
1

c
f
p
e
e
u
t
c
c
�
s
f
m
m

C

N

m
v
M
2

J

Downlo
Raziel Riemer
Ph.D.

Department of Industrial Engineering and
Management,

Ben-Gurion University,
Beer-Sheva 84105, Israel

Elizabeth T.
Hsiao-Wecksler1

Ph.D.
Department of Mechanical and Science

Engineering,
University of Illinois at Urbana-Champaign,

MC-244,
1206 West Green Street,

Urbana, IL 61801
e-mail: ethw@uiuc.edu

Improving Net Joint Torque
Calculations Through a Two-Step
Optimization Method for
Estimating Body Segment
Parameters
Two main sources of error in inverse dynamics based calculations of net joint torques are
inaccuracies in segmental motions and estimates of anthropometric body segment param-
eters (BSPs). Methods for estimating BSP (i.e., segmental moment of inertia, mass, and
center of mass location) have been previously proposed; however, these methods are
limited due to low accuracies, cumbersome use, need for expensive medical equipment,
and/or sensitivity of performance. This paper proposes a method for improving the ac-
curacy of calculated net joint torques by optimizing for subject-specific BSP in the pres-
ence of characteristic and random errors in motion data measurements. A two-step op-
timization approach based on solving constrained nonlinear optimization problems was
used. This approach minimized the differences between known ground reaction forces
(GRFs), such as those measured by a force plate, and the GRF calculated via a top-down
inverse dynamics approach. In step 1, a series of short calibration motions was used to
compute first approximations of optimized segment motions and BSP for each motion. In
step 2, refined optimal BSPs were derived from a combination of these motion profiles.
We assessed the efficacy of this approach using a set of reference motions in which the
true values for the BSP, segment motion, GRF, and net joint torques were known. To
imitate real-world data, we introduced various noise conditions on the true motion and
BSP data. We compared the root mean squared errors in calculated net joint torques
relative to the true values due to the optimal BSP versus traditionally-derived BSP (from
anthropometric tables derived from regression equations) and found that the optimized
BSP reduced the error by 77%. These results suggest that errors in calculated net joint
torques due to traditionally-derived BSP estimates could be reduced substantially using
this optimization approach. �DOI: 10.1115/1.3005155�
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Introduction
Inverse dynamics is a procedure commonly used in the biome-

hanical analysis of human movement. This procedure calculates
orce and net torque reactions at various body joints using anthro-
ometric, kinematic, and kinetic input data �1�. Uncertainty in
stimated net joint torques derived from this method can, how-
ver, range from 6% to 232% of the peak net torque �2�. This
ncertainty depends on measurement and/or estimation errors of
he input parameters to the inverse dynamics expressions. Main
ontributors to these uncertainties were identified to be inaccura-
ies in estimated segment angles and body segment parameters
BSPs� �2�. Errors in segment angular data arise from two main
ources: noise in the motion-capture system and movement arti-
acts of skin-mounted markers �2,3�. Inaccuracies in body seg-
ent parameters are due to errors in estimating segmental mass,
oment of inertia, and center of mass �COM� location �2,4–7�.
Several methods have been proposed for estimating BSPs.

ommonly used to estimate BSP are weighting coefficients based
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on regression equation relationships derived from measurements
on cadavers or living subjects �8–11�. These coefficients relate
subject height and weight to the BSP. Error due to estimations
based on cadaveric data may exceed 40% �4�. Errors based on
living-subject data are smaller than cadaveric data, but are still
considered relatively high �10�. Geometric approaches �12,13� es-
timate body segment shapes and use estimated density to calculate
BSP. These approaches may produce smaller errors �e.g., less than
5% �12��, but achieving such accuracy is cumbersome as it re-
quires large numbers of measurements per subject �between 90
�13� and 248 �12��. Methods based on medical imaging �e.g.,
Refs. �14,15�� have high accuracy �errors of 5% or less�. These
methods, however, need medical imaging equipment that is not
always available and additionally expose subjects to radiation.
Recently, a technique for identifying arm BSP based on arm ki-
nematics and manipulator-hand contact forces was proposed �16�.

Another approach that used external forces for estimating BSP
was proposed by Vaughan et al. �17�. This method used the over-
determined nature of the inverse dynamics approach to formulate
a nonlinear optimization problem. This overdeterminancy is ex-
plained as follows. Traditionally, two approaches have been used
for inverse dynamics computations. The first requires only kine-
matic and anthropometric data to calculate net joint torques. Re-
ferred to as the top-down approach, this process often starts at the
distal segment of the upper extremity�ies� and proceeds downward

such that dynamic equilibrium conditions are satisfied for each
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uccessive segment. The second method, or the bottom-up ap-
roach, is typically used to analyze locomotor tasks and uses
round reaction force �GRF� measurements. This method starts at
he distal segment of one or both of the lower extremities and
roceeds upward through the body. By incorporating GRF mea-
urements, boundary conditions are defined for the bottommost
egment. These added conditions result in an overdetermined sys-
em since there are now more equilibrium equations than system
nknowns �17–19�. Due to errors in input parameters to the in-
erse dynamics calculations, these traditional methods result in
esidual forces and torques on the most-distal segment. The propa-
ation of systematic errors typically limits either method to proxi-
al net joint torque calculations; however, if it was possible to
itigate the effects of one or more of these input inaccuracies,

mprovements in net torque calculations �for all joints� could be
chieved.

