated by central difference for each vertex, at each explicit time step, by:

At
1, (EFAE/2) = g (E=8e/2) | z Fi(t)a (16)

Where the superscripts denote the time at which the corresponding variable is evaluated

and:

Fi(t) = Grid point force (out-of-balance force), zero at equilibrium [N]
At = Time step [sec]

m = Element mass [kg]

Numerical simulations of block displacement due to temperature fluctuations
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Strain (€) and rotation (6) related to the grid point displacement during each time step

are calculated by the Green-Lagrange small strain tensor:

A .
Eij = E(ui’j + uj,i) (17)

. 1 . )
0ij =5 (j — 1) (18)
Using the appropriate constitutive relations, we can obtain the stress increments (see

2.1.3 for more information about constitutive models). The stress-strain relation is given

by:

AO'S' = AAEU(S‘U + ZMAEU (19)

Where:

A, u = Lame constants [Pa].

Aaiej = Elastic increments of the stress tensor [Pa].
A€, = Increment of volumetric strain.

Ag€;j = Incremental strains.

8;j = Kronecker delta function.

Mechanical damping

Adaptive global damping is applied to deformable blocks to absorb kinetic energy. This
numerical “servo-mechanism” adjusts the damping automatically, using viscous damping
forces that are continuously adjusted, so that the energy absorbed by damping is a

constant proportion of the rate of change of kinetic energy.

2.1.3 Constitutive model
Rock mass response to internal and external loads primarily depends on the constitutive

models of both the intact rock and the joints intersecting the medium. This section will
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briefly introduce the basic concepts of the constitutive models that have been used in this

research.

Intact block constitutive model

The intact material in this research is assumed elastic isotropic, i.e. stress-strain laws are
linear and path-independent. This model was preferred to Mohr-Coulomb plasticity
model because it is the simplest form of material behavior and, in this research, failure
occurs exclusively on joints while intact rock deforms elastically under the applied thermal
stresses but never reaches material failure. Another reason for choosing the elastic
isotropic model is that it only requires three material properties instead of six parameters

required for the Mohr-Coulomb plasticity model.

In this model, stress increments depend on strain increments according to the linear and

reversible Hooke’s law shown in eq. 19 (ITASCA Consulting Group Inc., 2013c).

Joint constitutive model

The model chosen to represent the material behavior of discontinuities in this research is
the Coulomb-Slip joint model (ITASCA Consulting Group Inc., 2013c). This model
represents a linear joint stiffness and joint shear strength (yield limit, Figure 2.3), based
on the joint normal and shear stiffness (K,,, K) and friction angle (¢). This model also
allows consideration of interface cohesion, tensile strength and dilation angle, which in
this research are all assumed zero. The interfaces modeled here are preexisting with no
connecting forces between them, hence the zero cohesion and tensile strength; the
discontinuities are perfectly smooth and hence the zero dilation angle. In addition, no

surface degradation is assumed after the onset of plastic sliding across the interfaces.

According to Coulomb friction law, the maximum shear force allowed before plastic

deformation is:

E3 o = F*tan ¢ (20)
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Where F™ is the normal force applied on the joint. When the shear force (F*) applied to
the joint exceeds the force limit (F; 4, ), shear failure will occur, and the shear force (F/,
eq. 14) will update again as follows:
FS

FS

Since dilation is not allowed, no update in the normal force is needed.

F's ES Fis

l

Shear
stress I
T, / , increasing normal
/. : - effective stress
3 a,

|

Ak
: . -
- Shear displacement u

Figure 2.3 - Coulomb slip-joint model (ITASCA Consulting Group Inc., 2013c)

2.1.4 Verification problem - sliding under gravity loading
A 3DEC verification using a simple problem of block sliding on an inclined plane is
presented below for a frictional interface subjected to gravitational loading only. The
model is presented in Figure 2.4. The inclination angle of the sliding plane is « = 25°, and
the friction angle of the interface is ¢ = [5°,10°,15°,20°]. The displacement of the block

down the sliding surface, for t = 1 second, is given by:

d(t) = %g(sina — cos atan ¢)t? (22)

Where g is the acceleration of gravity.
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3DEC DP5.00

©2016 ltasca Eﬂsuﬂing Group, Inc.
Step 0
27/06/2017 16:37:23

Block

Colorby: Block Group Slot: Any
Sliding block

Sliding surface

Figure 2.4 - Model configuration for sliding on an inclined slope verification

3DEC simulations (Appendix A) of the problem were performed on the model presented
in Figure 2.4, after initial equilibrium has been achieved (the sliding block starts at rest).
The numerical input parameters are summarized in Table 1. To prevent internal

deformation of the blocks during sliding, both blocks are assumed rigid in this verification.

Table 1 - 3DEC model numerical data, sliding on an inclined slope

Parameter Symbol Units value
Shear stiffness K GPa/m 0.5
Normal stiffness K, GPa/m 5
Damping factor B - 0
Time step At Seconds 1.4752E-4

A good agreement between the numerical (3DEC) and the analytical solution has been

obtained (Figure 2.5). The numerical error (ey, defined in eq. 23) at the end of the sliding
(t = 1sec) is 0.1% to 0.2%.

Numerical simulations of block displacement due to temperature fluctuations
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d, —d
u| -100% (23)
dy

ey =

Where d, and dy is the analytical and numerical solutions, respectively.

Block sliding on an inclined slope, gravity only

& Analytical VS. 3DEC solution

— Analytical solution
® ¢ =20°
® $=15°
¢ =10°
® $-=5°

1.6

Dip direction displacement (m)
o o o - =
£ o (-} — ~ £

o
~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (seconds)

Figure 2.5 - Sliding block displacement vs time for friction angles ranging between 5°-20°.

2.2. Heat conduction in 3DEC
3DEC allows simulation of transient heat conduction and, consequently, the thermally
induced displacements and stresses. Thermal volumetric strains are associated with
incremental mechanical constitutive laws (eg. 19) to account for thermomechanical

coupling (ITASCA Consulting Group Inc., 2013d).

2.2.1 3DEC thermal formulation
Fourier’s law of heat conduction is solved in 3DEC using an explicit finite difference
method based on medium discretization to tetrahedral zones (2.1.1). A linear
temperature gradient is assumed within each tetrahedron (ITASCA Consulting Group Inc.,

2013d), as follows:

Numerical simulations of block displacement due to temperature fluctuations
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4
1
=1

Where nj(l) is the unit vector normal to facel, S is the face surface area and V is the

tetrahedron volume.

The temperature difference of node n in time t is:
dTr" _ [ Z
dt - Z[m QT Qapp (25)
where m is the mass, C, the specific heat, and Q7 are the global nodal values of heat (out-

of-balance heat):

QF = Cp,T’ (26)

where C,; is the global matrix and T is the global vector of nodal temperatures.

ZQZ{I,I, is the known contribution of applied heat sources, and is irrelevant for this

research (no heat sources in the host rock are assumed).

Eq. 25 for all nodes forms a system of ordinary differential equations, solved in 3DEC using
an explicit finite difference scheme. The temperature at a node is assumed to vary linearly

over a time step At:

T2t+At> = 2t> + ATgt> (27)
where:
ATZ, = x"[QF_.] (28)
n At 29)
X = 29
3[me ]

When using the explicit scheme, to ensure convergence, the time step At must be
sufficiently small and, based on empirical results, should be constrained by the following

expression:

Numerical simulations of block displacement due to temperature fluctuations
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1 L2
At < ——= (30)
m Dy
where Dy is the thermal diffusivity, m is a constant that depends on discretization, and

L. is the smallest tetrahedron characteristic length, defined as:

volume

, . The thermal strain increment due to thermal expansion is
surface area exchanging heat

given by:

Aeij = CZAT&U (31)

Heat transfer is coupled to thermal stress by:

where:

K = Bulk modulus [GPa]

8;; = Kronecker delta.

a = Thermal expansion coefficient [1/°C]
AT = Temperature difference [°C]

2.2.2 Verification problem — conduction in a plane sheet
In this section a verification of 3DEC using a problem of heat conduction in a finite slab
(modified after ITASCA Consulting Group Inc. (2013d)) is presented. A three-dimensional
block of thickness L = 0.8m is heated on the plane x = 0 with a prescribed temperature
T = 30°C for three different exposure times. The plane x = 0.8m is kept at temperature
of zero (see Figure 2.6). The initial temperature of the block is 0. The mathematical
expression of the problem is:
(T D o°T 0<x<08 t=0
ot Tax2r T TETS RS
T(x,0) =0 (33)
[T(0,t) =30=T,
T(0.8,t) =0

The analytical solution of this problem is given by Carslaw and Jaeger (1959):

Numerical simulations of block displacement due to temperature fluctuations
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T(x,t) x 2v1 _(nﬂ)zD . . MIX
=1 L) T sin— 34
T, L +nzn ST (34)

n=1

where Dy is the thermal diffusivity of the block.

3DEC DP5.00 96

©2016 Itasca C?nsuhing Group, Inc
Academic Model

Temperature 0.5

| 3.0000E+01

2.8000E+01
2.6000E+01 0.4
2.4000E+01
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2.0000E+01 0.3
1.8000E+01
1.6000E+01
1.4000E +01 0.2
1.2000E +01
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8.0000E+00
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4.0000E+00
2.0000E+00
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Figure 2.6 - Temperature gradient in a block

Temperature distribution profiles in the block are presented in Figure 2.7 for three
different exposure times. The numerical solutions closely match the analytical solution.

