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Prof. Sindo Kou, “Welding metallurgy”(2003) : azo5 npba **

1 Fusion Welding Processes ™

Fusion welding processes will be described in this chapter, including gas
welding, arc welding, and high-energy beam welding. The advantages and dis-
advantages of each process will be discussed.

1.1 OVERVIEW

1L.1.1 Fusion Welding Processes

Fusion welding is a joining process that uses fusion of the base metal to make
the weld. The three major types of fusion welding processes are as follows:

f—t

. Gas welding:
Oxyacetylene welding (OAW)

. Arc welding:
Shielded metal arc welding (SMAW)
Gas—tungsten arc welding (GTAW)
Plasma arc welding (PAW)
Gas—metal arc welding (GMAW)
Flux-cored arc welding (FCAW)
Submerged arc welding (SAW)
Electroslag welding (ESW)

. High-energy beam welding:
Electron beam welding (EBW)
Laser beam welding (LBW)

[

=

Since there is no arc involved in the electroslag welding process, it is not
exactly an arc welding process. For convenience of discussion, it is grouped
with arc welding processes.

1.1.2 Power Density of Heat Source

Consider directing a 1.5-kW hair drier very closely to a 304 stainless steel sheet
1.6mm (%, in.) thick. Obviously, the power spreads out over an area of roughly

3



4 FUSION WELDING PROCESSES

S0mm (2in.) diameter, and the sheet just heats up gradually but will not melt.
With GTAW at 1.5kW, however, the arc concentrates on a small area of about
6mm (Y in.) diameter and can easily produce a weld pool. This example clearly
demonstrates the importance of the power density of the heat source in
welding.

The heat sources for the gas, arc, and high-energy beam welding processes
are a gas flame, an electric arc, and a high-energy beam, respectively. The
power density increases from a gas flame to an electric arc and a high-energy
beam. As shown in Figure 1.1, as the power density of the heat source
increases, the heat input to the workpiece that is required for welding
decreases. The portion of the workpiece material exposed to a gas flame heats
up so slowly that, before any melting occurs, a large amount of heat is already
conducted away into the bulk of the workpiece. Excessive heating can cause
damage to the workpiece, including weakening and distortion. On the con-
trary, the same material exposed to a sharply focused electron or laser beam
can melt or even vaporize to form a deep keyhole instantaneously, and before
much heat is conducted away into the bulk of the workpiece, welding is com-
pleted (1).

Therefore, the advantages of increasing the power density of the heat
source are deeper weld penetration, higher welding speeds, and better weld
quality with less damage to the workpiece, as indicated in Figure 1.1. Figure
1.2 shows that the weld strength (of aluminum alloys) increases as the heat
input per unit length of the weld per unit thickness of the workpiece decreases
(2). Figure 1.3a shows that angular distortion is much smaller in EBW than in

Increasing
damage to
‘wmkplece
@ e
: loas
g welding™,
2 [N
o arc *
= welding<a)
g
5 Increasing
£ penetration,
e welding speed,
S weld quality,
high ener%y 23 equipment cost
beam welding

o
Power density of heat source

Figure 1.1 Variation of heat input to the workpiece with power density of the heat
source.
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17 Transformation-Hardening
Materials: Carbon and Alloy Steels

Carbon and alloy steels are more frequently welded than any other materials
because of their widespread applications and good weldability. In general,
carbon and alloy steels with higher strength levels are more difficult to weld
because of the risk of hydrogen cracking. Table 17.1 summarizes some typical
welding problems in carbon and alloy steels and their solutions. The problems
associated with the fusion zone and the partially melted zone have been dis-
cussed in previous chapters. This chapter deals with basic HAZ phenomena in
sclected carbon and low-alloy steels.

17.1 PHASE DIAGRAM AND CCT DIAGRAMS

The HAZ in a carbon steel can be related to the Fe-C phase diagram, as shown
in Figure 17.1, if the kinetic effect of rapid heating during welding on phase
transformations is neglected. The HAZ can be considered to correspond to
the area in the workpiece that is heated to between the lower critical
temperature A, (the eutectoid temperature) and the peritectic temperature.
Similarly, the PMZ can be considered to correspond to the arcas between
the peritectic temperature and the liquidus temperature, and the fusion zone
to the areas above the liquidus temperature.