This overdeterminancy has been used to reduce error effects
hrough optimization methods that adjust specific input param-
ters in the top-down calculations �17–19�. To improve subject-
pecific BSP estimates, Vaughan et al. �17� formulated an optimi-
ation problem that minimized the residuals between the known
round reaction measurements and those predicted through the
op-down calculation. This promising method, proposed in 1982,
ailed to gain popularity due to the complexity and high comput-
ng demands of solving an optimization problem. Newer comput-
ng capabilities have reduced these difficulties. Another weakness
f this work was that they did not account for errors in the motion
ata. Furthermore, Vaughan et al. assumed that minimizing a cost
unction is sufficient for reducing the net joint torque calculation
rror. Their cost function did not contain information on the net
oint torques; therefore, it is possible to minimize the cost function
hile simultaneously increasing error in the net joint torques. In

n effort to minimize errors due to noise in measured data �i.e.,
RF measurements and segment motion�, Kuo �19� overcame this
roblem by suggesting an additional success criterion. This crite-
ion stated that the difference between the true net joint torque and
he torque determined from the optimized solution should be less
han the difference between the true and traditional �nonopti-

ized� inverse dynamics solution. Delp et al. �20� recently pro-
osed the use of slight controlled adjustments to kinematic and
ass parameters to reduce the residual between measured and

alculated GRFs; however, this approach was used to create better
imulations of human movement rather than used to determine
xperimental net joint torques.

This paper describes a method that used the overdetermined
ature of the inverse dynamics approach to find an optimal set of
ubject-specific BSP estimates that reduce the error in joint net
orques �due to inaccurate BSP estimation�, while accounting for
rrors in motion data measurements. The premise of our approach
s that a test subject/patient would perform a series of calibration

otions, which would be used to derive optimized subject-
pecific BSPs. Once these BSPs are determined, then they can be
sed in inverse dynamics calculations for any desired task motion
erformed by the subject. The long-term goal of our work is to
evelop a method to increase the accuracy of joint net torque
alculations through improvements of estimates for both BSP and
egment motions using optimization techniques.

Method
The approach proposed in the current study was inspired by

ptimization methods used by Vaughan et al. �17�, Cappozzo �21�
nd Mazza and Cappozzo �22�. As noted previously, Vaughan
t al. �17� used GRF data to compute optimal BSP estimates, but
heir method breaks-down when motion data errors are present.
appozzo �21� and Mazza and Cappozzo �22� used GRF data to
ompute optimal solutions for joint angular motion, but did not
ddress errors in BSP. Our optimization method builds from these
orks and uses a two-step sequential approach to determine a set

f optimal BSP estimates that improve net joint torque accuracy.
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To summarize our approach, the optimization cost function was
based on the difference between the measured ground reaction
forces and the GRF calculated using top-down inverse dynamics
�see Sec. 2.1�. Since optimization performance depends on having
sufficient information of the system, a set of three short calibra-
tion motions was used to increase the likelihood of having suffi-
cient data to identify the optimal BSP. To test the efficacy of our
method, we derived a set of reference motions in which the true
values for the BSP and angular profiles were known �see Sec. 2.2�.
In this case study, we applied the inverse dynamics method to
planar symmetric motions and solved for the net joint torques and
ground reaction forces. The human body was modeled as a rigid
body system �Fig. 1�. The results from the optimized BSP were
then compared to nonoptimized BSP results.

2.1 Optimization Formulation. The general formulation for
the optimization problem was

min z���

subject to �ck��� = 0, k � E

ck��� � 0, k � I
� �1�

where z is the objective function, ck���=0, k�E are equality con-
straints, ck����0, k� I are inequality constraints, and � is a vec-
tor of optimization variables �i.e., segment angles and BSP�. The
objective function was the least square of the difference between
the calculated forces obtained with a top-down approach and the
known GRF. Therefore, the 2D objective function was

z = �
i=1

n

��f i
x��� − f̄ i

x�2 + �f i
z��� − f̄ i

z�2 + ��i
y��� − �̄i

y�2� �2�

where i is the time index, n is the total number of time intervals
during the chosen motion, fx, fz, and �y are the calculated ground
reaction forces and net torque �using a top-down approach� as a

function of the optimization variables �, and f̄ x, f̄ z, and �̄y are the
known ground reactions �i.e., “true” values when considering an
idealized perfect system or “measured” values when considering a
real-world experimental system�. Directions x, y, and z are defined
in Fig. 1. The equations of motion used to calculate the net joint

θs

θt

θtr

z

x

τy

Fig. 1 The body represented by a three-segment model. Seg-
ment angles for the shank „�s…, thigh „�t…, and torso „�tr… were
defined as shown.
torques and ground reaction values were derived using the gener-
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lized coordinate approach �19�.
The objective function was minimized under two types of con-

traints: �1� motion constraints on the angular profiles and �2�
ody segment parameter constraints. Both of which are detailed
elow.

