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Abstract

This thesis presents the Rising STAR (RSTAR) a newly developed crawling robot capable
of reconfiguring its shape and moving the position of its center of mass. RSTAR belongs to the
family of the STAR robots with similar sprawling capabilities allowing it to run in a planar
configuration, either upright or inverted and change its mechanics from the lateral to the sagittal
planes. The RSTAR is also fitted with four bar extension mechanism (FBEM) allowing it to
extend the distance between its body and legs.

This combination of sprawling and extension mechanisms enables RSTAR to overcome
extremely challenging obstacles, crawl over flexible and slippery surfaces and even climb
vertically in a tube or between two walls. The robot can extend its height and width three-fold

and move its center of mass both in the fore-aft and vertical directions.

We first describe a kinematic model and the dynamical analysis conducted to improve the
design of the robot and evaluate its strength and motor requirements. Based on this analysis, we
designed and built a 3D printed prototype and experimentally tested it. The robot can run upside
down and climb over obstacles that are even higher than the diameter of its wheeled legs using a
turtle-like gait. To increase its mobility, RSTAR can be fitted with wheels or spoked legs or a

combination of the two, giving it superior ability to engage different terrains.

However, defining trajectories that utilize the robot’s capabilities is difficult, especially
when complex maneuvers are required. Here, we show how the use of reinforcement learning
can serve to determine optimal strategies to overcome three typical obstacles: squeezing through
two adjacent obstacles, ducking underneath an obstacle and climbing over an obstacle. We detail
the implementation of the Q learning algorithm in a simulation environment with a physical

engine (UNITYTM) for learning a feasible path in @ minimum number of steps.

We compare the trajectory found by the algorithm to trajectories devised by six human
experts for the RSTAR simulation. Our results show that the algorithm was able to find a feasible
trajectory in all cases. Moreover, the trajectories found by the algorithm were shorter than the
trajectories determined by the human experts. Finally, we present experiments where the physical
RSTAR robot can overcome different obstacles using the trajectories found in the simulation by
the Q Learning algorithm (see attached videos [24][48]).

Based on this research we published two papers:
1. "Rising STAR: A Highly Reconfigurable Sprawl Tuned Robot," in IEEE Robotics and Automation Letters.
2. “Beyond Human Performance: Overcoming Obstacles with a Reconfigurable Robot Using Reinforcement

Learning” submitted for IEEE Access.
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Nomenclature

Symbol Units Meaning
A degrees The sprawl angle of the RSTAR
0: degrees The FBEM angle of the RSTAR
O ax degrees The maximum possible FBEM angle
o degrees 'I_'he_maximum tilt angle that the robot can statically withstand before
tipping over
Myoqy grams  The mass of the RSTAR’s body
Myeq grams  The mass of the RSTAR’s legs
ACOM e~ mm  Possible movement of COM in the fore-aft direction
ACOM e mm  Possible movement of COM in the vertical direction
Aforeaf mm 1Ii’oorzsiié::;tltedrir:g(\:/t(?(r)nnent of the RSTAR’s legs relative to its body in the
Aheight mm \Ijgrstsilzlledrir:gé?(r)nnent of the RSTAR’s legs relative to its body in the
Lbar mm  The length of legs’ bars
Lieg mm  The radius of the wheels
L1 mm  Typical length on the robot design
L2 mm  Typical length on the robot design
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1 Introduction

Miniature search and rescue ground robots that can be used in disaster areas have numerous
advantages. There are several examples of palm sized search and rescue ground robots that can
crawl, run and climb over obstacles. These include the Mini-Whegs[1], Dyna-RoACH [2],
DASH [3], iSprawl [4], OctoROACH [5], RHex [6], Sprawlita [7] , STAR [8], 1STAR [9] and
TAYLROACH [10]. They can be deployed in large numbers to scout large areas while keeping
operators out of harm’s way. Their low weight and small size are important for efficiently

performing many tasks.

Designing minimally actuated mechanisms is imperative at this scale given the inherent
difficulty of implementing controlled active leg joints. Passive mechanical elements such as using
springy legs and damping systems to achieve high speed while maintaining stability such as
found in insects have been investigated by multiple research groups [11][12]. They have
developed crawling models such as the spring loaded inverted pendulum model (SLIP) [13]-[15],
which describes the locomotion of insects in the sagittal plane and in-plane (lateral) models of
locomotion [16]-[19]. In parallel, multiple attempts have been made to produce robots with

reconfigurable kinematics to overcome obstacles [20]-[22].

In a previous work [8], we presented a sprawl tuned autonomous robot (STAR) which can
actively adjust its sprawl angle to transform its dynamics between the lateral and the sagittal
planes through the use of a variable sprawl angle. STAR exhibited many unique capabilities such
as moving on varying terrain surfaces and traversing obstacles. The RSTAR robot presented in
this thesis (Figure 1.1) belongs to the family of STAR robots [8][9][23]; i.e., it can also vary its
sprawl angle. However, thanks to its four bar extension mechanism (FBEM), this design has
superior capabilities compared to our previously designed STAR in overcoming obstacles by

reconfiguring its mechanics, and moving its center of mass (COM).

At low sprawl angles, the contact angle of the foot with the surface is reduced, which
minimizes collisions and reduces the uncontrolled vertical dynamics, resulting in smooth
operation of the robot at all speeds. The sprawl angle can also be used to change the width and
height of the robot so it can squeeze itself in between or under obstacles and ride over them. The
characteristic length of the robot is 15 cm and has a weight of 308 grams including the battery
and control board for either human control or autonomous operation. To improve stability and

energy consumption, the robot is fitted with radially spoked legs or wheels or both (on each side).



Figure 1.1 - The Rising STAR (RSTAR) robot is a highly reconfigurable robot for search and rescue proposes
(see video [24]). The sprawl mechanism allows the robot to move in and out of the plane whereas the four bar
extension mechanism (FBEM) extends the arms holding the legs and relocates the center of mass.

)

Although non-orthodox mechanisms can provide advanced solutions to various
maneuverability needs, nevertheless executing trajectories involving these capabilities remains a
complex problem. Here, we also describe a way to overcome this problem based on autonomous
learning. Teleoperating a reconfigurable robot like the RSTAR requires a highly trained operator

since different mechanisms often need simultaneous actuation.

It is preferable to reduce human intervention by facilitating autonomous robot operations.
One way to increase robot autonomy is to teach the robot to autonomously perform common
operations. In the case of off-road missions these include climbing over obstacles, and maneuvers
around or underneath obstacles. Machine learning, and specifically reinforcement learning (RL),
can be used to teach the robot how to perform such maneuvers offline by repetitively performing

experiments in a physical or simulated environment.

Considerable efforts have been devoted over the years to devising methods for the
autonomous learning of robotic motion trajectories. One of the most popular is reinforcement
learning (RL)[27][29]. However, most researchers have concentrated on devising ways for the
robot to learn how to avoid obstacles [30][34]. For example, Lee et al. [30] applied RL to navigate
between obstacles with a quadruped robot. Similarly, Zhang et al. [31] use deep RL to address

navigation issues faced in cluttered environments on previously unknown rough terrain.

