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a b s t r a c t

We consider the surplus of an insurance company that employs reinsurance. The reinsurer covers part of
the claims, but in return it receives a certain part of the income from premiums of the insurance company.
In addition, the reinsurer receives some of the dividends that are withdrawn when a certain surplus level
b is reached.

A special feature of our model is that both the fraction of the premium that goes to the reinsurer and
the fraction of the claims covered by the reinsurer are state-dependent. We focus on five performance
measures, viz., time to ruin, deficit at ruin, the dividend withdrawn until ruin, and the amount of money
transferred to the reinsurer, respectively covered by the reinsurer.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

An effective way for an insurance company to reduce risk is
to buy a reinsurance. According to the reinsurance contract, part
of the expenditure burden caused by claims is covered by the
reinsurer, and in return the insurance firm transfers part of its
income premium to the reinsurer. In addition part of the dividends,
that arewithdrawnwhen a certain surplus level b is reached is also
transferred to the reinsurer.

The reinsurance may be assumed to be provided instanta-
neously. In practice, big institutions such as corporations of sev-
eral big insurance companies, governments or national banks may
cover the losses of the insurance firm.

In our model the input is a fluid stream of premiums with
general state-dependent input rate, and the output is generated
by negative state-dependent jumps corresponding to the claims
that are partially covered by the reinsurer (in a state-dependent
way). When the surplus reaches a certain level b (which could be
a decision variable) the extra input from premiums is taken as a
dividend, so that the surplus is bounded by b. Then the withdrawal
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of dividend is stopped once the surplus drops below b (at the time
of a claim) and so forth.

Let R̃ = {R̃(t) : t ≥ 0} be the risk-type process, whose content
level is the surplus cash where both the input and the output are
state-dependent.
Input: We assume without loss of generality and without any
impact on the analysis, that the gross input rate is the constant
c , but the net input rate (the dominant factor in the analysis)
is a general deterministic function, say 0 < αR(x) < c. We
modify the process R̃ as follows: when level b is reached all the
extra input from premiums are taken as dividends. Let R be the
modified process. Clearly, R ≤ b and during a dividend period, say
I , αR(b−)I represents the net income from dividend that is taken
by the insurance firm, while the part [c −αR(b−)]I of the dividend
is transferred to the reinsurer. Overall, αR(x)dx for 0 < x ≤ b
is the net amount of infinitesimal input added to the cash of the
insurance firm, whenever the state is x.
Output: The net infinitesimal output rate βR(x)dx is a general
deterministic functionwhere 0 < βR(x) < 1; itmeans thatβR(x)dx
is the net infinitesimal loss that is subtracted from the content
level of the cash, whenever x is downcrossed at moments of claims
(negative jumps); the infinitesimal amount [1−βR(x)]dx is covered
by the reinsurer.

The policy described above provides a general framework for
state dependent claim payments. For a better understanding of
how this policy can be implemented consider the following special
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case: suppose that an arriving claim finds the surplus below a
certain threshold level γ , or alternatively, it brings the surplus
below that level. Then, the reinsurer covers a certain part of the
claim, i.e. β(x) = β0 for x < γ . But, whenever the arriving claim
does not find or bring the surplus below level γ , the reinsurer pays
nothing. In this case β(x) = β0 for x < γ and β(x) = 1 for
x > γ . In fact, this policy has been introduced in Boxma et al.
(2017), but for the discounted model. A natural extension of the
latter dichotomous case is to take β(x) as a step function. That is,
let 0 = γ0 < γ1 < γ2 < · · · < γn and β(x) = βi for γi−1 < x < γi.
In words, whenever an arriving claim finds the surplus between
γi−1 and γi or for part of the claim that is between γi−1 and γi the
reinsurer covers 1 − βi of the claim. Then β(x) = βi in this strip.
In the present study we introduce the general case of arbitrary
function β . This arbitrary function includes the special cases of the
models mentioned above.

The dynamics described above is a natural procedure of a risk
sharing model. However, in order to ease explanations we explain
it as a type of reinsurance.

In this study we are interested in analyzing the problem from
the point of view of the insurance firm and the reinsurer.

The most interesting five performance measures of this model
are (i) the time to ruin, (ii) the deficit at ruin, (iii) the dividend
reinsurer withdrawn until ruin, (iv) the amount of money
transferred to the until ruin and (v) the total insurance coverage
until ruin whose source is the reinsurer. In this paper we shall
study the functionals and measures associated with all these five
performance measures. An important feature of the paper is the
fact that the net premium rate and the net claim sizes are state-
dependent in a quite general way, giving us considerable modeling
flexibility. However, this comes at a price; for example, we only
determine the mean value of the time to ruin. When more explicit
assumptions are being made about the rate functions αR(·) and
βR(·), one might also be able to determine the Laplace transform
of the time to ruin (see Boxma et al., 2017).
Related literature
Reinsurance in principle gives rise to multidimensional risk pro-
cesses. However, despite their obvious relevance, exact analytic
studies of multidimensional risk processes are scarce in the insur-
ance literature. An early attempt to assess multivariate risk mea-
sures can be found in Sundt (1999), where multivariate Panjer
recursions are developed which are then used to compute the dis-
tribution of the aggregate claim process, assuming simultaneous
claim events and discrete claim sizes. Other approaches are deriv-
ing integro-differential equations for the various measures of risk
and then iterating these equations to find numerical approxima-
tions (Chan et al., 2003; Gong et al., 2012), or computing bounds
for the different types of ruin probabilities that can occur in a set-
ting where more than one insurance line is considered (Cai and Li,
2005, 2007). In Badila et al. (2014) a two-dimensional functional
equation is taken as a departure point. The authors show how
one can find transforms of ruin related performance measures by
solving a Riemann–Hilbert type boundary value problem. It is also
shown that the boundary value problem has an explicit solution in
terms of transforms, if the claim sizes are ordered. In Badila et al.
(2015) this is generalized to the case in which the claim amounts
are also correlated with the time elapsed since the previous claim
arrival.

A special, important case is the setting of proportional
reinsurance, which was studied in Avram et al. (2008). There it
is assumed that there is a single arrival process, and the claims
are proportionally split among two reserves. The two-dimensional
exit (ruin) problem then becomes a one-dimensional first-passage
problem above a piece-wise linear barrier. Badescu et al. (2011)
have extended this model by allowing a dedicated arrival stream
of claims into only one of the insurance lines. They show that the
transformof the time to ruin of at least one of the reserve processes
can be derived by applying similar ideas as in Avram et al. (2008).

Bivariate models where one company can transfer its capital
to the other have also been considered in the literature. Recently,
Avram et al. (2015) proposed a model of an insurance company
which splits its premiums between a reinsurance/investment fund
and a reserves fund necessary for paying claims. In their setting
only the second fund receives claims, andhence all capital transfers
are one way: from the first fund to the second. Another example
is the capital-exchange agreement in Chapter 4 of Lautscham
(2013), or Albrecher and Lautscham (2015) where two insurers
pay dividends according to a barrier strategy and the dividends
of one insurer are transferred to the other unless the other is also
fully capitalized. This work led to systems of integro-differential
equations for the expected time of ruin and expected discounted
dividends, which are hard to solve even in the case of exponential
claims.

In Ivanovs and Boxma (2015) a bivariate risk process is
considered with the feature that each insurance company agrees
to cover the deficit of the other. Under the assumptions that capital
transfers between companies incur a certain proportional cost,
and that ruin occurs when neither company can cover the deficit
of the other, the survival probability is studied as a function of
initial capitals. The bivariate transformof the survival probability is
determined, in terms of Wiener–Hopf factors associated with two
auxiliary compound Poisson processes. The case of a non-mutual
agreement, i.e., reinsurance, is also discussed in Ivanovs andBoxma
(2015).