2.1.1 Motion (Angular Profile) Constraints. Equality motion
onstraints were used to calculate the angular velocity and accel-
ration of each segment. These values were obtained using the
entral finite difference method. The inequality motion constraints
pply only to step 1 because in that step the optimization manipu-
ates the angular profiles, whereas the combined motion profile in
tep 2 is not optimized. Inequality constraints on the angular po-
itions limited the optimized values to be within the upper and
ower bounds:

�̄i,j + �a � �i,j � �̄i,j − �a �3�

here �̄i,j is the measured angle, �i,j is the optimized value, and j
s the segment index. �a is the maximum possible error in the
nown angle and can be derived by examining skin movement
rtifacts �23–25�. In this study, we used 0.035 rad, 0.07 rad, and
.07 rad for the shank, thigh, and head-arm-torso �HAT� seg-
ents, respectively.
An additional inequality constraint provided bounds on angular

cceleration. This constraint was expressed in the following form:

�̈̄i,j + �acc � �̈i,j � �̈̄i,j − �acc �4�

here �̈̄ is the measured value for the angle acceleration, �̈ is the
ptimized value, and �acc is the maximum acceleration error. This
pper bound for the acceleration error is not well documented in
iterature, and as such, we used estimations from Ref. �2� and
stimations based on studies that evaluated errors due to the skin
ovement artifact �23–25� and the motion-capture system �26�. In

his study, we used 1.3 rad /s2, 1.8 rad /s2, and 2.5 rad /s2 for the
hank, thigh, and HAT segments, respectively.

Another inequality constraint was based on the kinematic con-
guration, such that errors in the location of each joint center had

o fall within a specified range �k. The error was defined as the
ifference between the joint center location determined from the
otion-capture system measurement �x̄ , z̄� and the location pre-

icted by the link length �Lj� and optimized segment angle ��i,j�.
or 2D, these constraints take the following form:

�k � �x̄i,k − �
j=1

k

Lj cos��i,j�	2

+ � z̄i,k − �
j=1

k

Lj sin��i,j�	2

�5�

here k is the joint number. �k was derived from joint center
tudies �27–30�. In this study, we used �k of 0.0005 m for ankle
o knee, 0.0012 m for ankle to hip, and 0.001 m for ankle to
houlder.

2.1.2 Body Segment Parameter Constraints. Body segment
arameter constraints were applied in cases when BSPs were vari-
bles in the optimization �i.e., steps 1 and 2�. Upper and lower
SP bounds, which represent the maximum possible error in the
iven parameter, were defined with the following inequality
onstraints:

P̄l + �lP̄l � Pl � P̄l − �lP̄l �6�

here P̄l is the initial estimate for a body segment parameter, Pl is
he optimized value, and �l is the percent of possible error in the
th BSP. The values for �l were based on error estimations from
ast studies �5–7� and are presented in Table 1. The body was
ssumed to be bilaterally symmetrical for all BSPs. In addition,
e added the following equality constraints to conserve the total

ass:
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total body mass = �
l=1

p

m̄l = �
l=1

p

ml �7�

where m̄l is the initial estimation for mass segments, ml is
the estimation after the optimization, and p is the number of
segments.

2.1.3 The Sequential Optimization Approach. Our earlier work
focused on reducing the effect of error in the motion data �seg-
ment angular positions, velocities, and accelerations� by optimiza-
tion of segment angular data �31�. In that work, we found that
compared to traditional nonoptimized approaches, the optimiza-
tion approach reduced angular error in the motion data by 27–
62%. This reduction in angular error translated into a reduction in
net joint torque error by 54–79% �see Figs. 3 and 4 in Ref. �31��.
In the current work, we use a two-step sequential approach to
extend that work to enable optimization of both segment angles
and BSP estimates �Fig. 2�.

In step 1, we used each calibration motion individually to de-
rive first approximations for the optimal BSP and motion profiles.
That is, the optimization variables � were the segment angular
position profiles �2D flexion-extension angles at each sampling
point� and the BSP �segmental COM location, mass, and moment
of inertia relative to the distal joint axis� for the shank, thigh, and
HAT segments. All parameters were manipulated concurrently to
minimize the difference between the calculated and measured
GRFs. Note that in this study we assume that after filtering we can
neglect measurement/equipment error inherent in GRF. Step 1 was
performed separately for three short calibration motions. To start
the optimization procedure, initial guesses for each motion and the
BSP were derived from the angular profiles calculated from the
raw marker data and from estimations for BSP based on anthro-
pometric charts �32�.

In step 2, a further refined set of BSP was derived from a
motion profile created from a combination of the optimized cali-
bration motions. This is because currently we can only optimize
for a few seconds of motion at a time; longer times �i.e., more
data� would require greater computation time for solving an opti-
mization problem that accommodates for both motion and BSP.
Thus, step 2 further optimizes only the BSP. To create the com-
bined motion, the first and last 20 ms of each motion were elimi-
nated prior to concatenation. This approach was used since our
optimization procedure for angular profiles �31� was found to
have higher end-effect errors since there are no boundary condi-
tion constraints at these points. The BSPs derived from one of the
calibration motions in step 1 �BSP1� were used as the initial BSP
guess for step 2. The BSP estimates were then optimized under the
BSP constraints �Eqs. �6� and �7�� while the angular profiles re-
mained fixed. �Note that one could use BSP1 as obtained from any
of the three motions.�

Our formulation for the optimization-based inverse dynamics
approach was solved in step 1 using the SNOPT �large-scale
sequential quadratic programming �SQP�-based nonlinear pro-
gramming �NLP� solver from Stanford University� and executed

Table 1 Percentage of error in BSP estimations for each seg-
ment relative to the true value. The values for the COM location
and moment of inertia represent the maximum possible error
for each segment. Errors in segment mass must maintain the
total body mass as per Eq. „7….

