
Using Model-Based Diagnosis
to Improve Software Testing

Roni Stern Meir Kalech
roni.stern@gmail.com kalech@bgu.ac.il

Niv Gafni Yair Ofir Eliav Ben-Zaken
gafniv@gmail.com yair87@gmail.com zkena2@gmail.com

Dept. of Information Systems Engineering,
Ben Gurion University of the Negev, Israel

Abstract

It is often regarded as best-practice that the case the developer that writes a pro-
gram, and the tester that tests the program, are different people. This supposedly
allows unbiased testing. This separation is also motivated by economic reasons.
As a result, the tester, especially in black-box testing, is oblivious to the underly-
ing code. Thus, when a bug is found, the tester can only file a bug report, which is
later passed to the developer. The developer is then required to reproduce the bug
found by the tester, diagnose the cause of this bug, and fix it. The first two task are
often very time consuming.

In our research, we aim at improving the process of software testing, by auto-
matically directing the tester to provide focused testing when a bug is found. The
purpose of these additional tests is to gather information that will be used by an
automatic software diagnosis algorithm that will identify the root cause of the bug.
The programmer is then given, in addition to the traditional bug report, the exact
software component that caused this bug. Then, the time of the programmer is only
spent on fixing the bug in the faulty software component. As a result, this focused
testing and diagnosis process can result in substantial savings of programmer time,
at the expense of minimal additional effort by the tester.

1 Introduction
Testing is a fundamental part of the software development process [Myers et al., 2004].
Often, most of the testing is done by Quality Assurance (QA) professionals, and not by
the actual programmers that wrote the tested software. This separation, between those
who write the code and those who test it, is often regarded as a best-practice, allowing
a more unbiased testing. Additionally, this separation is often motivated by economic
reasons, as programmers are in general more expensive than QA professionals.

1



As a result of this separation, when a bug is found by the tester, it cannot be imme-
diately fixed, as the tester may not be familiar with the tested code. This is especially
true in black box testing (also known as functional testing), where the tester is com-
pletely unaware of the tested code. Therefore, the common protocol when a tester
finds a bug is that this bug is reported in a bug tracking systems, such as HP Quality
Center (formerly known as Test Director), Bugzilla or IBM Rational ClearQuest. Peri-
odically, the reported bugs are prioritized by the product owner, and the programmers
begin to repair the reported bugs.

Fixing such reported bugs usually involves two tasks. First, the programmer needs
to diagnose the root cause of the bug. Then, the programmer attempts to repair it.
Diagnosing the root cause of a software bug is often a challenging task that involves
a trial-and-error process: several possible diagnoses are suggested by the program-
mer, which then performed tests and probes to differentiate the correct diagnosis. This
trial-and-error process has several challenges. It is often non-trivial to reproduce bugs
found by a tester (or an end-user). Also, reproducing a bug in a development environ-
ment may not represent the real (production or testing) environment where the bug has
occurred. Thus, the diagnosis, and correspondingly the patch that will fix the bug in
the development environment, may not solve the reported bug in the real environment.

Note that since the tester is not familiar with the tested software, he is obligated to a
predefined test suite. Otherwise, the tester might have performed additional tests when
a bug is observed to assist the programmer in finding the correct cause of the bug.

In our research, we aim at improving the software testing process described above,
by combining diagnosis and planning algorithms for the field of Artificial Intelligence.
Model-Based Diagnosis algorithms have been proposed in the past for the purpose of
diagnosing software bugs [González-Sanchez et al., 2011; Abreu et al., 2011; Wotawa
and Nica, 2011; Stumptner and Wotawa, 1996]. Thus, when a test fails and a bug
is found, one can use these algorithms to generate automatically a set of candidate
diagnoses.

To identify which of these candidate diagnoses is indeed the correct diagnoses,
we propose several algorithms for suggesting additional, focused, testing steps for the
tester. These tests are generated automatically, by considering the set of candidate
diagnoses and proposing tests that will allow to differentiate between these candidate
diagnoses, until a single diagnosis is found. In this paper we propose several algorithms
for planning these additional focused testing. In particular, we propose to view the task
of generating an effective focused test case as a “planning under uncertainty” problem,
and solve it using a Markov Decision Process solver from the Artificial Intelligence
literature.