Like the present paper, Boxma et al. (2017) is also devoted to
a reinsurance model with an infinitely rich reinsurer, who pays
part of the claim when it would bring the surplus below a certain
threshold. The focus in that paper is on the discounted case, and on
the Gerber–Shiu penalty function.

The features of having a dividend barrier, and of having state-
dependent premium rates, appear in quite a few papers in the
insurance literature. The following is a far from exhaustive list:
Boxma et al. (2010a,b, 2011b), Kyprianou and Loeffen (2010), Lin
and Pavlova (2006), Wan (2007) and Zhang et al. (2006).

Finally, wewould like to point out that,methodologically, when
it comes to studying the density of the surplus capital, this paper
bears some relationship to Boxma et al. (2005). The latter paper
is concerned with a dam process, and does not consider insurance
risk performance measures.
Organization of the paper
In Section 2 we provide some background on the level crossing
technique, which is heavily used in the rest of the paper.

The model under consideration is described in Section 3. We
there introduce not only the surplus cashmodel, but also a strongly
related dam process (taking D(t) = b − R(t)), as well as an other,
regenerative, dam process. The five key performance measures
mentioned above are studied in Section 5, by relating the surplus
cash process to those dam processes. Our results are mostly
expressed in the steady-state density of the amount of cash, or
of the dam content. That density is determined in Section 4. For
the model in full generality, that density is expressed in the form
of a Neumann series which is the solution of a Volterra integral
equation of the second kind. Under specific assumptions on the
claim size distribution and the functions αR(·) and βR(·), more
explicit formulas for the density of the surplus and the five key
performance measures can be obtained. In Section 6 we consider
the case that the claim arrivals do not follow a Poisson process,
but in which the gross negative jump sizes are exponentially
distributed. We subsequently consider not only the dam model
with D(t) = b − R(t), but we also construct a model that is
in a sense dual to that dam model, applying a similar duality as
exists between the M/G/1 queue and the G/M/1 queue (where
interarrival and service times are swapped).
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2. The level crossing technique

In our analysis we heavily make use of the level crossing
technique (LCT). In the late seventies, Brill and Posner (1977)
and Cohen (1977) independently developed the LCT, which is
based on a balancing argument, equating the numbers of up and
downcrossings of a particular queue length or workload level. This
technique is quite often applied in queueing and storage theory,
but is not commonly used in insurance risk. For that reason, and
also because we introduce some extensions to the LCT, we devote
a separate introductory section to this topic. The basic LCT theory
can be found in the comprehensive book by Brill (2008).
Basic facts about LCT (Brill, 2008)

Consider the following integral equation:

f (x) = λ

 x

0−
[1 − G(x − w)]dF(w), x > 0, (1)

which is sometimes called the Pollaczek–Khinchine integral equa-
tion associated with the work process of the M/G/1 queue (see
Neuts, 1986); there λ is the arrival rate of customers and G(·) is
their service time distribution. The argument to derive (1) for the
M/G/1 queue is as follows. Let F(·) denote the distribution of the
steady-state workload (amount of work) V in the M/G/1 queue,
which by PASTA (Poisson Arrivals See Time Averages, see Wolff,
1989, Sections 5–16) is in distribution equal to that of the wait-
ing time, and let f (x) denote its density for all x > 0. The level
crossing approach says that the long run average number of down-
crossings of level x > 0 is the steady-state density f (x), and that
it should equal the long run average number of upcrossings of that
level. Thus, the balance equation (1) is obtained by equating the
rates to cross level x > 0 from above and from below. It is well
known that the steady-state distribution F(·) has an atom at level
0 (π = Pr(V = 0)), while F(·) has a density for x > 0. Hence (1)
can be written as

f (x) = λ

 x

0−
[1 − G(x − w)]f (w)dw + λπ [1 − G(x)],

x > 0. (2)

The balance equation (1) can be extended in several directions. One
direction is the case in which the workload of the M/G/1 queue is
interpreted as the content level of a dam with general release rate
function r(·). LCT applied to dammodels can be found in Kaspi et al.
(1997), Boxma et al. (2005) and Perry and Posner (2002). Another
direction is the casewhere the constant arrival rateλ is replaced by
a state-dependent arrival rate λ(·). When both extensions occur,
the balance equation becomes (cf. Theorem 2.1 of Bekker et al.,
2004):

r(x)f (x) =

 x

0−
λ(w)[1 − G(x − w)]dF(w), x > 0. (3)

For example, consider the M/G/1 + G queue, the last G denoting
that customers have some general impatience distribution; more
specifically, an arriving customer who meets an amount of work
w enters the system with probability 1 − H(w), where H(·) is
the distribution of his patience time. Then λ(w) = λ(1 − H(w))
(Boxma et al., 2011c,a).
Extensions of the LCT
The following variant of the LCT occurs a few times in the present
paper, and does not occur in Brill (2008). Consider a queue or
storage process that evolves as an ordinary M/G/1 queue, except
for the following feature: Each time that the system becomes
empty, immediately a new cycle begins at a certain level, say a. In
every cycle of this model the number of upcrossings is equal to the
number of downcrossings for x > a, and hence the long run rate
Fig. 1. The surplus cash process R and the artificial dam process Dart .

of upcrossings equals the long run rate of downcrossings for every
x > a. However, when x ≤ a, the number of downcrossings minus
the number of upcrossings is equal to 1 in each cycle. Since level 0
is reached only once during a cycle (at the end of the cycle), the
latter fact means that the long run rate of downcrossings minus
the long run rate of upcrossings is equal to the long run rate of
downcrossings of level 0.

Two other classes of models which are not discussed in Brill
(2008) are the class of so-called mountain models (Boxma et al.,
1999, 2005; Perry and Stadje, 2003; Boxma et al., 2015) and the
class of models with state-dependent jumps. We shall make use
of LCT for mountain models in Section 6, and of LCT for models
with state-dependent jumps in Section 4; there we shall explain
the precise working of the LCT for such models.

3. The model

The surplus cash process R̃ is a risk-type process with general
fluid state-dependent input of rate αR(x) ∈ (0, c), with c − αR(x)
the rate of transferring funds to the reinsurer; see Fig. 1.We assume
that R(0) = b − a, where b − a is the initial investment of the
insurance firm. The claims arrive according to a Poisson process
with rate λ (can be extended as in Boxma et al., 2005 to λ(x)). The
successive gross claims form a sequence of i.i.d. random variables
whose generic size is Z̃ and whose generic distribution is G(·).
However, the net jump size which is the amount subtracted from
the cash is less than Z̃ , since a certain part of Z̃ is covered by the
reinsurer.More specifically:when the cashdrops below level x > 0
due to a claim, the infinitesimal gross payment due to that claim
equals dx but the net payment is βR(x)dx (0 < βR(x) < 1) and
(1−βR(x))dx is covered by the reinsurer. Hence the negative jumps
of process R̃ are also state-dependent.