Segment Mass
COM

location
Moment of

inertia

Head+torso 5 12 10
Arm 10 6 4
Thigh 10 2 15
Shank 1 17 3
using the general algebraic modeling system �GAMS� �Washington,
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C�, which is a high-level modeling and optimization package. In
tep 2, the optimization problem was solved using a constrained
onlinear optimization function �fmincon function, MATLAB; The
athWorks, Inc., Natick, MA, Version 6.5�. The optimization in

tep 2 is relatively simple, and therefore for convenience reasons,
e chose to use this solver.
All BSP optimization variables in either step were considered to

e independent. Note that in this formulation �COM location,
ass, and moment of inertia�, BSP estimates do not result in a

nique solution. In addition, we tried a formulation that correlated
ass �m� to moment of inertia �I� using the equation Ii=ki

2m,
here ki is the radius of gyration for segment i. However, this

ormulation does not provide a unique solution as it still tries to fit
hree parameters for each segment �i.e., COM location, mass, and
ow radius of gyration—instead of moment of inertia�. Further-
ore this formulation was computationally heavier to solve. The

nly formulation that we have identified that could have a single
olution was if we assumed that each link could be represented by

BBSS
Long motion

(LM)

Squat
(Sq)

Sway
(Sw)

angles

BSP

angles

BSP

angles

BSP

Step one

Fig. 2 Two step sequential optimization ap
body segment parameters „i.e., center of m
the presence of motion data error. Step 1 fi
profiles that minimize the objective funct
calibration motions. In step 2, the optimize
enated together and BSPs from one of th
refined second estimation „BSP2….

Filter

True movement data
(x,z)

Input

Optimiza
inverse

“T
G

Calc
(Top
G

True segment
angular profiles

Initial guess based on
filtered segment angular
profiles and noisy BSP

Errors in
anthropometric data

Motion
capture
noise

Motion Errors
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data (BSP: COM, I, m)

Skin
movement
artifacts

Fig. 3 Framework for performance evaluation of
optimized BSP estimates in calculating net joint

sequential optimization described in Fig. 2.
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a point mass approximation. In this case, there are only two inde-
pendent variables �mass and distance from the point mass to the
axis of rotation� per segment. This formulation would make the
solution unique; however, it would add overall error due to the
point mass approximation.

2.2 Assessment of the Optimization Methodology (Evalua-
tion Framework). Since in actual experimental settings true joint
net torque and BSP values are never known, we used the follow-
ing framework to evaluate the performance of our optimization-
based method �Fig. 3�. In the first phase, we constructed an ideal
error-free system of reference motions to use as test data. These
data created sets of true �noise-free� anthropometric BSP data and
true segment angle profiles for each motion. These data were then
entered into top-down inverse dynamics calculations to obtain true
values for the net joint torques and GRF for each motion. In the
second phase to simulate real experimental situations, errors �dot-
ted entities� were introduced to the true BSP and angular profiles,

Combined motion

BBSSPP22

angles
(LM)

Step two

angles
(Sq)

angles
(Sw)+ +

ach to determine optimal subject-specific
location, mass, and moment of inertia… in

s preliminary optimized BSPs and angular
; this step is done for the three different
ngular profiles found in step 1 are concat-
three motions „BSP1… are used to find a

BSP1 or BSP2

True joint torques
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inverse
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Output
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hich were then digitally filtered. These motion and BSP values
ere then used as initial guesses for the step 1 optimizations. In

he third phase, we solved for optimal angle profiles and BSP
stimates �BSP1 or BSP2� �Sec. 2.1.2�. For the optimization, the
rue GRFs used in the objective function were derived from the
op-down inverse dynamics solution of the true data. Finally, to
est the efficacy of the approach, in the fourth phase the net joint
orque results from the different estimates of the BSP during the
ptimization were compared to the true values.

This method was implemented on a case study that focused on
he 2D motion of a three-segment �head-arm-torso, thigh, and
hank� system. For this system, we assume that the true values
i.e., BSP, joint center coordinates, segment angular profiles, GRF,
nd net joint torques� for a set of calibration motions were known.
he motions for the segment angle profiles were derived from one

ndividual �height of 1.8 m, mass of 80 kg� performing four pla-
ar sagittal motions at natural speed and builds upon previous
tudies that used this technique �19,31�. All motions were per-
ormed with the arms across the chest. The three calibration mo-
ions were �1� a long motion that involved a single cycle of flexion
nd hyperextension of the hips followed by flexion and extension
f the knees, �2� a squat motion, and �3� a sway motion. In addi-
ion to the calibration motions, the test subject preformed a torso
eaning motion, where he flexed his torso forward to an approxi-

ately 45 deg angle and then returned to an erect posture. The last
otion was used to assess the effect of the optimized BSPs on a
otion other than the calibration motions. Segment angle profiles

or all motions were derived from motion data initially captured
sing a six-camera Vicon system �model 460, Vicon Peak, Lake
orest, CA� at a sampling rate of 100 Hz. To create the true seg-
ent angle profiles, baseline analytical profiles were derived by
tting the angular profiles from the motion-capture data to a 15th
rder polynomial function �polyfit function, MATLAB; The Math-
orks, Inc., Natick, MA, Version 6.5�. Using these profiles, the

et joint torques and GRF were computed using a top-down in-
erse dynamics approach. To more closely simulate real-life ex-
erimental procedures, 2D coordinate data �x ,z� for the joint cen-
er locations were generated from the baseline angular profiles
ombined with the kinematic constraints imposed by using a
hree-segment model with defined segment lengths. This step
imulated the use of motion-capture marker data to identify joint
enter locations.