The paper is structured as follows. First we describe in high-level the proposed
approach to improve software testing. Then, we describe in detail the two main com-
ponents of the proposed approach: the diagnosis algorithm and the test planning algo-
rithm. Following, we describe preliminary experimental results. Finally, we discuss
the long-term vision of the proposed approach, and briefly describe future work.

2



2 Artificial Intelligence in Software Testing
Consider the common black-box software testing process, depicted in the left side of
Figure 1. For ease of notation we refer to testing engineer that performs the test (e.g.,
the QA professional) as simply the tester, and refer to the software developer as the
developer.

2.1 Traditional Approach
The tester executes a test suite (a sequence of tests), until either the test suite is done
and all the tested have passed, or one of the tests fails, in which case a bug has been
found. As is often the case, the developer and the tester are different individuals, to
allowing a supposedly more unbiased testing. Thus, the tester is not expected and often
is unable to immediately fix the bug that was found. As mentioned in the introduction,
this is especially true in black box testing (also known as functional testing), where
the tester is completely unaware of the tested code. In such cases, the tester files a
bug report in some bug tracking systems (e.g., HP Quality Center, Bugzilla or IBM
Rational ClearQuest), and continues to test other components (if possible).

Periodically, the reported bugs are prioritized by the product owner, and passed on
to the developer to fix them. Most commonly, the developer that the bug is assigned to
will perform the following tasks to fix the bug.

1. Reproduce the bug in the developer environment, e.g., on the workstation of the
developer.

2. Identify the root cause of the bug, i.e., the software component that is faulty.

3. Fix the faulty component.

Surprisingly, the first step of reproducing a bug can be a difficult and time con-
suming task. This is because bug reports may be missing important details, which are
required to reproduce the bug. Furthermore, programs often have a state (e.g., execut-
ing a transaction) that affects the behavior of the program. Reproducing a given state of
the program may also be non-trivial and time consuming. Additionally, some programs
contain a stochastic element, which makes reproducing a bug even harder.

After the bug is reproduced, the developer identifies which component is believed
to be faulty, and then fixes that component. Note that in order to identify which com-
ponent is faulty, the developer often tests various parts of the system. The faulty com-
ponent is then identified by observing the behavior of the system under these tests.

Naturally, this is an iterative process. After the developer fixes the bug (and per-
forms initial tests to verify that the bug is fixed), the tester repeats the failed test suites1,
to verify that the bug has indeed been solved. This entire process is listed in the left
side of Figure 1.

1It is also possible that the tester also performs the passed tests, to verify that the developer did not cause
a new bug while fixing the other bug.

3



2.2 Proposed Approach
In this paper we propose to improve this traditional test-and-fix process by empowering
the tester with tools from Artificial Intelligence (AI). In particular, we propose to use
existing AI techniques to guide the tester to perform the additional tests that the de-
veloper would have performed, in order to identify which software components (e.g.,
function, class) are faulty. As a result, the developer is focused on the faulty compo-
nent, and can invest more effort in fixing the bug. This proposed approach is listed on
the right side of Figure 1.

5 

Tester 

•Run a test suite 

•Discover a bug 

•File bug report 

Developer 

•Reproduce the bug 

• Identify where is the bug 

•Fix the bug 

Tester 

•Run a test suite 

•Discover a bug 

•File bug report 

AI 

•Run an AI diagnosis algorithm 

•Produce a set of possible diagnoses 

•Plan a test to prune false diagnoses 

Developer 
•Fix the bug 

Traditional Process Proposed Process 

Figure 1: The traditional vs. the proposed approach for software testing.

The proposed approach is composed of two main components:

1. A diagnosis algorithm, that can infer from the software source code and the
observed tests a set of possible diagnoses. Such diagnosis algorithms have been
proposed in the recent years, especially for the purpose of diagnosing software
faults (“bugs”). In the following section (Section 3) we briefly review one of
these algorithms, which is easy to implement and can scale to large systems.

2. A planning algorithm, that suggests further tests for the tester, to narrow the set
of possible diagnoses. Several such algorithms are proposed in Section 4. In
particular, we identify and address the tradeoff between diagnosis accuracy and
effort of the tester.