Overcoming an obstacle (e.g., climbing over, or ducking under) rather than avoiding it, can
lead to more efficient operations, and in some cases be critical for mission success. Successful
operation typically requires a combination of kinematic and dynamic maneuvers. The motion
plan must provide a feasible path as a function of the robot’s dynamic capabilities. The

autonomous learning of such trajectories requires taking complex dynamic considerations into
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account. It must also be done in setups that preserve the safety of the robot during the learning
process. To date, very few projects have successfully met this challenge. Notable exceptions
include M. Totani et al. [35] who used RL to learn a step climbing method for a crawler-type
rescue robot. Dutta et al. [36] used multi-agent learning for locomotion learning in modular self-

reconfigurable robots (MSRs).

One of the main drawbacks to RL is that learning times may be prohibitively long, when
problem dimensionality is high. In robotic systems problem dimensionality grows with the
number of controlled dimensions (e.g., actuators). Due to the need for multiple learning episodes
and due to potential hazards to the robotic system during leaning epochs, many researchers opt
to use simulation platforms for the leaning process. A major challenge in such cases is reliably

ensuring the transferability of the learning from the simulation to the physical environment.

Many systems that apply RL have a very high degree of interaction between their multiple
degrees of mobility and the environment, e.g., multi-rotor drones [37], where complex
aerodynamic effects are caused by interactions between multi-rotor airflow and the environment.
Other systems require intricate parameter tuning, e.g., underactuated legged robots [38][39] that
are required to perform highly dynamic motion involving balance. In such cases the feasible
solutions require very accurate determination. This necessitates searching for solution in
continuous action spaces and this strains the transferability of simulation results. Much effort has
been devoted in recent years for developing efficient RL algorithms suitable for such continuous
action environments, that are not sensitive to hyperparameters, that require a manageable amount
of leaning sequences, and for which results are transferable from simulated to physical

environments [37]-[40].

The unique design of the RSTAR robot affords very high maneuverability with a relatively
small number of actuators (4). This makes the solution search space manageable. Moreover, the
inherent stability of the RSTAR and its decoupled degrees of freedom (the different mechanisms
and wheels can be actuated almost independently), facilitates relatively large tolerances to the
feasible control policies. This facilitates using the much simpler discrete RL methods. Moreover,
it increases the robustness of the solution to small discrepancies in the modeled dynamics, and
therefore, increases the transferability of the solutions to the physical world. Still, as motion
dynamics are key to mission success, a physical simulation engine is required for meaningful

learning. In addition to simplifying the learning process, discretizing the action space simplifies



the required run-time control, as the polices can be represented as discrete sequences of required

actions.

In this thesis, we focus our research on applying RL for autonomously learning how to
exploit RSTAR’s advanced reconfiguration capabilities for overcoming obstacles by climbing
over ducking underneath and squeezing through. We apply the Q-learning algorithm, an off-
policy, temporal differencing model free RL algorithm [29]. A model free algorithm was selected
because the formulation of the dynamic equations of RSTAR is complex and prone to error which
may can impede learning. We opted to use the algorithm with a discrete state and action space
rather than applying deep RL methods (e.g., Deep-Q). Since motion dynamics is key to mission
success, learning must be done in an environment reminiscent to the physical environment to be
meaningful. Therefore, at the very least, a physical simulation engine is required. In such
environments learning epochs are indeed shorter than in physical environments, but still
relatively time consuming and thus limited. This makes the application of deep-RL methods

costly.

This thesis is divided into two main parts: a mechanical part and a learning part. In the first
part (chapters 3-5), the mechanical design of the RSTAR is presented in Chapter 3. The
kinematics and dynamics of the robot are described in Chapter 4 and the robot’s capabilities are
depicted in series of experiments in Chapter 5. In the second part (chapters 6-8) the virtual
environment used for the learning process and the learning algorithm itself are explained in detail
(Chapter 6). The results of the learning process are presented in Chapter 7 and in Chapter 8 the
results are implemented on the real RSTAR in set of experiments.



2 Background

This section reviews some theoretical background relevant for this research including review

about search and rescue robots and explanation about Q learning algorithm.

2.1 Reconfigure Abilities in The Use of Search and Rescue Robots

Miniature crawling robots have been developed for off- road tasks such as search and rescue.
Their small size, low weight and high navigability enable their deployment in large numbers to
quickly inspect a large area. At the same time, however, small mobile robots are limited in their
ability to traverse on varying terrains and climb over obstacles because the objects around them
become relatively larger.

This brief overview provides examples from the literature on search and rescue robots
developed to adapt to overcome obstacles. Some of these robots can alternate between leg and
wheel modes to take advantage of both systems whereas others are designed with reconfigurable

kinematics to overcome obstacles.

Wheel Transformer, a wheel-leg hybrid robot [20], utilizes a transformable wheel that
combines the advantages of both circular and legged wheels. When it encounters an obstacle, the
wheel transforms into a legged wheel with three legs (Figure 2.1) and can climb over steps higher
than the wheel’s radius. The switch from the circular to the legged configuration implements

the frictional force between the wheel and obstacle without additional actuators.

Step 1 Step 2
Obstacle
Rotation i
1 %'
! . jl Triggering :’ 'N
Step 3 Step 4

il
)

Figure 2.1 - a wheel-leg hybrid robot, combines circular and legged wheels.




RISE (Robots in Scansorial Environments) [21] is a legged robot capable of locomotion on
both the ground and a variety of vertical building surfaces (Figure 2.2.a) including brick, stucco,
and crushed stone. It climbs quietly without suction, magnets, or adhesives. RiSE has a range of
motion of 190 degrees in its “wing" degrees of freedom (Figure 2.2.b), which allows the robot

to walk with its legs underneath its body and climb with its legs in a sprawl position.

190 degrees

Figure 2.2 — The RISE robot, adjusting the angle between it body and legs it is capable to crawl on the ground
and on a variety of vertical building surfaces.

PUFFER (Pop-Up Flat Folding Explorer Robot) [22] is a palm-sized, origami-inspired
wheeled rover designed to accompany larger spacecraft on future missions, and serve as a
mobility enhancement to provide access to new terrains. PUFFER rovers are constructed with a
collapsible “pop-up” chassis that folds into a compact volume for storage, as shown in Figure
2.3. PUFFER’s small size and folding chassis also provide mobility benefits that enable PUFFER
to maneuver in extreme terrains inaccessible to the parent. This partial collapsibility can also be

used to lower the platform’s center of gravity when climbing steep inclines.

Figure 2.3 - PUFFER prototype, expanded (left) and folded (right) configurations.