Next, error was introduced into these idealized true coordinate
ata �x ,z�. Error based on skin movement artifacts was simulated
y a sinusoidal noise model derived from prior models in litera-
ure �e.g., Refs. �29,33–35��. The model parameters were set such
hat segment angular error was similar to measurement error, as
eported in literature �e.g., Refs. �23–25��. Noise in the motion
apture system was simulated using zero-mean white noise
19,29,33,34� with a standard deviation of 0.60 mm �26�.

Errors in the BSP were introduced using a two stage procedure.
n the first stage, errors were introduced to the body segment
asses. Error in the head-torso segment mass was set to either
5% or −5% of the segment mass. The remaining difference be-

ween the true and the new mass of the head-torso segment was
hen distributed to the other body segments based on the premise
hat the mass of the head-torso is approximately 60% of the total
ody mass and would therefore dictate the rest of the segmental
ass errors. Based on this assumption and error estimates taken

rom literature for other body segments, error was, respectively,
et to −10% or +10% of the segment mass in the arm and thigh
egments and −1 or +1% segment mass in the shank �Table 1�.
otal body mass remained constant as per Eq. �7�. Using this
pproach, there could be two types of error: �1� the mass of the
ead-torso was heavier than the true value and the arms and legs
ere lighter, and �2� the opposite �head-torso lighter and legs-

rms heavier�. In the second stage, errors were randomly intro-

uced into each segment’s center of mass location and moment of
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inertia. The maximum possible errors in each of these BSP esti-
mates are presented in Table 1. Error magnitudes were selected
from maximum error values reported in past studies �5–7�.

Ten noise conditions, randomly assigned within the error
boundaries defined in Table 1, were applied to the BSP values
�simulating ten different test subjects of slightly different phy-
sique�. Randomly-assigned motion noises were applied to each of
the calibration motions simulating the noise conditions that would
be expected when each “test subject” performed the three mo-
tions. After the errors in angular motion profiles and BSP esti-
mates were introduced, the optimization problem was solved us-
ing the sequential approach.

2.3 Data Analysis. To examine the efficacy of the two-step
sequential approach, a number of assessments were performed.
First, convergence of the optimization algorithm was verified, and
the average root mean square error �RMSE� between the true and
calculated GRFs was checked. Second, we wanted to understand
how variations in only the BSP affected the inverse dynamics
solutions �Fig. 3�; therefore, we inserted the estimated BSP from
different points in the optimization �initial guess, post-step-1
�BSP1� or post-step-2 �BSP2�� into top-down inverse dynamics
calculations that used the noise-free motion profiles. We then
compared the net joint torques derived from the noise-free BSP
values to the net torques derived from these BSP estimates. These
net joint torques were used to compute the RMSE over all joints
for a given motion at each step. Third, since in nonlinear optimi-
zations the initial conditions �guess� can affect the solution of the
optimization, we tested whether using different BSP from step 1
�BSP1� as the initial guess for step 2 would affect the net joint
torque results. The different BSPs were obtained from each cali-
bration motion, and the effect of these different initial conditions
was evaluated by comparing the average RMSE of all net joint
torques after step 2. Last, we used the torso leaning motion to
assess if the BSP obtained using the optimization �BSP2 after step
2� reduced the joint torque error due to BSP error. For this case,
BSP1 from the long motion were used as the initial guess to
determine BSP2.

3 Results
First, for all trials, the optimization algorithm converged, and

for step 1 it always reduced the difference between the true GRF
and the calculated GRF to RMSE values of less than 0.02 N �or
0.02 N m for the ground reaction ankle moment�. Second, Table 2
presents the average differences in net joint torques �RMSE� be-
tween the true values and values obtained using the estimated BSP
at each step of the optimization �i.e., RMSE due only to BSP�.
Comparisons between before and after step 1 values show an av-
erage reduction in the RMSE of 76.6%, 52.4%, and 56.3% for the
individual long, squat, and sway motions, respectively. For the
combined motion, an overall reduction of approximately 77% was
found when comparing the RMSE of the nonoptimized �initial�
noisy values to the more refined BSP estimated after step 2
�BSP2�. Third, we found that using BSP1 values obtained from
different motions as the initial guess for step 2 had a substantial
effect on the net joint torque RMSE after step 1, but little effect
after step 2. That is, the average reduction in RMSE from step 1 to
step 2 was 11% for the long motion, but 46–47% for the sway and
squat motions; however, the overall improvement between initial
and step 2 results �
77% � differed by less than 1% for all three
sources of BSP1. Last, a fourth unrelated motion �torso leaning�
was evaluated. Comparison between initial noisy values to results
using BSP2 found an average reduction in RSME of 69%.