Formally, the dynamics of the process R̃ is

R̃(t) = b − a +

 t

0
αR(s)ds −

N(t)
j=1

Zj (4)

whereN(t) is the Poisson arrival process of the negative jumps and
Zj is the size of the jth negative jump. That is,N(t) = sup{j : Tj ≤ t}
where Tj is the arrival time of the jth jump.Note that effective jumps
Z1, Z2, . . . are not i.i.d. random variables because they are state
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dependent. The claim sizes Z̃1, Z̃2, . . . are i.i.d. random variables
and

Zj =

 t

0
1{Tj∈ds}ds

 Z̃j

0
β(R(s) − u)du. (5)

We assume that the insurance firm applies a dividend policy such
that whenever the cash reaches level b the whole excess input is
taken as a dividend. We denote the modified process by R. Let τ be
the time of ruin of the modified process R. That is, τ = inf{t :

R(t) < 0}, so that R(τ ) < 0 and if we define βR(x) = 1 for
x ≤ 0, |R(τ )| > 0 is the deficit at ruin. Every interval of time
that R spends at level b is called a dividend period. Then, during
an arbitrary dividend period of length I the dividends are divided
between the insurance firm and the reinsurer according to the
proportion ofαR(b−)/c and1−αR(b−)/c , respectively (we assume
that αR(b) = 0 but αR(b−) > 0). That is, during I an income of
αR(b−)I goes to the insurance firm and [c−αR(b−)]I is transferred
to the reinsurer.

Clearly, by the above dividend policy R never upcrosses level b
until τ , so that for all t < τ , 0 ≤ R(t) ≤ b.

It is natural to assume that y

x

1
αR(w)

dw < ∞ and
 y

x

1
βR(w)

dw < ∞,

for every 0 < x < y ≤ b. The former integral represents the
time it takes to go from any level x up to level y, if no jumps occur
in between. This means that the boundary b will be reached in a
finite amount of time from any level x < b. The latter condition,
combinedwith the finiteness of the upper boundary b, implies that
ruin will occur within a finite time.

A related dam process
A dam process D̃(t) describes the content of a dam at time t ,

fluid inflow arrives according to a Poisson process and the fluid
release rate depends on the content of the dam.We consider a dam
model with capacity b, where the oveflow of the fluid above b is
lost. Let D be the modified process with upper barrier b. Clearly,
D(t) = b − R(t); see Fig. 1. D is called the dam version of the
risk process R and by definition the analysis of D is equivalent
to the analysis of R. It is clear that by definition D(0) = a and
τ = inf{t : D(t) > b}. In addition, if αR(·) is the increase rate
of R, then αD(·) where αD(x) = αR(b− x) can be interpreted as the
release rate function with respect to the dam D and the integral y
x [1/αD(w)]dw represents the time it takes to go from state y

down to state x (where x < y), if no jumps occur, in D. The so-
called dry periods of the dam (where D(t) = 0) are the dividend
periods of the risk process and by definitionD(τ )−b is interpreted
as the deficit at time of ruin of the surplus in R. The jumps in D are
positive and state-dependent. In a similar way to αR(·) and αD(·)

we define βD(x) = βR(b − x). Then, every negative jump of size Z̃
in the risk process can be interpreted as a positive jumpof the same
size in the damprocess. Notice that a net jump inD has distribution

P(net jump size < x − w|jump from level w)

= G
 x

w

1
βD(y)

dy


. (6)

In a similar way to the description of R̃ in (4) the dynamics of
the dam process D̃ is defined by:

D̃(t) = a −

 t

0
αD(D̃(s))ds +

N(t)
j=0

Zj(t), (7)

where Zj is as per (5).
A regenerative dam process
To analyze the 5 performance measures mentioned in the

introduction we construct an artificial dam process Dart =

{Dart(t) : t ≥ 0} from D as follows (see also Fig. 1). Recall that
D is a stopped process that is terminated when it upcrosses b. We
construct the processDart such that it is a regenerative process. For
the first cycle we replicate the process D until time τ—where an
overshoot above b occurs. Then, from time τ the artificial process
Dart decreases at rate 1 until level b is reached. At that moment,
the cycle of Dart is terminated and a new cycle restarts from level
a. In other words, {D(t) : 0 ≤ t ≤ τ } and {Dart(t) : 0 ≤ t ≤ τ }

are equal up to time τ , but Dart(t) continues after τ , going down at
rate 1 until it reaches b. Then the cycle ofDart ends, so that the cycle
length ofDart is T = τ+Dart(τ )−b. The damDart can be interpreted
as a special version of a Markov regenerative dam with general
release rate αD(w), state dependent jumps rate βD(w) and pseudo
finite capacity b. The pseudo finiteness of the dam is introducedwith
the convention that the content of the dam is not finite, but jumps
that arrive and find the content level above b are not admitted to
the buffer. Aswill be seen below, the performancemeasures (i)–(v)
introduced in the introduction can be expressed in the steady state
distribution of Dart.

4. The density of the artificial dam process

In this section we shall analyze the steady state probability law
of the regenerative process Dart. That law will be used in the next
section for determining the five key performance measures listed
in the introduction.

Let π denote the probability mass of Dart at 0. Remember that
αD(x) = αR(b − x) for 0 ≤ x ≤ b, and βD(x) = βR(b − x).
Furthermore, define αD(x) := 1 for x ≥ b, because by construction
Dart(t) decreases at rate 1 above level b. Also, define βD(x) := 1 for
x ≥ b, because the reduction of the gross claim sizes by βR(x) ∈

(0, 1) only applies as long as the surplus x > 0. For simplicity of
representation we define

B(x) =

 x

0

1
βD(y)

dy, x > 0. (8)

The next theorem lays the groundwork for the analysis of the
model.

Theorem 1. The density f (·) of the stationary distribution of the
Markov process Dart satisfies the integral equation

αD(x)f (x)

=



λ

 x

0
[1 − G(B(x) − B(w))]f (w)dw

+ λπ [1 − G(B(x))],
0 < x < a,

λ

 x

0
[1 − G(B(x) − B(w))]f (w)dw

+ λπ [1 − G(B(x))] − f (b),
a ≤ x < b,

λ

 b

0
[1 − G(B(x) − B(w))]f (w)dw

+ λπ [1 − G(B(x))],
x ≥ b.

(9)

Proof. Eq. (9) is derived by the level crossing theory (LCT)
introduced in Section 2. αD(x)f (x) is the rate of downcrossing of
any level x > 0 (see Cohen, 1977; Brill, 2008; Brill and Posner,
1977; Perry and Asmussen, 1995). To obtain the rate of upcrossing
note that the arrival rate of upward jumps is λ, and given that the
jump starts at w ∈ (0, x ∧ b) the probability to jump above x is
[1 − G(B(x) − B(w))]. To explain this consider a certain effective
jump size in Dart that starts at level w and ends at level x, and
construct an artificial process X = {X(t) : t ≥ 0} from Dart such
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that each positive jump of Dart is replaced by a piece of trajectory
that increases continuously at rate βD(y) for all w < y < x in
X. Specifically, if the jump size in Dart starts at level w and ends
at level x, the piece of trajectory in X starts at the same level w
and ends at the same level x, but in between w and x the modified
process X increases as a fluid with rate βD(y) for all w < y < x.
Clearly, B(x) − B(w) (see Harrison and Resnick, 1976, 1978) is the
time it takes for the fluid in X to go from level w up to level x.
Thus, [1 − G(B(x) − B(w))] is the probability of the event that the
fluid time of the trajectory X is greater than B(x) − B(w). The term
λπ [1−G(B(x))] corresponds to a jump above x starting from 0. By
construction of X from Dart every upcrossing of level x in the cycle
ofX is accompanied by an upcrossing of level x in a cycle ofDart and
vice versa. This implies that the number of upcrossings during one
cycle in X is equal to the number of upcrossings during one cycle
of Dart.

