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Abstract 

The stability of underground openings excavated in stratified and jointed rock was 

studied using the Discontinuous Deformation Analysis method (Shi, 1988; 1993).  The goals 

of this research were: 1) validation of DDA using analytical solutions, physical models and 

case study; 2) investigation of fractured beam kinematics; and 3) development of simplified 

design charts for assessment of rock overbrake above excavations as a function of joint 

spacing and shear resistance along joints. 

Validation of DDA using a shaking table model of a block on an incline (Wartman et 

al., 2003) showed that DDA accurately predicts the displacement history of the block, 

provided that the numeric control parameters are optimized correctly. It was found that for 

slopes subjected to dynamic loading a certain amount of “kinetic” damping is necessary: a 2% 

reduction of the inter time-step transferred velocity yielded the best accuracy and the most 

realistic time behavior of the modeled system. 
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Comparison of DDA results with centrifuge model tests a of multi-jointed rock beam 

showed that DDA essentially captures the arching stresses developing in a deforming rock 

beam. Discrepancies between DDA and measured displacements are attributed to the 

difference between the joint model in DDA and the actual block interfaces used in the 

centrifuge model. 

A study of an ancient roof failure in an underground opening excavated in a densely 

jointed rock mass, showed that DDA is more realistic than the classic Voussoir beam model 

(Beer and Meek, 1982), which was found to be un-conservative. This research further 

augmented the preliminary findings by Hatzor and Benary (1998). 

 Investigation of fractured beam kinematics shows that transition from shear along 

abutments to stable arching is a function of the available shear resistance along joints. Given 

sufficient shear resistance the peripheral blocks undergo effective rotation, thus inducing 

stable arching. Otherwise, shear along abutments precludes effective rotation, and the beam is 

found to sag under its own weight. Within a stack of fractured rock beams the transition from 

ongoing deformation to stable arching is marked by the homogenization of the vertical 

displacements profile. The transition from unstable conditions to stable arching is found to be 

a function of both transverse joint spacing and shear resistance along joints.  

The general behavior of underground openings excavated in stratified and vertically 

jointed rock masses was studied using two different tunnel geometries: 1) excavation span B 

= 10m; and 2) excavation span B = 15m. The modeled tunnel height was ht = 10m for both 

configurations. Fifty individual simulations were performed for different values of transverse 

joint spacing and shear resistance along joints. It was found that the height of the loosening 

zone (or overbrake) above an underground excavation is determined by the ratio between joint 

spacing and the excavation span (Sj/B): 1) for  Sj/B ≤ 0.2 the height of the loosening zone is 
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found to be smaller than 0.5B; 2) for Sj/B ≥ 0.3 the rock mass above the excavation attains 

stable arching.  

Terzaghi’s (1946) rock load classification for a blocky rock mass predicts that the rock 

load above the excavation should range from 0.25B to 1.1(B+ht), pending on the degree of 

jointing. However, the degree of jointing is not quantified, and guidelines for assessing the 

degree of jointing are not provided. When compared with the findings of this research 

Terzaghi’s predictions are found to be rather conservative. 

The contribution of this study lies in the explicit correlation between the geometrical 

features of the rock mass, which are routinely collected during exploration and excavation, 

and the extent of the instability zone above the excavation. This is expected to contribute to a 

more efficient and economic design, and to increase the safety of underground openings in 

stratified and jointed rocks. 



 

This Work is Dedicated to My Beloved Wife Galia 
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Chapter 1 - Introduction 

1.1. Overview 

Most rock masses are discontinuous over a wide range of scales, from macroscopic to 

microscopic. In sedimentary rocks the two major sources of discontinuities are: 1) bedding 

planes, and 2) joints. Bedding planes are formed due to sedimentary processes, while joints 

are formed by lithification processes or by tectonic forces. The intersection of bedding planes 

and joints forms the so-called “blocky” rock mass. 

Before the excavation of an underground opening the blocky rock mass is assumed to 

be in a state of static equilibrium and in optimum packing arrangement. Excavation of an 

opening disturbs the initial equilibrium, and the stresses in the rock mass tend to readjust until 

new equilibrium is attained. During the readjustment of the internal stresses, and hence the 

rearrangement of load resisting forces, some displacements of the rock blocks occurs. Failure 

occurs when the stresses can no longer readjust to form a stable, load resisting structure. This 

may occur either when the material strength is exceeded at some locations or when 

movements of the rock blocks preclude stable geometric configuration, without strength 

failure. 

Joints and beddings are sources of weakness in an otherwise competent rock mass, 

therefore large displacements and rotations are only possible across these discontinuities. The 

displacements and rotations of the rock block along and across the joints is the source of the 

volume change. The interaction forces between blocks result in: 1) an increase in formation 
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stresses, due to volume expansion in restricted volume, tending to create stable conditions; 

and 2) application of forces that can cause an increased displacement, tending to induce rock 

mass failure. The interaction between the stabilizing and destabilizing factors shape the 

overall behavior of the blocky rock mass. 

1.2. Objectives 

The research presented in this dissertation focuses on the kinematical behavior of 

underground openings in layered and jointed rock masses. The primary objectives of this 

research are: 1) validation of the numeric Discontinuous Deformation Analysis (DDA) model 

using physical models and case studies; 2) investigation of fractured beam kinematics; 3) 

development of simplified design charts and tables for assessment of rock loads in 

underground openings as a function of joint spacing and joint friction angle. 

1.3. Thesis Organization 

Chapter 2 is a brief overview of the techniques commonly used in engineering practice 

for estimating the stability of underground openings in blocky rock masses. The different 

approaches are described and discussed, and the limitations are addressed. 

Chapters 3 describes the theoretical background of the Discontinuous Deformation 

Analysis (DDA) method and previous validation effort. Following is the validation of DDA 

using a shaking table physical model (Wartman et al, 2003) presented in Chapter 4. The 

results of the validation study are discussed and recommendations of numeric improvements 

are presented. Chapter 5 describes DDA validation using centrifuge model testsof a jointed 

beam, which were performed by M. Talesnick at the Technion. 
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Chapter 6 describes DDA validation using the case study of the ancient water reservoir 

at the Tel Beer-Sheva archeological site, which was studied initially by Hatzor and Benary 

(1998). The system was excavated in highly layered and jointed rock mass. The re-visited 

case study is here described in detail, including physical testing of intact rock and the 

discontinuities. The results are discussed, and general conclusions regarding behavior of 

blocky rock masses are presented. 

Chapter 7 presents an investigation of the general behavior of layered and jointed roofs. 

Simplified design charts based on geometrical properties of the discontinuities are presented 

and discussed. Finally, Chapter 8 summarizes the key findings of this research and makes 

suggestions regarding future research. 
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Chapter 2 - Stability Analysis of Underground Openings in 

a Stratified and Jointed Rock Mass 

2.1. Introduction 

A stratified host rock mass is a common feature in mining and civil engineering where 

excavation in sedimentary rock is attempted. Stratified rock (Fig. 2.1a) is defined as 

composed of a succession of parallel layers whose thickness is small compared with the span 

of the opening (Obert and Duvall, 1976).  There are two principal mechanical properties of 

bedding planes that are significant in the context of underground projects : 1) low to zero 

tensile strength; 2) low shear strength. If an opening is excavated in this type of rock the roof 

of the excavation will part from the rock mass due to low tensile strength of bedding planes, 

thus forming the immediate roof. Investigation of immediate roof stability commenced more 

than a century ago when Fayol (1885) conducted experiments on a stack of wood beams 

spanning a simple support, simulating the bedded sequence of roof span. By noting the 

deflection of the lowest beam as successive beams where loaded onto the stack, Fayol 

demonstrated that at a certain stage none of the added load of an upper beam was carried by 

the lowest member. The load of the upper beams was transmitted laterally to the supports, 

rather than vertically as transverse loads to the lower members. For such a configuration beam 

theory can be employed to assess deflection, shear stresses, and maximum stresses in the 

immediate roof as a function of elastic parameters, rock density, and beam geometry (Obert 
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and Duvall, 1976). Goodman (1989) incorporated inter-bedding friction into the beam 

analysis, thus extending the capabilities of this method. These analyses however are limited to 

continuous, clamped beams only. 

Immediate roof
deflection

Bedding planes
a

Immediate roof
deflection

Bedding planes
a

 

Bedding planes Joints
b

Bedding planes Joints
b

 

Figure 2.1. a) Horizontally laminated rock mass and immediate roof deflection; b) 
Horizontally laminated rock mass with vertical joints (after Brown and Brady, 1993) 
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In practice, stratified rock masses are in most cases transected by numerous joints 

forming a matrix of individual rock blocks. Horizontal stratification with vertical jointing one 

common case (Fig. 2.1b). The analysis of a stratified and jointed roof is complicated by the 

fact that there is no closed-form analytical solution for the interaction of these blocks. In 

absence of a closed-form solution, the practicing engineer/geologist should rely on other 

methods for assessing the stability of the roof. Three different methods are currently in 

practice: 1) observational methods; 2) semi-analytical methods; 3) numerical methods. These 

methods are widely used today, either stand alone or in an integrated manner, in all areas of 

geological and civil engineering. 

2.2. Observational Methods 

Standard engineering design both in continuous and structurally discontinuous rock is 

largely based on observational methods known as rock mass classification methods, mostly 

assessing the expected stand-up time and the required support loads. 

Terzaghi (1946) formulated the first rational method of classification by evaluating the 

rock loads appropriate to the design of steel sets, based on rock mass description. Terzaghi’s 

descriptions are:  

• Intact rock contains neither joints nor hair cracks. Hence, if it breaks, it breaks 

across sound rock. On account of the injury to the rock due to blasting, spalls 

may drop off the roof several hours or days after blasting. Hard, intact rock 

may also be encountered in the popping condition involving the spontaneous 

and violent detachment of rock slabs from the sides or roof. 

• Stratified rock consists of individual strata with little or no resistance against 

separation along the boundaries between the strata. The strata may or may not 
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be weakened by transverse joints. In such rock the spalling condition is quite 

common. 

• Moderately jointed rock contains joints and hair cracks, but the blocks between 

joints are locally grown together or so intimately interlocked that vertical walls 

do not require lateral support. In rocks of this type, both spalling and popping 

conditions may be encountered. 

• Blocky and seamy rock consists of chemically intact or almost intact rock 

fragments, which are entirely separated from each other and imperfectly 

interlocked. In such rock, vertical walls may require lateral support. 

• Crushed but chemically intact rock has the character of crusher run. If most or 

all of the fragments are as small as fine sand grains and no recementation has 

taken place, crushed rock below the water table exhibits the properties of a 

water-bearing sand. 

• Squeezing rock slowly advances into the tunnel without perceptible volume 

increase.  

• Swelling rock advances into the tunnel chiefly on account of expansion. 

 According to Terzaghi’s classification for tunnels excavated in stratified rock the 

maximum expected overbreak, if no support is installed, is ranging from 0.25B to 0.5B, where 

B is the tunnel span. The lower estimate is assigned to vertically stratified rock (Fig. 2.2b) 

while the higher is assigned to horizontally stratified rock (Fig 2.2a). For tunnels excavated in 

moderately massive jointed rock the maximum expected over break is 0.25B. For tunnels 

excavated in blocky rock mass the expected over break ranges from 0.25B to 1.1(B+Ht), 

where Ht is the height of tunnel, pending on the degree of jointing. This estimate is valid for 

tunnels at depth of up to 1.5(B+Ht), for deeper tunnels the expected over break is constant at 

1.15(B+Ht). 
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Figure 2.2. Maximum expected overbrake for unsupported tunnels: a) horizontally stratified 
rock (top); b) vertically stratified rock (bottom). From Terzaghi (1946). 
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The definitions of the different rock classes in Terzaghi’s method are ambiguous, and 

no particular reference to the mechanical and geometrical properties of the discontinuities is 

given. 

Lauffer (1958) introduced the concept of Stand-Up Time, which estimates the time to 

failure for any active unsupported span as a function of rock structure. Lauffer’s original 

classification has since been modified by a number of authors, notably Pacher et al (1974), 

and now forms part of the general tunneling approach known as the New Austrian Tunneling 

Method (NATM). 

Development of new support techniques, i.e. the use of rock bolts and shotcrete, gave 

rise to new Rock Mass Classification Methods encompassing all aspects of support design: 

from stand-up time to support requirements. Two of the most prominent methods are the 

Geomechanics Classification (a.k.a. Rock Mass Rating  -RMR) of Bieniawski (1973) and the 

Rock Quality system of Barton et al., (1974) both based on extensive database of case studies. 

In each method the critical parameters of the rock mass are described and rated, and simple 

equations yield the overall rock mass rating. Based on the rock mass rating a support design is 

suggested, as well as the unsupported stand-up time. These observational methods are widely 

used today by practitioners world wide, mostly as checkup on their design.  

Two major drawbacks of the rock mass classification methods are to be noted: 1) rock 

mass classifications are a very general and a rather coarse approach in that it caters for all 

possible rock masses and type of excavation; 2) absence of mechanistic basis. Recent studies 

in Israel (Polishook and Flexer, 1998; Tsesarsky and Hatzor, 2000) show that these methods 

are in some cases over conservative, even when a simple rock mass is encountered 

(homogenous massive rock with widely spaced joints). Riedmuller and Schubert (1999), 

based on extensive tunneling practice in the Austrian Alps, show that rock mass classification 

is inadequate for support design and stability evaluation in complex geological conditions. 
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The absence of true understanding of deformation mechanisms and the over conservative 

nature of the empirical methods will eventually lead to over conservative support design and 

unnecessary inflated project costs (Riedmuller and Schubert, 1999). 

2.3. Semi-analytical Approach – the Voussoir Beam Analogy 

As noted by Fayol (1885) underground strata tend to separate upon deflection such that 

each laminated beam transfers its own weight to the abutments rather than loading the beam 

beneath. Stability of the excavation in this situation can be determined by analyzing the 

stability of a single beam deflecting under its own weight.  Bucky (1931) and Bucky and 

Taborelli (1938) studied physical models for the creation and extension of wide roof spans. 

They used initially intact beams of rock like materials, and found that at a particular span, a 

vertical tension fracture was induced at the mid-span of the lower beam. These observations, 

and the fact that roof strata are crossed by joints, lead to the conclusion that the roof at 

incipient failure cannot be treated as a simple beam. 

Evans (1941) in his fundamental work established the relationship between vertical 

deflection, lateral thrust and stability of natural or artificially jointed roof. This work coined 

the term “Voussoir Beam” spanning an excavation, using the analogy of the masonry 

Voussoir arch (Heyman, 1982). The basic Voussoir concept accepts that the beam may not 

carry longitudinal tensile stresses and it is confined between the abutments, i.e. lateral 

constrains are applied. The geometry and the forces acting in the Voussoir beam are shown in 

Figure 2.3a. The overturning gravitational-reaction couple is equilibrated by the lateral thrust 

couple formed by beam deflection, where W is the weight of the beam, S is the beam span, T 

is the axial thrust and Z is the lever arm. 

The structure presented in Figure 2.3a is statically indeterminate since the lever arm Z is 

not known. In order to treat the posed problem analytically Evans assumed that a parabolic 
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compressive arch structure of constant thickness is formed within the beam (Fig 2.3b). He 

also assumed an identical thickness of the arch at the abutments and at mid-span equal to half 

of the beam thickness.  Three modes of failure are considered: 1) crushing of the rock at the 

abutments or at mid-span; 2) buckling (snap through) failure of the beam; 3) sliding between 

the blocks and the abutments. 

Beer and Meek (1982) reformulated and extended Evans’s approach, introduced a 

coherent system of static equations, and evaluated the thickness of the compressive arch at the 

abutments and mid-span. Brady and Brown (1985) summarized the above-mentioned work 

and introduced an iterative algorithm for the evaluation of Voussoir beam stability. The 

iterative approach assumes initial load distribution and line of action, i.e. assuming initial n 

and Z. The analysis provides the compressive zone thickness, and the maximum axial thrust. 

The factor of safety against the previously mentioned failure modes can be calculated 

provided that the compressive strength of the rock, and the shear strength of the 

discontinuities are known. Sofianos (1996) statistically evaluated compressive arch thickness 

values, from the numerical data for different beam geometries provided by Wright (1974), 

thus eliminating static indeterminacy. Diederichs and Kaiser (1999) further improved the 

classic iterative approach by introducing improved assumptions for lateral stress distribution 

and arch compression, and by providing a numerical buckling limit. 

The major advantages of the Voussoir beam technique are the ability to assess 

previously ignored failure by shear along the abutments, and providing static (although 

undetermined) formulation of the discussed problem. Two main disadvantages of this method 

regarding the actual geometry of the problem should be mentioned. 
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Figure 2.3. Evans’ Voussoir beam: a) conceptual model; b) compressive stress distribution in 
the beam. 
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First, the Voussoir beam analogue overlooks the geometrical and mechanical properties 

of the transverse joints, i.e. joint friction and joint spacing. Second, only a single layer of the 

roof is considered in this analogue. It is not unreasonable to assume that the mutual 

interaction of individual blocks and layers in laminated and stratified rock masses will differ 

from those described by Fayol. Diederichs and Kaiser (1999) on thier reply to Sofianos 

(1999) state “It does seems intuitive that a numerical simulation (and the real case) with 

discrete joints through the beam should behave differently than the three hinged model. The 

main impact appears to be on the assumption or calculation of the effective arch thickness, n.  

Increased rotational freedom of the joints in the ubiquitous case should result in larger 

thickness at equilibrium while the three hinge model should exhibit n approaching zero for a 

stiff beam”, where the ubiquitous model refers to a single, multi fractured beam. In absence of 

analytical solution, the stability of underground openings in laminated and jointed rock 

masses should be sought by means of numerical and physical modeling. 

2.4. Numerical Approach 

In rock mechanics, numerical methods are widely used to analyze the behavior of rock 

masses. For discontinuous rock masses the Finite Element Method (FEM), Finite Difference 

Method (FDM) and the Distinct Element Method (DEM1) are the most popular. 

2.4.1. The Finite Element Method 

 The FEM is probably the most popular method in civil and rock engineering, because it 

was the first numerical method with enough flexibility for the treatment of material 

heterogeneity, non-linear deformability (mainly plasticity), complex boundary conditions, in-

situ stresses and gravity. Implementation of discontinuities into FEM has been motivated by 
                                                 

1 DEM was later used for “Discrete Element Method”, and is oftenly confused in practice. 
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rock mechanics need since the late 1960s.  With the introduction of the joint element, first by 

Goodman et al., (1968), discontinuous rock mass can be analyzed by FEM. However the FEM 

joint element is based on continuum assumptions, therefore large-scale opening, sliding, and 

complete detachment of elements are not permitted. The zero thickness of the “Goodman joint 

element” causes numerical ill conditioning due to large aspect ratios (the ratio of length to 

thickness) of joint elements, and was improved by joint elements developed later on (e.g. 

Zeinkiewitz et al., 1970; Ghaboussi et al., 1973; Desai et al., 1984). 

Despite these efforts, the treatment of discontinuities remains the most important 

limiting factor in the application of the FEM for rock mechanics problems. The FEM suffers 

from the fact that the global stiffness matrix tends to be ill conditioned when many joint 

elements are incorporated. Block rotations, complete detachment and large-scale fracture 

opening cannot be treated because the general continuum assumption in FEM formulations 

requires that fracture elements cannot be torn apart. 

2.4.2. The Discrete Element Method (DEM) 

The key feature of DEM is that the domain of interest is treated as an assembly of rigid 

or deformable blocks or particles. The contacts between the blocks are recognized and 

updated during the entire motion/deformation process, and represented by appropriate 

constitutive models. Thus DEM allows finite displacements and rotations of discrete bodies, 

including complete detachment.  The foundation of the method is the formulation and solution 

of equations of motion of rigid and/or deformable bodies using implicit (based on FEM 

discretization) or explicit (using FDM discretization) formulation. The basic difference 

between the discontinuous and the continuum-based models is that the contact patterns 

between components of the system is continuously changing with the deformation process for 

the former, but are fixed for the latter.  
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The explicit DEM, originally developed by Cundall (1971), is a force method that 

employs an explicit time marching scheme to solve directly the Newtonian motion equations, 

unbalanced forces drive the solution process, and numerical damping is used to dissipate 

energy. This method has been developed extensively since its introduction.  The 

comprehensive DEM program UDEC (Universal Distinct Element Code) has powerful 

capabilities, which allow the modeling of variable rock deformability, non-linear joint 

behavior, fracture of intact rock, fluid flow and fluid pressure generation in joints and voids, 

and more (Lemos et al., 1985). 

The implicit DEM is represented mainly by the Discontinuous Deformation Analysis 

(DDA), originated by Shi (1988). DDA is a displacement method, where the unknowns of the 

equilibrium equations are displacements. The formulation is based on minimization of the 

potential energy and contacts are treated using the “penalty” method.  DDA has two major 

advantages over the explicit DEM: 1) relatively large time steps; and 2) closed form 

integrations for the stiffness matrices of the elements.  