4 Discussion
This paper proposes a method for improving the accuracy of

calculated net joint torques by computing optimized anthropomet-
ric BSP estimates in the presence of motion-capture noise. The

concept of estimating BSP using GRFs was previously proposed
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y Vaughan et al. �17�; however, that method was not validated
nd not designed to account for characteristic motion data errors
i.e., skin movement artifacts�. In contrast, our sequential ap-
roach was able to accommodate and optimize BSP calculations
ven when errors existed in the motion data. Furthermore, by
dding the second optimization step �step 2�, reduction in net joint
orque error shows improvement �11–47%� compared to results
btained if only one optimization step was performed. These find-
ngs highlight the utility of our multistep approach for improving
orque calculations. Comparing noisy initial guess values for BSP
o final post-step-2 optimized set of BSP �BSP2�, we found that
he error in net joint torques due to BSP inaccuracies was reduced
y 77% �average RMSE over all joints�. Moreover, when these
SP2 values were used on a new motion �torso leaning�, a reduc-

ion in net joint torque of 69% was also achieved.
It should be noted that, although an optimized set of BSP was

ound that minimized the error in the net joint torques �which was
ur main concern�, these BSP estimates are not a unique set and
annot be considered the true BSP values for each segment. Block
nd Spong had similar findings in their investigation of a two link
obotic arm �36�. Our pilot work suggests that, when the true
alue for one BSP is given and the other two are manipulated by
he optimization, the true values for these two parameters can be
etermined. This finding indicates that if we can determine one of
he parameters with high accuracy using a different method, it
ould be possible to use the optimization method to ascertain true
alues for the other two parameters.

This method is subject to several limitations. First, the optimi-
ation problem was formulated with the assumption, in accor-
ance with traditional inverse dynamics studies, that each segment
n the body could be viewed as a rigid link. Yet, in reality, the
egments consist of two parts: bones, which are considered rigid,
nd soft tissues �e.g., muscle, skin, and ligament�, which are not.
herefore, researchers have concluded that during high-impact
otions, the rigid body model may not be suitable �37�. Thus, due

o the rigid body assumption, the calibration motions should be
ased on relatively slow motions with no impact. Second, in this
nvestigation we did not consider the effects of inaccuracies in
RF measurements on the net joint torque estimations. Third, our
ethod may not be suitable for finding BSP for small body parts

e.g., fingers� since these have relatively small effects on the
round reaction forces. Fourth, in cases where the initial BSP
stimates are very close to the true values, it is possible that the
ptimized BSP after step 1 will be slightly worse �e.g., lines 3 and
in Table 2�. This issue is also one reason for adding the second

ptimization step since after step 2 the error is very small.
A final limitation is that this study used a 2D model with three

able 2 Average torque RSME compared to true noise-free va
sing BSP estimates from different points in the optimization p
r post-step-2 „BSP2……. See Fig. 3.

Noise
condition No.

Long motion �N m� Squat �N m�

Initial BSP1 Initial BSP1

1 17.11 3.90 10.44 2.01
2 8.82 3.41 5.45 0.66
3 1.22 2.38 0.95 4.07
4 27.87 2.32 14.29 0.89
5 7.47 3.88 4.40 6.44
6 19.44 3.90 12.07 5.46
7 1.34 1.42 0.80 1.45
8 17.52 2.34 9.66 3.05
9 10.50 2.64 6.16 0.98
10 8.13 1.63 0.80 5.95

Average 11.94 2.78 6.50 3.10

Results for the combined motion used BSP1 values derived from the long motion.
egrees of freedom �3DOFs� to represent the human musculosk-
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eletal system. Therefore, currently this method only supports BSP
estimations in the sagittal plane. Also, the body was represented
by three segments with the assumption that bilateral motion and
BSP were symmetrical. Real experiments, on the other hand, may
require more than three segments to represent human motion, and
the symmetry assumption for the body segments may not be valid.
In such cases, more complex models �with more degrees of free-
dom and more optimization variables� will be needed. The 3DOF
problem presented in this paper has 
350 variables. More com-
plex problems will likely range from 1000 to 3000 variables. Even
with these large numbers, it should be quite feasible to implement
this optimization approach in the future as the optimization prob-
lem scales roughly linearly, and problems with 500–5000 vari-
ables are not considered especially “large” given current compu-
tational capabilities �38�.

Future studies should be conducted to extend the proposed ap-
proach to account for inaccuracies in the ground reaction mea-
surements and to add more DOF to the model �in 2D and 3D�. For
example, this technique may be applicable to data collection situ-
ations when two force plates are used. One adaptation could be to
create two inverse dynamics models: a bottom-up model for the
lower extremities that uses the ground reaction data and a top-
down model for the upper extremities. These models would then
meet at some point on the torso �e.g., L5/S1 joint�. The optimiza-
tion would adjust parameters in the each model in order to mini-
mize the difference in the forces and torque at this meeting point.
An additional improvement could be to include an iterative cycle
in which the refined BSP after step 2 �BSP2� would be used to
calculate new estimations of the angular profile for each of the
three calibration motions. Optimal BSP estimates could then be
achieved by repeating the iteration until convergence. As an alter-
native method for achieving better motion profile estimations, cor-
rective methods that compensate for skin movement artifacts,
such as the cluster method �39� and global optimization methods
incorporating joint kinematics constraints �33–35�, could then be
used in step 2 to optimize for BSP.