We find that the numerical solution is independent of tetrahedron size or thermal time

step (Appendix B).
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3DEC DP5.00|

©2016 ltasca ansuﬂing Group, Inc

Academic Model 0.9
Step 2236
29/06/2017 16:21:36
Table 0.8

1 3DEC 10,000 sed]
2 Analytical 10,000 sec|
3 3DEC 50,000 sed] 0.7
4 Analytical 50,000 sec|
5 3DEC 100,000 sec
6 Analytical 100,000 sec
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Figure 2.7 - Comparison between analytical (lines) and numerical (crosses) solutions for heat conduction in
a plane sheet. Three different exposure times of the block to a constant temperature at x/L=0. The other
end (x/L=1) is kept at zero temperature.
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Chapter 3 - Validation of the wedging-ratcheting mechanism with

3DEC using physical test results

The research presented in this thesis is divided into two parts: (1) numerical calibration
using laboratory experiments, and (2) examination of a case study from Mount Masada,
Israel. As the main tool of examination in this study is numerical, we must verify our
results with known solutions. Part of this process has been described earlier, in the
mechanical (section 2.1.4) and thermal (section 2.2.2) verifications. However, an
examination of a real case study requires a coupled thermo-mechanical approach, which
was not compared with an analytical solution in the previous chapter, as there is no such
solution available. Instead, we compare the numerical results with experimental results
obtained from a physical model in a climatically controlled room. We then use the same
numerical control parameters as calibrated in the validation study, in the analysis of the

case study. A flowchart summarizing the working procedure is presented in Figure 3.1.

Verification of 3DEC

using analytical solutions, mechanical and thermal

Validation of the numerical model and calibration of numerical control parameters

using a physical model in a climatically controlled room

Numerical simulation

A case study from Masada, Israel

Figure 3.1 - The working procedure of this research
In his work, Feldheim (2017) — an M.Sc. student of the rock mechanics research group at
BGU — modeled the proposed wedging-ratcheting mechanism experimentally using a
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physical model. He built a large-scale concrete model (Figure 3.2) and conducted
experiments in a climatically controlled room, to check the validity of the mechanism and

the analytical solution suggested by Pasten (2013).

Wedge
bck

b |
'y

0.6 m

Figure 3.2 - Concrete physical model (Feldheim, 2017). A sketch denoting the locations of the thermocouples
and the joint meters is presented in the lower left corner (length in meters).

3.1. Thermomechanical properties of the concrete
Prior to the experiments in the climatically controlled room, a few tests were designed to
find the thermal properties of the concrete. In addition, triaxial and direct shear tests

were performed to determine the mechanical properties of the concrete material.

3.1.1 Thermal diffusivity
A block of concrete of length of 28 cm was subjected to a constant temperature of 50 °C

on its opposing faces. Seven thermocouples were installed in the concrete during its

Numerical simulations of block displacement due to temperature fluctuations
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solidification (Figure 3.3). To minimize heat flow through the side of the block, the block

was covered with an isolation foam.

LVDT

m H -4 2 4 ) & 7z |

Thermocouples

Figure 3.3 - Model sketch for experimental determination of thermal diffusivity.

During the experiment, a data logger records the temperature of all thermocouples with
a time interval of one minute. Average values of two opposing thermocouples at the same
location relative to the center (e.g. 1 and 7, 2 and 6, etc.) were calculated. The concrete
temperature relative to the boundary temperature was plotted as a function of the
relative location (dimensionless plot), for every hour. These curves were compared to
time factor (T) curves plotted using the following equation (Carslaw and Jaeger, 1959):
v_ 1 f = (-n™ e_(2n+14)2n2T cos 2n + Dnx (35)
%4 T 2n+1 21

n=1

where:

v = Thermocouple temperature, °C
V' = Boundary temperature, °C

x = Thermocouple location, m

[ = Block half-length, m

Numerical simulations of block displacement due to temperature fluctuations
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2
T = Time factor, dimensionless, depends on thermal diffusivity (k, ::7), time ( t, sec), and

block length (I, m):

_Kt

T = = (36)

Correspondence curves for several values of time factor (T) were matched to the
temperature profiles in the block that were recorded during the test (Figure 3.4). Thermal

diffusivity was then calculated using the time elapsed and the corresponding time factor

(Table 2).
1 T T T T T T
T=-1.0
T-08
0.8 B
— 05 —t =0hrs
0.6 =t —1hrs|+
2 T= t =2hrs
> —t =3hrs
0.4 /= ——t =4hrs|
t —shrs
o -t —6hrs
0.2 —t =7hrs|
——t =8hrs
T-01 t =9hrs
O | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x/1

Figure 3.4 — Temperature profiles in the block after several periods of heating (colors) and time factor curves
plotted using eq. 35.

Table 2 - Thermal diffusivity calculation.

T t (seconds) Kk (1077m?/sec)
0.3 3*60*60 5.444
0.5 5*60*60 5.444
0.6 6*60*60 5.444
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This experiment suffers from some inaccuracies. Even though the concrete beam was
covered with the insolation foam, heat could still flow through the block boundaries. The
actual thermal diffusivity, therefore, can be expected to be greater than the diffusivity

obtained in the laboratory experiment.

3.1.2 Thermal expansion coefficient
The same block, a diagram of which is presented in Figure 3.3, was heated in an oven to
reach a uniform temperature of 50°C. Then, it was put in a room under ambient
temperature of approximately 20°C. Potentiometer displacement transducer recorded
the block contraction as it cooled under ambient temperature. The block cooled relatively
uniformly, and an average of all seven thermocouples was calculated. An average of 10

temperature measurements at roughly one-hour intervals is used to plot Figure 3.5.

%107

Axial strain

-2 ! 1 1 !
20 25 30 35 40 45

Temperature, °C

Figure 3.5 - Axial strain vs. average temperature in cooled block. The thermal expansion coefficient is the
slope of the linear trend line.

The linear thermal expansion coefficient («;) was calculated using the following equation

(the slope of the trend line):

dL 1
=——=316-10"° 37
a, [ d 3.16-10 (37)
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where:

d . .

TL = Axial strain

dT = Temperature change, °C

3.1.3 Uniaxial compression test
A uniaxial compression test was performed using a TerraTek triaxial testing system, model
FX-S-33090. The stiff load frame operates using a closed-loop, servo-controlled hydraulic
piston of maximum axial force of 1.4 MN and stiffness of 5x10° N/m. The results of this

test are presented in Figure 3.6.

70
60 —
qu c0 //‘/7'
=
0 40
(7))
o
v 30| —axial strain
-5 »o —radial strain 1
< radial strain 2 Young’s Modulus = 24.486 GPa
10 —volumetric strain ,
=linear fit R” =0.999
0 I 1
-20 -15 -10 -5 0 5

Strain %107

Figure 3.6 - Uniaxial compression test results of the concrete used in the physical model. A red line marks
the elastic region from which the Young’s Modulus was determined.

Young’s Modulus (E) is defined as the ratio between the axial stress and the axial strain
in the elastic region, and is calculated by the slope of the linear fit of the stress-strain

curve, so that E = 22xial — 24 486 GPa.

€axial

Poisson’s ratio (v) is calculated by the slope of the linear fit of the mean radial strain vs.

axial strain curve in the elastic region, so that v = % = 0.2513 (Figure 3.7).
axial
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Figure 3.7 — Mean radial strain vs. axial strain in the uniaxial compression test. Poisson’s ration is defined as
the slope of the linear fit of the curve in the elastic region.

3.1.4 Direct shear
Joint parameters of the concrete-concrete interface were determined using two different

direct shear apparatus:

(1) A hydraulic, closed-loop, servo-controlled, direct shear system manufactured by
TerraTek Systems, consisting of two servo-controlled pistons with normal and shear load
capacities of 1000 kN and 300 kN, respectively. Vertical and horizontal displacements are
monitored by four and two LVDT transducers, respectively, each of 50 mm range and 0.1%
linearity full scale. Direct shear tests were performed under an imposed constant normal
stress condition and once the normal load target was reached the interfaces were sheared
under a controlled displacement rate to a target distance of 2 mm. Once the target
displacement was reached the normal stress was elevated to a new target and shear
resumed. These normal and direct shear test segments were repeated several times. A
plot of the normal segments is shown in Figure 3.8. The normal stiffness (K,,) is calculated
in Figure 3.8 by the slope of the elastic region of the normal stress (a,) - vertical

displacement (u,) curve, so that K, = % = 5MPa/mm.
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(2) Low load Digital Shear Machine, manufactured by ELE International, used to resolve
as accurately as possible the shear stiffness for the tested concrete interfaces. Normal
stress is applied in this test manually, by adding weights. After the normal stress is
applied, shear force is applied to the shear box. Vertical and horizontal displacements are
monitored by two LVDT’s. Shear stiffness (Ks) is extracted from the slope of the shear
stress () - horizontal displacement (u) curve for each normal stress segment in both

experimental settings.

Direct shear tests using both apparatuses allow us to determine joint parameters over a
wide range of normal stresses. Since shear stiffness is dependent on the applied normal
stress, a linear regression is used in Figure 3.11 to determine this parameter for the case

of the physical model, where the normal stress between the sliding block and the sliding

surface is 0.013 MPa, so that K = 5 = 0.5 MPa/mm.

