

Study of a Zero Energy Settlement in Cyprus **Original and Contingency plans**

Marina Kyprianou Dracou RIBA, ARB Architect

The Jeffrey Cook Workshop in Desert Architecture

Ben-Gurion University of the Negev 25-26 November 2019

Coriginal Plans for a Cyprus Case Study Settlement

LOCATION

Located in the western part of Cyprus, near the town of Peyia (Paphos). (34°89'N and 32°38'E).

CLIMATE description
 Intense mediterranean climate, mild winter and hot summers.

Tmax 36°C., Tmin10°C., 246 HDD, 1038 CDD

Country map indicating location

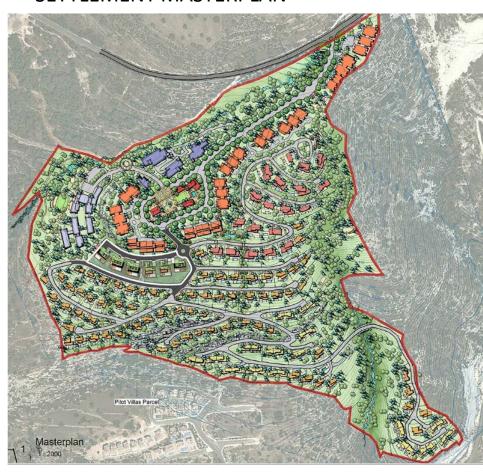
Original Settlement Description

TOPOGRAPHY

It is a rural area on a hillside location.

SETTLEMENT SIZE

The settlement size would be 255,000 sqm. It would be divided in 3 areas: a rehabilitation center, a research center and a residential area.


TYPE & NUMBER OF HOUSES

Total n° of buildings: 1 rehabilitation center, 1 research center, 123 individual houses, and 9-apartment buildings. 2 Zero-Plus houses which would individual residential luxury villas, Type 1b (building surface about 270 m²) and Type Ila (building surface about 160 m²).

CONCEPT/OBJECTIVES

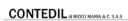
The 2 villas would be built within the above settlement with the scope to apply their design in the entire settlement, in order to improve the energy efficiency of the whole project.

SETTLEMENT MASTERPLAN

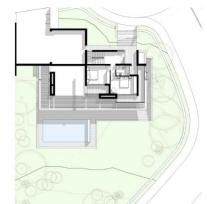
ARCHITECTURAL DESCRIPTION

Villa 1b

	Villa 1b
Total floor area (m2)	268.7
Conditioned net floor area (m2)	241.47
Orientation	North - South
n. of stories	2
no. of bedrooms	4
U value walls	0.386
U value roof	0.352
U value floor	0.644
Fenestration type	Common LowE double
U value of windows	glazing
G-value	2.40
	0.56
Shading	Overhanging slab
	extension / External
	shading in bedrooms

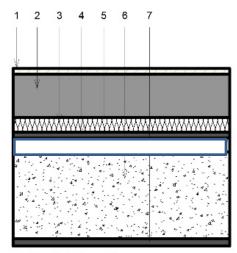


ARCHITECTURAL DESCRIPTION

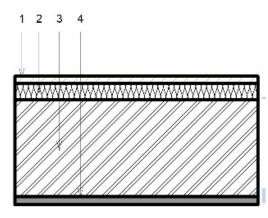

Villa IIa

	Villa IIa	
Total floor area (m2)	174.1	
Conditioned net floor area (m2)	163.56	
Orientation	North - South	
n. of stories	2	
no. of bedrooms	3	
U value walls	0.386	
U value roof	0.352	
U value floor	0.644	
Fenestration type	Common LowE double	
U value of windows	glazing	
G-value	2.40	
	0.56	
Shading	Overhanging slab	
	extension / External	
	shading in bedrooms	

JRHT JOSEPH SOLINITIES HOUSING TRUST


ENERGY CONSERVATION SYSTEMS – BUILDING SCALE

System name


Fibran technology extruded polystyrene with designation code: XPS(Extruded Polystyrene) EN 13164 - CS(10Y)300-DS(70,90)-TR400-WL(T)1,5.

