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Abstract 

 

This dissertation focuses on seismic hazard analysis through different aspects of the response 

of both natural and man-made structures to earthquake induced ground motions, as strong ground 

motions are recognized as one of the most significant damage-causing seismic hazards. The 

ground motions a particular site would experience during an earthquake are a function of 

primarily three variables: the source of the seismic waves, the path through which the waves 

travel, and the specific condition of the site they reach. The research presented in this thesis 

focuses on the last link in this chain: the site response. The numerical, discrete element, 

Discontinuous Deformation Analysis (DDA) method, is used in this research for both backward 

as well as forward analyses.  

Throughout this dissertation the DDA method is used as a dynamic computational tool, 

both in its two-dimensional (2D) as well as three-dimensional (3D) formulation. Since mesh 

generation in DDA is a challenging task, particularly in 3D simulations due to the lack of a 

graphic interface in the original software package developed by Dr. Shi, a procedure for creating 

both 2D and 3D meshes in the DDA, using a computer aided design (CAD) software as a pre-

processor, is developed here. The validity and accuracy of the 3D-DDA code were successfully 

verified with two analytical solutions. Still, many unsuccessful forward modeling trials with the 

3D-DDA imply that the 3D-DDA in its current version is still immature for forward modeling of 

dynamic problems involving complex, multi-block systems. 

First, the capability of the numerical 2D-DDA method to perform site response analysis is 

tested, for the first time. The resonance frequencies obtained for a multi-drum column modeled 

with DDA are compared to resonance frequencies measured in an experimental site response 

survey of the column. When the numerical control parameters are properly selected, good 

agreement is obtained between DDA and the geophysical site response survey in the field. It is 

found that the choice of the contact spring stiffness, or the numerical penalty, is directly related to 

the obtained resonance frequency mode as obtained with DDA. The best agreement with the 
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geophysical test is obtained with a relatively soft contact spring stiffness of k = (1/25) E*L, where 

E is the Young’s modulus of the blocks and L is the average block diameter. This optimal k value 

falls within the range of acceptable k values obtained in preliminary calibration tests performed 

independently of the field data. The obtained resonance frequency is found to be independent of 

the time step interval selected. Furthermore, DDA returns only a single resonance mode, whereas 

the geophysical test results indicate two modes. This discrepancy can be explained by the fixed 

base used in the DDA model which inhibits soil structure interactions.  

Natural rock slopes subjected to seismic excitations can be modeled in some cases by the 

model of a block on an inclined plane, subjected to a pseudo-static force. A failure mode chart for 

a block resting on an inclined plane and subjected to gravitational loading with the analytical 

solutions for limiting equilibrium were published long ago and are currently used routinely in 

rock slope stability investigations. The failure mode of a block on an incline is a function of three 

angles: the block angle δ, defining the geometry of the block, the slope inclination angle α, and 

the interface friction angle φ. In this dissertation a new failure mode chart is presented, that 

incorporates a pseudo-static horizontal force F, simulating the seismic forces that act upon a 

block during an earthquake. In the new chart, the failure mode of a block is a function of three 

angles as well, with δ and φ remaining the same, but a new angle is introduced, ψ = α + β, with 

β being the angle between the resultant of the block’s weight W and F, and the vertical direction. 

Analytical derivations of the newly suggested mode boundaries are presented, along with 2D and 

3D numerical simulations that confirm the analytical basis for the proposed stability and mode 

chart.  

Finally, paleo peak ground accelerations (PGA) are estimated for an ancient earthquake 

that caused damage in the Western Wall Tunnels in the old city of Jerusalem. The importance of 

such paleo-seismic approach is greatly acknowledged, as recorded data of strong earthquakes in 

the region are scarce, down to non-existing, and paelo-seismic research can better constrain the 

seismic risk of the region. Evidence of seismically induced damages can be readily observed at 

the Western Wall Tunnels. The tunnels are composed of buildings from about 500 BC up until 

the modern period. One of the interesting findings is a 100 m long bridge, composed of two 

floors of barrel vaults. In one of the vaults, namely vault 21, one block is displaced downwards 

by 7 cm relative to its neighbors. The 2D –DDA is utilized for numerical simulations of the vault, 
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both under gravity and earthquake excitations, with different friction angles and different 

overburden schemes. Interpretation of results leads to the conclusion that the damage to vault 21 

was seismically induced, while the bridge was still serving its purpose, i.e. before it was buried 

by later constructions and fill materials. The estimated PGA required for causing the observed 

damage is rather high: between 1.5 and 2 g. The PGA calculated using attenuation relationship 

for Jerusalem, caused by ancient earthquakes for the relevant time period, is about one order of 

magnitude smaller: 0.14 and 0.5 g, for the earthquakes of 362 and 746 AD, respectively. This 

requires amplification of the seismic waves beneath the bridge. It is reasonable to assume 

amplifications can occur at the site, since beneath the bridge there is a layer of between 6 and 12 

meters of archaeological fill, with geo-mechanical properties similar to alluvium. The contrast of 

properties between the fill and the hard bedrock beneath it can readily produce amplification 

ratios of 10 and higher. In light of these findings, we suggest that the seismic risk map provided 

by the Israeli Building Code 413 is found wanting, as we show here the local amplifications play 

a very significant role in structural deformation during shaking in the old city of Jerusalem. 

 

Keywords: earthquake engineering, numerical modeling, DDA, site response, resonance 
frequency, rock slopes, toppling, sliding, pseudo-static, paleoseismology, peak ground 
acceleration, site amplification factor. 

 



Chapter 1                                                                                                                                  Introduction 
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 Introduction  

 General overview 

Seismic hazards caused by earthquakes, such as strong ground motions, landslides, rockslides, 

tsunamis, liquefaction, surface ruptures and more are a societal concern for people and countries 

all over the world. In an attempt to mitigate life loss and financial damage caused by earthquake 

hazards, great efforts are invested worldwide in research aimed towards better understanding of 

earthquake mechanisms, and equally as important, better understanding the response of different 

structures, both natural and man-made, to ground motions. The ground motions that a particular 

site would experience during an earthquake are a function of primarily three variables: the source 

of the seismic waves, the path through which the waves travel, and the specific condition of the 

site they reach. The research presented in this thesis focuses on the last link in this chain: the site 

response to remote earthquake tremors, and addresses some of the topics concerning earthquake 

hazards and structural response to earthquake induced ground motions. The method applied in 

this research is the numerical, discrete element, Discontinuous Deformation Analysis (DDA) 

method developed by Dr. Gen-hua Shi at Berkeley in the late 1980’s (Shi, 1988; Shi and 

Goodman, 1988). 

Local site effects are well recognized to have a profound influence on surficial ground 

motions, yet, modeling such a dynamic mechanism has never been attempted in rock engineering 

context with DDA, or with any other numerical discrete element method that would have been 

typically applied otherwise to rock engineering problems involving the dynamic interactions of 

multiple blocks. Once the DDA method is proven applicable for numerical site response analysis, 

one can perform site response analysis for different, site- specific, complicated geometries, for 

which no analytical solutions exist. Dynamic site response analysis with the numerical DDA 

method is discussed in Chapter 3 of this dissertation. The 2D-DDA was proved herein to be 

applicable for numerical site response analysis, returning resonance frequencies similar to the 

ones found by the experimental geophysical survey performed in the field, when preliminary 

calibration of numerical user defined control parameters is performed. 

Instability of rock slopes during earthquakes is a major earthquake hazard. When sliding 

concentrates on a single, infinite plane, rock slopes may be modeled as a single block on an 



Chapter 1                                                                                                                                  Introduction 

2 

 

inclined plane. The possible failure modes in this case are: 1) Stable, 2) Sliding, 3) Toppling, and 

4) Sliding and Toppling. In Chapter 4 of this dissertation, the classical toppling vs. sliding 

problem of a single block on an inclined plane is revisited (to be distinguished from the multiple 

block resting on a stepped base problem that was studied by Goodman and Bray (1976)), but this 

time with consideration of an additional pseudo-static force, an approach commonly employed in 

geotechnical earthquake engineering where the entire dynamic earthquake record is replaced by a 

single static force. An original failure mode chart is derived analytically, and it is found that the 

mode of failure of a block on an incline subjected to pseudo-static force is a function of three 

angles, two of which are the friction angle between the block and the slope φ, and the block’s 

angle δ, and the third is the angle between the resultant of the block’s weight and the pseudo-

static force with the vertical direction. The analytical solution is verified and confirmed with both 

the two-dimensional (2D) and three-dimensional (3D) DDA. 

The research of earthquake induced damage to ancient structures, widely observed in Israel, is 

of great importance, since recorded data of strong earthquakes in the region are scarce, down to 

non-existing. This research direction belongs, in essence, to the field of paleo-seismology which 

recently has become to be known as archeo-seismology. Applying sophisticated and robust 

quantitative tools which originate from numerical analysis in rock mechanics to this young and 

very important field of science can help constrain, quantitatively, historic earthquake parameters 

such as the peak ground acceleration (PGA) experienced during these earthquakes. Thus the 

seismic risk associated with a particular region may be better constrained. In Chapter 5 of this 

dissertation, constraining paleo PGA values responsible for mapped damage in a historic Roman 

bridge situated at one of the most important tourist attractions in the world, the underground 

tunnels below the Old City of Jerusalem, is demonstrated. The numerical DDA method is utilized 

to constrain the paleo-PGA values through hundreds of simulations, and once these are 

constrained, some surprising conclusions regarding the amplifications at the site are made, and 

the time of the damaging earthquake is assessed. We prove that the ancient bridge in the Old City 

of Jerusalem was damaged by an earthquake while exposed above ground level. The paleo PGA 

causing the damage was high, between 1.5-2 g, implying high amplification factors for that 

region in the Old City of Jerusalem. The candidate earthquakes for causing the damage are the 

earthquakes reported from 363 and 746 AD (Ben-Menahem, 1991). 
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 Dissertation outline 

This dissertation consists of six chapters, including the introduction.  

Chapter 2 is entitled “Research method”. Since all the projects presented in this dissertation 

share the same research method, the numerical DDA, the numerical approach was assigned a 

separate chapter, in which the fundamentals of the method are presented and new contributions to 

the DDA research field made in this study are discussed.  

Chapters 3-5 are three different research projects conducted during my Ph.D. studies. Each 

chapter stands alone, written as a journal paper, and contains all the information required for full 

comprehension, except for the fundamentals of the DDA as a research method, as these are 

provided in a separate chapter, and are not repeated in each of those chapters, for brevity.  

Chapter 3, entitled “Site response analysis with two-dimensional numerical discontinuous 

deformation analysis method”, tests the ability of the DDA method to perform numerical site 

response analysis.  

Chapter 4, entitled “A new failure mode chart for toppling and sliding with consideration of 

earthquake inertia force”, maps the failure modes of a block on an inclined plane subjected to 

gravity and pseudo-static horizontal force. The mode boundaries, separating the four different 

modes: stable, sliding, toppling, and sliding+toppling, are derived analytically, and are then 

verified with the 2D and 3D- DDA codes. 

Chapter 5, entitled “Paleo-seismological implications of historic block displacements in the 

Western Wall Tunnels, the Old City of Jerusalem”, aims to find the paleo PGA required for 

causing observed damage to a single block in a barrel vault in the Western Wall Tunnels, Old 

City of Jerusalem.  

Chapter 6 discusses and summarizes the key findings of the projects above-mentioned.  
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 Research method: the Discontinuous Deformation Analysis 

The Discontinuous Deformation Analysis (DDA) is the sole research method used in this 

thesis, therefore it received a separate chapter, in order to refrain from repetition in the different 

chapters. Section 2.1 reviews the DDA fundamentals, purpose and utilization method, and 

sections 2.2 – 2.4 present contributions to DDA achieved in this thesis.  

 Fundamentals of DDA   

 Basic concepts of DDA 

DDA is an implicit, discrete element method (DEM) proposed by Shi (Shi, 1988, 1993; Shi 

and Goodman, 1985 ) to provide a tool useful for investigating the dynamics of blocky rock 

masses and systems composed of multiple blocks. The two-dimensional DDA (2D-DDA) was 

proposed first, in the 1980’s at UC Berkeley (Shi, 1988, 1993; Shi and Goodman, 1985 ), and the 

three- dimensional DDA (3D-DDA) was published later by Shi (2001). In this dissertation both 

the two-dimensional and the three-dimensional codes are used for numerical simulations. A good 

review of DDA within the scope of other numerical methods used today to solve problems in 

rock mechanics and rock engineering is provided by Jing (2003), Jing and Hudson (2002) and 

Jing and Stephansson (2007). A comprehensive review of 2D-DDA validations and bench-mark 

tests is provided by MacLaughlin and Doolin (2006).  

DDA models a discontinuous material as a system of individually deformable blocks that 

move independently with minimal amount of interpenetration. The formulation is based on 

dynamic equilibrium that considers the kinematics of individual blocks as well as friction along 

the block interfaces. Although belonging to the family of DEMs, DDA closely parallels the finite 

element method (FEM) and is basically a generalization of it (Shi, 1988). Still, while the 

formulation of DDA is very similar to the FEM, in the DDA the blocks, or elements, are not 

restricted to standard shapes as in FEM, and the unknowns are the displacements and 

deformations of the blocks. These are the result of the accumulation of small time steps. The 

equilibrium equations are derived by minimizing the total potential energy of the block system. 

Interpenetration of blocks is minimized by assigning virtual springs at the contacts – when 

penetration occurs, the springs are shortened, an energy consuming action, therefore introducing 
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numerical penalty due to the principal of minimization of potential energy. The same approach is 

applied for tension between blocks: in this case the springs are elongated, and therefore there is 

minimal tension between blocks when the block system attains equilibrium at the end of each 

time step.  

Friction along interfaces is implemented following the Mohr-Coulomb failure criterion. In the 

two dimensional formulation of DDA each block in the general block system has six degrees of 

freedom: rigid body translations, rigid body rotation, and the normal and shear strain 

components. In the three dimensional DDA each block has 12 degrees of freedom: three 

translations, three rotations, three normal strains and three shear strains (Shi, 2001). 

Both the 2D-DDA and 3D-DDA are first order approximations: the blocks are simply 

deformable, and the stress and strain distribution throughout the block is homogeneous: for each 

time step the displacement, rotations and strains are calculated at the block centroid. This 

assumption of constant strain throughout a block can be acceptable in some cases, as in this 

thesis, where block systems are uniform in shape and size and generally small loading is applied, 

hence rigid body motion is assumed to be dominant. However, when more heterogeneous block 

systems are modeled, and especially when modeling stress wave propagation through the 

modeled block system, a mathematical cover mesh should be used for acquiring the stress 

distribution within a block, as for example in the Numerical Manifold Method (Shi, 1996b; Shi, 

1997).    

 DDA formulation 

2.1.2.1 2D-DDA basic formulation 

The discussion below follows a good summary of the governing equations in DDA provided 

by Ohnishi et al.(2005). The governing equation of the potential energy, sysΠ , for large 

deformations of continuous and discontinuous elastic bodies is given by Hilbert et al.(1994): 

( ) ∑ ∑∑
= ==









Π+Π=Π=Π

n

i

m

j

ji
PL

i
n

i

iblocksys

1 1

,

1
      Equation 2-1 
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where iΠ  is the potential energy of the continuum part and ∑
=

Π
m

j

ji
PL

1

,  is the potential energy of the 

contact between blocks. The latter term is evaluated by the minimum potential energy theory, by 

using a penalty as follows: 

( )[ ] [ ]22,

2
1ˆ

2
1 i

T
j

TT
ij

N
ji

PL ddknddk −−⋅−=Π       Equation 2-2 

where kN is the penalty coefficient in the normal direction (referred to as g0 later in the text), kT is 

the penalty coefficient in the shear direction, ( ) ndd ij ˆ⋅−  is the amount of penetration between 

blocks in the normal direction,  and Td is the amount of slip in the shear direction and n̂  is the 

unit vector of the contact plane.  

In the DDA method, the equations of motion, formulated from Eq. 2-1 and based on 

Hamilton’s principle, can be written as follows: 

fKddCdM =++           Equation 2-3 

where M, C, and K are mass matrix, viscosity matrix, and stiffness matrix, respectively, and d 

and f are the displacement unknowns and force vectors.  

The viscosity matrix C in Eq. 2-3 can be re-written in terms of viscosity η and mass matrix M: 

MC η=           Equation 2-4 

Eq. 2-3 is solved by Newmark’s β and γ method (Hilbert et al., 1994) with β = 0.5 and γ = 1.0, 

and the algebraic equation for displacements is solved for each time increment by  

fdK ˆˆ =∆           Equation 2-5 

where K̂ , defined as the equivalent global stiffness matrix, is: 

[ ]se

c

tt
KKMMK ++

∆
+

∆
= 02

22ˆ
ρ
ρη

       Equation 2-6 

and f̂ is defined as: 

( ) ( )tdv
t

ασ MfdMf −−∆+⋅
∆

= ∑∫2ˆ       Equation 2-7 
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d∆ is the incremental displacement, Ke the stiffness matrix of linear term, Ks initial stress matrix 

caused by rigid rotation and α(t) is time history of earthquake acceleration.  

The plane displacement (u,v) of any point (x,y) in block i can be represented by six displacement 

variables which yield the displacement matrix of the block, di, 

{ } ( )nirvu T
ixyyxi ,,2,1,000 == γεεd       Equation 2-8 

where the first three are the rigid body displacements and rotation (at the centroid), and the 

last three are normal and shear strains in the block. As shown by Shi (1993), the complete first 

order approximation of displacements at any point ( )yx,  take the following form:  

( )ni
u
u

ii
iy

x ,,2,1, ==








dT        Equation 2-9 

where:  
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T     Equation 2-10 

Assuming the velocity at the beginning of the time step, which can be obtained from the previous 

time step, is 0d , and that the time interval of a single time step is ∆t, then: 

( )

0

0

ddd

ddd





−
∆

=

∆−
∆

=

t

t
t

2

2
2

         Equation 2-11 

By substituting Eq. 2-11 into Eq. 2-3 the simultaneous equilibrium equations can be rewritten as: 

fdK ˆˆ =           Equation 2-12  

Eq. 2-12 can be written in a sub-matrix form as follows: 
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      Equation 2-13 

where ( )njiij ,,2,1,ˆ =K  are 6 6×  sub-matrices; id and ( )nii ,,2,1ˆ =f  are 6 1×  sub-matrices 

corresponding to block i. Each coefficient Kij is defined by the contacts between blocks i and j, 

and where i = j Kii is defined by the material properties of block i.  

The equilibrium equations are derived by minimizing the total potential energy Π produced by 

the forces and stresses. The ith row of Eq. 2-13 consists of six linear equations:  

6,,1,0 ==
∂

Π∂ r
dri

         Equation 2-14 

where dri represents the deformation variables of block i. The total potential energy Π is the 

summation over all the potential energy sources. 

2.1.2.2 3D-DDA basic formulation 

The displacement matrix [D] of the 3D-DDA is: 

[ ] ( )xyxzyzzyxzyxccc
T rrrwvuD γγγεεε=   

 Equation 2-15 

where 
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are its displacements.  

For the ith block, it can be written: 
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         Equation 2-16 

where ( )[ ]zyxTi ,, is defined as: 



Chapter 2                                                                             Research method: the Discontinuous Deformation Analysis 

9 

 

( )[ ]
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 
















−−−−−−
−−−−−−
−−−−−−

=
022000100

202000010
220000001

,,

ccccc

ccccc

ccccc

xxyyzzxxyy
xxzzyyxxzz
yyzzxxyyzz

zyxT

           Equation 2-17 

The coefficient matrix of the obtained simultaneous equilibrium equations is the same as in the 

2D-DDA, Eq. 2.3, only here each element Kij in the coefficient matrix is a 12x12 submatrix, and 

Di and Fi are 12x1 submatrices.   

Again, the equilibrium equations are derived by minimizing the total potential energy Π, and 

the ith row of Eq. 2.3 consists of 12 linear equations: 

12,,1,0 ==
∂

Π∂ r
dri

        Equation 2-18 

 User defined numerical control parameters in DDA 

The DDA code used in this research is an advanced version of the original code developed by 

Shi (1993),  licensed for the specific purposes of this research by the developer, Dr. Gen-hua Shi. 

Several user defined numerical parameters are required for input in DDA: 

dd – the dynamic control parameter. For a fully static analysis, where the velocity is zeroed at the 

beginning of each time step, dd = 0 is used. For a fully dynamic analysis, where the velocity at 

the beginning of a time step is inherited from the velocity at the end of the previous time step, dd 

= 1 is selected. Any number between 0 and 1 corresponds to a measure of kinetic (numerical) 

"damping" in the analysis, i.e. dd = 0.97 means 3% velocity decrease from the end of a time step 

to the beginning of the next. This parameter can be used for inserting damping effects, as viscose 

damping is not implemented in the original code of the DDA. 

g0 – the contact spring stiffness or the penalty, also denoted as “k”– the stiffness of the normal 

virtual springs assigned to the contacts, in order to minimize penetration and tension. The g0 

value must be very carefully selected, as it very much affects the results of the analysis. If 

possible, it should be selected by comparing the DDA results to an existing analytical solution, 

and performing iterations until a satisfying agreement is obtained. A recommendation made by 

Shi (1996a) in the DDA user manual is to use a value of k = E*L, where E is Young’s modulus 

and L is the average diameter of block.  
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g1 – time step interval, also denoted as ∆. This number should be small enough so as to guarantee 

infinitesimal displacements at each time step. Careful and educated selection of the g1 value will 

ensure both high efficiency and high accuracy of the numerical solution. As mentioned in chapter 

3 of the dissertation, the time step interval may also serve as a damping mechanism, as larger ∆ 

values enhance the algorithmic damping which is inherit to DDA. 

g2 – assumed maximum displacement per time step ratio: a dimensionless quantity related to the 

size of the model. It is used to find possible contacts between blocks, and should be small enough 

to ensure infinitesimal displacement at each time step, and to ensure the convergence of the 

solution.  

 3D-DDA verification 

The 2D-DDA has been verified by many researchers, including the author (Yagoda-Biran and 

Hatzor, 2010). A review of the history of 2D-DDA verification is presented by MacLaughlin and 

Doolin (2006). The 3D-DDA however has not been verified as extensively as the 2D-DDA, and 

therefore verification studies for simple cases, for which an analytical or semi-analytical solution 

exists, are performed in this thesis, in many cases for the first time. 

 Block sliding on an inclined plane 

The problem of a block sliding on an incline has been verified for the 2D-DDA, and is 

addressed in detail in Chapter 4. This is a very attractive problem for verification studies, because 

of its simplicity, both analytical and numerical. In this subsection the 3D-DDA is verified with an 

analytical solution for the block on an incline problem. 

The 3D-DDA mesh is constructed of a triangular prism base block, serving as the incline, with 

height of 10 m, inclination angle of α = 45o and depth of 5 meters. The sliding block is a box, 

with dimensions 1 m*1 m*0.5 m (see Figure 2.1). The base block is fixed in space by 7 fixed 

points, and cannot move, and the sliding block is loaded by two loading points, for the third step 

of the verification study, as explained below. 

The verification study of the block on an incline was performed in three steps: first the 

response of the block when subjected to gravity, starting at rest, was examined in section 2.2.1.1, 
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then the block was given initial horizontal velocity in section 2.2.1.2, and finally the block was 

subjected to one- dimensional horizontal sinusoidal acceleration, in section 2.2.1.3. 

 

Figure 2.1. The 3-D model used for the 3D-DDA validation of a block on an inclined plane.  

 

2.2.1.1 Downslope displacements under gravitational loading 

The first step of the verification study was subjecting the sliding block to gravity alone. The 

block downslope displacements were compared with the displacements calculated by an 

analytical solution for the problem, presented below.  

The forces acting on the block on an incline are the gravitational force, the normal from the 

incline and the frictional force. The downslope destabilizing force Fd can be expressed as 

αsinmgFd =           Equation 2-19 

where m is the block's mass and α is the inclination angle of the base block. The stabilizing force, 

Fs, i.e. the frictional force, can be expressed as  

φα tancosmgFs =          Equation 2-20 

where φ is the friction angle of the interface between the base block and the sliding block. 

Therefore the downslope acceleration, ( )td , which is the resultant force acting on the block in the 

downslope direction divided by the mass, is  

φαα tancossin ggd −= .         Equation 2-21 

Double integration over time of the acceleration term in Eq. 2.11 will give the displacement d(t) 

(with zero initial velocity and displacement)  
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( ) ( ) 22 tancossin
2
1

2
1 tgtdtd φαα −==         Equation 2-22 

Table 2-1 lists the numerical and physical parameters used in the first step of the verification 

study. 

Table 2-1. Numerical and physical parameters used in the first step of the verification study 

Parameter value 
dd – dynamic parameter 1 
g0 – normal contact spring stiffness 4*108 N/m 
g1 – time step interval 0.001 sec 
g2 – maximum displacement ratio 0.001 
density 2700 kg/m3 
Young’s modulus 40 GPa 
Poisson’s ratio 0.18 

 

The downslope displacement history was compared for three values of friction angle: 10, 20 

and 30° (remembering the inclination angle of the slope is 45°). In Figure 2.2a the results of the 

first step of the verification study are presented. Note the agreement between the analytical and 

numerical solutions. In Figure 2.2b the relative numerical error, defined as

%100×
−

=
analy

numeranaly

disp
dispdisp

error , is presented. After 0.2 sec the numerical error drops to below 1%, 

demonstrating the excellent agreement between the two solutions. 

 
Figure 2.2. a) Downslope displacement histories of a block on an inclined plane subjected to gravity alone. 
Legend: curves - analytical solution, symbols – DDA solution. b) The relative numerical error.  

a b
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2.2.1.2 Downslope displacements under gravitational loading and initial velocity 

The next step of the verification study is applying initial velocity 0d  to the sliding block, and 

comparing the downslope displacements of the block to the ones computed by the analytical 

solution. Similar to the analytical solution presented in step one, double integration over time of 

the acceleration term yields:  

( ) ( ) tdtgtdtdtd 0
2

0
2 tancossin

2
1

2
1  +−=+= φαα      Equation 2-23 

In this verification step the numerical and physical parameters remain identical to the values 

presented in Table 2-1, except for the time step interval that was set to 0.0001 sec. 