In a previous work we presented the STAR (Sprawl Tuned Autonomous Robot) [8],[10]
which is the original version of the RSTAR. The STAR (Figure 2.4.a) possesses high-mobility
capabilities combining the benefits of wheeled and legged locomotion. It can actively adjust its
sprawl angle (Figure 2.4.b-d) to transform its dynamics between the lateral and the sagittal planes
through the use of a variable sprawl angle. In particular, large sprawl angles were found to be
efficient on uneven terrain, whereas the low sprawl posture is better suited for traveling over
smooth surfaces. The sprawl angle can also be used to change the width and height of the robot
S0 it can squeeze itself in between or under obstacles and ride over them. STAR exhibited many

unique capabilities such as moving on varying terrain surfaces and traversing obstacles.

Figure 2.4 — The STAR robot, the original version of the RSTAR robot. It can change its sprawl angle of its
legs from nearly flat posture to vertically oriented legs.

The RSTAR can also change its sprawl angle. However, by adding its four bar extension
mechanism (FBEM), it has modified capabilities with respect to overcoming obstacles compared
to the original design of the STAR. The design of the RSTAR will be presented in more details
in Chapter 3.



2.2 Q Learning Algorithm

This section reviews the Q learning algorithm, we used for learning optimal strategies to
overcome obstacles. For a better understanding of the Q learning algorithm, this overview also
includes an example of the algorithm’s implementation on a simple cube (Figure 2.5). The goal
is to get the cube to the target by implementing the least number of actions and to do so while
complying with certain rules of physical behavior; i.e., the cube can only move upwards when it

is positioned in front of the step.

Agent

Figure 2.5 — Cube learning to navigate in space toward the target using a Q learning algorithm.

2.2.1 Basic Principles of Q Learning Algorithm

Q learning is a form of model-free reinforcement learning (RL), which is a type of machine
learning. RL algorithms [41] are based on a Markov Decision Process (MDP), in which the
probability to reach a given state depends solely on the previous state and the action that was
taken. Throughout the learning process the algorithm learns a policy, , that maps states to

actions.

In the Q-learning algorithm [42], an action-value function Q" (s, a), also called Q function,
is estimated over the learning process and stored in a tabular representation. Each state-action
pair has a “Q value” that represents the expected sum of rewards the agent expects to receive by
executing action, a, from state, s, following policy m. The goal of the algorithm is to learn the

optimal policy that maximizes the total expected rewards.

The algorithm is based on repeating iterations of learning and experience gathered by
receiving reward feedback for taking actions. The Q-learning algorithm is guaranteed to converge
to the optimal Q function under certain conditions [43]. After it converges, the optimal Q

function can be used to determine the optimal action to take in a given state.
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The main components of Q learning algorithm (see Figure 2.6) are:

The algorithm itself, also called the agent.

The environment of the problem, divided into range of possible states.
Actions the agent can take when interacting with the environment.

The reward function, which defines the reward for taking action a from state s.

The Q function that represents the expected sum of rewards for each action-state pair.

The learning process is iterative, such that at each iteration the agent takes the following steps:

The agent observes its current state, s,,, in the environment.
The agent selects and performs an action, a,,.

The subsequent state, s,,,1, IS observed.

Reward, 1, is received from the reward policy.

The algorithm updates the Q value of the state-action pair using the received reward.

Action to New
Perform State

Agent

[Q Function] [ R Policy ]

Figure 2.6 — The interaction of the main components in the Q Learning algorithm.

As long as the number of iterations increases, performance improves. By repeating enough

iterations will allow the agent to determine the optimal policy for the full range of possible states.

2.2.2 States Determination

The environment is divided into discrete states, where each state can be a composite of

multiple components that define the agent in the environment such as position, orientation, etc.

The discretization of the environment constitutes a tradeoff between accuracy and the complexity

of the learning process. On one hand, dividing the environment into very small increments will
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improve the accuracy of the definitions for the agent with respect to its surroundings, but on the
other will increase the number of states the algorithm has to learn and hence increase the learning

time.

In the cube example (Figure 2.5), the state is determined to have two position components: an
altitude position, [y], and a position on the 2D plane, [p]. According to the state determination,
the discretization of the environment takes place as follows: the altitude dimension is divided
into two possible heights: floor height (y = 1) and step height (y = 2), and each of the two
planes is divided into (nxm) squares as illustrated in Figure 2.7. This division enables the agent’s

state, s, to be defined by two parameters: altitude, y, and position, p, so: s = [y][p].

* |mn

State: [2][3]

State fields: [y] [p] X
1 l y=2

Divisions:  (2)(mn)

m cells

y=1

Total states: 2nm

n cells

Figure 2.7 — State determination for the cube example, where the state is defined by the plane altitude and
by its position on the plane. Accordingly, the environment is divided into discrete states that define the
location of the cube on it.

2.2.3 Action Possibilities

Actions transfer the agent from state to state. Actions are associated with the actions the
agent can perform to reach the target. In the cube example, the cube can move in five possible

directions: forward, backward, left, right and upwards.

2.2.4 Q Function

The Q function contains values for each action-state pair. Each value Q(a, s) estimates the
sum of rewards the agent is expected to receive for taking action, a, from state, s. In cases of
discrete problems, the Q function can be presented as a Q matrix, where the number of existing

matrix values is a multiplication of the number of actions by the number of states.

The Initialization of the Q matrix influences the learning time of the algorithm [44]

considerably and affects the learning policy at the beginning of the learning process. By setting
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even initial conditions, all states are rated equally and the algorithm has to learn all the possible
states to converge to a solution. Uneven initial conditions can shorten the learning time by
distinguishing between attractive states and states that make no contribution to reaching the

target. Attractive states are initialized with high values relative the other states.

In the cube example, the Q matrix is a 3D matrix (action dimensions and a 2D state
dimension), so that each Q value is defined by: Q = [a][y][p] (see Figure 2.8). Each state s =
[v][p]. is associated with five different values, where each value is related to another action taken

from state s.

Position
__in Plane

Stat ;
— 3D Q Matrix

Altitude

+ =

Actions Upward 5 Actions

Left * Forward

‘ - Q =|[i]' [p] [¥] (10nm values)

Backward Right \ction ~ State

Figure 2.8 —The Q matrix for the cube example, where each cell in the matrix contains the expected sum of
rewards for taking action, a, from plane position, p, at altitude y.

2 Altitudes

2.2.5 Exploitation policy vs. Exploration policy

When selecting an action to perform, the agent needs to resolve the exploitation-exploration
dilemma. In case of exploitation, the agent exploits its current knowledge and selects the action
with the highest Q value (greedy action). In the case of exploration, it randomly selects one non-

greedy action and improves its estimate of the non-greedy action values.

Selecting actions solely by exploitation usually results in finding and preferring local optima
rather than the global goal. Exploration avoids this problem by exploring new states and actions
even though the agent is more likely to continue to randomly explore areas that are not of interest
and can increase the learning time. Therefore, the policy adopted while learning must be chosen

to balance these concerns and promote efficient convergence of the algorithm.

One possible way to combine exploitation and exploration is by using the e-greedy policy.
In this policy the agent starts exploring from the outset with high probability of taking random

actions, such that as the learning process proceeds, the probability for exploration decreases and
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actions are more likely to be selected by exploitation (greedy policy). Given that e represents the

probability for taking random actions we have:

if (probability > ¢)
a, =max,Q(a’s,)

else 1)
a, =random(a,)

decrease ¢

2.2.6 Reward Function

The reward function determines the immediate reward after executing an action from a given
state. The reward function plays an important role in RL algorithms [44], since a reward function
tailored to the problem can accelerate the convergence rate whereas inappropriate rewards can

increase the learning time and even cause the algorithm to diverge.