Next, we discuss the diagnosis algorithm component.

4



3 Model-Based Diagnosis for Software
The most basic entity of a diagnosis algorithm is the component. A component can
be defined for any level of granularity of the diagnosed software: a class, a function,
a block etc. The granularity level of the component is determined according to the
granularity level that one would like to focus on. Naturally, low level granularity will
result in a very focused diagnosis (e.g., pointing on the exact line of code that was
faulty), but will require more effort in obtaining that diagnosis.

The task of a diagnosis engine is to produce a diagnosis which is a set of compo-
nents that are believed to be faulty. In some cases, diagnosis algorithms return a set
of candidate diagnoses, where each of these candidates can potentially be a diagnosis,
according to the observed tests.

There are two main approaches that have been proposed in the model-based diag-
nosis literature for diagnosing software faults (i.e., bugs). The first approach [Wotawa
and Nica, 2011] considers a system description, which models in logical terms the cor-
rect functionality of the software components. If an observed output deviates from the
expected output as defined by the system description, then logical reasoning techniques
are used to infer the possible faulty components (diagnoses) that explain the unexpected
output. Although this approach is sound and complete its main drawback is that it does
not scale well. Additionally, modeling the correct behavior of every system component
is often infeasible. Therefore, we focus in this paper on the other approach for software
diagnosis, which is described next.

An alternative approach to software diagnosis has been proposed by Abreu et. al.
(2011). In this approach, which is called the spectrum-based approach, there is no need
to model the correct functionality of each of the software components in the system.

The specturm-based approach only requires for every executed test the following:

• The outcome of the test, i.e, if the test has passed correctly or whether a bug was
found. This is be done by the tester.

• The trace of a test. This is a log of the system components (e.g., functions,
classes) that were used during this test. Such a trace can be obtained by using
most common software profilers, such as Java’s JVMTI, for example.

In case that the test has passed, we can assume that all the components in the
log trace are healthy.2 If a test failed, this means that at least one of the components
in the log trace is faulty. This is equivalent to the term conflict, from the classical
MBD literature Reiter [1987]; de Kleer and Williams [1987]. A conflict is a set of
components, such that the assumption that they are healthy is not consistent with the
model and the observation. Thus, a trace of a failed test is actually a conflict, since if
all the components in the failed test were healthy, the test would not have failed.

Identifying conflicts is useful for generating diagnosis. This is because every di-
agnosis is a hitting set of all the conflict. A hitting set of a set of conflicts is a set of
components that contains a representative component from each conflicts in the conflict

2Actually, there are diagnosis algorithms can also handle intermittent faults, where a faulty component
may sometime output correct behavior. However, this is beyond the scope of this paper.

5



v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 FAILED?
0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 1 0 1 1 0 1
0 1 0 0 0 0 0 0 0 1 1

Table 1: A set of 4 tests indicated by their success.

∆1 = ∆2 = ∆3 = ∆4 = ∆5 = ∆6 = ∆7 = ∆8 =
{v1, v2} {v1, v5} {v1, v7} {v1, v8} {v2, v9} {v5, v9} {v7, v9} {v8, v9}

1/6 1/6 1/6 0 1/6 1/6 1/6 0

Table 2: Diagnoses: hitting sets of Λ1 and Λ2.

set Reiter [1987]. Intuitively, since at least one component in every conflict is faulty, a
hitting set of the conflicts will explain the unexpected observation.

As an example of the spectrum-based approach and its relation to conflicts and
diagnoses, consider a system with 10 components, {v0, ..., v9}. Figure 1 describes
four tests performed on this system by a tester. The columns marked with ’1’ (except
for the last column) represent the components have been invoked in the test (i.e., the
components in the trace). The last column indicates whether the test passed (0) or
failed (1), as reported by the tester. Hence, in this example the first two tests passed
and the last two tests failed. Based on the failed tests we can generate the next conflicts:
Λ1 = {v2, v5, v7, v8} and Λ2 = {v1, v9}. The diagnoses that corresponds to the hitting
sets of these conflicts are denoted by ∆1, . . . ,∆8 and given in Table 2.