In summary, this research built upon a method proposed by
Vaughan et al. �17� that attempts to improve net joint torque ac-
curacy by optimization of the BSP. Our method enables estimation
of the body segment parameters while characteristic errors in mo-
tion measurements are present. The results of our approach sig-
nificantly reduced the errors in the inverse dynamics solutions for
net joint torques due to BSP inaccuracies when compared to the
results of initial estimates. Full development of this method can
lead to a simple fast technique for improving inverse dynamics-
based net joint torque calculations through the use of a series of

s across all joints due to different BSP noise conditions and
edure „nonoptimized „initial… noisy values, post-step-1 „BSP1…

way �N m�
Combined motion

�N m�a
Torso leaning

�N m�a

ial BSP1 Initial BSP1 BSP2 Initial BSP2

1 1.81 17.88 4.82 2.32 3.13 1.87
3 5.16 8.84 3.04 3.36 5.15 2.91
9 2.47 1.39 2.43 1.65 0.77 1.65
8 3.75 24.28 2.18 2.36 19.45 1.58

1 5.53 6.88 3.79 1.58 5.01 1.51
9 7.24 17.88 4.28 4.03 13.22 4.34

8 4.16 1.02 1.68 2.12 1.34 1.87
1 4.91 14.91 2.22 2.84 13.01 2.00

4 5.40 9.45 2.16 3.02 7.32 2.31
8 4.02 6.42 1.53 1.85 1.34 1.81
8 4.44 10.89 2.81 2.51 6.97 2.19
lue
roc

S

Init

16.8
9.8
1.6
23.9
7.0
17.7
0.7
13.8
9.3
0.7
10.1
short calibration motions. By applying the optimization approach
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o these calibration motions, it is possible to identify a set of BSP
or a given individual. These BSP values would then be used in
nverse dynamics analyses of desired experimental motion�s� per-
ormed by the subject. While knowledge in optimization tech-
iques is currently necessary to further explore this method, we
nvision a future where optimization methods for improving esti-
ations for BSP, motion profiles, joint torques, etc., will be pro-

ided by motion-capture system manufacturers or third-party bio-
echanics companies in the same manner that they currently

rovide programs to calculate 2D/3D joint torque and angle data.

cknowledgment
We thank Professor Placid Ferreira for assistance with optimi-

ation concepts and Alex Shorter for help in conducting the ex-
eriments and constructive comments.

eferences
�1� Winter, D. A., 2005, Biomechanics and Motor Control of Human Movement,

Wiley, Hoboken, NJ.
�2� Riemer, R., Hsiao-Wecksler, E. T., and Zhang, X., 2008, “Uncertainties in

Inverse Dynamics Solutions: A Comprehensive Analysis and an Application to
Gait,” Gait and Posture, 27�4�, pp. 578–588.

�3� Leardini, A., Chiari, L., Croce, U. D., and Cappozzo, A., 2005, “Human
Movement Analysis Using Stereophotogrammetry: Part 3: Soft Tissue Artifact
Assessment and Compensation,” Gait and Posture, 21�2�, pp. 212–225.

�4� Cappozzo, A., and Berme, N., 1990, Biomechanics of Human Movement Ap-
plications in Rehabilitation, Sports and Ergonomics, Worthington, OH, Bertec
Corporation, Subject Specific Segment Inertial Parameter Determination: A
Survey of Current Methods.

�5� Challis, J. H., 1996, “Accuracy of Human Limb Moment of Inertia Estimations
and Their Influence on Resultant Joint Moments,” J. Appl. Biomech., 12�4�,
pp. 517–530.

�6� Ganley, K. J., and Powers, C. M., 2004, “Determination of Lower Extremity
Anthropometric Parameters Using Dual Energy X-Ray Absorptiometry: The
Influence on Net Joint Moments During Gait,” Clin. Biomech. �Bristol, Avon�,
19�1�, pp. 50–56.

�7� Kingma, I., Toussaint, H. M., De Looze, M. P., and Van Dieen, J. H., 1996,
“Segment Inertial Parameter Evaluation in Two Anthropometric Models by
Application of a Dynamic Linked Segment Model,” J. Biomech., 29�5�, pp.
693–704.

�8� Dempster, W., T, 1955, “Space Requirements of Seated Operator,” Aerospace
Medical Research Laboratories, Technical Report No. WADC-TR-55-159.

�9� De Leva, P., 1996, “Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia
Parameters,” J. Biomech., 29�9�, pp. 1223–1230.

�10� Durkin, J. L., and Dowling, J. J., 2003, “Analysis of Body Segment Parameter
Differences Between Four Human Populations and the Estimation Errors of
Four Popular Mathematical Models,” ASME J. Biomech. Eng., 125��4��, pp.
515–522.

�11� Zatsiorsky, V., Seluyanov, V., and Chugunova, L. G., 1990, “Contemporary
Problems of Biomechanics,” Methods of Determining Mass-Inertial Charac-
teristics of Human Body Segments, CRC Press, Boston.

�12� Hatze, H., 1980, “A Mathematical Model for the Computational Determination
of Parameter Values of Anthropomorphic Segments,” J. Biomech., 13�10�, pp.
833–843.

�13� Yeadon, M. R., 1990, “The Simulation of Aerial Movement—II. A Mathemati-
cal Inertia Model of the Human Body,” J. Biomech., 23�1�, pp. 67–74.

�14� Durkin, J. L., James, J. D. B., and Andrews, D. M., 2002, “The Measurement
of Body Segment Inertial Parameters Using Dual Energy X-Ray Absorptiom-
etry,” J. Biomech., 35�12�, pp. 1575–1580.

�15� Zatsiorsky, V. M., and Seluyanov, V. N., 1983, “The Mass and Inertia Char-
acteristics of the Main Segments of the Human Body,” Biomechanics VIII-B,
Human Kinetics, Champaign, IL.

�16� Kodek, T., and Munih, M., 2006, “An Identification Technique for Evaluating
ournal of Biomechanical Engineering

aded 22 Nov 2010 to 130.126.177.3. Redistribution subject to ASME
Body Segment Parameters in the Upper Extremity from Manipulator-Hand
Contact Forces and Arm Kinematics,” Clin. Biomech. �Bristol, Avon�, 21�7�,
pp. 710–716.