2.5. Numerical Modeling of the Voussoir Beam Using FEM and DEM 

Wright (1972) conducted linear analysis of the Voussoir beam by FEM, and supported 

the failure modes as proposed by Evans. Two models of Voussoir beams were compared, one 

with a single mid-span joint and the other with 19 joints and concluded that the Voussoir with 

a single mid-span joint is the worst case. Chugh (1977) studied the stability of a jointed beam 

by using the stiffness matrix for beam elements. Pender (1985) demonstrated the effect of 

joint dilation in the stability analysis of Voussoir beam using a simplified model. Sepehr and 

Stimpson (1988) numerically studied the jointed roof in horizontally bedded strata with 

emphasis on developing the relationship between the roof deflection and joint spacing rather 

than analyzing failure modes. Passaris et al., (1993) have shown that crushing in high stress 
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areas and shear sliding are the most common failure modes encountered in mining 

environment, and showed that Wright’s conclusion is erroneous, i.e. the multi jointed beam 

being the worst case. In their study however, the crushing failure was studied under the pre-

condition that there was no shear sliding along the joints. Ran et al., (1994) studied the 

behavior of the jointed beam using non-linear FEM, and showed that the no shear pre-

conditioning may result in over conservative estimate of roof strength. Both Passaris et al., 

(1993) and Ran et al., (1994) extended the analysis to multiple joints of variable spacing, 

however friction along joints was not modeled. FEM have limited applicability to the analysis 

of jointed rock masses since only small displacements/rotations are allowed, discontinuities 

are modeled as artificial-numerical interfaces, and new contacts are not automatically 

detected.  

Sofianos and Kapenis (1998) studied the stability of the classic mid-span jointed 

Voussoir beam using UDEC. The mid-span joint model considers friction and cohesion along 

joints, although prescribing values rarely encountered in rocks: zero friction at the mid span 

and φ = 890, c = 10GPa at the abutment. Thus, elastic displacement at mid-span is prevented, 

and only separation without shear is allowed at the abutments, i.e. crushing will occur before 

slip commences. Nomikos et al., (2002) investigated the influence of joint frequency and 

compliance under similar boundary condition, thus precluding shear along abutments and off-

center joints. Kaiser and Diederiches (1999) used UDEC to model a multi-jointed beam, their 

conclusions are discussed in the previous section. 

2.6. Physical Modeling of the Voussoir Beam 

Physical modeling of laminated rock masses began with Fayol’s experiment in 1885. 

His observations and conclusions regarding the behavior of laminated beams have been 

described previously. Bucky (1931) studied the integrity of mine roof structures in rock, using 
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a centrifuge (the first mention of anyone actually undertaking centrifuge modeling). Small 

preformed rock structures were subjected to increasing accelerations until they ruptured. 

There was little or no instrumentation on the models and their significance is largely 

historical. This work was pioneering, but saw little continuation or development. 

Evans (1941) studied the amount of deflection of brick beams, as an analog of the 

Voussoir beam. The deflection of the brick beams was analyzed as a function of lateral thrust 

(amount and eccentricity) and beam geometry. Evans summarized the experiments in the 

following “ …the tests on brick beams have served to show that, provided the end reactions 

are adequate, a Voussoir beam can be quite stable under its own weight even when traversed 

by numerous breaks and incapable of taking tensile forces.”  

Sterling (1980) performed a series of experiments on single and multi-layered rock 

beams simulating the behavior of continuous rock beams from initial structural integrity to 

incipient cracking and up to Voussoir beam geometry. The experiment design provided data 

on the applied transverse load, induced beam deflection, induced lateral thrust and 

eccentricity of the lateral thrust. Sterling drew the following conclusions: 1) roof beds cannot 

be simulated by continuous, elastic beams or plates, since their behavior is dominated by the 

blocks generated by natural joints or induced transverse cracks; 2) roof bed behavior is 

determined by the lateral thrust generated by deflection under gravity loading of the Voussoir 

beam against the confinement of the abutting rock; 3) a Voussoir beam behaves elastically 

over a satisfactory range. In addition, failure mode has been ascribed to various span to depth 

ratios and beam strength. Although pioneering, Sterling’s experiments overlooked physical 

and geometrical properties of rock joints, and again concentrated on crushing strength and 

buckling limits of the three-hinged Voussoir beam. 

Passaris et al., (1993) and Ran et al., (1994) performed physical modeling of the 

Voussoir beam using blocks of lightweight (and low strength) concrete, complemented with 
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numerical (FEM) modeling. This research addressed the mechanical properties of joints, i.e. 

shear stiffness, and to a lesser extent geometrical properties. It has been shown, both 

numerically and experimentally, that the strength and stability of the Voussoir beam is 

decreased with increasing number of blocks. This conclusion is opposed to the fundamental 

statement of Wright, describing the Voussoir beam with a single mid joint as the “worst 

case”. 

2.7. Case Studies 

In contrast to extensive numerical, and to a lesser extent physical modeling, case studies 

documenting and analyzing the behavior and the failure modes of laminated and jointed roofs are 

sparse. Economopuolus at al., (1994) included in the design charts of Beer and Meek (1982) data 

collected from failures in bedded limestone roofs in Greek underground mining excavations.  

Hatzor and Benari (1998) have used DDA in back analysis of historic roof collapse in an 

underground water storage system excavated in densely laminated and jointed rock mass. However 

their geometrical dimensioning of the problem was conservative. Nevertheless, their research 

showed that: 1) the Voussoir beam analogy is unconservative; and 2) the stability of a laminated 

Voussoir beam is dictated by the interplay of friction angle along joints and joint frequency. 

Sofianos et al., (1998) explored the deflections of roof in an underground marble quarry. In 

that research both numerical evaluation (FEM, DEM), deformation monitoring and Voussoir 

formulation were employed. Diederichs and Kaiser (1999) describe evidence of Voussoir arch 

action from monitored roof deflection in Mt. Isa, Australia, and in Winston Lake Mine, Canada. 
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2.8. Current Research Motivation  

From the background material described above it is clear that the classical notation and 

solution of the Voussoir beam (the three hinged beam) is inadequate if a stability analysis of 

underground opening roof in laminated and jointed rock mass is attempted.  The application 

of numerical methods is therefore inevitable. In order to closely simulate the deformation 

characteristic of a laminated Voussoir beam the numerical method should allow rigid body 

displacement and deformation to occur simultaneously. Convergence at every time step 

should be achieved after relatively large block displacements and rotation, without block 

penetration or tension. The vertical load must be evaluated and updated implicitly every time 

step, since it varies with the progress of block deformation. The model must incorporate the 

influence of joint friction on block displacement, stress transfer, and arching mechanism that 

develop with ongoing beam deformation. The Discontinuous Deformation Analysis (DDA) 

was developed specifically to meet such requirements. The scope of this thesis is to 

investigate the deformation characteristics of the laminated Voussoir beam using DDA. 
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Chapter 3 – DDA Basics: Review of Fundamentals 

The description of DDA formulation presented bellow is brief. Thorough description of 

the DDA formulation is found in Shi (1988, 1993). Additional reading regarding extensions 

and improvements of DDA can be found in: Ke and Bray (1995); Amadei et al., (1996); Koo 

and Chern (1996); Kim et al., (1999); Jing et al., (2001). 

3.1. Formulation of Simultaneous Equilibrium Equations 

DDA models a discontinuous material as a system of individually deformable blocks 

that move independently without interpenetration. In the DDA method the formulation of the 

blocks is very similar to the definition of a finite element mesh. A finite element type of 

problem is solved in which all elements are physically isolated blocks bounded by pre-

existing discontinuities. The discontinuities can in general be located anywhere with any 

direction, and length. Therefore, elements of any shape are expected. Both FEM and DDA 

require integration of polynomial functions over a general polygon area. In FEM, integrations 

are preformed using the Gaussian quadrature, which is only suitable for integration in 

triangular and rectangular elements. In DDA integrations are performed using the analytical 

Simplex solution (Shi, 1984), thus the elements can assume any given topology.  

The displacements (u, v) at any point (x, y) in a block, can be related in two dimensions 

to six displacement variables 

       (3.1) [ ] ( T
iD xyyx000 γεεrvu= )
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where (u0, v0) are the rigid body translations of a specific point (x0, y0) within a block, 

(r0) is the rotation angle of the block with a rotation center at (x0, y0), and εx, εy and γxy are the 

normal and shear strains of the block. For a two-dimensional formulation of DDA, the center 

of rotation (x0, y0) coincides with block centroid (xc, yc). Shi (1988) showed that the complete 

first order approximation of block displacement takes the following form 
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This equation enables the calculation of displacements at any point (x, y) of the block 

when the displacements are given at the center of rotation and when the strains are known. By 

adopting first order displacement approximation, each block is a constant strain/stress 

element. 

The local equations of equilibrium are derived using FEM style potential energy 

minimization. In DDA individual blocks form a system of blocks through contacts between 

blocks and displacement constraints which are imposed on a single block. For a block system 

defined by n blocks the simultaneous equilibrium equations are 
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where Kij are 6 × 6 sub-matrices defined by the interactions of blocks i and j, Di is a 6 × 

1 displacement variables sub-matrix, and Fi is a 6 × 1 loading sub-matrix. In total the number 

of displacement unknowns is the sum of the degrees of freedom of all the blocks. The 

diagonal sub-matrices Kij (i = j) represent the sum of contributing sub-matrices for the i-th 

block, namely block inertia and elastic strain energy. The off diagonal sub-matrices Kij (i ≠ j) 

represent the sum of contributing sub-matrices of contacts between blocks i and j and other 

inter-element actions like bolting. Concise derivation of single block energy functionals and 



Chapter 3 –DDA Basic 22

contributions to the global equations are given in section 3.2.2. Inter block contacts and their 

contributions to the global equations are given in section 3.2.3. 

The i-th row of (3) consists of six linear equations 

6,,1,0 …==
∂
Π∂ r
dri

    (3.4) 

where dri are the deformation variables of block i. 

The solution to the system of equations (3.3) is constrained by inequalities associated 

with block kinematics, as well as the no penetration and no tension condition between blocks. 

The kinematic constraints on the system are imposed using the penalty method. Contact 

detection is performed in order to determine possible contacts between blocks. Numerical 

penalties analogous to stiff springs are applied at the contacts to prevent penetration. Tension 

or penetration at the contacts results in expansion or contraction of the “springs”, a process 

that adds energy to the block system. Thus the minimum energy solution is one with no 

tension or penetration. When the system converges to an equilibrium state the energy of the 

contact forces is balanced by the penetration energy, resulting in inevitable very small 

penetrations. The energy of the penetrations is used to calculate the contact forces, which are 

in turn used to calculate the frictional forces along the interfaces between blocks. Shear 

displacement along the interfaces is modeled using Coulomb - Mohr failure criterion. Fixed 

boundary conditions are enforced in a manner consistent with the penalty method 

formulation. Stiff springs are applied at fixed points. Displacement of the fixed points adds 

considerable energy to the block system. Thus, a minimum energy solution satisfies the no 

displacement condition of the fixed points. The solution of the system of equations is 

iterative. First, the solution is checked to see how well the constraints are satisfied. If tension 

or penetration are found at contacts the constraints are adjusted by selecting new position for 

the contact springs and modified versions of [K] and { }F are formed for which a new solution 
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is attained. The process is repeated until each of the contacts converges to a constant state. 

The positions of the blocks are then updated according to the prescribed displacement 

variables. The large displacements and deformations are the accumulation of small 

displacements and deformations at each time step. 

3.2. Energy Functionals and Contributions to Global Equilibrium 

Equations 

According to the laws of thermodynamics a mechanical system under loading must 

move or deform in a direction that produces the minimum total energy of the system. The 

minimization of the system energy will produce an equation of motion for the system. In this 

section the energy functionals of: 1) elastic stresses; 2) initial stresses; 3) point loading; 4) 

line loading; 5) body forces; 6) inertia forces; and 7) kinematical constraints of the individual 

blocks, and their contributions to the global equilibrium equations are briefly described, 

following Shi (1993):  

1) The elastic strain energy  of block i is  eΠ
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where is the elasticity matrix, and S is the area of the i-th block. iE
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The derivatives are 
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irs Sk E=  

rsk  forms a  submatrix which is added to the sub-matrix  in the global equation  66× iiK

2) The potential energy of the initial stresses σΠ  of block i is  
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The derivatives are 
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rf  forms a  submatrix which is added to 16× { }iF  in the global equation. 

3) The potential energy of the point loading { }  is 
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rf  forms a  submatrix which is added to 16× { }iF  in the global equation. 

4) The potential energy of load distributed on a straight line from point to point 

 is  
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where t is the parametric coefficient of the line equation, and l is the length of the line 

segment between the end points. 

The derivatives are 
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rf  forms a  submatrix which is added to 16× { }iF  in the global equation. 

5) The potential energy of the of a constant body force ( )yx ff  acting on the volume 

of the i-th block is 
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rf  forms a  submatrix which is added to 16× { }iF  in the global equation. 
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6) The potential energy of the inertia force iΠ  of block i is 
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 Introducing time integration scheme (refer to section 3.4.) transforms equation (10) into 
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where  is the time step size, and j is time step index. t∆

The derivatives are  
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which is added to {  in the global equation. Since there is unknown in equation 

(3.10.2), this equation transforms to two parts 

}iF iD
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a  submatrix which is added to in the global stiffness matrix, and 66× iiK
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a  submatrix which is added to 16× { }iF  in the global equation. 

7) Displacement constraint at a point. 

For a fixed point in a block the displacements are . Two stiff springs are 

assigned in the x and y direction respectively. The stiffness of the springs is p and the spring 

forces are . 
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The potential energy of the spring mΠ  is 
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The derivatives are 
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rsk forms a  submatrix which is added to in the global stiffness matrix. 66× iiK

3.3. Block System Kinematics and Contacts 

Block system kinematics in DDA is constrained by the no tension no penetration 

condition between the blocks, mathematically described by a system of inequalities. As 

pointed out by Shi (1993) the minimization of total potential energy with inequality 

constraints is a non linear programming problem of high difficulty. However, when the block 
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system moves or deforms the blocks are in contact only along boundaries and the non 

penetration inequalities can be transformed into equations when the blocks are in contact. 

The equations can be imposed on the global equation by adding numeric penalties to 

lock the movement in one or two directions. If two blocks have a tensile contact force 

between them, they will separate when the locks are removed. The global equations have to 

be solved repeatedly while selecting the lock position. Using this method the block system 

with tension and penetration can be corrected, by selection of lock position, until the 

fundamental constraints are satisfied. 

3.3.1. Distance between two blocks 

Two blocks meet at the next time step only if they are near at during the current time 

step. The distance between blocks i and j is defined is the minimum distance ηij of any point 

pair P1(x1,y1) of block i and P2(x2,y2) of block j (Figure3.1): 

 { }jiij ByxByxyyxx ∈∀∈∀−+−= ),(,),()()(min 2211
2

12
2

12η  (3.12) 

where ∀ denotes “for all”. 

Bi

(x1, y1)

(x2, y2)Bj

ηij

P1

P2 P3

 

Figure 3.1. Distance of two blocks (after Shi, 1993) 
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If the distance η is greater then two times the maximum displacement ρ of all points of 

the blocks: 

ρη 2>ij  

{ }nrByxyxvyxu r …1,),(),(),(max 22 =∈∀+=ρ   (3.13) 

then it is impossible to for blocks i and j to meet during the next time step. 

3.3.2. Contacts and interpenetration 

In DDA there are three different types of block contacts: 1) angle to edge; 2) angle to 

angle; and 3) edge to edge (Figure 3.2). Edge to edge contacts can be transformed to in to two 

angle to edge contacts. For example, in Figure 3.2c the contact edges P1P2 and P3P4 can be 

transformed into two angle to edge contacts:1) angle P4 and edge P1P2; 2) angle P1 and edge 

P3P4. the angle to edge and the angle to angle contacts can be transformed into point-line 

crossing inequalities. 

a b c

P1P3

P2

P4

 

Figure 3.2.Types of blocks contact: a) angle to edge; b) angle to angle; c) edge to edge (after 
Shi,1993). 
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An edge and an angle are defined to be in contact if the distance from angle to edge is 

less than ρ and if there is no overlapping when angle vertex translates to the edge without 

rotation. In Figure 3.3a there is overlapping when non rotational translation is made, and 

therefore the angle and the edge are not in contact. 

Two angles are defined to be in contact if the distance between the vertices is less than 

� and if there is no overlapping when angle vertex translates to the edge without rotation until 

the vertices coincide. In Figure 3.3b there is overlapping and therefore the two angles are not 

in contact .The concept of contact is extremely important: if there is no penetration at the 

contacts there is no penetration in the whole block system.  

P1

P2

P3

O

P2

P3

O

a

P1

P2

P1

b

 

Figure 3.3 Contact conditions: a) overlapping angle and edge; b) overlapping angles 
(modified after Shi,1993)  

3.3.3. Energy functional of a stiff contact 

If a vertex of block i with coordinates is penetrating an edge of block j with 

vertices and , the penetration distance d can be denoted as 

)y,x( 11

)y,x( 22 )y,x( 33

  
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
++=

++
++
++

∆
=

33

32

11

33

22

11

0

3333

3222

1111

1
1
1

1
1
1

1

1
1
1

vx
vx
vx

yu
yu
yu

S
l

vyux
vyux
vyux

l
d  (3.14) 



Chapter 3 –DDA Basic 31

where l is the edge length, 
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Introducing equation (3.12.1) in to equation (3.12) yields  
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The strain energy of the contact spring is  
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where p is the spring stiffness. 

Minimizing by taking derivatives, four cΠ 66×  submatrices and two  submatrices 

are obtained and added to , , , ,  and  respectively. 

16×

iiK ijK jiK jjK iF jF
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      srrs epek = 61 ,,s,r …=  

rsk  is a submatrix which is added to  in the global equation. 66× iiK
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      srrs gpek = 61 ,,s,r …=  

rsk  is a submatrix which is added to  in the global equation. 66× ijK
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srrs epgk =   61 ,,s,r …=  

rsk  is a submatrix which is added to  in the global equation. 66× jiK
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srrs gpgk =   61 ,,s,r …=  

rsk  is a submatrix which is added to  in the global equation. 66× jjK
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rf  is a submatrix which is added to   in the global equation. 16× iF
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rf  is a submatrix which is added to  in the global equation.  16× jF
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3.3.4. Limitations of DDA stiff contact formulation 

In DDA the contact stiffness is determined at the beginning of the computation and is 

kept constant throughout the entire calculation. In deforming rock masses some deformation 

is taking place at the contacts. Deformation of the contacts and subsequent changes of contact 

areas and angles are not accounted by DDA. This deformation consumes energy, which is not 

accounted by as well.  
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α
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Figure 3.4. A wedge loaded by normal and tangential forces at the apex (after Timoshenko 
and Goodier, 1951) 

Timoshenko and Goodier (1951) describe the stress concentration at wedge (similar to a 

DDA edge) loaded by a normal and tangential forces at the apex (Figure 3.4). The radial 

stress concentration due to normal loading within the wedge is given by: 
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The tangential stress concentration due to normal loading within the wedge is given by: 
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Clearly the stress concentration is a function of the geometrical factor 
)2sin

2
1(

1

αα ±
=k , 

which is related to the vertex angle 2α. During deformation this angle is expected to change, 

and so does the factor k. This factor bares similarity to contact stiffness, relates stress to force, 

and can be transformed into a formal stiffness, which relates force to displacement, by the 

application of Hooke’s law. Therefore, it can be assumed that contact stiffness is expected to 

change during deformation as well. 

DDA version used in this research assumes first order displacement function, resulting 

in homogenously deformable elements. In order to accommodate a realistic contact 

formulation, as described above, high order displacement functions should be used. High 

order displacement functions were implemented into DDA by various investigators (refer to 

Hsiung, S-M, 2001), however the contact stiffness was modeled using constant stiffness 

springs. Amadei et al., (1996) reformulated the contact scheme by substituting the stiff 

contacts by Lagrangian multipliers, which are constantly updated trough the computational 

cycles. However, this technique is essentially numerical with vague physical meaning.   

Future development of the DDA should account for this deficiency, if more accurate 

description of deformation is desired.  

 

3.4. Time Integration Scheme 

DDA time integration scheme adopts the Newmark (1959) approach, which for a single 

degree of freedom can be written in the following manner: 
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where , , and  are acceleration, velocity, and displacement respectively,  is the 

time step, 

u�� u� u t∆

β and γ are the collocation parameters defining the variation of acceleration over 

the time step. Unconditional stability of the scheme is assured for 5.02 ≥≥ γβ . DDA 

integration scheme uses 5.0=β  and 1=γ , thus setting the acceleration at the end of the time 

step to be constant over the time step. This approach is implicit and unconditionally stable. 

Along with unconditional stability this set of collocation parameters assures a high 

algorithmic damping (Wang et al., 1996). This phenomenon is commonly observed when 

numerical methods are used to analyze the dynamic behavior of elastic systems.  

Consider a two block system, as depicted in Figure 3.1. The equilibrium solution of the 

vertical stress at the centroid of the upper block is MPay 01226.0=σ . The effect of 

algorithmic damping can be seen in Figure 3.2a, which is a plot of the vertical stress at the 

centroid of the upper block versus time. DDA solution equilibrates with time, as is clearly 

seen for the case of contact spring stiffness . For higher contact stiffness 

the solution further stabilizes. 

mMNg /10500 6⋅=

The effect of increased contact stiffness is seen in Figure 3.2b, which is a plot of the 

relative numeric error versus time. The relative numeric error is defined as: 

     100(%)
*

⋅
−

=
y

yy
ne

σ
σσ

    (3.21) 

where yσ is equilibrium solution vertical stress and  is the numerically calculated 

vertical stress; both are taken at the upper block centroid. It is clearly seen that algorithmic 

damping is active for the lower contact stiffness, where the numeric error is reduced from 

initial value of 3% to 0.3% over 20 time steps. As contact stiffness approaches infinity the 

numeric error declines, as low as 0.01% for contact stiffness of . Thus, it can 

be concluded that DDA solution approaches equilibrium solution faster with increased contact 

stiffness.  