The initial velocities were applied in the horizontal direction at three different values: 0.01 

m/sec, 0.1 m/sec and 1 m/sec. Results for downslope displacement history are presented in 

Figure 2.3a. The agreement between the analytical and the numerical solutions is good for all 

three different velocities, as can be verified by the relative numerical error plotted in Figure 2.3b : 

less than 1% after 0.5 sec of the analysis. 

 

 

Figure 2.3. a) Downslope displacement histories of a block on an inclined plane subjected to gravity and 
different initial velocities. Legend: curves - analytical solution, symbols - DDA solution. b) The relative 
numerical error. 
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2.2.1.3 Downslope displacements under gravitational and one-dimensional 

sinusoidal acceleration 

The third step of the verification study is comparing the downslope displacements of the block 

computed by an analytical solution, with those obtained by the 3D-DDA, where the sliding block 

is subjected to a one-dimensional horizontal sinusoidal acceleration in the form of

( ) ( )tAtd ωsin= , in addition to the constant gravitational acceleration. 

The analytical solution is as follows: as the friction angle of the interface between the slope 

and the sliding block is set to φ = 50° in this verification step, higher than the inclination angle α 

= 45°, block sliding will initiate only when the acceleration has reached the value of the yield 

acceleration and beyond. This type of analysis is called Newmark type analysis (Newmark, 1965) 

although it was developed independently by Goodman and Seed (1966) in their classic paper on 

earthquake induced displacements in sand embankments. It can be shown (Goodman and Seed, 

1966; Newmark, 1965) that in the case of a block on an inclined plane, the yield acceleration is

( )gdyield αφ −= tan . Once the sinusoidal input acceleration has reached or exceeded yieldd , at time 

t1, the block begins to gain downslope velocity and displacement. When the sinusoidal input 

acceleration drops below the value of yieldd , the velocity decreases, as the block is restrained by 

the frictional resistance, until it reaches zero and the block is at rest. When the sinusoidal input 

acceleration exceeds yieldd  again at time t2, motion will commence and so on, see Figure 2.4.  

 

Figure 2.4. Newmark type analysis. Shaded areas are the times at which acceleration exceeds yieldd . From 
Goodman and Seed (1966).  
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To obtain the Newmark displacement, double integration over time of the downslope 

acceleration ( )td  must be performed, where:  

( ) ( )[ ] ( )[ ]αωαφααω sinsincostansincossin tAggtAtd −−+=         Equation 2-24 

and A and ω are the input acceleration amplitude and the input angular frequency, respectively. 

Double integration of Equation 2.14  yields (after Kamai and Hatzor, 2008):  

( ) ( )( )[ ]
( ) ( )( ) ( ) ( )( )[ ]ωθωθωθωφαα

ω

θθφαα

sinsincostansincos

2
1

2
1tancossin

2

22

+−−+

++−−=

ttA

ttgtd
     Equation 2-25 

where θ is the time when yieldd is exceeded and downslope displacement initiates. Since block 

displacement initiates only once yieldd  is reached or exceeded, double integration of the 

downslope acceleration is performed as long as the downslope acceleration > yieldd , or the 

velocity > 0. The amplitude and frequency used for the input acceleration are 2 m/sec2 and 1 Hz, 

respectively. The numerical and physical parameters are identical to the ones listed in Table 2-1, 

except for the time step size that was set to 0.0001 sec and the normal contact spring stiffness that 

was set to 7*109 N/m. As mentioned earlier, friction was set to φ = 50˚. 

In Figure 2.5a the downslope displacement histories calculated by the Newmark analysis and 

the DDA code are presents. The agreement between the two is good, and can again be expressed 

in terms of relative error, presented in Figure 2.5b. During most of the analysis the error remains 

below 3%. 
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Figure 2.5. a) Downslope displacement histories of a block on an inclined plane subjected to gravity and 
1-D sinusoidal input function. Legend: curve - analytical solution, symbols - DDA solution. b) The 
relative numerical error. 

 Block response to induced displacements in the foundation 

A verification of the case of a responding block to a moving foundation is presented in this 

section, comparing the 3D-DDA numerical solution to a semi-analytical solution. The 

verification is based on the one-dimensional verification study performed by Kamai and Hatzor 

(2008), only here the displacements, velocities and accelerations are 3D vectors.  

2.2.2.1 The semi-analytical solution 

The model used for the verification study is composed of two blocks (Figure 2.6): a lower 

block, subjected to time dependent displacements, and an upper block that responds to the 

displacements of the lower one.  

 

Figure 2.6. The 3D model used in the verification study. The lower yellow block is displaced by the time-
dependent displacement vector, and the displacements of the green, upper, responding block are measured.  
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The dimensions of the blocks and their physical properties are irrelevant for the analytical 

solution, since it only considers the friction coefficient, as shown below. For the 3D-DDA, 

though, block dimensions and properties are of importance.  

Each of the two blocks, which are denoted from hereon 1 and 2 for the lower and upper 

blocks, respectively, has time dependent displacements ( )td , velocities ( )td  and accelerations

( )td .  The displacement induced to block 1, 1d , is in the form of a cosine function: 

( ) ( )( )tfAtd π2cos11 −=           Equation 2-26 

where A  and f  are the amplitude and frequency of motion, respectively.  

The forces acting on block 2 are its weight, mg, the normal from block 1 N = m2g and the 

frictional force between the two blocks, µ∗m2g, where µ is the friction coefficient. Newton's 

second law of motion yields that the acceleration of block 2 is gd ∗= µ2
 . 

Following Kamai and Hatzor (2008), the direction of the frictional force, and therefore of 2d , is 

determined by the direction of the relative velocity between the two blocks, 21* ddd  −≡ , defined 

by the unit vector of the relative velocity, *d̂ . When 0* =d , the acceleration of block 2 ( 2d ) is 

determined by the acceleration of block 1 ( 1d ). When the acceleration of block 1 exceeds the 

yield acceleration µ∗g, over which block 2 no longer moves in harmony with block 1, the 

frictional force direction is determined by the direction of *d̂ , but the magnitude of 2d  is equal to 

µ*g. This is summarized with a few simple conditions: 

If 0* =d ……………..              and   gd ∗≤ µ1
   ………………        then 12 dd  =  

                  and gd ∗> µ1
 ……………….    then ( ) 12 d̂gd  ⋅∗= µ  

If 0* ≠d   ………………………………………...……………….. then ( ) *ˆ
2 dgd  ⋅∗= µ  
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This set of conditions and inequalities was applied using a MATLAB script, with a time step 

of 0.0001 sec. Since the time step size has a significant effect on the results of the “analytical” 

solution, it is actually a semi-analytical solution. 

2.2.2.2 The numerical model 

The actual model used for the 3D-DDA is shown in Figure 2.6. The dimensions of block 1 are 

4 m*4 m*0.5 m, and the dimensions of block 2 are 2 m*2 m*0.1 m. Block 2 was designed to be 

very flat, so as to avoid rotations during motion. The physical and numerical control parameters 

used in the verification analyses are listed in Table 2-2.  

Table 2-2. Physical and numerical control parameters used in the verification study of the responding 
block 

Parameter Value 
dd - dynamic parameter 1 (fully dynamic) 
g0 - normal contact spring stiffness 1*109 N/m 
g1 - time step size 0.0001 sec 
g2 - maximum displacement ratio 0.001 
density 2250 kg/m3 
Young’s modulus 17 GPa 
Poisson’s ratio 0.22 

 

All numerical simulations lasted seven seconds of real time, where in the first two seconds no 

displacements were applied, allowing for gravity "turn-on" and settlement of the springs. 

2.2.2.3 Comparison under one direction of induced motion 

The first step was inducing displacements to block 1 in the x-direction (see Figure 2.6) only, 

similar to the work reported by Kamai and Hatzor (2008), and comparing the 3D-DDA results to 

the semi-analytical solution. This was done for three different cases: 

1) Constant amplitude (A) and friction (µ), and changing frequency (f), of which results are 

presented in Figure 2.7. 

2) Constant f and µ, and changing A, results presented in Figure 2.8. 

3) Constant f and A, and changing µ, results presented in Figure 2.9.  
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Figure 2.7. Comparison between the analytical solution (curves) and 3D-DDA solution (symbols). 
Amplitude of A = 0.02 m for the input motion and a friction coefficient of 0.6 remained unchanged, while 
input motion frequency changed. Notice the excellent agreement between the two solutions for 
frequencies of 2 and 3 Hz, while the solution for 5 Hz shows some deviations.  

 

Figure 2.8. Comparison between the analytical solution (curves) and 3D-DDA solution (symbols). 
Frequency of 1 Hz for the input motion and a friction coefficient of 0.6 remained unchanged, while input 
motion amplitude changed. Notice the excellent agreement between the two solutions.  
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Figure 2.9. Comparison between the analytical solution (curves) and 3D-DDA solution (symbols). 
Frequency of 1 Hz and amplitude of 0.5 m for the input motion remained unchanged, while the friction 
coefficient changed. Notice the excellent agreement between the two solutions.  

 

As can be observed from Figures 2.7-2.9, the 3D-DDA is in good agreement with the 

analytical solution when responding to one- dimensional displacement, except when input 

frequency is  relatively high, as in the case where f = 5 Hz (Figure 2.7). 

2.2.2.4 Comparison under two directions of induced motion 

In the second step of the verification study, displacements were induced to the lower block in 

the x and y directions (see Figure 2.6), each with different amplitude and frequency.  Results are 

presented in Figure 2.10 and 2.11. Figure 2.10 shows the resultant displacement vs. time, while 

Figure 2.11 is a 3D plot of the x and y displacements vs. time, presented as the vertical axis. 
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Figure 2.10. Comparison between analytical (curves) and 3D-DDA (symbols) solutions. Each set of 
curves and symbols corresponds to a different set of amplitude and frequency for the input displacements, 
noted beside the data. Notice the excellent agreement between the two solutions.  

 

 

Figure 2.11. Comparison between analytical (black curve) and 3D-DDA (blue curve) solutions. This 
analysis is for x amplitude and frequency of 0.3m and 2 Hz and y amplitude and frequency of 0.2m and 4 
Hz, respectively. Notice the good agreement between the two solutions that decreases with analysis time.  



Chapter 2                                                                             Research method: the Discontinuous Deformation Analysis 

22 

 

2.2.2.5 Comparison under three directions of induced motion 

The third verification step was subjecting block 1 to sinusoidal displacements in all three 

directions: x, y and z. Adding sinusoidal displacement in the z direction affects the response of 

block 2 in the way that it changes the normal force between the two blocks, and therefore the 

frictional force between them. This in turn changes the acceleration of block 2, 2d , and yields a 

different displacement time history. Applying time-dependent displacements in the z direction is 

actually equivalent to time-dependent changes in g: when block 1 has positive z acceleration (

0ˆ
1 >kd ), it is added to g. When kd ˆ

1
  is negative, it is subtracted from g. The analytical solution in 

this case assumes no other effect of the vertical displacement of block 1 on the horizontal 

displacement of block 2. The induced displacement function is: 

( ) ( )( ) ( )( ) ( )( ) ktjtittd ˆ2cos11.0ˆ42cos11.0ˆ22cos11.0
1

⋅−+⋅−+⋅−= πππ     Equation 2-27 

Figures 2.12 and 2.13 present results of the verification study with three components of 

induced displacements. Figure 2.12 presents the resultant horizontal (x-y plane) displacement vs. 

time, for different values of the k - normal contact spring stiffness. The black heavy curve is the 

analytical solution, and the light colorful curves are the 3D-DDA numerical solutions for 

different values of k. The range of stiffness that best fits the analytical solution is between 1*107 

and 1*109 N/m, with stiffness of k = 1*107 N/m, or 0.0003 E*L, being the optimal selection, 

where E is the Young’s modulus of the block and L is the length of the line across which the 

contact springs are attached. When considering 3D-DDA, it might be more relevant to compare k 

to E*A, where A is the area across which the contact springs are attached. In this case, k = 1*107 

is ~0.0001 E*A, not much different from E*L. Figure 2.13 demonstrates this with the relative 

numerical error, defined in section 2.2.1.1. Note that for the results obtained with k = 1*107 N/m, 

the relative error stays below 3% for the entire analysis, and the error is well below 10% for k = 

1*108 and 1*109 N/m as well. This implies that for this case study, the optimal value for normal 

contact spring stiffness should be between 2 and 4 orders of magnitude less than E*L, the value 

recommended by Shi in his user manual (Shi, 1996a) for 2D-DDA. 
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Figure 2.12. Comparison between analytical (black heavy curve) and 3D-DDA (light colorful curves) 
solutions. The best fit is obtained with contact spring stiffness of k = 1*107 N/m, but the overall trend of 
the analytical solution is maintained for all values of stiffness. 

 

 

Figure 2.13. Relative numerical error for the different solutions presented in Figure 2.12. Note the black 
dashed line, indicating error of 10%. The green curve, representing contact spring stiffness of 1*107 N/m, 
remains below 3% error the entire time span of the analysis, and is the best fit for this case. 
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 3D-DDA limitations 

Sections 2.1.2.1 and 2.2.2 proved that the 3D-DDA provides accurate displacements, 

compared with analytical solutions, and therefore is capable of modeling dynamic problems with 

block systems composed of several blocks. However, many trials performed during my research 

towards this thesis prove that the current version of the 3D-DDA code is incapable of dealing 

with multi-block systems for realistic dynamic simulations, and many numerical problems occur 

when trying to run forward dynamic analyses of complicated multi-block systems. An example 

for one case is presented below.  

An attempt was made to model a masonry structure (see Figure 2.14a) from the city of 

L’Aquila, Italy that was severely damaged by an earthquake on April 2009. The goal was to 

model the masonry structure before the damage in 3D-DDA, subject it to earthquake 

accelerations recorded during that earthquake, and obtain damage similar to that observed in the 

field.    

a         b  

Figure 2.14. a) The masonry structure selected for 3D-DDA modeling in the city of L’Aquila, Italy. b) The 
3D-DDA model.  

The model was constructed in the 3D-DDA block cutting code ‘tc’ with the procedure 

described in section 2.3.2, and consisted of 197 blocks. Forward analyses of this model would 

converge only with dynamic parameter value of dd = 0.97 or less and a time step size no larger 
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than 0.00001 sec, probably due the large number of blocks, and therefore contacts. Such a 

combination of kinetic damping and time step size leads to restrained displacements, as presented 

in section 2.4.1, not to mention the very long CPU time required to complete the analysis. In this 

case study, where displacements are the desirable output, these limitations of the current version 

of the 3D-DDA code are not tolerable. Therefore, from here on in this dissertation when multi-

block systems are modeled, the 2D-DDA code is utilized, with clearly stated and admitted 

simplifying assumptions regarding boundary conditions. 

 From CAD to DDA – easy mesh construction using AutoCAD® software 

 Motivation 

Modeling three dimensional multi-block structures in 3D-DDA is an elaborate and challenging 

task. The block cutting code in 3D-DDA, i.e. the ‘tc’ code, does not have a graphic interface, and 

does not accept three- dimensional blocks as input, but rather two- dimensional triangles, of 

which the blocks are built. For example, in order to build a rectangular face of a box, two 

triangles will be required, with three vertices in each. Therefore, to form a simple box, one needs 

to enter the vertices for 12 triangles. This becomes rather complicated if one wishes to model 

complex structures of a few tens of blocks and more. This difficulty calls for an easier modeling 

technique, which was developed during this research, and is described here. This technique was 

originally developed for 3D-DDA modeling, as it is more complex than the 2D-DDA modeling, 

but can be used with some modifications, as will be described, for 2D-DDA modeling as well. It 

is important to state that this procedure is intended for modeling discrete blocks, such as in 

masonry structures or discrete blocks formed in nature, and not rock masses, that form by 

intersections of systematic joint sets. 

 Modeling with CAD in 3D-DDA 

The steps for constructing a mesh in the 3D-DDA using CAD software are described below. 

The procedure is demonstrated for a single cubic block sized 3 m*3 m*3 m: 

1) Sketch the model in a computer aided design (CAD) software (Figure 2.15). CAD 

software is designed just for that: modeling structures. It uses a graphic interface and is usually 
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user friendly. Here the AutoCAD® software by Autodesk® (Autodesk, 2011) was used. The 

definitions and commands will therefore be those used in AutoCAD® software. 

 

Figure 2.15. The modeled cube in AutoCAD. 

2) Important note: AutoCAD® software has an entity named “block”, so in order to 

distinguish between the AutoCAD® block and the modeled block, the modeled block will be 

referred to here as ‘cube’. Insert an attribute block in each vertex of the cube (Figure 2.16). Each 

vertex should receive a number as an attribute. The numbers must be consecutive, starting from 

one (in order for the MATLAB code to run properly later). If you intend to use special points as 

well (fixed, loading and measurement points), insert attribute blocks at their locations as well, 

and number them consecutive to the vertices. In this example a measurement point is inserted to 

the block’s centroid. 

 

Figure 2.16. The modeled cube. The vertices are marked by consecutive numbers from 1 to 8 by green 
block attributes, and a measurement point is placed in the centroid of the cube, and marked by a pink 
block attribute numbered 9.  
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Use the Data Extraction (DX) command of the AutoCAD® software, to produce an excel file 

which contains a table of the vertices, with their attribute number and their x, y, z coordinates. 

Another information field that might be useful is the layer field. Once the excel file is created, 

sort the data according to the attribute numbers. Make sure they are consecutive. Name that excel 

file “coordinates”. The “coordinates” file, created by the AutoCAD® software and sorted by the 

user for consecutively ordered attribute numbers, is shown below in Table 2-3. The first column 

is the number of the vertex, or the attribute, the next three columns are the x, y and z coordinates 

and the last column is the layer.  

Table 2-3. Output file of the vertices coordinates 

SPACE Position X Position Y Position Z Layer 
1 0 0 0 coordinates 
2 0 3 0 coordinates 
3 3 0 0 coordinates 
4 3 3 0 coordinates 
5 0 0 3 coordinates 
6 0 3 3 coordinates 
7 3 0 3 coordinates 
8 3 3 3 coordinates 
9 1.5 1.5 1.5 measurement points 

 

3) Create a second excel file that contains a table with 5 columns in it. Each row of that table 

will be a triangle family. The first three columns are the three vertices that form the triangle. Each 

vertex will be named after the attribute number it received in the CAD model. The 4th column is 

the joint material number for the triangle family, and the 5th column is the block material number 

for that triangle. Name that file “blocks”.  If special points are in use, create more excel files that 

contain the numbers of the special points. Name those files “fixed points”, “measurement points”, 

“loading points” etc.   

Example: 

In order to create the cube shown in Figure 2.15, six faces need to be formed, each face 

composed of two triangles. The “blocks” file that forms the cube is presented in Table 2-4. 
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Table 2-4. The “blocks” file that contains information regarding triangle families 

vertex 1 vertex 2 vertex 3 joint material block material 
1 5 7 0 0 
1 7 3 0 0 
2 6 5 0 0 
2 5 1 0 0 
2 6 8 0 0 
2 8 4 0 0 
4 8 7 0 0 
4 7 3 0 0 
1 2 4 0 0 
1 4 3 0 0 
5 6 8 0 0 
5 8 7 0 0 

The “measurement points” file will contain a single cell with the number “9”. 

4) Write and run a script (here performed with MATLAB) that reads the “blocks” file, and 

retrieves the vertex coordinates from the “coordinates file” according to the vertex (attribute) 

number. This code also reads the special points files, and retrieves the coordinates for the special 

points. This code will later create a ‘.txt’ file which the ‘tc’ code of the 3D-DDA can accept as 

input. Once the ‘tc’ code runs, it will create a ‘bl’ file, which holds in it all the geometrical 

information of the model, ready to be input for the dynamic forward analysis code of 3D-DDA, 

‘tf’.  

An example of a MATLAB code used here is presented below. 

triangles=xlsread(‘blocks');  %create a matrix from the xls file with triangle families 
[rows,columns]=size(triangles); 
families=(rows); %number of triangle families 
coordinates=xlsread(‘coordinates’); %create a matrix from the xls file with the 
coordinatesfpoints=xlsread(‘fixed points'); % create a matrix from the xls file with the fixed 
%points  
[frows,fcolumns]=size(fpoints); 
lpoints=xlsread(‘loading points'); % create a matrix from the xls file with the loading points  
[lrows,lcolumns]=size(lpoints); 
mpoints=xlsread('measurement points'); % create a matrix from the xls file with the measurement 
%points  
[mrows,mcolumns]=size(mpoints); 
a=[]; %matrix for the triangle family data (1  1  1) 
b=[]; %matrix for the coordinates output  
c=[]; %matrix for fixed points 
d=[]; %matrix for loading points 
e=[]; %matrix for measurement points 
fixed=frows; %number of fixed points 
load=lrows; %number of loading points 
meas=mrows; %number of measurement points 
hole=0; %number of hole points used in the mesh 
bolt=0; %number of blots used in the mesh 
points=[fixed load meas hole bolt]; % the line containing # of special points 
% in the following lines: the loop for retrieving the coordinates for the triangle families 
for i=1:rows 
    vertex1=triangles(i,1); 
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    value1=coordinates(vertex1, 2:end); 
    vertex2=triangles(i,2); 
    value2=coordinates(vertex2, 2:end); 
    vertex3=triangles(i,3); 
    value3=coordinates(vertex3, 2:end); 
    b=[b;value1;value2;value3;0 0 0]; 
    a=[a;1 triangles(i,4) triangles(i,5)]; 
    i=i+1; 
end 
% in the following lines: the loop for retrieving the coordinates for the fixed points 
for j=1:frows 
     vertex1=fpoints(j,1); 
     value1=coordinates(vertex1, 2:end); 
     c=[c;value1]; 
end 
% in the following lines: the loop for retrieving the coordinates for the loading points 
for j=1:lrows 
     vertex1=lpoints(j,1); 
     value1=coordinates(vertex1, 2:end); 
     d=[d;value1]; 
end 
% in the following lines: the loop for retrieving the coordinates for the measurement points 
for j=1:mrows 
        vertex1=mpoints(j,1); 
     value1=coordinates(vertex1, 2:end); 
     e=[e;value1]; 
end 
%in the following lines: writing the compatible file for the tc code 
fid=fopen('tc.txt', 'wt'); 
fprintf(fid,'%d \n',families); 
fprintf(fid,'%d %d %d %d %d \n',points); 
fprintf(fid,'%d %d %d \n',a'); 
fprintf(fid,'%d \t %d \t %d \t \n',b'); 
fprintf(fid,'%d %d %d \n',c'); 
fprintf(fid,'%d %d %d \n',d'); 
fprintf(fid,'%d %d %d \n',e'); 
fclose(fid); 

 

The procedure of the mesh construction is briefly described in the flow chart in Figure 2.17. 

 

Figure 2.17. The procedure of mesh construction in 3D-DDA with AutoCAD. 
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 Modeling with CAD in 2D-DDA 

As stated earlier, modeling in 2D-DDA is much simpler than the 3D-DDA, but the CAD 

comes in handy here as well, as the 2D-DDA has no graphic interface either. The steps for 

constructing a mesh in the 2D-DDA using CAD are described below. The procedure is 

demonstrated for a single square block of the size 3 m*3 m, with a measurement point at its 

center. 

1) Sketch the model in AutoCAD® software using the “line”, rather than the “polyline” 

command (Figure 2.18). Special points and material lines should also be sketched as well. Here a 

measurement point is inserted to the center of the square. The different types of input should be 

put in different layers, clearly named (i.e. blocks, material lines, fixed points etc.).  

 

Figure 2.18. The modeled square in AutoCAD. The white lines forming the square are placed in a layer 
named “blocks”, and the green X marking the measurement point is placed in a layer named 
“measurement points”. 

2) Export the data using the Data Extraction (DX) command of the AutoCAD® software to 

an excel file which contains the coordinates of the start and end points of the different lines, the 

coordinates of the special points, as well as the layer names. In this example that excel file is 

named “coordinates”. This file doesn’t have to be sorted in any way, unless the order of the 

special points or the blocks is important. For example, if there are 9 measurement points, they 

should be sorted in a way that will allow the user to clearly identify them when reading the output 

of the DDA program. The ‘coordinates’ file for the example shown here is presented in 

Table 2-5. 
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Table 2-5. The ‘coordinates’ output file of the DX command of AutoCAD 

Layer Start X Start Y End X End Y Position X Position Y 
measurement points     1.5 1.5 
blocks 3 0 0 0   blocks 0 0 0 3   blocks 3 3 3 0   blocks 0 3 3 3   

3) Write and run a script (here performed with MATLAB) that reads the ‘coordinates’ file, 

and according to the name of the layer, puts the input coordinates data in the right place in the 

‘dc’ input file. The script used in the example shown here is presented below: 

clear; 
[line_coord, layer]=xlsread('coordinates’); %reads the file with the line coordinates 
[rows,columns]=size(line_coord); 
a=[]; % line geometry matrix 
b=[]; % fixed point matrix 
c=[]; %loading point matrix 
d=[]; %material line matrix 
e=[]; %measurement point matrix 
f=[]; %boundary joints 
% the next loop will sort the different types of data in the ‘coordinates’ file to the different 
%matrices 
for i=1:rows 
    if findstr(layer{i},'blocks') 
        a=[a;line_coord(i, 1:4), 1]; 
    end 
    if findstr(layer{i}, 'fixed points') 
        b=[b;line_coord(i, 5:6), line_coord(i, 5:6)]; 
    end  
    if findstr(layer{i},'load points') 
        c=[c;line_coord(i, 5:6)]; 
    end 
    if findstr(layer{i},'material lines') 
        d=[d;line_coord(i, 1:4), 1]; 
    end 
     if findstr(layer{i},'measurement points') 
        e=[e;line_coord(i, 5:6)]; 
     end  
     if findstr(layer{i},'boundary') 
        f=[f;line_coord(i, 1:4),1]; 
     end   
    end 
mat_line=size(d,1); 
bolt=0; 
fixed=size(b,1); 
load=size(c,1); 
meas=size(e,1); 
hole=0; 
 
 
fid=fopen('dc.txt', 'wt'); % open file for writing 
fprintf(fid,'%d \n',0.001);  %write to file minimum edge length parameter 
fprintf(fid,'%d  %d \n',size(a,1), size(f,1)); % write to file  total number of  lines and of 
%boundary lines 
fprintf(fid,'%d \n', mat_line); %write to file number of material lines 
fprintf(fid,'%d %d %d %d %d \n', bolt, fixed, load, meas, hole); % write to file numbers of 
%special points 
fprintf(fid,'%d %d %d %d %d \n',a'); % write to file the matrix of the line geometry and joint 
%material lines 
fprintf(fid,'%d %d %d %d %d \n',f'); 
fprintf(fid,'%d %d %d %d %d \n\n',d'); 
fprintf(fid,'%d %d %d %d \n\n',b'); 
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fprintf(fid,'%d %d  \n',c'); 
fprintf(fid,'%d %d \n',e'); 
fclose(fid); 

 

The procedure of mesh construction with AutoCAD in 2D-DDA is briefly described in the 

flow chart in Figure 2.19. 

