Petrophysics and Well Logging

Dr. Harold Vinegar Professor of Petroleum Geoscience Ben-Gurion University of the Negev Department of Geology

Fall, 2015

Meeting	Date	Subject(s)	Details (as necessary)	Chapters (in reference textbooks)
1		Introduction	Worldwide Distribution of Oil, Gas and Coal Resources, Global Usage, Future Demand and Price of Oil	
2		Fluid Properties	Origin of Petroleum. Types of Oil and Gas, Van Krevelen diagram, Source Rocks, TOC and Rock Eval, Oil Generation, Migration, Trapping, Reservoir Types	А: рр 44-81
3		Introduction to Rock Properties	What makes a reservoir rock? Porosity and Grain Density Archimede's Principle Oil/Water/Gas Saturations Permeability Klinkenberg-corrections to Gas Permeability Routine Core Analysis	A: 87-112 Handouts: Lab Expt#1: Porosity and Permeability: Coreval 30 Demo
4		Core Analysis I	Hydrocarbon saturations via Dean Stark extraction, Capillary pressure curves Thomeer and Swanson models of capillary pressure Free Water Level Gas-Oil-Water Contacts Carmen-Kozeny equation	A:313-354 "Introduction to Petrophysics of Reservoir Rocks"by G. Archie "Fundamental Reservoir Rock Properties" handouts in class

5	Core Analysis II	Formation Resistivity Factor, Archie's Laws, initial/residual saturations, relative permeability, wettability Special core analysis	A:203-211, 360-403 Lab Expt #2: "Electrical resistivity"Demo
6	Well Logging I	Wireline Logging: the well site, the borehole environment; SP, gamma ray, caliper, density, neutron, sonic, resistivity Clean Sand Analysis	B:17-58, 91-121, 293-379
7	Well Logging II	NMR Logging, Bulk Volume Oil, Bound Water, Irreducible Water Saturation, shaly sands	B: 415-473
8	Well Logging III	Borehole Imaging Tools, FMI, fluid sampling, MWD, Cased Hole Logging, RST, Pulsed Neutron Capture, Commercial Well Log Interpretation Software	B Lab Expt #3: Geolog Demo
9	Acoustic Logging. Earth Stresses and Rock Mechanics	Measuring Earth Stresses vs Depth; Elastic moduli of rocks, acoustic logging, Vp/Vs for gas detection, Stoneley waves, seismic applications	B: 479-566 Lab Expt #4: "Rock Mechanics" and "AcousticVelocity" Demos
10	Primary Oil Recovery and Waterflooding	Reservoir drive mechanisms, static and dynamic geological models, numerical reservoir simulations, primary and secondary oil recovery: how	С
		rock properties affect sweep and displacement efficiencies	
11	EOR Methods	rock properties affect sweep and displacement efficiencies EOR methods; thermal recovery for heavy oils. Piloting and Technology applicability. Field examples: How geology determines the recovery method	С
11	EOR Methods Case Study	rock properties affect sweep and displacement efficiencies EOR methods; thermal recovery for heavy oils. Piloting and Technology applicability. Field examples: How geology determines the recovery method Apply Core and Log Data to Evaluate Atoka Sandstone	C Individual Log and Core Work

Course Mechanics

- 1) There will be 5 homework assignments which will be graded
- 2) There will be a final exam (multiple choice) but no midterm exam
- The course grade will be 50% from homework assignments and 50% from the final exam

Course textbooks

- A.. "Petrophysics" by Tiab and Donaldson
- B. "Well Logging for Earth Scientists 2nd Edition" by Ellis and Singer
- C. "Petroleum Production Systems" by Economides et al.