*
yσ

mMN /10100 9⋅
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Figure 3.5. Two block system. 

The origin of the initial error is the contact force perturbation at the initial time step of 

the computation, at gravity turn-on. As shown by Doolin and Sitar (2002) initial contact force 

perturbation is inversely proportional to the time step size. This effect can bee seen in Figure 

3.3, which shows the DDA solution (Fig. 3.3a) and the numeric error (Fig. 3.3b) of the 

previously described problem. For a time step of sec05.0=∆t the initial perturbation is of 

approximately 4%. Reducing the time step size, up to magnitude order scale, results in higher 

initial error. However, the convergence of DDA solution is markedly enhanced by time step 

size reduction, down to a numeric error of 0.005%. 

From the above discussion, it is clear that the accuracy of DDA solution is governed by 

two parameters: 1) time step size; 2) contact stiffness. The most accurate solution is attained 

for smaller time step size and higher values of contact stiffness. This effect will be discussed 

further in the following chapters. 
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3.5. DDA Numeric Implementation 

Computer implementation of DDA allows control over the analysis procedure through a 

set of user specified control parameters:  

1. Dynamic control parameter (k01) – defines the type of analysis required, from 

quasi-static to fully dynamic. For quasi-static analysis the velocity of each block at 

the beginning of each time step is set to zero, 001=k . In case of dynamic analysis 

the velocity of each block at the end of a time step is fully transferred to the next 

time step, . Different values from 0 to 1 correspond to different degrees of 

inter step velocity transfer, comparable to damping or energy dissipation. For 

example, for an input value of 

101=k

95001 .k = the velocity in the beginning of each time 

step is 5% lower then the terminal velocity at the previous time step. 

2. Penalty value (g0) – is the stiffness of the contact springs used to enforce 

contact constraints between blocks. 

3. Upper limit of time step size (g1) – the maximum time interval that can be 

used in a time step, should be chosen so that the assumption of infinitesimal 

displacement within the time step is satisfied. 

4. Assumed maximum displacement ratio (g2) – the calculated maximum 

displacement within a time step is limited to an assumed maximum displacement in 

order to ensure infinitesimal displacements within a time step. The assumed 

maximum displacement is defined as )y()g(U max 22 ⋅= , where y is the length of the 

analysis domain in the y-direction. This parameter is also used to detect possible 

contacts between blocks: if the distance between separated vertices or edges of 

neighboring blocks is less than )y()g(. 2252 ⋅  then the blocks are in contact. If  

is too large there are too many unnecessary contacts, if is too small unrealistic 

inter-block penetration can occur. 

2g

2g
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Figure 3.6. DDA results for the two block system: for a time step size of g1 = 0.005 sec a) 
vertical stress at the centroid of the upper block for different values of contact stiffness; b) 
relative numeric error for different values of contact stiffness. 
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Figure 3.7. DDA results for the two block system for contact stiffness of g0 = 50·106 N/m: a) 
vertical stress at the centroid of the upper block for different values of time step size (g1) ; b) 
relative numeric error for different values of time step size (g1). 
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Chapter 4 – Validation of DDA Using Analytical Solutions 
and Shaking Table Experiments 

4.1. Introduction 

Realistic simulation of a large number of individually deformable particles/blocks 

requires the application of DEM, such as the Distinct Element Method (Cundall, 1971) or the 

Discontinuous Deformation Analysis (Shi, 1988). Ever-growing popularity of numerical 

schemes, in hand with availability of computing power eases the application of computer-

based methods. However, successful application of numerical methods to large-scale 

engineering problems requires rigorous validation of these methods using analytical solutions, 

laboratory scale models, and case studies. 

Yeung (1991) and MacLaughlin (1997) tested the accuracy of DDA for applications 

ranging from tunneling to slope stability, using problems for which analytical or semi-

analytical solutions exist. Doolin and Sitar (2002) explored the kinematics of a block on an 

incline for sliding distances of up to 250 meters. Hatzor and Feintuch (2001) validated DDA 

using direct dynamic input. Analytical integration of sinusoidal functions of increasing 

complexity was compared to displacements prescribed by DDA for a single block on an 

incline subjected to the same acceleration functions as integrated analytically. 

The necessity for DDA validation using analytical solutions is evident if the method is 

to be adopted by the engineering profession. However, analytical solutions are only valid for 

the inherent underlying simplifying assumptions. This limitation can be overcome by 
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comparison between DDA prediction and experimental results of carefully planned physical 

models. Up to date, such attempts have been limited, or practically non-existent for the 

dynamic problem.  

O’Sullivan and Bray (2001) simulated the behavior of hexagonally packed glass rods 

subjected to bi-axial compression, showing the advantages of DDA in the study of soil 

dynamics. McBride and Scheele (2001) validated DDA using a multi-block array on an 

incline subjected to gravitational loading, and a bearing capacity model. 

Validation of DDA using analytical solutions showed that DDA accurately predicts 

single block displacements, up to tens of meters. However, validation using physical models 

proved less successful. In particular, it was found that kinetic damping is required for reliable 

prediction of displacement (McBride and Scheele, 2001). 

The aim of this chapter is to validate DDA using fully dynamic shaking table model. 

The accuracy of DDA is explored, and the influence of the numeric control parameters is 

studied in detail.  

4.2. Validation of DDA Using an Analytical Solution 

A Fourier series composed of sine components represents the simplest form of 

harmonic oscillations, in general notation 

        (4.1) ∑
=

=
n

i
ii tata

1
)sin()( ω

where ai and ωι  are the amplitude (acceleration in this case) and frequency respectively. 

The displacement of a mass subjected to dynamic loading is attained by double 

integration of the acceleration record (Eq. 4.1) from θ to t:  

  [ ]∑
=

−++−=
n

i
iiiii

i

i ttatd
1

2 cos)(sinsin)( θωθωθωω
ω

  (4.2) 



Chapter 4 – Validation of DDA using shaking table model   42 
 

where θ is the time at which yield acceleration ay is attained. 

Goodman and Seed (1965) showed that for frictional sliding of a single block on a plane 

inclined by α degrees, where cohesion along the sliding plane is zero, the down slope 

horizontal yield acceleration (ay) is 

   ga dy )tan( αφ −=       (4.3) 

Up slope horizontal yield acceleration is 

   ga dy )tan( αφ +=       (4.4) 

where φd is the displacement dependent friction angle. It is apparent that up slope 

motion requires significantly higher accelerations, which in most cases preclude up slope 

displacement. 

Hatzor and Feintuch (2001) showed that for an acceleration function consisting of sum 

of three sines DDA prediction is accurate within 15% of the analytic solution without 

application of damping, provided that the numeric control parameters g1, g2 are carefully 

optimized. Moreover, they argued that the influence of higher order terms in a series of sine 

function is negligible. Hatzor and Feintuch demonstrated their validation for arbitrary selected 

constants, a1 = ω1 = 1, a2 = ω2 = 2, a3 = ω3 = 3.  The prescribed values produce a low 

frequency dynamic input assuring a nearly constant block velocity, which was attained at the 

beginning of the analysis (ca. 20% of elapsed time). 

In order to attain a better understanding of the frequency effect upon the numerical 

solution we have extended the analysis to higher frequencies, constraining the peak horizontal 

acceleration to 0.15g. A typical input motion of sum of three sines is presented in Figure 4.1a. 

The analysis was performed for a single block resting on a plane inclined α = 150 to the 

horizontal. The block material properties were: density  = 2700 kg/m3, E = 5000 MPa, and ν = 

0.25. The friction angle of the sliding plane was set to φ = 150, thus the yield acceleration (ay 
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= 0) was attained immediately at the beginning of analysis (θ = 0 sec). Three different sets of 

frequencies were modeled (Tab. 4.1). Constant values of numeric spring stiffness g0 = 1000 

MN/m, assumed maximum displacement ratio g2 = 0.0075, and dynamic control parameter 

k01 = 1 were used.  

 

Set ω1 (π)  a1 (g) ω2 (π) a2 (g) ω3 (π)  a3 (g) 

1 8, 0.1 4, 0.05 2, 0.025 

2 10, 0.1 5,0.05 2.5, 0.025 

3 15, 0.1 7.5, 0.05 3.75, 0.025 

Table 4.1. Frequency sets for a loading function consisting of a sum of three sines. 

Each set was modeled twice, first the time step was set to g1 = 0.005 sec, then the time 

step was halved to g1 = 0.0025 sec. Comparison between the analytical solution and the 

numerical solution of the total displacement are presented in Fig. 4.1b, where excellent 

agreement between the analytical and DDA solutions are shown, regardless of frequency. 

The relative numeric error is defined as: 

   100(%) ⋅
−

=
d
dd

e N
n     (4.5) 

and the relative numeric difference is defined as: 

   100⋅
−

=′
d

dd
(%)e N     (4.6) 

where and  are the analytical and the numeric displacement vectors respectively. d Nd

⋅ is the norm operator. 

The relative numeric error for g1 = 0.005 sec simulations is within 4.5%. Halving the 

time step reduces the relative numeric error to 1.5%. 
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Figure 4.1. a) the loading function a(t) = a1sin(ω1t) + a2sin(ω2t)+ a3sin(ω3t); b) comparison 
between analytical and DDA solution for block displacement subjected to a loading function 
consisting of a sum of three sines. All DDA simulations for:g0 = 1*109 N/m; g2 = 0.0075; 
block elastic modulus E = 5000*106 N/m. All input motions are for ω1= 2ω2 = 4ω3. 
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Figure 4.2. Sensitivity analysis of the DDA numeric control parameters. Relative numeric 
error of ultimate displacement prediction as a function of: a) contact spring stiffness; b) time 
step size (∆t) normalized to input motion frequency (Ti). 
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The interrelationship of the numeric control parameters was further investigated using 

the input function of set 2 (Table 4.1). Figure 4.2 shows the dependence of the numeric error 

on the choice of the numeric control parameters g1, g2 and the numeric spring stiffness g0 

(the penalty value). It is found that for an optimized set of g1and g2 (g1 = 0.0025 sec and g2  

= 0.0075) the DDA solution is not sensitive to the penalty value, which can be changed over a 

range of two orders of magnitude, from 100×106 N/m to 5000×106 N/m. Within this range the 

numeric error never exceeds 10% and in most cases approaches the value of 1%. For values 

lower than 50×106 N/m block penetration occurs. Stiffer contact springs reduce the magnitude 

of displacement until a certain minimum is reached. Further increase in the spring stiffness 

results in an introduction of a large numeric error into the DDA solution. 

Departing from the optimal g1, g2 combination results in increased sensitivity of the 

DDA solution to the penalty value. The departure from the analytical solution occurs at lower 

penalty values with increasing time step size. 

Examining the optimal time step size (Fig. 4.2b) shows that time step optimization is 

not a simple procedure. It is clear that highest accuracy is attained for a small time step – high 

stiffness combination. However, enlargement of the time step size produces a different 

response of the mechanical system: for higher stiffness values the numeric error tends to 

grow, while for the lower ones it tends to decrease. Thus, an optimal combination is not easily 

defined: the lowest numeric error (e = 0.6%) is attained for the following combination ∆t/Ti = 

0. 0375 and g0 = 250×106 N/m. For the same time step size the errors for g0 = 500×106 N/m 

and g0 = 1000×106 N/m are of an order of magnitude larger. However, the numerical stability 

of DDA is assured regardless of the contact stiffness when time step size is taken sufficiently 

low.  
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4.3. Validation of DDA by Shaking Table Experiments 

It has been shown that there is a very good agreement between the DDA and analytic 

solutions for the block on an incline problem. However, the analytical solution is only an 

approximation to the physical problem with various simplifying assumptions including: 

perfectly rigid block, constant friction, and complete energy conservation. Comparison 

between DDA results and physical modeling can help us probe into the significance of these 

assumptions. In the following section validation of DDA using a physical model of a block on 

an incline subjected to dynamic loading is described. 

4.3.1. Experimental setting 

The physical modeling used in this research was performed by Wartman et al., (2003) at 

the Earthquake Simulation Laboratory of the University of California at Berkeley. The tests 

were performed on a large hydraulic driven shaking table, producing accurate, well 

controlled, and repeatable motions to frequencies up to 14 Hz. The table was driven by a 

222.4 kN (50 kip) force, 15.24 cm (6 in.) stroke range hydraulic actuator manufactured by 

MTS. The system was closed loop servo controlled. A Hewlett Packard 33120A arbitrary 

function generator produced the table command signal. 

In this study sinusoidal input motion tests were used for validation. A typical sinusoidal 

input motion is shown in Figure 4.3. The motion was ramped up linearly for 1.5 seconds to 

insure shaking table stability, followed by full amplitude for duration of 2 seconds, and finally 

ramped down for 1.5 seconds. Eight different tests were used for validation, the input 

parameters of the dynamic loading functions are given in Table 4.2. 

An inclined steel plane was fitted to the shaking table. The plane inclination was set to 

11.370 during the rigid block tests. The steel rigid block was 2.54 cm (1 in.) thick, with area of 

25.8 cm2 (4 in.2), and weight of 1.6 kg (3.5 lbs). Linear accelerometers were fitted on top of 
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the sliding block and the inclined plane. Displacement transducers measured the relative 

displacement of the sliding block, and of the shaking table (Fig. 4.4). 

A geotextile and a geomembrane were fitted to the face of the sliding block and the 

inclined plane respectively. The static friction angle (φ) of the interface was determined using 

tilt tests and a value of φ = 12.70±0.70 was reported. Kim et al., (1999) found that the friction 

angle of the geotextile – geomembrane interface exhibited pronounced strain rate effects, and 

reported an increase by 20% over one log-cycle of strain rate.  

Wartman (2003) showed that the friction angle of the interface was controlled by two 

factors: 1) amount of displacement; and 2) sliding velocity. The back-calculated friction angle 

for the range of velocities and displacements measured was between φ = 140 - 190 (refer to 

Fig. 4.5). 

The DDA version used in this research accepts a constant value of friction angle. 

Therefore a single friction angle (φav) value must be chosen for validation. The value of φav 

was determined as follows. First, the measured displacement of the block was differentiated 

with respect to time and hence the velocity record was attained. Next, the velocity content for 

the duration of the test was computed. For example, the test of 2.66 Hz input motion 

frequency showed that the upper bound velocity was below 10 cm/sec, refer to Figure 4.6a. 

This value was attained only for short periods of time during the test. The velocity content 

chart (Fig. 4.6b) shows that 80% of the velocities fall under the value of 3 cm/sec. Taking the 

value of 3 cm/sec as upper bound, the corresponding friction angle is φav < 17o. The 50% 

value corresponds to friction angle of φav = 16o. This value was chosen for DDA analysis. 
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Figure 4.3. Sinusoidal input motion for the  shaking table experiment: 2.66 Hz frequency 
(Test 1 at Table 4.2). 

 

Test ω (Hz) dT (cm) dB (cm) ah (g) 

1 2.66 0.889 5.367 0.28 

2 4 0.559 6.604 0.25 

3 5.33 0.305 3.341 0.19 

4 6 0.254 3.647 0.19 

5 6.67 0.254 3.410 0.22 

6 7.3 0.228 3.353 0.22 

7 8 0.228 3.937 0.23 

8 8.66 0.019 2.882 0.21 

Table 4.2. Shaking table model summary: ω is the input motion frequency,  dT is the shaking 
table displacement, dB is relative block displacement, and ah is maximum horizontal table 
acceleration. 
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Figure 4.4. a) general view of the inclined plane and the sliding block (top); b) sliding block 
experimental setup and instrumentation location (bottom), from Wartman (1999). 
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Figure 4.5. Back analyzed friction angles shown as a function of average sliding velocity for 
rigid block tests, from Wartman (2003). 
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Figure 4.6. The 2.66 Hz sinusoidal input motion test: a) displacement derived velocity; b) 
velocity content. 
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4.4. DDA Prediction vs. Shaking Table Results 

The numeric control parameters of DDA for this validation study were chosen 

according to the guide-lines described in previous sections: penalty value g0 = 5*109 N/m, 

time step size g1 = 0.0025 sec, assumed maximum displacement g2 = 0.005. 

The 2.66 Hz motion is discussed here in detail and the results are shown in Figure 4.7. 

Other seven tests yielded similar results, the final displacement errors for this tests are 

summarized in Figure 4.9.   For φav = 16o and k01 = 1 the numeric error is approximately 80% 

(Fig. 4.8), but the ultimate displacement values are close, 0.055m measured displacement 

compared to 0.093m of calculated solution, within the same order of magnitude. Introducing 

some kinetic damping by reducing k01 below 1 improves the agreement between the 

numerical estimate and physical test data. 

Setting k01 = 0.98, corresponding to 2% velocity reduction, reduces the error to below 

4%, and improves the tracking of the displacement history by DDA. Setting the k01 = 0.95 

over damps the solution, resulting in a highly un-conservative displacement. 

Plotting the numeric difference (%)e′  against input motion frequency (Fig. 4.9) shows 

that in general DDA accuracy increases with higher frequencies, with an exception at 6 Hz. 

For φav = 16o and k01 = 1 the numeric error is always conservative, with the exception of 6 

Hz. Reducing k01 to 0.98 shows a similar effect for all frequencies, reducing the numeric 

error below 10%. However, it should be mentioned that setting a constant friction angle for all 

the analyzed tests introduces an un-conservative error. For input motions with essentially 

similar peak acceleration, higher frequencies will result in lower block velocity. Given the 

strain rate dependence of the sliding interface friction, lower velocities correspond to lower 

friction angles. Thus, the accuracy of DDA could be improved with implementation of rate 
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dependent friction. This modification is beyond the scope of this study. Using the shaking 

table results it may be concluded that a kinetic damping value of 2% should be proper for 

realistic prediction of dynamic displacements. 

4.4.1. Accuracy of DDA 

The implicit formulation of DDA guaranties numerical stability regardless of time step 

size. However, it does not guarantee accuracy. Where the time step is too large relative to the 

numeric spring stiffness, loss of diagonal dominance and/or ill conditioning error may result, 

interfering with convergence to an accurate solution. 

The numeric implementation of DDA utilizes the SOR Gauss – Seidel equation solver. 

The convergence of the SOR equation solver is guaranteed for diagonally dominant matrices: 

    ∑>
n

j
ijii KK  ji ≠      (4.7)  

Larger inertia terms on the diagonal of the global stiffness matrix increase the stability 

of the computation. A small time step size is needed to increase the inertia terms, which are 

inversely proportional to the square of time step. For small time steps (0.0025 sec) the 

numeric error does not exceed 10% for increasing penalty values up to 5*1010 N/m; higher 

penalty values, however, result in significant error as the off diagonal sub-matrices become 

exceedingly large. Enlarging the time step results in reduction of inertia terms in the diagonal 

sub-matrices. Therefore, for a given time step size the loss of diagonal dominance will occur 

at lower penalty values. 

Most of the error is accumulated at the beginning of the analysis and it declines with 

time, a phenomenon known as algorithmic damping (refer to Wang et al., 1996 for elaborate 

discussion of this phenomenon): typical to the Newmark implicit time integration scheme 

(Figure 4.10). This behavior is observed here for all selected values of k01. In this study we 
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have limited the duration of the analysis to 5 seconds, in conjunction with the duration of the 

shaking table experiment. Doolin and Sitar (2002) show that for a block on an incline problem 

the relative error continues to decrease up to displacement of  250 m during 16 seconds of 

sliding. Therefore, for computations involving larger time spans the error is expected to 

decline as calculation proceeds, further improving solution accuracy. 

When compared with analytical solutions for frictional sliding DDA is found to be 

accurate. Therefore, it can be assumed that the contact formulation in DDA is equivalent to 

the mathematical model for frictional sliding. The comparison with shaking table experiments 

however implies that the contact formulation in DDA is not sufficiently accurate for modeling 

physical friction. Consider for example the phenomenon of block “wobbling” during shaking 

table experiments.   In the numerical model the acceleration is applied as a concentrated body 

force at the centroid of each block, whereas in the physical model block displacement is 

induced by the motion of the shaking table. This motion causes block “wobbling” during 

which physical contacts may open and close repeatedly. This process reduces the total energy 

of the system and consequently the total down-slope displacement. Furthermore, the dynamic 

formulation of DDA is essentially un-damped, friction being the main source of energy 

consumption. In the physical model however mechanisms such as structural vibrations, 

material damage along interface (ploughing), drag, heat etc. does take place during block 

sliding. These processes are not modeled numerically and can be a second source of 

discrepancy between the results of the numerical and physical models. 

The only method available at present to simulate energy dissipation in DDA is by 

reducing transferred velocity between time steps. In this study it is found that a reduction of 

transferred velocity by 2% (k01  = 0.98) yields realistic prediction of block displacements, 

further reduction of the dynamic control parameter yields un-conservatively small 

displacements. 
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The numeric analyses show good agreement with the shaking table results, once kinetic 

damping is applied. The reduction of the transferred velocity between time-steps is a numeric 

adaptation not linked directly to a physical damping mechanism. Since DDA formulation is 

essentially un-damped, viscous damping is not accounted for. Implementation of a dashpot 

model in parallel with a contact spring (Voigt model) in order to simulate viscous damping in 

DDA would be more appropriate. However, it is impossible to assign a correct damping 

coefficient for the given problem a-priori. For problems of rock falls analyzed using DDA 

with viscous damping (Chen et al, 1996; Shingi et al, 1997) the selection of the damping 

coefficient was performed using trial and error procedure. We perform similar best “fitting” 

by reducing the transferred velocity between time steps. 
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Figure 4.7. The 2.66 Hz input motion: comparison between measured displacement and DDA 
solutions for different values of inter time step velocity reduction (k01). 