6 T T

o (MPa)

0 1 1
2.8 3 3.2 34 3.6 3.8 4 4.2

vV (Mmm)

Figure 3.8 - Normal stress vs. vertical displacement. The Normal stiffness is defined as the slope of this curve
in the elastic region (red line).
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Figure 3.9 — Direct shear tests with the low force ELE system
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Figure 3.10 — Direct shear tests with the high force TerraTek system.
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Figure 3.11 - Shear stiffness vs. normal stress.
The friction angle for the tested concrete interfaces was determined from the results of
the servo-controlled tests using linear regression and assuming Coulomb friction. The

representative friction coefficient is thus the slope of the linear regression curve in Figure

3.12.
2.5 . ' '
5L |
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Figure 3.12 — Results of segment direct shear tests performed on the concrete interface in peak shear stress
—normal stress space
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3.2. Experimental settings in the climatically controlled room
The physical model shown in Figure 3.2 was transferred to a climatically controlled room,
where the experiments were carried out. The sliding surface was connected to a table
inclined 15° with respect to the horizontal. The rock mass and the sliding surface were

fixed during the experiment, and the wedge and the sliding block were free to move.

During concrete preparation and solidification, thermocouples were installed inside the
sliding block and the wedge block to monitor temperature propagation during the
experiments. Two types of displacement monitoring devices were used to track sliding
block and wedge displacement: (1) Vibrating Wire crack meter (VW) with a range of 15
millimeters and non-linearity of 0.09% full scale, and (2) potentiometer with a range of

10 millimeters and non-linearity of 0.1% full scale.

Since displacement meters may be sensitive to temperature changes, at each location
both types of displacement meters were installed (see Figure 3.2 for thermocouples and
displacement meters configuration). The displacement meters measuring the wedge
displacement were positioned on opposing sides of the model. In addition, a high-
resolution camera tracked the displacement across the joint that separates the sliding
block and rock mass. A data logger (CR 1000) recorded all data and stored it in a computer.

The course of the experiment was as follows:

1. Room temperature increased to 35°C.

2. Block temperature equilibrates with room temperature (uniform temperature
distribution).

3. Room temperature decreased to 5°C.

4. Block temperature equilibrates with the new room temperature (uniform
temperature distribution).

5. Data logger records displacement and room temperature every three minutes.

6. Next cycle of heating and cooling is initiated, etc.

Thermo-mechanical properties of both intact concrete and concrete-concrete interface
were determined experimentally and the results are summarized in Table 3 below.
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Table 3 - Thermo-mechanical properties of the concrete used for experiments

Parameter Symbol Units Value
Elastic modulus E GPa 24.486
Materla.l Poisson’s ratio v - 0.2513
properties
Bulk density p Kg/m3 2140
Friction angle ) ° 21.28
Joint . Normal stiffness K, GPa/m 5
properties
Shear stiffness K, GPa/m 0.5
Therr'n?I expansion “ 10/°C 316
Th ; coefficient
erma. Thermal diffusivity Dy 107m?/sec 7.82
properties Specific heat
pecitichea C, 1/kg/K 850

capacity (assumed)

3.3. 3DEC validation
Mechanical and thermal verifications for 3DEC using analytical solutions were presented
and discussed in sections 2.1.4 and 2.2.2. The physical model is used to calibrate and

validate thermo-mechanical computations with 3DEC.

The physical model geometry was reproduced in 3DEC as shown in Figure 3.13; the
simulation code is provided in Appendix D. Blocks were discretized using a uniform mesh
with an average edge length of 4 cm; for discussion of the sensitivity of the code to mesh
and element size see section 3.4. Thermo-mechanical properties were assigned to the
concrete and the interfaces as listed in Table 3, and boundary conditions, in particular the
temperature time-histories, were applied on all exposed faces of the three-dimensional
model. The model is fixed in the normal direction behind the rock mass, and in all
directions at the bottom of the sliding surface. 3DEC simulations (see 3DEC code in
Appendix C) began after initial equilibrium was obtained. Before any thermal loading, and
under gravity only, the model was adjusted to block cutting, mesh generation, and to the
applied boundary conditions. An elastic stress field was applied by running the model until

force equilibrium was reached (Figure 3.14). During that process, blocks were settled, and
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displacement took place across the joints. The unbalanced force (eq. 16) and the
settlement of the sliding block as obtained for the vertex shown by red point in Figure

3.13, were used to monitor the “stepping to initial equilibrium” phase.

3DEC DP 5.00

©2016 ltasca (%nsulting Group, Inc.

Step 0
06/08/2017 16:19:05

Block
Colorby: Block Group Slot: Any

Rock mass
Sliding block
Sliding plane
Wedge

History Locations

. Z-Displacement vertex 1674

Figure 3.13 — Wedging-ratcheting 3DEC model. Location of sliding block settlement marked with a red
sphere.

Stepping to initial equilibrium <10

"
wn

Maximum out of balance force (N)
I
Sliding block settlement (m)

0 0.2 0.4 0.6 0.8 1 12 14 16 1.8 2
Steps x10*

Figure 3.14 - Model stepping to equilibrium. The left vertical axis (blue) is the maximum unbalanced force in
the system (=zero when equilibrium obtained) and the right vertical axis (red) is the vertical displacement of
the red sphere in Figure 3.13.

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 35



Chapter 3 - Validation of the wedging-ratcheting mechanism with 3DEC using physical test results

Displacement histories of the sliding block and the wedge were recorded for grid points
or sub-contacts at the exact same locations as the displacement meters in the physical

model (Figure 3.2).

Displacements of the sliding block and the wedge (displacement meters 1 and 2 in Figure

3.2, respectively) as obtained with 3DEC and in the lab, are plotted in Figure 3.15.

temp.
(°C)

Sliding
block
disp. (mm)

Wed ge —3DEC s_olutio-n
disp. (mm)

f

Time (days)

Figure 3.15 - Comparison between lab and numerical results for sliding block (b) and wedge (c)
displacements, due to temperature oscillations (a). Output from both types of joint meters and the camera
are presented. In figure (b), displacement down the slope is defined as positive. In figure (c), wedge
displacement down the opening crack is defined as negative.

The temperature profile of the experiment as shown in Figure 3.15 (a) represents three
cycles of heating and cooling, or three whole years (three cycles of summer and winter).
The sliding block and the wedge block displacements computed by 3DEC are in
accordance with the physical model displacements as obtained with the potentiometer
and the VW transducers. When temperature is increased, the sliding block slides down
along the sliding surface (Figure 3.15 (b)). As a result, the wedge slides down the opening
joint (Figure 3.15 (c)). When temperature drops, the sliding block contracts a bit, allowing
the wedge to slide further in the opening aperture. The wedge is not sliding up the joint
and the failure continues in the same direction for the consequent cycles. Note that the

wedge is sliding down in both heating and cooling phases.
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It seems that the Vibrating Wire transducer is more sensitive to temperature changes.
When temperature drops, the measurement shows that the sliding block contracts
considerably so that the block toe, where VW 1 is located, slides up the surface a
significant distance of ~ 0.6 mm. Still, a cumulative displacement down the sliding surface
through the thermal cycles is clearly observed, and is equal to both displacement meters

output, as well as the camera measurements (Feldheim, 2017).

3.4. 3DEC sensitivity analysis to numerical control parameters
The choice of the numerical control parameters used to validate 3DEC simulations against
the laboratory experiment proved not a simple task. We found that the numerical results

for different mesh sizes, time steps, and damping factors, could change significantly.

In this section, we study the effect of the numerical control parameters on the cumulative
displacement of the sliding block (Figure 3.15 (b)). This displacement was chosen for the
sensitivity study because this is the critical displacement that causes slope failure, and
because the two displacement meters (VW and potentiometer) are showing the same

cumulative displacement (at the end of the experiment and at the end of each cycle).

For all simulations, thermal and mechanical properties of the concrete and the interfaces
remain constant. A range of mesh sizes, defined by the average edge length of the
tetrahedral zones, was assigned to the model. For shorter edge length, the mesh is finer,
and the model contains more zones. The zones in 3DEC are constant strain zones, which
means that there is no stress gradient within a single zone. Sufficient discretization needs
to be defined in order to represent the expected stress gradient with an adequate

accuracy. Thus, a finer mesh should yield a more accurate result.

Twelve mesh sizes were simulated, each with six different time intervals. The mesh size
was scaled by the ratio between the tetrahedron length 3 and the length of the sliding
block Lg with ratios [/ Ls varying between 2% and 16%. The thermal time step interval was
varied between 5 s to 30 s. Clearly, with decreasing element size the numerical solution

accuracy is expected to increase, however the CPU time also increases very significantly
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with mesh refinement; therefore, a satisfactory balance must be sought. With the aid of

the physical model results, the most representative solution can be found.

The results of the sensitivity analysis to element and time step size are presented in Figure

3.16.
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Figure 3.16 — 3DEC simulation sensitivity to numerical control parameters. Different edge lengths (upper
horizontal axis) tested for different thermal time steps (colors). The lower horizontal axis expresses the size
of edge length relative to sliding block length, in percent. The dashed line is the cumulative sliding block
displacement obtained in the laboratory experiment by potentiometer #1.