 

Figure 2.19. A flow chart describing the procedure of mesh construction using AutoCAD in 2D-DDA. 

 Numerical and modeling issues with 3D-DDA  

 The coupled effect of dynamic parameter and time step interval 

During simulations of a multi-block model with 3D – DDA, several numerical problems were 

observed. In a discrete element mesh of 197 blocks (see Figure 2.14), it was found that in order 

for the numerical solution to converge, a very small time step interval in the order of 10-5 sec 

must be used, as well as kinetic damping of at least 3%, i.e. dd = 0.97 (see section 2.1.3). 

Numerical simulations with those parameters provided displacements that were a few orders of 

magnitude smaller than expected. A semi-analytical analysis was performed in order to find the 

source of the unexpected small displacements. 

Using the MATLAB software package, the time dependent displacements of a mass driven by 

a constant force were computed (Figure 2.20).  
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Figure 2.20. The model used for the semi- analytical simulations. 

The input acceleration of the mass is constant. The simulations were performed under different 

user specified time step interval (∆t) and dynamic coefficient (dd). As explained in section 2.1.3, 

the dynamic coefficient introduces kinetic (numerical) damping into the system, by multiplying 

the initial velocity of the block at the beginning of a time step by the dd parameter, after 

inheriting the terminal velocity from the previous time step. The semi-analytical calculations 

performed at each time step are presented in Figure 2.21, with trapezoidal integration (different 

from the DDA, where analytical Simplex integration is used (Shi, 1988)). 

 

 

Figure 2.21. The calculations at each time step of the semi-analytical solution. 

First a dynamic coefficient of 0.97, which corresponds to 3% of kinetic damping, was used 

with different values of time step interval, with the lowest being 0.00001 sec, and the highest 

being 0.01 sec. The results are presented in Figure 2.22. As is evident from Figure 2.22, the time 

step interval is a crucial parameter which controls the accumulated displacement during the 

analysis when kinetic damping is used. The displacement accumulated after 0.5 sec with time 

step interval of 0.00001 sec (1.041e-5 m) is almost 3 orders of magnitude smaller than the 

accumulated displacement after 0.5 sec with time step interval of 0.01 sec (0.005 m), under the 
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same force applied. This result clearly demonstrates the significance of the time step size 

selection when kinetic damping is applied (for example in (Hatzor et al., 2004)). 

 

Figure 2.22. Results of simulations with kinetic damping of 3% for different values of time step interval. 

The same procedure was performed with the 3D-DDA. 3D- DDA simulations were modeled 

by two blocks: an overriding block subjected to a constant horizontal force (or acceleration), and 

an underlying stationary block that exists only to prevent free falling of the overriding block 

(Figure 2.23). Friction between blocks is set to 0. 

 

Figure 2.23. The model used in the DDA analyses. 

Force was applied at the centroid of the overriding block. Four time step intervals were used in 

these simulations, following the semi-analytical solution, results presented in Figure 2.24 (semi-

logarithmic scale). 

F 
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Figure 2.24. Comparison between 3D-DDA and semi-analytical simulations at four different time step 
intervals and damping of 3%. Solid curves are the semi-analytical solution, and dashed curves are 3D-
DDA solution. 

As can be observed in Figure 2.24, the DDA solution does not follow the exact values of the 

analytical solution, but does follow the same trend: the accumulated displacement decreases with 

decreasing time step interval, by three orders of magnitude. The difference between the two 

solutions could be explained by the different integration schemes, as mentioned above. 

This phenomenon was not observed when no kinetic damping was used: the time step size had 

no effect on the cumulative displacement. Figure 2.25 presents the results of 3D-DDA as well as 

analytical simulations for different time step intervals with 0% kinetic damping. The 3D-DDA 

solution follows the values of the analytical solution: the time step interval has no effect on the 

cumulative displacement when no kinetic damping is used. 
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Figure 2.25. Four 3D-DDA simulations and four semi-analytical simulations with different time step 
intervals (similar to the ones used in Figures 2.21 and 2.23) with 0% damping.  

When the time step interval was fixed, and the dynamic coefficient dd was set to four different 

values, 1, 0.99, 0.98 and 0.97 (corresponds to 0, 1, 2 and 3% kinetic damping), the effect of the 

damping value was examined. This procedure was performed for four ∆ values: 0.01, 0.001, 

0.0001 and 0.00001 sec. Results are presented in Figure 2.26. From Figure 2.26 it is evident that 

introducing kinetic damping has a significant effect on the accumulated displacement, but this 

effect weakens with increasing time step interval. The smaller the time step interval is, the 

difference between the accumulated displacement of 0% and 1 % damping grows larger. 

Furthermore, it seems that the largest difference in accumulated displacement is indeed between 

0% and 1% damping, and smaller damping values show much smaller displacement differences 

between them. 
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Figure 2.26. Results of simulations with constant time step intervals and different damping values. 

To summarize, the combination of a very small time step interval and kinetic damping of a 

small percentage significantly decreases the cumulative displacement during the simulation. It is 

also evident that a small increase in kinetic damping coefficient will not make a great difference 

when very small time steps are used. In general, it is preferable to use dd = 1 in dynamic 

simulations, as the displacements will be reduced due to the algorithmic damping inherit to the 

DDA in any event, but sometimes multi block systems do not converge in the latest 2D-DDA 

code version we utilize in this research without introduction of some kinetic damping; often 1% 

to 2% kinetic damping proves to be sufficient to enable the system of equations to converge 

during open-close iterations in every time step. The coupled effect of kinetic damping and time 

step size as demonstrated here, should be taken into consideration when convergence of the 
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solution requires the use of dd < 1, and when analyzing results of simulations where kinetic 

damping is used, as these two numeric control parameters can lead to numeric errors that have no 

physical basis.  

 A note on proper force input to a loading point in site response studies 

2.4.2.1 The problem 

When attempting to simulate an earthquake, one way to do so is to use a model of a stationary 

base, incapable of moving, overlain by a moving base, simulating the shaking ground, either 

excited by acceleration or displaced by displacement time history. The modeled structure, either 

natural or manmade, lies above the moving base, free to respond to the vibrations. Input of 

displacement time history is performed by directly assigning displacements to a fixed point. 

Exciting the base with acceleration time history is carried out with a loading point, to which loads 

have to be assigned, which means the acceleration time history has to be multiplied by the block 

mass, in order to obtain force values (Newton’s second law maF = ). The question arising in this 

case is whether only the mass of the induced base block should be considered, or should the mass 

of the responding blocks mounting the base (i.e. the structure itself) be considered as well.  

2.4.2.2 The test 

A simulation study was performed in order to determine which approach is the most 

appropriate. A mesh composed of three blocks was modeled (Figure 2.27): bottom stationary 

base block, middle induced block, and top responding block. Friction between the lower two 

blocks was set to 0, and the friction between the upper two blocks was set to a very high value, so 

as to avoid any frictional force effects on the displacement of the middle block. 

 

Figure 2.27. The mesh used for the mass dilemma study. The lowermost block is fixed, the middle block 
is the moving base (friction between the two lower blocks is set to 0) and the upper block is responding. 



Chapter 2                                                                             Research method: the Discontinuous Deformation Analysis 

39 

 

The acceleration function used as input for the middle block is ( ) ( )tAtd ωsin= , with amplitude 

of A = 2 m/sec2 and frequency of ω = 2π sec-1 (f = 1 Hz). The displacements of the middle block 

were measured, and later on compared with the displacements calculated by a simple analytical 

solution for a block starting at rest ( ( ) 00 =d ), that does not depend on the mass of the block: 

( ) ( ) tAtAtd
ω

ω
ω

+−= sin2         Equation 2-28 

2.4.2.3 The results 

Figure 2.28 presents the comparison between the displacements calculated by the analytical 

solution in Eq. 2.18, independent of mass, and the displacements obtained with 2D-DDA, where 

the loaded block is subjected to the input acceleration function multiplied by the mass of a) the 

induced block only and b) the induced and responding blocks. As is evident from Figure 2.28b, 

where an excellent agreement between the analytical and numerical solutions when the 

acceleration function is multiplied by the mass of both blocks is observed, using the masses of 

both blocks is the correct approach.  

a  b  

Figure 2.28. Comparison between the analytical solution and the DDA solution for the model presented in 
Figure 2.27, subjected to acceleration function of ( ) ( )tAtd ωsin= multiplied by a) the mass of the induced 
middle block and b) the mass of both the induced and responding blocks. 

To summarize, when dynamically exciting a structure with an acceleration time history 

through a loading point scheme, as explained in section 2.4.2.1, the acceleration record should be 

multiplied by the mass of the block containing the loading point, as well as the mass of all the 

overriding blocks, if exist, in order to correctly represent the dynamic forces.  
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 Site response analysis with two-dimensional numerical discontinuous 

deformation analysis  

 Introduction 

In this chapter the possibility of performing numerical site response analysis is explored. The 

advantages of numerical site response analysis are evident, since a reliable numerical platform 

will render complicated and expensive field tests less necessary. For this purpose the dynamic, 

implicit, discrete-element numerical two – dimensional Discontinuous Deformation Analysis 

(2D-DDA) method (Shi, 1993) is employed. The site response analysis results obtained with 2D-

DDA are compared with an experimental site response survey performed in the field for a 

historic, tall and slender limestone multi-drum column situated in Avdat National Park, a World 

Heritage Site in southern Israel.  

 Scientific background 

The analysis of seismic site response is very important since the amplification of seismic 

waves in some specific areas can be very strong (Burridge et al., 1980; Cruz et al., 1993; Olsen, 

2000; Seed and Idriss, 1969; Semblat et al., 2005). Reflections and scattering of seismic waves 

near the surface, at layer interfaces, or around topographic irregularities often worsen the 

consequences of earthquakes (Semblat et al., 2000). The maximum amplification and 

corresponding resonance frequency depend on several factors including the thickness of the 

overlying layers, their shear modulus, damping ratio, and density (Siddiqqi and Atkinson, 2002). 

Although alternating layer stiffness in the soil column (e.g. Seed and Idriss, 1969) and 

geometrical basin effects (e.g. Field, 1996) have been cited as the most common sources of 

amplification, topographic effect has been reported to be a significant source of motion 

amplification as well (e.g. Ashford et al., 1997; Bouchon and Barker, 1996; Zaslavsky and 

Shapira, 2000a). While it is well established that soft soil deposits may amplify ground motion, it 

is often assumed that hard-rock sites are safe. However, recent studies suggest that rock sites may 

also exhibit significant amplification, possibly because of their shear-wave velocity gradient 

(Beresnev and Atkinson, 1997; Boore and Joyner, 1997; Steidl et al., 1996).  



Chapter 3                                            Site response analysis with 2D-DDA 

 

41 

 

Ground motions developed near the surface are typically attributed to upward propagation of 

shear waves from an underlying rock formation (Idriss and Seed, 1967). If the ground surface, the 

rock surface and the boundaries between soil layers are essentially horizontal, the lateral extent of 

the deposit has no influence on the response and the deposit may be considered as a series of 

semi-infinite layers. In such cases the ground motions induced by a seismic excitation at the base 

are the result of only shear deformations in the soil and the deposit may be considered as a one-

dimensional shear beam. Site response in this case may be estimated using well developed, one-

dimensional computational approaches, such as the program SHAKE (Lysmer et al., 1972; 

Schnabel et al., 1972). If however the ground surface, the rock surface or the boundaries between 

different soil layers are inclined, analyses of the response of the soil deposit can only be 

performed by numerical techniques.  

 Avdat National Park – historical, geographical and geological overview 

Avdat, a major ancient Nabatean road station along the Route of Spices from Petra to Gaza, 

lies in the central Negev highlands of southern Israel, 655 m above sea level and 80 m above its 

surroundings (see Figures 3.1, 3.2). Avdat was established in the 3rd century BC, and  was 

annexed to the Roman Empire at 106 AD along with the entire Nabatean kingdom (Negev, 

1988). The city includes remains from the Nabatean, Roman and Byzantine periods. Avdat was 

abandoned in 636 AD, never to be occupied again. A strong earthquake that struck the region 

between 631-636 AD is believed to have been the main reason for its abandonment (Fabian, 

1998). Indeed, many buildings in Avdat show evidence of seismic damage, including ones that 

were used in the 7th century AD (Mazor and Korjenkov, 2001). In 2005, the Avdat National Park 

was declared a UNESCO world heritage site. 



Chapter 3                                            Site response analysis with 2D-DDA 

 

42 

 

 

Figure 3.1. A location map of Avdat National Park. Inset: plate tectonic setting of the Dead Sea Transform 
(DST), a left lateral fault, which transfers the opening in the Red Sea to the collision between Arabia and 
Eurasia by northward movement of the Arabian plate with respect to the African Plate. NAF and EAF are 
the Northern and Eastern Anatolian Faults, respectively.  

 

Figure 3.2. Aerial photo of Avdat. The ellipse delineates the site of experimental survey. At the time of the 
site response survey only one column was standing at the site, the rest were taken down for restoration. 
Photograph by Yuval Nadel. 



Chapter 3                                            Site response analysis with 2D-DDA 

 

43 

 

The city of Avdat lies on the Avdat Highlands, which consist of rocks from the Eocene (50-35 

million years before present) locally known as the Matred Formation which consists of hard 

limestone with Nummulites (Zilberman, 1989). Avdat is located about 50 km east of the Dead 

Sea Transform, an active strike-slip fault that separates the Arabian tectonic plate to the east and 

the African plate to the west (see Figure 3.1). The expected PGA for the region is 0.087 g, with 

10% probability of exceedance in 50 years (S.I.I., 2004).  

 Research methods 

The structure selected for the site response analysis is a single multi-drum free standing 

column that was used for supporting the roof of a Nabatean temple (Figure 3.3), located at the 

"Terrace", a lookout point to the west, delineated by the ellipse in Figure 3.2. 

 

Figure 3.3. The multi-drum column selected for site response analysis at Avdat.  

 Experimental site response measurements 

The site response survey was performed by a professional team from the Geophysical Institute 

of Israel, under our supervision, and preliminary results are reported by Zaslavsky et al.(2011).  

Data acquisition equipment included a 12-channel amplifier with band pass filters of 0.2-25 Hz, 

GPS (for timing) and a laptop computer with analog-to-digital conversion card. Digital 

recordings were made at a sampling rate of 100 samples per second at 16-bit resolution. The GII-
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SDA, digital seismic data acquisition system is designed for site response field investigations. 

The seismometers used were single component sensitive velocity transducers (L4C by Mark 

Products) with a natural frequency of 1.0 Hz and 70% critical damping. All the equipment 

including sensors, power supply, amplifiers, personal computers and connectors were installed on 

a vehicle, which also served as a recording center. Four velocity seismometers were placed on the 

column: two at the top of the column, and two nearest to its base. Each pair of seismometers was 

placed perpendicular to one another in north-south and east-west directions (X and Y, 

respectively, see Figure 3.4). 

 

Figure 3.4. Seismometers location on the column. 

The response of the column to three different loading modes was recorded with the velocity 

seismometers positioned at the top and base of the column as follows: 1) ambient, or background, 

noise; 2) dynamic load applied at the base of the column by impact of a sledgehammer (see 

Figure 3.5a), and 3) static load obtained by application of manual push and release at the top of 

the column (see Figure 3.5b). 
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a)     b)  

Figure 3.5. Different excitation modes at the experimental site response survey. a) sledgehammer blows to 
the bottom of the column and b)manual push to the top of the column. 

 Numerical site response analysis  

The numerical method used for the numerical site response analysis is the 2D-DDA. The 

fundamentals of the DDA are reviewed in Chapter 2 of this dissertation, and will not be reviewed 

again here. Still, an important point specifically regarding this chapter should be made. As 

pointed out in Chapter 2, the DDA computes the first order approximation of displacements at 

any point ( , )x y  (Shi, 1993). By adopting first order displacement approximation, the distribution 

of the stresses and strains is constant in a block, a simplification that limits the accuracy of the 

DDA method when dealing with wave propagation problems in relatively large blocks with 

respect to the wave length size. Therefore, the issue of wave propagation accuracy with DDA is 

addressed in this section in some detail. 

In this study, very small disturbances were applied to a multi drum column, either by applying 

a gentle push at the top or by applying a blow with a sledgehammer at the bottom of the column, 

and the response spectra for data computed with DDA were compared to the response spectra for 

data measured in the field. Because the disturbance is very small, no out of plane or wobbling 

motions between the drums were expected during column vibration and therefore a two 

dimensional approach was assumed valid in this case. 
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3.2.2.1 The model 

The 2D-DDA mesh is comprised of eleven blocks: one large foundation block, fixed in space 

by three fixed points, and ten rectangular blocks, placed one on top of the other with proportions 

similar to the actual column in the field. The model was excited in either one of two loading 

points: one at the lowermost drum, simulating the sledgehammer impacts, or "dynamic" loading, 

and one at the uppermost drum, representing the manual push, or "static" loading (see 

Figure 3.6). 

 

Figure 3.6: The 2D-DDA mesh used in the numerical modeling of the Avdat column. The lowermost 
block is fixed in place by three fixed points (grey circles), dynamic load is applied in either of the two 
loading points (white circles). 

3.2.2.2 Optimization of numerical control parameters 

Before performing simulations under external forces, several models loaded by gravity alone 

were analyzed in order to optimize the user defined numerical control parameters, while the 

blocks settle under their own weight. Simulations under gravity only were run for 15 seconds of 

real time. Two ∆ (time step size) values were used: 0.01 and 0.001 sec. The assumed maximum 

displacement per time step ratio was set equal to ∆, and sensitivity analysis was performed to 

optimize the penalty value (k) for the two time step sizes. Two numerical responses to 

gravitational load were investigated: 1) the time it takes for the initial oscillations of the column 

in the vertical direction to stabilize, an effect referred to herein as "gravity turn-on", and 2) a 

numerical artifact where horizontal displacements of the uppermost block, which naturally have 
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no physical meaning when subjecting the symmetrical column to vertical gravitational loading, 

are obtained. The numerical and physical parameters used in the simulations are listed in 

Table 3-1.  

Table 3-1. Numerical and physical parameters used in the Avdat column simulations 

Parameter value 
Dynamic parameter dd 1 (fully dynamic) 
k (contact spring stiffness) 1x107  - 1x1011 N/m 
∆ (time step size) 0.01-0.001 sec 
Maximum displacement ratio Identical to ∆ 
Density 2250 kg/m3 
Young's modulus 17 GPa 
Poisson's ratio 0.22 

Results of sensitivity analyses are presented in Table 3-2. Gravity turn-on is achieved much 

faster with the larger time step, because of the inherent algorithmic damping in DDA, the amount 

of which is directly proportional to the time step size (Doolin and Sitar, 2004). Furthermore, the 

smaller artificial horizontal displacements are obtained when using a larger time step, again, 

because of the algorithmic damping effect. The selection of the optimal contact spring stiffness 

for forward modeling was made based on the results of the sensitivity analyses for the smaller 

time step as it was more sensitive to the change in penalty value. The range of optimal contact 

spring stiffness is between 1x108 and 1x109 N/m (shaded in Table 3-2). 

Table 3-2. Sensitivity analysis of numerical control parameters for gravitational load only using the 2D-
DDA model shown in Figure 3.6. All other input parameters are listed in Table 3-1. Legend: ∆ = time step 
interval, k = contact spring stiffness, u = horizontal displacement of the uppermost block 

k (N/m) 

∆ = 0.001 sec ∆=  0.01 sec 
Real Time to 

gravity turn on 
(sec) 

u (cm) 
Real Time to 

gravity turn on 
(sec) 

u (cm) 

1x107 Not stable  N/A Not stable N/A 
5x107 8 0 1 0.000005 
1x108 5 to 6 0 1 0.000002 
2x108 3 to 4 0 0.5 0.000001 
3x108 2 to 3 0 0.7 0 
4x108 2 to 3 0 0.7 0 
5x108 2 to 3 0 N/A N/A 
6x108 2 to 3 0 N/A N/A 
7x108 2 to 3 0 N/A N/A 
8x108 2 to 3 0 0.6 0 
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9x108 2 to 3 0 N/A N/A 
1x109 2 0 N/A N/A 
2x109 2 0 0.55 0 
3x109 2 0.000006 N/A N/A 
4x109 2 0 N/A N/A 
5x109 Not stable Not stable 0.5 0 
6x109 Not stable Not stable N/A N/A 
1x1010 Not stable Not stable 1 0 
1x1011 N/A N/A 1 0 
1x1013 N/A N/A 1 0 

3.2.2.3 Numerical loading modes 

As mentioned earlier, load was applied at either of the two loading points marked by white 

circles in Figure 3.6. When simulating dynamic impact (sledgehammer blow), force was applied 

at a single time step of the analysis by a pulse function (Figure 3.7a). When simulating static load 

(manual push and release), force was applied as a step function (Figure 3.7b), for a time interval 

of one second. Dynamic load was applied with values between 10,000 and 300,000 N; column 

vibrations were not always obtained under the lower load values. Static load was applied with 

values between 100 and 3000 N; higher load values triggered some initial translation of the 

uppermost block in the horizontal direction, followed by free vibrations of the column. 

a                    b     

Figure 3.7: Input loading functions used as input in 2D-DDA simulations: a) dynamic load function used 
to simulate sledgehammer impulse applied at the base of the column, b) static load function used to 
simulate the push and release applied manually at the top of the column. 

  Results 

 Field experiment results 

The vibrations recorded in the seismometers under the different modes of excitation were 

analyzed by the GII team for modal frequencies, as these appear as local peaks in the Fourier 

velocity spectra (Zaslavsky et al., 2011). The first and second resonance modes obtained under 
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the three different styles of excitations are similar, with the first resonance mode at 3.0 – 3.8 Hz 

and the second mode at 4.2 – 5.3 Hz (see Figure 3.8). 

a  

b  

c   
Figure 3.8. Experimentally obtained Fourier velocity amplitude spectra in X (H332) and Y (H748) 
directions for ambient (a), dynamic (b), and static (c) excitation at the base and top of the column. After 
(Zaslavsky et al., 2011). 

 Numerical results 

An example of the response of the uppermost block of the column to static load of 1000 N is 

presented in Figure 3.9. These displacements were obtained with k value of 4*108 N/m. Note the 

vertical oscillations of the block during the first two seconds – this is the “gravity turn-on” effect 
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mentioned in 3.2.2.2. No displacements were observed in the vertical direction after the first two 

seconds of oscillations. As for the horizontal displacement – no displacements were observed in 

this simulation until t = 4 sec, when the static force was applied, and at t = 5 sec, when the static 

force was removed, the column started its free vibrations. Note that the amplitude of the motion 

decreases with time, but the frequency remains unchanged, implying the column does not enter 

the rocking mode, as the frequency of motion of a free standing rocking column changes with 

time due to energy loss at impact (Housner, 1963; Makris and Roussos, 2000; Yagoda-Biran and 

Hatzor, 2010).    

 

Figure 3.9. The horizontal and vertical displacements of the uppermost block of the multi drum column, 
when subjected to static load of 1000N, with k = 4x108 N/m.  

FFT analysis of the data presented in Figure 3.9 is shown in Figure 3.10 along with the 

average curve obtained from the geophysical experiments. Note that the results of the field 

experiment indicate two modes, whereas DDA results indicate only a single mode. This 

discrepancy could arise from soil structure interactions that may be present in the field but are 

prohibited in the DDA model as the base block is fixed in the model (see Figure 3.6).  



Chapter 3                                            Site response analysis with 2D-DDA 

 

51 

 

a b  

Figure 3.10: Response spectra of studied column: comparison between DDA and experimental results. 
DDA simulations were executed with penalty value of 4x108 N/m. a) static loading, b) dynamic loading. 

Results of dynamic DDA simulations under static and dynamic loads are presented in Table 3-3 

with the obtained dominant frequencies under different values of contact spring stiffness. 

Inspection of the results in Table 3-3 leads to the following conclusions: 

1) The dominant frequency of the modeled system obtained with DDA is highly dependent 

upon the penalty value. It increases with increasing spring stiffness from 2.3 Hz with k = 

1x108 N/m to 6.3 Hz with k = 1x109 N/m. 

2) The dominant frequency of the modeled system as obtained with DDA does not depend 

on the loading mechanism or the magnitude of the applied force; similar values are 

obtained for both static and dynamic loading for the entire range of simulated loads. 

3) The dominant frequency of the modeled system as obtained with DDA does not depend 

on the time interval used (a range of 0.01 to 0.0001 sec was analyzed, results for ∆ = 

0.0001 sec not shown here for brevity). 