Naturally, given a trace of a single failed test with n components will result in n
candidate diagnoses. This is because a diagnosis algorithm will not be able to deter-
mine which of the components in the trace has caused the bug. Performing more tests
and as a result obtaining more conflicts and more traces of passed tests can modify
the set of candidate diagnoses. This is because diagnoses must not contain compo-
nents from traces of passed tests, and every diagnosis must also be a hitting set of all
the conflicts - i.e., the traces of the failed tests. Furthermore, the spectrum-based ap-
proach [Abreu et al., 2011] also provides a mathematical formula to rank statistically
the set of candidate diagnoses. The exact probability computations are given by Abreu
et al. [2011]. In our example, shown in Table 2, the probability of the diagnoses are
presented in the last row of Table 2. Notice that the probability of diagnoses ∆4 and
δ8 is 0 since they involve component v8 which was involved in a passed test. Thus, ∆4

and ∆8 are removed from the set of candidate diagnoses.
This spectrum-based approach to software diagnosis can scale well to large sys-

tems. However, it is not guaranteed to converge quickly to the correct diagnosis. Thus
at the end of this process there can be a quite large set of alternative candidate di-
agnoses. Our purpose is to identify the correct diagnosis. Next, we describe how to
automatically plan additional tests, to prune the set of candidate diagnosis, in an effort
to find the correct diagnoses.

6



1 

Figure 2: Pac-man example. (top) The initial pac-man position, (right) the position
where the bug was observed

4 Automated Planning of Focused Software Testings

Execution Trace 

 

9 

Move Move 
Eat a power 

pellet 
Eat a power 

pellet 
Stop before 

a wall 
Stop before 

a wall 

Bug! F3 F2 F1 

Figure 3: Simple high-level execution trace for the pac-man example.

The previous section reviewed a feasible algorithm for finding a set of candidate di-
agnoses, given a set of observed execution traces that contain a software bug. However,
for a given observation, there is often many candidate diagnoses, but only one correct
diagnosis. This is why the developer often performs additional tests3 to identify which
diagnosis is correct. In this section we propose a family of algorithms that plan a se-
quence of tests to narrow down the number of possible diagnoses. These tests will be
generated by these algorithms on-the-fly, when the tester reports a bug. The tester will
then execute these focused testing, and as a result, the number of possible diagnoses
will decrease, and the developer will be given a small set (or even a single) diagnoses
to consider.

To illustrate how automated planning can be used to intelligently direct testing
efforts, consider the following example. Assume that the developed software that is
tested is based on a variant of the well-known pac-man computer game, depicted in
Figure 2. We chose such a simplistic example for clarity of presentation. The left part
of Figure 2 shows the initial state of this variant of the pac-man game. Assume that
the test performed by the tester is where pac-man moved one step to the right. The
new location of pac-man has a power pellet (the large circle) and it is bordering a wall
(Figure 2, right). Now, assume that following this test, the game crashed, i.e., a bug
occurred. Also, assume that the trace of this test consists of three functions, as shown

3This can be, for example, running the program in debug mode and entering various parameters.

7



4 Figure 4: Pac-man example. The possible tests to perform.

in Figure 3: (1) Move right (denoted in Figure 3 as F1), (2) Eat power pellet (F2), and
(3) Stop before a wall (F3).

There are at least three explanations to the observed bug: (1) the action “move
right” (F1) failed, (2) the action ”eat power pellet” failed, (3) touching the wall caused
a failure.4 It is easy to see that the diagnosis algorithm described in Section 3 would
generate these three candidate diagnoses - {{F1}, {F2}, {F3}}. These candidate di-
agnoses can then be passed to the developer, to identify which of these functions caused
the bug. After identifying the faulty function, the developer can fix it.

In this paper we go beyond this current testing process, where only the developer
is required to identify the faulty function. In particular we will next propose automatic
methods to plan additional focused test steps. Then, in addition to reporting a bug in a
bug tracking system, the tester will also perform these focused tests. These tests will
then be used by the diagnosis algorithm to identify the correct diagnosis. Then, the
developer will only need to fix the diagnosed faulty component.