Inspection of the results displayed in Figure 3.16 reveals that the 3DEC solution is very
sensitive to the thermal time step size and less sensitive to the element size. The
cumulative displacement is much greater for smaller time steps. Moreover, the
discrepancy in displacement between numerical and physical model results increases
with decreasing thermal time step. For a constant thermal time step, especially smaller
steps, the solution remains almost constant for different mesh sizes. For thermal time
steps greater than five seconds, it seems that the solutions converge towards the physical

test result with increasing discretization.
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There are few possible explanations for the influence of thermal time step and mesh size

on the numerical solution:

1.

Temperature changes are too rapid for the model to remain in mechanical
equilibrium. 3DEC default is to execute one mechanical time step for every
thermal time step. When multiple mechanical steps are executed between each
thermal cycle, however, the results remain the same.

Generation of more zones results in more sub-contacts between elements. Sub-
contacts in 3DEC are represented by springs (section 2.1.1). Excess number of
springs may generate excess elastic energy as the block slides, adding to the
system real energy, resulting in an artificial stresses and displacements, in our
case, when the ration is smaller than 5%.

For large number of zones, 3DEC solution requires more cycles. Rounding error
may become considerable in problems that run for a large number of cycles with

a low applied velocity (ITASCA Consulting Group Inc., 2013b).

Considering the results of the sensitivity analyses, we find that a mesh discretized with

tetrahedron length of about 5% of the sliding block length in the direction of sliding,

namely an edge length of 4 cm, is sufficiently accurate; this mesh can produce valid results

based on laboratory experiments. The explicit thermal time step is calculated by eq. 30

and equals to 30 seconds.

3.5.

3DEC sensitivity analysis to thermal and mechanical input parameters

Once an appropriate mesh size and thermal time step were set for this model, and results

were validated using laboratory experiments, we can explore the influence of rock

thermal and mechanical parameters on the magnitude of displacement and how

significant their role is in the wedging-ratcheting mechanism. To avoid solution instability,

as discussed in the previous section, the applied temperature was smoothed as follows:

where:

T(t) =Ty + A=*sinwt (38)
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T, = Initial temperature (= 20°C)

A = Amplitude (= 15°C)

w = Daily frequency (= ley)

t =Time (= 10 days)

In the physical model experiment that was reproduced in 3DEC, heating and cooling cycles
were long enough (approximately three days, Figure 3.15) for the entire model to reach
a uniform temperature. Therefore, the sliding block and the wedge are expanding to
maximum during each cycle. Shorter period ensures that the temperature distribution
within the block will not be uniform, thus allowing differences in the depth of the heat
front within blocks, and the sensitivity of the results to different thermal diffusivity can
thus be tested. Here the rock mass and the sliding surface are fixed during all simulations,
in contrast with the lab validation, where only the velocities parallel to the outward
normal to the faces of the block were set to zero. The cumulative displacement, defined
by the total displacement of the sliding block after ten days of heating and cooling, is

compared for a typical range of the relevant parameters.

As we examine a thermally induced mechanism, we would like to study the effect of the
thermal properties of the rock. The effect of the combination of the mechanical and

thermal properties on the displacement will be further discussed in section 5.1.

3.5.1 Thermal expansion coefficient
This parameter determines the amount of dilation of the block in response to
temperature change. Greater values of thermal expansion coefficient produce greater

thermal strains in the rock.

In the model, thermal strain works in both directions. During heating phase, the blocks
are expanding, resulting in a dip direction displacement of the sliding block, since the
wedge prevents its expansion in the other direction. When the blocks are subjected to

decreasing temperature, they contract. The sliding block contracts on both sides,
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including some contraction of the sliding block’s toe “up the slope”. The cumulative
displacement after ten days of heating and cooling for typical rock thermal expansion

coefficient values is shown in Figure 3.17.
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Figure 3.17 — Cumulative displacement as function of the thermal expansion coefficient. Red cross marks
the concrete thermal expansion coefficient used for the physical model.

As expected, the cumulative displacement is greater for greater values of thermal
expansion coefficient. In each cycle, the sliding block expands more with increasing value
of thermal expansion coefficient, consequently leading to greater cumulative
displacement. Furthermore, with increasing thermal expansion coefficient the sliding
block contracts more during cooling cycles, prompting larger joint opening, and allowing
further downward displacement of the wedge. Greater thermal strains lead to greater
plastic displacement, even though the thermal strain itself is reversible, due to the

wedging mechanism.

3.5.2 Thermal diffusivity
The thermal diffusivity parameter (D) determines how fast heat propagates in the

medium, defined by:
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(39)
where:

k = Thermal conductivity (W /m/K)

p = Bulk density (kg/m3)

C, = Specific heat capacity (//kg/K)

In the sensitivity analyses, the thermal diffusivity of the blocks in the model is varied
between simulations, in the range of typical rocks. All other parameters remain constant

(Table 3).

The minimum thermal time step allowed is inversely proportional to the thermal
diffusivity (eq. 30). The time step must be reduced with increasing thermal diffusivity, and
therefore cannot be set to the optimal 30 seconds for high values of thermal diffusivity,
as determined in the 3DEC sensitivity analysis to numerical control parameters section.
For this section only, and for the sole purpose of studying the influence of thermal
diffusivity on the displacement, the thermal time step was decreased to 10 seconds in
this sensitivity analysis. This way we can prevent the influence of numerical parameters,
e.g. the thermal time step, on the displacement as discussed in section 3.4. The mesh size
was not changed, and was fixed at an average edge length of 4 cm. The result of this

analysis is shown in Figure 3.18.
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Figure 3.18 - Cumulative displacement, after ten cycles of heating and cooling, as function of thermal
diffusivity. Red cross marks the thermal diffusivity of the concrete used for the laboratory experiment.

Heat wave propagates further in the rock with greater diffusivity as is illustrated in Figure
3.19. As more elements within the block are subjected to change in temperature, the
block expands more in the model with higher conductivity, and therefore the
displacement is expected to be larger. Figure 3.19 presents temperature distribution

within blocks when boundary temperature reaches maximum value.
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Figure 3.19 — Cross-section of 3DEC model that simulates the physical model (Figure 3.13) with temperature
distribution within the blocks in the middle of the second heating cycle, when boundary temperature reaches
maximum value (red circle in the upper panel). Heat propagates further in the block with higher thermal
conductivity (right panel).

3.5.3 Joint parameters
In this section, we discuss the sensitivity of the numerical model to input joint parameters,
specifically the shear stiffness and peak friction angle. Clearly, the frictional resistance to
sliding is expected to increase with increasing value of these two interface material

parameters.

With increasing shear stiffness, as would be characteristic of rough interfaces with
relatively strong asperity material, during application of shear load the joint can absorb
more elastic strain that would have been otherwise translated to block displacement. The
amount of plastic displacement, therefore, is expected to be much higher under the same
remote loading configuration when the shear stiffness is lower, as would be characteristic

of smoother surfaces or interfaces with weaker asperity material.

Results of 3DEC simulations of the physical model under a range of joint stiffness values
characteristic of rock joint interfaces are presented in Figure 3.20. The modeled

cumulative displacement of the sliding block is rather sensitive to the input shear stiffness
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value up to shear stiffness of about 1 MPa/mm, beyond which the results are not affected

by the stiffness of the interface.
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Figure 3.20 — Modeled cumulative displacement as function of the shear stiffness of the joint. Red dot marks
the concrete shear stiffness used for the laboratory experiment.

The estimated variance in displacement in the numerical model to input friction angle is
intuitively expected. For smaller friction angles, the frictional resistance of the sliding
surface is reduced, and the sliding block therefore would be expected to exhibit larger
displacement. 3DEC results simulating the physical model for a range of interface friction
angles and a joint stiffness value of 0.5 GPa suggest otherwise, however. The results of
the simulations (Figure 3.21) reveal that the total cumulative displacement of the block
for the tested range of friction angles is not affected very much by the actual value of the
input friction angle. Since all values of friction angles tested in the simulations are higher
than the inclination of the sliding surface, the obtained displacements are clearly
thermally induced. Note also that the friction angle in the numerical model cannot be
reduced below 20° even though the interface inclination is 15 degrees, because in reality
the wedge applies an additional horizontal force on the sliding block that could prompt a

displacement of the sliding block in the numerical model. In the physical model the
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available friction angle of the sliding interface was greater than 20 degrees thus arresting

this driving mechanism in the laboratory experiment.

The influence of interface friction on the amount of plastic displacement appears to be
rather small in the wedging-ratcheting mechanism. Although this result is not
immediately intuitive, we can explain it if we consider that thermal expansion and
contraction remain the same for any given temperature gradient, regardless of interface
friction. The main parameter that drives the thermally induced displacement, the
expansion and contraction of the sliding block and of the wedge, remains unchanged,
because in contrast to the shear stiffness of the interface, the friction angle cannot absorb

the thermally induced elastic displacements.
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Figure 3.21 - Cumulative displacement as function of joint friction angle. Red dot marks the friction angle of
concrete-concrete interface used in the laboratory experiment. Joint stiffness (K) was kept constant at 0.5
GPa for all simulations.
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Chapter 4 - Application of the wedging-ratcheting mechanism to a
field case study

4.1. Introduction
The Masada world heritage site is an old fortress located in the Judean Desert in Israel. It
was built on a steep mountain by King Herod the Great more than 2000 years ago. This
important monument attracts nearly one million tourists each year. Twenty years ago,
during the construction of a new cable car station at the top of the snake path cliff a block

displacement was observed, threatening the safety of the workers and the project.