0 2 4 6 8 10
K01 reduction (%)

1

10

100

e n
 (

%
)

 

Figure 4.8. The 2.66 Hz input motion: relative numeric error of DDA ultimate displacement 
as a function of inter time step velocity reduction (k01). 
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Figure 4.9. Numeric difference of DDA ultimate displacement prediction as a function of 
input motion frequency. 
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Figure 4.10. The 2.66 Hz input motion: evolution over time of the DDA relative numeric 
error, for different values of the k01 parameter. 
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4.5. Conclusions 

The results of the validation study show that DDA solution of an idealized system for 

which an analytical solution exists, is accurate. The block contact algorithm in DDA is 

therefore an accurate replication of the analytical model for frictional sliding.  

The accuracy of DDA is governed by the conditioning of the stiffness matrix. The DDA 

solution is accurate as long the chosen time step is small enough to assure diagonal 

dominance of the global stiffness matrix.  

Comparison between shaking table experiments and DDA calculation shows that the 

DDA solution is generally conservative, over predicting block displacement. The main 

sources of discrepancy between DDA and the physical model are the difference between the 

numerical and actual behavior at contact points, and lack of a complex energy dissipation 

algorithm in DDA. 

For accurate displacement prediction a reduction of the dynamic control parameter 

(k01) by 2% is recommended, for the block on a incline problem. 

Implementation of viscous damping and strain/displacement dependent friction into 

DDA can further improve the accuracy of the method.  
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Chapter 5 – Validation of DDA Using a Centrifuge Model of 

a Jointed Rock Beam 

5.1. Introduction 

In the previous chapter, the accuracy of DDA was studied using a shaking table model 

of a single block on an incline. It was shown that the accuracy of DDA is controlled by the 

time step size, the contact spring stiffness, and the amount of kinetic damping. During sliding 

the contacts between blocks, and consequently the stresses within the sliding block remained 

unchanged. While this behavior is expected in sliding, it is certainly not expected during 

deformation of a beam consisting of discontinuities. During the deformation of the jointed 

beam some of the original contacts are expected to be destroyed while new contacts are 

expected to form; consequently, block stresses are expected to change during ongoing 

deformation. If DDA is to be applied to such problems, it should be validated using physical 

model(s) where contacts and stresses are changing during deformation. In this chapter, DDA 

is validated using centrifuge modeling of a multi-jointed beam.  

Centrifuge modeling is based on the assumption of stress similarity. If acceleration of N 

times earth gravity (g) is applied to a material of density ρ, the vertical stress (σv) at depth hm 

of the model is given by: 

     mm,v Nghρ=σ      (5.1) 

In the prototype the vertical stress at depth hp is: 



Chapter 5 – Validation of DDA using a centrifuge model 61

     pp,v ghρ=σ      (5.2) 

Thus for vpvm σ=σ , and the scale factor is N. Since the centrifuge model 

linearly scales the prototype, the displacements are also at scale factor of N. Strains, however, 

have a scale factor of 1, and therefore the stress-strain curves in the model and the prototype 

should be identical. This phenomenon is observed in centrifuge models up to peak strength 

values. It is not usually possible to create residual shear planes with the same residual strength 

as the prototype (Taylor, 1995). Talesnick and Hatzor (in prep.) showed that the concept of 

dimensional scaling in the centrifuge, for situation including rock block interfaces, is not 

warranted. Therefore, when a centrifuge model is comprised of discontinuous material stress 

and displacement similarities with the prototype are not guaranteed. 

pm hNh =

In this research centrifuge modeling was not performed in order to model a specific 

engineering prototype, but rather to study the essential features of jointed beam deformation, 

at various g levels. 

5.2. Experimental Setting 

Centrifuge modeling was performed by Dr. Mark Talesnick of the Department of 

Geotechnical Engineering, Israel Institute of Technology (Technion). The tests were 

performed using a beam type centrifuge with beam radius of 1.6 m, maximum payload 

capacity of 5000kg, and maximum acceleration of 100g at the sample center.  

5.2.1. Jointed beam model 

The geometry of the model was of a beam made up of six blocks (Figure 5.1). The 

blocks represent intersection of bedding planes with vertical joints, such as often found in 

sedimentary rocks. Cubic blocks with edge length of L = 0.048m were cast from gypsum, and 

the total beam span was S = 0.288m. The average block density was ρ = 998.1 kg/m3. The 
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elastic modulus of the blocks, found from uniaxial compression tests, was E = 3.2 GPa.  The 

friction between blocks was modeled using a 360 grit sand paper, glued to the contact faces of 

individual blocks. The friction angle of the interface, determined at BGU using tilt test, was 

φ = 35ο.  

In order to ensure proper alignment of the blocks with respect to the sidewalls a 

mechanical system depicted in Figure 5.1 was used. The system included a linear bearing that 

resisted movements in directions other than the intended. A load cell was integrated into the 

system in order to allow a specific thrust to be applied during the emplacement of the model. 

The vertical movements of the block during the tests were recorded using six LVDT’s of 

0.01mm resolution. 

First a pre-stressing of the beam was performed to ensure beam stability at 0g level 

(with reference to centrifuge axis). Then the acceleration was increased in-flight up to the 

level of 12g. The beam deformed until stable configuration was attained, at all g levels tested. 

5.3. DDA Model 

5.3.1. A simple two-block system 

Prior to comparison of centrifuge model and DDA results a study of a simple two-block 

system subjected to gravitational loading was performed. Similar analysis, under somewhat 

different boundary conditions was performed by Yeung (1991), showing good agreement 

between the analytical and numerical solutions. In order to simplify the analysis and to 

preclude vertical (shear) displacements at the abutments the two blocks were constrained by 

assigning fixed points at base vertices, (Figure 5.3). The aim of this analysis was not to 

reproduce analytical or semi-analytical solutions, but rather to study the behavior of the DDA 

solution over time. 
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Figure 5.1 Centrifuge model geometry and instrumentation (courtesy of M. Talesnick). 
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Figure 5.2 DDA model geometry. 
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DDA analysis was performed for the following material properties: E = 10 GPa, ν = 

0.25, and ρ = 2.7·103 kg/m3. The block dimensions were: L = 2.5m, t =0.5m. The numerical 

control parameters are: g0 = 1·109 MN/m, g1 = 0.001 sec, and g2 = 0.001. The dynamic 

control parameter k01 was varied during the analysis. 
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Figure 5.3. DDA model of two block system with fixed base vertices: a) mid-span deflection 
(δ) as a function of time; b) number of time steps n required to attain equilibrium as a function 
of the dynamic control parameter (k01). 
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The dynamic behavior of the system is shown in Figure 5.3. The system attained 

equilibrium position after deflection of m.0034550=δ . Algorithmic damping is evident, as 

the initial perturbation, resulting from gravity turn-on, is dissipated with analysis progress. 

The effect of dynamic “damping” through inter-step velocity reduction (k01) is apparent. By 

reducing k01, the convergence to equilibrium position is enhanced, as the initial perturbation 

decays with higher rate. For k01 = 1 equilibrium was attained after 320 time steps, reducing 

the inter-step velocity by 1% (k01 = 0.99) resulted in equilibrium after 260 time steps. Further 

reduction of k01 by 5% and 10% resulted in equilibrium after 120 and 40 time steps 

respectively. This trend is clearly presented in Figure 5.3b. 

Setting k01 = 0, namely eliminating inter-step velocity transfer, may be interpreted as 

pseudo-static analysis. Under this condition changes in deflection evolved with time, from 

initial zero position, until equilibrium solution is met after 240 time steps. Thus, for a system 

attaining equilibrium, a slightly damped dynamic solution is more efficient numerically. 

When analyzing a fully dynamic system the application of kinetic damping should be 

preformed with care. In cases where the system is to attain equilibrium, or when the mode of 

failure is independent of geometrical or mechanical constraints (such as in block sliding), the 

application of kinetic damping is advantageous, since the solution converges rapidly. 

However, when the mode of failure is determined by the block system geometry or by 

mechanical properties, the application of kinetic damping is not without flaws. Consider, for 

example, a single beam with multiple joints, the amount of deflection at mid-span is a 

function of both joint spacing and friction along joints. Thus, for a beam of a given span but 

with different joint spacing and friction, application of kinetic damping will not yield the 

same effect on all solutions. 

While for an equilibrating system kinetic damping will enhance the solution, for a non-

equilibrating system the solution will tend to retard with respect to the undamped solution. 
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Furthermore, two solutions of a damped non-equilibrating system are not equable, since the 

solutions are at different stage of evolution. 

5.3.2. A six block model 

The initial geometry and boundary conditions in DDA for the jointed beam are given in 

Figure 5.2. Material properties and friction along interfaces were modeled using the real 

physical properties. Rigid abutments were modeled by assigning three fixed points to each 

abutment block. The displacements were measured at 12 measurement points, symmetric with 

respect to the centerline. Six measurement points were placed conforming to the exact 

locations of the LVDT’s in the centrifuge model. The loading history was replicated in the 

following manner: first the beam was pre-stressed using the initial value of the centrifuge 

model, then the g level was changed every 240 time steps by 1g increments, up to acceleration 

level of 12g, Figure 5.6. 

5.3.3. Selection of numerical control parameters 

In the previous chapter it was shown that the numeric control parameters are 

interrelated. Accurate solutions were attained for properly chosen control parameters. 

Therefore, prior to a comprehensive analysis of the centrifuge model by DDA, an initial 

sensitivity analysis was performed. The time step size (g1), the maximum assumed 

displacement (g2) and the dynamic control parameter (k01) were set to 0.0005 sec, 0.001 and 

1 respectively. The contact stiffness between blocks (g0) was changed over three orders of 

magnitude, from g0 = 10 MN/m to g0 = 1000 MN/m, and the displacements and stresses were 

studied. The sensitivity analysis was performed at a loading level of 1g. 

 The results of the sensitivity study are presented in Figures 5.4a,b, and c. Figure 5.4a is 

a plot of the vertical displacement profile, Figure 5.4b is a plot of the horizontal stress (σxx) at 

the block centroids, and Figure 5.4c is the time history of beam deformation. Figure 5.4a 



Chapter 5 – Validation of DDA using a centrifuge model 67

clearly shows that for low contact stiffness of g0 = 10 MN/m, the vertical movement of the 

beam is excessive, with respect to the measured displacement (bold line). Furthermore, from 

the deformation profile it is evident that the beam shears along abutments, as a single intact 

beam. The extremely low stresses within the blocks confirm that arching (transfer of vertical 

load to the abutments) within the beam is inactive, thus confirming the previous observation. 

Increasing the contact stiffness to g0 = 100 MN/m reduces the vertical displacement, and 

shows better stress prediction, however, the vertical displacements are still excessive, and the 

stresses are low. Increasing the contact stiffness to g0 = 250 MN/m improves the stress 

prediction, the displacements however are similar to those of g0 = 100 MN/m. The 

deformation profile reveals that for both g0 = 100 MN/m and g0 = 250 MN/m the 

displacement attains a maximum at the center of the beam and a minimum at the abutments, 

implying that a mechanism of arching is active. The deformation is symmetric with respect to 

the beam centerline. 

Clearly, the amount of DDA predicted displacement, especially at the abutments, is 

large with respect to the measured displacement. This discrepancy can be attributed to the 

following factors: 

1. Constant strain/stress elements (simply deformable blocks) – preclude the 

development of stress concentrations within the blocks, and therefore of true 

compressive arching, thus leading to increased displacements. 

2. Representation of frictional interface – in the centrifuge model the frictional 

interfaces, two facing sheets of sand-paper, are not infinitely thin, but rather 

consists of a deformable element with a given thickness. In DDA the 

discontinuity interface is infinitely thin, allowing only sliding or separation.  
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3. Rotational freedom – while the DDA model geometry can be regarded as 

densely packed, the centrifuge model exhibits higher rotational freedom, due to 

the nature of the frictional interfaces. 

The rotation of the blocks during deformation in DDA is not evident, as opposed to the 

rotations recorded in the centrifuge model. However, both centrifuge model and DDA predict 

stability of the jointed beam after small amounts of deflection, through a build up of stresses.  

For high contact stiffness, g0 ≥ 500 MN/m, the deformation profile shows unrealistic 

behavior, loss of symmetry, and relative upward motion of blocks. For g0 = 500 MN/m the 

stresses are accurate, whereas for g0 = 1000 MN/m the stresses are excessively high. 

Time histories (Figure 5.4c) reveal that for all values of contact stiffness the beam 

attains equilibrium position. The number of time steps until equilibrium is reached is smaller 

for higher values of contact stiffness. Similar effect was shown by the simple two-block 

example of Chapter 3.  For g0 ≥ 500 MN/m equilibrium is attained after 60 time steps, 

whereas for g0 < 250 MN/m equilibrium is attained after 220 time steps. 

Examination of the iteration time history (Figure 5.5) reveals that for contact stiffness of 

g0 <250 MN/m the DDA solution converges after approximately 240 time steps, where the 

number of iterations per time step drops from i = 6-8 to i = 1. For g0 ≥ 500 MN/m the 

convergence of DDA solution is enhanced, and  i = 1 is achieved after 60 to 80 time steps. 

However, the number of iterations per time step before equilibrium is higher for high contact 

stiffness, as high as i < 10, compared to i < 8 for lower values. The transition from a large 

number of iterations per time step to a value of i = 1 is regarded here as a convergence 

criterion. 
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Figure 5.4. Contact stiffness sensitivity analysis for the DDA six block model: a) vertical 
displacements; b) horizontal stresses within the blocks.. 
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Figure 5.4 (cont.). Contact stiffness sensitivity analysis for the DDA six block model: c) time 
histories. 
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Figure 5.5. Iteration history for the DDA six block model for different values of contact 
stiffness.  



Chapter 5 – Validation of DDA using a centrifuge model 72

From the discussion above it is concluded that for the given beam geometry and 

material properties, a contact stiffness value of g0 = 250 MN/m yields the most accurate 

values with respect to displacement, stresses, and convergence of the numeric solution. This 

value is used in the DDA simulation of the centrifuge model for a jointed beam. 

The DDA model is divided into 12 segments of loading, from 1g to 12 g in 1g 

increments, each of 240 time steps, conforming to the convergence criterion described earlier. 

DDA loading function of the centrifuge model is depicted in Figure 5.6. The numerical 

control parameters and material properties for the DDA model are given in Table 5.1. 

5.3.4. Results 

The results of DDA are presented in Figure 5.7a and 5.7b that show vertical 

displacements and stresses respectively. Clearly, the amount of displacement predicted by 

DDA is excessive when compared with the displacements measured in the centrifuge model. 

However, the deformation features are similar: most of the displacements are found at the 

center of the beam, dying out towards the abutment. Thus, active arching within the 

deforming beam can be assumed.  

For loading levels of a > 4g, the displacements are very similar, implying stable arching 

of the beam. In Figure 5.7b, the horizontal stresses are growing with the g level, suggesting 

that arching stresses are building up within the beam. Furthermore, the angle to principal 

stresses (θ) within the blocks is growing with g level, as shown in Figure 5.8. For loading 

levels of a > 7g the variation of angle θ shows distinct arching: the principal stresses left of 

the centerline are rotated in a positive sense (counter-clockwise), whereas the principal 

stresses on the right hand side are rotated in a negative sense (clockwise). The magnitude of 

the measured and DDA computed stresses are found to be of the same order; the relative 

numeric error is 30% to 60% for all loading levels concerned. 
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Figure 5.6. DDA six block model loading function. 
 

Density 998 kg/m3

Elastic Modulus 3200 MPa 

Poisson’s ratio 0.25 

φ 35o

Penalty stiffness (g0) 250 MN/m 

Time step size (g1) 0.0005 sec 

Penetration control parameter (g2) 0.001 

Dynamic control parameter (k01) 1 

Table 5.1. Material properties and numeric control parameters for the DDA six block model. 
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Figure 5.7. Comparison between centrifuge model results and DDA solution: a) vertical 
displacements; b) horizontal stresses.  
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Figure 5.8. DDA six block model: angle to principal stresses (θ) within the blocks 
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5.4. Discussion and Conclusions 

From the discussion above, it can be concluded that DDA captures the essential features 

of the jointed beam deformation, as found in the centrifuge model. Both centrifuge model and 

DDA show that an arching mechanism, transfer of vertical load to the abutments, is active 

within the beam. Arching precludes displacement of blocks near the abutment, and induces 

stability after initial displacement. This is clearly seen at high loading levels, where the 

principal stresses are rotated in a symmetric pattern with respect to the centerline, as shown in 

Figure 5.8. 

However, the exact magnitude of displacements and stresses are not replicated by DDA. 

The discrepancies between the centrifuge model and the DDA solution arise from the 

following factors: 

1. Representation of joints in DDA and centrifuge model. 

2. First order displacement approximation in DDA. 

These factors are described in section 5.3.3. 

The geometric dimensions of the centrifuge model posses additional difficulties. The 

individual blocks are very small and tightly packed, and deformations are extremely small, 

maximum of 10-5m under low loading levels. The initial perturbation associated with 

application of gravity is not fully dissipated through the analysis, and the numeric error 

remains high throughout the analysis. Furthermore, since joints exhibit intrinsic plastic 

behavior, similarity between the model and full size engineering prototypes is not guaranteed. 

When compared with the classic Voussoir mode, l DDA shows a distinct advantage. For 

the given geometry, Voussoir model predicts failure at loading level of 1g. The beam buckles 

without achieving equilibrium.  
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In DDA the mode of failure, displacements and stresses are governed by the value of 

contact stiffness. The magnitude of the contact stiffness is purely numeric, and it is not 

associated with normal or shear stiffness of physical interfaces. The choice of the contact 

stiffness value should be made according to numeric criteria, such that correct mode of failure 

and numeric convergence are achieved. 
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Chapter 6 – The Tel Beer-Sheva Case Study 

6.1. Introduction 

Successful validation of numerical models by closed form solutions for simple 

problems, or by comparison to small-scale physical models is essential. However, no 

analytical solution or laboratory model can duplicate the scale and character of the loading, 

boundary and environmental conditions inherent to full-scale problems. Rock masses are 

heterogeneous with respect to their mechanical properties, with complex boundary conditions. 

Furthermore, in discontinuous rock masses the spatial arrangement of the discontinuities is 

complex, and in times only partially attainable. Comparison of numerical predictions to actual 

behavior in well-documented case studies can help insure that extrapolation from simple 

problems to field scale problems is basically valid.   

Case studies used for the validation of a DEM should comply with the following 

requirements: (1) a well-defined geometry and boundary conditions; (2) accurately 

determined material properties of the continuous rock; (3) accurately determined spatial 

distribution of discontinuities and the mechanical properties of discontinuities. The case study 

of Tel Beer-Sheva meets these requirements.  

The case of Tel Beer-Sheva was previously studied by Benary (1996) and Hatzor and 

Benary (1998). Their research showed that: 1) the classic Voussoir model is unconservative for the 

given rock mass structure; and 2) the stability of a laminated Voussoir beam is dictated by the 

interplay between friction angle along joints and joint spacing. 
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In this study several issues are explored in greater depth: the mechanical properties of 

the rock mass are further explored: transverse isotropy of the continuous rock is defined and 

the mechanical properties of the discontinuities are studied using direct shear apparatus. 

The numerical part of this study is performed under the guidelines developed in 

Chapters 4 and 5. The numerical study emphasizes the kinematics and deformation of both a 

single layer and multi-layered roof, with comparison to the classic Voussoir solution.  

6.2. Site Description 

The ancient site of Tel Beer-Sheva is located approximately 3 km southeast of the 

modern city of Beer Sheva. Situated on a hilltop at elevation of 307 m MSL, the site is 

bordered by two ephemeral streams (wadi): Wadi Beer-Sheva (south) and Wadi Hebron 

(north). The ancient city of Beer-Sheva is dated to the Iron age at 2700 B.P to 3200 B.P. The 

ancient water reservoir, dated to 3000 B.P., was used as a water storage facility for times of 

drought or siege. A schematic layout of the archeological site and the underlying water 

reservoir is presented in Figure 6.1. 

The large storage facility beneath the city was fed by seasonal run-offs from Wadi 

Hebron, through a tunnel running beneath the city walls. From within the city the access to 

the water tank was through a large vertical shaft. The intake capacity of the reservoir, 

disregarding support elements, is approximately 250 m3. The walls of the reservoir were 

plastered to prevent leakage. 

The excavation sequence of the water reservoir is unknown. However, evidence of 

failure within the period of excavation, or short time after, is found in the form of a large 

support pillars coated with the same plaster. The water reservoir layout is presented in Figure 

6.2. The main hall of the reservoir is a rectangle 14 m long and 15 m wide. An elongated 

room, 7m long and 3 m wide extruds from the main hall. Two pillars, found at the center of 
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the main hall, support the roof at areas where failure occurred. The morphology of the failure 

zones and their relation to the support pillars are described in section 6.2.2. 

6.2.1. Geology 

Tel Beer-Sheva is located in an elevated area bordering two major synclinal structures 

the Beer-Sheva syncline (south) and the Shefela syncline (north). The water reservoir is 

excavated in the sedimentary Gareb formation (Upper Cretaceous), comprised of alteration of 

horizontal layers of chalk 0.3m to 0.8m thick, with some thinner (up to 0.1m) layers of marly 

chalk of low plasticity and swelling potential (Benary, 1996). 