In our example, we can propose additional tests to check which of the three ex-
planations is the correct one. By testing these explanations separately we can deduce
the correct diagnosis. To check the correctness of the first explanation (“move right”)
the tester can move pac-man two steps up and one step to the right. To check the sec-
ond explanation “eat power pellet” the tester should move pac-man to one of the other
power pellets in the game. To check the third explanation, pac-man should be moved
to the left wall. These three possible tests are shown in Figure 4, where each possible
test is shown in a yellow arrow.

Generalizing the above example, the proposed testing process is given in Proce-
dure 1 and described next. First, a set of candidate diagnoses is generated from the
execution traces of the tests performed by the tester until the bug has occurred. This

4Naturally, the combination of these function could also cause the bug.

8



is done as described in Section 3. Then, a test case (i.e., a sequence of test actions for
the tester) is generated, such that at least one of the candidate diagnoses is checked.
To plan such a test, we consider the call graph of the tested software, which is defined
next.

Definition 1 (call graph) A call graph is represented by a directed AND/OR graph
G = (V,Ea, Eo), where V is a set of components and Ea and Eo are sets of edges.
An edge between v1 and v2 represents a call from component v1 to component v2. Eo

are ’or’ edges representing conditional calls. Ea are ’and’ edges representing regular
calls.

Planning a test that will check a given candidate diagnosis can be any executable
path in the call graph that passes via a component that is part of that candidate diag-
noses. Note that there are many automatic tools that generate a call graph from a static
view of the source code.

Naturally, there can be many possible tests to check a given candidate diagnosis,
and there may be many candidate diagnoses. In Section 4.1 we discuss intelligent
methods to choose which test to perform. After the test is performed, the diagnosis
algorithm is run again, now with the additional test that was performed. If a single
diagnosis is found, it is passed to the developer, to fix the faulty software component.
Otherwise, continue this process by planning and executing a new test. Naturally, one
can define a timeout for this process, halting after a predefined amount of time and
passing to the developer the (reduced) set of candidate diagnoses.

Algorithm 1: The focused testing process
Input: Tests, the tests performed by the tester until the bug was found.

1 Ω← Compute diagnosis from Tests
2 while Highest Ω contains more than a single diagnosis (or timeout has been

reached) do
3 NewTestP lan← plan a new test to check at least one candidate diagnosis
4 Tester performs NewTestP lan, record output and trace in NewTest

Tests← Tests ∪NewTest Ω← Compute diagnosis from Tests
5 end
6 return Ω

Next, we describe several methods to plan these focused testing, such as to mini-
mize testing effort required to find the correct diagnosis.

4.1 Balancing Testing Effort and Information Gain
Consider again the pac-man example, given in Figure 2. Recall that there are three
proposed tests, marked by yellow arrows in Figure 4. Intuitively, one might choose to
perform the first proposed test (move up twice and then right), since it demands the
least number of steps. We assume for simplicity that the effort exerted by the tester
when executing a test correlates with the number of steps in the test.

9



However, it is often the case that there are software components in which bugs
occur more often. These components may be the more complex functions. For ex-
ample, assume that in the pac-man example describe above, eating the power pellet is
the most complex function (F2), which is more likely to contain a bug than the “move
right” function (F1). These “bug-probabilities” can be given as input by the developer
or system architect. There are even automatic methods that can learn these probabili-
ties. For example, there are methods to predict which components are more likely to
cause a bug, by applying data mining methods to project logs such as the source control
history [Wu et al., 2011].

Given the probability of failure of every software components, we may prefer a test
that checks the component with the highest probability, although it is expensive in terms
of number of steps. Thus, in the pac-man example we might prefer to perform a test
that checks if the function F2 (eating the power pellet) is faulty, instead of performing
a test that checks if the function F1 (walking to the right) is faulty. The logic behind
checking first the component that is most likely to be faulty is that it will reduce the
overall testing effort of finding the correct diagnosis.

Alternatively, we may plan the next testing steps by considering both the fault prob-
abilities as well as the testing effort (number of testing steps), in an effort to optimize a
trade-off between the minimum testing steps with the highest fault identification prob-
ability.

Next, we describe several possible methods to plan and choose which test to per-
form. We use the term focused testing methods to refer to these methods. The overall
aim of a focused testing method is to propose a sequence of test (one at a time) to
minimize total testing effort (i.e. the number of test steps) required to find the correct
diagnoses.