When x ∈ (0; a) ∪ [b; ∞) the number of upcrossings is equal
to the number of downcrossings in every cycle of Dart. Thus, by
renewal theory, the rates of up and downcrossings are also equal.
However, when x ∈ [a; b) the number of downcrossingsminus the
number of upcrossings in each cycle is 1, since each cycle starts to
decrease at level a. But level b is upcrossed only once during one
cycle (in the last jump of the cycle) and after the last jump Dart
decreases continuously down to level b. Thismeans that level b+ is
also downcrossed only once during a cycle (at the end of the cycle).
By renewal theory the rate of downcrossings of level x ∈ [a; b)
minus the rate of upcrossings is equal to the rate of downcrossings
of level b+. But by LCT the latter rate is α(b+)f (b). In our model
α(b+) = 1 by definition. The proof is complete. �

To solve for f (·)we apply the technique introduced by Harrison
and Resnick (1976, 1978). Define

K(x, w) =

λ

1 − G

 x
w

1
βD(y)dy


αD(x)

to get the integral equation

f (x) =



 x

0
K(x, w)f (w)dw + πK(x, 0), 0 < x < a, x

0
K(x, w)f (w)dw + πK(x, 0)

−
f (b)
αD(x)

, a ≤ x < b, b

0
K(x, w)f (w)dw + πK(x, 0), x ≥ b.

(10)

Formula (10) is a Volterra integral equation of the second
kind on (0, a) and on [a, b). This equation is known to be
uniquely solvable by a Neumann series (in the space of continuous
functions), see Harrison and Resnick (1976). We shall now provide
that solution; See for example Ch.1 of Tricomi (1970). For other
applications featuring Neumann series equations see Boxma et al.
(2011a, 2015, 1999, 2011c) and Kaspi and Perry (1989).

Define

Kn+1(x, w) =

 x

w

Kn(x, y)K1(y, w)dy

=

 x

w

K1(x, y)Kn(y, w)dy

where K1(x, w) := K(x, w) for 0 < x < a,

f (x) = π

∞
n=1

Kn(x, 0) =: πK ∗(x, 0), 0 < x < a, (11)

where it is easy to show that the Neumann series


∞

n=1 Kn(x, 0) =

K ∗(x, 0) in (11) converges for every x > 0.
Next, for a ≤ x < b,

f (x) =

 a

0
K(x, w)f (w)dw

+

 x

a
K(x, w)f (w)dw + πK(x, 0) −

f (b)
αD(x)

. (12)

Note that f (x) is known on (0, a) except for the factor π . Let

l(x) =

 a

0
K(x, w)f (w)dw + πK(x, 0) −

f (b)
αD(x)

, x ∈ [a, b).

l(·) is a known function except for the constants π and f (b). Also
note that only given functions and parameters and f (·) restricted
to (0, a) appear in the definition of l(·). We have

f (x) = l(x) +

 x

a
K(x, w)f (w)dw, a ≤ x < b. (13)

Iterating, we get another Neumann series: f (·) can be written for
x ∈ [a, b) as

f (x) = l(x) +

 x

a
K(x, w)f (w)dw

= l(x) +

∞
n=1

 x

a
Kn(x, w)l(w)dw.

To determine f (·) for x ≥ b one can simply substitute the solution
of f (·) for x < b into (10).

We have determined f (·) except for the constants π and f (b).
f (b) is obtained as follows: By substituting x = b− and x = b into
(10) (or in (9)) we get that

f (b−) = 0, (14)

Thus by substituting x = b− into (12), using αD(b) = 1, is
tantamount to

f (b) = πK(b, 0) +

 b

0
K(b, w)f (w)dw.

Finally use the normalizing condition
∞

0
f (x)dx = 1 − π, (15)

and f (·) is found for all x > 0.

Example 1. Special Case—Exponential Jumps
In this subsection we consider the special case of exponentially

distributed example gross jumps: G(x) = 1 − e−µx, x ≥ 0. Now a
direct solution for f (·) is possible. Next to B(·) introduced in (8) we
also define:

A(x) =

 x

0

1
αD(y)

dy. (16)

We get in (9):

αD(x)f (x) =



λ

 x

0
e−µ[B(x)−B(w)]f (w)dw

+λπe−µB(x), 0 < x < a,

λ

 x

0
e−µ[B(x)−B(w)]f (w)dw

+λπe−µB(x)
− f (b), a ≤ x < b,

λ

 b

0
e−µ[B(x)−B(w)]f (w)dw

+λπe−µB(x), x ≥ b.

(17)
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Nowmultiply both sides of (17) by eµB(x). We get

αD(x)eµB(x)f (x) =



λ

 x

0
eµB(w)f (w)dw

+λπ, 0 < x < a,

λ

 x

0
eµB(w)f (w)dw

+λπ − eµB(x)f (b), a ≤ x < b,

λ

 b

0
eµB(w)f (w)dw

+λπ, x ≥ b.

(18)

Solving for f (·) in (18) we get

f (x) =



k0
αD(x)

e−µB(x)+λA(x), 0 < x < a,

k1
αD(x)

e−µB(x)+λA(x)

−
f (b)
αD(x)

e−µB(x)+λA(x)

×

 x

0

eµB(y)−λA(y)

βD(y)
dy, a ≤ x < b,

k2e−µx, x ≥ b,

(19)

where k0, k1, and k2 are constants. To find the constants we have
the following:

(1) We have k0 = λπ . To see this, substitute x = 0 into both (17)
and (19).

(2) Clearly f (b−) = 0 (see also (14)); this may be seen by
comparing the second and third equations of (17). It implies
that k1 = f (b)

 b
0

eµB(y)−λA(y)

βD(y) dy.
(3) Level a is point of discontinuity for f (·). We have (cf. (17)):

αD(a)f (a−) = αD(a)f (a) + f (b).

By substituting x = a into (19) we get

k0 = k1 − f (b)
 a

0

eµB(y)−λA(y)

βD(y)
dy.

(4) To compute k2 recall that for x ≥ bwe takeαD(x) = βD(x) = 1.
By substituting the solutions of f (·) for x < b into (18) for x ≥ b
we get

f (x) = λe−µB(x)
 b

0
eµB(w)f (w)dw + λπe−µB(x)

= λe−µ[B(b)+x−b]
 a

0

k0
αD(w)

eλA(w)dw

+

 b

a


k1

αD(w)
eλA(w)

−
f (b)

αD(w)
eλA(w)

×

 w

0

eµB(y)−λA(y)

βD(y)
dy


dw


+ λπe−µ[B(b)+x−b],

so that

k2 = λπe−µ[B(b)−b]
+ λe−µ[B(b)−b]

 a

0

λπ

αD(w)
eλA(w)dw

+

 b

a


k1

αD(w)
eλA(w)

−
f (b)

αD(w)
eλA(w)

×

 w

0

eµB(y)−λA(y)

βD(y)
dy


dw


.

Now k0, k1 and k2 are expressed in terms of each other
and π . The final solution is obtained via the normalizing
condition (15).
Example 2. We briefly consider a special choice for αD(x) and
βD(x), in addition to the assumption that the jump sizes are
exponential. More precisely, we take

αD(x) =


α0, x < ν,
α1 ν ≤ x < b,
1, x ≥ b,

(20)

and

βD(x) =


β0, x < γ ,
β1, γ ≤ x < b,
1, x ≥ b.

(21)

We assume, without loss of generality, that 0 < ν < a <
γ < b, but a similar analysis can be performed for some other
combination of the parameters ν, γ and a. It is natural to assume
that α1 > α0 but this assumption does not have any effect on the
analysis. It is now trivial to verify that

A(x) =



x
α0

, x < ν,

ν

α0
+

x − ν

α1
, ν ≤ x < b,

ν

α0
+

b − ν

α1
+ x − b, x ≥ b,

(22)

and

B(x) =



x
β0

, x < γ ,

γ

β0
+

x − γ

β1
, γ ≤ x < b,

γ

β0
+

b − γ

β1
+ x − b, x ≥ b.