4) Finally, all the dominant frequencies that were obtained with 2D-DDA for the optimal 

range of spring stiffness are in the range of the two dominant modes obtained 

experimentally at the site. This result confirms the validity of 2D-DDA as a site response 

analysis tool for geotechnical earthquake engineering.  
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Table 3-3: Results of the column response to external "dynamic" and "static" forces. The choice of penalty 
value which returns results that best agree with field experiment is shaded 

Contact spring stiffness 
(N/m) 

Dominant frequency (Hz) for 
dynamic loading 

Dominant frequency (Hz) for 
static loading 

1x108 2.3-2.4 2.4 
2x108 3.3 3.3 
4x108 4.2-4.3 4.3-4.5 
7x108 5.1 5.1-5.2 
1x109 5.9-6 5.9, 6.2-6.3 

 

 Discussion 

A well-known dilemma in dynamic numerical analysis is the best choice of the time step size, 

since it is not only critical for the stability and efficiency of the solution, but also for its accuracy. 

In this work, one criterion for selecting an optimal penalty value was the absence of horizontal 

displacements when subjecting a multi block column to gravitational load. Inspection of 

sensitivity analyses results (Table 3-2) reveals that when using a relatively large time step size of 

0.01 sec no horizontal displacements are obtained numerically for a larger range of penalty values 

than when using a relatively small time step of 0.001 sec. The absence of horizontal 

displacements when using the larger time step results from the algorithmic damping effect 

(Doolin and Sitar, 2004). It should be pointed out, however, that with increased time step size the 

numerical error increases and therefore a smaller time step would be more desirable, from an 

accuracy stand point. There is a price to pay, however, when using a smaller time step: stability 

and gravity turn-on will be achieved after a longer period of real time, due to a lesser algorithmic 

damping effect. This will require longer CPU time before obtaining a stable solution, an issue 

that may be a problem when solving a multi-block system, even with fast computers.     

Regarding the penalty value and its effect on numerical results, it was shown here that the 

obtained resonance frequency with DDA is highly dependent upon the choice of k (see Table 3-3) 

with higher dominant frequencies obtained with increasing k values, as illustrated in Figure 3.11. 

This is intuitive, because with increasing k value the modeled structure is expected to behave 

more rigidly. Furthermore, the amplitude of the resonance modes clearly decreases with 

increasing penalty value, as shown in Figure 3.11. In order to obtain an acceptable penalty value 
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for such problems a preliminary calibration test may be necessary, as performed here (see 

Table 3-2). Indeed, the best fit penalty value for the field test of 4*108 N/m falls well within the 

acceptable range of penalty values obtained from the preliminary calibration, where a range from 

1*108 N/m to 1*109 N/m proved acceptable. 

 

Figure 3.11. FFT spectra of the displacements of the uppermost block of the column, under 5 different 
values of penalty.   

To choose the optimal k value one may resort to previously published recommendations and 

examine them in light of new findings reported here. Shi in his user’s manual (Shi, 1996a) 

recommends that k = E*L where E is Young's modulus and L is the average block diameter. In 

the multi drum column problem modeled here E = 17 GPa and L = 0.6 m, yielding a 

recommended k value by Shi of 1x1010 N/m , whereas the best fit penalty value found in this 

study is 1.5 orders of magnitude lower (see Table 3-3). Using the recommended k value by Shi 

would lead to instability of the solution with the ∆ selected (see Table 3-2). The reason for the 

low best-fit penalty value with respect to Shi’s recommendation could be related to the condition 

of the interface, its roughness, and the presence of some infilling material between the drums.  
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An interesting note to be made here is that in a previous study performed by the author 

(Yagoda-Biran and Hatzor, 2010) it was also found that while the recommended penalty value by 

Shi for a monolithic column studied there was 1.8*109 N/m, the best fit between DDA and the 

analytical solution for the rocking column problem (Makris and Roussos, 2000) was obtained 

with a penalty parameter of 8.3*107 N/m, also some two orders of magnitude lower than 

recommended by Shi. 

 Summary and Conclusions 

The ability of 2D-DDA to perform site response analysis is examined in this chapter. A multi 

drum column from the World Heritage Site of Avdat is modeled with 2D-DDA, and its dynamic 

response is compared with experimental data obtained in a geophysical site response survey 

conducted at the site. Results indicate that DDA returns a resonance frequency range that is very 

close to the value obtained experimentally. It was found that the contact spring stiffness, or 

penalty value, has a great effect on both the resonance frequency as well as the amplitude 

obtained by DDA. The numerically obtained resonance frequency was found to increase with 

increasing penalty value whereas its amplitude decreases, as would be expected intuitively. The 

optimal k value as obtained by comparison between DDA and the geophysical experiment is 

found to be k = (1/25)(E*L), much lower than recommended by Shi. Perhaps this result reflects 

the softness of the physical column in reality due to the interfaces between drums which contain 

some infilling materials. The dominant frequency is found to be independent of the time step 

size.  
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 A new failure mode chart for toppling and sliding with consideration of 

earthquake inertia force  

 Introduction 

Rock slope failures involving single plane sliding or toppling have been studied extensively in 

the past. The problem has typically been formulated for the case of a block on an inclined plane. 

The model of a block on an inclined plane can help simulate many problems in rock slope 

engineering: it can be used to represent finite rock blocks formed by intersections of steeply 

inclined joints and shallowly inclined bedding planes and thus it can sometimes be used to 

simulate landslides or rock slides. The simplicity of the model and its attractive applicability calls 

for development of analytical solutions, as these are quite useful in practice. 

A block on an incline has four different possible modes of failure (consider Figure 4.1): 1) 

static stability, 2) downslope sliding, 3) toppling and sliding simultaneously and 4) rotation and 

toppling. The failure mode is controlled by the geometry of both the block and the inclined plane, 

and the frictional resistance of the interface between them, the three of which are defined by three 

angles as follows (see Figure 4.1): δ – the block aspect angle defined by the ratio of the block 

width b and height h, α – the inclination angle of the slope, will be referred to herein as the slope 

angle, and φ – the friction angle of the interface between the slope and the block. Any 

combination of these three angles will determine whether the block will move or not, and if so, 

what will be the mode of its first motion. Clearly, correct assessment of the failure mode is a 

prerequisite for correct risk assessment and sound support design.  

 

Figure 4.1. Sign convention for the block on an inclined plane model used in this paper. 
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Ashby (1971) and Hoek and Bray (1977) derived and plotted the modes of failure for the case 

of block on an incline in δ - α space using static limit equilibrium analysis (LEA). Static LEA 

implies finding the forces acting on the block at a state of limiting equilibrium, namely, before 

imminent failure. Ashby’s (1971) and Hoek and Bray’s  (1977) chart is presented in Figure 4.2.  

 

Figure 4.2. Kinematic conditions for sliding and toppling for a block on an inclined plane – static analysis. 
(after Ashby, 1971). 

According to results of the static LEA performed by Ashby (1971) and Hoek and Bray (1977), 

when α < φ  the block will either be stable (δ > α) or topple (δ < α).  When α > φ the block will 

either slide (δ > α), or slide and topple simultaneously (δ < α).  The original boundaries between 

those failure modes are assigned numbers here (see Figure 4.2); these numbers will be referred to 

herein when discussing failure mode boundaries. 

Voegele (1979) compared the analytical results with distinct element method (DEM) 

simulations and discovered that in some cases while the block should have failed in sliding and 

toppling according to the mode chart in Figure 4.2, in fact it experienced sliding alone when 

studied with DEM. Thus, he concluded that the Hoek and Bray (1977) chart was too elementary 

to predict the exact dynamic behavior of slender blocks resting on an inclined plane. 

Bray and Goodman (1981) revisited this problem and treated boundary 3 in Figure 4.2  as a 

“dynamic” boundary. Their approach changed the condition for sliding to α > φ, and δ ≥ φ (see 
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Figure 4.3). Yu et al. (1987) later found that results of DEM simulations and physical models 

agree with Bray and Goodman’s (1981) modified chart.  

 

Figure 4.3. Kinematic conditions for sliding and toppling with the modified boundary 3. After Bray and 
Goodman (Bray and Goodman, 1981). 

Sagaseta (1986) argued  that Bray and Goodman’s modification is correct but incomplete 

because at boundary 4 the state of equilibrium is dynamic rather than static; the derivation of the 

equilibrium equations for that boundary are provided in his paper. Yeung (1991) studied this 

problem with two dimensional Discontinuous Deformation Analysis method (2D-DDA, (Shi, 

1988, 1993; Shi and Goodman, 1985 ; Shi and Goodman, 1989)) and compared his results to the 

chart published by Bray and Goodman (1981). He discovered that while 2D-DDA results agree 

with the first three boundaries, reassuring the modification of Bray and Goodman (1981) to 

boundary 3, there is a discrepancy between the results obtained by 2D-DDA and the behavior 

predicted by boundary 4 in Bray and Goodman’s chart. In some cases, while Bray and 

Goodman’s chart predicts sliding and toppling, DDA results suggest toppling only.  This led 

Yeung (1991) to treat boundary 4 as a dynamic boundary as well. The analytical solution for 

boundary 4 as derived by Yeung (1991) is presented in the next paragraph , with incorporation of 

dynamic effects into the solution. 
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When a block is on the verge of toppling, the hinge (center of rotation, see Figure 4.4) tends to 

move upslope. This movement may prevent sliding, even when permissible by virtue of 

kinematics, namely when φ < α. Boundary 4 distinguishes between toppling with and without 

sliding, therefore the analytical solution derived by Yeung (1991) assumes limiting friction (φ = 

α). Figure 4.4 schematically describes the state of forces acting on the block at boundary 4. 

 

Figure 4.4. The dynamics of the block at boundary 4. The block is toppling, hence it has rotational 
acceleration from which linear accelerationu is derived, and is on the verge of sliding. The rotation hinge 
is marked with a star. After Yeung (1991). 

When the block is toppling and at the onset of sliding, it is under pure rotation, therefore its 

angular accelerationθ at the hinge and at the centroid are identical. The forces acting on the block 

are its weight mg, acting at the centroid, the normal from the incline N, and the limiting friction 

force Ntanφ, both acting at the hinge. 

Applying Newton’s second law, both parallel and perpendicular to the slope, and taking 

moments about the centroid of the block, three equations with four variables (θ ,u , φ and N) can 

be written: 

δφα costansin umNmg =−           Equation 4-1 

δα sincos ummgN =−         Equation 4-2 

( )θφ 22

12
1

22
tan bhmbNhN +=−        Equation 4-3  
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The fourth equation relates θ  and u : 

22

2
1 bhu += θ          Equation 4-4  

Solving the set of equations yields the following equation for a friction angle satisfying boundary 

4, with any combination of α and δ: 

( )
( ) αδαδ

αδαδφ
coscoscos3
sincossin3tan

+−
+−

=        Equation 4-5 

or: 

1tancossin3sin3
tancossin3tancos3tan 2

2

+−
+−

=
φδδδ

φδδφδα       Equation 4-6 

A modified chart for the different modes after correction of boundary 4 for dynamic LEA is 

presented in Figure 4.5 following Yeung (1991), for the case of φ = 30°.  With the modified 

boundary 4 Yeung obtained good agreement between 2D-DDA and the modified kinematic chart. 

 

Figure 4.5. Kinematic conditions for sliding and toppling with modified boundary 4, for φ = 30°. After 
Yeung (1991). 

In a classic paper, Goodman and Bray (1976) further developed a static LEA solution for the 

toppling failure of multiple blocks, where the slope is represented  by a series of blocks resting on 
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a stepped basal discontinuity. They distinguished between three modes: block toppling, flexural 

toppling, and both block and flexural toppling.  Following Goodman and Bray, flexural toppling 

and block toppling have been further investigated by many groups, both analytically (Amini et 

al., 2009; Amini et al., 2012; Aydan and Kawamoto, 1992; Bobet, 1999; Liu et al., 2008; Majdi 

and Amini, 2011; Sagaseta et al., 2001), experimentally (Adhikary et al., 1997; Amini et al., 

2009) and numerically (Bobet, 1999; Brideau and Stead, 2010; Scholtes and Donze, 2012). The 

mode of block slumping has also been studied analytically and numerically by Kieffer (1998). 

 Three dimensional visualization of the kinematic mode chart 

In the introduction section it was shown that the mode of failure of a single block on an incline 

depends on three variables: the angles α, φ and δ. A three dimensional representation of the mode 

chart is therefore called for, as presented in Figure 4.6. The 3D space, the three axes of which are 

the three angles, is divided into the four regions of block behavior, namely Mode 1 – stable, 

Mode 2 – sliding, Mode 3 – sliding and toppling, and Mode 4 – toppling. Consider Figure 4.6a, 

the different failure modes are plotted as follows: 

Mode 1, the stable mode, is above the red surface (delineating the α = δ surface) and to the left 

of the blue surface (delineating the α = φ surface). 

Mode 2, the sliding mode, is above the green surface (delineating the φ = δ surface) and to the 

right of the blue surface (delineating the α = φ surface). 

Mode 3, the sliding and toppling mode, is below the green surface, indicating the 

φ = δ surface, and in front of the curved surface representing Eq. 4.6 (note that in this view the 

curved surface is actually behind the green surface). 

Mode 4, or the toppling mode, is below the red surface, indicating α = δ , and behind the 

curved surface representing Eq. 4.6. 

Figure 4.6a presents the 3D space from a point of view similar to those of Figures 4.2, 4.3 and 

4.5 but for different values of φ. In Figure 4.6b the mapped 3D boundaries are viewed from 

vector (-1, -1, -1). When using (-1, -1, -1) as a viewing vector, vector (1, 1, 1) is reduced to a 
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point, and the surfaces separating the different modes are reduced to lines. With this mapping the 

3D space appears as a 2D space where it is easier to perceive the boundaries between the four 

modes.  

 

Figure 4.6. Kinematic conditions for toppling and sliding. a) a point of view similar to Figures 4.2, 4.3 and 
4.5. b) Isometric point of view, viewing vector (-1, -1, -1).  

 Adding pseudo-static inertia force to toppling analysis 

When trying to determine stability and failure mode under seismic conditions, a common 

practice in geotechnical engineering is to impose a static force, acting at the centroid of the block, 

in order to simulate the inertia force of an earthquake at a certain moment during the dynamic 

earthquake vibration. Typically, the peak ground acceleration (PGA) of the earthquake record is 

converted into a pseudo-static horizontal force F acting at the centroid, normalized by the block 

weight W, hence the earthquake acceleration coefficient k is defined, i.e. kWF = . Figure 4.7 

illustrates the schematics of the block on an incline problem with a horizontal static force F.  

a b 
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Figure 4.7. Force diagram for a block on an incline with pseudo- static force F. The hinge of rotation is 
marked by a star. 

When adding the pseudo-static force F, a new angle β is introduced, defined here as the angle 

between the block self-weight W and the resultant of force F and block self-weight W (see 

Figure 4.7), namely: 

k
W
F

==βtan          Equation 4-7  

In this section a mode analysis for the block on an incline problem with horizontal force 

kWF = is derived. 

Boundary 1: between toppling and stable modes 

The forces acting on the block at this boundary are W, F, N and the frictional resistance. At the 

onset of toppling the normal and the frictional forces act at the hinge, therefore they do not 

contribute to the moments acting on the block. In order for the block to remain stable against 

toppling, the line of action of the resultant of F and W must pass through the hinge, this way 

producing no moments as well. In other words, the stabilizing moments have to be equal to the 

driving moments at a state of limiting equilibrium:  

αααα sin
2
1cos

2
1sin

2
1cos

2
1 bFhFhWbW ++=      Equation 4-8 

Inserting the definition of β into Eq. 4.8 yields: 
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( )βα
βα
βα

βαα
βαα

+=
−

+
=

−
+

= tan
tantan1
tantan

tansincos
tancossin

h
b

    Equation 4-9 

Therefore at the point of limiting equilibrium with respect to toppling: 

βαδ +=           Equation 4-10 

If δ < α + β, the block will topple. 

If δ > α + β, the block will be stable. 

Boundary 2: between sliding and stable modes 

At the point of imminent sliding, friction is limiting, therefore the force preventing sliding at 

the point of limiting equilibrium with respect to sliding is Ntanφ. 

Force equilibrium parallel to the sliding direction yields: 

ααφ sincostan WFN +=         Equation 4-11 

Force equilibrium perpendicular to the sliding direction yields: 

αα sincos FWN −=         Equation 4-12 

Inserting Eq. 4.12 into Eq. 4.11, and using results from Eq. 4.9, yields:  

( )βα
βαα
βαα

αα
ααφ +=

−
+

=
−
+

= tan
tansincos
tancossin

sincos
sincostan

FW
WF

    Equation 4-13 

Therefore the limiting condition for sliding is βαφ += . 

Boundary 3: between sliding and sliding + toppling modes 

Bray and Goodman (1981) treated boundary 3 as a dynamic one, since the block is both 

sliding and on the verge of toppling. 

According to Newton’s second law, the force equilibrium in the downslope direction is: 

umNWF =−+ φαα tansincos        Equation 4-14 

Force equilibrium perpendicular to the slope yields: 
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αα sincos FWN −=         Equation 4-15 

Finding 𝑢̈𝑢 from Eq. 4.14 and 4.15, and using Eq. 4.7: 

  
( ) ( )[ ]αβαφααβααφαα sintancostansincostansincostansincos −−+=−−+= WFWWFum 

           Equation 4-16 

Since the block is on the verge of rotating, the sum of moments about the hinge is (see 

Figure 4.7): 

umhWbWhFbFh


2
cos

2
sin

2
sin

2
cos

2
+=++ αααα     Equation 4-17 

Substituting Eq. 4.16 into Eq. 4.17 yields: 

φδφ == tanh
b          Equation 4-18 

Therefore, the limiting condition for dynamic equilibrium for boundary 3 is δ = φ. 

Boundary 4: between toppling and sliding + toppling modes 

Yeung (1991) treated boundary 4 as a dynamic boundary because at this boundary the block is 

toppling and on the verge of sliding. 

According to Newton’s second law, force equilibrium in the downslope direction yields: 

δφαα costansincos umNWF =−+       Equation 4-19 

and the force equilibrium perpendicular to the slope yields: 

δαα sincossin umWNF =−+        Equation 4-20 

Taking moments about the centroid (since at the onset of sliding the angular acceleration is 

uniform about the block) will again yield Eq. 4.3. Solving Eq. 4.3, 4.4, 4.19 and 4.20 yields: 

( )[ ] ( )
( )[ ] ( )

( )
( ) ψψδδ

ψψδδ
βαβαδδ
βαβαδδφ

coscoscos3
sincossin3

coscoscos3
sincossin3tan

+−
+−

=
+++−
+++−

=   Equation 4-21 

The complete derivation of boundary 4 is provided in appendix A.    
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To summarize, in the case where a horizontal force of magnitude 𝐹𝐹 = 𝑘𝑘𝑘𝑘 acts on the centroid of 

the block, the boundaries of the failure modes become a function of three angles: φ, δ and 

ψ = α + β, instead of α for the case of gravitational loading alone. Alternatively, if using k 

instead of β is preferable, then  

𝜓𝜓 = tan−1 𝑘𝑘+tan𝛼𝛼
1−𝑘𝑘 tan𝛼𝛼

         Equation 4-22 

 Verification of the dynamic toppling and sliding boundaries with DDA  

As mentioned earlier, Yeung (1991) verified the 2D-DDA with the analytical solutions of 

mode analysis under gravitational loading. He found that 2D-DDA results agreed well with the 

analytical solution for sliding or toppling and utilized the DDA results to modify the dynamic 

boundary between toppling and sliding + toppling (boundary 4) . Here both 2D and 3D-DDA are 

used to verify the pseudo-static analysis which considers an additional inertia force. DDA basics 

will not be reviewed here as they were thoroughly discussed in Chapter 2 of the thesis. 

The 3D-DDA code is relatively new, and has not been extensively verified as the 2D-DDA 

code. Thus we begin with verification of 3D-DDA using the existing analytical solution for the 

four failure modes of the block on an incline problem, in section 4.4.1. Once verified, we use 2D 

and 3D-DDA to confirm our modified boundaries which also consider pseudo-static loading, in 

sections 4.4.2 and 4.4.3, respectively.  

The block and the incline are modeled in the DDA, and a measurement point, of which 

displacements and rotations are documented throughout the simulations, is placed at the hinge 

(see Figure 4.7). The displacements and rotations of the measurement point for the first 0.5 sec of 

the simulation are then examined, and their values determine the nature of the failure mode. It is 

important to state here that in DDA the rotations are uniform throughout the block, because of the 

first order approximation. 

The following criteria are adopted to judge the obtained failure mode from DDA output: 

 The block is considered stable if the recorded displacements at the measurement point 
are less than 0.001 m and are arrested, and if the rotation is less than 0.0001 radians. 
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 The block is sliding if the displacements are more than 0.001 m and the block 
accelerates, and if the rotation is less than 0.0001 radians. 

 The block is toppling if the displacements are less than 0.001 m, but the rotation is more 
than 0.0001 radians. 

 The block is sliding and toppling if both the displacement is larger than 0.001 m and the 
rotation is larger than 0.0001 radians 

A flow chart describing the failure mode judgment criteria for DDA output is presented in 

Figure 4.8.  

 

Figure 4.8. Flow chart describing criteria for determination of failure mode in numerical simulations 

 Verification of 3D-DDA with mode analysis charts under gravitational loading 

The numerical and physical parameters used in the verification study of the 3D-DDA are 

presented in Table 4-1. For the sake of comparison with the original verification study performed 

by Yeung (1991) the control parameters used in his analysis are provided in Table 4-2. 

Table 4-1. Numerical and physical parameters used for 3D-DDA verification study 

Parameter Value 
Static-dynamic parameter dd 1 (fully dynamic) 
Normal contact spring stiffness g0 1x109 N/m 
Maximum time step interval g1 0.00001 sec. 
Maximum displacement ratio g2 0.0001 
Density 2730 kg/m3 
Young’s modulus 42.9 GPa 
Poisson’s ratio 0.18 
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Table 4-2. Numerical and physical parameters used for 2D-DDA verification study by Yeung (1991) 

Parameter Value 
Static-dynamic parameter dd 0 (fully static) 
Normal contact spring stiffness g0 1x1010 N/m 
Maximum time step interval g1 0.05 sec. 
Maximum displacement ratio g2 0.005 
Density 3000 kg/m3 
Young’s modulus 10 GPa 
Poisson’s ratio 0.49 

 

As can be observed from Tables 4-1 and 4-2, the density and Young’s modulus are of the 

same order of magnitude, whereas the time step interval and the normal contact spring stiffness in 

3D-DDA are three and one orders of magnitude lower, respectively. The normal contact spring 

stiffness, or k, selected for the verification study is between (1/6) to (1/26) E*L, where E is 

Young’s modulus and L is the average block diameter, the value recommended by Shi. 

The friction angle selected for the study was 20o in most analyses. The list of analyses 

performed in the verification study is provided in Table 4-3,and projection of the results on the 

three-dimensional mode chart is presented in Figure 4.9. The agreement between the 3D-DDA 

and the analytical solution is excellent. 

Table 4-3. Analytical mode analysis vs. 3D-DDA results for gravitational loading 

α φ δ mode predicted by 
analytical solution 

mode obtained by 
DDA 

15 20 14 toppling toppling 
15 20 14.4 toppling toppling 
15 20 14.8 toppling toppling 
15 20 15.2 stable stable 
15 20 15.6 stable stable 
15 20 16 stable stable 
15 20 30 stable stable 
15 20 50 stable stable 
15 20 70 stable stable 
40 20 19 sliding + toppling sliding + toppling 
40 20 19.8 sliding + toppling sliding + toppling 
40 20 20.2 sliding sliding 
40 20 21 sliding sliding 
40 20 30 sliding sliding 
14 20 15 stable stable 
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14.8 20 15 stable stable 
15.2 20 15 toppling toppling 
15.6 20 15 toppling toppling 
16 20 15 toppling toppling 
30 20 15 toppling toppling 
40 20 15 sliding + toppling sliding + toppling 
50 20 15 sliding + toppling sliding + toppling 
10 20 50 stable stable 
19 20 50 stable stable 

19.8 20 50 stable stable 
20.2 20 50 sliding stable 
20.6 20 50 sliding stable 
21 20 50 sliding sliding 
30 20 50 sliding sliding 
40 20 50 sliding sliding 
50 20 50 sliding sliding 
30 40 30.96 stable stable 
10 20 30.96 stable stable 
50 60 56.31 stable stable 
30 5 11.31 sliding sliding 
10 5 8.53 sliding sliding 
50 45 56.31 sliding sliding 
30 40 11.31 toppling toppling 
10 20 8.53 toppling toppling 
50 60 38.66 toppling toppling 
50 45 38.66 toppling toppling 
30 30 11.3 sliding + toppling sliding + toppling 
10 9 8.53 sliding + toppling sliding + toppling 
22 20 50 sliding sliding 

20.8 20 50 sliding sliding 
15 20 10 toppling toppling 
22 20 10 toppling toppling 
30 20 11.31 toppling toppling 
37 20 11.31 toppling toppling 
37 20 15 toppling toppling 
22 20 18 toppling toppling 
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Figure 4.9. Results of 3D-DDA verification analysis with the analytical solution. 

 Verification of the mode analysis charts with 2D-DDA for pseudo-static force  

The 2D-DDA has been verified many times in the past, and has proved to be a useful and 

reliable tool for numerical modeling of discontinuous problems in geomechanics and rock 

mechanics (e.g. Kamai and Hatzor, 2008; MacLaughlin and Doolin, 2006; Yagoda-Biran and 

Hatzor, 2010). Therefore we use the 2D-DDA to confirm the analytical solution derived for a 

block on an incline subjected to gravity and a horizontal pseudo-static force.  The physical and 

numerical parameters used in the 2D-DDA simulations are presented in Table 4-4. The time step 

size that can be used in the 2D-DDA is 100 times larger than the one used in 3D-DDA, and the 

spring stiffness is identical to the value used by Yeung (1991) (see Table 4-2), and is between 0.4 

and 1.7 of E*L (depending on the size of the sliding block, determining δ), the value 

recommended by Shi (1996a).  