4.2 Myopic Focused Testing Methods
The first class of focused testing methods that we propose is called the myopic focused
testing methods. The myopic focused testing methods contains two steps: (1) select a
single component that we wish to check, and (2) return a test case that is the lowest
cost (shortest) path in the call graph, passing from the entry point of the program via
the selected component.

The myopic focused testing methods differ from one another by the way in which
the checked component is selected. The simplest example of a myopic focused testing
method is that which chooses the component that is closest to the entry point of the
program. This corresponds to testing the component that is easiest to test, in terms of
testing effort. We call this method the lowest-cost focused testing method.

Another example of a myopic focused testing method is the method which chooses
to check the component that is most probable to be faulty. This can be calculated as
follows by considering the set of candidate diagnoses and their probabilities. As de-
scribed in Section 3, the software diagnosis algorithm of Abreu et. al. (2011) computes
the probability of every candidate diagnosis, by considering prior probabilities of ev-
ery software component being faulty, as well as the set of observed tests. Recall that
a candidate diagnosis is a set of components. Thus, given a set of diagnoses and their
probability, we compute the probability that a single component is faulty by taking the

10



sum over all the diagnoses that contain that component. For example, consider the set
of diagnoses given in Table 2 and their probability. The component v1 is part of the
diagnoses ∆1, ∆2, ∆3, ∆4, with probabilities 1/6, 1/6 , 1/6 and zero. Thus, the prob-
ability that v1 is faulty is 3/6 = 1/2. The myopic focused testing method that chooses
the component with the highest probability is called the highest-probability focused
testing method.

There are many possible hybrid myopic focused testing methods, which considers
a combination of the lowest-cost and highest-probability. One possible approach is to
consider a weighted sum of the probability and cost. Another approach is to choose the
component that is closest to the entry point, but is faulty with probability higher than
some predefined threshold.

4.3 MDP-Based Focused Testing Methods
A main drawback of the myopic focused testing methods is that they plan a test to check
a single component at a time. Thus, they do not perform any long-term planning of the
testing process. For example, it might be more efficient to consider a test that checks
more than a single component. In addition, instead of performing a complete test case
and then planning a new test according to the outcome of the entire test, it may be more
efficient to replan a test case after every step in the test is performed.

More generally, we propose to view our problem as a problem of planning under
uncertainty [Blythe, 1999]. Planning under uncertainty is a fundamental challenge in
Artificial Intelligence, which is often addressed by modeling the problem as a Markov
Decision Process (MDP). Once a problem is modeled as an MDP, it can be solved by
applying one of wide range of algorithms such as Value Iteration, Policy Iteration [Rus-
sell and Norvig, 2010] and Real-Time Dynamic Programming [Barto et al., 1995]. A
solution to an MDP is a policy, stating the best action to perform in each step. In our
problem, this corresponds to returning the best test step the tester should perform, in
terms of the expected future testing effort required until the correct diagnosis is found.
Next, we describe how our problem can be modeled as an MDP. Once this is done, any
MDP solver can be used.

An MDP consists of the following:

• a set of states, which describe the possible states that can be reached.

• an initial state, which is a state from which the process starts.

• a set of actions that describe the valid transition between states.

• a transition function, which gives the probability of reaching a state s′ when
performing action a in state s.

• a reward function, which gives the gain of performing an action in a given state.

Modeling our problem as an MDP can be done as follows. A state is the set of tests
executed so far, the observed outcome of these tests. In addition, a state includes the
current execution trace (of the current test). The initial state is the set of tests performed
so far by tester, and an empty execution trace, which described the fact that the tester

11



is initially in the entry point of the program. The actions are the possible test steps
that the tester can perform in a given state. The transition function should give the
probability that a given test step will result in a bug or in a normal behavior. This is
the probability that a component is faulty, where the component is the component that
is reached in the given test step. Note that if a test step reaches several components,
then the probability that this test step will encounter a bug is the probability that at
least one of the components reached in this step causes a bug. The reward function
in our problem is a negative reward: it is the cost of performing a single test step.
An MDP algorithm seeks the policy that maximizes the expected reward that will be
gained when executing that policy. Thus, in our case an MDP algorithm will seek the
policy that minimizes the number of test steps until the correct diagnosis is found. This
is exactly our goal - focus the testing effort, such that the correct diagnosis is found
with minimal testing effort.