The Fe-C phase diagram and the continuous-cooling transformation (CCT)
diagrams for heat treating carbon steels can be useful for welding as well, but
some fundamental differences between welding and heat treating should be
recognized. The thermal processes during the welding and heat treating of a
carbon steel differ from each other significantly, as shown in Figure 17.2. First,
in welding the peak temperature in the HAZ can approach 1500°C. In heat
treating, however, the maximum temperature is around 900°C, which is not
much above the upper critical temperature A; required for austenite () to
form. Second, the heating rate is high and the retention time above Aj is short
during most welding processes (electroslag welding being a notable excep-
tion). In heat treating, on the other hand, the heating rate is much slower and
the retention time above A; is much longer. The A, and A, temperatures during
heating (chauffage) are often referred to as the Ac, and Ac, temperatures,
respectively.
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394 TRANSFORMATION-HARDENING MATERIALS

TABLE 17.1 Typical Welding Problems and Practical Solution in Carbon and
Alloy Steels, and Their Locations in the Text

Typical Problems Alloy Types Solutions Locations
Porosity Carbon and low- Add deoxidizers (Al Ti, 32
alloy steels Mn) in filler metal 33
Hydrogen cracking Steels with high Use low-hydrogen or 32
carbon equivalent austenitic stainless 17.4
steel electrodes
Preheat and postheat
Lamellar tearing Carbon and low- Use joint designs that 17.6
alloy steels minimize transverse
restrain
Butter with a softer
layer
Reheat cracking Corrosion and heat- Use low heat input® to 17.5
resisting steels avoid grain growth

Minimize restraint and
stress concentrations

Heat rapidly through
critical temperature
range, if possible

Solidification cracking Carbon and low- Keep proper Mn/S 11.4
alloy steels ration

Low HAZ toughness  Carbon and low- Use carbide and nitride 17.2

due to grain growth alloy steels formers to suppress 17.3

grain growth
Use low heat input*

Low fusion-zone Carbon and low- Grain refining 7.6
toughness due to alloy steels Use multipass welding 17.2
coarse columnar to refine grains
grains

“ Low heat input processes (GMAW and SMAW vs. SAW and ESW) or multipass welding with
low heat input in each pass.

For kinetic reasons the Ac, and Ac; temperatures tend to be higher than
the equilibrium A, and A; temperatures, respectively, and they tend to increase
with increasing heating rate during welding (1, 2). Kinetically, phase transfor-
mations require diffusion (the transformation to martensite is a well-known
exception) and diffusion takes time. Consequently, upon rapid heating during
welding, phase transformations may not occur at the equilibrium A, and A;
temperatures but at higher temperatures Ac; and Ac;. For steels containing
greater amounts of carbide-forming elements (such as V, W, Cr, Ti, and Mo),
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Figure 17.1 Carbon steel weld: () HAZ; (5) phase diagram.
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Figure 17.2 Comparison between welding and heat treating of steel: (a) thermal
processes; () Fe—C phase diagram.

the effect of the heating rate becomes more pronounced. This is because the
diffusion rate of such elements is orders of magnitude lower than that of
carbon and also because they hinder the diffusion of carbon. As a result, phase
transformations are delayed to a greater extent.

The combination of high heating rates and short retention time above Ac;
in welding can result in the formation of inhomogeneous austenite during
heating. This is because there is not enough time for carbon atoms in austen-
ite to diffuse from the prior pearlite colonies of high carbon contents to prior
ferrite colonies of low carbon contents. Upon rapid cooling, the former can
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transform into high-carbon martensite colonies while the latter into low-
carbon ferrite colonies. Consequently, the microhardness in the HAZ can
scatter over a wide range in welds made with high heating rates.

As a result of high peak temperatures during welding, grain growth can take
place near the fusion boundary. The slower the heating rate, the longer the
retention time above Ac; is and hence the more severe grain growth becomes.
In the heat treating, however, the maximum temperature employed Is only
about 900°C in order to avoid grain growth.