 Table 4-4. Physical and numerical control parameters used in the 2D-DDA with external force F 

Parameter Value 
Static-dynamic parameter dd 1 (fully dynamic) 
Normal contact spring stiffness g0 1x1010 N/m 
Maximum time step interval g1 0.001 sec. 
Maximum displacement ratio g2 0.001 
Density 2730 kg/m3 
Young’s modulus 42.9 GPa 
Poisson’s ratio 0.18 
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Since the addition of an external force F introduces a new angle to the mode chart, the angle 

ψ = α+β, different values for ψ can be generated by changing β (through a change in F) without 

changing α. This allows for fast modeling and multiple simulations using the same DDA mesh. 

The α used in the verification study was 10o. Table 4-5 lists the different simulations and their 

results for the 2D-DDA verification. 

Table 4-5. Analytical mode analysis vs. 2D-DDA with horizontal force F 

ψ (α+β) φ δ Mode predicted by 
analytical solution 

Mode obtained by 
DDA 

29 35 30.96 stable stable 
29.5 35 30.96 stable stable 
30 35 30.96 stable stable 

30.5 35 30.96 stable stable 
30.9 35 30.96 stable stable 
31 35 30.96 toppling toppling 

31.5 35 30.96 toppling toppling 
32 35 30.96 toppling toppling 

32.5 35 30.96 toppling toppling 
30 50 30.96 stable stable 

30.5 50 30.96 stable stable 
30.9 50 30.96 stable stable 
31 50 30.96 toppling toppling 

31.5 50 30.96 toppling toppling 
32.5 50 30.96 toppling toppling 
18 20 30.96 stable stable 

18.5 20 30.96 stable stable 
19 20 30.96 stable stable 

19.5 20 30.96 stable stable 
19.8 20 30.96 stable stable 
20.2 20 30.96 sliding sliding 
21 20 30.96 sliding sliding 

21.5 20 30.96 sliding sliding 
22 20 30.96 sliding sliding 
48 50 30.96 toppling toppling 

49.8 50 30.96 toppling toppling 
52 50 30.96 toppling toppling 
35 30 30.96 sliding sliding + toppling 
36 30 30.96 sliding sliding 
35 29 30.96 sliding sliding 
35 25 30.96 sliding sliding 
40 30 30.96 sliding sliding 
45 30 30.96 sliding sliding 
50 30 30.96 sliding sliding 
60 30 30.96 sliding sliding 
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70 30 30.96 sliding sliding 
80 20 30.96 sliding sliding 
85 40 30.96 sliding + toppling sliding + toppling 
66 40 30.96 sliding + toppling sliding + toppling 
64 40 30.96 sliding + toppling sliding + toppling 
62 40 30.96 toppling toppling 
80 40 30.96 sliding + toppling sliding  + toppling 
82 50 30.96 toppling toppling 
84 50 30.96 toppling sliding + toppling 
86 50 30.96 sliding + toppling sliding + toppling 
80 60 30.96 toppling toppling 
70 10 30.96 sliding sliding 
70 20 30.96 sliding sliding 
70 40 30.96 sliding + toppling sliding + toppling 
70 50 30.96 toppling toppling 
20 21 20.30 stable toppling 
20 21 30.96 stable stable 
20 21 40.03 stable stable 
20 21 50.19 stable stable 
20 21 60.11 stable stable 
20 21 71.57 stable stable 
20 19 20.30 sliding sliding 
20 19 30.96 sliding sliding 
20 19 40.03 sliding sliding 
20 19 50.19 sliding sliding 
20 18.9 60.11 sliding sliding 
20 19 71.57 sliding sliding 
20 80 20.30 stable stable 
30 80 30.96 stable stable 
40 80 40.70 stable stable 
50 80 50.19 stable stable 
60 80 60.40 stable stable 
70 80 70.35 stable stable 
20 80 19.80 toppling toppling 
30 80 29.25 toppling toppling 
40 80 39.35 toppling toppling 
50 80 49.24 toppling toppling 
60 80 59.53 toppling toppling 
70 80 69.68 toppling toppling 
10 5.8 6.84 sliding sliding 
20 6 6.84 sliding sliding 
30 16 16.70 sliding sliding 
40 26 26.57 sliding sliding 
50 35 35.75 sliding sliding 
60 43 43.53 sliding sliding 
70 54 54.46 sliding sliding 
80 63 63.43 sliding sliding 
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10 8 6.84 sliding + toppling sliding + toppling 
20 8 6.84 sliding + toppling sliding + toppling 
30 17 16.70 sliding + toppling sliding + toppling 
40 27 26.57 sliding + toppling sliding + toppling 
50 36 35.75 sliding + toppling sliding + toppling 
60 44 43.53 sliding + toppling sliding + toppling 
70 55 54.46 sliding + toppling sliding + toppling 
80 64 63.43 sliding + toppling sliding + toppling 
20 10 7.07 sliding + toppling sliding + toppling 
30 20 17.22 sliding + toppling sliding + toppling 
40 20 12.95 sliding + toppling sliding + toppling 
50 20 7.07 sliding + toppling sliding + toppling 
60 40 33.02 sliding + toppling sliding + toppling 
70 50 42.92 sliding + toppling sliding + toppling 
80 62 53.06 toppling sliding + toppling 
20 10 6.05 toppling toppling 
30 20 16.17 toppling toppling 
40 20 11.97 toppling toppling 
50 20 6.05 toppling toppling 
60 40 32.05 toppling toppling 
70 50 41.99 toppling toppling 
80 62 52.00 toppling toppling 
18 30 29.00 stable stable 
50 30 29.00 sliding + toppling sliding + toppling 
40 30 29.00 sliding + toppling sliding + toppling 
35 30 29.00 sliding + toppling sliding + toppling 
32 30 29.00 toppling toppling 
50 35 29.00 toppling toppling 

 

In Figure 4.10 snapshots from two 2D-DDA simulations under pseudo-static force are 

presented. Note that a small increase in the friction angle is sufficient for changing the failure 

mode.   
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Figure 4.10. Snapshots from two simulations separated by boundary 3, i.e. a) sliding and b) 
sliding+toppling. Note the slight increase in φ between the two simulations, that results in a different 
failure mode. 

Figure 4.11 presents the results of the 2D-DDA simulations with external force F in the ψ, φ 

and δ space. Note the excellent agreement between the numerical DDA and analytical solutions. 

 

Figure 4.11. Results of 2D-DDA verification analysis with the analytical solution, with application of 
external force. 
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As mentioned before, DDA simulations were performed with a fixed inclination angle of 10o, 

and the angle ψ was altered by the force F. A few simulations were performed with different 

inclination angles, to make sure results of the simulations are repeated, and the results confirmed 

the modeling assumption made here for simplicity. 

 Verification of the mode analysis charts with 3D-DDA for pseudo-static force  

A similar process of verification was performed with the 3D-DDA. The physical and 

numerical control parameters are identical to the ones used in the gravitational loading 

verification in section 4.4.1, and are listed in Table 4-1. In Figure 4.12 snapshots from two 3D-

DDA simulations under pseudo-static force are presented.  

 

Figure 4.12. Snapshots from two simulations separated by boundary 3, i.e. a) sliding and b) 
sliding+toppling. Note the small difference in δ that results in a different failure mode. The late snapshots 
were taken from an advanced stage of the simulation, in order for the deformation to be visible. 

 

The analyses performed in this section are listed in Table 4-6, and results are plotted in 

Figure 4.13. Note the good agreement between the analytical solution and the 3D-DDA. 
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Table 4-6. Analytical mode analysis vs. 3D-DDA with horizontal force F 

ψ (α+β) φ δ mode predicted by 
analytical solution 

mode obtained by 
DDA 

29 80 30.96 stable stable 
29.5 80 30.96 stable stable 
30 80 30.96 stable stable 

30.5 80 30.96 stable stable 
30.9 80 30.96 stable stable 
31 80 30.96 toppling toppling 

31.5 80 30.96 toppling toppling 
32 80 30.96 toppling toppling 

32.5 80 30.96 toppling toppling 
33 80 30.96 toppling toppling 
27 28 30.96 stable stable 

27.5 28 30.96 stable stable 
27.8 28 30.96 stable stable 
28.2 28 30.96 sliding sliding 
28.5 28 30.96 sliding sliding 
29 28 30.96 sliding sliding 
60 40 30.96 toppling toppling 

60.5 40 30.96 toppling toppling 
61 40 30.96 toppling toppling 

61.5 40 30.96 toppling toppling 
62 40 30.96 toppling toppling 

62.5 40 30.96 toppling toppling 
63 40 30.96 toppling toppling 

63.5 40 30.96 sliding + toppling sliding + toppling 
64 40 30.96 sliding + toppling sliding + toppling 

64.5 30 30.96 sliding + toppling sliding + toppling 
65 30 30.96 sliding + toppling sliding + toppling 

65.5 30 30.96 sliding + toppling sliding + toppling 
55 30 30.96 sliding sliding 
55 30 30.54 sliding sliding 
55 30 30.11 sliding sliding 
55 30 29.68 sliding + toppling sliding + toppling 
55 50 19.80 toppling toppling 
20 21 20.30 toppling toppling 
20 21 30.96 stable stable 
20 21 40.03 stable stable 
20 21 50.19 stable stable 
20 21 60.11 stable stable 
20 21 71.57 stable stable 
20 19 20.30 sliding sliding 
20 19 30.96 sliding sliding 
20 19 40.03 sliding sliding 
20 19 50.19 sliding sliding 
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20 18.9 60.11 sliding sliding 
20 19 71.57 sliding sliding 
20 80 20.30 stable stable 
30 80 30.96 stable stable 
40 80 40.70 stable stable 
50 80 50.19 stable stable 
60 80 60.40 stable stable 
70 80 70.35 stable stable 
20 80 19.80 toppling toppling 
30 80 29.25 toppling toppling 
40 80 39.35 toppling toppling 
50 80 49.24 toppling toppling 
60 80 59.53 toppling toppling 
70 80 69.68 toppling toppling 
10 5.8 6.84 sliding sliding 
20 6 6.84 sliding sliding 
30 16 16.70 sliding sliding 
40 26 26.57 sliding sliding 
50 35 35.75 sliding sliding 
60 43 43.53 sliding sliding 
70 54 54.46 sliding sliding 
80 63 63.43 sliding sliding 
10 8 6.84 sliding + toppling sliding + toppling 
20 8 6.84 sliding + toppling sliding + toppling 
30 17 16.70 sliding + toppling sliding + toppling 
40 27 26.57 sliding + toppling sliding + toppling 
50 36 35.75 sliding + toppling sliding + toppling 
60 44 43.53 sliding + toppling sliding + toppling 
70 55 54.46 sliding + toppling sliding + toppling 
80 64 63.43 sliding + toppling sliding + toppling 
20 10 7.07 sliding + toppling sliding + toppling 
30 20 17.22 sliding + toppling sliding + toppling 
40 20 12.95 sliding + toppling sliding + toppling 
50 20 7.07 sliding + toppling sliding + toppling 
60 40 33.02 sliding + toppling sliding + toppling 
70 50 42.92 sliding + toppling sliding + toppling 
80 62 53.06 sliding + toppling sliding + toppling 
20 10 6.05 toppling toppling 
30 20 16.17 toppling toppling 
40 20 11.97 toppling toppling 
50 20 6.05 toppling toppling 
60 40 32.05 toppling toppling 
70 50 41.99 toppling toppling 
80 62 52.00 toppling toppling 
30 80 30.96 stable stable 
30 80 29.25 toppling toppling 
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Figure 4.13. Results of 3D-DDA verification analysis with the analytical solution, with application of 
external force. 

 Summary and conclusions 

Previous research regarding the problem of a block on an incline is reviewed here. Then, for 

the first time, the four possible modes (stability, sliding, sliding+toppling and toppling) are 

mapped in a three dimensional space, as the modes are a function of three angles: the block angle 

δ (block width / block height), the friction angle of the interface between the slope and the block 

φ, and the inclination of the slope α. Then a new failure mode chart is derived, incorporating the 

frequently used pseudo-static approach in geotechnical earthquake engineering. The numerical 

3D-DDA code is then verified with mode analysis for gravitational loading, and the pseudo-static 

mode chart, derived here, is confirmed with the 2D and 3D-DDA codes. 

In the new chart, derived in this research, the mode of failure of the block is again a function 

of three angles: δ, φ, and a new angle,ψ = α + β,  β  being the angle between the resultant of the 

block weight and the pseudo-static force applied on the block, and the vertical direction. 

Verification of the 3D-DDA with the formerly derived analytical solution for a block on an 

inclined plane under gravitational loading alone proves the 3D-DDA can accurately solve the 

problem. Furthermore, the 2D and 3D DDA simulations of the block subjected to pseudo-static 

horizontal force confirm the new analytical boundaries derived here, and once again confirm the 

dynamic nature of boundary 4, which separates toppling from sliding and toppling. 
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When designing a proper support for rock masses that can be modeled as a block on an 

incline, it is sometimes crucial to take into account seismic forces that can affect the stability of 

the rock mass. The new chart for failure modes, with the incorporation of a pseudo-static 

horizontal force simulating the seismic force of an earthquake, is an easy, more intuitive way to 

understand and predict the behavior of rock masses subjected to seismic loads, when these are 

modeled as a pseudo-static horizontal force. When using the new chart, the pseudo-static force 

for the mode analysis should be carefully selected, taking into account seismic hazard 

assessments in the region discussed, and preferably site effects, where these are known.   
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 Paleo-seismological implications of historic block displacements in the 

Western Wall Tunnels, the Old City of Jerusalem  

 Introduction 

After proving that site response analysis is feasible with 2D-DDA in chapter 3, and using the 

2D-DDA code for verification of a pseudo-static approach for a block on an inclined plane in 

chapter 4, in this chapter we will attempt to use the 2D-DDA to constrain paleo peak ground 

acceleration (PGA) values that struck a specific region. We choose to demonstrate the approach 

on the highly important, from cultural, historical and religious perspective, Western Wall Tunnels 

complex underneath the foundations of Temple Mount in the Old City of Jerusalem. Constraining 

paleo PGA values in regions where recorded earthquake data is scarce or doesn’t exist, like the 

Old City of Jerusalem, is a highly important task, as it is a way to assess the seismic hazard at 

these seismically active regions.  

Constraining paleo PGA through backward analysis of seismically induced damage in historic 

masonry structures using numerical approaches belongs to a research that could be categorized as 

“archeo-seismology” and has been explored recently by others as well. Kamai and Hatzor (2008) 

utilized the 2D-DDA to investigate displacements of blocks in damaged archeological masonry 

arches at two sites in Israel, when subjected to sinusoidal accelerations. They found the PGA and 

frequency of motion that were likely to cause the observed damage. Yagoda-Biran and Hatzor 

(2010) used a similar approach to investigate the collapse of archeological monolithic columns in 

northern Israel, and constrained the PGA of the event that caused the collapse. Other research 

groups used seismically induced damage in archeological structures to investigate other 

earthquake parameters, such as source mechanism and back azimuth of motion (Caputo et al., 

2011; Hinzen, 2009, 2012). A summary of quantitative methods in archeo-seismology is 

provided by Hinzen et al.(2011). While in the research projects mentioned earlier the boundary 

conditions of the problem were known to a good extent, in the case study discussed here there are 

many unknowns, and consequently a large number of simulations had to be performed in order to 

constrain paleo-PGA responsible for the mapped damage in the field. Supporting measured data 
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from the field do not exist, such as monitoring block displacement, local stress measurements and 

site response analysis, except for the final displacements of the damaged block in the vault. 

 Archeological setting 

The Temple Mount in the Old City of Jerusalem, the most sacred site for the Jewish religion 

and the third most holy site for Islam, has been inhabited for the last three millennia by different 

cultures and civilizations. As such, archeological research and excavations are continuously 

taking place around and inside the mountain to better understand the historic record. The Western 

Wall, also known as the Wailing Wall in the Jewish tradition, is part of the great wall that 

surrounded the second Jewish temple which was erected on Temple Mount, and in itself is 

considered a very sacred site for Judaism, second only to the Temple Mount itself. Excavations 

near the Western Wall began as early as the 19th century, by the British archeologists Charles 

Warren and Charles Wilson (Warren, 1876; Wilson et al., 1871), and following a long pause 

during most of the twentieth century, commenced after 1967 and continue to this day. The 

archeological excavation campaign near the Western Wall has revealed a series of underground 

openings and tunnels from different historical periods, an underground system referred today 

collectively as “the Western Wall Tunnels”, one of the most popular tourist destinations in Israel 

today. The buildings in the Western Wall Tunnels were not built underground originally, but 

rather were buried by buildings built during later periods above them. The older buildings, some 

of which are found filled with soil and gravel, are being revealed today by the ongoing 

excavations. 

One of the most impressive findings in the Western Wall tunnels complex is a great bridge 

along with an aqueduct that connected between Mount Moria and Mount Zion across the 

Tyropoeon valley which is assumed to have serviced the traffic to the Temple Mount 

(Figure 5.1). The time period of the bridge construction will be addressed later in the discussion 

section. The bridge, hereafter referred to as the ‘Great Causeway’, is actually two bridges 

stretching one next to the other, each constructed of two rows of adjacent barrel vaults (Weksler-

Bdolah et al., 2009). An example of a barrel vault bridge from the Ottoman period next to the 

town of Beer- Sheva can be seen in Figure 5.2. 
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Figure 5.1. Map of ancient Jerusalem (after Barclay, 1858).  

 

Figure 5.2. A barrel vault bridge built by the Turkish army during the First World War, Beer- Sheva 
Valley, Israel. Picture: Zahi Pan.  

The length of the Great Causeway is 100 m, and its width is approximately 11 meters 

(Weksler-Bdolah et al., 2009) (Figure 5.3a). Not all the vaults have been excavated yet, but 

investigation of Vault 21 (see Figure 5.3b) reveals some unique block displacements in its roof.  

Mount 
Moria 

Mount 
Zion 
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a)  

b)   

Figure 5.3. a) a section of the Great Causeway facing north (Onn et al., 2011). Vault 21 marked green. b) a 
picture taken in vault 21, looking at the ceiling. Note the marked downward displaced block. Picture by 
Yael Rosental. 

A block adjacent to the center row of the vault, exhibits 7 cm of downward displacement, and 

appears locked in place. Keeping in mind that a vault, like an arch, is essentially a compressive 

structure, such arrested downward displacement can only result from instantaneous release of 

compressive stresses followed by re-compression, because the block moved downward and then 

was locked in place. It is very reasonable to assume that such stress release can occur during 

structural vibrations induced by dynamic seismic loading. Therefore mapping and modeling of 

the observed block displacement may be used to obtain some constraints on the paleo- seismic 

peak ground acceleration (PGA) that may have struck the structure, since it has been exposed to 

possible seismic hazards. This is particularly relevant because of the seismic history of Jerusalem 
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derived from the nearby, seismically active, Dead Sea Transform.  In this chapter we will try to 

constrain the PGA value that could have triggered the observed damage in Vault 21. Using 

available comprehensive earthquake catalogues for the past four millennia for the Levant region 

(Ben-Menahem, 1991) we will also try to place some time limits for the observed failure. The 

selected method of analysis will be the two dimensional DDA which has been verified 

extensively for dynamic applications by many researchers (for example Kamai and Hatzor, 2008; 

Yagoda-Biran and Hatzor, 2010).  

 The model of Vault 21 

 Initial assumptions 

The barrel vault is naturally a three dimensional structure, and modeling it in two dimensions 

is of course an assumption that has to be justified. As mentioned earlier, the length of the bridge 

is 100 m, and its width is about 10 meters, so from a purely geometrical point of view, and 

because there are no forces acting on the vault parallel to its axis direction (see Figure 5.2), it is 

suggested here that the vault could be modeled as an arch in a state of plane stress. However, 

plane stress (as well as plane strain) is an assumption usually applied for continuous media. 

When dealing with discrete block systems, the assumption of plane stress would best be 

supported by measured stresses in the field, which, unfortunately, do not exist. For the sake of 

modeling we will assume the vault is in a state of plane stress.  

There are many unknowns, when trying to determine the PGA that had caused the 

displacements as observed today in vault 21: 

1. Was the observed damage necessarily induced by an earthquake? 

2. If so - did the observed damage occur during a single event? 

3. Since samples for friction angle determination tests could not be extracted, as the Giant 

Causeway is a very sensitive archeological excavation site, and as the mortar that must 

have existed between the blocks was totally washed at some places, what was the 

effective friction angle between the blocks at the time of the event?  
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4. What was the overburden at the time of the damage: was it while the bridge was serving 

as a road to the Temple Mount, or did it occur after the bridge had already been buried by 

newer buildings? 

The only assumption made regarding these unknowns is that the observed displacement 

occurred during a single event, rather than an accumulation of many events. The rest of the 

unknowns mentioned above will be constrained through an extensive sensitivity analysis study, 

the results of which will be presented in the discussion section.  

 Geometry 

Vault 21 was modeled in the 2D – DDA, therefore it is represented as a single arch. The arch 

is composed of nineteen blocks, numbered consecutively from 1 to 19 (see Figure 5.4). Blocks 1 

and 19 were assigned with fixed points, therefore cannot move. Measurement points were 

assigned to all nineteen blocks, and displacements, rotations and strain readings for these points 

were printed as output by the code. Nineteen load points were assigned to the model, one at the 

center of each of the blocks’ top face. These loading points were used to transfer overburden 

loads to the blocks, i.e. the filling above the vault, the pavement rocks of the bridge and excess 

overburden weight. The physical characteristics of the blocks constructing Vault 21 and 

numerical control parameters used in the simulations are listed in Table 5-1.  

 

Figure 5.4. Vault 21, with block numbering. 

 



Chapter 5                                                                                Paleoseismology in the Western Wall Tunnels, Jerusalem 

 

85 

 

Table 5-1. Physical and numerical parameters used in the simulations of vault 21 

parameter value 
dynamic parameter dd 1 (fully dynamic) 
normal contact spring stiffness  1x108  kN/m 
time step size 0.001 sec 
displacement ratio 0.001 
density 2500 kg/m3 
Young’s modulus 30 GPa 
Poisson’ ratio 0.25 

 

 Overburden 

The vault was loaded by either one of two overburden schemes:  

1. By the Great Causeway that led to Temple Mount. The load is calculated by an assumed 

fill density of 18 kN/m3 and pavement density of 25 kN/m3 (Eng. Yael Rosental, personal 

communication). This overburden scheme will be referred to as light.  

2. By the Great Causeway and the Muslim Quarter built over it today. The estimated load of 

the Muslim Quarter is 300 kN/m2 (Eng. Yael Rosental, personal communication), and it is 

added to the load of the fill and the pavement. This load scheme will be referred to as 

heavy.  

 Simulations types 

The vault was subjected to four types of simulations, under different boundary conditions:  

1) Static analyses: the vault was loaded by gravity only, under the two different overburden 

schemes, and under varying values of friction angle between the blocks, in order to find 

the minimal friction angle required for static stability. 

2) Static analyses for the two loading schemes, under varying friction angles from the 

minimal friction angle required for static stability, up to 40o, and removal of the 

overburden from a single block at a time, for blocks 5 to 15. The rationale behind the 

removal of overburden is that it was observed in the field, that some of the fill material 

was washed away from the top of the vault, thus removing the existing overburden from a 

specific keystone in the vault (Figure 5.5). As will be shown later, removal of the 
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overburden from different blocks might have significant effect on the stability of the 

vault, and therefore is considered in the simulations. Overburden was removed from 

blocks 5-15 only, because blocks 1 and 19 are fixed and therefore overburden removal 

from them will have no effect. As for blocks 2-4 and 16-18, they are very steeply 

oriented, and it is therefore assumed that even if fill above them was washed, they could 

not have remained free of overburden because adjacent fill material would inevitably 

cover them again. 

3) Dynamic analyses for the two loading schemes, with varying friction angles, from the 

minimal friction angle required for static stability, up to 40o. During the dynamic analyses 

the vault was subjected to acceleration record of a real earthquake, where the PGA of the 

record was varied between 0.5 and 5 g. 

4) Dynamic analyses for the two loading schemes, under varying friction angles from the 

minimal friction angle required for static stability, up to 40o, removal of the overburden 

from a single block at a time, for blocks 5 to 15, and PGA values varying between 0.5 g 

and 5 g.  

 

Figure 5.5. Schematic diagram of the vault. Fill material is missing in a certain area, this way removing 
the overburden load from a single block. 

The acceleration record used in the dynamic analyses is the record of the Gulf of Aqaba 

earthquake, recorded on 25.11.1995, Mw=7.2. The original record was recorded in the city of 

Eilat, Israel, on fill, some 70 km from the epicenter. The record used here was de-convoluted for 

rock response, by Zaslavsky and Shapira (2000b). A time window of 10 sec was selected, and the 
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east-west along with the vertical component were used (Figure 5.6). The PGA value of the 

horizontal component in the selected time window is 0.05 g, and the record was up-scaled by 

multiplying the entire time series by a scalar to obtain the desired level of PGA. Each simulation 

was given enough time to stabilize under gravity (between 1 and 10 seconds, depending on the 

friction angle used). For the dynamic analyses, the acceleration record was applied for 10 sec of 

real time after stabilization under gravity, followed by four more seconds after the earthquake had 

terminated.  

a) b)  

Figure 5.6. The acceleration record for the Nueiba 1995 Mw = 7.2 earthquake de-convoluted for rock 
response (after Zaslavsky and Shapira, 2000b). a) the entire E-W and vertical record. The red rectangle 
indicates the time window selected for dynamic analyses. b) the time window of 10 sec, between 15 and 
25 sec, used in the dynamic simulations. 