For this reason, several methods have been proposed for designing the reward function. In
[45] a methodology for designing reward functions was suggested that takes advantage of implicit
domain knowledge. [46] explored reward shaping, where the rewards from the environment are

augmented with additional rewards.

For the cube example, the reward function is illustrated in Figure 2.9. Because the algorithm
seeks a solution with the maximum reward (greedy policy), most actions are rewarded negatively
to ensure a solution with minimum number of actions. To reach a solution that involves the right
physical behavior, nonphysical actions are rewarded more negatively than other actions. For
example, the punishment for movement on the upper plane (when the step is not located
underneath) is twice the punishment for navigating on the floor.

To accelerate the convergence, positive rewards are also delivered for taking specific actions
from specific states (advancing forward in certain states and climbing from states located in front
of the step). After getting to the target, a high positive reward is delivered to encourage the agent

to return to the target state in the next iterations.
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Figure 2.9 - The reward function for the example of a cube navigating towards the defined target.

2.2.7 Q Function Update

The update of the matrix Q is executed using:

Q@) (-2)Q(a, 3,)+alr, + ymax Q@' )] @

where ry is the reward for taking action an at state Sn, Sn+1 IS the state of the agent after taking
action an. Action a' is the one associated with the highest possible Q(sn+1, @) value. The learning
rate o is set to between 0 and 1. Setting « to 0 means that the Q-values are never updated; hence,
nothing is learned. Setting a high value such as 0.9 means that learning can occur quickly. The
discount factor y is also set to between 0 and 1. This models how important future rewards are to
the current state. Mathematically, the discount factor needs to be set to less than 1 for the

algorithm to converge.

To provide insights into equation (2) we present an update stage on the cube problem. The
cube is positioned in state S,, = [35][1] and moves right (let’s assume this action is presented
with index 4 on the Q matrix). For a learning rate of 0.6, a discount factor of 0.9 and a given

reward of -2 (see Figure 2.9), the update of the Q value will be in the form of:

Q(4,352) « (1-06)-Q(4,35,2) +06-[-2+0.9mex Q(a,36.1]. @3)
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State S, = [35][1] State S,,; = [36][1]

Forward I\Forward
0.18 0.21
% 2 Upward o % % ﬂ Upward :|| %
—“o | -02 |0 x —“ o | -01|o x
-0.06 -0.15
Backward Backward

Figure 2.10 - Example of a Q update in the cube problem. The cube moves right from state S,, and the
related Q value is updated.

Note that the state S,, = [35][1] is related to five different Q values (one value for one
action), and the updated Q value is the one associated with the action made by the cube, i.e.,
moving right (with the index 4).

To take future rewards into account, the algorithm seeks the maximum Q value in the
subsequent state S,,,; (this value is associated with action a’). In the case above, the maximum
Q value of state S,,,, is related to a’ = 1 (the index for moving forward). By assigning the
appropriate values from Figure 2.10, the updated Q value for moving right from state S, =

[35][1]:

Q(4,35,1) < 0.4-Q(4,35,1) +0.6-[-2+0.9max Q(L 36,1)] =

(4)
= 0.4-0.13+0.6-[-2+0.90.21] =-1.035
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3 Mechanical Design and Manufacturing

This section specifies the mechanical design of the RSTAR and its main parameters, as well
as the materials used for manufacturing of the robot. The primary design goal of RSTAR is to
achieve a highly maneuverable robot capable of crawling over different terrains and overcoming
obstacles. The robot must also be lightweight and capable of carrying the substantial payloads
that may be required to perform search and rescue missions including cameras, communication
equipment and sensors. One of the key requirements was to keep the cost of transport (COT) of
the robot as low as possible. These goals are achieved by the combination of the active sprawl
angle together with the FBEM, which allow the robot to transform its kinematics and

substantially change its dimensions to overcome obstacles.

3.1 Robot Design

The RSTAR consists from a main rigid body and a pair of legs fitted with wheels and spoke
legs as presented in Figure 3.1. The body holds the controllers, the onboard batteries, the sprawl
mechanism and FBEM mechanism. Each of these mechanisms is actuated by a single motor.
Both sides of the robot are phased together and move symmetrically relative to its center. The

wheels of each legs are actuated by a single motor. In total, the robot has four motors.

Figure 3.1: Isometric view of the RSTAR robot.
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3.1.1 The Sprawling mechanism

The relative angle between the legs and the main body, as presented in Figure 3.2, forms the
sprawl angle 6, , which is defined as 8, =0when the legs are coplanar with the ground. The

sprawl angle can be varied in the range [-90, 90] (the positive sense of the sprawl angle is

downwards), as shown in Figure 3.2, allowing the robot to continue running in the same direction

even when upside down.

Figure 3.2 — Definition of the sprawl angle, the relative angle between the legs and the main body. Changing
the sprawl angle can increase or lower the robot width and height.

The sprawl angles at both sides of the robot are actuated symmetrically through a single motor
and four spur gears which provides 16:25 gear ratio to increase the motor torque, see Figure 3.3.
This mechanism ensures both sides to rotate at identical sprawl angle but in opposite directions.
As depicted in Figure 3.3, two extra spur gears and an angular potentiometer are also attached to

one of the robot's legs to measure the sprawl angle.

Sprawl
Rotation

Potentiometer Motor

Figure 3.3 - The mechanical design of the sprawl rotation mechanism, consists from DC motor and four spur
gears that ensure symmetrically rotation of both sides relative to the main body.
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3.1.2 The Four Bar Extension Mechanism (FBEM)

The rotation angle of the four bar extension mechanism is denoted by 6 and presented in

Figure 3.4. The FBEM angle can be varied in the range [-72, 72], the rotation angle & is defined

zero when the two bars are perpendicular to the body and the legs.

Figure 3.4 - Definition of the FBEM angle. By changing the FBEM angle the width and the length of the robot
can be changed.

The FBEM is attached to the sprawl mechanism and rotates together with it because of the
shape of the rack spur gear (see Figure 3.5). Both sides of the FBEM are actuated using the same
motor and are symmetric relative to the body. Worm gear is used to provide a high gear ratio and
self-locking when not activated. Rotating the gears attached to the worm gear results in linear
movement of the rack spur gear along the shaft. The movement of the rack spur gear rotates the
two parallel bars of the FBEM. That bars that connect the sprawl mechanism to the robot legs
and are synchronized to rotate at the same speed. An angular Potentiometer is also connected to

one of the leg bars to measure the FBEM angle.