�17� Vaughan, C. L., Andrews, J. G., and Hay, J. G., 1982, “Selection of Body
Segment Parameters by Optimization Methods,” ASME J. Biomech. Eng.,
104�1�, pp. 38–44.

�18� Cahouet, V., Luc, M., and David, A., 2002, “Static Optimal Estimation of Joint
Accelerations for Inverse Dynamics Problem Solution,” J. Biomech., 35�11�,
pp. 1507–1513.

�19� Kuo, A. D., 1998, “A Least-Squares Estimation Approach to Improving the
Precision of Inverse Dynamics Computations,” ASME J. Biomech. Eng.,
120�1�, pp. 148–159

�20� Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T.,
Guendelman, E., and Thelen, D. G., 2007, “Opensim: Open-Source Software
to Create and Analyze Dynamic Simulations of Movement,” IEEE Trans.
Biomed. Eng., 54�11�, pp. 1940–1950.

�21� Cappozzo, A., 2002, “Minimum Measured-Input Models for the Assessment of
Motor Ability,” J. Biomech., 35�4�, pp. 437–446.

�22� Mazza, C., and Cappozzo, A., 2004, “An Optimization Algorithm for Human
Joint Angle Time-History Generation Using External Force Data,” Ann.
Biomed. Eng., 32�5�, pp. 764–772.

�23� Cappozzo, A., Catani, F., Leardini, A., Benedetti, M. G., and Della Croce, U.,
1996, “Position and Orientation in Space of Bones During Movement: Experi-
mental Artefacts,” Clin. Biomech. �Bristol, Avon�, 11�2�, pp. 90–100.

�24� Holden, J. P., Orsini, J. A., Siegel, K. L., Kepple, T. M., Gerber, L. H., and
Stanhope, S. J., 1997, “Surface Movement Errors in Shank Kinematics and
Knee Kinetics During Gait,” Gait and Posture, 5�3�, pp. 217–227.

�25� Stagni, R., Fantozzi, S., Cappello, A., and Leardini, A., 2005, “Quantification
of Soft Tissue Artefact in Motion Analysis by Combining 3D Fluoroscopy and
Stereophotogrammetry: A Study on Two Subjects,” Clin. Biomech. �Bristol,
Avon�, 20�3�, pp. 320–329.

�26� Richards, J. G., 1999, “The Measurement of Human Motion: A Comparison of
Commercially Available Systems,” Hum. Mov. Sci., 18�5�, pp. 589–602

�27� Bell, A. L., Pedersen, D. R., and Brand, R. A., 1990, “A Comparison of the
Accuracy of Several Hip Center Location Prediction Methods,” J. Biomech.,
23�6�, pp. 617–621.

�28� Leardini, A., Cappozzo, A., Catani, F., Toksvig-Larsen, S., Petitto, A., Sforza,
V., Cassanelli, G., and Giannini, S., 1999, “Validation of a Functional Method
for the Estimation of Hip Joint Centre Location,” J. Biomech., 32�1�, pp.
99–103.

�29� Roux, E., Bouilland, S., Godillon-Maquinghen, A. P., and Bouttens, D., 2002,
“Evaluation of the Global Optimisation Method Within the Upper Limb Kine-
matics Analysis,” J. Biomech., 35�9�, pp. 1279–1283.

�30� Schwartz, M. H., and Rozumalski, A., 2005, “A New Method for Estimating
Joint Parameters From Motion Data,” J. Biomech., 38�1�, pp. 107–116.

�31� Riemer, R., and Hsiao-Wecksler, E. T., 2008, “Optimization-Based Inverse
Dynamics to Reduce the Effect of Motion Errors in Joint Torque Calcula-
tions,” J. Biomech., 41�7�, pp. 1503–1509.

�32� Chaffin, B. D., Gunnar, B. J. A., and Martin, B., 1999, Occupational Biome-
chanics, Wiley, New York.

�33� Cheze, L., Fregly, B. J., and Dimnet, J., 1995, “A Solidification Procedure to
Facilitate Kinematic Analyses Based on Video System Data,” J. Biomech.,
28�7�, pp. 879–884.

�34� Lu, T. W., and O’Connor, J. J., 1999, “Bone Position Estimation From Skin
Marker Co-Ordinates Using Global Optimisation With Joint Constraints,” J.
Biomech., 32�2�, pp. 129–134.

�35� Reinbolt, J. A., Schutte, J. F., Fregly, B. J., Koh, B. I., Haftka, R. T., George,
A. D., and Mitchell, K. H., 2005, “Determination of Patient-Specific Multi-
Joint Kinematic Models Through Two-Level Optimization,” J. Biomech.,
38�3�, pp. 621–626.

�36� Block, D. J., and Spong, M. W., 1995, Mechanical Design and Control of the
Pendubot, Peoria, IL, pp. 1–4.

�37� Gruber, K., Denoth, J., Stuessi, E., and Ruder, H., 1987, “The Wobbling Mass
Model,” Biomechanics X-B, B. Jonsson, ed., Human Kinetics, Champaign, IL.

�38� Saunders, M. A., 2008 private communication.
�39� Alexander, E. J., and Andriacchi, T. P., 2001, “Correcting for Deformation in

Skin-Based Marker Systems,” J. Biomech., 34�3�, pp. 355–361.
JANUARY 2009, Vol. 131 / 011007-7

 license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


