Chiral molecules and the electron spin: from spintronics to enantioseparations

Dr. Francesco Tassinari's  
Weizmann Institute of Science  
Department of Chemical and Biological Physics

Usually spin-based properties are related to magnetic effects and magnetic materials, but the Chiral Induced Spin Selectivity (CISS) effect\(^1\) surprisingly shows that chiral organic molecules can act as spin filters. This effect gave researchers the ability of controlling the electron spin by using chiral materials. Recent examples of chiral-based spintronic devices\(^2,3\) and interesting applications of chiral surfaces for spin-controlled electrochemical reactions will be shown\(^4\).

A new wave of CISS-related phenomena rose up recently, when it was found that the charge polarization of chiral molecules is accompanied by spin-polarization. This translates to a different interaction energy of chiral molecules with a magnetic surface that depends on the direction of its magnetization. We exploit this new discovery to perform enantioselective reactions\(^5\) and enantioseparations\(^6,7\) based on a completely new paradigm.

References