(23)

Substitution in (19) gives the density f (·).

5. Analysis of the main performance measures

In this section we express the five key performance measures
of the cash surplus model in the density f (·) that was determined
in the previous section.
Performance measures (i) and (ii): Time to ruin and deficit at
ruin

Lemma 1. Let f (·) be the steady state density of Dart and let ξ be the
deficit at ruin of R (which is also the overflow Dart(τ )− b) and define
the distribution Hξ (x) = Pr(ξ ≤ x). Then

(i) Hξ (x) = 1 −
f (x + b)
f (b)

so that

Eξ =


∞

b f (w)dw
f (b)

,

and

(ii) Eτ =
1 −


∞

b f (w)dw
f (b)

.

Proof. (i) The function

f (x + b)
∞

0 f (z + b)dz
, x > 0,

is the conditional steady state density of Dart given Dart > b. By
deleting the time periods in which Dart ≤ b and gluing together
the time periods in which Dart > b we obtain a typical sample
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path of the forward recurrence time of a renewal process whose
interrenewal times have the same distribution as ξ . Designate the
equilibrium density of ξ by he(·). Then by renewal theory (p. 65 of
Wolff, 1989)

he(x) =
1 − Hξ (x)

Eξ
.

That means that

f (x + b)
∞

0 f (z + b)dz
=

1 − Hξ (x)
Eξ

. (24)

Substituting x = 0 we get

Eξ =


∞

0 f (z + b)dz
f (b)

. (25)

The proof of (i) is complete by substituting (25) into (24).
(ii) By definition of Dart, Eτ = ET − Eξ . Thus, it is enough to

show that ET =
1

f (b) . But level b is downcrossed only once during a
cycle ofDart, and this downcrossing occurs at the end of the cycle T .
By the strong Markov property, it is possible to define the cycle as
the time between successive downcrossings of level b. Clearly the
expected cycle length and the rate of renewals are reciprocal to
each other. But by LCT, f (b) is the rate of downcrossings of level b,
since αD(b) = 1 and the cash process decreases at rate 1 whenever
it is above level b. The proof is complete. �

Performance measure (iii): The dividend until ruin

Lemma 2. Let Rdiv be the dividend withdrawn until ruin. Then

ERdiv =
αD(0+)


1 −


∞

0 f (x)dx


f (b)
.

Proof. By the normalizing condition (15), 1 −


∞

0 f (x)dx is the
steady state probability π that the dam is empty, which equals
the steady state probability of being in a dividend period for the
surplus process. The mean total length of all the dividend periods
during the cycle T is obtained by multiplication with ET , which
equals 1

f (b) . Finally observe that the net income fraction for the
insurance firm during dividend periods is αR(b−) = αD(0+). The
result follows. �

Performance measures (iv) and (v): The amount of money
transferred to/from the reinsurer

Designate the expected amount of money transferred from the
firm to the reinsurer until ruin by Rto and the expected amount
of money transferred from the reinsurer to the firm until ruin by
Rfrom. We compute Rto with the convention that during dividend
periods the proportion 1 −

αD(0+)

c of the dividend is transferred to
the reinsurer. Similarly, we compute Rfrom with the convention that
ruin means bankruptcy, which means that all of the deficit at ruin
is covered by the reinsurer.

Lemma 3.

(i) Rto =

 b
0 [c − αD(x)]f (x)dx + π [c − αD(0+)]


f (b)

,

(ii) Rfrom =

 b
0 [1 − βD(x)]αD(x)f (x)dx

f (b)
+

 b

a
[1 − βD(x)]dx,

where the payment of the deficit by the reinsurer is not taken into
account in (ii).
Proof. (i) We have

Rto = E
 T

0
[c − αD(Dart(t))]IDart (t)<bdt


= ET E[(c − αD(Dart(∞)))IDart (∞)<b]

= ET
 b

0
[c − αD(x)]f (x)dx + π [c − αD(0+)]



=

 b
0 [c − αD(x)]f (x)dx + π [c − αD(0+)]

f (b)
, (26)

where Dart(∞) is the steady state random variable ofDart. The first
step of (26) is the definition of Rto. The second step is obtained by
renewal theory. To explain the third step we note that up to time
τ the process Dart < b. Finally, in the fourth step we substitute
ET = 1/f (b).

(ii) Similarly to (i), we have, with N(x, dt) the number of
downcrossings of level x in [t, t + dt):

Rfrom = E
 T

0
[1 − βD(Dart(t))]N(Dart(t), dt)


. (27)

Let us now take a closer look at the rate of downcrossings of level
x. Every cycle of Dart starts at level Dart(0) = a and after a single
upcrossing of level b (at τ ) the cycle T (T = τ + D(τ ) − b) is
terminated at level b+. Accordingly, by level crossing theory for any
x ∈ (0, a) ∪ [b, ∞) the long run average number of upcrossings
is equal to the long run average number of downcrossings. Here,
since Dart is an artificial process, the set of states {x : x ∈ [b, ∞)}
is not of relevance, since βD(x) = 1 by assumption for {x :

x ∈ [b, ∞)}. However (see also the proof of Theorem 1), for
any x ∈ [a, b) the number of upcrossings until ruin minus the
number of downcrossings until ruin per cycle is equal to 1, which
is the number of downcrossings of level b+. By renewal theory this
means that in Dart for any x ∈ [a, b) (in terms of long run average)
we have

{rate of upcrossings of level x}
− {rate of downcrossings of level b+}

= {rate of downcrossings of level x}.

Formally, since by definition αD(b+) = 1, we have

{rate of upcrossings of level x}

=


αD(x)f (x), 0 < x < a,
αD(x)f (x) + f (b+), a ≤ x < b,
f (x), x ≥ b,

where in the region x ≥ b we take into account that, by construc-
tion of Dart, αD(x) = 1. It now follows that

Rfrom = E
 T

0
[1 − βD(Dart(t))]N(Dart(t), dt)


= ET

 b

0
[1 − βD(x)]αD(x)f (x)dx

+ f (b)
 b

a
[1 − βD(x)]dx


=

 b
0 [1 − βD(x)]αD(x)f (x)dx

f (b)

+

 b

a
[1 − βD(x)]dx. � (28)

Remark 1. At first glance, it looks surprising that the second com-
ponent of Rfrom in Lemma 3 is independent of the expected cycle
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length 1/f (b). However, in every cycle there is exactly one extra
downcrossing between a and b, that gives a contribution to Rfrom.

It is natural to assume that at time of ruin the reinsurer pays
the deficit by covering the entire claim causing the ruin. Clearly,
the reinsurer will be profitable (on the average) until ruin when
Rto − Rfrom − Eξ ≥ 0.

5.1. A proportionality result

We derive two results which are formulated in terms of the
steady state density f (·). The first result is used as a preliminary
for the second, which is a proportionality result. In Section 6.1
we consider the special case of exponential interarrival times and
exponential gross jumps. Then, the proportionality result becomes
a more explicit result.

(1) Let J be the number of dividend periods until ruin. Then

EJ =
1 −


∞

0 f (x)dx
λf (b)

. (29)

To see this note that, with Rdiv the dividend withdrawn until
ruin: ERdiv = αD(0+)EJEI . Clearly, for the mean dividend
period we have EI = 1/λ. Now the result follows by Lemma 2.

(2) Let θ(x; b) be the probability that level 0 is reached before level
b is upcrossed byDart when the starting point is 0 < x < b, and
let

Θ(b) =


∞

0
θ(x; b)dG(B(x)).