 Gareb formation is unconformably overlaid by the polymicitic Ahuzam conglomerate 

(Upper Pliocene), locally attaining thickness of up to 6 m, containing cemented, poorly 

sorted, angular to rounded pebbles of limestone and chert. Overlying the Ahuzam 

conglomerate are Quaternary riverbed deposits, mixed with archeological layers, locally attaining 

thickness of 3 m. 

6.2.2. Geometrical properties of discontinuities and failure zone morphology 

An extensive mapping of joint sets at the site was performed by Benary (1996). The 

following section summarizes the main findings by Benary. The joints were mapped both 

within the underground water reservoir and a nearby outcrop (within 300 m) exposed by Wadi 

Beer-Sheva. Three vertical joint sets where mapped. The geometrical properties of the joint 

sets are given in Table 6.1.  

Joint sets J1 and J2 are most abundant with mean spacing of 0.2m and 0.25m 

respectively. The bedding planes are horizontal with mean spacing of 0.5m. The strike of joint 

set J1 is nearly parallel to the axis of the intake tunnel, while J2 is perpendicular to J1 and co-

linear with the reservoir walls. The intersection of the closely spaced joints with the bedding 

planes forms a dense network of mostly equidimensional cubic blocks.  
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Figure 6.1. Schematic drawing of the Tel Beer-Sheva archeological site and the water 
reservoir. (Source: Hatzor and Benari, 1998). 

 

The excavation of the water reservoir, and consequent stress release, led to spatial 

rearrangement of the initial tight packing, where most movement occurred along the pre-

existing joints. 

 

Joint set Dip Strike (o) Mean Spacing (m) Persistence (m) 

J1 Sub-vertical 039 – 061 0.2 >10 

J2 Sub-vertical 124 – 127 0.25 Bounded by J1* 

J3 Vertical 107 – 112 0.6 >15 

Bedding Horizontal  0.5 Infinite 

Table 6.1. Principal joint sets in the Gareb chalk at Tel Beer-Sheva site, from Benary (1996). 
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The roof of the water reservoir collapsed into a shape of a three dimensional dome. 

Three distinct levels where mapped by Benary (1996): 

• Original excavation level at absolute level of 286 m – Zone 1. 

• Intermediate failure level at absolute level of 287 m – Zone 2.  

• Upper failure level at absolute level of 289 m – Zone 3. 

All zones are developed along natural bedding planes. The transition between the 

different levels ranges from vertical to step like, running along block boundaries, defined by 

the intersections of joints and bedding planes. Longitudal and transverse cross sections are 

presented in Figure 6.3a,b respectively. 

The western pillar supports the roof at Zone 3. The lateral extent of the pillar is 

unknown due to plaster coating. However, given the fact that the pillar supports the 

uppermost failure zone, the minimum extent is within the boundaries of Zone 3. Furthermore, 

lining extends beyond the boundaries of Zone 3 into Zone 2, where the host rock s is exposed. 

The exposure of rock mass at the extreme end of the western pillar is found to be in line with 

the external wall of the access shaft. Based on these observations the minimum extent of the 

western pillar is drawn (dashed line at Figure 6.2). The eastern pillar supports Zone 2, and 

does not attain Zone 3. Again, the lateral extent is not clear. However, based on similar 

considerations the extent of the pillar is drawn. Plaster coating of the reservoir walls is 

confined to Zone 1 level, and original chisel marks are found only at Zone 1.  

Based on all previously described observations the assumed minimum active span of 

the opening at the time of failure was 8 meters, conforming with Zone 3. The assumed 

maximum active span, drawn at Figure 6.2, was 10 meters conforming to Zone 2. 
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6.3. Mechanical Properties of Intact Rock 

6.3.1. Experimental procedure 

Intact rock samples were tested using hydraulic, closed-loop, servo-controlled, triaxial 

load frame (TerraTek system model FX-S-33090) with stiffness of 5×109 N/m. Axial and 

radial strains were recorded using four arm axial and radial strain cantilever sets with 10% 

and 7% strain range respectively, both with 1% linearity full scale. Total axial load capacity 

in compression was 1400 kN, but the applied axial load was limited by the load cell capacity. 

In this research we used a 222 kN load cell, with over range capacity of 100%, and 0.5% 

linearity full scale, for better resolution of low loads. Axial stroke capacity was 113.78mm. 

All tests were performed under a constant strain rate of 10-5 s-1; and complete stress-strain 

curves were obtained. 

Solid cylinders were prepared according to ASTM standards (D4543-85 and D2216-

92) regarding end roughness (0.01 mm) and perpendicularity (0.005 radians). Uniaxial tests 

were performed according to ASTM standard D3148-93. The cylinder axes were oriented 

parallel to bedding planes (the angle between the normal to bedding planes and maximum 

principal stress 1σ  is ). 90=β
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Figure 6.2 General layout and failure zone mapping of the water reservoir, after Benary 
(1996). Cross-sections a and b are presented in Figures 6.3a and 6.3b respectively. 
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Figure 6.3. Cross-sections of the water reservoir: a) longitudal cross-section; b) transverse 
cross-section (Source: Benari, 1996). 
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The tested samples were drilled from two blocks extracted from two overlaying beds 

in a natural riverbed outcrop below the archeological site of Tel Beer-Sheva, where the level 

of exposure is approximately at the level of the water reservoir. 

Benary (1996) performed both uniaxial and triaxial tests oriented normally to bedding 

planes (i.e. ), on samples taken from two vertical cores which penetrated the reservoir 

beds. 

0=β

6.3.2. Test results 

Four samples were tested here under uniaxial compression, the mechanical properties 

of which are summarised in Table 6.2. Two representative stress-strain curves for uniaxial 

compression at and are shown in Figure 6.4. The variation in the mechanical 

properties between samples TBS-1 and TBS-2 can be attributed to local variations as 

described in the previous section. 

90=β 0=β

Gareb chalks exhibit pronounced anisotropy both in strength and in elasticity. The 

unixial compressive strength ratio (
090 == ββ

UCSUCS ) varies from 3 to 5, and the elastic 

modulus ratio ( 090 =β=β
EE ) is varies from 3 to 4. Transverse isotropy parallel to bedding 

planes is assumed: in three tests the radial strains ( 21 RR εε ⊥ and aligned parallel to beddings) 

exhibit essentially identical behavior, with inter-strain linear coefficient ranging from 0.98 to 

1.1. 

6.3.3. Estimation of the in-situ stresses 

Based on these findings the in-situ stresses can be estimated. The vertical stress is 

assumed gravitational, given by gzv ρσ = where z is depth. The ratio of horizontal to vertical 

stresses vhk σσ= , may be estimated using the elasto-static thermal model of Sheorey (1994): 
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   ⎟
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⎞

⎜
⎝
⎛ ++=

z
Ek h

1001.0725.0     (6.1) 

where  (m) is depth below surface and Ez h (in GPa) is the average deformation 

modulus measured in the horizontal direction. This direction of measurement is important 

particularly in layered sedimentary rocks, in which the deformation modulus may be 

significantly different in different directions. For the case of Tel Beer-Sheva  GPaEh 485.7=

A direct measurement of the in-situ horizontal stress was not performed in this 

research. However, hydraulic fracturing measurements by Polishook (1995), at a site located 

about 15 km southwest from Tel Beer-Sheva at depths of 52-70 meters show good agreement 

with Sheorey’s model (refer to Figure 6.5). The measurements where performed on younger 

Eocene strata (Adulam formation), composed mainly of horizontally layered thick chalk, 

within the Beer Sheva syncline. Good agreement between the measured and calculated values 

supports the applicability of the model, and precludes significant contribution from 

overlooked tectonic stresses. 
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Figure 6.4 Complete stress-strain curves for the Gareb chalk at uniaxial compression parallel 
(β=90ο, this study) and normal to bedding (β=0ο, Benari, 1996). 

 

Sample β (ο) ρ (kg/m3) n (%) E (GPa) ν (%) UCS (MPa) 

TBS-1a 90 1930 28 8.34 0.172 34.12 

TBS-1b 90 1960 27 8.16 0.160 29.35 

TBS-2a 90 1880 30 6.94 0.164 25.08 

TBS-2b 90 1850 31 6.50 0.190 21.78 

Benary (1996) 0 1910* 29* 1.9 0.05 6.6 

* average value. 

Table 6.2. Mechanical properties of the Gareb chalk at Tel Beer-Sheva. ρ is density, n is 
porosity (calculated for G.S. = 2.7), ν is Poisson’s ratio, E is elastic modulus, and UCS is 
unconfined compressive strength. 
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Figure 6.5. a) Calculated and measured stress ratio k at the Beer-Sheva syncline; b) horizontal 
and vertical stresses at the Beer-Sheva syncline. 
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6.4. Mechanical Properties of Discontinuities 

6.4.1. Direct Shear testing apparatus and sample preparation 

The mechanical properties of the discontinuities were tested using a direct shear 

system manufactured by TerraTek, a servo controlled test system built of two load frames 

combined to act simultaneously (Figure 6.6): 

• Normal load frame:  a 4-column fixed platen with a stiffness of 7.0 

MN/m. Axial load capacity in compression was 1000 kN. The load cell 

capacity was 1000 kN, with over range capacity of 100%, and 0.5% 

linearity full scale. 

• Shear load frame: a 4-column fixed platen with a stiffness of 3.5 

MN/m. Horizontal load capacity was 300 kN. Horizontal stroke 

capacity was 102mm. The load cell capacity was 300 kN, with over 

range capacity of 100%, and 0.5% linearity full scale. 

Joint displacement was monitored by 6 LVDTs, 4 for normal displacement and 2 for 

shear displacement, with 50 mm range and 0.25% linearity full scale. The LVDT’s were fitted 

to the still frames encapsulating the sample, thus accurately capturing the joint displacement. 

The shear box size was 170 mm × 170 mm × 340mm capable of accepting samples of size up 

to 150 mm × 150 mm × 300mm. 

The samples were cemented into the shear box using Portland 350 cement, such that 

the surface of the joint coincided with the plane of shearing, and a gap of approximately 1cm 

was left unbonded between the upper and lower boxes. Natural joints were sampled in the 

field, at the research site. Polished surfaces were attained by saw cutting continuous chalk 

blocks. The saw-cut surfaces were polished twice: large asperities were reduced using a 
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Silicon Carbide grit 120 polishing powde;, final leveling was attained using Silicon Carbide 

grit 300 polishing powder. 

6.4.2. Direct shear tests of natural joint  

Two-segment tests were performed on TBS-1, both performed under constant 

displacement rate (shear rate of 0.00127 mm/sec). The joint was tested as sampled without 

any additional treatment. Normal load was increased between the segments to obtain a failure 

envelope. Test TBS-1 was performed under normal loads of 0.7 MPa; 1.7 MPa; 3.7 MPa. Test 

TBS-1A was performed under normal loads of 2.95 MPa; 4.95 MPa and 6.95 MPa. The 

results are presented in Figure 6.7a, and the variation of resulting friction angle as a function 

of normal stress is given in Figure 6.7b. Peak friction angle under the specified loading 

condition was φ = 47o (at σn = 700 kPa, not shown in Figure 6.7a), the friction angle was 

reduced during the test down to a value of φ = 24o. Degradation of the friction angle as a 

function of increasing normal stress represents the degradation of the asperities along the joint 

surface. Thus, the peak friction angle is φp = 47o and the residual friction angle is φr = 24o, the 

maximum roughness angle is i = φp − φr = 23o.  

6.4.3. Shear rate effect – polished interface 

In order to attain better understanding of artifacts associated with shear rate a single 

polished surface was tested under varying rate conditions. Sample TBS-2 was subjected to 

three cycles of shearing under different shear rates: 0.0033 mm/sec, 0.0127 mm/sec and 

0.0254 mm/sec. The normal stress was set constant for all three tests at 3150 kPa. Results of 

the test are given in Figure 6.8. Friction angle for the three cycles is practically the same, φ = 

29o for forward shear and φ = 25o for backward shear. The shear stiffness, given in Figure 
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6.8b, shows a pronounced strain rate effect. The strain rate and shear stiffness are inversely 

proportional: with lower shear rate resulting in higher stiffness. 

The nature of the shearing process is changed as well during the increase of shear rate. 

For low shear rate, 0.0033 mm/sec, shearing is clearly of stick slip type with shear stress 

amplitude variation of approximately ±100 kPa. With increased shear rate the amplitude of 

the stick slip oscillations is reduced to approximately ±30 kPa. Further increase in shear rate 

reduced the oscillations to values lower than ±10 kPa. It is unclear whether this is a shear rate 

effect, or roughness degradation due to cyclic shearing. Constant value of friction angle 

during the consecutive shearing cycles implies that roughness is negligible. 

6.4.4. Direct shear tests of a polished interface 

Sample TBS-4, a polished surface, was tested under various normal loading 

conditions. Normal stress levels were: 500 kPa, 1000 kPa, 1500 kPa, and 2000 kPa. The shear 

rate was set constant at 0.0254 mm/sec. Shear displacement – shear stress curves for sample 

TBS – 4 are given in Figure 6.9a. The shear stiffness values showed proportional increase 

with the increase in normal stress (Fig 6.9b), as expected. Friction angles during shearing 

cycles show pronounced anisotropy. During forward shear the friction angles reduced from φ 

= 47o at σn = 500 kPa to φ = 38o at σn = 2000 kPa (Fig 6.9c). For backward shear the friction 

angles rose from φ = 30o at σn = 500 kPa to φ = 35o at σn = 2000 kPa. 

Dilatancy data and visual examination of the sample revealed that friction anisotropy 

is related to accumulation of crushed material (bulge) along the shear interface during the first 

cycle. The geometry of the bulge was such that during forward shear the relative motion 

between the mating surfaces led to vertical contraction, while backward shear led to vertical 

dilation. The bulge was mechanically reduced during the consecutive cycles of shear. The 

difference between the forward – backward friction angles decreased, from 14o at σn = 500 
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kPa to 2o at σn = 2000 kPa. Friction angle value converged to φ = 35o at σn = 2000 kPa. 

Friction angle for a polished chalk surface as measured at sample TBS – 2 is φ = 25o - 29o. 

The differences between these two values represent the residual geometry and shear strength 

of the bulge. Such a phenomenon can occur in natural environments when shear initiates 

along discontinuities in weak rock. Crushing of intact rock material in the vicinity of 

discontinuity can cause an accumulation of rock material along the shear surface, thus 

significantly contributing to shear resistance along the sliding plane. 

Direct shear tests for this research were performed under constant normal stress 

(CNS). This configuration is less suitable for underground applications where shear sliding of 

blocks is usually constrained between joints, and therefore best represented by constant 

normal position (CNP) tests. The friction angle attained from CNS tests is usually lower than 

one attained from CNP tests. However, the deformation of the jointed beams is such that both 

position and normal stresses are changed during deflection. Therefore, neither CNP nor CNS 

tests are truthful replica of the shear processes active in jointed beam deformation. 
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Figure 6.6. Direct shear system at the Rock Mechanics Laboratory of the Negev: a) general 
view; b) assembled shear box and displacement detectors (LVDT’s). 
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Figure 6.7. Direct shear results of a natural joint in Gareb formation, sample TBS-1: a) shear 
displacement vs. shear stress; b) friction angle vs. normal stress. 
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Figure 6.8. Direct shear results for polished surface in Gareb chalk, sample TBS – 2: a) shear 
stress – shear displacement curves; b) shear stiffness ks as a function of shear rate. 

 

dU/dt (mm/sec) ksf (kPa/mm) ksb (kPa/mm) 

0.0033 11,700 9500 

0.0127 9500 7700 

0.0254 8830 6550 

Table 6.3. Shear stiffness at different shear rate values for sample TBS-2. dU/dt is shear rate, 
ksf  and ksb are shear stiffness for forward shear and backward shear respectively. 
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Figure 6.9. Direct shear results for a polished surface, sample TBS-4: a) shear displacement 
vs. shear stress; b) shear stiffness (ks) vs. normal stress; c) friction angle (φ) vs. normal stress 
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Figure 6.10. Sample TBS-4: normal displacement (∆v) vs. shear displacement (∆u) at 
different levels of normal stress. 
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6.5. Stability Analysis Using Classical Voussoir Model 

Stability analysis of the Tel Beer-Sheva water reservoir was performed using the 

iterative procedure (Appendix) introduced by Brady and Brown (1985), and corrected by 

Diederichs and Kaiser (1999). The mechanical properties of the rock mass in-situ were used 

in the analysis (Table 6.4.). Since the rock mass was found to be transversely isotropic the 

values of E, ν, and UCS chosen for the analysis were the values measured in the direction 

parallel to bedding, which for the case of a roof in horizontally oriented layers is horizontal. 

Three modes of failure were considered: (1) lateral compressive failure at mid-span and 

abutments; (2) shear along abutments; and (3) snap through (buckling).  

 

Density 1900 kg/m3

Elastic Modulus 7840 MPa 

Poisson’s ratio 0.17 

UCS 27.6 MPa 

Friction angle along joints 47o

Table 6.4. Representetive material properties of the Gareb Chalk. 

The factor of safety against failure in compression and in shear was calculated for a 

wide range of beam geometries. The beam span (S) was varied from 5m to 16m, thus 

accounting for most possible geometries at time of failure. The beam thickness (t) was varied 

from 0.25m to 5m, from a single bed to the total thickness of the chalk layers, respectively.  

An equation for the Factor of Safety (F.S.) against failure in compression is given in 

equation A9 of the Appendix, and the results as calculated for this study are plotted in Figure 

6.11a. For beam thickness lower than 0.5m and span greater than 10m the failure is by snap 

through, indicated by a non-converging solution. The factor of safety against failure in 
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compression for all other geometries is greater than 3, increasing for thicker beams due to 

larger moment arm (Z) and lower axial stress (fc).  

An equation for the Factor of Safety (F.S.) against shear along abutments is given in 

equation A10 of the Appendix, and the results as calculated for this study are plotted in Figure 

6.11b, where the beam span is normalized to beam thickness. Assuming that the peak friction 

angle along joints is φ = 47ο, as found by direct shear tests, and assuming that the active span 

at time of failure was 8m, the factor of safety against shear ranges from  to 

 for beam thickness ranging from 0.5m to 5m respectively. Assuming that the 

active span at time of failure was 12m, the factor of safety against shear ranges from 

to for beam thickness ranging from 0.5m to 5m, respectively. Beams 

of low S/t ratio are prone to shear failure since the required moment arm (Z) for equilibrium 

increases with decreasing aspect ratio. 

3.8.. =SF

83.0.. =SF

4.12.. =SF 24.1.. =SF

Assuming a roof span of 8m and layer thickness of 5m the failure of the ancient water 

reservoir at Tel Beer Sheva can be explained using the Brady and Brown procedure. 

However, this is not the case: the thickness of Zone 3 is 1m to 2m which is the maximum 

active thickness of the failed layer. Given a thickness of 2m the factor of safety against shear 

failure is , for beam thickness of 1m the factor of safety is even higher than .  2.. =SF 4.. >SF

For active span greater than 8m the factor of safety rises above 1 for all thickness 

values considered. Moreover, for beam with r = S/t > 4, the required friction angle for 

stability is φ > 47ο. Therefore, under the given geometrical constraints and material properties 

the roof would not fail according to the Brady and Brown procedure. 

From the described above it is concluded that classic Voussoir procedure is 

unconservative, predicting required friction angles for roof stability lower than the available 

friction angle along joints. The unconservative nature of the analysis can be attributed to the 

following factors: 
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Figure 6.11. Classic Voussoir beam analysis of the Tel Beer-Sheva water reservoir: a) factor 
of safety (F.S.) against compressive failure; b) factor of safety (F.S) against shear along 
abutments for different values of beam span (S) to thickness (t) ratio, heavy line indicates 
mobilized friction angle. 
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1) Large number of discontinuities - the rotational freedom required for stable arching 

in a multi-fractured beam is larger than the one required for a three-hinged beam. In a closed 

domain, such as the densely fractured and tightly packed rock mass of Tel Beer-Sheva, this 

requirement is compromised. Consequently, the vertical reaction at the abutments is not fully 

developed. Thus, under gravitational loading the beam will shear along the abutments. 

Therefore, the friction angle required for equilibrium according to the Voussoir analysis will 

be significantly lower than the one required for a multi fractured beam. 

2.) Partial inter-bed separation - Voussoir analysis assumes that the rock mass has 

parted along smooth breaks forming a series of beams, thus assuring that no gravitational load 

is transferred to the lower members of the beam stack. In the case of Tel Beer-Sheva this 

assumption is not satisfied; the failed rock mass consisted of up to 4 individual beds 

(assuming total thickness of 2m). Thus, a vertical load transfer between beams should be 

considered. 

When the roof is excavated in a densely fractured rock mass the classic Voussoir 

solution is shown to be inadequate. The large number of individual blocks, and their 

interactions, impedes on the analytical solution.  It is concluded, therefore that for a realsitic 

solution a numerical scheme must be employed. In the next section a back analysis of the 

failure at Tel Beer-Sheva using DDA is presented. The focus of the analysis is on the 

kinematics of a multi-block structure. The deformation of the roof as a function of joint 

mechanical and geometrical properties is studied, and some limitations of DDA are explored. 
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6.6. Numerical Analysis Using DDA 

6.6.1. Numerical problems associated with multi-block systems 

The transition from simple problems with a limited number of blocks to full-scale 

problems where the number of blocks is large (hundreds to thousands) introduces numerical 

problems associated with the large number of contacts involved. Most of the difficulties are 

associated with the no penetration/no tension contact constraint between blocks, which is the 

criterion controlling the convergence of the solution in each time step. In the numerical 

implementation of this criterion a small penetration is used. Proper choice of the penetration 

control parameter (g2) assures that: there are no unnecessary contacts (where g2 is to large) or 

penetrations (where g2 is to small). 