Mount Masada is an uplifted horst located on the western margins of the Dead Sea rift
valley. This area is seismically active and experienced many earthquakes in its history
(Figure 4.1). The mountain consists mainly of strong carbonate rocks (limestone and
dolomite). The rock mass, however, is highly discontinuous and consists of several
intersecting joint sets (Hatzor, 2003), creating several removable keyblocks that endanger
the designed bridge that connects between the new cable car station and the Snake Path
Gate. A particular block, resting directly above the proposed bridge, was marked as
hazardous during site investigations in the late 1990’s, and an extensive research was thus
conducted to investigate potential failure modes, current factor of safety, and alternative
support measures. Block displacement was monitored using four different LVDTs that
were positioned in various locations between the block and the rock mass for the duration

of the construction period.
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Figure 4.1 - Earthquakes locations since 1950 (The Geophysical Institute of Israel, 2017)

4.2. Geometry and material properties of the removable block
The steep east face of Mount Masada (Snake Path Cliff) is intersected by two orthogonal
sets of sub vertical and persistent joints, one striking NNE and the other striking ESE.
Spacing between joints in each set is ranging between 5 to 10 meters. Bedding planes are
dipping 20° SE. Intersection of members from all three joint sets generate the removable
block (Figure 4.2) on which this section is focused (Hatzor, 2003). The study on the East
face by Hatzor (2003) of Mount Masada was complemented by Bakun-Mazor et al. (2013)
for the West face of Masada. These two studies provide joint displacement monitoring,
mechanical and physical parameters of intact rock and discontinuities (Table 4). The
geometry of the keyblock in the East face which is used here (Figure 4.3) is adopted from

Hatzor (2003).
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Figure 4.2 - The removable block and the upper cable car station.
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Figure 4.3 - Block geometry. Faces (fi) and joints (ji) are marked on the surfaces.
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Table 4 - Properties of the removable block in Masada.

Parameter Symbol Units Value Source
. dip/dip
B | 20/124
edding plane J direction o/
Joint 2 Ja - 84/107
Block Joint 3 JA - 75/052 Hatzor
geometry Face surface 1 fi - 84/060 (2003)
Face surface 2 fa - 90/126
Block volume |74 m3 563
Elastic modulus E GPa 40
Material ~ Poisson’s ratio v - 0.2 Bakun-Mazor
properties  Bylk density p Kg/m3 2600  etal.(2013)
Block weight w 10%kg 1.465
Peak friction angle ®p ° 41 Hatzor
Saw-cut friction angle  ¢gqu ° 28 (2003)
Joints . _— 0
properties Residual friction angle ¢, 23
Normal stiffness K, GPa/m 5 Bakun-Mazor
Shear stiffness K, GPa/m 1 et al. (2013)
Thermal expansion P
. I coefficient @ 10°/°¢ 6-8 Bakuln—Mazor
T erma. Thermal conductivity A wW/m/k 1.7 etal. (2013)
properties Roh
Specific heat capacity Gy J/kg/K 810 ohsenow et

al. (1998)

The studied block is massive with height of 15 meters and width of about 10 meters. It is

resting on a moderately dipping bedding plane and is separated from the rock mass by

two sub vertical joints. Across Joint no. 2 (a member of joint set 2) there is a displacement

of 20 - 40 cm (Figure 4.4) that has accumulated over its geological history. The tension

crack is filled with rock fragments with various sizes in its upper part, and with softer rock

and soil at the bottom.
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Removable

Figure 4.4 - The removable block and the opened joint J2.

Joint no. 3 (a member of joint set 3) that separates the block from the rock mass is tightly

closed (Figure 4.5), and it appears that no opening occurred across it over its geological

history.
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Figure 4.5 - The removable block and the closed joint J3.

Four joint meters (LVDT) were installed on both joints to measure relative displacement
between the rock mass and the removable block (Figure 4.6). Joint meters were mounted
in direction normal to the joints and measured joint opening and closure. The LVDTs were
active from January to November 1998, when the block (and many others) was anchored
to the rock mass with cable bolts. The block displacement, therefore, was monitored for

only half of a complete thermal cycle.

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 52



Chapter 4 - Application of the wedging-ratcheting mechanism to a field case study

Figure 4.6 - "Block 1" and the configuration of the joint meters (Hatzor, 2003)

In April 1998, there was a sudden increase in temperature (Figure 4.9), followed by an
abrupt displacement across the joints, as inferred from the output of the four joint
meters. During this heating cycle it is reasonable to assume that the removable block
expanded in all directions, including upwards, resulting in boundary - joints closure.
Comes August, temperature gradually decreases, followed by thermal contraction of the
removable block, resulting in a progressively opening of the joint (J2), as nicely depicted

by the output of joint meter 3 (see Figure 4.7).

Numerical simulations of block displacement due to temperature fluctuations
M.Sc. thesis, Yuval Keissar 53



Chapter 4 - Application of the wedging-ratcheting mechanism to a field case study

Temperature(°C)
S 3
Displacement (mm)

—
(&
1
N

N
o
o

N
o
1
—

el

Mar May  Jul Sep Nov
1998

[
Q
>

Figure 4.7 - Displacement of the “Block 1” in the east face of Masada cliff, as recorded by JM3 (Hatzor, 2003).
Sudden increase in Temperature (blue line) is followed by ~1 mm displacement (red line).

4.3. 3DEC model
The geometry of the block and its surrounding were reproduced in 3DEC using the data
from Table 4. Two friction angles were chosen to represent the sliding surface, peak and
saw-cut values (the residual friction angle is slightly lower — see Table 4). The saw-cut
friction angle is also considered in the analysis in addition to the peak value on account
for the fact that the block has displaced in its past and the assumption that the sliding
surface has deteriorated somewhat in the course of this historic displacements. For
simplicity, the filling material inside the tension crack J2 (Figure 4.4) is modeled here as a
single prismatic wedge, occupying the full width of the crack, and its upper two thirds of
height (Figure 4.8). The rock mass is fixed (no velocity in all directions) for the entire
simulation, whereas the removable block (referred to as “Block 1” following Hatzor, 2003
notation) and the wedge are free to move. The initial temperature of the blocks is

assumed uniform.

Blocks are discretized using a uniform mesh with an average tetrahedron edge length of
30 cm, which is about 5% of the sliding block length in the direction of sliding, as per the

optimized ratio obtained in section 3.4. Since the scale of this model is much larger than
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the physical model tested in the previous chapter, the explicit thermal time step is larger
and is set to 400 seconds (see simulation code in Appendix E). The temperature log
obtained by Hatzor (2003) is partial and does not comprise of a complete cycle of heating
and cooling because the block was reinforced with cable bolts in the middle of one
thermal cycle. After initial equilibrium is obtained in the model (as in section 3.3), the
temperature history obtained through three consecutive years, between 2012 and 2015,
measured by the Israel Meteorological Service (2017) in Ein-Gedi station (15 km from
Mount Masada), was applied to the outer boundaries of the blocks, to simulate the

response of the system to a full cycle of heating and cooling.

This 3DEC model is less sensitive to changes in time step, compared to the reproduction
of the physical model in section 3.4, since the block is much bigger and less sensitive to
short periods of temperature changes; thus, the model remains in mechanical
equilibrium. To avoid displacement artifacts resulting from immediate response due to
thermal expansion of the boundaries, or elastic displacement of joint asperities via the
input shear stiffness, the displacement of the center of mass of “block 1” was recorded
and stored for further analysis. Note that field measurements performed with joint
meters are not equivalent to the displacement recorded in 3DEC simulation, as the exact

orientation of the LVDT’s is unknown.
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Figure 4.8 — Masada 3DEC model.

The results of the 3DEC simulations are shown in Figure 4.9. The displacement of the block
occurs mostly during the heating phases. During that time, the block expands,
compressive stresses develop around the wedge, and the position of the wedge in the
joint prompts displacement of the block down the sliding surface (Figure 4.10). The
cumulative displacement over the three years is between 0.7 to 1.3 mm depending on
the assumed value of frictional resistance across the sliding plane. Thus, the expected
annual displacement is 0.24-0.44 mm per year, depending on the exact value of the

friction angle.
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Figure 4.10 — 3DEC model displacement of “Block 1” (¢ = 28°). (a) Temperature applied to block
boundaries. (b) “Block 1” center of mass displacement. (c) Wedge displacement down the opening joint. (d)
Compressive normal stress at the back of the wedge.
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Chapter 5 - Discussion

Numerical simulations of the wedging-ratcheting mechanism reveal the possible
outcomes of a thermally induced failure mechanism in jointed rock slopes. The results in
this research show that given certain conditions, such as the geometry of the problem,
thermomechanical properties, and temperature oscillations magnitude, the wedging-
ratcheting mechanism can explain small annual displacements. A large-scale physical

model, conducted in a climatically controlled room, supports these findings.

This section provides further analysis to the previous sections, and presents a comparison

of the results with other failure mechanisms.

5.1. Rock types prone to wedging-ratcheting failure mechanism
The magnitude of the displacement due to temperature fluctuations is dependent on rock
and joint properties, as described in section 3.5. Below a brief comparative study is
conducted to determine which rock types are more likely to exhibit thermally induced
displacements. For that purpose, we use the 3DEC model that reproduces the physical
model (section 3.3), since it was validated with experimental data, and because it is

simpler and requires less computational resources.