Worm Rack
Gear Spur Gear

FBEM
Potentiometer

FBEM

Rotation
FBEM

Motor

Figure 3.5 - The mechanical design of the FBEM. The motor rotation is converted to linear movement of the
rack spur gear along the shaft which rotates the leg bars.
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3.1.3 The Driving Mechanism

The RSTAR has a differential driving mechanism actuated by single motor on each leg as
presented in Figure 3.6. Motor rotation is transmitted to the wheels using nine identical spur

gears. An encoder is attached to each motor to measure the rotation rate of the wheels.

Figure 3.6 — The driving mechanism consists from DC motor, spur gears and wheels.

To improve stability and lower energy consumption, RSTAR can be fitted with wheels, spoked
legs, or a combination of the two, giving it superior ability to engage different terrains. The round
wheels fit for smooth surfaces while the spoke wheels are more efficient in unstructured
environments. The RSTAR can flip its body upside down and drive inverted using dynamic

maneuvers to change the type of wheels contacting the ground.

3.2 Robot Actuation

RSTAR is actuated using four motors. We used 12 mm diameter off-the-shelf motors (6-9
volts manufactured by Pololulu that are available with encoders which can be purchased at
different gear ratios). The gearboxes with different gear ratios are of the same size, which
simplifies their replacement without having to modify any other parts.
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For higher driving speeds we used the lower gear ratio of 1:100 in the legs motors and for
climbing we used a gear ratio of 1:300 (providing a torque of 0.18 Nm and 0.5 Nm respectively).
The high ratio ensures high torque output and steady velocity. In the FBEM we used a 1:300 gear
ratio, and in the sprawl mechanism a 1:1000 gear ratio was used for the high sprawling torque of
1.18 Nm. The robot is powered with three 3.7 Volts LiPo batteries; motors are powered with two

1000mAnh batteries connected in series and the microcontroller is powered by a 400mAh battery.

3.3 Control System

The RSTAR can be controlled by either a human operator or by using a micro controller. In
the human operator mode, a 2.4 GHz receiver is used to control the robot mechanisms. In the
program mode, an off-the-shelf programmable Teensy 3.5 controller is used (32 bit, 120 MHz
and compatible with Arduino libraries) and the robot is given a set of actions to perform. The
main components of the control system are illustrated in Figure 3.7.

The sprawl and FBEM angles are controlled in a closed loop PD using the angular
potentiometer attached to each mechanism. The rotational speed of the wheels is measured using
magnetic encoders directly fitted to the shaft of the motors that provide 12 counts per motor

revolution (1200 or 3600 counts per wheel revolution depending on the gear ratio of the motor).

O Sprawl

~ 83 Potentiometer

Micro = RE
Controller E ﬁ
(Teensy 3.5) | | Sprawl m
Ho-ERE ¥ ¥ TENVIn (3610 6.0 volts iver Motor FBEM
Lipo Battery 3.7V 0 Iy o M oH3 . g’F@?,‘a Potentiometer
PAM 2 >
Y PWM 3 "
i, |+ o (S
JAE il FBEM
m: g i Motor
PWM 10 15 Al
» -
2 Lipo Batteries 7.4V b D Encoder

A22 DAC1
A21 DACO
3 39 A20

‘ = ﬁ
‘ Encoder —  w F

A . voor LR o) . >
' ouTs L] %’ Driving
vee—) i ‘ Motor
ﬁf‘ Driving
‘ . Motor

Figure 3.7 - The main components of the control system. The micro controller (Teensy 3.5) activates the
motors using the motor drivers (H-bridge) and controls the RSTAR mechanisms in closed loop using the

attached sensors (encoders and potentiometers). One battery supplies the voltage to the micro controller and
another pair of batteries power the motors with increased voltage.
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3.4 Manufacturing

The RSTAR mechanical parts are almost all manufactured with 3D printing. The
components were printed by several 3D printing technologies depending on the required strength
and the accuracy. Small parts or parts that required higher accuracy (like the gears or the robot
body) were printed in PolyJet printing (“Objet Connex 350” 3D printer [A], “VeroWhitePlus”
printing material [B]) or SLA printing (“FORMLABS FORM 2” 3D printer [C], Form resins
[D]). Other parts were produced using FDM printing (“UPBOX” [E] or “Ultimaker 2” [F] 3D
printers using PLA printing material [G]).

Considerable effort was made to simplify part replacement such as the motors, the bars of
the FBEM, the spoke legs and wheels. Easy part replacement is essential for experimentation in

different conditions and in case components are damaged during risky maneuvers.

Three versions of the RSTAR were manufactured as part of this dissertation and are
illustrated in Figure 3.8. The main design differences are between version | and 11, most of which
concerned the sprawl mechanism and the FBEM. Version |11 is based on its previous version

with adjustments made for adding angular potentiometers to the configuration mechanisms.
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4 Kinematic and Dynamic Analysis

In this section, we analyze the kinematics and dynamics of the robot. We present the different
configurations that the robot can achieve and evaluate the torque requirements of the motors as a

function of the external forces. This force and torque analysis was implemented during the design

of the robot and motor choice (with a safety factor of 3-4).

Height

S

Width

Figure 4.1 - Parameters for defining the RSTAR geometry.

4.1 Kinematic Analysis

The position of the legs of the RSTAR is a function of the sprawl angle and FBEM
orientation. The work volume of the legs constitutes a two- dimensional shell as illustrated in

Figure 4.2.

(b)

Figure 4.2 - The work volume of the RSTAR’s legs consists of two shells: a) the work volume of the FBEM
angle, b) the work volume of the sprawl.
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The width of the legs (as defined in Figure 4.1) is:

width =L, —L,sin(6,)+2[ L +L, + Ly, + L, c0s(6; ) |cos(6,). (5)
Because the robot can move the FBEM mechanism orientation from negative 72° to positive

72°, the legs can move in the fore-aft direction relative to the body by:

Aforeaft = 2L, cos(6, =72°)=1.9L,,, . (6)
The height of the robot is:

height = (L + L, + Ly, + L, c08(6; ) )sin (6, )+ L, + L, cos(6,). (7)
Because the sprawl angle can be moved in the range of negative 90° to positive 90°, the tips

of the legs can be moved in the vertical direction by:

Aheight = 2(L + L, + Ly + Ly, c0s(6; ))sin(6, =90°). ®)

4.2 The Mobility of the Center of Mass

The mobility of the center of mass (COM) can be used to enhance the stability of the robot
and increase its maneuverability and ability to climb over obstacles. Raising and lowering the
COM and moving it forward and backward relative to the legs can be used to flip the robot upside
down and climb over a variety of obstacles.

In the fore-aft direction, the position of the COM is varied by activating the FBEM alone
(see Figure 4.3). The core mass of the robot is on the main body, which we denote by m,,,

whereas the mass of each set of legs ism,, .

mbody

%w*

ACOIVIfore&aft

Figure 4.3 — The mobility of the COM in the fore-aft direction using the FBEM.
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By denoting &- ..., as the maximum orientation angle of the FBEM and after neglecting the

weight of the bars (nearly 3 grams each), the position of the center of mass is shifted forward and

backward by:

_ 2LbarSin (HF—max ) mbody

ACOM foreaft —
mbody + 2mIeg

©)

In the vertical direction, the COM can be moved from the in-plane configuration at zero
sprawl (minimum height) to the 90 degrees sprawl configuration (maximum height) as illustrated

in Figure 4.4:

Figure 4.4 —The mobility of the COM in the vertical direction, can be moved by changing the FBEM and\or
the sprawl mechanism.