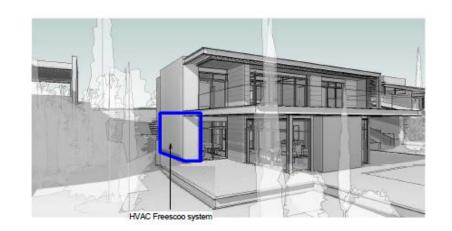
System integration details

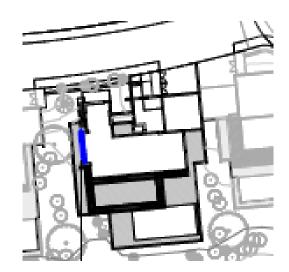
40mm of Fibran Technology were used on the external walls and 80mm on the roofs (427m2 on walls and 527.5m2 on roofs)

Flat Roofs

Walls Brick

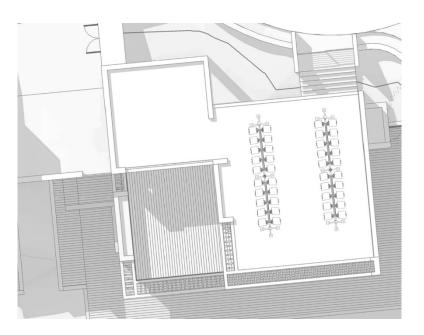
fibran

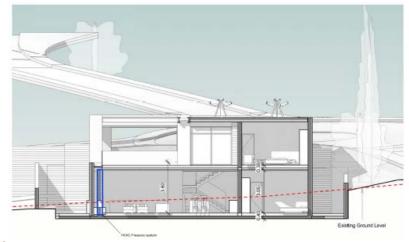

ENERGY CONSERVATION SYSTEMS – BUILDING SCALE


System name

HVAC Freescoo: this is a technology for a)
Ventilation, b) Humidification and c) Cooling. It
also affects the heating in combination with the
FAE system, and the use of the hot water.

1 Freescoo unit woud be included on the ground floor of each villa. The spaces chosen were the largest and the ones used more frequently.





ENERGY PRODUCTION SYSTEMS – SETTLEMENT SCALE

Module Type	FAE HCPV
Widdle Type	TAL TIEF
Number of mirrors x mudule	20
Net Mirror Area [mq]	0.2025
Total Mirror Area [mq]	4.05
Optical Efficiency	0.9
Width X length of Module	1.35 X 6.40
Thermal Efficiency	39%
Electrical Efficiency	28%

System Integration details		
Number of modules	5 (3+2)	
Total collector area [m2]	20.25	
Electrical Power at peak [kW]	5	
Thermal Power at peak [kW]	10	
Energy production [kW/m2/year]	52.8 / 51.96	

ANERDGY

PERFORMANCE AGAINST ZERO PLUS TARGETS

Table showing performance of case study against the three project targets (regulated energy ≤ 20kWh/m2, energy production \geq 50kWh/m2, cost reduction \geq 16%)

Target	Performance Villa 1b	Performance Villa IIa	
16% initial cost reduction compared with the reference case	24.39%	24.39%	> 16
Net regulated energy consumption of less than 20 kWh/m2 per year	13.02	11.12	< 20
Energy production by RES of at least 50 kWh/m2 per year	52.8	51.96	> 50

5%

0kWh/m2/year

kWh/m2/year

3 TARGETS OF ZERO PLUS PROJECT

fibran

HOWEVER

Due to significant overdue during the planning permission process.

The Cyprus case study has a risk of exceeding the project schedule, which will have a negative implication on the overall performance of the monitoring tasks.

SETTLEMENT MASTERPLAN

fibran

Contingency Plans for a Cyprus Case Study Settlement

LOCATION

Located in the Cyprus Institute (Cyl) campus in Aglantzia, Nicosia (35.14 N and 33.38 E)

It is situated in a low-density area and borders with the Athalassa National Forest Park.

CLIMATE description Intense mediterranean climate, mild

winter and hot summers.

Tmax up to 46.7°C., Tmin.average10°C.

Country map indicating location

Figure 21. Location of the Cyprus case study

Cyl Case Study Description

Theoretical prefabricated container system structure for residential use.

Multiple "copies" of this demohouse may be installed in the future.

Figure 2: Proposed ZERO-PLUS demohouse

Cyl Case Study Description

Creation of this settlement.