 Results 

Following the static simulations described in section 5.3.4, it was found that under the light 

overburden the vault was stable for friction angles of 9o and higher, and for the heavy overburden 

the vault was stable for friction angles of 12o and higher. Namely, under any reasonable friction 

angle value for the masonry block interfaces the vault is assumed to be stable under static 

conditions, as indeed would be expected. 

 General response of the vault to different variables 

Two outputs of the simulations were of interest: first the vertical displacements of the different 

blocks, and second, and equally important, the graphical output of the analysis at the end of the 
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simulation. The behavior of the vault was then categorized, according to the displacement 

records, into one of three performance categories: 

1) Stable, insignificant displacements: the vault is stable, and the block that exhibited 

maximum displacement moved less than 1 cm at the end of the simulation. All 

simulations that fall into this category are colored green. 

2) Stable, significant displacements: the vault is stable, and the block that exhibited 

maximum displacement moved more than 1 cm at the end of the simulation. All 

simulations that fall into this category are colored orange. 

3) Unstable: the vault collapsed. All simulations that fall into this category are colored red. 

A total of 1183 simulations were run, under the four different simulation types described in 

section 5.3.4. A table listing the simulations is available in Appendix B. A total of 805 

simulations were performed with the light overburden, and 378 simulations with the heavy 

overburden. The large difference between the number of simulations for each overburden scheme 

is a result of the higher stability the vault exhibited under the heavy overburden – when the vault 

experienced hardly any displacements for low friction angles, higher friction angles were not 

simulated. 

Figure 5.7 presents the distribution of the three behavior categories, in percentages. It can be 

seen from Figure 5.7a that in almost half of the simulations the vault collapsed, and the other half 

is almost evenly divided between significant and insignificant displacements. When investigating 

the results for the different overburden schemes separately, in Figure 5.7b and c, it can be seen 

that for the light overburden, in more than 50% of the simulations the vault collapsed, while for 

the heavy overburden, more than 50% were simulations with insignificant displacements, 

respectively.  

 



Chapter 5                                                                                Paleoseismology in the Western Wall Tunnels, Jerusalem 

 

89 

 

a  

b  c   

Figure 5.7. Result distributions in percentages of all (a), light overburden (b) and heavy overburden (c) 
simulations. 

It is obvious that the data as presented in Figure 5.7 is biased, since many simulations, 

especially ones with the heavy overburden scheme, were not run as explained earlier. Therefore, 

a bias correction was applied, and all the simulations “missing” from the total of 1183 

simulations actually run were added. All the simulations added for the correction are simulations 

that belong in the green category, that is, insignificant displacements. After the bias correction, 

there are 1913 simulations, where 975 are light overburden simulations, and 938 are heavy 

overburden simulations. In Figure 5.8 the distribution of the three different behavior categories 

after the bias correction is plotted. Now more than 50% of the total simulations result in 

insignificant displacements (green category, Figure 5.8a), and when analyzing the different 

overburden schemes, while the picture for the light overburden does not change dramatically 

(Figure 5.8b), the picture of the heavy overburden does, and now more than 80% of the 

simulations return insignificant displacements (Figure 5.8c).  
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a  

b  c   

Figure 5.8. Result distributions in percentages after bias correction, of all (a), light overburden (b) and 
heavy overburden (c) simulations. 

The next stage is to examine the response of the vault, again, by the three categories, as a 

function of the changing variables, or unknowns. The data analyzed here will be the unbiased 

data, and the response of the vault is investigated under the change in one variable at a time.  

5.4.1.1 Response of the vault to changes in friction angle 

Figure 5.9a and b present the response of the modeled vault as a function of changing values 

of friction angle, for the light overburden and heavy overburden, respectively. When looking at 

the heavy overburden results, in Figure 5.9b, it can be seen that for higher friction angles the 

stability region grows, and more simulations are stable with insignificant displacements. This is 

intuitive – the high friction keeps the vault more stable. However, when looking at Figure 5.9a, a 

different picture is obtained for the light overburden. Even when reaching the high friction 

angles, there is no significant change in the overall distribution of the different vault behaviors; 

even with high friction angles the vault still exhibits the same percentages of collapse, as in the 

lower friction angles.  
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a  b  

Figure 5.9. the distribution of the vault response under different fricion angles, a) light overburden and b) 
heavy overburden. 

Before attempting to explain this phenomenon, the study of the stability of masonry arches 

will be briefly reviewed. An analytical approach for describing the limit behavior of a masonry 

arch at the point of collapse was developed by Heyman (1982), and by Vilnay and Cheung 

(1986) and Vilnay (1988), who modeled the masonry arch as a three-beam model. Heyman 

(1982) made three key assumptions: 1) sliding failure cannot occur in an arch, either because of 

high friction or block locking 2) masonry has no tensile strength and 3) masonry has infinite 

compressive strength. The most significant assumption considering the strength of the arch is the 

second one, which indicates that failure of the arch is conditioned by the existence of tensile 

forces at the joints. Since there is no tensile strength across the joints, such forces cause opening 

of some of the joints by hinge formation either at the top or the bottom of the joint, and by 

rotation of the blocks about their edges. The location of hinges and amount of rotation determine 

the mode of failure the arch experiences, if rotation is not arrested. The existence of tensile forces 

at the joints can be studied by investigating the position of the thrust line (Heyman, 1982; Vilnay 

and Cheung, 1986). The thrust line connects all equivalent stress vectors, representing the 

compressive stresses transmitted between the blocks, at equilibrium with external loads. If the 

thrust line is entirely contained within an arch, the arch is stable. On the other hand, if the line of 

thrust touches the edge of the arch ring, a hinge will form. In order for the arch to form a failure 

mechanism, four or more hinges must be formed, as four hinges will divide the arch to three 

beams. Heyman (1982), Vilnay and Cheung (1986) and Vilnay (1988) also studied the stability of 

an arch loaded by an external point load. Applying external point load causes shifts in the 
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location of the line of thrust and of the hinges, and can cause failure if the load is high enough. 

Figure 5.10 shows the schematics of a semi-circular arch loaded by an external point load P. Note 

the dashed trace of the line of thrust.  

 

Figure 5.10. Failure mechanism of a semi-circular arch under external point load P. After Heyman (1997). 

Going back to our light overburden simulations, the phenomenon discussed earlier can be 

explained by the failure mechanism illustrated in Figure 5.11, in which snapshots from a single 

simulation are presented, under PGA = 4 g and φ = 40o. It seems that at high friction angles the 

vault exhibits the behavior similar to the one described analytically by Heyman (1982). The 

deformation of the block system is locked after some initial damage, forming a more or less rigid 

structure composed of three beams with distinct hinges. Under high PGA values, the vault 

experiences significant displacements, and the beams disconnect from each other, leading to total 

collapse. In the case of light load, a high friction angle does not allow the displacements between 

the blocks, which can stabilize the vault even under large displacements, give it some flexibility, 

and prevent it from collapsing. Heyman (1982) subjected the arch to a static point load, but we 

show here that dynamic loads result in the same failure mechanism.  

a      b  

Figure 5.11. Snapshots from a DDA simulation under the light overburden. PGA = 4 g and φ = 40, a) at 
the beginning of the simulation and b) after 7 sec of the simulation. Note the vault is actually divided into 
three rigid beams.  
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5.4.1.2 Response of the vault to changes in PGA values 

In Figure 5.12 the response of the vault as a function of changing values of PGA is plotted. As 

would be intuitively expected, the higher the PGA value the more confined the area of stability is. 

This trend is similar for both light and heavy overburdens, but is much more significant in the 

case of the light overburden. 

a  b  

Figure 5.12.The distribution of the vault response under different PGA values for a) light overburden and 
b) heavy overburden. 

5.4.1.3 Response of the vault to overburden removal from individual blocks 

Overburden was removed from individual blocks since in the field it was observed that some 

of the fill material was washed away from the top of the vault, thus removing the existing 

overburden from a specific keystone in the vault. It is suggested that this overburden removal 

might have a significant effect on relative displacements of the different blocks, and therefore this 

approach was adopted for many of the simulations.  

Figure 5.13 a and b present the response of the vault as a function of changing block number 

with overburden removal. From Figure 5.13a one can see that the vault is more sensitive to 

removal of overburden from its flanks, rather than from its center. A similar but less significant 

trend is visible in the heavy overburden (Figure 5.13b). 
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a  b  

Figure 5.13. The distribution of the vault response when removing the overburden from different blocks, a 
single block at a time for: a) light overburden and b) heavy overburden. 

 Response of block 11 

The main objective of the project is finding the PGA of the event that had caused the damage 

in Vault 21. In order to do that, the graphical output of each and every simulation of the 1183 

simulations run was studied visually. Only simulations that belong to category 2, the orange 

category – stable vault with significant displacements, can be considered relevant for this 

purpose. As mentioned earlier, block 11 is the block that moved downwards relative to the rest of 

the roof. The net displacement of block 11 in the simulations is less important than its 

displacement relative to the adjacent blocks. In reality, block 11 is displaced about 7 cm relative 

to its neighbors.  

Out of 1183 simulations run, 284 simulations were categorized orange. Of these, 48 returned 

damage that was initially considered relevant. Of the 48, 18 simulations made it to the final line, 

and they are listed in Table 5-2, along with their parameters. For the sake of discussion, the 

simulations listed in Table 5-2 will be referred to as “relevant”. 
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Table 5-2.The simulations that returned damage that resembles the damage observed at Vault 21 

# 
 

Loading 
scheme 

PGA 
(g) 

Overburden 
removed 

from block # 

Friction 
angle 

Relative 
displacement of 

block 11 
1 Light - 6 9 1 
2 Light 2.5 - 25 1.5 (block 12) 
3 Light 2.5 - 30 2 (block 12) 
4 Light 2 14 18 2 
5 Light 2 9 15 1.5 
6 Light 2 8 15 2 
7 Light 2 8 14 1.5 
8 Light 2 6 14 3 
9 Light 2 5 14 1.5 

10 Light 1.5 15 17 1 
11 Light 1.5 8 14 1.5 
12 Light 1.5 8 13 2 
13 Light 1.5 8 12 3 
14 Light 1 8 10 2.5 
15 heavy 5 5 17 1.5 
16 heavy 4.5 9 14 1 
17 heavy 4.5 5 16 1.2 
18 heavy 4 6 15 1.5 

 

Figure 5.14 presents the final snapshots of all relevant simulations listed in Table 5-2. For 

each simulation the overall view of the vault is presented, as well as an inset of block 11 and its 

neighbors. The relative displacement of block 11 is labeled in black.  
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Figure 5.14. Graphic output of the 18 relevant simulations listed in Table 5-2, which best mimicked the 
damage to block 11 in vault 21. In each simulation, the vicinity of block 11 was enlarged, and the relative 
displacement of block 11 is stated in the figure. 
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Figure 5.14. Contnd.  

Examination of Table 5-2 leads to some interesting insights: 

1. Only 4 out of 18 relevant simulations were with heavy overburden (simulations 15-18). 

That is, 78% of relevant simulations were under light overburden. 

2. Only one relevant simulation was under static conditions (simulation 1). 

3. Only two relevant simulations were executed with overburden on all blocks (simulations 

2-3). In these simulations, it was block 12 that was actually relatively displaced. 
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4. In all dynamic simulations with overburden removal, the friction angle was between 10-

18o (simulations 4-18). This value will be discussed in the discussion section. 

Inspection of the terminal snapshots of simulations 8, 13 and 14 in Figure 5.14 reveals that 

they return the highest values of relative displacements of block 11: 3, 3 and 2.5 cm, respectively. 

Although the displacement obtained in DDA is lower than the one observed at Vault 21, these 

simulations are closest to mimicking the damage observed. Inspection of the relevant parameters 

of simulations 8, 13 and 14, reveals the PGA value of these simulations is between 1.5-2 g, with 

overburden removed from a single block. In these simulations the overburden removal is from 

blocks 6 and 8, from the left flank of the vault, and the friction angle is 10-14o. 

 Discussion  

From section 5.4.2 we learn that the PGA required to cause the damage observed in Vault 21 

is between 1.5 and 2 g.  These values are no doubt very high, much higher than the value of 0.132 

g expected in Jerusalem according to the Israeli Building Code 413 (S.I.I., 2004). In order to 

constrain the time of the event that caused the damage to Vault 21, we must search for historical 

earthquakes that left their marks on Jerusalem.  

 Historical earthquakes 

In an investigation of the last 4000 years earthquake catalogue along the Dead Sea Rift (Ben-

Menahem, 1991), many earthquakes that were either felt in Jerusalem, or damaged it, are 

reported. In order to constrain the time period for the potential earthquake that caused the studied 

damage in Vault 21, the time span of the Great Causeway while it was serving its purpose, first 

needs to be determined. There is an agreement between archaeologists concerning the period in 

which the Great Causeway was buried, and that is the Mamluk period (starting 1260 AD). 

However, there is a debate concerning the time the Great Causeway was constructed. Bahat 

(1993, 2007) claims that an older bridge was built during the Hashmonai period (160 – 63 BC), 

but was destroyed along with the second Temple, and the bridge that was exposed in excavations 

today was actually built during the Muslim period (638-1100 AD). Weksler-Bdolah et al. (2009) 

claim that the present bridge was built during the Roman period between the 2nd – 3rd centuries 

AD. Following Weksler-Bdolah et al. (2009), which consider a longer time span for the Great 
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Causeway being exposed above the ground surface, we looked for earthquakes that occurred 

between 70 AD (the time of the destruction of the second Temple, an event that the bridge most 

definitely would not have survived), and 1260 AD (the beginning of the Mamluk period). 

Table 5-3 lists the earthquakes from that period of time, which Ben-Menahem (1991) in his 

catalogue clearly states that these quakes were felt in Jerusalem, or had damaged Jerusalem.  

Table 5-3. A list of earthquakes from 70 to 1260 AD that had damaged (shaded) or were felt in Jerusalem. 
From Ben–Menahem (1991)  

Date 
(AD) Location M

L
 damage description 

306 Off coast Sur 7.1 Destruction at Sur and Sidon, felt in Jerusalem. Tsunami at Ceasaria. 

362 31.3N 35.6E 6.7 East of the Lisan. damage to the temple area in Jerusalem. 

447 40.2N 28E 7.5 Felt in Jerusalem and Egypt. 

528 36.2N 36.1E 7.1 Destruction of Antioch, damage in Jerusalem and Damascus. Felt in 
Egypt, Turkey, Armenia and Mesopotamia 

746 32N 35.5E 7.3 Destruction in buildings in all major cities from Tiberius to Arad. 

859 36.2N 36.1E 8 Total destruction of Antioch. Damage in Jerusalem (D=500 km).  Felt 
in Egypt, Turkey, Armenia, Mesopotamia and Mecca. 

1032 Off coast 
Gaza 6.9 Tsunami, heavy damage in Gaza, Felt in Jerusalem and Negev. 

1068 Off coast 
Yavne 7 Tsunami at southern Israeli coasts. Sea receded and returned, felt in 

Jerusalem, Ramla, Egypt and Arabia. 

1070 Arava 6 Felt in Jerusalem. 

1114 37.1N 36E 7 Tsunami. Felt in Jerusalem, destruction of Antioch. Epicenter probably 
on SW tip of EAFS. 

1115 37N 38.9E 7.5 Walls of Edessa destroyed. Strong in Syria and Jerusalem. 

1170 35.9N 36.4E 7.5 
Many thousands of victims. Destruction in Lebanon and Syria. Damage 
and casualties in the Orontes valley and Israel. Damage to the walls of 
Sur and Jerusalem. 

Placing these earthquakes, with their epicenters located by Ben-Menahem (1991) on a map 

(Figure 5.15), the distance to Jerusalem can be measured. 
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Figure 5.15. A location map of the historical earthquakes, according to Ben-Menahem (1991). The red and 
yellow symbols indicate the locations of epicenters of earthquakes that had damaged or were felt in 
Jerusalem (indicated by a star), respectively.  
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With the earthquake magnitude, the PGA at a certain distance R from the epicenter can be 

estimated using published attenuation relationships. Here PGA was calculated using two 

attenuation relations: Boore et al. (1997) adapted to the Dead Sea transform (Eq. 5.1), 

31.02+R0.778ln-6)-0.525(M+-0.055=PGAln 2     Equation 5-1 

and Ben-Menahem (1991), in Eq. 5.2 

( ) 400
R--1.321.21M e 25+R17.8e=PGA L        Equation 5-2 

Table 5-4 lists the earthquakes with their epicenter distance from Jerusalem, and the PGA 

calculated for Jerusalem by the two methods mentioned above. 

Table 5-4. Epicenter distance of relevant earthquakes from Jerusalem, along with the PGA calculated for 
Jerusalem using the Ben-Menahem (1991) and Boore et al. (1997) attenuation relationships 

Date Location M
L
 

Distance to 
Jerusalem 

(km) 

PGA (g) 
Ben- Menahem 

(1991) 

PGA (g) 
Boore et al. 

(1997) 

306 Off coast Sur 7.1 170 0.06 0.03 

362 31.3N 35.6E 6.7 63 0.14 0.05 

447 40.2N 28E 7.5 1100 0.0009 0.009 

528 36.2N 36.1E 7.1 500 0.007 0.013 

746 32N 35.5E 7.3 38 0.48 0.11 

859 36.2N 36.1E 8 500 0.02 0.02 

1032 Off coast Gaza 6.9 130 0.07 0.034 

1068 Off coast Yavne 7 80 0.15 0.053 

1070 Arava 6 170 0.016 0.017 

1114 37.1N 36E 7 600 0.004 0.01 

1115 37N 38.9E 7.5 670 0.005 0.013 

1170 35.9N 36.4E 7.5 470 0.014 0.017 

 Clearly from Table 5-4 it can be seen that the PGA calculated by the Ben-Menahem (1991) 

relation is higher than the one calculated by Boore et al. (1997) for short distances from 

epicenter, while the Boore et al. (1997) relation gives a higher estimation for the longer distances. 

It is important to state here that while the Boore et al. (1997) relationship is based on analysis of 
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strong motion data recordings, the Ben-Menahem  (1991) relationship is based on the Modified 

Mercalli scale, therefore the PGA calculated this way might include some site effects, as the 

Modified Mercalli intensity scale is based on the effects of the earthquake on the surface.  

Adopting the PGA calculated using the Ben-Menahem (1991) attenuation relationship, there 

are three potential earthquakes that give high values of PGA in Table 5-4: the earthquakes of 362, 

746 and 1068 AD. The earthquake of 1068 was neglected, since in his paper Ben-Menahem 

(1991) states that it was felt in Jerusalem, rather than damaged Jerusalem. Thus two earthquakes 

remain relevant: the 362 earthquake at eastern Dead Sea, and the 746 earthquake in the Jordan 

Valley, with PGA values of 0.15 and 0.48 g, respectively. However, note that even the high PGA 

value of 0.48 g of the 746 earthquake is not sufficient to explain the observed damage in vault 21, 

which requires PGA values of 1.5-2 g. In order to reach these high values, site specific 

amplifications must be considered.  

 Seismic amplification 

Seismic amplification is a phenomenon where ground motions at a site may be increased by 

focusing of seismic energy, caused by the geometry of the velocity structure, for example basin 

subsurface topography. Consider for example the basin in Figure 5.16. Inside the basin there is 

lower velocity sediment, which is surrounded by higher velocity bedrock. When the seismic 

waves propagate from the bedrock into the basin, because of the velocity differences they are 

“trapped” inside the basin, and constructive interference amplify the ground motions they cause. 

 

Figure 5.16. Schematics of the site amplification phenomenon. 
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In our case study of Jerusalem, the geological map in Figure 5.17 shows the Great Causeway 

is built over two formations from the Turonian: the Netzer and the Shivta formations, both of 

limestone lithology. Since the lithology does not support existence of amplification, a different 

mechanism must be found. 

 

Figure 5.17. Geologic map scaled 1:50,000 of the Old City of Jerusalem. The Great Causeway, location 
marked by a red rectangle, is either on the Kush = upper Cretaceous Shivta formation, or the Kun = upper 
Cretaceous Netzer formation (Sneh and Avni, 2011).  

In the case of the Great Causeway over the Valley of Tyropoeon, the valley’s beds are 

composed of the bedrock: a hard limestone. The valley itself however is filled with archeological 

material, from buildings of older periods. Drillings beneath the Great Causeway have reached a 

depth of 6 m without reaching the bedrock. At the nearby Western Wall the bedrock is 12 m deep 

(Eng. Yael Rosental, personal communications). It is thus concluded that beneath the Giant 

Causeway there is a layer of soft fill material, with depth yet to be determined, probably between 

6 and 12m, as schematically illustrated in Figure 5.18, with wave velocity much lower than the 

surrounding bedrock, a geometry that is very favorable for seismic amplifications. 
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Figure 5.18. A schematic illustration of the basic topography beneath the Giant Causeway. The brick-
patterned area is the bedrock, forming the Tyropoeon Valley, the wave-patterned area is the 
archaeological fill beneath the bridge and the Western Wall is on the right bank of the valley. 

As a rule of thumb, one-dimensional amplification factor for a homogeneous un-damped soil 

on rigid rock at resonance frequency can be approximated by equation 5.3 (Towhata, 2008): 
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If damping is considered then the amplification at resonance may be estimated using equation 

5.4: 
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where A0 is the amplification factor, ρS, vS, ρB and vB are the density and s-wave velocity for the 

soft layer and the bedrock, respectively, and ζ is the damping ratio.   

Taking reasonable values for density and shear wave velocities for the two layers, as listed in 

Table 5-5, results in amplification factors that reach very high values, as presented in Figure 5.19. 

The velocities adopted for the fill are also consistent with the definition of soil class D and E, as 

classified by NEHRP (2004). 
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Table 5-5. Values of density and shear wave velocity for amplification calculations 

layer parameters 
density (kg/m3) shear wave velocity (m/sec) 

Bedrock 2500 2000 - 3000 
archeological fill (adopted alluvium values) 1800 100 - 500 

 

a) b)  

Figure 5.19. Amplification factor calculations for a combination of ρS = 1800 kg/m3 and ρB = 2500 kg/m3. 
a) no damping introduced, according to Eq. 5.3. b) damping of 5% introduced, according to Eq. 5.4.  

Inspection of Figure 5.19a reveals that when no damping is introduced, an amplification factor 

of 10, just enough to amplify 0.15 g to the required 1.5 g can be easily reached with a 

combination of vB of 2200 m/sec and vS of 300 m/sec, as well as with a combination of vB = 2500 

m/sec and vS = 350 m/sec. An amplification factor of 14, enough to amplify 0.15 g to 2 g can be 

reached with a combination of vB =  2500 m/sec and vs = 250 m/sec.  

Naturally, this amplification study is a simple one, and uses a rule of thumb. It must be said 

though that every site response analysis that is performed, will have its unknowns, and inherent 

assumptions. For example, a one-dimensional site response analysis performed with SHAKE 

(Lysmer et al., 1972; Schnabel et al., 1972) will need as input the velocities which are unknown, 

the shear modulus degradation relationship (G/Gmax) which is unknown, the damping ratio and its 

evolution with shear strain, etc. For a two-dimensional site effect analysis, that takes into account 

the geometry of the valley of the Tyropoeon, the exact mapping of the bedrock under the bridge 
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is required, and at this time is undetermined, along with the unknowns mentioned earlier. 

Therefore, in light of the few parameters that are known, site amplification estimations using 

Equations 5.3 and 5.4 provide a starting point, for a future, more robust attempt to quantify the 

site response and to better refine the paleo PGA estimation based on our numerical results.  

These values of amplification factors mentioned earlier, along with the conclusion that a high 

PGA value is required for causing the observed damage at Vault 21, imply that the area of the 

Great Causeway, and probably its surroundings as well, might be subjected to high amplification 

factors in case of a strong earthquake, and therefore these finding must be taken into account 

when planning new buildings in that area of the Old City of Jerusalem, and when planning 

preservations of existing ancient ones. Furthermore, in light of the high amplification value found 

here, the seismic risk map provided by the Israeli Building Code 413 (S.I.I., 2004) is found 

wanting, as we show here the local amplifications play a very significant role in structural 

deformation during shaking in the old city of Jerusalem. 

Another interesting point worth mentioning, is the fact that in the simulations that best 

mimicked the damage cited, the friction angle between the blocks is between 10o and 14o, a value 

that well represents friction angles for classic plaster/mortar used in interfaces between masonry 

stones (Ali et al., 2012).   

 Summary and Conclusions 

A historical damage to an old bridge in the Old City of Jerusalem was analyzed. The bridge, 

once used for easy access to the Temple Mount and bearing the aqueduct to it, is built of a series 

of barrel vaults, and today is buried underground. One of the vaults, namely Vault 21, exhibits 

relative displacement of one of the blocks, which is downward displaced by 7 cm, relative to 

neighbor blocks. Such a displacement in a compressive structure might imply application of 

dynamic forces on the vault, such as an earthquake, and a paleo-seismic study was performed. 

Modeling the vault as a two-dimensional arch, and subjecting it to dynamic as well as static 

loads, under different loading schemes and different friction angles returned some interesting 

results, which lead to the following conclusions: 

1. Vault 21 was damaged by an earthquake. 
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2. The damage most likely was caused while the bridge was serving its purpose, and not 

buried underground. 

3. At the time of the earthquake, the fill above some areas of the vault was already washed, 

thus removing the load off certain blocks, and allowing for differential displacements of 

the blocks. 

4. The PGA causing the damage is between 1.5 and 2 g. 

5. Two candidate earthquakes might have caused the observed damage: the 362 AD EQ, east 

of the Lisan Peninsula and 746 AD EQ, in the Jordan Valley. 

6. The amplification factor for the bridge is significant, and can reach very high values. 

Large amplification factors must be taken into account when planning new buildings in 

the old city of Jerusalem, and when designing preservations for old ones. 
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 Discussion and conclusions 

The research described in this dissertation focuses on different aspects of seismic hazard 

analysis using the numerical Discontinuous Deformation Analysis (DDA) method, and examines 

the response of both natural and man-made structures to ground motions induced by earthquakes, 

as ground motions are considered one of the most significant damage-causing seismic hazards. 