Then 1 − θ(a; b) can be interpreted as the probability that no
dividend period occurred until ruin. Θ(b) is the conditional
probability given that Dart has just left 0, it will return to 0
again before upcrossing b; i.e., given that the dividend period is
terminated there will be another dividend period before ruin.
Thus, 1−Θ(b) is the probability given that the process has just
left the dividend period, there will be no dividends until ruin.
Then the next proportionality result holds:

θ(a; b)
1 − Θ(b)

=
1 −


∞

0 f (x)dx
λf (b)

. (30)

To see this recall that by the strong Markov property

Pr(J = n) =


1 − θ(a; b), n = 0,
θ(a; b)(1 − Θ(b))Θ(b)n−1, n ≥ 1.

Then,

EJ =
θ(a; b)

1 − Θ(b)
.

Now compare with (29) and the result follows.

6. The dual model

By the dual model we mean a risk model with generally
distributed claim inter-arrival times and exponentially distributed
claim amounts. Such models have already been discussed in the
actuarial literature see, e.g. Borovkov and Dickson (2008) and
Frostig et al. (2012). In most queueing and dam models in which
the arrival process is not a Poisson process an exact analysis seems
very intricate if not impossible. Indeed, a balance equation of type
(9) still holds (see Cohen, 1977), but it does not provide a solution of
the steady state density, since the steady state law and the law just
before jumps are different. PASTA does not hold because the arrival
process is not Poisson. As a result, the balance equation comprises
two unknowns which are the steady state density and the limiting
density of the state just before jumps (in the language of queueing
these are the densities of the work and that of the waiting time).
However, there is a special case that is tractable although the
arrival process is not a Poisson process. This is the case in which
the claims arrive according to a renewal process (with interarrival
times having distribution C(·), say) and the gross negative jump
sizes in the surplus Rmod are exp(µ) distributed. Clearly, under this
assumption the surplus cash process is not a Markov process. To
solve the steady state density we use an approach based on duality
between M/G/1 type dams and G/M/1 type dams. Other variants
of this approach have been introduced in Adan et al. (2005), Perry
and Stadje (2003) and Perry et al. (2013).
The non-Markov model Rmod

Between negative jumps the original risk process R increases
at input rate αR(x) (0 < x < b) until level b is reached. After
reaching level b the risk process R stays at level b until the next
negative jump and so forth.We now define amodified risk process
Rmod = {Rmod(t) : t ≥ 0} such that below level b the modified
process Rmod is a probabilistic replication of R, but when R reaches
level b (if reached) the process Rmod still continues to increase at
rate 1.

Then, the time of the first negative jump in R (at the end of I)
is also the time of a negative jump in Rmod, but the latter jump
equals I plus an exp(µ) distributed amount—and from that time
R and Rmod are again stochastically equal until the moment (if it
occurs) that level b is reached again and so forth. This means that
every negative jump in Rmod that starts from any level x > b is also
a downcrossing of level b.

The gross negative jumps in Rmod are i.i.d., exp(µ), random
variables, but the net jumps are neither independent nor
identically distributed; cf. (6).

Formally, we define the stopping time L0 for both R and Rmod
such that L0 = inf {t : R(t) = b} = inf {t : Rmod(t) = b}. Thus
{R(t) : t ≤ L0}

D
={Rmod(t) : t ≤ L0}. The time of a negative

jump from level b in R is also the time of a negative jump in
Rmod, but while the starting points are different the end points
of the jumps are stochastically the same. From that time on the
probabilistic replication of Rmod from R is renewed (until reaching
level b again, if this event occurs). For every increment of time t
such that R(L0 + t) = b we have Rmod(L0 + t) = b + t . Next,
let L1 = inf {t > L0 : R(t) < b}. We then define Rmod such
that Rmod(L1+) = R(L1+). In words, the probabilistic replication
of Rmod from R is renewed at L1. Note that every time of a negative
jump inR is also the time of a negative jump inRmod, but a negative
jump that occurs whenever Rmod>b automatically downcrosses
level b and the gross undershoot below b in Rmod is also exp(µ)
distributed. Finally, we assume that Rmod is a regenerative process
whose first cycle was described above. That is, after downcrossing
level 0 (time of ruin) a new cycle starts from level b − a.

The steady state analysis of Rmod is based on a certain duality
argument between non-Markov risk processes with exponential
negative jumps and Markov dam processes with positive jumps.
This argument was developed in Perry and Stadje (2003). In fact,
the risk model introduced in Perry and Stadje (2003) is only a
special case of Rmod, because the negative jumps there are i.i.d.
random variables, while the negative jumps of Rmod here are not
i.i.d. random variables, since they are state dependent. It should
be noted that despite the model here is more general than that of
Perry and Stadje (2003) the idea behind the methodology is the
same, since the construction of the Markovian dual dam process
Ddual = {Ddual(t) : t ≥ 0} from Rmod is due to sample paths.

The construction ofDdual fromRmod is carried out in twophases;
cf. Fig. 2. First, we construct the artificial mountain process M =

{M(t) : t ≥ 0} from Rmod. As explained in the proof of Theorem 1
we replace a negative jump that starts at level x and ends at level
w by a piece of trajectory that decreases continuously at rate βR(·).
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Fig. 2. The construction of Ddual from Rmod , via M.

Let the OFF periods be the periods where the process M(t)
decreases, and the ON periods be the periods where it increases.
That is, the state ofM at the end of each OFF period is stochastically
equal to the state of Rmod immediately after the corresponding
negative jump. As a result, the mountain M is a process whose
continuous sample path alternates between independent ON and
OFF periods, where the ON periods are i.i.d. random variables with
generic distribution G(·) and the OFF periods are independent and
exp(µ) distributed. Also, when the content level is equal to x > 0
then during the ON periods the rate of upward slope in M is αR(x)
and during OFF periods the rate of downward slope in M is βR(x).
In the second phase we construct the dual dam process Ddual from
M by deleting the ON periods and gluing together the OFF periods.
Ddual is aMarkov process, since the positive jumps arrive according
to a Poisson process of rate λ, but note that the positive jumps of
Ddual are state dependent (cf. Fig. 2) in the sense that if the jump
starts at level x the probability that the jump will be greater than y
is equal to 1−G(

 x+y
x

1
αR(w)

dw) (note that αR(x) = 1 for all x ≥ b).
We designate the cycle of M by τmod + τdual, where τmod is the

cycle (time to ruin) of Rmod and τdual is the cycle of Ddual. The next
lemma relates the law of Rmod and that of Ddual where, for the sake
of simplicity, we assume that the starting point ofRmod is a (instead
of b − a).

Lemma 4. Let fRmod(·) and fDdual(·) be the steady state densities of
Rmod and Ddual, respectively. Then for any x > 0,

fRmod(x) =



Eτdual

Eτmod


βR(x)
αR(x)

fDdual(x)

−
βR(0)
αR(x)

fDdual(0)


, 0 < x < a,

Eτdual

Eτmod

βR(x)
αR(x)

fDdual(x), x ≥ a.
Proof. (i) x ≥ a. Let URmod(x) and DRmod(x) be the number of
upcrossings and the number of downcrossings of level x during the
cycle τmod ofRmod, respectively. Similarly, letUDdual(x) andDDdual(x)
be the number of upcrossings and the number of downcrossings
of level x during the cycle τdual of Ddual. Rmod and Ddual are
regenerative processes; thus, for every x ≥ a every upcrossing
in Rmod [Ddual] is compensated by a downcrossing and thus
URmod(x) = DRmod(x) and UDdual(x) = DDdual(x).