The mobility of the COM in the vertical direction:

(Ll + I—z + I-Ieg + Lbar)mbody

mbody + 2mleg

ACOM i = (10)

For the given values of the actual robot: m,,, =213 grams, m, =104 grams, L,,. =50 mm,

leg

Le, =29mm, L =14mm and L, =20mm, the COM can be shifted in the fore-aft direction by

leg

48.1 mm and in the vertical direction by 57.2 mm.

The angle ® is the maximum tilt angle that the robot can statically withstand in the pitch
direction before tipping over. Alternatively, by accelerating forward, the robot can pitch upward
and flip itself upside down (see Figure 5.2). In addition, a climbing technique is based on pitching

upward by accelerating, see Figure 5.7. The required acceleration a to pitch upward is:

a>gtan(®). (11)
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4.3 Force and Torque Analysis

In this section, we calculate the forces acting on the robot and the torques that must be
provided by the different motors of the robot when moving on a horizontal surface and during
climbing vertically between two walls. We analyze the cases where the robot works against
gravity (raising its COM) which require larger torque forces. The absolute values of the forces

acting on one side of the legs, in the normal, side, and fore-aft directions, relative to the body of

the robot, are denoted by F .., Fger and Fpear -

4.3.1 Moving Over a Horizontal Surface

A force diagram of the robot when moving on a horizontal surface is presented in Figure 4.5:

Fnormal g f ‘ bt . l F normal

Fforeaft Fforeaft

Fside Fside
Figure 4.5 — The forces acting on the robot when moving over a horizontal surface. When lifting its body

through the sprawl or the FBEM mechanisms, both the normal force and the friction side forces resist the
motion.

When the robot lifts its body over a horizontal surface, either by increasing the sprawl angle
or by extending its legs using the FBEM, and assuming low accelerations, the normal force F ..,

is:

IF mg (12)

normal | =
2

Where m is the total mass of the robot. The side force Fg; g4, IS:

Fual =7 (13)

Note that F

side

is pointed outwards when the robot increases the sprawl angle and inwards

when it extends the length of its legs using the FBEM.
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The torque acting on the sprawl joint T, is a function of the sprawl angle ¢, and the

sprawl

FBEM orientation g, .

mg
Tooraun | = 7[L1 + L, + Ly + Ly, €0(6 ) |cos (6, )+
, 14
mg _ (14)
+,u7[(Ll + Ly + Ly + Ly, C03(65 ) )sin (6,) + L, cos (6, )J
Denoting L. by the term:
L =L+ L, + Ly + Ly, cOS(6:), (15)
And rearranging (14), we obtain:
mg ,
Tsprawl 27[(Lt+IULS)COS(05)+:UL[SIn(95):|' (16)
Figure 4.6 presents the magnitude of sprawl torque required for lifting the body when the
COF p value is 0.3 (plastic contact with tile floor). The maximum value of T, is 258.5 Nmm
and it obtained at 6, =16° and 6. =0.
o T TR TS . 250
300 "1 T Tsprawt-max = 2585 N m\n; . \\'\\\,\
6, =16°,0;p =0 T 200
= :
B 200-
Z 150
% 100 —
;5 1100
g oo
% 50
100 L_— s Ay
72 = Ny
— o
- 60
o—— el ‘.30 -50

i — .60
FBEM Angle [deg] M2 90 Sprawl Angle [deg]

Figure 4.6 — The required sprawling torque for lifting the body in different sprawl and BEM angles.
The required torque by the FBEM when extending its legs is:
mg , . i
|TFBME|:T(S|n(6?s)+,ucos(95))Lba,sm(GF). (17)
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Figure 4.7 presents the FBEM torque required when rising the COM assuming that the COF

W is 0.3 (plastic contact with tile floor). The maximum value of T, is 105.4 Nmm and it

obtained at 6, =73.5° and 6. =72°.

TrgEM-max = 105.4 Nmm
6, =73.5°,0p =72°

\

)
S

w
(=]

=]
/

-50 -

FBEM Torque [Nmm]
g
/

150 _—

FBEM Angle [deg] 7290 Sprawl Angle [deg]

Figure 4.7 - The required FBEM torque when working against gravity in different sprawl and BEM angles.

4.3.2 Climbing Vertically Between Two Walls

Figure 4.8 presents a force diagram acting on the RSTAR when climbing vertically between

two parallel walls:

Fforeaft Fforeaft

Tsprnwl

TFBEM

Figure 4.8 - The forces acting on the robot when while climbing vertically between two walls.
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When the robot climbs vertically at constant speed inside a canal, the forces acting on the

robot are in the fore-aft and side directions alone. The fore-aft force F that results from the

foreaft

friction force of the legs against the wall of the canal is equal to half of the weight:

m
‘Fforeaft = 79 : (18)
When climbing vertically between two walls, the robot must apply a side force:
| 5|de| > (19)
The torque that the sprawl mechanism must apply:
m
Tooraun| > i[(g + L, + Ly + Ly, €08(6; ) )sin(6,) + L, cos (6 )] (20)
The torque required by the FBEM is:
mg , . .
Teave| = a(5|n(6?s)+,ucos(95)) L., Sin(6; ). (21)
The torque acting on each set of legs, T4, during climbing in between two walls is:
m
Tleg = _g Lleg : (22)

where L., is the radius of the wheels. Note that climbing is much easier with wheels rather than

with spoke wheels.
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5 Robot Locomotion Capabilities

This section presents the locomotion capabilities of the RSTAR. Here, the RSTAR was operated
by remote control and was tested in variety of scenarios: running over different surface
conditions, executing various maneuvers which included crawling over obstacles, climbing
between two walls, and demonstrating the turtle locomotion gait in which the robot can move

without rotating its legs (see video [24]).

5.1 Running over a Variety of Surfaces

We tested the robot outdoors on a variety of surfaces, see Figure 5.1. The robot successfully
crawled over gravel and even climbed a small rocky incline. The robot also crawled successfully

over grass and rough sandy surfaces and climbed over concrete.

Figure 5.1 — RSTAR crawling on variety of surfaces including gravel, soft ground, leaves and grass (see
video [24]).

& P Ry 1 P -

5.2 Inverted Running, Combining Wheels and Spoke Wheels

RSTAR can flip itself upside down and vice versa without external intervention as
illustrated in Figure 5.2. This feature can be used to decrease its cost of transport and reduce
oscillations by fitting its legs with regular wheels on one side for running over smooth surfaces

and fitting spoke legs on the other side for running over unstructured terrains. Note that inverting
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the body will bring the outside swing of the legs in contact with the ground, resulting in the
original direction drive. In this double inversion, all control laws are consistent and the leg drive

and steering control continue to function as expected.