In Chapter 4 it has been shown that: 1) the numeric control parameters are interrelated; 

and 2) the accuracy of the solution is governed by the conditioning of the global stiffness 

matrix. Best accuracy is achieved for optimized time step size (g1) and contact stiffness (g0). 

In DDA the contacts between blocks are represented by elastic springs, rather than by a 

constitutive joint model. Therefore, the stiffness value should be chosen such that it complies 

with numeric convergence rather than with natural joint stiffness values. 

The effect of g1and g0 parameters on the convergence rate of DDA solution for a 

multi-block system was studied for three cases: 1) 67 blocks; 2) 98 blocks; and 3) 168 blocks. 

All configurations consisted of a stack of jointed beams, similar to the configuration presented 

in Figure 6.14b. Each case was modeled for four different g1, g2 couples, which for 

simplicity where assumed equal: 1) g1=g2=0.01; 2) g1=g2=0.005; 3) g1=g2=0.001; and 4) 

g1=g2=0.0005. The penalty stiffness for each g1, g2 couple was varied in incriments from 

50·MN/m to 100,000 MN/m. All simulations were performed for k01 = 1, the number of time 
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steps was set such that the total time of each simulation was 0.25 sec. Material properties of 

the blocks were set to E = 7.48 GPa, ν = 0.17, and ρ = 1.9·103 kg/m3 (Gareb chalk). Friction 

angle along joints was set to φ = 45o (µ = tanφ = 1). The results of the analysis are presented 

in Figure 6.13, which is a series of plots showing the average number of iterations for a time 

step iav = i/n (where i is the total number of iterations and n is the total number of time steps) 

as a function of penalty stiffness for different values of g1, g2. 

For g1 = g2 = 0.01 the average number of iterations per time step increases with g0, 

in a nearly linear fashion. For the configuration of 67 blocks the solution diverges when g0 > 

100 MN/m, whereas for the configurations of 98 and 168 blocks the solution converges up to 

g0 = 10,000 MN/m, where iav values increase up to 24 iterations per time step. 

For g1 = g2 = 0.005 the solution converges for all studied configurations, with iav 

ranging from 2 to 16 for all values of g0. Setting g1 = g2 = 0.001 improves the convergence 

rate of the solution: for 50 MN/m < g0 < 1000 MN/m the convergence rate is nearly constant 

at iav = 1.8 for all studied configurations. Increased g0 degrades the convergence rate, as iav = 

6.4 at g0 = 50,000 MN/m. For g1 = g2 = 0.0005 the solution rapidly converges for 50 MN/m 

< g0 < 5000 MN/m for all studied configurations, with iav ≤ 1.5. Setting g0 > 5000 MN/m 

degrades the convergence rate, up to values of iav = 3.5. 

From the discussion above it is clear that for multi block configurations the DDA 

solution converges independently of penalty stiffness value (g0), provided that the time step 

size (g1) and penetration control parameter (g2) are sufficiently small. In Chapter 4 it was 

shown that the accuracy of the numeric solution is improved for high values of penalty 

stiffness. Based on these observations it can be concluded that the numeric control parameters 

for multi block analysis should be chosen such that solution accuracy is not compromised by 

the convergence rate, and that the failure mode is correct.  
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Figure 6.13. DDA multi block model: average number of iterations per time step (iav = i/n) as 
a function of penalty stiffness (g0) for different values of time step size (g1) and penetration 
control parameter (g2). 
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6.6.2. DDA analysis of the Tel Beer-Sheva water reservoir – numerical setup 

DDA analysis of the Tel Beer-Sheva ancient water reservoir was performed for two 

geometric configurations:  

1. A single layer of thickness t = 0.5 m, representing the immediate roof of 

the excavation, Figure 6.14a. 

2. A 5m stack of horizontal beams, each of thickness t = 0.5 m, conforming 

with the actual roof thickness, Figure 6.14b. 

The active span of both configurations was set to S = 8m. While configuration 1 is 

compatible with the Voussoir model, configuration 2 is a realistic model of the roof of the 

water reservoir. Two fixed blocks, each containing three fixed points, represent the 

abutments.  

The effect of joint friction was studied for a constant joint spacing of Sj = 0.25m (in 

accordance with the average spacing of J1 and J2 observed at the site) while the friction along 

joints (φav) was varied from φav = 20o to φav = 80o. The effect of friction angle was studied for 

φav = 47o (peak friction angle from direct shear tests) while joint spacing was changed from Sj 

= 0.25m to Sj = 4m. For configuration 1 the displacements where measured at the lower fiber 

of the beam at selected points in intervals of 0.5m. For configuration 2 the displacements 

where measured at five locations as shown in Figure 6.14b: 1) m1- mid-span of immediate 

roof; 2) m2 - mid-span at m1+2.5m; 3) m3 - mid span at m1+5m; 4) m4 - left abutment at 

m1+2.5m; 5) m5 - right abutment at m1+2.5m.  

Material properties of the Gareb chalk and numeric control parameters of DDA 

analysis are given in Table 6.5. The joints are modeled as no-tension, no-cohesion interfaces, 

namely shear resistance along joints is purely frictional, in compliance with field findings. 
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Density 1900 kg/m3

Elastic Modulus 7840 MPa 

Poisson’s ratio 0.17 

Penalty stiffness (g0) 1000 MN/m 

Time step size (g1) 0.00025 sec 

Penetration control parameter (g2) 0.00025 

Dynamic control parameter (k01) 1 

Table 6.5. Material properties and numeric control parameters for the DDA model of the Tel 
Beer-Sheva water reservoir. 

In the field, the chalk layers are overlain unconformably with a 5m thick conglomerate 

layer; the unconformity plane is considered open and discontinuous. The conglomerate layer 

in the field is continuous without apparent cracks or joints.  

The first order displacement approximation in DDA results in constant stress/strain 

elements. Therefore, because the conglomertae layer consists of a single block, its 

deformation cannot be modeled properly with DDA. Consequently the vertical deflection of 

the layer and vertical load on the chalk cannot be evaluated accurately. Since the 

conglomerate layer is continuous, however, the mid-span deflection can be assessed by 

analogy to an elastic, simply supported beam (Obert and Duval, 1967). The mechanical 

properties of the conglomerate layer are unknown since the material is highly heterogeneous; 

assuming a low stiffness of E = 100 MPa the deflection at mid-span would be δ = 0.00094m, 

for E = 1000 MPa the deflection at mid-span would be δ = 0.000094m. These defelection are 

quite small and , therefore, it is assumed that load transfer between the conglomerate and the 

chalk is negligible; hence, the conglomerate layer is not modeled here. 
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Figure 6.14. Geometry of DDA model of the Tel Beer-Sheva water reservoir: a) single layer 
model; b) multi-layered model. 
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6.6.3. DDA analysis of the single layer configuration 

The results of DDA analysis for the single layer configuration are presented in Figure 

6.15a, which is a plot of mid-span deflection (δ) after 0.25sec versus friction angle (φ) and 

joint spacing (Sj). Figures 6.15b,c are time histories of mid-span deflection for different 

values of friction angle and joint spacing respectively. 

Given joint spacing of Sj = 0.25m the beam deflects progressively and eventually fails 

for friction angles of φav < 78o. For friction angles of φav ≥ 78o the beam attains stable 

equilibrium after small initial deflection. Figures 6.16a,b,c show the displacements, u, v, and 

rotation ω respectively, of the lower fiber after 0.25sec for selected values of friction angle: a) 

30o; b) 45o; c) 75o; d) 80o. DDA graphic outputs of the final deformed positions of the blocks 

for these selected values of friction are presented in Figure 6.17. 

At low values of φav = 30o and φav = 45o most of the deformation is achieved through 

deferential inter-block shear, which attains maximum at the mid-span and minimum at the 

abutments. The rotation of the blocks is mostly uniform and symmetric, up to ±0.1 radians, 

where at the left hand side of the beam the blocks rotate clockwise and vice versa. Similar 

beam deflection profile was attained by Evans (1941) while experimenting with brick beams. 

The deformation characteristics are changed when the friction angle along joints rises, e.g. φav 

= 75o and φav = 80o, inter-block shear is reduced while the rotation at the beam ends rises to 

±0.3 radians. 

From the rotation data it is evident that at low values of friction angle the moment arm 

of the lateral couple is not developed effectively and beam deformation occurs mainly due to 

inter-block shear, which consequently leads to failure. Where the available shear resistance 

along joints is sufficiently high to preclude excessive vertical displacements, block rotation 
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and build-up of lateral thrust equilibrate the overturning moment of the vertical couple, and 

the beam reaches equilibrium position. 

Increasing the block aspect ratio (rb = Sj/t) of the individual blocks by setting Sj = 0. 5m 

(rb = 1), and assuming peak friction angle of φav = 47o (peak friction angle from direct shear 

tests), results in mid-span deflection of δ = 0.08 m (after 0.25 sec), compared with δ = 0.22 m 

for Sj = 0. 25m. However, the beam does not attain equilibrium, and eventually fails. 

Examination of the deformation time histories for beams of different aspect ratio (Figure 

6.15c) reveals that equilibrium is marked by the oscillatory nature of the solution (this effect 

was described in section 6.6.1), as opposed to gradually increasing deflection of failing 

beams. Equilibrium is met when rb ≥ 2.5 (Sj ≥ 1.25) and δ ≤ 0.025 m. The style of deformation 

is similar: for unstable geometry the beam fails by inter-block shear, with relatively small 

rotations, while for stable geometries stability is achieved through effective rotation. 

From the described above it is evident that a single beam of span S = 8m, thickness t = 

0.5m, block aspect ratio rb =Sj/t= 0.5, and friction angle along joints of φav = 47o
 is not stable. 

Stability is assured for φav ≥ 78o. According to classical Voussoir solution for beam of span S 

= 8m, thickness t = 0.5m (block aspect ratio rb = 8) stability is assured for φav > 20o, with 

expected deflection of δ = 0.002 m. DDA analysis predicts similar deflection for block aspect 

ratio of rb = 4.  

The underlying assumption of immediate roof (single layer) analysis is that vertical 

load from overlaying layers is transmitted laterally to the abutments, rather than vertically as 

transverse loads to the lower layers. This condition is not satisfied within the layers overlying 

the water reservoir, namely the failure zone is up to 2.5m thick. Given average bed thickness 

of t = 0.5m the failure zone contained 5 individual layers. The stability of a multi-layered and 

jointed structure, the laminated Voussoir beam (a term introduced by Hatzor and Benary, 

1998), is explored in the following section. 
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Figure 6.15. DDA prediction for mid-span deflection of the single layer model: a) as friction 
angle (φ) and joint spacing (Sj); b) time histories for different values of friction angle, for joint 
spacing of Sj = 0.25m; c) time histories for different values of joint spacing, for available 
friction angle of φ = 47ο. 
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Figure 6.16. Deformation profiles of the DDA single layer model, measured at the lowermost 
fiber of the beam: a) horizontal displacement (u); b) vertical displacement (v); and c) rotation 
(ω). 
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a)  

 

b) 

 

c) 

 

d) 

Figure 6.17. DDA graphic output of single layer deformation for different values of joint 
friction angle: a) original geometry; b) φav = 45o; c) φav = 75o; d) φav = 80o. 
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6.6.4. DDA analysis of sequence of layers - laminated Voussoir beam  

The results of DDA analysis for the laminated voussoir configuration are presented in 

Figure 6.18a, which is a plot of mid-span deflection (δ) after 0.25sec versus friction angle (φ) 

and joint spacing (Sj). The deflection data is provided for three points located midspan 

separated vertically by 2.5m as follows: 1) m1- mid-span of immediate roof; 2) m2 - mid-span 

at m1+2.5m; 3) m3 - mid span at m1+5m. Time histories of the three measurement points for 

different values of joint spacing are presented in Figure 6.18b,c,d. Graphic output of 

deformed system of blocks after 0.25 sec for Sj = 0. 25m and selected values of friction angle 

are given in Figure 6.19: a) φav = 30o; b) φav = 50o; c) φav =60o; d) φav = 70o. 

For block of aspect ratio rb = 0.5 the deflections are excessive for all analyzed values 

of friction angle, and failure is expected. The deflections through the stack of layers show that 

. For φ321 mmm δ>δ>δ av < 50o the deflections at the specified measurement points are 

essentially similar: ; m.m 4301 ≈δ m.m 2602 ≈δ ; and m.m 1803 ≈δ . The vertical differences of 

the deflection values, 2121 mm, δ−δ=∆  and 3231 mm, δ−δ=∆ , are similar as well:  

and , thus implying that for φ

m., 18021 ≈∆

m., 08031 ≈∆ av < 50o the transverse loads across the stack are 

independent of the friction angle along the joints. Most of the deformation is achieved 

through inter-block shear since lateral thrust is not fully developed and the gravitational load 

is not equilibrated, leading to progressive failure. 

When shear resistance is increased, φav = 60o, the deflection of the layers is reduced, 

and rotation of the individual blocks in the lowermost layers is evident (Figure 6.16c). 

Maximum inter-block shear is taking place at the center of the stack, fading towards the 

abutments. For φav > 60o increased shear resistance reduces inter-block shear displacement. 

Deformation characteristics are changed from inter-block shear of individual layers to 

increased rotation of the individual blocks, followed by lesser shear. The displacements are 
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reduced to ,  and m.m 1501 <δ m.m 1302 <δ m.m 1103 <δ , while the vertical difference is 

. Thus the behavior of the roof is changed from a succession of layers to 

coherent beam encompassing the overall thickness of the layers. However, stability is not 

achieved since the deflections are yet extensive (refer to Figure 6.18). 

m.,, 0303121 <∆≈∆

Increasing the aspect ratio of the individual blocks to by setting r = 1 (Sj = 0. 5m), and 

assuming friction angle of φav = 47o (peak friction angle from direct shear), reduces the 

displacements to , m.m 13101 =δ m.m 11602 <δ  and m.m 10603 <δ , compared with 

,  and m.m 43401 =δ m.m 24602 <δ m.m 15503 <δ for r = 0.5 (Sj = 0. 25m). Further increasing 

the block aspect ratio to rb ≥ 1.5 assures the stability of the roof by reducing the deflection to 

,  and . Equilibrium solutions are attained for block of r 

≥ 1.5 (S

m.m 0501 <δ m.m 0302 <δ m.m 0103 <δ

j ≥ 0.75m). 

6.6.5. Limitations of DDA  

Analysis of the Tel Beer-Sheva water reservoir by DDA suffers from a number of 

drawbacks associated with geometrical definitions and numerical problems. These 

shortcomings affect DDA predictions when compared with findings at the site. However, 

these limitations are conservative, as opposed to the unconservative nature of the classic 

Voussoir analysis.  

The dome-like geometry of the failure area indicates that the problem is truly three 

dimensional (3-D) rather than two-dimensional (2-D). This observation limits the 

applicability of both DDA and classic Voussoir analysis, since both are two-dimensional 

methods. The stabilizing effect of the compressive stress in the normal to plane direction 

is ignored. A true 3-D model of the problem is extremely difficult, due to the extremely 

large number of block elements involved. For a single layer configuration the number of 

zzσ
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blocks is 1024, for sequence of layers the number of blocks exceeds 10,000. The number of 

DDA deformation variables and degrees of freedom for 3-D DDA analysis is 3 and 12, 

respectively, compared with 2 and 6 for 2-D DDA analysis. Each element in the global 

stiffness matrix is a 12×12 sub-matrix. The global stiffness matrix for a system of n blocks is 

12n×12n matrix. Thus, the global stiffness matrix becomes extensively large. Furthermore, 

contact formulation of the 3-D problem is difficult mainly due to great number of contacts 

involved and increased deformational freedom at each contact. The convergence of such a 

large system is extremely difficult and slow. At present, the applicability of 3-D DDA to full-

scale problems is limited. Therefore, 2-D analysis is numerically and practically advantageous 

over 3-D analysis, at present time. 

In analysis presented above the abutments are assumed rigid, this achieved by 

assigning three fixed points to each abutment block. Consequently, the cracked beams will 

first shear along abutments simultaneously with inter-block shear until a sufficient 

kinematical freedom is gained and block rotation will take place. This in turn will produce 

movement resisting moments, until stable arching is attained. Therefore the vertical 

displacements as calculated by DDA are larger than the ones expected to occur within a 

natural rock mass, where the abutments are not rigid, but rather deformable, and where blocks 

rotation are expected to co-act with shear displacements.  

The graphic output of Figure 6.19 shows that for friction angles lower than 70o the 

beds are separating, and apparently are deflecting under their own weight. This result should 

be examined in light of the geometrical and mechanical constraints of the DDA model: stiff 

abutments and simply deformable blocks. The individual blocks cannot deform, and the beam 

has to shear along abutments to allow rotational freedom. The upper beams transfer the 

vertical loads downward primarily along the abutments. Larger displacement along abutments 
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allows larger rotational freedom, and consequently larger mid-span deflection. Based on these 

insights the deflection under own weight assumption should be ruled out.   

The jointed layers are modeled such that each layer is free to shear along the 

abutments. In the field the layers only partially comply with the model, since individual end 

blocks may be supported by the abutments, forming a structure of cantilever beams, which 

consequently reduce the active span. However, the relatively dense jointing of the Gareb 

chalk (ca. 0.25m) minimizes this effect. 

The first order displacement approximation in DDA results in constant strain/stress 

elements, and stress concentrations within the blocks are not computed. The stability of the 

beams however is achieved through rotation, which must produce stress concentration at the 

contacts. Moreover, in weak rocks such stress concentrations can lead to failure of the intact 

rock, thus to changes in contacts size and stiffness, which in turn can lead to further 

deterioration of the individual blocks integrity and overall structural stability. A complete 

stress distribution for the entire modeled region is not available. This shortcoming is acute 

when the individual blocks are large. However for small blocks the stresses within the blocks 

are nearly constant. Thus for a system consisting of a large number of small blocks, as in the 

case of Tel Beer-Sheva, the stress distribution is assumed to be modeled with adequate 

accuracy. 
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Figure 6.18. a) DDA prediction for mid-span deflection of the multi-layered model, at 
measurement points m1, m2, and m3 as a function of friction angle (φ) and joint spacing (Sj); 
b), c) and d) are time histories for different values of joint spacing at measurement points m1, 
m2; and m3 respectively. 
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a) 

 

b) 

Figure 6.19. DDA graphic output of the multi-layer deformation for different values of joint 
friction angle: a) original geometry; b) φav = 30o. 
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c) 

 

d) 

Figure 6.19. (cont.) DDA graphic output of the multi-layer deformation for different values of 
joint friction angle: c) φav = 50o; and d) φav = 70o. 
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6.6.6. Comparison between DDA and classic Voussoir solutions 

Stability analysis of the Tel Beer – Sheva water reservoir showed that the classic 

Voussoir analysis is unconservative. Voussoir analysis predicts stability for friction angles of 

φav > 20o, but with a peak friction angle of φp = 47o the roof has failed. DDA analysis for a single 

layer with multiple joints showed that stability is assured for friction angles of φav > 75o. Clearly 

DDA prediction is more accurate, albeit conservative (refer to previous section). The mode of 

failure of the multi-jointed beam is clearly shown in Figure 6.16: maximum inter block shear 

developed at the mid span, whereas at the abutments block rotation attained maximum value. This 

mode of failure can be regarded as sagging. DDA showed that when the shear resistance along 

joints is increased stability is achieved through increased rotation of blocks near the abutments. 

Investigation of block size effect showed that the beam stability improves for blocks with high 

aspect ratio; thus the findings of Passaris et al., (1993) are confirmed.  

DDA showed that for the case of Tel Beer-Sheva analysis of the immediate roof (i.e. 

single layer) is only partially applicable, given the fact that at least a portion of the vertical 

load was transmitted vertically rather than laterally to the abutments. The stability of the 

laminated Voussoir is governed by similar processes: stability is achieved when shear 

resistance is sufficient to induce rotation of individual blocks close to the abutments. Then the 

global behavior of the layers is changed from a succession of layers each imposing vertical 

load on the layers below, to a coherent beam where loads are transformed laterally to the 

abutments. This transition is indicated by almost uniform deflection of the individual layers 

across the bulk of the sequence (Figure 6.18). Therefore the solution obtained by DDA using 

a single layer configuration seems to be unconservative, suggesting that a mult-layer analysis 

is warranted. 
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Chapter 7 - Stability Analysis of Underground Openings in 
Horizontally Stratified and Vertically Jointed Rock 

7.1. Introduction 

In the previous chapters the validation of DDA using analytical solutions, physical 

models, and a case study were discussed, and the advantages of DDA over the classic 

Voussoir model were shown. Furthermore, it was shown that DDA accounts for variations in 

joint spacing and shear resistance (friction) along joints, leading to different modes of failures 

and amount of deflection. Therefore, with given joint spacing and joint friction angle the 

stability of underground openings in discontinuous rock can be assessed. 

Lee et al., (2003) showed that when two joint sets are encountered at a tunnel 

excavation face, the most critical joint combination consists of a set of horizontal joints 

(bedding planes) intersecting vertical joints. Furthermore, they have shown that the 

displacement of a key block at the roof tends to increase as the block size decreases. 