By the construction of Ddual from Rmod (via M) the probability
law of the number of upcrossings in Rmod, of any level x ≥ a, is
equal to the probability law of the number of upcrossings in Ddual,
whichmeans that the expected number of upcrossings in one cycle
ofRmod is equal to the expected number of upcrossings in one cycle
of Ddual. Thus

EURmod(x) = EDRmod(x) = EUDdual(x) = EDDdual(x). (31)

By renewal theory EURmod(x)/Eτmod and EUDdual(x)/Eτdual are
interpreted as the long-run rates of upcrossings in Rmod and in
Ddual, respectively. By LCT (see Cohen, 1977)

EURmod(x)/Eτmod = αR(x)fRmod(x) (32)

and

EUDdual(x)/Eτdual = βR(x)fDdual(x). (33)

Now substitute (32) and (33) into (31) to obtain

Eτmod · αR(x)fRmod(x) = Eτdual · βR(x)fDdual(x). (34)

(ii) 0 ≤ x < a. Consider the sample path of a cycle of the
mountain M. On the one hand, for every x ∈ [0, a) the number of
downcrossings is 1 larger than the number of upcrossings. Thus, by
construction ofDdual thismeans that the number of downcrossings
of level x inDdual is 1 larger than the number of upcrossings inRmod.
On the other hand, level 0 is downcrossed only once (at the end of
each cycle) in both Ddual and Rmod. Thus, with probability 1

URmod(0) = DDdual(0) = 1. (35)

Thus

URmod(x) + URmod(0) = DRmod(x)
D
=DDdual(x), (36)

where the second step of (36) is obtained by the construction of
Ddual from Rmod. Take expectations in (36) and substitute (35) to
obtain

EURmod(x) = EDDdual(x) − EDDdual(0). (37)

Now apply (32) and (33) to (37) in order to obtain

Eτmod · αR(x)fRmod(x) = Eτdual · βR(x)fDdual(x)
− Eτdual · βR(0)fDdual(0).

The proof is complete. �

It follows by Lemma 4 that the steady state law of Rmod can
be expressed in terms of the steady state law of Ddual. Before
calculating the density fDdual(·), we introduce

AR(x) =

 x

0

1
αR(y)

dy,

BR(x) =

 x

0

1
βR(y)

dy.

The Markov model
The process Ddual is a Markov process. The times between positive
jumps are exp(µ) distributed and the gross positive jumps have
distribution C(·), so that the probability that a net positive jump
starting at w will upcross x is 1 − C(AR(x) − AR(w)). In order
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to ease the notation we introduce the constant (unknown yet)
ζ := βR(0)fDdual(0).

The next theorem is a balance LCT equation for the steady state
density of Ddual.

Theorem 2. Let C(·) be the distribution of the gross jump sizes in
Ddual. Then, the balance equation for the steady state density fDdual(·)
is given by:

βR(x)fDdual(x)

=



µ

 x

0
[1 − C(AR(x) − AR(w))]

× fDdual(w)dw + ζ , 0 < x < a,

µ

 x

0
[1 − C(AR(x) − AR(w))]

× fDdual(w)dw
+ζ [1 − C(AR(x) − AR(a))],

a ≤ x < b,

µ

 b

0
[1 − C(AR(x) − AR(w))]

× fDdual(w)dw
+ζ [1 − C(AR(x) − AR(a))],

x ≥ b.

(38)

Proof. The proof is very similar to the proof of Theorem 1, where
λ is replaced by µ and G by C . The other difference is the rate of
upcrossing level x starting at 0. Notice that here:

(i) For 0 < x < a, ζ is the rate of upcrossings of level x after
reaching 0 since at the beginning of each cycle (or at the end of the
previous cycle) the process jumps to a.

(ii) For a ≤ x < b or x ≥ b the rate of upcrossing level x from0 is
ζ [1−C(AR(x)−AR(w))]. ζ is the rate of downcrossing 0 at the end
of each cycle (or going to a at the beginning of the next cycle) and
then the probability of upcrossing x is 1 − C(AR(x) − AR(w)). �

The solution to fDdual(x) in (38) is similar to the solution of f (x)
in (10). We use the notation:

Q (x, w) := Q1(x, w) :=
µ[1 − C(AR(x) − AR(w))]

βR(x)
.

Also, define

Qn+1(x, w) =

 x

w

Q1(x, y)Qn(y, w)dy.

We get in (38)

fDdual(x) =



ζ

βR(x)
+

 x

0
Q (x, w)

× fDdual(w)dw, 0 < x < a,
ζ

µ
Q (x, a) +

 x

0
Q (x, w)

× fDdual(w)dw, a ≤ x < b,
ζ

µ
Q (x, a) +

 b

0
Q (x, w)

× fDdual(w)dw, x ≥ b.

(39)

Solving for fDdual(·) in 0 < x < awe get

fDdual(x) =
ζ

βR(x)
+

∞
n=1

 x

0
ζ
Qn(x, w)

βR(w)
dw

=
ζ

βR(x)
+ ζ

∞
n=1

Vn(x), (40)

where Vn(x) :=
 x
0

Qn(x,w)

βR(w)
dw.
To solve for fDdual(·) in a ≤ x < bwe introduce

m(x) :=
ζ

µ
Q (x, a) +

 a

0
Q (x, w)fDdual(w)dw,

so that, for a ≤ x < b:

fDdual(x) = m(x) +

 x

a
Q (x, w)fDdual(w)dw.

Iteration now yields:

fDdual(x) = m(x) +

∞
n=1

 x

a
Qn(x, w)m(w)dw. (41)

In the region x ≥ b we simply substitute the solutions (40) and
(41) into (39). From the first equation of (39) it follows that ζ =

βR(0)fDdual(0). Finally we obtain fDdual(0) by using the normalizing
condition, as ζ appears linearly in each of the fDdual(x) expressions
on (0, a), [a, b) and [b, ∞). Lemma 4 finally gives fRmod(x).

Nowwe are in a position to find the five performancemeasures
for the risk model with renewal arrivals and exponentially
distributed gross claim sizes.
Performance measure (i): Time to ruin

To find the mean time to ruin Eτmod, we observe that

Eτmod = [rate of downcrossings of level 0 by Rmod]−1 , (42)

so that we need to find the rate of downcrossings of level 0 by
Rmod. To this end we designate H(·) as the limiting distribution of
the state in Rmod just before a negative jump. Clearly, H(·) is an
absolutely continuous distribution for all 0 < x < b, but it has an
atom at level b. Let h(·) be the density with respect to H(·). Then,
with λ denoting one divided by the mean interval between two
negative jumps of the renewal process of claim arrivals, the rate of
downcrossings of level 0 by Rmod is equal to

λ

 b

0
e−µBR(x)h(x)dx + αR(b−)fRmod(b−)e−µBR(b). (43)

As in the proof of Theorem 1, e−µBR(x) is the probability that a
negative jump starting at state x is bigger than x, thus starting at
x ruin occurs. The first component corresponds to jumps in Rmod
from some level x ∈ (0, b). The second component is the rate of
downcrossings that start from (above) level b. The downcrossing
rate of level b also equals the upcrossing rate of level b, which is
αR(b−)fRmod(b−). It has to be multiplied by e−µBR(b) because it has
to go all the way through 0.