The ground motions a certain site would experience during an earthquake are a function of three 

variables: the source of the seismic waves, the path through which the waves travel and the 

conditions of the site they reach. The research presented here focuses on the last link in this 

chain: the site. When considering earthquake parameters that affect the response of structures, the 

predominant frequency of the seismic waves and the peak ground acceleration of the record are 

key parameters that have great influence on structural response. The research presented here 

draws practical conclusions concerning the response of structures, either natural or man-made, to 

earthquake forces and earthquake induced ground motions.  

 Site response analysis with 2D-DDA 

A key parameter in site response analysis is the resonance frequency of the site or structure. 

The first project of the dissertation tests the ability of the 2D-DDA to perform site response 

analysis.  Modeling such a dynamic mechanism has never been attempted in rock engineering 

context with DDA, or with any other numerical discrete element method that would have been 

typically applied otherwise to rock engineering problems involving the dynamic interactions of 

multiple blocks. A multi drum column from the World Heritage Site of Avdat is modeled with 

2D-DDA, and its dynamic response is compared with experimental data obtained in a 

geophysical site response survey conducted at the site. The DDA returns a resonance frequency 

range that was very close to the value obtained experimentally. The optimal normal contact 

spring stiffness value, k, as obtained by comparison between DDA and the geophysical 

experiment, falls well within the acceptable range of penalty values obtained from a preliminary 

calibration made for k, independently of the experimental results. Furthermore, it is shown here 

that the obtained natural frequency is not affected by the choice of time step size. Still, it is 

recommended that the time step size should be carefully selected, in order to optimize the balance 
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between computing efficiency and accuracy. It should be pointed out that the DDA results show 

great sensitivity to the user defined numerical control parameter of normal contact spring 

stiffness, k. The value of k has great effect on both the natural frequency of the column as well as 

the amplitude: increase in the value of k leads to an increase in the natural frequency and a 

decrease in the amplitude, as would be expected intuitively, as the column behaves more rigidly. 

This problem can be evaded by preliminary calibration of the k value, such as that performed 

here. 

To summarize, it is proven here that with preliminary calibration and optimization of the user 

defined numerical control parameters, 2D-DDA can be used for numerical site response analysis 

that in turn can help better understand the expected response of a site or structure during a strong 

earthquake, and therefore mitigate motion induced damages.  

 A new failure mode chart for toppling and sliding with consideration of earthquake 

inertia force  

Mapping and predicting the mode of failure of a rock slope subjected to seismic excitations, 

modeled as a block on an incline under pseudo-static force, can help design proper support, as it 

is sometimes crucial to take into account seismic forces that can affect the stability of the rock 

mass. In this dissertation previous research regarding the problem of a block on an incline is 

reviewed, and, for the first time, the four possible modes of the block are mapped in a three 

dimensional space, as the modes are a function of three angles: the block angle δ (block width / 

block height), the friction angle of the interface between the slope and the block φ, and the 

inclination of the slope α. Then, a new failure mode chart is derived, incorporating the frequently 

used pseudo-static approach in geotechnical earthquake engineering. In the new chart, the mode 

of failure of the block is a function of δ, φ, and a new angle,ψ = α + β,  β  being the angle 

between the resultant of the block weight and the pseudo-static force applied on the block, and 

the vertical direction. Verification of the 3D-DDA with the formerly derived analytical solution 

for a block on an inclined plane under gravitational loading alone proves the 3D-DDA can 

accurately solve the problem. Furthermore, the 2D and 3D-DDA simulations of the block 

subjected to pseudo-static horizontal force confirm the new analytical boundaries derived here. 
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The new failure mode chart derived here, with the incorporation of a pseudo-static horizontal 

force simulating the seismic force of an earthquake, is an easy, more intuitive way to understand 

and predict the behavior of rock masses subjected to seismic forces, when these are modeled as a 

pseudo-static horizontal force. When using the new chart, the pseudo-static force for the mode 

analysis should be carefully selected, taking into account seismic hazard assessments in the 

region discussed, and preferably site effects, where these are known.   

 Paleo-seismological implications of historic block displacements in the Western Wall 

Tunnels, the Old City of Jerusalem  

Constraining peak ground acceleration (PGA) values experienced at a site during past strong 

earthquakes can help predict the expected acceleration values in that site during future events. 

Furthermore, it can help assess expected amplification factors, another well-known site effect, 

which has a significant influence on the intensity of the ground motions felt at a site. Applying 

sophisticated and robust quantitative tools which originate from numerical analysis in rock 

mechanics to the young and very important archeo-seismology field of science can help 

constrain, quantitatively, historic earthquake parameters such as the PGA experienced during 

these earthquakes, and better constrain the seismic risk associated with a particular region. In 

Chapter 5 of the dissertation a historical damage to an ancient bridge in the old city of Jerusalem 

is analyzed. The bridge, built during the 3rd century AD, was used for easy access to the Temple 

Mount and bearing its aqueduct, was built of a series of barrel vaults, and today is buried 

underground. In one of the vaults, locally referred to as vault 21, one block was displaced 

downwards by 7 cm relative to its neighboring blocks. Due to detected limitations of the current 

3D-DDA code for reliably modeling dynamic interactions of multiple block system, the vault was 

modeled as a two dimensional arch in the 2D-DDA under plane stress boundary conditions, and 

was subjected to dynamic as well as static loads, under different loading schemes and different 

friction angles. Results of hundreds of simulations led to the conclusion that vault 21 was indeed 

damaged by an earthquake, during times when the bridge was serving its purpose on the ground 

surface rather than when it was buried underground, as it is today. We obtain that the observed 

differential displacement of the studied block in vault 21 could only have been made possible if 

erosional washing of fill material in specific locations above the vault was allowed to take place. 
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We conclude that the PGA that caused the damage was between 1.5 and 2 g, implying high 

amplification factors at the site, as the highest anticipated PGA at the site, calculated by 

attenuation relationship, is expected to be lower by an order of magnitude at the site for typical 

seismicity of the region at large. We argue that the obtained amplification must result from the 

existence of a layer of loose archeological fill material between the bedrock and the bridge 

foundations, with geomechanical properties similar to those of alluvium. In light of these 

findings, namely the high amplification value obtained by us by numerical backward analysis, we 

conclude that the seismic risk map provided by the Israeli Building Code 413 is found wanting, 

as we demonstrate in this case that local amplifications play a very significant role in structural 

deformation during shaking in the old city of Jerusalem. 

 Outstanding issues  

The research described in this dissertation holds several outstanding issues that are important 

for solving the problems described, but could not be addresses at this stage.  

First, the use of the Discontinuous Deformation Analysis method restricts the stresses and 

strains to be uniform throughout a block. For the problems addressed in this thesis, where either 

uniformly shaped and sized blocks were used, as in Chapter 3 and Chapter 5, or single blocks 

under small loadings, as in Chapter 4, a constant strain assumption is acceptable, since the rigid 

motion of blocks is dominating. However, when the problem at hand involves block systems with 

varying shapes and sizes, a constant strain assumption might not be valid, and a finite element 

type of mesh may provide greater accuracy. 

In addition, in the research project of the Western Wall Tunnels, our approach was to model 

the three-dimensional vault as a two dimensional arch, and we justified this approach by 

assuming that the vault is in a state of plane stress, because there are no stresses acting on the 

vault parallel to its axis direction, therefore modeling it as a 2D arch is a reasonable assumption. 

The plane stress approach however is usually applied to continuous media, and in our case, where 

a discontinuous block system is modeled, we actually have no possibility to verify the plane 

stress assumption. 
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Moreover, regarding the research project of the Western Wall Tunnels, there is absolutely no 

data measurements in the field, but the geometrical measurements of the keystones of the vault, 

and the downward displacement of the modeled damaged block. In situ stress measurements in 

the vault could have verified our plane stress assumption for modeling the three-dimensional 

vault as a two-dimensional arch, and experimental on-site measurements of background noise, as 

performed in Avdat National Park, could have led to better assessments of site specific resonance 

frequency and amplifications. At the time this research was carried out such data did not exist, 

therefore could not be of use.  

And finally regarding the Western Wall Tunnels research project, the appropriate way to 

model the vault is no doubt as a three-dimensional structure, as also implied by the deformations 

in the field. This modeling approach was actually attempted, but as the current version of the 3D-

DDA code is limited in its capability to solve multi-block systems effectively, and a very small 

time step is required along with a dynamic parameter smaller than 1 (see section 2.1.3 and 2.2.3), 

the accumulation of displacements could not be achieved. Naturally, the reduction of the model 

to a 2-dimensional one introduces some of the problems stated above. Modeling the structures in 

3D could not be performed at the moment, but should definitely be attempted in the future, once 

the 3D-DDA code is improved. 

 Recommendation for future research 

As would be derived from section 6.4, future research can shed some light on outstanding 

issues that have not been addressed in this thesis for the reasons stated above. 

Once the 3D-DDA code is improved, and proves capable of solving multi-block systems with 

dynamic parameter of unity, the vault at the Western Wall Tunnels can be re-modeled and 

investigated in 3D, as well as the research project at the city of L’Aquila, which can only be 

modeled in 3D. 

Furthermore, a more robust site-response analysis at the Western Wall tunnels in the Old City 

of Jerusalem can better estimate the amplification effects beneath the vaults, and the seismic 

hazard they introduce. Such analysis can be performed with SHAKE, or a two-dimensional site 

response program, once there are good estimations for the rock and soil parameters and the sub-
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surface geometry, or with two-dimensional DDA as shown by Bao et al. (in press), and such a 

numerical analysis should be verified by an experimental site response analysis, as the one 

performed at Avdat National Park. 
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Appendix A: complete derivation of the boundary between toppling and 

sliding + toppling, for the problem of block on an incline subjected to pseudo-

static force 

For boundary 4, which is a dynamic boundary between toppling and toppling with sliding, the 

block is toppling, and on the verge of sliding, i.e. friction is limiting. There are four unknown 

variables, N, φ, ü and θ, therefore four equations must be derived: 

Forces in the downslope direction: 

δφαα costansincos umNWF +=+        Equation A.01 

Forces perpendicular to slope: 

δαα sincossin umWNF +=+        Equation A.2 

Moments about the centroid: 

( )θφ 22

12
1

2
1tan

2
1 bhmNbNh ++=

        Equation A.3 

And the relationship between the linear acceleration and rotational acceleration: 

22

2
1 bhu += θ

          Equation A.4 

Remembering that  

( )
δ

δ 2

2
22

2

2
222

cos
tan11 hh

h
bhbh =+=








+=+

      Equation A.5 

  

Eq. A.4 can be re-written as: 

δ
θ
cos2

hu


 =
          Equation A.6 

h
u δθ cos2  =

          Equation A.7 

Inserting Eq. A.7 into Eq. A.3: 
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( )
δ

δ
δ
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      Equation A.8 
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  Equation A.9 

Remembering that βtanWF = , and inserting Eq. A.9, Eq. A.1 becomes 

( )[ ]δφδφααβ tantancos3tansincostan 2 −+=+ NWW  

( )
( )δφδφ

ααβ
tantancos3tan

sincostan
2 −+

+
=

WN
        Equation A.10 

Inserting Eq. A.10 and A.9 into Eq. A.2 yields: 

( )
( )

( ) ( )
( )δφδφ

δφδδααβα
δφδφ

ααβαβ
tantancos3tan
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           Equation A.11 

Finding a common denominator and getting rid of it on both sides of equation: 

( )
( ) ( )( )δφαβαδδφαδφδα

βααβφαβδφδα

tantansintancoscossin3tancostantancoscos3
tancossintantansintantantancossin3

2

2

−+++−

=+++−

 Equation A.12 

The left hand side of Eq. A.12 becomes: 

( ) αβαβδδαβδαβαφ sintancostancossinsin3tancossin3tansintan 2 ++−+  

The right hand side of Eq. A.12 becomes: 

( )
αδβαδ

δδααδδβαδδαδαφ

sinsin3tancossin3
cossincos3sincossin3tancoscossin3coscoscos3tan

22

2

−−

−+++

 

Combining from both sides of Eq. A.12 all the expressions multiplied by tanφ: 

αδαβαδδαδδβαδβα coscoscos3tancoscossin3sincossin3tansincostansin3 22 −−−−+  

Multiplying by cosβ: 
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Combining from both sides of Eq. A.12 all the expressions that are not multiplied by tanφ: 

( ) βααδδαβαδαδδδβα tancossincossincostancossinsinsincossintansin3 22 −−−−−  

Multiplying by cosβ: 
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Combining both expressions: 
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           Equation A.13 

And finally: 
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      Equation A.14 



Appendix B                                                                                 List of numerical simulations performed for Chapter 5 

117 

 

Appendix B: List of numerical simulations performed for Chapter 5 

The table spanning over the next 10 pages lists the simulations carried out for the research of Chapter 5. 

The shaded simulations are those considered relevant for the damage observed to block 11. 

#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

1 light - - 8 3 51 light 3.5 - 45 3
2 light - - 9 1 52 light 4 - 15 3
3 heavy - - 11 3 53 light 4 - 20 3
4 heavy - - 12 1 54 light 4 - 25 3
5 light 0.5 - 9 2 55 light 4 - 30 3
6 light 0.5 - 10 2 56 light 4 - 35 3
7 light 0.5 - 11 1 57 light 4 - 40 2
8 light 0.5 - 12 1 58 light 4 - 45 3
9 light 0.5 - 15 1 59 light 4.5 - 15 3
10 light 0.5 - 20 1 60 light 4.5 - 20 3
11 light 1 - 9 3 61 light 4.5 - 25 3
12 light 1 - 10 3 62 light 4.5 - 30 3
13 light 1 - 11 2 63 light 4.5 - 35 3
14 light 1 - 12 2 64 light 4.5 - 40 3
15 light 1 - 13 2 65 light 4.5 - 45 3
16 light 1 - 14 1 66 light 5 - 15 3
17 light 1 - 15 1 67 light 5 - 20 3
18 light 1 - 20 1 68 light 5 - 25 3
19 light 1.5 - 9 3 69 light 5 - 30 2
20 light 1.5 - 10 3 70 light 5 - 35 3
21 light 1.5 - 11 3 71 light 5 - 40 2
22 light 1.5 - 12 3 72 light 5 - 45 2
23 light 1.5 - 15 2 73 heavy 0.5 - 12 1
24 light 1.5 - 20 1 74 heavy 0.5 - 15 1
25 light 2 - 9 3 75 heavy 1 - 12 1
26 light 2 - 10 3 76 heavy 1 - 15 1
27 light 2 - 15 2 77 heavy 1 - 20 1
28 light 2 - 20 2 78 heavy 1.5 - 12 2
29 light 2 - 25 1 79 heavy 1.5 - 13 1
30 light 2 - 30 1 80 heavy 1.5 - 15 1
31 light 2.5 - 10 3 81 heavy 1.5 - 20 1
32 light 2.5 - 15 2 82 heavy 2 - 12 3
33 light 2.5 - 20 2 83 heavy 2 - 13 1
34 light 2.5 - 25 2 84 heavy 2 - 15 1
35 light 2.5 - 30 2 85 heavy 2 - 20 1
36 light 2.5 - 35 2 86 heavy 2 - 30 1
37 light 2.5 - 40 1 87 heavy 2 - 40 1
38 light 3 - 15 3 88 heavy 2.5 - 12 3
39 light 3 - 20 2 89 heavy 2.5 - 13 2
40 light 3 - 25 3 90 heavy 2.5 - 14 1
41 light 3 - 30 3 91 heavy 2.5 - 15 1
42 light 3 - 35 3 92 heavy 2.5 - 20 1
43 light 3 - 40 3 93 heavy 2.5 - 30 1
44 light 3 - 45 1 94 heavy 2.5 - 40 1
45 light 3.5 - 15 3 95 heavy 3 - 12 3
46 light 3.5 - 20 3 96 heavy 3 - 13 3
47 light 3.5 - 25 3 97 heavy 3 - 14 2
48 light 3.5 - 30 3 98 heavy 3 - 15 1
49 light 3.5 - 35 3 99 heavy 3 - 20 1
50 light 3.5 - 40 3 100 heavy 3 - 30 1
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#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

101 heavy 3 - 40 1 161 light - 9 9 1
102 heavy 3.5 - 12 3 162 light - 9 10 1
103 heavy 3.5 - 13 3 163 light - 9 15 1
104 heavy 3.5 - 14 3 164 light - 9 20 1
105 heavy 3.5 - 15 2 165 light - 10 9 1
106 heavy 3.5 - 20 1 166 light - 10 10 1
107 heavy 3.5 - 30 1 167 light - 10 15 1
108 heavy 3.5 - 40 1 168 light - 10 20 1
109 heavy 4 - 12 3 169 light - 10 25 1
110 heavy 4 - 13 3 170 light - 10 30 1
111 heavy 4 - 14 3 171 light - 10 35 1
112 heavy 4 - 15 2 172 light - 10 40 1
113 heavy 4 - 20 1 173 light - 11 9 1
114 heavy 4 - 25 1 174 light - 11 10 1
115 heavy 4 - 30 1 175 light - 11 11 1
116 heavy 4 - 35 1 176 light - 11 12 1
117 heavy 4 - 40 1 177 light - 11 15 1
118 heavy 4.5 - 12 3 178 light - 11 20 1
119 heavy 4.5 - 13 3 179 light - 11 25 1
120 heavy 4.5 - 14 3 180 light - 11 30 1
121 heavy 4.5 - 15 3 181 light - 11 35 1
122 heavy 4.5 - 16 3 182 light - 11 40 1
123 heavy 4.5 - 17 2 183 light - 12 9 3
124 heavy 4.5 - 18 1 184 light - 12 10 1
125 heavy 4.5 - 20 1 185 light - 12 11 1
126 heavy 4.5 - 25 1 186 light - 12 12 1
127 heavy 4.5 - 30 1 187 light - 12 15 1
128 heavy 4.5 - 35 1 188 light - 12 20 1
129 heavy 4.5 - 40 1 189 light - 12 25 1
130 heavy 5 - 12 3 190 light - 12 30 1
131 heavy 5 - 15 3 191 light - 12 35 1
132 heavy 5 - 17 3 192 light - 12 40 1
133 heavy 5 - 18 2 193 light - 13 9 3
134 heavy 5 - 20 1 194 light - 13 10 3
135 heavy 5 - 25 1 195 light - 13 11 3
136 heavy 5 - 30 1 196 light - 13 12 1
137 heavy 5 - 35 1 197 light - 13 15 1
138 heavy 5 - 40 1 198 light - 13 20 1
139 light - 2 9 2 199 light - 13 25 1
140 light - 2 10 1 200 light - 13 30 1
141 light - 2 15 1 201 light - 13 35 1
142 light - 3 9 2 202 light - 13 40 1
143 light - 3 10 1 203 light - 14 9 3
144 light - 3 15 1 204 light - 14 10 3
145 light - 4 9 3 205 light - 14 11 1
146 light - 4 10 1 206 light - 14 12 1
147 light - 4 15 1 207 light - 14 15 1
148 light - 5 9 3 208 light - 14 20 1
149 light - 5 10 1 209 light - 15 9 3
150 light - 5 15 1 210 light - 15 10 3
151 light - 6 9 2 211 light - 15 11 1
152 light - 6 10 1 212 light - 15 12 1
153 light - 6 15 1 213 light - 15 15 1
154 light - 7 9 1 214 light - 16 9 3
155 light - 7 10 1 215 light - 16 10 3
156 light - 7 15 1 216 light - 16 11 1
157 light - 8 9 1 217 light - 16 12 1
158 light - 8 10 1 218 light - 16 13 1
159 light - 8 15 1 219 light - 16 15 1
160 light - 8 20 1 220 light - 17 9 3
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#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

221 light - 17 10 2 281 heavy - 16 13 3
222 light - 17 11 1 282 heavy - 16 14 2
223 light - 17 15 1 283 heavy - 16 15 3
224 light - 18 9 3 284 heavy - 16 16 1
225 light - 18 10 3 285 heavy - 16 20 1
226 light - 18 11 1 286 heavy - 17 12 3
227 light - 18 12 1 287 heavy - 17 13 3
228 light - 18 13 1 288 heavy - 17 14 1
229 light - 18 15 1 289 heavy - 17 15 1
230 heavy - 2 12 1 290 heavy - 17 20 1
231 heavy - 2 15 1 291 heavy - 18 12 3
232 heavy - 2 20 1 292 heavy - 18 13 1
233 heavy - 3 12 1 293 heavy - 18 15 1
234 heavy - 3 15 1 294 heavy - 18 20 1
235 heavy - 3 20 1 295 light 0.5 5 10 3
236 heavy - 4 12 1 296 light 0.5 5 11 1
237 heavy - 4 15 1 297 light 0.5 5 15 1
238 heavy - 4 20 1 298 light 1 5 10 2
239 heavy - 5 12 1 299 light 1 5 11 2
240 heavy - 5 15 1 300 light 1 5 13 1
241 heavy - 5 20 1 301 light 1.5 5 10 3
242 heavy - 6 12 1 302 light 1.5 5 11 3
243 heavy - 6 15 1 303 light 1.5 5 13 2
244 heavy - 6 20 1 304 light 1.5 5 15 2
245 heavy - 7 12 1 305 light 1.5 5 20 1
246 heavy - 7 15 1 306 light 2 5 12 3
247 heavy - 7 20 1 307 light 2 5 14 2
248 heavy - 8 12 1 308 light 2 5 15 2
249 heavy - 8 15 1 309 light 2 5 20 2
250 heavy - 8 20 1 310 light 2 5 30 1
251 heavy - 9 12 1 311 light 2.5 5 14 3
252 heavy - 9 15 1 312 light 2.5 5 15 3
253 heavy - 9 20 1 313 light 2.5 5 17 3
254 heavy - 10 12 1 314 light 2.5 5 20 3
255 heavy - 10 15 1 315 light 2.5 5 25 3
256 heavy - 10 20 1 316 light 2.5 5 30 3
257 heavy - 11 12 1 317 light 2.5 5 35 3
258 heavy - 11 15 1 318 light 2.5 5 40 3
259 heavy - 11 20 1 319 light 3 5 15 3
260 heavy - 12 12 3 320 light 3 5 20 3
261 heavy - 12 13 1 321 light 3 5 25 3
262 heavy - 12 15 1 322 light 3 5 30 3
263 heavy - 12 20 1 323 light 3 5 35 3
264 heavy - 13 12 3 324 light 3 5 40 3
265 heavy - 13 13 3 325 light 3.5 5 15 3
266 heavy - 13 14 1 326 light 3.5 5 20 3
267 heavy - 13 15 1 327 light 3.5 5 25 3
268 heavy - 13 20 1 328 light 3.5 5 30 3
269 heavy - 14 12 3 329 light 3.5 5 35 3
270 heavy - 14 13 3 330 light 3.5 5 40 3
271 heavy - 14 14 1 331 light 4 5 15 3
272 heavy - 14 15 1 332 light 4 5 20 3
273 heavy - 14 20 1 333 light 4 5 25 3
274 heavy - 15 12 3 334 light 4 5 30 3
275 heavy - 15 13 3 335 light 4 5 35 3
276 heavy - 15 14 3 336 light 4 5 40 3
277 heavy - 15 15 3 337 light 4.5 5 15 3
278 heavy - 15 16 1 338 light 4.5 5 20 3
279 heavy - 15 20 1 339 light 4.5 5 25 3
280 heavy - 16 12 3 340 light 4.5 5 30 3
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#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