Figure 5.2 — RSTAR can flip itself upside down so that it can be driven on one side with wheels over flat
surfaces and the other side with spoke wheels over challenging surfaces in unstructured environments (see
video [24]).

Self-flipping is executed by changing the position of the COM, as shown in Figure 5.2.
First, the RSTAR accelerates when its COM is backward (5.2.a) and by immediate braking, its
body falls backward (5.2.b). By flattening its sprawl angle (5.2.c) and moving its COM backward
using the FBEM (5.2.d-5.2.e) the robot flips backward (5.2.f). After the robot is inverted,
actuating the sprawl mechanism lifts the body upwards and makes the wheels contact the ground
(5.2.9-5.2.1). The result of this process is that the wheels change from spoke legs (5.2.a) to regular
wheels (5.2.1).

In previous work [8] we showed that the spoke wheels at a low sprawl angle (15 degrees)
have a mechanical COT (not including electrical losses) of nearly 0.2. Although this COT is
relatively low compared to robots at this scale, it remains two orders of magnitude higher than

the rolling friction (or rolling resistance) of the wheels. Therefore, to reduce the COT (and
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therefore extend the working range of the robot) and to reduce the vibrations resulting from the
spoke wheel collisions with the surface, the robot can be run when inverted over smooth surfaces
such that the regular wheels engage the surface.

5.3 Turtle Locomotion Gait

One of the unique locomotion gaits that the RSTAR can perform is a turtle-like locomotion in
which the robot advances without rotating its wheels [25] (somewhat similar to inchworming
[26]). While the turtle gait is a slow method of crawling, it is very effective on soft and slippery

ground and when crossing canals.

This gait is made up of a sequence of four steps and is done by activating the sprawl angle
and the FBEM without driving the wheels as demonstrated in Figure 5.3. Starting in an almost
flat configuration (5.3.a), the body is lifted until it no longer touches the ground using the sprawl
mechanism (5.3.b). Then the body is pushed forward (5.3.b-5.3.d) using the FBME. In (5.3.),
the robot lifts its legs using the sprawl mechanism. Once the legs are in the air, the robot moves
its legs forward using the FBME (5.3.f-5.3.h). Finally, the robot pushes its legs downwards (5.3.1)
to complete a full turtle gait cycle. In our experiment consisting of 6 cycles, the robot advanced

60 cm in 1:50 minutes at a rate of 10 cm/cycle.

S v. "‘A;‘ ‘{ o _ & |- Q P e P 4
Figure 5.3 —Full cycle of turtle gait locomotion, the RSTAR is advancing forward using it legs without rotating
its wheels (see video [24]).

-30-



5.4 Vertical Climbing

RSTAR was designed for easy motor replacement. In our horizontal experiments we used
a 100:1 gear ratio which allows the robot to run at a maximum speed of nearly 1m/s. The nominal
thrust force at a 1:100 gear ratio is 6.4 N, which theoretically speaking, is sufficient for climbing
vertically (almost twice the weight). However, due to internal friction losses which increase
substantially during climbing because of the normal forces that must be applied to the walls, we
had to increase the gear ratio to 1:300. At this ratio, the horizontal speed drops to 35 cm/s but the
thrust force increased to 17 N and the robot successfully climbed when placed vertically at 20
cm/s (see Figure 5.4). Note that although the robot can pitch upwards and change its width to
touch the two sides of the wall, we had to place the robot vertically between them. We believe
that the transition from horizontal locomotion to vertical climbing is feasible and will be the focus

of our future research.

Figure 5.4 - When placed between two walls, the RSTAR fitted with wheels can climb at 20 cm/s. The
RSTAR’s width can be varied to touch both sides of the walls (see video [24]).
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5.5 Crawling Between Two Walls

RSTAR can also crawl horizontally between two parallel walls (see Figure 5.5) by applying
enough pressure on the walls with its wheels using the sprawl mechanism and the FBEM. It can
also switch from horizontal crawling to vertical climbing and vice versa. This feature is very

useful for movement inside pipes and can also be used for skipping over obstacles as illustrated

in Figure 5.5.

R

Figure 5.5 — horizontal crawling between two walls, using the sprawl and FBEM RSTAR can adjust its width

and create enough pressure with the walls (see video [24]).

The transformation from horizontal crawling to vertical climbing can be done by moving the
COM position using the configuration mechanisms (sprawl and FBEM) which change the pitch
angle of the robot while it continues to advance. Note that a necessary condition to prevent the
RSTAR from losing contact with the walls and fall down’ it has to keep its width constant while
changing the COM position. Currently the lab is working on developing control system that can

control the configuration mechanisms in the case of movement in curved pipes.
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5.6 Overcoming Obstacles

The ability of the RSTAR to reconfigure its shape and move its COM impart the RSTAR
with improved ability to overcome different types of obstacles. It can crawl through low passages
by minimizing its height to 49 mm by changing the sprawl angle to a nearly flat configuration (a
minimum of 3 to 5 degrees sprawl is required to ensure it can advance). By narrowing its width
up to 115 mm, the RSTAR can also traverse narrow passages. In addition, the RSTAR is very
efficient in climbing over obstacles of up to 6.5 cm by implementing different techniques using

the sprawl and FBEM mechanisms combining shape configuration and COM mobility.

5.6.1 Turtle Gait Climbing

The turtle gait an efficient way to climb over obstacles, In Figure 5.6 the turtle gait is

demonstrated, climbs over a 53 mm obstacle with 58 mm diameter wheels.

Figure 5.6 - RSTAR climbing over an obstacle using the turtle locomotion gait which is achieved by the
actuation of both the sprawl angle and the four bar extension mechanisms (see video [24]).

After the robot is positioned in front of the step (5.6.a), its legs are lifted using the sprawl
mechanism (5.6.a-5.6.c) until its front wheels are located above the step. While the legs are in

the air, the legs are oriented forward as far as possible using the FBME (5.6.d-5.6.e). Then, using
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the sprawl mechanism the body is lifted and the front wheels touch the step (5.6.f) until the
RSTAR leans on the step in a stable fashion. In (5.6.f-5.6.h) the body is moved forward using the
FBME. The movement of the COM forward enables climbing by rotating the wheels forward
(5.6.1) and by lowering the COM with the sprawl mechanism (5.6.j) the robot falls forward (5.6.k)
and is able to advance on the step using its wheels (5.6.1).

5.6.2 Pitching Upward for Climbing

The robot can reach the tip of the obstacle by pitching its body upward and advancing
towards the obstacle see demonstration in Figure 5.7. Starting from (5.7.a), the robot raises its
body (5.7.b) and then accelerates (5.7.c) to pitch its body upwards (5.7.d). Using the spoke
wheels, the robot advances to the obstacle (5.7.e) and by reducing the sprawl it falls on the
obstacle (5.7.f). At this point, the robot moves its COM forward (5.7.g) and drives its spoke

wheels forward to complete its climb (5.7.h).

Figure 5.7- The robot is climbing on top of the obstacle by pitching its body upward and then moving its
COM across the edge of the obstacle (see video [24]).
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6 Implementation of Reinforcement Learning on the RSTAR

This section details the simulated virtual environment used for the learning process, the
different obstacles that the robot learned to overcome, the discretization of the state space, and

the learning algorithm.