Now let us determine the density h(·). From the duality
between Rmod and Ddual the level just before a negative jump in
Rmod is stochastically equal to the sum of the level just before a
positive jump and the net jump size inDdual (see Fig. 2). In the dual
process Ddual the claim arrival process is Poisson thus the PASTA
law can be applied. This means that

h(x) =

 x

0
fDdual(w)dwC(AR(x) − AR(w)). (44)

We thus have, combining Eqs. (42)–(44):

Eτmod = 1/

λ

 b

0
e−µBR(x)

 x

0
fDdual(w)dwC(AR(x)

− AR(w))dx + αR(b−)fRmod(b−)e−µBR(b)


. (45)

Performance measure (ii): Deficit at ruin
Clearly, by the memoryless property the deficit is exp(µ)

distributed, since it is the undershoot below level 0 in Rmod.
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Performance measure (iii): The dividend until ruin
By the duality between Rmod and Ddual, the length of the

dividend period I in Rmod is stochastically equal to the size of the
overshoot in Ddual. Note that since Ddual downcrosses 0 only once
per cycle, at rate αD(0)fDdual(0), the expected cycle length E[τdual]

in Ddual is 1
αD(0)fDdual (0)

. Thus:

EI = E[τdual]P(Ddual > b) =


∞

b fDdual(w)dw
αD(0)fDdual(0)

.

Performance measures (iv) and (v): The amount of money
transferred to/from the reinsurer

In the proof of the next lemma we use similar arguments as in
that of Lemma 3. However, there are several changes.

Lemma 5.

(i) Rto = Eτmod

 b

0
[c − αR(x)]fRmod(x)dx

+ [c − αR(b−)]

 
∞

b
fRmod(x)dx,

(ii) Rfrom = Eτmod

 b

0
[1 − βR(x)]fDdual(x)dx

= Eτmod

 b

0
[1 − βR(x)]αR(x)fRmod(x)dx


+

 a

0
[1 − βR(x)]dx,

where Eτmod is given in (45).

Proof. (i)

Rto = E
 τmod

0
[c − αR(Rmod(t))]dt


= EτmodE[c − αR(Rmod(∞))]

= Eτmod

 b

0
[c − αR(x)]fRmod(x)dx + [c − αR(b−)]

×


∞

b
fRmod(x)dx


.

(ii)

Rfrom = Eτmod

 b

0
[1 − βR(x)]

× (rate of downcrossings of level x by Rmod)dx


.

That rate of downcrossings equals the rate of downcrossings in the
dual process, and hence

Rfrom = Eτmod

 b

0
[1 − βR(x)]βR(x)fDdual(x)dx


. (46)

Using Lemma 4 we can also write this as

Rfrom = Eτmod

 b

0
[1 − βR(x)]βR(x)fDdual(x)dx

+ βR(0)fDdual(0)
 a

0
[1 − βR(x)]fDdual(x)dx


. (47)

The last part of (ii) now follows by observing that Eτmod =

(βR(0)fDdual(0))
−1. �
6.1. Poisson arrivals: explicit result for θ(a; b)

We now consider the special case in which the times between
successive claims and the gross claim sizes are exp(λ) distributed
and exp(µ) distributed, respectively. In this special case the
probability θ(a; b) (cf. Section 5.1) can be computed explicitly. The
computation is carried out with regard to the dual dam process
Ddual and it is based on cycle maximum analysis. Define M as
the cycle maximum of Ddual—with the restriction that if the cycle
maximum exceeds b, we put M equal to b. By the duality concept
M is also the maximal value of the surplus Rmod until ruin.

The approach is based on the idea that:

θ(a; b) = Pr(M < b | Ddual(0) = a). (48)

The analysis of the latter probability is an important issue since
1 − θ(a; b) is the probability that no dividend is paid until ruin.

The next theorem is applied to the processDdual and it is similar
in spirit to Theorem 1 in Boxma and Perry (2009). Recall that
θ(x; y) can be interpreted as the probability to reach level 0 before
upcrossing level ywhen the starting point is x for all a < x < y ≤ b
and let rM(x) be the hazard rate function ofM at x. In the theorem,
we express rM(x) into θ(x; x). Thereafter we determine θ(x; x),
thus also obtaining rM(x) and hence Pr(M < x). Finally we use (48)
to obtain θ(a; b).

Theorem 3. For a ≤ x ≤ b,

rM(x) =
λ

αD(x)
θ(x; x).

Proof. By assumption, the times between negative jumps in R
are exp(λ) distributed and the gross negative jumps are exp(µ)
distributed. It follows by the duality argument that the times
between successive positive jumps in Ddual are exp(µ) distributed
and the gross jump sizes are exp(λ) distributed. Thus, by the lack
of memory property of the gross jumps (in Ddual) the hazard rate
at [x, x + dx) is λdx/αD(x). Since the latter argument holds for
every x ≤ b, regardless of the history of Ddual suppose that x, for
any arbitrary a ≤ x ≤ b, is a record value. This means that M ∈

[x, x+dx) if and only if the latter record value at x is the last record
value in the wet (i.e., non-zero) period of Ddual and the probability
of the latter event is θ(x; x). By the strongMarkov property,we find
rM(x) by taking the product of λ

αD(x) and θ(x; x). �

To compute θ(x; x) note that, due to the fact that Ddual is a
Markov process, we have for all a ≤ x ≤ b the equation

θ(x; x + dx) =


1 −

µdx
βD(x)

 
θ(x; x) + (1 − θ(x; x))

×
λdx

αD(x)
θ(x; x)


+ o(dx). (49)

To understand the right hand side of (49) note that the paths
with arrivals in [0, dx

βD(x) ) do not provide a contribution to Ddual,
since they have probability µdx and will upcross level x + dx
unless the further event of service termination in [0, dx

αD(x) ) (having
probability λdx

αD(x) ) occurs. The term θ(x; x) in (49) then corresponds
to paths which downcross level x and do not upcross it again.
The term (1 − θ(x; x)) λdx

αD(x)θ(x; x) corresponds to paths which
downcross level x and upcross again before hitting level 0, with
a jump terminating at u ∈ [ x, x + dx] where the value of u does
not matter, since θ(x; u) =

λdx
αD(x)θ(x; x) + o(dx). Hence, from (49)

we get

θ ′(x; x) =
λθ(x; x)
αD(x)

−
µθ(x; x)
βD(x)

−
λθ2(x; x)

αD(x)
. (50)
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To simplify (50) substitute for x ≥ a:

η(x) = 1/θ(x; x).

We get after some elementary algebra

η′(x) + η(x)


λ

αD(x)
−

µ

βD(x)


=

λ

αD(x)
. (51)

Recall the definitions of B(x) and A(x), cf. (8) and (16). By
multiplying both sides of (51) by eλA(x)−µB(x) we get

eλA(x)−µB(x)

η′(x) + η(x)


λ

αD(x)
−

µ

βD(x)


= eλA(x)−µB(x) λ

αD(x)
. (52)

Solving for η(x) in (52) we get

η(x) = L(x)e−λA(x)+µB(x)
+ c0e−λA(x)+µB(x),

where L(x) =
 x
0 eλA(y)−µB(y) λ

αD(y)dy and c0 is a constant. Obviously,
η(0) = 1 so that c0 = 1. We thus get

η(x) = [L(x) + 1]e−λA(x)+µB(x). (53)

Now substituting (53) into Theorem 3 we obtain

rM(x) =
λeλA(x)−µB(x)

αD(x)[L(x) + 1]
,

so that

Pr(M ≤ x) =


0, x < a,
1 − e−

 x
a rM (y)dy, a ≤ x < b,

(54)

Pr(M = b) = e−
 b
a rM (y)dy. (55)

Finally, one can conclude from (54) and (48) that

θ(a; b) = 1 − e−
 b
a

λeλA(x)−µB(x)
αD(x)[L(x)+1] dx

.
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