#
over-

burden 
scheme

PGA 
(g)

over-
burden 

removed 
from block 

#

friction 
angle 

(o)

classifi
cation

341 light 4.5 5 35 3 401 light 5 6 20 3
342 light 4.5 5 40 3 402 light 5 6 25 3
343 light 5 5 15 3 403 light 5 6 30 3
344 light 5 5 20 3 404 light 5 6 35 3
345 light 5 5 25 3 405 light 0.5 7 9 2
346 light 5 5 30 3 406 light 0.5 7 10 1
347 light 5 5 35 2 407 light 0.5 7 15 1
348 light 5 5 40 3 408 light 1 7 9 3
349 light 0.5 6 9 3 409 light 1 7 10 3
350 light 0.5 6 10 1 410 light 1 7 11 2
351 light 0.5 6 15 1 411 light 1 7 12 2
352 light 1 6 9 3 412 light 1 7 13 2
353 light 1 6 10 3 413 light 1 7 15 1
354 light 1 6 11 2 414 light 1 7 25 1
355 light 1 6 15 1 415 light 1.5 7 9 3
356 light 1.5 6 10 3 416 light 1.5 7 10 3
357 light 1.5 6 11 3 417 light 1.5 7 12 2
358 light 1.5 6 13 2 418 light 1.5 7 15 2
359 light 1.5 6 15 2 419 light 1.5 7 20 1
360 light 2 6 12 3 420 light 2 7 11 3
361 light 2 6 13 3 421 light 2 7 13 3
362 light 2 6 14 2 422 light 2 7 14 2
363 light 2 6 15 2 423 light 2 7 15 2
364 light 2 6 20 2 424 light 2 7 20 3
365 light 2 6 25 3 425 light 2 7 25 1
366 light 2 6 30 3 426 light 2 7 30 2
367 light 2 6 35 3 427 light 2 7 35 1
368 light 2 6 40 1 428 light 2 7 40 1
369 light 2.5 6 14 3 429 light 2.5 7 14 3
370 light 2.5 6 15 3 430 light 2.5 7 15 3
371 light 2.5 6 20 3 431 light 2.5 7 17 2
372 light 2.5 6 25 3 432 light 2.5 7 20 3
373 light 2.5 6 30 3 433 light 2.5 7 25 3
374 light 2.5 6 35 3 434 light 2.5 7 30 3
375 light 2.5 6 40 3 435 light 2.5 7 35 3
376 light 3 6 15 3 436 light 2.5 7 40 3
377 light 3 6 20 3 437 light 3 7 14 3
378 light 3 6 25 3 438 light 3 7 15 2
379 light 3 6 30 3 439 light 3 7 16 2
380 light 3 6 35 3 440 light 3 7 20 3
381 light 3 6 40 3 441 light 3 7 25 3
382 light 3.5 6 15 3 442 light 3 7 30 3
383 light 3.5 6 20 3 443 light 3 7 35 3
384 light 3.5 6 25 3 444 light 3 7 40 3
385 light 3.5 6 30 3 445 light 3.5 7 14 3
386 light 3.5 6 35 3 446 light 3.5 7 15 3
387 light 3.5 6 40 3 447 light 3.5 7 20 3
388 light 4 6 15 3 448 light 3.5 7 25 3
389 light 4 6 20 3 449 light 3.5 7 30 3
390 light 4 6 25 3 450 light 3.5 7 35 3
391 light 4 6 30 3 451 light 3.5 7 40 3
392 light 4 6 35 3 452 light 4 7 15 3
393 light 4 6 40 3 453 light 4 7 20 3
394 light 4.5 6 15 3 454 light 4 7 25 3
395 light 4.5 6 20 3 455 light 4 7 30 3
396 light 4.5 6 25 3 456 light 4 7 35 3
397 light 4.5 6 30 3 457 light 4 7 40 3
398 light 4.5 6 35 3 458 light 4.5 7 15 3
399 light 4.5 6 40 3 459 light 4.5 7 20 3
400 light 5 6 15 3 460 light 4.5 7 25 3
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461 light 4.5 7 30 3 521 light 4 8 40 3
462 light 4.5 7 35 3 522 light 4.5 8 15 3
463 light 4.5 7 40 3 523 light 4.5 8 20 3
464 light 5 7 15 3 524 light 4.5 8 25 3
465 light 5 7 20 3 525 light 4.5 8 30 3
466 light 5 7 25 3 526 light 4.5 8 35 3
467 light 5 7 30 3 527 light 4.5 8 40 3
468 light 5 7 35 3 528 light 5 8 15 3
469 light 5 7 40 3 529 light 5 8 20 3
470 light 0.5 8 9 2 530 light 5 8 25 3
471 light 0.5 8 10 1 531 light 5 8 30 3
472 light 0.5 8 15 1 532 light 5 8 35 3
473 light 1 8 9 3 533 light 5 8 40 3
474 light 1 8 10 2 534 light 0.5 9 9 2
475 light 1 8 11 2 535 light 0.5 9 10 1
476 light 1 8 15 1 536 light 0.5 9 11 1
477 light 1.5 8 9 3 537 light 0.5 9 15 1
478 light 1.5 8 10 3 538 light 1 9 9 3
479 light 1.5 8 11 3 539 light 1 9 10 3
480 light 1.5 8 12 2 540 light 1 9 11 2
481 light 1.5 8 13 2 541 light 1 9 12 2
482 light 1.5 8 14 2 542 light 1 9 15 1
483 light 1.5 8 15 2 543 light 1 9 20 1
484 light 1.5 8 20 1 544 light 1.5 9 9 3
485 light 1.5 8 30 1 545 light 1.5 9 11 3
486 light 2 8 11 3 546 light 1.5 9 13 2
487 light 2 8 12 3 547 light 1.5 9 15 2
488 light 2 8 13 2 548 light 1.5 9 20 1
489 light 2 8 14 2 549 light 1.5 9 30 1
490 light 2 8 15 2 550 light 2 9 11 3
491 light 2 8 20 2 551 light 2 9 13 2
492 light 2 8 25 2 552 light 2 9 15 2
493 light 2 8 30 3 553 light 2 9 20 2
494 light 2 8 40 3 554 light 2 9 30 1
495 light 2.5 8 13 3 555 light 2.5 9 12 3
496 light 2.5 8 14 3 556 light 2.5 9 13 3
497 light 2.5 8 15 3 557 light 2.5 9 15 2
498 light 2.5 8 16 3 558 light 2.5 9 17 2
499 light 2.5 8 17 3 559 light 2.5 9 20 3
500 light 2.5 8 18 3 560 light 2.5 9 25 3
501 light 2.5 8 20 3 561 light 2.5 9 30 3
502 light 2.5 8 30 3 562 light 2.5 9 35 3
503 light 2.5 8 40 3 563 light 2.5 9 40 3
504 light 3 8 15 3 564 light 3 9 14 2
505 light 3 8 20 3 565 light 3 9 15 2
506 light 3 8 25 3 566 light 3 9 17 2
507 light 3 8 30 3 567 light 3 9 20 2
508 light 3 8 35 3 568 light 3 9 25 3
509 light 3 8 40 3 569 light 3 9 30 3
510 light 3.5 8 15 3 570 light 3 9 35 3
511 light 3.5 8 20 3 571 light 3 9 40 3
512 light 3.5 8 25 3 572 light 3.5 9 14 3
513 light 3.5 8 30 3 573 light 3.5 9 15 3
514 light 3.5 8 35 3 574 light 3.5 9 18 3
515 light 3.5 8 40 3 575 light 3.5 9 20 2
516 light 4 8 15 3 576 light 3.5 9 25 1
517 light 4 8 20 3 577 light 3.5 9 30 3
518 light 4 8 25 3 578 light 3.5 9 35 3
519 light 4 8 30 3 579 light 3.5 9 40 3
520 light 4 8 35 3 580 light 4 9 15 3
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581 light 4 9 20 2 641 light 4.5 10 20 2
582 light 4 9 25 3 642 light 4.5 10 25 2
583 light 4 9 30 3 643 light 4.5 10 30 3
584 light 4 9 35 3 644 light 4.5 10 35 2
585 light 4 9 40 3 645 light 4.5 10 40 2
586 light 4.5 9 15 3 646 light 5 10 15 3
587 light 4.5 9 20 3 647 light 5 10 20 3
588 light 4.5 9 25 3 648 light 5 10 25 2
589 light 4.5 9 30 3 649 light 5 10 30 2
590 light 4.5 9 35 3 650 light 5 10 35 2
591 light 4.5 9 40 2 651 light 5 10 40 3
592 light 5 9 15 3 652 light 0.5 11 9 2
593 light 5 9 20 3 653 light 0.5 11 11 1
594 light 5 9 25 3 654 light 0.5 11 15 1
595 light 5 9 30 2 655 light 0.5 11 20 1
596 light 5 9 35 3 656 light 1 11 9 3
597 light 5 9 40 3 657 light 1 11 10 2
598 light 0.5 10 9 2 658 light 1 11 13 2
599 light 0.5 10 10 1 659 light 1 11 15 1
600 light 1 10 9 3 660 light 1 11 20 1
601 light 1 10 10 2 661 light 1.5 11 10 3
602 light 1 10 11 2 662 light 1.5 11 11 3
603 light 1 10 15 1 663 light 1.5 11 12 2
604 light 1.5 10 10 3 664 light 1.5 11 15 2
605 light 1.5 10 11 3 665 light 1.5 11 20 1
606 light 1.5 10 13 2 666 light 2 11 12 2
607 light 1.5 10 15 2 667 light 2 11 15 2
608 light 2 10 12 3 668 light 2 11 20 1
609 light 2 10 14 2 669 light 2 11 25 1
610 light 2 10 15 2 670 light 2.5 11 12 3
611 light 2 10 20 1 671 light 2.5 11 14 3
612 light 2.5 10 13 3 672 light 2.5 11 15 2
613 light 2.5 10 15 2 673 light 2.5 11 20 2
614 light 2.5 10 17 1 674 light 2.5 11 25 2
615 light 2.5 10 20 1 675 light 2.5 11 30 2
616 light 3 10 14 3 676 light 2.5 11 35 2
617 light 3 10 15 2 677 light 3 11 15 2
618 light 3 10 16 2 678 light 3 11 17 2
619 light 3 10 20 3 679 light 3 11 18 2
620 light 3 10 25 3 680 light 3 11 19 2
621 light 3 10 30 2 681 light 3 11 20 2
622 light 3 10 35 3 682 light 3 11 25 2
623 light 3 10 40 3 683 light 3 11 30 2
624 light 3.5 10 15 3 684 light 3 11 35 1
625 light 3.5 10 20 2 685 light 3 11 40 1
626 light 3.5 10 25 2 686 light 3.5 11 15 3
627 light 3.5 10 30 3 687 light 3.5 11 17 2
628 light 3.5 10 31 2 688 light 3.5 11 20 2
629 light 3.5 10 32 2 689 light 3.5 11 25 2
630 light 3.5 10 33 2 690 light 3.5 11 30 2
631 light 3.5 10 34 2 691 light 3.5 11 35 2
632 light 3.5 10 35 1 692 light 4 11 15 3
633 light 3.5 10 40 3 693 light 4 11 17 3
634 light 4 10 15 3 694 light 4 11 20 2
635 light 4 10 20 2 695 light 4 11 25 2
636 light 4 10 25 3 696 light 4 11 30 2
637 light 4 10 30 2 697 light 4 11 35 3
638 light 4 10 35 3 698 light 4 11 40 3
639 light 4 10 40 2 699 light 4.5 11 15 3
640 light 4.5 10 15 3 700 light 4.5 11 17 2
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701 light 4.5 11 18 3 761 light 4 12 40 3
702 light 4.5 11 19 2 762 light 4.5 12 15 3
703 light 4.5 11 20 2 763 light 4.5 12 20 2
704 light 4.5 11 21 2 764 light 4.5 12 25 3
705 light 4.5 11 22 3 765 light 4.5 12 30 2
706 light 4.5 11 25 3 766 light 4.5 12 35 2
707 light 4.5 11 30 3 767 light 4.5 12 40 2
708 light 4.5 11 35 2 768 light 5 12 15 3
709 light 4.5 11 40 2 769 light 5 12 20 2
710 light 5 11 15 3 770 light 5 12 25 2
711 light 5 11 20 3 771 light 5 12 30 3
712 light 5 11 25 2 772 light 5 12 35 2
713 light 5 11 30 3 773 light 5 12 40 2
714 light 5 11 35 2 774 light 0.5 13 9 3
715 light 0.5 12 9 3 775 light 0.5 13 10 2
716 light 0.5 12 10 2 776 light 0.5 13 13 1
717 light 0.5 12 15 1 777 light 0.5 13 15 1
718 light 1 12 9 3 778 light 0.5 13 30 1
719 light 1 12 10 3 779 light 1 13 10 3
720 light 1 12 13 2 780 light 1 13 13 2
721 light 1 12 15 1 781 light 1 13 15 2
722 light 1 12 20 1 782 light 1 13 20 1
723 light 1.5 12 11 2 783 light 1.5 13 11 3
724 light 1.5 12 13 2 784 light 1.5 13 13 2
725 light 1.5 12 15 2 785 light 1.5 13 15 2
726 light 1.5 12 20 1 786 light 1.5 13 20 1
727 light 1.5 12 30 1 787 light 1.5 13 25 1
728 light 2 12 11 3 788 light 1.5 13 30 1
729 light 2 12 13 3 789 light 1.5 13 35 1
730 light 2 12 15 2 790 light 2 13 12 3
731 light 2 12 20 2 791 light 2 13 15 2
732 light 2 12 25 2 792 light 2 13 20 2
733 light 2 12 30 2 793 light 2 13 25 3
734 light 2 12 35 2 794 light 2 13 30 3
735 light 2.5 12 14 2 795 light 2 13 35 3
736 light 2.5 12 15 2 796 light 2 13 40 3
737 light 2.5 12 20 2 797 light 2.5 13 13 3
738 light 2.5 12 25 2 798 light 2.5 13 14 3
739 light 2.5 12 30 3 799 light 2.5 13 15 3
740 light 2.5 12 35 1 800 light 2.5 13 20 2
741 light 2.5 12 40 3 801 light 2.5 13 25 3
742 light 3 12 14 3 802 light 2.5 13 30 3
743 light 3 12 15 3 803 light 2.5 13 35 1
744 light 3 12 17 3 804 light 2.5 13 40 3
745 light 3 12 20 3 805 light 3 13 15 3
746 light 3 12 25 2 806 light 3 13 20 3
747 light 3 12 30 2 807 light 3 13 25 3
748 light 3 12 35 3 808 light 3 13 30 3
749 light 3 12 40 3 809 light 3 13 35 3
750 light 3.5 12 15 3 810 light 3 13 40 3
751 light 3.5 12 20 2 811 light 3.5 13 15 3
752 light 3.5 12 25 2 812 light 3.5 13 20 3
753 light 3.5 12 30 3 813 light 3.5 13 25 3
754 light 3.5 12 35 3 814 light 3.5 13 30 3
755 light 3.5 12 40 2 815 light 3.5 13 35 3
756 light 4 12 15 3 816 light 3.5 13 40 2
757 light 4 12 20 2 817 light 4 13 15 3
758 light 4 12 25 3 818 light 4 13 20 3
759 light 4 12 30 3 819 light 4 13 25 3
760 light 4 12 35 3 820 light 4 13 30 3
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821 light 4 13 35 3 881 light 5 14 35 3
822 light 4 13 40 3 882 light 5 14 40 3
823 light 4.5 13 15 3 883 light 0.5 15 11 2
824 light 4.5 13 20 3 884 light 0.5 15 13 3
825 light 4.5 13 25 3 885 light 0.5 15 15 1
826 light 4.5 13 30 3 886 light 1 15 11 3
827 light 4.5 13 35 3 887 light 1 15 13 2
828 light 4.5 13 40 3 888 light 1 15 15 2
829 light 5 13 15 3 889 light 1.5 15 12 3
830 light 5 13 20 3 890 light 1.5 15 14 3
831 light 5 13 25 3 891 light 1.5 15 15 2
832 light 5 13 30 3 892 light 1.5 15 16 3
833 light 5 13 35 3 893 light 1.5 15 17 2
834 light 5 13 40 3 894 light 1.5 15 20 1
835 light 0.5 14 11 3 895 light 2 15 15 3
836 light 0.5 14 12 1 896 light 2 15 17 3
837 light 1 14 11 3 897 light 2 15 20 3
838 light 1 14 12 2 898 light 2 15 25 3
839 light 1 14 13 2 899 light 2 15 30 2
840 light 1 14 15 2 900 light 2 15 35 3
841 light 1 14 20 1 901 light 2 15 40 3
842 light 1.5 14 12 3 902 light 2.5 15 15 3
843 light 1.5 14 15 2 903 light 2.5 15 20 2
844 light 1.5 14 18 2 904 light 2.5 15 25 3
845 light 2 14 13 3 905 light 2.5 15 30 2
846 light 2 14 15 2 906 light 2.5 15 35 3
847 light 2 14 17 2 907 light 2.5 15 40 3
848 light 2 14 18 2 908 light 3 15 15 3
849 light 2 14 20 2 909 light 3 15 20 3
850 light 2.5 14 15 3 910 light 3 15 24 3
851 light 2.5 14 20 3 911 light 3 15 25 2
852 light 2.5 14 23 2 912 light 3 15 30 3
853 light 2.5 14 25 2 913 light 3 15 35 3
854 light 3 14 23 3 914 light 3 15 40 2
855 light 3 14 25 3 915 light 3.5 15 15 2
856 light 3 14 30 3 916 light 3.5 15 20 3
857 light 3 14 35 3 917 light 3.5 15 25 2
858 light 3 14 40 3 918 light 3.5 15 30 2
859 light 3.5 14 15 3 919 light 3.5 15 35 2
860 light 3.5 14 20 3 920 light 3.5 15 40 3
861 light 3.5 14 25 3 921 light 4 15 15 3
862 light 3.5 14 30 3 922 light 4 15 20 3
863 light 3.5 14 35 1 923 light 4 15 25 3
864 light 3.5 14 40 3 924 light 4 15 30 3
865 light 4 14 15 3 925 light 4 15 35 3
866 light 4 14 20 3 926 light 4 15 40 3
867 light 4 14 25 3 927 light 4.5 15 15 3
868 light 4 14 30 3 928 light 4.5 15 20 3
869 light 4 14 35 3 929 light 4.5 15 25 3
870 light 4 14 40 3 930 light 4.5 15 30 3
871 light 4.5 14 15 3 931 light 4.5 15 35 2
872 light 4.5 14 20 3 932 light 4.5 15 40 3
873 light 4.5 14 25 3 933 light 5 15 15 3
874 light 4.5 14 30 3 934 light 5 15 20 3
875 light 4.5 14 35 2 935 light 5 15 25 3
876 light 4.5 14 40 3 936 light 5 15 30 3
877 light 5 14 15 3 937 light 5 15 35 2
878 light 5 14 20 3 938 light 5 15 40 3
879 light 5 14 25 3 939 heavy 0.5 5 12 1
880 light 5 14 30 3 940 heavy 1 5 12 1
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941 heavy 1.5 5 12 1 1002 heavy 0.5 8 12 1
942 heavy 2 5 12 3 1003 heavy 0.5 8 15 1
943 heavy 2 5 13 1 1004 heavy 0.5 8 20 1
944 heavy 2.5 5 13 2 1005 heavy 1 8 12 1
945 heavy 2.5 5 14 1 1006 heavy 1 8 15 1
946 heavy 3 5 13 3 1007 heavy 1 8 20 1
947 heavy 3 5 14 2 1008 heavy 1.5 8 12 1
948 heavy 3.5 5 14 3 1009 heavy 1.5 8 15 1
949 heavy 3.5 5 15 2 1010 heavy 1.5 8 20 1
950 heavy 4 5 15 3 1011 heavy 2 8 12 1
951 heavy 4 5 16 2 1012 heavy 2 8 15 1
952 heavy 4.5 5 16 2 1013 heavy 2 8 20 1
953 heavy 4.5 5 17 2 1014 heavy 2.5 8 12 1
954 heavy 4.5 5 30 1 1015 heavy 2.5 8 15 1
955 heavy 5 5 16 3 1016 heavy 2.5 8 20 1
956 heavy 5 5 17 2 1017 heavy 3 8 12 2
957 heavy 5 5 18 2 1018 heavy 3 8 15 1
958 heavy 5 5 30 1 1019 heavy 3 8 20 1
959 heavy 0.5 6 12 1 1020 heavy 3.5 8 12 3
960 heavy 1 6 12 1 1021 heavy 3.5 8 13 2
961 heavy 1.5 6 12 1 1022 heavy 3.5 8 14 1
962 heavy 2 6 12 2 1023 heavy 3.5 8 15 1
963 heavy 2.5 6 12 3 1024 heavy 4 8 12 3
964 heavy 2.5 6 13 2 1025 heavy 4 8 13 3
965 heavy 2.5 6 14 1 1026 heavy 4 8 14 2
966 heavy 3 6 13 3 1027 heavy 4 8 15 1
967 heavy 3 6 14 1 1028 heavy 4.5 8 14 3
968 heavy 3.5 6 14 3 1029 heavy 4.5 8 15 2
969 heavy 3.5 6 15 1 1030 heavy 4.5 8 16 1
970 heavy 4 6 14 3 1031 heavy 5 8 15 3
971 heavy 4 6 15 2 1032 heavy 5 8 16 2
972 heavy 4 6 16 1 1033 heavy 5 8 30 1
973 heavy 4.5 6 15 3 1034 heavy 0.5 9 12 1
974 heavy 4.5 6 16 2 1035 heavy 1 9 12 1
975 heavy 4.5 6 18 1 1036 heavy 1.5 9 12 1
976 heavy 4.5 6 25 1 1037 heavy 2 9 12 1
977 heavy 5 6 16 3 1038 heavy 2.5 9 12 1
978 heavy 5 6 17 2 1039 heavy 3 9 12 2
979 heavy 5 6 18 2 1040 heavy 3.5 9 12 3
980 heavy 5 6 25 1 1041 heavy 3.5 9 13 2
981 heavy 5 6 30 1 1042 heavy 4 9 13 3
982 heavy 0.5 7 12 1 1043 heavy 4 9 14 2
983 heavy 1 7 12 1 1044 heavy 4.5 9 14 2
984 heavy 1.5 7 12 1 1045 heavy 4.5 9 15 2
985 heavy 2 7 12 1 1046 heavy 5 9 14 3
986 heavy 2.5 7 12 3 1047 heavy 5 9 15 2
987 heavy 2.5 7 13 1 1048 heavy 0.5 10 12 1
988 heavy 2.5 7 14 1 1049 heavy 1 10 12 1
989 heavy 3 7 13 2 1050 heavy 1.5 10 12 1
990 heavy 3 7 15 1 1051 heavy 2 10 12 1
991 heavy 3.5 7 13 3 1052 heavy 2.5 10 12 2
992 heavy 3.5 7 14 1 1053 heavy 3 10 12 2
993 heavy 3.5 7 15 1 1054 heavy 3 10 13 2
994 heavy 4 7 14 3 1055 heavy 3.5 10 12 3
995 heavy 4 7 15 2 1056 heavy 3.5 10 13 2
996 heavy 4 7 17 1 1057 heavy 3.5 10 15 1
997 heavy 4.5 7 15 3 1058 heavy 4 10 13 3
998 heavy 4.5 7 16 2 1059 heavy 4 10 14 2
999 heavy 4.5 7 17 1 1060 heavy 4.5 10 14 3
1000 heavy 5 7 16 3 1061 heavy 4.5 10 15 2
1001 heavy 5 7 17 2 1062 heavy 4.5 10 17 1
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1063 heavy 5 10 15 2 1124 heavy 3 13 16 2
1064 heavy 5 10 16 2 1125 heavy 3 13 17 2
1065 heavy 0.5 11 12 1 1126 heavy 3 13 18 1
1066 heavy 0.5 11 15 1 1127 heavy 3.5 13 16 3
1067 heavy 0.5 11 20 1 1128 heavy 3.5 13 17 2
1068 heavy 1 11 12 1 1129 heavy 4 13 17 3
1069 heavy 1 11 15 1 1130 heavy 4 13 18 2
1070 heavy 1 11 20 1 1131 heavy 4.5 13 18 3
1071 heavy 1.5 11 12 1 1132 heavy 4.5 13 19 2
1072 heavy 1.5 11 15 1 1133 heavy 5 13 19 3
1073 heavy 2 11 12 1 1134 heavy 5 13 20 2
1074 heavy 2.5 11 12 2 1135 heavy 0.5 14 14 1
1075 heavy 2.5 11 13 1 1136 heavy 1 14 14 1
1076 heavy 2.5 11 15 1 1137 heavy 1.5 14 14 3
1077 heavy 3 11 12 3 1138 heavy 1.5 14 15 1
1078 heavy 3 11 13 2 1139 heavy 2 14 14 3
1079 heavy 3 11 14 1 1140 heavy 2 14 15 2
1080 heavy 3.5 11 13 3 1141 heavy 2.5 14 15 3
1081 heavy 3.5 11 14 2 1142 heavy 2.5 14 16 2
1082 heavy 3.5 11 15 1 1143 heavy 3 14 16 3
1083 heavy 4 11 14 3 1144 heavy 3 14 17 2
1084 heavy 4 11 15 2 1145 heavy 3.5 14 17 3
1085 heavy 4.5 11 15 3 1146 heavy 3.5 14 18 2
1086 heavy 4.5 11 16 2 1147 heavy 3.5 14 20 1
1087 heavy 4.5 11 18 1 1148 heavy 4 14 18 3
1088 heavy 5 11 16 2 1149 heavy 4 14 19 2
1089 heavy 5 11 17 2 1150 heavy 4.5 14 19 3
1090 heavy 5 11 18 2 1151 heavy 4.5 14 20 2
1091 heavy 5 11 20 1 1152 heavy 4.5 14 21 1
1092 heavy 0.5 12 13 1 1153 heavy 4.5 14 25 1
1093 heavy 1 12 13 1 1154 heavy 4.5 14 30 1
1094 heavy 1.5 12 13 1 1155 heavy 4.5 14 40 1
1095 heavy 2 12 13 2 1156 heavy 5 14 20 3
1096 heavy 2 12 15 1 1157 heavy 5 14 21 2
1097 heavy 2.5 12 13 3 1158 heavy 5 14 22 3
1098 heavy 2.5 12 14 2 1159 heavy 5 14 25 3
1099 heavy 3 12 14 3 1160 heavy 5 14 30 3
1100 heavy 3 12 15 2 1161 heavy 5 14 35 1
1101 heavy 3.5 12 15 2 1162 heavy 5 14 40 3
1102 heavy 3.5 12 17 1 1163 heavy 0.5 15 16 1
1103 heavy 4 12 15 3 1164 heavy 1 15 16 1
1104 heavy 4 12 16 2 1165 heavy 1.5 15 16 1
1105 heavy 4 12 17 1 1166 heavy 2 15 16 3
1106 heavy 4.5 12 16 3 1167 heavy 2 15 17 1
1107 heavy 4.5 12 17 2 1168 heavy 2.5 15 17 2
1108 heavy 4.5 12 18 1 1169 heavy 2.5 15 18 1
1109 heavy 5 12 17 3 1170 heavy 3 15 17 3
1110 heavy 5 12 18 2 1171 heavy 3 15 18 3
1111 heavy 5 12 19 2 1172 heavy 3 15 19 1
1112 heavy 0.5 13 14 2 1173 heavy 3.5 15 18 3
1113 heavy 0.5 13 15 1 1174 heavy 3.5 15 19 2
1114 heavy 1 13 14 2 1175 heavy 3.5 15 20 1
1115 heavy 1 13 15 1 1176 heavy 4 15 19 3
1116 heavy 1 13 17 1 1177 heavy 4 15 20 2
1117 heavy 1.5 13 14 2 1178 heavy 4 15 22 1
1118 heavy 1.5 13 15 2 1179 heavy 4.5 15 20 3
1119 heavy 2 13 14 3 1180 heavy 4.5 15 22 1
1120 heavy 2 13 15 2 1181 heavy 5 15 21 3
1121 heavy 2.5 13 15 3 1182 heavy 5 15 22 3
1122 heavy 2.5 13 16 2 1183 heavy 5 15 23 1
1123 heavy 2.5 13 17 1
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