Rocks, even if are members of the same group (e.g. sedimentary or igneous), differ in
their thermal properties, since the mineralogy varies significantly among the rock types.
For instance, Schitz et al. (2012) studied the thermal conductivity of sedimentary rocks
in Israel. For each formation examined in their study, the thermal conductivity range was
found to be relatively wide. For the comparative examination in this study, a single value
is assumed for each of the thermal and mechanical properties to represent its group

(Table 5).
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Table 5 — Typical thermomechanical properties of some rocks.

Parameter Symbol Units Granite Basalt Sandstone Dolomite
Elastic modulus E GPa 50(1) 701 200 48112)
Poisson’s ratio v - 0.2@  0.28@  0.25010 0.26(12)
Bulk density p Kg/m3 26500 2870 26400) 2550012
Thermal
expansion a 10%/°C 8B 5(6) 11(12) 8B
coefficient
Thermal k W/m/K 250 120 3.3(6) 4.5(6)

conductivity
Specific heat

C J/kg/K 8404 840 900 900®@
capacity p /ke/
Thermal
diffusivity K 10°m?/sec 1.12 0.50 1.39 1.96

(calculated)
References: (1) Turcotte and Schubert (2014); (2) Vutukuri et al. (1974); (3) Franklin and Dusseault
(1991) ENREF 20; (4) Heuze (1983); (5) Jaeger et al. (2009); (6) Naeser et al. (1989); (7) Blesch et al.
(1983); (8) Eppelbaum et al. (2014); (9) Vdsdrhelyi (2003); (10) Gercek (2007); (11) Engineering Toolbox
(2017); (12) Hatzor and Palchik (1997).

The geometry of the model and the applied temperature remained constant for all
simulations. Since it was observed earlier in this research that friction angle does not play
a significant role in the mechanism, the same value of friction angle (32°) applied to the
joints in all simulations. Shear and normal stiffness of the joint were kept constant, and
set to 1 and 5 GPa/m, respectively. The boundaries of the model were subjected to a
sinusoidal input temperature with a period of one day for three days (three cycles of
heating and cooling, red line in Figure 5.1). The exposure time was not long enough for
the block to reach uniform temperature even in the model with the greatest thermal
conductivity. The upper panel in Figure 5.1 presents the temperature log of the center of
mass of the sliding block and it shows the difference in heat propagation within blocks in
simulations with different thermal conductivity input. The displacement of the center of
mass of the sliding block down the inclined plane was recorded and the results are plotted

in the lower panel of Figure 5.1.
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Figure 5.1 - Displacement of the sliding block in the dip direction (lower plot). The center of the sliding block
does not reach the temperature applied to the boundaries (red curve in the upper plot).

It can be inferred from the results that the most significant parameter in the displacement
is the thermal expansion coefficient of the block material. Of the rock types studied,
indeed the sandstone appears to be the most sensitive to the wedging-ratcheting
mechanism, since its thermal expansion coefficient is the greatest, even though its
thermal conductivity is significantly lower than the dolomite. Surprisingly, the
displacement exhibited by the dolomite is almost equal to the displacement exhibited by
the basalt, even though the dolomite’s thermal conductivity is much greater. The
different densities of both rocks can explain this. The density of the basalt is greater, so
the wedge is heavier and applies greater force on the sliding block. That way, under
gravity only, the basalt’s sliding block is closer to equilibrium state, and less thermal
expansion is needed to achieve plastic displacement. The mechanical properties,

therefore, are also playing a role in the thermally induced mechanism.
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5.2. Case study — removable block on Mount Masada

5.2.1 Annual displacement of “Block 1”, Masada
The displacement of “Block 1” in Masada, as obtained with field measurements (4.2) and
with 3DEC simulations (4.3), is rather minor, and for sustainability of engineering
structures with a design life time of 50 — 100 years may be considered negligible. For
natural rock slopes, however, this rate may lead to significant displacements over
geological time scales that can advance the deterioration rate of the rock mass. We
therefore wish to understand the cumulative nature of the wedging-ratcheting

mechanism over long periods.

The removable block slides down the slope, according to 3DEC analysis in section 4.3, at
a rate of 0.24-0.44 millimeters per year, depending on the assumed frictional resistance
across the sliding surface. The most important feature presented in Figure 4.9, however,
is the irreversible nature of this displacement. In each phase of displacement, the wedge
slides further down the opening joint, preventing block displacement back up the slope;
once the wedge takes its place in the joint, it cannot move up, only down. Since the
displacement s irreversible, the small magnitude of annual displacement and its slow rate
is of no significance; the displacement can accumulate over years and decades, assuming

the opening joint is continuously filled with new rock fragments.

As predicted by the wedging-ratcheting mechanism, most of the displacement occurs
when the temperature is rising (transition from winter to summer). However, some
displacement can be observed during winter, due to short period of heating (for example
the third shaded area from the left in Figure 5.2). This can be associated with
displacement mode introduced by Taboada et al. (2017) described in section 1.1, in which
short-term thermal cycles of between 2 to 15 days can cause thermally induced

displacements.

Itis important to determine whether daily temperature fluctuations play a significant role
in the total accumulated displacement. For this purpose the real temperature input

record used in the 3DEC simulation described in 4.3 is now represented by a fitted
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sinusoidal function (red line in the upper panel of Figure 5.2) to eliminate the short-term

temperature changes, and the system response is reanalyzed.
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Figure 5.2 - Comparison between annual and daily temperature fluctuations. Temperature input for the
simulations in the upper plot, displacement for each simulation in the lower plot.

We find that displacements obtained in both 3DEC simulations are essentially the same,
and it can be concluded, therefore, that daily temperature fluctuations do not play a
significant role in the overall mechanism. Heat does not propagate deep enough in the
rock in short exposure periods to cause significant expansion or contraction. However,
the role of high frequency changes (daily temperature fluctuations) can be more
significant in smaller blocks or rocks with greater thermal conductivity, as a larger portion
of the block will be influenced by the temperature changes. The slight change in
displacement between both simulations is maybe due to short periods of dramatic
temperature change that are delineated as shaded areas in Figure 5.2. Such an effect can
explain the relatively large displacement of ~1 mm measured by Hatzor (2003) during the

5 months of monitoring in the field in 1998 (see Figure 4.7).
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5.2.2 Comparison with other proposed models

Thermal mechanisms

Part of the accumulated displacement of the sliding block down the sliding interface is
due to the so called “crawling motion” suggested by Gunzburger et al. (2005) and
introduced in section 1.1. We want to compare the degree of influence of each
mechanism (“crawling motion” vs. wedging-ratcheting) on the cumulative displacement

of the block.

The same block model from the snake path cliff in Masada (Figure 4.8) is used for this test.
Two block configurations are simulated, one with a wedge in the tension crack and
another without the wedge, the latter in order to represent a simple problem of a block
on an inclined plane subjected to temperature oscillations. The 3DEC model used for this

analysis is shown in Figure 5.3.

up

LNonh

East

Figure 5.3 — Masada 3DEC model with no wedge in the joint. This model was used to examine the amount
of the “crawling motion” displacement.

A three-year temperature log was applied on the boundaries in both models (with and
without a wedge in the tension crack). To avoid the influence of dramatic temperature
changes that occur over short periods during a cycle, we use here a smoothed
temperature history, represented by a sinusoidal function. The input temperature history
and the response of the two geometrical configurations as modeled with 3DEC is shown

in Figure 5.4.
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Figure 5.4 - Comparison of two different thermally induced failure mechanisms, the “crawling motion”,
suggested by Gunzburger (red line with x symbols), and the wedging-ratcheting mechanism (red line with
circles). Note the reversible displacement during cooling phases, marked by black lines. Since there is no
wedge in the joint, during that time, the block contracts in all directions, including contraction up the
slope.

The results plotted in Figure 5.4 reveal that the displacement due to the wedging-
ratcheting mechanism is almost twice as much as due to the “crawling motion” when
everything else is kept equal. Moreover, we can infer from the results that the self-weight
of the wedge is not the reason for the difference in displacement between the two
mechanisms. For each heating phase, when most of the displacement takes place, the
amount of displacement for the two mechanisms is essentially the same. The difference
between the two mechanisms, therefore, can be explained by the mere presence of the
wedge in the joint, preventing contraction of the block’s toe of the sliding block “up the
slope”. In the model without the wedge, during cooling phases, the block slides a little bit
back up the slope, as there is no wedge to preclude such displacement. Thus, the wedging-

ratcheting mechanism has a considerable addition to the “crawling motion” mechanism.

Seismic triggering

The location of Mount Masada near an active fault calls for the consideration of a

seismically induced displacement. studied the response of the modeled block in this
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thesis, “Block 1” in Masada, to dynamic loading using the numerical, discrete element

Discontinuous Deformation Analysis (DDA) method (Shi, 1993).

Using an input motion based on the 1995 Nuweiba earthquake (for details see Hatzor,
2004), the researchers determined numerically the expected displacement of Block 1 that
would have been caused by earthquake sources in the Dead Sea Transform, 1 km from
Mount Masada, and their results for events of magnitude 6 to 7.5 are presented in Figure
5.5. Note that the results shown in Figure 5.5 are the expected accumulated displacement
of Block 1 during a single event based on the input motion that includes the topographic

effect of Masada, for an earthquake source at a distance of 1 km from the site.
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Figure 5.5 — The expected displacement of “Block 1” when subjected to a dynamic loading of four different
earthquake magnitudes (Bakun-Mazor et al., 2013).