However, no particular reference is made by Lee et al., to joint spacing and tunnel 

dimensions. 

This chapter explores the stability of underground openings excavated in horizontally 

stratified and vertically jointed rock masses. This study concentrates on: 

1. The effect of joint spacing and shear resistance on the height of 

loosening above the excavation. 

2.  The relation between joint spacing and excavation span. 
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The paramount uncertainty associated with modeling discontinuous rock masses lies 

with the geometrical structure of the rock mass, e.g. joints length and spacing distributions. 

The main difficulty arises from the fact that most of the data regarding these parameters are 

collected either from boreholes or from limited surface exposures; in rare cases exploratory 

tunnels are excavated. The extrapolation from limited field data to a conceptual model of the 

rock mass and then to a numerical model introduces further uncertainties. 

Joint spacing, defined as the perpendicular distance between two neighboring 

discontinuities, has been widely explored over the past three decades, and various techniques 

for data collection and analysis were proposed (refer to Priest, 1993). It was found that within 

a given joint set the joint spacing follows certain distribution laws, such as: normal, log-

normal, and negative exponential among others. It has also been suggested that joint spacing 

is related to bed thickness, genesis, and geological setting (refer to Wu and Pollard, 1995). 

The distribution law reflects this, as well as the measuring and analysis technique. Similar 

findings were reported on issues of joint length (Zhang and Einstein, 1998; Mauldon, 1998).  

In the current research the modeled rock mass is synthetic, with no reference to a 

particular, naturally occurring rock-mass. The discontinuous rock-mass was generated using 

the one-dimensional perturbation algorithm proposed by Shi and Goodman (1989). The 

algorithm inputs are: the average joint spacing Sj, the average joint length Lj, the average joint 

bridge Bj and the degree of randomness 
2
10 << rD . When 

2
1

=rD  a full perturbation is 

applied, when  no perturbation is applied. The distribution function is assumed 

uniform, for simplicity. 

0=rD

7.1.1. Model geometry and mechanical properties  

The analysis domain is 50m high and 40m wide. The opening geometry is of a 

horseshoe shaped tunnel (Figure 7.1), with span B = 2a and height ht = b+c. Fixed boundaries 
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are represented by four fixed blocks (each containing a minimum of three fixed points). Two 

joint sets are generated using the perturbation algorithm of Shi and Goodman (1989): a set of 

horizontal bedding planes and a set of vertical joints. The horizontal bedding planes are 

assumed of infinite extension, with average spacing of Sj = 1m and degree of randomness of 

Dr = 0.25. The vertical joints are generated for different values of average spacing. The 

spacing, trace length, bridge length and degree of randomness are given in Table 7.1. Two 

different opening geometries are studied: 1) span B =10m and height ht = 10m; and 2) span B 

=15m and height ht = 10m. The analysis matrix is given in Table 7.1. 

 The vertical joints are generated such that the number of potential cantilever beams 

within the rock mass was minimized. Figure 7.2 shows a schematic representation of two 

types of rock masses: a) not containing cantilever beams; b) containing cantilever beams. The 

presence of cantilever beams reduces the displacements in the rock mass and enhances 

stability (Terzaghi, 1946). Therefore, in a rock mass not containing cantilevers the 

displacements are expected to be maximized. 

 

Model φ (ο) Sj (m) Dr Lj (m) Bj (m) 

20 1.5 2 3 4 5 

30 1.5 2 3 4 5 

40 1.5 2 3 4 5 

50 1.5 2 3 4 5 

B = 10m 

ht = 10m 

60 1.5 2 3 4 5 

0 25 1 

20 2 3 4 5 6 

30 2 3 4 5 6 

40 2 3 4 5 6 

50 2 3 4 5 6 

B = 15m 

ht = 10m 

60 2 3 4 5 6 

0 25 1 

Table 7.1. DDA modeling matrix. 
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The displacements within the rock mass are measured at seven measurement points 

along a vertical line rising from the excavation crown. The locations of the measurement 

points are given in Table 7.2. 

Mechanical properties of the intact rock material are chosen to conform to “average” 

values of sedimentary rocks. The mechanical properties of the intact rock material and 

numeric control parameters are given in Table 7.3. The shear resistance along discontinuities 

was assumed purely frictional; cohesion and tensile strength are assumed zero. The 

discontinuities represent clean planar joints without surface roughness, wall annealing or 

infilling. The friction angle for bedding planes and vertical joints is assumed equal for 

simplicity; this is by no means limitation of the DDA method or its numeric implementation. 

Measurement point x,y coordinates (m) Remarks 

mp1 0, 0 excavation crown 

mp2 0, 4.5  

mp3 0, 8.5 center of domain 

mp4 0, 13.5  

mp5 0, 18  

mp6 0, 23  

mp7 0, 28  

Table 7.2 Locations of measurement points in DDA model. x,y coordinates are with respect to 
excavation crown. 

Density 2500 kg/m3

Elastic Modulus 10000 MPa 

Poisson’s ratio 0.25 

Penalty stiffness (g0) 1000 MN/m 

Time step size (g1) 0.0002 - 0.0004 sec (1)

Penetration control parameter (g2) 0.0002 

Dynamic control parameter (k01) 1 

Table 7.3. Material properties and numeric control parameters for DDA model. (1) Time step 
size was adjusted to avoid numerical problems. 
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Figure 7.1.Geometry of the DDA model. 
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Figure 7.2. Two types of rock masses: a) not containing cantilever beams; b) containing 
cantilever beams. 
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7.1.2. Selection of contact stiffness 

In sections 4.2, 5.3.3 and 6.6.1 it was shown that the accuracy of DDA solution depends 

on proper selection of numerical control parameters. Given a sufficiently small time step (g1) 

and penetration control parameter (g2), the nature of the DDA solution is determined by inter-

block contact stiffness (g0). It was shown that when the number of blocks is large the contact 

stiffness should be chosen such that that convergence of numerical solution is achieved.  

In the current model the maximum number of blocks for analysis was 1102 (for Sj = 1.5 

m). A sensitivity analysis was performed for this specific geometric configuration. The 

maximum time step size was set to g1 = 0.0004 sec, the penetration control parameter was set 

to g2 = 0.0002, and the number of time steps was n = 2500. The contact stiffness was 

changed from g0 = 250 MN/m to g0 = 1000 MN/m. The results of the sensitivity study are 

presented in Figure 7.3. 

Figure 7.3a shows three time histories for different values of contact stiffness. When g0 

= 250 MN/m the solution is clearly non-converging within the time span, with a “wave 

length” of approximately 1500 time steps. Setting g0 = 750 MN/m changes the solution; the 

oscillatory nature of an equilibrium solution is clearly visible. The “wave length” and 

amplitude of oscillations are reduced implying smaller initial perturbation and faster 

convergence. Increasing the contact stiffness to g0 = 1000 MN/m enhances the convergence, 

and shows two pronounced modes of displacement. At the crown progressive deflection is 

taking place, while at all other measurement points the deflection attains equilibrium position. 

Figure 7.3b shows the number of open close iterations over computation time. For g0 = 

250 MN/m the average number of iterations per time step is iav = 2.61, for g0 = 750 MN/m the 

average number of iterations is iav = 3.11, and for g0 = 750 MN/m the average number of 

iterations is iav = 3.22. Increasing the contact stiffness slightly impends on the numerical 
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efficiency. Based on these observations the contact stiffness value chosen for the analysis is 

g0 = 1000 MN/m. 
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Figure 7.3. Contact stiffness sensitivity analysis for a DDA model of tunnel span B = 10m and 
vertical joints spacing Sj = 1.5: a) vertical deflections (δ) for different values of. Maximum 
time step size to g1 = 0.0004 sec, penetration control parameter g2 = 0.0002 
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Figure 7.3. (cont.). Contact stiffness sensitivity analysis for a DDA model of tunnel span of B 
= 10m and vertical joints spacing of Sj = 1.5: b) iteration time history for different values of 
contact stiffness.  

 

7.1.3. Criteria for stable arching 

The displacement curves in Figure 7.3a show two modes of deformation: 1) increasing 

displacement with time (measurement point 1); and 2) equilibrium position, after an initial 
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displacement marked by an oscillatory solution (measurement points 2-7). The nature of the 

oscillatory (equilibrium) solution was described in section 5.3.1, and it is defined here as the 

first criterion of stable arching. 

DDA analysis of the laminated Voussoir beam (section 6.6.4) shows that stability is 

achieved when shear resistance is sufficient to induce rotation of individual blocks close to 

the abutments. The behavior of the layers is changed from a stack of beams each imposing 

vertical load on the underlying layers, to a coherent beam where loads are transfered laterally 

to the abutments. This transition is indicated by a nearly uniform deflection profile within the 

rock mass, leading to homogenization of displacements (Figure 6.18). This process is defined 

as the second criterion of stable arching. 

Using these two criteria, the vertical extent of the loosened rock or the height of the 

arching zone can be determined. The height of the loosening zone is equivalent to Terzaghi’s 

(1946) rock load, used for assessing rock loads on steel sets. The vertical extent of the 

loosening zone can be used for design of active support elements such as rock bolts. 

7.2. Results 

7.2.1. Roof span of 10m 

Representative time histories of vertical displacements above the10m wide opening are 

given in Figure 7.3a, which shows DDA results for joint spacing of Sj = 1.5m and joint 

friction angle of φ =20ο.  The crown of the excavation is in a state of progressive failure, 

which is clearly marked by the progressive downward displacement. The vertical 

displacements at points located at y > 4.5m above the crown are oscillatory confined to values 

of δ < 0.1m, thus implying stable arching.  
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When examining the DDA graphic output for this particular simulation, Figure 7.4, the 

inter-bed separation immediately above the crown is clearly visible. The separation dies out 

with vertical distance from the crown. An additional feature that must be noted is the failure 

of rock wedges created by the intersection of the discontinuities and the perimeter of the 

opening, clearly visible at the upper right part of the opening. These wedges can be found 

either by DDA or by analytical methods, such as Block Theory (Goodman and Shi, 1985). 

Failure of these wedges further reduces the stability of the crown by enlargement of the active 

span. 

The vertical displacement (δ) profiles for the different values of joint spacing are given 

in Figure 7.5. The displacements are taken after 2500 time steps, which with a time step size 

of ∆t = 0.0004 sec is equal to t  = 1 sec. For joint spacing of Sj ≤ 2m the displacement at the 

crown is δy=0m ≈ 0.2 --0.3m, depending on the available friction angle along the joints. The 

displacements die out with vertical distance from the crown, and at y > 8.5m the 

displacements are reduced to values of δy>8.5 < 0.1m, approaching values of δ ≈ 0.05m. For 

joint spacing of Sj ≥ 3m the displacements are reduced to δ  < 0.1m, approaching values of δ ≈ 

0.05m, and homogenization of displacements is evident. 

Vertical displacement differences (∆δ/∆y where y is the vertical distance) calculated 

between pairs of measurement points within the vertical profile, are presented in Figure 7.6. 

For joint spacing of Sj ≤ 2m the displacement differences indicate that homogenization of 

displacements begins at y > 4.5m above the crown, and that the difference approaches zero. 

For joint spacing of Sj ≥ 3m the displacement difference ∆δ/∆y <0.005, with very little 

variation from the crown up. 

From the described above it can be concluded that for a tunnel span of 10 meters the 

height of the loosening zone above the excavation is h < 0.5ht for joint spacing of Sj ≤ 2m. For 

joint spacing of Sj ≥ 3m the rock mass above the opening attains stable arching. The rock mass 
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response is dictated by the joint spacing and to a lesser extent by joint friction, for the 

modeled range of friction angles. Only in one case, Sj = 2m and φ = 60o, the friction angle 

inhibit excessive deflections and induce stable arching. Where the joint spacing is sufficiently 

large stable arching is independent of friction angle. The findings of this section are 

summarized in Table 7.4. 

 Friction angle (o) 

 20 30 40 50 60 

1.5 < 0.45 < 0.45 < 0.45 < 0.45 < 0.45 

2 < 0.45 < 0.45 < 0.45 < 0.45 Stable 

3 Stable Stable Stable Stable Stable 

4 Stable Stable Stable Stable Stable 

Jo
in

t s
pa

ci
ng

 (m
) 

5 Stable Stable Stable Stable Stable 

Table 7.4. Normalized height of loosening zone (hr = h/ht) above an underground opening for 
a horseshoe tunnel of width B = 10m and height ht = 10m. 

7.2.2. Influence of joint randomness 

Modeling the transverse joints as long, perfectly persistent and with constant spacing 

results in a rock mass structure with a minimum number of cantilever blocks. In this 

configuration the deflections above the underground opening are expected to attain maximum 

values. However, joints are seldom persistent, and statistical variations are to be expected. In 

order to study the effect of joint variability on rock mass response the simulations for joint 

spacing of Sj = 1.5m are repeated, with the following changes with respect to the transverse 

joints: trace length Lj = 5m, bridge length Bj = 0.5m and degree of randomness of Dr = 0.25. 

All other mechanical and geometrical parameters are kept the same. The results of the 

simulations and comparison with the “uniform” simulation are presented in Figure 7.7. The 

graphic output of the simulation for friction angle along joints of φ = 20ο is given in Figure 

7.8. 
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Figure 7.4. DDA graphic output for tunnel span of B = 10m and vertical joint spacing of Sj = 
1.5: a) initial configuration (top); b) deformed configuration (bottom). 
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Figure 7.5.Vertical displacement (δ) profile above an underground opening of span B = 10m, 
for different values of joint spacing (Sj) and friction along joints (φ). 
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Figure 7.6. Vertical displacement difference (∆δ/∆y) profile above an underground opening of 
span B = 10m, for different values of joint spacing (Sj) and friction along joints (φ). 
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Introduction of joint randomness reduces the vertical displacements. The downward 

crown displacement is reduced from δy=0m ≈ 0.15 - 0.3m, depending on the available friction 

angle along joints for non-random joints to δy=0m ≤ 0.06m for the same opening geometry with 

random joint statistics, with no apparent influence of joint friction. The vertical displacement 

difference immediately above the crown is reduced from ∆δ/∆y <0.04, depending on the 

available joint friction angle, to ∆δ/∆y <0.005, with no apparent influence of joint friction. 

The reduction of displacements and their homogenization, through the introduction of 

joint variability is attributed to the combined action of the following factors: 

1. Nominal enlargement of joint spacing - resulting in enlargement of the 

Voussoir blocks and reduction of vertical displacements. 

2. Presence of cantilever blocks – resulting in reduction of vertically 

transformed loads within the rock mass, refer to Terzaghi (1946). 

The two configurations described can be regarded as the end-members of the modeled 

rock mass. The first end-member (uniform joints) is clearly conservative, whilst the second 

end-member (non-uniform joints) is less conservative. The initial value of joint spacing for 

the two realizations is Sj = 1.5m, which results in rather large Voussoir blocks and a relatively 

small number of blocks in a single beam. Thus, introduction of joint randomness and nominal 

enlargement of Voussoir blocks further improves the overall performance of the rock mass. 

However, when joint spacing is small and the number of blocks in a single beam is relatively 

large (as in the case of Tel Beer-Sheva) the influence of joint randomness on the overall 

performance of the rock mass is expected to be weaker. 



Chapter 7 – Stability analysis of underground openings 135

0 5 10 15 20 25 30

0.3

0.2

0.1

0

δ 
(m

)

friction angle (deg.)
20
30
40
50
60

0 5 10 15 20 25 30

0.3

0.2

0.1

0

δ 
(m

)

no random joints random joints

5 10 15 20 25 30
vertical distance from crown (m)

0.06

0.04

0.02

0

∆δ
/ ∆

v

5 10 15 20 25 3
vertical distance from crown (m)

0

0.06

0.04

0.02

0

∆δ
/ ∆

v

a

b

c

dno random joints random joints

 

Figure 7.7. Rock mass response above an underground opening of span B = 10m, and joint 
spacing of Sj = 1.5m: a) vertical displacements - non-random (Dr = 0) joint configuration; b) 
vertical displacement difference - non-random joint configuration; c) vertical displacements – 
random (Dr = 0.25) joint configuration; d) vertical displacement difference - random joint 
configuration. 
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Figure 7.8. DDA graphic output for tunnel span of B = 10m, vertical joint spacing  of Sj = 
1.5m with random statistics: a) initial configuration (top); b) deformed configuration 
(bottom). 
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7.2.3.  Roof span of 15m 

The vertical displacement profiles for the different values of joint spacing are given in 

Figure 7.9, and the displacement difference profiles are given in Figure 7.10. Clearly, 

enlarging the opening span by 50%, while keeping the height unchanged, modifies the rock 

mass response. For joint spacing of Sj = 2m and friction angle of φ = 20o the crown (y = 0) 

displacement is δ = 1.8m, at y = 4.5m the displacement is δ =-0.6m, and approaching δ = 

0.2m at y >25m, which is the magnitude of crown displacement for opening span of B = 10m. 

The graphic output for this particular case is given in Figure 7.11. It is clearly seen that the 

rock mass immediately above the crown is sagging, and inter-bed separation is clearly 

present. The height of the loosening zone encompasses at least eight successive beds above 

the crown, compared with three successive beds for B = 10m case (Figure 7.12). Furthermore, 

the larger span enhances failure of rock wedges formed by intersection of discontinuities and 

excavation perimeter. Increasing the joint friction angle reduces the overall displacements; the 

crown displacement for φ ≥ 30ο is δ < 0.6m, and approaches δ ≈ -0.2m for y > 4.5m. 

Enlarging the joint spacing to Sj = 3m reduces the vertical displacements at the crown to 

δ = 0.54m for φ = 20ο, δ = 0.38m for φ = 30ο, and δ < 0.25m for φ ≥ 40ο. The displacements 

are reduced with vertical distance approaching δ = 0.1 m. For joint spacing of Sj ≥ 4 

displacements are homogenized, decreasing with an increase in joint spacing to values of δ ≈-

0.1 m. Vertical displacement differences reveal similar trends: decreasing with increase of 

joint spacing, and homogenization of displacements for Sj ≥ 4. The findings of this section are 

summarized in Table 7.5. 
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Figure 7.9. Vertical displacement (δ) profile above an underground opening of span B = 15m, 
for different values of joint spacing (Sj) and friction along joints (φ). 
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Figure 7.10. Vertical displacement difference (∆δ/∆y) profile above an underground opening 
of span B = 15m, for different values of joint spacing (Sj) and friction along joints (φ). 
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Figure 7.11. DDA graphic output for tunnel of span B = 15m, vertical joint spacing of Sj = 2m 
and friction angle of φ = 20o: a) initial configuration (top); b) deformed configuration 
(bottom). 



Chapter 7 – Stability analysis of underground openings 141

 

 

Figure 7.12. DDA graphic output for tunnel of span B = 10m, vertical joint spacing Sj = 2 and 
friction angle of φ = 20o m: a) initial configuration (top); b) deformed configuration (bottom). 
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 Friction angle (o) 

 20 30 40 50 60 

2 < 0.85 < 0.85 < 0.45 < 0.45 < 0.45 

3 < 0.85 < 0.85 < 0.45 < 0.45 < 0.45 

4 Stable Stable Stable Stable Stable 

5 Stable Stable Stable Stable Stable 

Jo
in

t s
pa

ci
ng

 (m
) 

6 Stable Stable Stable Stable Stable 

Table 7.5. Normalized height of loosening zone (hr = h/ht) above an underground opening, for 
a horseshoe tunnel of width B = 15m and height ht = 10m. 

7.2.4. Rock mass response as a function of excavation span 

In the previous sections the response of a rock mass with varying joint sapcing around 

underground excavations of two different spans (B = 10m and 15m) was studied and 

described. The relation between joint spacing and span, however, was not explored. In this 

section two issues are addressed: 

1. The joint spacing/ span size ratio (Sj/B) vs. vertical displacement δ. 

2. The Sj/B ratio and the height of the loosened zone hr  = h/ht above an 

underground opening. 

Figure 7.13 shows the normalized vertical displacement δ/B as a function of vertical 

distance from crown for Sj/B = 0.2, for both B = 10m and B = 15m. Each of the five plots 

corresponds to a different value of joint friction angle. Plotting the displacement ratio 

δB=15/ δB=10 (Figure 7.14) shows that for all modeled friction values the ratio is greater than 

unity and in most cases approaches 2. Similar analysis was performed for Sj/B = 0.3 and Sj/B 

= 0.4, for both B = 10m and B = 15m. The displacement ratios are presented in Figure 7.14. 

The plot clearly shows that an increase of Sj/B ratio leads to convergence of the displacement 

ratio (δB=15/ δB=10) to one. 
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The height of the loosening zone shows similar trends. When Sj/B > 0.3 the rock mass 

attains stable arching, regardless of the actual displacement (refer to Tables 7.4 and 7.5). For 

values of Sj/B ≤ 0.2 the height of the loosening zone generally does not depends on friction 

angle or span, and is hr < 0.45, with the exception of hr < 0.85 for φ = ≤30ο and B = 15m. 
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Figure 7.13. Normalized displacement δ/B for normalized joint spacing of Sj /B = 0.2. 
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Figure 7.14. Vertical displacement ratio δB=15/ δB=10: a) normalized joint spacing of Sj /B = 
0.2; b) normalized joint spacing of Sj /B = 0.3; and c) normalized joint spacing of Sj /B = 0.4 
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7.3. Discussion 

From the described above it can be concluded that for the modeled geometries the key 

factor controlling the stability of underground openings excavated in horizontally layered and 

vertically jointed rock mass is the spacing of vertical joints. The effect of friction along joints 

is secondary, and is evident only when vertical joint spacing is lower than a certain threshold. 