In conclusion, the MDP-based focused testing method works as follows. First, the
problem is modeled as an MDP. Then an MDP solver is run to find an efficient policy.
The tester is then given a single test-step, according the policy return by the MDP
solver. After that single test-step is performed, the MDP solver is rerun, updating the
initial state according to the outcome of this single test-step. Notice that one of the
benefits of this approach is that a single test case can perform test steps that check
more than a single test step.

It is not the goal if this paper to provide an empirical evaluation of the MDP-based
and the myopic focused testing method. This paper aims at presenting a set of possible
focused testing methods. However, we expect the MDP-based to be more efficient in
terms of testing effort. On the other hand, the MDP-based method will also be the most
computationally intensive, as the number of states in the proposed MDP can be very
large, and the runtime of many MDP solvers is linear in the number of states in the
MDP state space.

5 Preliminary Experimental Results
As explained above, we do not provide in this paper comprehensive experimental re-
sults to compare between the proposed focused testing methods. In this section we
provide preliminary experimental results, only to demonstrate the applicability of the
overall proposed approach. This is done as follows. A random graph is generated with
350 nodes, where every two nodes are connected by an edge with probability of 0.035.
This graph represents the call graph of a diagnosed system. Every edge is an OR eedge
or an AND edge with equal probability. Then, 2% of the nodes in the graph are chosen
ranodmly to be faulty, and a set of 7 tests (observations) are also chosen randomly.

Following, we run the lowest-cost and the highest-probability myopic focused test-
ing algorithms described in Section 4.2 on 25 difference scenarios, which were gener-
ated as described above. Figure 5 demonstrate the results of these experiments. The y-
axis denotes the probability of the most probably candidate diagnoses. These probabil-
ities are calculated by the spectrum-based diagnosis algorithm of Abreu et al. [2011],
described in Section 3. Naturally, if this probability reaches one, we have the correct
diagnosis. Thus, we refer to the values in the y-axis as a measure of the accuracy of

12



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 3 5 7 9 11 13 16 18 20 22 24 26 28 30 

P
ro

b
. o

f 
b

e
st

 c
an

d
id

at
e

 d
ia

go
si

s 

Testing cost (# test-steps performed by the tester) 

LowCost

Probability

Random

Figure 5: Preliminary experimental results on a 350 node call graph.

the current diagnosis candidate. The x-axis shows the cost, i.e., the number of testing
steps required to achieve the probability given in the y-axis.

In these preliminary experiments we compared the performance of the myopic fo-
cused testing methods: lowest cost and highest probability. In addition, we ran as a
baseline algorithm an algorithm that chooses the next test step randomly.

Several trends can be observed in the results shown in Figure 5. First, for each of
the algorithms in the figure the y value increase with the value of x. This means that
indeed, performing more tests results in a higher accuracy diagnosis. The second obser-
vation that can seen in Figure 5 is that the random base line is far worst than the more
intelligent myopic focused testing method. While this is not surprising, it suggests
that it will be worthwhile to develop intelligent algorithm for the focus testing method.
Finally, we can also see that the lowest cost focused testing method outperforms the
highest probability focused testing method. This suggests that ignoring the cost of a
test and considering only its probabilities is not effective, and thus some combination
of cost and probability seems in order. This is of course a topic for future work.

The above experimental results is very preliminary. We intend to extend the experi-
mental results by also implementing the MDP-based algorithm described above. Also,
we plan to perform extensive experiments on a range of graph sizes, and also seek
to collaborate with a real software company, to perform a case study of the proposed
approach.

13



1 

QA Tester Developer 

SCM Server Logs Source Code 

AI Engine 

Figure 6: Long-term vision of incorporating AI diagnosis and planning into the testing
process.