The recurrence of moderate (My=6.5) and strong (Mw=7) earthquakes was assumed to be
1100 and 4000 years, respectively, based on the local seismicity of the region (Begin,
2005, and Shapira et al., 2007). The expected total accumulated displacement in a 5000
years window can therefore be compared for both seismic and thermally induced
mechanisms. Figure 5.6 presents a comparison of the expected seismic displacement
obtained by Bakun-Mazor et al. (2013) and the expected thermally induced displacement
found in this study based on the 3DEC model, namely 0.24 mm/year assuming a
continuous supply of rock fragments filling the increased aperture and the lower bound

of available friction across the sliding interface. It is important to point out that the slip
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rate can change over such a long period of time, as the wedge volume is increasing, and

the frictional resistance of the sliding surface can deteriorate over time.
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Figure 5.6 — A comparison between two different failure mechanisms, thermally induced wedging-ratcheting
(blue) and seismic triggering (red), if each mechanism works independently.

The total displacement of “Block 1” due to temperature oscillations for the case of
Masada is greater than the seismically induced displacement when everything else is
equal. The cumulative nature of the wedging-ratcheting mechanism makes the thermally
induced displacement significant in terms of long-term geomorphology, even when
comparing with seismic triggering, in an area considered seismically active, such as the
Dead-Sea Transform. Therefore, the wedging-ratcheting mechanism has an important
role in shaping the landscape, and is indeed a failure mode that cannot be ignored when

considering rock slope instabilities in the long term.
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The objective of this research was to examine the feasibility of the thermally induced

wedging-ratcheting mechanism using the numerical distinct element method in three

dimensions (3DEC). First, we validated the numerical results with laboratory experiments.

Later, we studied a case study from Mount Masada, Israel.

We obtained the following results:

1.

4.

Thermally induced wedging-ratcheting mechanism is proved to cause irreversible
displacement down an inclined slope. Heating phases are linked with dilation of
the blocks in the system, resulting in compressive stress evolution around the
joints, prompting block displacement down the sliding interface. Cooling phases
are associated with contraction, resulting in joint opening and further sliding of
the wedge down the aperture of the tension crack behind the sliding block.

The numerical 3DEC platform used in this research is proved valid for the purposes
of this study. Some issues that require further investigation have been explored,
including the sensitivity of the results to the choice of numerical control
parameters such as time step size and element size. Therefore, the verification
and validation stages in the research were necessary for the calibration of the
numerical control parameters, and consequently to produce reliable results.
Some lithologies are more prone to thermally induced displacement, mainly due
to their higher thermal expansion coefficient. This is because the primary factor
that drives the mechanism forward is thermal expansion and contraction of the
rock, both the wedge and the sliding block.

The infinite possible configurations of the blocks system and properties makes an
analytical solution that is not over-simplified hard to obtain. However, a
comprehensive study of the configuration and geometry of a problem in the field,
accompanied by laboratory tests and experiments to determine the thermo-
mechanical properties of the rock, can lead to an educated simulation that

produces a reliable result.
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5. The irreversible and cumulative nature of the displacement (on account of the
wedge driving the mechanism in one direction) has an addition contribution to the
total displacement of the block, compared with other known mechanisms,
thermally or seismic induced (e.g. the “crawling motion” and earthquakes).

6. The proposed failure mechanism may play a significant role in slope stability

problems due to the cumulative and repetitive nature of the displacement.
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Appendix A - Sliding on an inclined slope, gravity only (.3ddat file, 3DEC)

Appendix A —Sliding on an inclined slope, gravity only (.3ddat file, 3DEC)

new
mscale off
title
Sliding under gravity loading
def setup
base = 3
1b = 0.8
h =0.6
alpha = 25.0
alpha?2 = 90-alpha
def right = 0.2
vyl = -0.25
y2 = 0.75
x1 = def right
z1l = (base-def right) * tan(degrad*alpha)
%2 = x1 + lb*cos (degrad*alpha)
z2 = z1 - lb*sin (degrad*alpha)
x3 = x2 + h*sin(degrad*alpha)
z3 = z2 + h*cos (degrad*alpha)
E = 24.486e9
nu = 0.2513
K =E/(3*(1-2*nu))
G = E/ (2% (1+nu))
Ks = 0.5e9
Kn = 5e9
rho = 2140.
phi = 20.
end
@setup

poly br 0 3 @yl @y2 0 2

jset dip @alpha dd 90 or @xl 0 Gzl id 1
hide dip (Calpha dd 90 or @xl1 0 @zl above
group block 'Sliding surface'

seek

hide dip Galpha dd 90 or @xl1 0 @zl below
jset dip @alpha? dd -90 or @x1 0 @zl

delete dip (Calpha? dd -90 or (@x1 0 @zl above
jset dip @alpha? dd -90 or @x2 0 @z2

delete dip (Calpha?2 dd -90 or (@x2 0 (@z2 below
jset dip @alpha dd 90 or @x3 0 @z3

delete dip (Calpha dd 90 or @x3 0 @z3 above
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jset dip 90 dd 0 or 0 0 O

delete dip 90 dd 0 or 0 0 O below
jset dip 90 dd 0 or O 0.5 O

delete dip 90 dd 0 or 0 0.5 0 above
group block 'Sliding block'

seek

plot create plot 'Model'

Pl bl colorby group

prop mat 1 k (@K g €G de (@rho
prop jmat 1 jkn @Kn jks @ks jfric @phi

fix range group 'Sliding surface'
grav 0 O

hist id 1 unbal

damp local
solve ela only
damp 0,0

reset h

reset d

reset jd

reset t

reset v

set time 0

hist id 1 time

hist id 2 sd @x2 @z2 dip Calpha dd 90

plot create plot 'Shear disp'
plot hist 2 vs 1
solve time

ret
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Appendix B— Conduction in a plane sheet, after _ENREF 13 ENREF 24ITASCA

Consulting Group Inc. (2013d)

new

config thermal

title

Thermal conduction in a plane sheet - explicit solution
poly reg O 0 0

plot create plot 'Blocks'

plot block

plot reset

prop mat 1 dens

prop mat 1 k g 9784224407
prop jmat 1 jkn jks
prop mat 1 cond spec_heat 850

prop mat 1 thexp
gen edge

apply thermal temp range x
apply thermal temp 0 range x

hist thtime
hist temp 0 0 O
hist temp 0 O
hist temp 0 O

set mech off
set thermal on

def cons
c cond = 1.422458
c dens = 2140.
c_sph = 850.
length = 0.8
tl = 30.
tabn = -1
tabe = 0
overl = 1. / length
d = c cond / (c dens * c sph)
dol2 = d * overl * overl
top = 2. / pi
pi2 = pi * pi
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n max = 100
teps = 1l.e-5
end
def num sol
tabn = tabn + 2
t hat = thtime * dol2
tp2 = t hat * piZ2
ib = block head
loop while ib # 0
gp_ = b_gp(ib )
loop while gp # O
rad = sqrt(gp_z(gp )2 + gp_y(gp )"2) * overl
if rad < 1.e-4 then
z = gp_x(gp ) * overl
table (tabn,z) = gp_temp(gp ) / t1
end if
gp = gp_next(gp )
end loop
ib = b next(ib )
end loop
end
def ana_sol
tabe = tabe + 2
t hat = thtime * dol?2
tp2 = t hat * piZ2
ib = block head
loop while ib # O
gp_ = b_gp(ib )
loop while gp # O
rad = sqrt(gp_z(gp_ )"2 + gp_y(gp )"2) * overl
if rad < 1.e-4 then
z = gp_x(gp ) * overl
n =20
nit = 0
tsum = 0.0
tsumo = 0.0
converge = 0
loop while n < n max
n=n++1
fn = float(n)
term = sin(pi*z*fn) * exp(-tp2*fn*fn) / fn
tsum = tsumo + term
dddd = abs (term)
if dddd < 1.0e-20 then

nit = n
table (tabe,z) = 1. - z - top * tsum
converge = 1
n = n max
else
tsumo = tsum
end if
end loop
if converge = 0 then
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11 = out (' not converged: z= ' + string(z) + ' t = " +
string (thtime))
exit
end if
end if
gp = gp_next(gp )
end loop
ib = b _next(ib )
end loop
end

set mech off
set thermal on

solve thtime
@cons
@num_sol
Gana_sol
solve thtime
Gnum_sol
Gana_sol
solve thtime
Gnum_sol
Gana_sol

table
table
table

name '3DEC 10,000 sec'

name '3DEC 50,000 sec'

name '3DEC 100,000 sec'

table name 'Analytical 10,000 sec'

table name 'Analytical 50,000 sec'

table 6 name 'Analytical 100,000 sec'

plot create plot 'Table'

pl table 1 style mark marks size 4 2 &
3 style mark marks size 4 4 line style dash &
5 style mark marks size 4 6 line style dot &
xaxis label 'X/L' yaxis label 'T/TO'

SN O w

ret

Vi
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Appendix C — Laboratory experiment simulation code (.3ddat file)

new
title

Lab experiment validation
config thermal

call model geometry.3dfis
plot create plot 'Lab model’
Pl bl colorby group color red blue yellow green

gen edge

prop mat 1 k (@K g (@G dens (@rho
prop mat 1 thexp (@txp cond (@cond spec @Cp
prop jmat 1 jkn @Kn jks @Ks jfric @phi

bound nvel 0 range plane dip @alpha dd 90 or 0 0 G@cl dis

bound nvel 0 range plane dip Galpha dd 90 or 0 0 (¢l dis

bound nvel 0 range plane dip (@alpha2 dd -90 or 0 0 @cl dis

grav 0 O
ini temp

set thermal off mech on
hist unbal
hist zdisp (@c4dx, 0, (@ciz

cyc 30000

set thermal on mech on
set th time O

set time O

reset disp

reset jdisplacement
reset hist

hist unbal

hist thtime

hist sdisp (c4dx 0 (c4z
hist zdisp 0
hist temp (cix @cdz

table 1 read 'tempHist 20 9.tab'

Vil
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apply thermal temp

apply thermal temp
apply thermal temp
0 0 @cl dis

apply thermal temp
ori 0 0 Ccl dis
apply thermal temp
ori @céx 0 @c4z dis
apply thermal temp
@cbx 0 @cb5z dis

solve thtime 1930200 force 0 ratio O

hist

hist
hist

hist

hist

hist

table

table
table

table

table

table

range y

range y
range plane

range plane
range plane

range plane

plot create plot 'Sliding block displacement'
Pl hist 3 vs 2 xaxis label

direction displacement

ret

(m) !