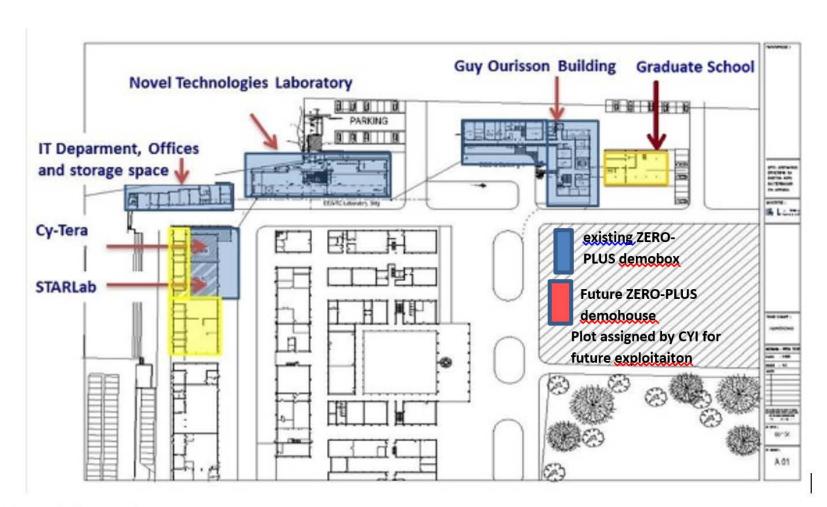


Figure 1: Cyl premises

Cyl Case Study Description

Some of the technologies will be installed and monitored on another preexisting prefabricated container system structure.

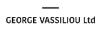
The approach will be based on a modular system.

Construction Site

Selected ZERO-PLUS technologies

Technology	Energy production	Energy management	Energy conservation per year
FAE HCPV (by ARCA) Setlement level	1 unit		
Freescoo HVAC (by SolarInvent - ARCA)			1 unit
FIBRAN ETICS XPS / walls (by FIBRAN) Building level			40mm

fibran



Performance KPI's

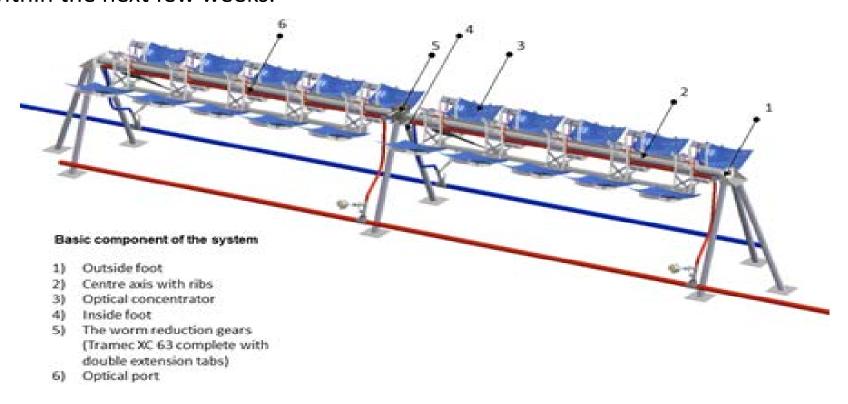
ZEDO DILIC alciantinas	Achieved Performance		
ZERO-PLUS objectives	As-designed ¹	As-built ²	
16% cost reduction compared with the reference case	17%	17%	
Net regulated energy consumption of ≤ 20 kWh/m2/y	14.8	TBC	
Energy production by RES of ≥ 50 kWh/m2/y	55.4	ТВС	

Methodology for verification of the performance and optimization of the design

The existing demobox (air quality station) with the technologies mentioned above will be **monitored** on site in order to examine the energy production and consumption both of the Zero Plus technologies, as well as of the demobox itself.

Dual purpose:

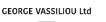
- Cyl will collect and examine the actual data from the monitoring of the existing demobox (air quality station).
- Having the actual data, Cyl will calibrate and fine tune the proposed simulated energy demohouse, in order to have its final performance based on the monitored data in respects to its energy consumption and energy production.



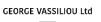
ON SITE INSTALLATION - FAE UNITS

There was a delay in the delivery of FAE HCPV due to a mistake during the transportation to the site of final assembling and testing.

However, everyhing is now fixed and the installation is expected to happen within the next few weeks.



ON SITE INSTALLATION OF FREESCOO AND FIBRAN



THANK YOU!