For underground openings with span of B = 10m the threshold is Sj ≤ 2m (Sj/B ≤ 1/5), whereas 

for openings with span of B = 15m the threshold is Sj ≤ 3m (Sj/B ≤ 1/5). These thresholds are 

functions of three factors: 1) joint spacing; 2) friction along joints; and 3) span opening. 

When joint spacing is sufficiently large, the moments acting within each single block 

are equilibrated, consequently leading to stable arching. This mechanism is self-regulating 

and is independent of friction along joints. However, when joint spacing is bellow the 

threshold value (Sj/B ≤ 1/5) the stability is determined by the interaction between joint spacing 

and friction along joints. For an underground opening of span B = 10m and joint spacing of Sj 

= 1.5m shear resistance along joints is not sufficient to preclude vertical displacements near 

the excavation crown, indicating that thea rching mechanism is not fully developed. Stable 

arching is only met at h > 0.45ht. For joint spacing of Sj = 2m and friction angle of 

φ  ≤ 50ο stable arching is met at h > 0.45ht’ as well. However, when the friction along joints is 

φ  = 60ο the shear resistance is sufficient to induce rotation of blocks and stable arching begins 

at the crown.  

For an underground opening of span B = 15m and joint spacing of Sj ≤ 3m the shear 

resistance is not sufficient to induce block rotations and stable arching at the crown. Stable 

arching is met at h > 0.85ht for φ  ≤ 30ο and  h > 0.45ht for φ  >30ο. When Sj/B < 0.3 the 
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height of the loosening zone is h < 0.85ht, and in most cases is h < 0.45ht. When Sj/B > 0.3 

stable arching begins at the crown. These findings are summarized in Table 7.6.  

 

Sj/B hr Exceptions 

≤ 0.2 < 0.45ht 1. Stable arching for B = 10m and φ = 60ο 

2. <0.85ht for B = 15m and φ ≤ 30ο

0.3 0 Stable arching 

0.4 0 Stable arching 

 Table 7.6. Normalized height of the loosening zone (hr = h/ht) above an underground opening 
for different values of joint spacing and opening span (Sj/B).  

Given the modeled rock mass structure these estimates are clearly conservative. The 

synthetic rock mass is designed such that resistance to downward displacement is provided by 

shear resistance along joints, and that no cantilever beams are found within the rock mass. 

Cantilever beams are expected in a natural rock mass, where joint geometry is characterized 

by a certain statistical distribution. The presence of cantilever beams provides further 

resistance to downward displacement. This effect is discussed in section 7.2.2: a simple linear 

perturbation of joint spacing and bridge leads to reduction of vertical displacements and 

induces stable arching. In a similar configuration with uniformly distributed joints arching is 

achieved only at h > 0.45ht. Given the uncertainties associated with rock mass geometry and 

its extrapolation, the extent of cantilever action cannot be easily quantified. 

In this research the crushing strength of the rock was ignored, mainly since DDA is 

currently not capable of modeling stress concentrations. Crushing occurs mainly in deep 

excavations, in which the lateral compressive stresses are high. These stresses usually 

preclude rock mass loosening. Crushing also occurs in weak rocks. In excavations at shallow 

to moderate depths and competent rock, crushing failures are less common. 
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In terms of span B the height of the loosening zone is hr < 0.56B when Sj/B ≤ 0.2. 

According to Terzaghi (1946) for tunnels excavated in a blocky rock mass (consists of 

chemically intact or almost intact rock fragments, which are entirely separated from each 

other and imperfectly interlocked) the expected overbreak ranges from 0.25B to 1.1(B+ht), 

depending on the degree of jointing. However, a quantitative description of the degree of 

jointing is not given.  

Rose (1982) revised Terzaghi’s classification and described the degree of jointing in 

terms of Rock Quality Designation of RQD (Deere et al 1967). According to Rose for a 

moderately blocky rock mass (RQD = 75-85) the expected over break ranges from 0.25B to 

0.2(B+ht), whereas for a very blocky rock mass (RQD = 30-75) the expected over break is 

(0.2 to 0.6)(B+ht). This reduction was achieved by ignoring the level of water table, which 

according to Brekke (1968) has little effect on rock load. The drawbacks of this revision are: 

1) the friction along joints is neglected; 2) correlation with RQD. 

RQD provides a quantitative estimate of rock mass quality from drill cores and is 

defined as the percentage of intact rock pieces longer than 10cm in the total length of the core. 

RQD is a directionally dependent parameter and its value may change considerably depending 

on the borehole orientation. In a horizontally layered and vertically jointed rock mass the 

RQD will be determined by the spacing between beds rather than the spacing of joints. 

Furthermore, RQD is not sensitive for spacing greater than 10cm. For example, a drill core of 

say 3m comprised of intact rock pieces each 10cm long will yield the same estimate as a 

similar drill core comprised of 3 pieces each 1m long. Therefore, correlation with RQD is 

problematic, especially for rock masses comprised of horizontal layers with vertical joints. 

Comparison of the results of this research results with Terzaghi’s prediction shows that 

the latter is conservative. Whereas Terzaghi’s classification scheme lacks a consistent 

treatment of discontinuities, this research provides a systematic treatment of both joint 
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spacing and friction. Both joint spacing and friction angle along joints are easy to obtain 

parameters, either in the field or in laboratory. Therefore, a prediction based on these 

parameters is straightforward and explicit. 
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Chapter 8 – Conclusions 

The purpose of this research was to study the stability of underground openings 

excavated in horizontally layered and vertically jointed rock masses using the Discontinuous 

Deformation Analysis (DDA) method. The objectives set forth in Chapter 1 of this thesis 

were: 1) validation of the numeric Discontinuous Deformation Analysis (DDA) using 

physical models and case studies; 2) investigation of the fractured beam kinematics; 3) 

development of simplified design charts and tables for assessment of rock loads in 

underground openings as function of joint spacing and joint friction angle.  

DDA was validated using two different physical models: 1) shaking table model of a 

single block on an incline performed by Wartman (1999) at University of California at 

Berkeley; and 2) centrifuge model of a multi jointed single beam performed by Dr. M. 

Talesnick at the Technion. The case study of Tel Beer-Sheva, originally investigated by 

Hatzor and Benary (1998), was used to compare DDA and the classic Voussoir beam model, 

and to study the kinematics of single and multi-layered fractured beams. Finally, the general 

stability of underground openings excavated in a horizontally layered and vertically jointed 

rock mass was studied, with particular reference to: 1) vertical joint spacing; 2) joint friction 

angle; and 3) the relation between joint spacing and opening span. 
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8.1. DDA Limitations 

In determining the applicability of DDA to a certain problem the assumptions and 

limitations of the method should be recognized. With respect to stability analysis of 

underground openings the following DDA limitations must be pointed out:  

1. Two-dimensional formulation. 

2. First order displacement approximation. 

The reduction of three-dimensional field configurations to two-dimensional models and 

the extrapolation from two-dimensional models to three-dimensional engineering conditions 

is a known problem in rock engineering (Jing, 2003), and is beyond the scope of this thesis. 

At present the main limitations of three-dimensional modeling of a discontinuous rock mass 

are: the lack of maturity of three-dimensional models, and the requirement for excessive 

computing power when modeling full-scale problems with a large number of discrete blocks. 

A two-dimensional formulation provides computationally effective approximation to three-

dimensional engineering situations, it alsofaciliates large simulations and elaborate sensitivity 

analysis. 

DDA’s first order displacement approximation results in constant strain elements. Thus, 

stress concentrations within the blocks are not modeled, nor is material damage. This 

limitation is acute when modeling highly stressed rock masses, such as in deep excavations, 

or when modeling deformation in weak rock. However, these particular conditions are not 

relevant to the cases investigated here. The the reported results are applicable to moderately 

shallow excavations, where the ambient stresses are low, and rock is relatively strong. In such 

environments deformation is primarily achieved through rock block displacements rather than 

by material damage. 
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8.2. DDA Accuracy 

The accuracy of the DDA solution is determined by four control parameters: 

1. Maximum time step size (g1). 

2. Penetration control parameter (g2). 

3. Contact spring stiffness (g0). 

4. Dynamic control parameter (k01). 

The control parameters g1 and g2 are interrelated; suitable guidelines for individual and 

independent choice of each are not presented here. Throughout this research these parameters 

were chosen to be of the same magnitude, for simplicity. It was found that given sufficiently 

small g1 and g2, the accuracy of DDA is controlled by the value of the contact stiffness (the 

penalty). The proper combination of these three control parameters insures proper 

conditioning of the global stiffness matrix (i.e. diagonal dominance) and in turn assures 

convergence of the solution. The influence of the dynamic controll parameter k01 is  

discussed in section 8.3. 

8.3. DDA Validation 

When DDA solution is compared with analytical solutions for the block on an incline 

problem the relative numeric error is found to be below 1.5%, indicating that block contact 

algorithm in DDA is an accurate replication of the analytical model for frictional sliding. 

When compared with a shaking table model for a block on an incline (Wartman, 1999) the 

DDA solution is found to be conservative. The solution accuracy is improved by reducing the 

dynamic control parameter, thus accounting for: 1) strain rate dependencies shown by the 

particular interface used in this model; 2) difference between the numerical and physical 
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behavior at contact points during shaking; 3) lack of a physically sound energy dissipation 

algorithm in DDA. It was found that a reduction of the inter time step velocity by 2% (setting 

k01 = 0.98) improves both the ultimate accuracy and the kinematics of the DDA solution.  

The main source of DDA numeric error is the initial perturbation of contact forces 

associated with initial gravitational loading (Yeung, 1991; Doolin and Sitar, 2002). The 

implicit time marching scheme of DDA (Newmark, 1959) dissipates this initial perturbation 

through algorithmic damping, as the computation evolves with time. The magnitude of initial 

perturbation, and consequently the numeric error, is inversely proportional to the contact 

stiffness value. High contact stiffness results in lower initial perturbation and faster 

convergence rate. An alternative strategy for enhancement of convergence is by introduction 

of “kinetic damping”, namely reduction of inter time step transferred velocity. This strategy is 

recommended when the mechanical system modeled is expected to attain equilibrium 

position, or when the mode of failure is independent of system geometry, such as in block 

sliding models. However, it should be remembered that “dynamic damping” is a numerical 

manipulation, which is not related to a specific physical energy dissipation mechanism.    

Validation of DDA using the block on an incline models, both analytical and physical, 

is of prime importance to problems of slope stability, and as general benchmark tests for DDA 

accuracy. However, they are of a limited applicability to underground openings, which 

requires validation under more complex block contact conditions. During block sliding the 

relative position of contacts is changed with time, but the contacts between the blocks, and 

consequently contact forces and stresses within the blocks, are unchanged. This is not the case 

for jointed beams spanning an underground opening. During beam deformation some of the 

original contacts are expected to disappear while new contacts are expected to form, leading 

to changes of contact forces between blocks and consequently of stresses within the blocks. 
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Centrifuge modeling of a multi-jointed rock beam comprised of six individual blocks, 

showed that stable arching was achieved mainly through rotation of the external blocks. DDA 

simulation of this particular model shows that stable arching is achieved through rotation of 

stresses within the blocks, rather than by physical rotation of the external blocks. The 

displacements predicted by DDA are found to be excessive, whereas the lateral forces 

measured at the abutment are found to conform. The discrepancy between DDA and the 

centrifuge models results from the geometrical Constraints of the DDA model. Whereas in the 

centrifuge model the frictional interfaces allow block rotation, in the given DDA model the 

infinitesimal thickness of the joints inhibits significant block rotation.  

DDA analysis of a multi jointed rock beam, comprised of 32 individual blocks, shows 

that given sufficient rotational freedom the deformation mode found in the centrifuge model 

is replicated by DDA. The excessive rotations of the external blocks induce stable arching. It 

is found that the transition from shear along abutments to block rotation and stable arching is 

a function of the available shear resistance along joints. Given sufficient shear resistance, the 

external blocks undergo rotation, which is found to be significantly larger when compared to 

blocks found in the center of the beam. Otherwise, the external blocks shear along abutments, 

and the magnitude of block rotations are found to be similar across the beam, indicating that 

stable arching is not achieved. 

Back analysis of an ancient roof failure in an underground water reservoir excavated in 

horizontally layered and densely fractured rock mass, show that DDA successfully predicts 

the anticipated failure. Back analysis of the ancient failure using the classic Voussoir model 

shows that for the given rock mass this model was unconservative.  The DDA model of the 

particular excavation roof shows that within the layered roof the vertical loads transferred are 

vertically from the upper stack to the lower members. The underlying assumption in the 

Voussoir model, of complete detachment of the lower beam, is not satisfied in this case, 
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resulting in unconservative prediction regarding roof stability. It is found that in layered rock 

masses the transition from unstable deformation to stable arching was marked by the 

homogenization of vertical displacements within the rock mass, and that this transition is a 

function of both transverse joint spacing and shear resistance along joints. 

A DDA model of a multi-block system requires careful conditioning of the numeric 

control parameters, since high contact stiffness impedes on solution convergence. Throughout 

this research, it is found that contact stiffness is not associated with joint normal or tangential 

stiffness, but rather is a numeric parameter. It is found that most accurate results are obtained 

when contact stiffness lies between 102 MN/m to 103 MN/m, and the amplification factor g0/E, 

where E is the block elastic modulus, is ranging from 0.05 to 1.  When the contact stiffness 

exceeds 103 MN/m the convergence of the solution rapidly deteriorates. Doolin and Sitar 

(2003) reported that for the block on an incline problem the DDA solution converges for 

amplification factors ranging from 0.1 to 100, and that the relative numeric error decreases for 

higher penalty values. Given that the initial perturbation is inversely proportional to the 

contact stiffness, the contact stiffness should be chosen such that both accuracy and 

convergence are not compromised. For multi-block systems it is recommended that contact 

stiffness should not exceed block material elastic modulus and that with increasing number of 

blocks it should be decresed, until the solution converges. 

8.4. Stability of Underground Openings in Horizontally Stratified and 

Vertically Jointed Rock 

The stability of underground openings excavated in a horizontally layered and vertically 

jointed rock mass is studied using two different geometric configurations: 1) excavation span 

B = 10m; and 2) excavation span B = 15m, for different values of transverse joint spacing and 

friction angle along joints. A total number of 50 individual simulations is presented. It is 
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found that the height of the loosening zone above an underground excavation is determined 

mainly by the ratio between joint spacing and excavation span (Sj/B). When Sj/B ≤ 0.2 the 

height of the loosening zone is found to be smaller than 0.5B, with the exception of B = 15m 

and φ ≤ 30ο  where the height of the loosening zone extends to 0.85B. When Sj/B ≥ 0.3 the 

rock mass above the excavation attains stable arching, reducing the loosening to unstable 

wedges formed by the intersections of preexisting joints and the excavation perimeter. 

The height of the loosening zone is inversely proportional to joint density. When the 

number of blocks per beam (reciprocal to Sj/B) is greater than five (Sj/B ≤ 0.2) the beam tends 

to deform by inter-block shear, while rotation is minimal. Consequently, the driving moment 

generated by the vertical couple, including the vertical surcharge, is not equilibrated by 

resisting moment generated by the lateral thrust, thus leading to progressive failure. When the 

number of blocks per beam is equal or less than three (Sj/B ≥ 0.3), increased rotation generates 

an effective lateral couple within each block, and the beam attains stable arching, after initial 

deflection. For Sj/B = 0.3 the expected deflection of the excavation crown is δ ≈ 0.01B, 

whereas for Sj/B = 0.4 the expected deflection of the excavation crown is δ ≈ 0.0075B. 

These results are obtained for a synthetic rock mass constructed such that the number of 

cantilever beams within it is minimal, achieved using constant joint spacing and long traces. 

The reported displacements are therefore assumed to be conservative when compared to 

naturally occurring rock masses. Introduction of simple variation algorithm on to the joint 

generation routine reduces the displacements. This reduction is expected to attain maximum 

effect for smaller values of joint spacing, since joint variability increases the nominal length 

of the individual blocks and the “interlocking” within the rock mass. 

Terzaghi’s rock load classification predicts that for a blocky rock mass the over break 

height above the excavation ranges from 0.25B to 1.1(B+ht), depending on the degree of 

jointing. However, the degree of jointing is not quantified, and guidelines for assessing the 
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degree of jointing are not provided. Rose’s revision (1982)  limits the over break from 0.25B 

to 0.6(B+ht), correlating the degree of jointing to RQD. The correlation between RQD and 

joint spacing is ambiguous and can be misleading. In this research the expected over break is 

correlated with joint spacing. It is found that the expected over break ranges from 0.45B to 

0.85B for Sj/B ≤  0.2, depending on the joint friction angle. 

Terzaghi’s classification scheme lacks a consistent treatment of discontinuities. This 

research provides a systematic treatment of both joint spacing and friction, which are readily 

attainable parameters, either in the field or in laboratory. Therefore, a prediction based on 

these parameters is straightforward and explicit. 

8.5. Recommendations for Future Research 

With reference to the main goal of this research, stability of underground openings in a 

horizontally layered and vertically jointed rock mass, future research should address the 

following issues and their effect on the stability of underground openings excavated in such a 

rock mass: 

1. The influence of block length to thickness ratio. 

2. Different mechanical lithologies.  

3. The effect of in-situ stresses, with special reference to deep 

excavations. 

4. The effect of cohesion and tensile strength along bedding planes and 

joints. 

5. Interaction of the rock mass and active support. 

In this research the bedding planes are modeled as horizontal and the transverse joints 

as vertical. This geometry is naturally occurring, however not exclusive. Other common rock 

masses exhibit non-horizontal layering and inclined transverse joints. Previous research (e.g. 
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Lee et al., 2003) addressed the issue of joint inclination, without special reference to joint 

spacing and shear resistance along joints. Future research should address the effect of joint 

spacing and shear resistance along joints and bedding planes for different rock mass 

geometries. 

Future validation of DDA should focus on comparison between DDA models and full 

scale engineering cases in complex geologic settings where rock mass deformation was 

monitored and documented at complex geological settings. Successful comparison should 

bring DDA’s potential to fulfillment, and transform it into an attractive analysis tool for the 

practicing engineer. 
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Appendix – Classic Voussoir Solution 

The following is based on the original formulation of Evans (1941), modified and 

corrected by Beer and Meek (1982). Configuration of the Voussoir beam and the notations are 

given in Figure A1. 

 The basic assumptions of the analysis are: 

1. The ground above the roof is completely distressed in the 

direction normal to bedding. 

2. The rock mass has parted along smooth bedding plane breaks 

forming a series of beams. 

3. The beam consists of no-tension material and the distribution of 

compressive stress at the center and the abutments are linear. 

The lateral couple formed by beam deflection equilibrates the overturning 

gravitational-reaction couple 

(A1)    ZTSW
=⋅

42
  

where W is the weight of the beam, S is the beams span, T is the axial thrust and Z is the lever 

arm.  

The structure presented in Fig. A1a is statically indeterminate since the lever arm Z is 

not known. Assuming a parabolic reaction arch of length L  and thickness  Eq (A1) can 

be written as 

tn ⋅
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Figure A1. a) Voussoir beam conceptual model; b) Voussoir beam notation. 
  

(A2)    
28

2 nZfS c=
γ  

where γ is beam unit weight. 

The initial moment arm  is given by 0Z

(A3)    )
3
21(0 ntZ −=  

The length of the reaction arch L  is given by 

(A4)    
S
Z

SL
3

8 2
0+=  

When the beam deforms the compression arch will shorten by 

(A5)    L
E
fL av=∆  

where E  is the beam elastic modulus and  is the average stress along the compression 

arch, given by 

avf
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(A6)    )
23

2(
2

nff c
av +=  

The new moment arm will be 
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⎟
⎠
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Shortening of the arch changes the internal load distribution in the beam. The new 

thinness of the compressive arch is given by 

(A8)    )1(
3
2

T
Zn −=   

As previously mentioned the structure is statically undetermined, therefore a complete 

explicit solution of the final deformation and state of loading in the beam is not available. 

An iterative solution technique, based on the relaxation method was introduced by 

Brady and Brown (1985). The relaxation starts from an assumption of load/depth ratio n , 

from which the initial moment arm can be calculated (Eq. A3). The various beam load and 

deformation parameters can be calculated directly: 

(i)    
nz
Sfc 4

2γ
=  

(ii)    )
23

2(
2

nff c
av +=  

(iii)    
S
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8 2

+=  

(iv)    L
E
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⎠
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ZSZ c

3
8

8
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where is the value of from 

the previous computational cycle. 

cZ Z

(vi)    )1(
3
2

t
Zn −=  
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The solution procedure involves sequential calculation of Eq. (i) to (v). Each cycle of 

computation produces a new value of , which is then introduced in to Eq. (i) to restart the 

solution cycle. Iterations of the solution sequence are continued until stable values of  and 

are obtained. Stable solution for is attained for minimum value of . 

n

cf

n n cf

The factor of safety with respect to crushing at abutments ant at mid-span is given by 

(A9)    
c

crushing f
UCSSF =..  

where is unconfined compressive strength. Factor of safety with respect to vertical 

sliding along abutments and joints is given by 

UCS

(A10)    φ
γ

φ tantan..
S
nf

V
TSF c

shear ==  

where φ is friction angle. 
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