The CCT diagrams (Chapter 9) for welding can be obtained by using a weld
thermal simulator (Chapter 2) and a high-speed dilatometer that detects the
volume changes caused by phase transformations (3-6). However, since CCT
diagrams for welding are often unavailable, those for heat treating have been
used. These two types of CCT diagrams can differ from each other because
of kinetic reasons. For instance, grain growth in welding can shift the CCT
diagram to longer times favoring transformation to martensite. This is because
grain growth reduces the grain boundary area available for ferrite and pearlite
to nucleate during cooling. However, rapid heating in welding can shift the
CCT diagram to shorter times, discouraging transformation to martensite.
Carbide-forming elements (such as Cr, Mo, Ti, V, and Nb), when they are dis-
solved in austenite, tend to increase the hardenability of the steel. Because of
the sufficient time available in heat treating, such carbides dissolve more
completely and thus enhance the hardenability of the steel. This is usually not
possible in welding because of the high heating rate and the short
high-temperature retention time encountered in the HAZ (7).

17.2 CARBON STEELS

According to the American Iron and Steel Institute (AISI), carbon steels may
contain up to 1.65wt% Mn, 0.60wt% Si, and 0.60wt % Cu in addition to
much smaller amounts of other elements. This definition includes the Fe-C
steels of the 10XX grades (up to about 0.9% Mn) and the Fe-C-Mn steels of
the 15XX grades (up to about 1.7% Mn). The last two digits in the alloy des-
ignation number denote the nominal carbon content in weight percent, for
instance, about 0.20% C in a 1020 and about 0.41% C in a 1541 steel. Man-
ganese is an inexpensive alloying element that can be added to carbon steels
to help increase hardenability.

17.2.1 Low-Carbon Steels

These steels, in fact, include both carbon steels with up to 0.15% carbon, called
low-carbon steels, and those with 0.15-0.30% carbon, called mild steels (8).
For the purpose of discussion 1018 steel, which has a nominal carbon content
of 0.18%. is used as an example. Figure 17.3 shows the micrographs of a
gas—tungsten arc weld of 1018 steel. The base metal consists of a light-etching

10
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Figure 17.3 HAZ microstructure of a gas-tungsten arc weld of 1018 steel (magnifi-
cation 200x).
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Figure 17.4 Mechanism of partial grain refining in a carbon steel.

ferrite and a dark-etching pearlite (position A). The HAZ microstructure can
be divided into essentially three regions: partial grain-refining, grain-refining,
and grain-coarsening regions (positions B-D). The peak temperatures at these
positions are indicated in the phase diagram.

The partial grain-refining region (position B) is subjected to a peak tem-
perature just above the effective lower critical temperature, Ac,. As explained
in Figure 17.4, the prior pearlite (P) colonies transform to austenite (y) and
expand slightly into the prior ferrite (F) colonies upon heating to above Ac,
and then decompose into extremely fine grains of pearlite and ferrite during
cooling. The prior ferrite colonies are essentially unaffected. The grain-refin-
ing region (position C) is subjected to a peak temperature just above the effec-
tive upper critical temperature Ac, thus allowing austenite grains to nucleate.
Such austenite grains decompose into small pearlite and ferrite grains during
subsequent cooling. The distribution of pearlite and ferrite is not exactly
uniform because the diffusion time for carbon is limited under the high heating
rate during welding and the resultant austenite is not homogeneous. The grain-
coarsening region (position D) is subjected to a peak temperature well above
Ac;, thus allowing austenite grains to grow. The high cooling rate and large
grain size encourage the ferrite to form side plates from the grain boundaries,
called the Widmanstatten ferrite (9).

Grain coarsening near the fusion boundary results in coarse columnar
grains in the fusion zone that are significantly larger than the HAZ grains on
the average. As shown in Figure 17.5, in multiple-pass welding of steels the
fusion zone of a weld pass can be replaced by the HAZs of its subsequent
passes (10). This grain refining of the coarse-grained fusion zone by multiple-
pass welding has been reported to improve the weld metal toughness.

12
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Figure 17.5 Grain refining in multiple-pass welding: (a) single-pass weld; (b)
microstructure of multiple-pass weld. Reprinted from Evans (10). Courtesy of
American Welding Society.
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