6 Discussion and Future Work
In the traditional testing process, when the tester finds a bug it files it in a bug tracking
system. The developer is then required to identify which software component caused
the bug, and fix it. In this paper we proposed a method that will identify for the de-
veloper the faulty software component that caused the bug, or at least provide a set of
candidate faulty components. The proposed method is built from two components: (1)
a diagnosis algorithm, that suggests a set of candidate diagnoses (i.e, a set of compo-
nents that may be have caused the bug), and (2) a focused testing method, that will
guide the tester to perform an additional set of tests, to identify which of the candidate
diagnoses is the cause of the observed bug.

As a diagnosis algorithm, we propose to use the software diagnosis algorithm of
Abreu et. al. 2011, which is a diagnosis algorithm that can scale to large systems and
and do not require any modeling of the diagnosed software. The outcome of this algo-
rithm is a set of candidate diagnoses, and the probability that each of these candidate
diagnoses is correct.

The resulting set of candidate diagnoses may be large. We therefore propose several
focused testing methods that are basically algorithms for planning new test actions
for the tester to perform. The purpose of these additional tests is to select which of
the candidate diagnoses generated by the diagnosis algorithm is indeed the correct
diagnosis, i.e., contains the cause of the observed bug. Several such focused testing
methods are proposed, in an effort to minimize the testing effort required to find the
correct diagnosis.

In general, the aim of the proposed paradigm change proposed in this paper is to
improve the software development process by using Artificial Intelligence (AI) tools
to empower the tester and the testing process. This is part of our long-term vision
of using AI techniques to improve the software development process, which is shown

14



in Figure 6. The AI engine will be given access to the source code, the logs of the
software that are accumulated during the runtime of the software (e.g., server logs),
and the source-control management tool (SCM) history. When a bug is detected, either
in the software logs or by a (human or automated) tester, the AI engine will consider
all these data sources, to infer the most probable cause of the bug. If needed, the tester
will be prompted by the AI engine to perform additional tests, to help identifying the
software component that caused the bug. This will be an interactive process, where the
tester performs additional tests suggested by the AI engine, and reports the observed
outcome of these tests back to the AI engine. Then, the developer will be given the
faulty software component, and will be tasked to fix it. The developer can then report
back when the bug was fixed, or to notify the AI engine that the bug was actually
caused by a different software component. The AI engine will learn from this feedback
to modify its diagnosis engine to avoid such errors in the future.

This paper presents only the first building block of this vision: automated diagno-
sis and automated focused testing methods. Future work on this building block will
include empirical evaluation of the proposed focused testing method. In particular, this
will be done first on synthetic call graphs and testing suites and random faults. Then,
we intend to perform several case studies on real data, which will be gathered from the
source control managements and bug tracking tools of a real software project in col-
laboration with existing software companies. We are now pursuing such collaboration.

Bibliography
Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. Simultaneous debugging of

software faults. Journal of Systems and Software, 84(4):573–586, 2011.

Andrew G. Barto, Steven J. Bradtke, and Satinder P. Singh. Learning to act using
real-time dynamic programming. Artificial Intelligence, 72:81 – 138, 1995.

Jim Blythe. An overview of planning under certainty. In Artificial Intelligence Today,
pages 85–110. 1999.

Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artif. Intell., 32(1):
97–130, 1987.

Alberto González-Sanchez, Rui Abreu, Hans-Gerhard Groß, and Arjan J. C. van
Gemund. An empirical study on the usage of testability information to fault lo-
calization in software. In SAC, pages 1398–1403, 2011.

G.J. Myers, T. Badgett, T.M. Thomas, and C. Sandler. The Art of Software Test-
ing. Business Data Processing: a Wiley Series. John Wiley & Sons, 2004. ISBN
9780471469124.

Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95,
1987.

Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (3.
internat. ed.). Pearson Education, 2010.

15



Markus Stumptner and Franz Wotawa. A model-based approach to software debug-
ging. In the Seventh International Workshop on Principles of Diagnosis (DX), pages
214–223, 1996.

Franz Wotawa and Mihai Nica. Program debugging using constraints – is it feasible?
Quality Software, International Conference on, 0:236–243, 2011. ISSN 1550-6002.
doi: http://doi.ieeecomputersociety.org/10.1109/QSIC.2011.39.

Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. Relink: recov-
ering links between bugs and changes. In Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of software engineer-
ing, ESEC/FSE ’11, pages 15–25. ACM, 2011.

16