'Time

(seconds) '

Vil

dip @alpha dd 90 ori
dip @alpha2 dd -90
dip @alpha2 dd -90

dip @alpha dd 90 ori

yaxis label 'Dip
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title
Lab model generation
def setup

phi = 21.28

rho = 2140.

E = 2.4486e10

nu = 0.2513

K = E/(3*(1-2*nu))
G = E/(2* (1+nu))
Ks = 0.5e9

Kn = 10*Ks

Cp = 850.

DT = 7.82e-7
cond = DT*rho*Cp
txp = 3.16e-6

base = 1.5

alpha = 15.

alpha2 = 90-alpha

alpha3 = 90+alpha-20.14

cl = base*sin(degrad*alpha)

c2 = base*cos (degrad*alpha)
c3x = c240.2*sin(degrad*alpha)

c3z = 0.2*cos (degrad*alpha)
cdx = 0.8*sin(degrad*alpha)+l.22*cos (degrad*alpha)
cdz = base*sin(degrad*alpha)+0.8*cos (degrad*alpha) -

1.22*sin (degrad*alpha)
cbx = 0.8*sin(degrad*alpha)+0.42*cos (degrad*alpha)
cbz = base*sin(degrad*alpha)+0.8*cos (degrad*alpha) -
0.42*sin (degrad*alpha)
cox = 0.8*sin(degrad*alpha)+0.2*cos (degrad*alpha)
c6bz = base*sin(degrad*alpha)+0.8*cos (degrad*alpha) -
0.2*sin (degrad*alpha)
clx =
0.42*cos (degrad*alpha)+0.2*sin(degrad*alpha)+0.05*sin (degrad*alpha)
c/z = c3z+(1.5-0.42) *sin (degrad*alpha)+0.05*cos (degrad*alpha)
command
poly reg 0 2 O 02
jset dip €@alpha2 dd -90 or @c2 0 O

delete range x (@c2 3
jset dip @alpha dd 90 or 0 0 @cl

delete dip (Calpha dd 90 or 0 0 @cl below
jset dip @alpha? dd -90 or 0 0 @cl

delete dip @alpha? dd -90 or 0 0 Gcl above
jset dip @alpha dd 90 or @c3x 0 @c3z
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jset dip @alpha dd 90 or @c4x 0 (ciz

delete dip (Calpha dd 90 or @c4dx 0 @c4dz above
hide dip (Calpha dd 90 or @c3x 0 @c3z below
jset dip @alpha? dd -90 or @c4dx 0 (lciz

delete dip (Calpha?2 dd -90 or (@cdx 0 (@cdz below
jset dip @alpha2 dd -90 or @cbx 0 @cbz

hide dip @alpha?2 dd -90 or @cb5x 0 @c5z below
jset dip @alpha3 dd 90 or @cé6tx 0 (@cb6z

hide dip @alpha3 dd 90 or (c6x 0 (cb6z below
group block 'Wedge'
hide
seek dip Calpha dd 90 or @c3x 0 @c3z above
hide dip @alpha?2 dd -90 or @c5x 0 @c5z above
group block 'Sliding block'
seek
hide range group 'Sliding block'
hide range group 'Wedge'
hide dip @alpha dd 90 or (@c3x 0 @c3z below
group block 'Rock mass'
hide dip @alpha dd 90 or @c3x 0 @c3z above
seek dip Calpha dd 90 or @c3x 0 @c3z below
group block 'Sliding plane’
hide
seek range group 'Wedge'
jset dip @alpha dd 90 or @c7x 0 @c7z
delete dip @alpha dd 90 or @c7x 0 @Ec7z below
seek
end command
end
@setup
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Appendix E — Block 1 Masada simulation (.3ddat file)

new
config thermal
call blockl new.3dfis

gen edge

prop mat 1 k (@K g (@G dens @rho
prop mat 1 thexp (@txp cond (@lambda spec @Cp
prop jmat 1 jkn @Kn jks @Ks jfric @phi peak

fix range group 'Rock mass'
grav 0 O
ini temp

set thermal off mech on
hist id 1 unbal
hist id 2 zdisp (@v8x (@v8y (v8z

hist id 3 zdisp

cyc 50000
plot create plot 'Equilibriate'
plot hist 1

set thermal on mech on

set th time O

set th time O

reset disp

reset jdisplacement

reset hist

hist id 1 thtime

hist id 2 temp (@v8x (@v8y @v8z
hist id 3 sdisp (@vix @vidy (@viz

hist id 4 sdisp

table 1 read ein gedi 5Syr.tab

apply thermal temp hist table 1 range plane dip dd ori 0 O
@max z distance

apply thermal temp hist table 1 range plane dip €¢fl dip dd

@fl dd ori @v8x @v8y (@v8z distance

apply thermal temp hist table 1 range plane dip €f2 dip dd

@f2 dd ori @v8x @v8y (@v8z distance

Xl
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plot create plot 'Block 1 displacement'
plot hist 3 vs 1

plot create plot 'Wedge displacement'
plot hist 4 vs 1

set thdt 200
solve thtime 157842000 force 0 ratio O

Xl
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title
Block

1 Masada geometry

def setup

; ——— list of vetex of "Block 1" from SBL —---
vix = 4.55156100000000

vly = 8.21467800000000
vlz = 4.49271900000000
v2x = 6.18025400000000

v2y = 13.7718220000000

v2z = 5.13231200000000
v3x = 8.32383600000000
v3y = 4.23436200000000
v3z = 2.54434200000000

vdx = 10.3756750000000
vdy = 7.05847500000000
vdz = 2.50000000000000
vhx = 2.

vy = 5.12143800000000
vbz = 19.1038700000000
vox = 4.58926800000000
voy = 13.5905520000000
vo6z 19.1038700000000
vx 5.61066300000000
v7y = 0.500000000000000
vz 19.1038700000000
v8x 9.25283400000000
v8y = 5.51301800000000
v8z = 19.1038700000000

min x = 2.

max x = 10.3756750000000
min y = 2.

max y = 15.2718220000000
min z = 2.5

max z = 19.1038700000000
; ——— f2 —-—-

f2 dip = 90.

f2 dd = 126.

;o ——— J1 ---

j1_dip = 20.
j1_dd = 124.
;o——= J2 ---
j2_dip = 84.
j2_dd = 107.

; ——— J3 ——-

j3 dip = 75.

j3 dd = 52.

; ——— f1 ——-

f1 dip = 84.

f1 dd = 60.

; ——— gap between block 1 and rock mass ---
gap = -0.4

v9x = vbx + gap* (cos (degrad*10.5) /sin (degrad*62.5))

Xl
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v9y = vby + gap* (sin(degrad*10.5) /sin (degrad*62.5))

v9z = vbz
E = 40e9
nu = 0.2

K = E/(3*(1-2*nu))
G = E/(2* (1+nu))
rho = 2600.

phi peak = 41.

phi res = 23.

Ks = 1e9
Kn = 5e9
txp = 6e-6
lambda = 1.7
Cp = 810.
end
@setup
poly br 0 11 O 0 @Gmax z

jset id 11 dip €@j1 dip dd €jl1 dd or @vlx,@vly,@vlz
hide dip @jl1 dip dd €jl dd or @vlx,@vly,@vliz below

jset id 33 dip (@33 dip dd €j3 dd or @vbx,@vby,Qvbz
hide dip @33 dip dd @33 dd or @vbx,@v5y,Cv5z below

jset dip (j2 dip dd @32 dd or (@vbx,@vdy,@v5z
jset id 22 dip dd @j2 dd or @v9x,@v9y,@v9z

hide

seek range x 4
group block 'Wedges'
seek blo 217

jset dip @fl1 dip dd @fl1 dd or (Ev8x,Ev8y,@v8z
delete dip (fl dip dd @fl dd or (@v8x,@v8y,@v8z above

jset dip (f2 dip dd @f2 dd or (@v8x,@v8y,@viz

delete dip (@f2 dip dd @f2 dd or @v8x,Ev8y,Lv8z above
hide range group 'Wedges'

group block 'Block 1'

seek

hide range group 'Block 1'

hide range group 'Wedges'

join on
group block 'Rock mass'
seek

X1V
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