6.1 Simulation Environment and Obstacle Definition

The simulations were conducted using a Unity® software environment (real-time engine
development platform) [47] and included a (1:1 ratio) model of the RSTAR and the different
obstacles. We defined the RSTAR’s kinematics and tuned its speed and contact properties with

the surface to mimic those of the physical robot.

Three common use cases in which the robot can overcome an obstacle were learned in three
separate simulations: (1) A narrow (180 mm wide) channel in which the robot has to reduce its
width to pass through (Figure 6.1-a). (2) A low entry (55 mm high) where the robot has to lower
its body to crawl underneath (Figure 6.1- b). (3) A 50 mm step obstacle the robot needs to climb
over by shifting its center of mass (Figure 6.1 — c). The geometric properties were modifiable so
that the simulation results could be tested for relevancy on obstacles of different sizes. The
simulations were performed on an Intel® Core™ 17-3632QM processor 2.2GHz, 8GB RAM

memory running a Windows 10 operating system x64 bits.

Figure 6.1 - The different obstacle use cases that RSTAR learned (a) A squeezing through a 180 mm channel.
(b) Crawling underneath a 55 mm high opening. (c) Climbing over a 50 mm high step.
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6.2 Learning Procedure

The Q-learning algorithm was applied using the RSTAR Unity® model. Figure 6.2
illustrates the iterative procedure of the learning process: the RSTAR observes its state, s,
performs the action, a, and receives a reward, r. Its next state, s, is produced by the environment,
and finally the Q value of the related action-value pair is updated. Each learning iteration ends

when one of the following conditions is met:
1) The RSTAR successfully reached its target.
2) The number of actions performed exceeded the maximal number of actions allotted.
3) The RSTAR reached a “dead end” by moving sideways past obstacle borders.
4) The RSTAR flipped over.

All the intermediate learning data including states, actions, rewards, and Q matrix values,

were retained for convergence analysis and validation.

Physical
Engine

Figure 6.2 -The learning process using the physical Unity® engine and Q-learning algorithm.
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6.3 States

The state of the agent (the RSTAR) was based on its position, orientation, and configuration.
To reduce the dimensionality of the state space, the position of the robot was limited to the
advancing direction (z) alone and roll was neglected. Altogether, the agent’s state was composed
of five parameters: a) the position in the advancing direction, b) the yaw, c) the pitch, d) the

FBEM angle, and e) the sprawl angle, as illustrated in Figure 6.3.

STATES ACTIONS (a) ADVANCING
® ADVANCING 1- MOVING DIRECTION
DIRECTION FORWARD
* yAW 2 - MINUS FBEM
* PITCH
(Climbing on only) FFPLUSRREM
* FBEM 4 - MINUS SPRAWL
SPRAWL 5- PLUS SPRAWL ACTION 1

Vo )

Figure 6.3 - The partition of the state and action spaces into discrete values. Partition of sprawl was adapted
to the required sensitivity of the use case.
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The partition of the state and action spaces into discrete values was slightly different as a
function of case. The partition of the advancing direction and the FBEM was constant and equal
to 18 mm and 12° respectively in all three simulations. The yaw angle, o, was divided into three
angle ranges in all simulations: 0<|a|<5, 5<|a|<10, and 10<|a|. The sprawl angle was partitioned
into step sizes of 9° or 15° depending on the use case and required sensitivity (Table 1). Because
the first two problems (squeezing through a channel or a low opening) did not involve climbing,
the pitch was ignored. In the third problem in which the robot needed to climb over the step, the

pitch angle, S, was divided into two ranges, 0<p<5°, 5°<f<180°.

6.4 Actions

The action space consisted of five actions (Figure 6.3): 1) Rotate the wheels forward by one
third revolution (60.7 mm). 2-3) decrease the FBEM angle (2) or increase it (3). 4-5) increase (4)
or reduce (5) the sprawl angle. Note that the robot might not be able to perform a specific action
if prevented to do so by an obstacle. For example, in Action type 1, the wheels simply slide if

the robot cannot advance forward.

Table 1 - Number of states and actions in each simulation

Position (z direction) 43 34 24
Size: 18 mm 18 mm 18 mm
Yaw Angle 3 3 3
Range: 0<|o<5, 5<|a<10, and 10<|al

Pitch Angle - - 2
Range: 0<P<5°, 5°<p<180°

FBEM 12 12 12
Size: 12° 12° 12°
Sprawl 12 20 12
Size: 15° 9° 15°
Possible Actions 5 5 5

Q matrix cells 92,880 122,400 103,680
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6.5 Q Matrix initiation

Each action-state pair was rated based on the expected value of taking the action when in
that state. The Q matrix was 5D for the use cases of squeezing through a channel and ducking
underneath an obstacle and 6D for the climbing over the obstacle use case. The number of Q

matrix cells was on the order of 10° (Table 1).

To encourage the robot to advance towards the obstacle and overcome it, the initial Q matrix
values were based on the advancing direction and the yaw angle. The values increased as a
function of the advancing direction and decreased with the absolute value of the yaw. In all use
cases, the workspace was divided into four zones (i-iv) along the advancing direction (z). Figure
6.4-a presents the specific zone borders of the climbing over an obstacle use case. The other use
cases had a similar pattern but different border values.

Zone (i): Located behind the agent’s initial position (z<3) and was characterized by

negative equal values for all yaw angles:

Qi (Sn ’ an) = _100(Zt0t - Z) . (23)

where Zi is the total number of partitions in the z (advancing) direction and z <3. This zone
could be reached if the RSTAR moved its COM backwards using the FBEM.

Zone (ii): Located between the agent’s initial position and proximity line (4 bins before the
success line 3<z<15). In this zone, the Q started with positive values and monotonously
increased as the robot advanced towards the success zone. Lower values were given to greater
yaw angles between 5° to 10° and even lower to values beyond 10° to encourage the robot to

maintain a straight orientation.

100z [6,,,|<5
Q(s,a)=152  5<[0,,|<10. (24)
z 10<lo,,
Zone (iii): In proximity to the success zone, with length in 4 partitions (in the advancing

direction 15<z<19) and Q values that were substantially higher than zone (ii). | this zone, The

Q values were independent of the yaw:

Q(s,,&,) =1000z. (25)
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Zone (iv): The success zone, characterized by the highest initial Q values (identical to Eq.25)

to ensure that the robot was attracted to the success zone and remained in it.

Zone (i) Zone (ii) Zone (iii) Zone (iv)

100 F — . T s B S

E ! i 1

i (a) : e Yaw=1:5< |Yaw| ' ' .
il ! o Yaw =2:5 < |Yaw| <10 ‘.00‘....

o 10°F i e Yaw=3: [Yaw| > 10 ! i 3

- ; :

> 10°F Z ..000“' & = E
E £ ® o : ]

g e 3

® 10°F B E & 3

£ i 5 .oO°‘... 5 g3 ]

= : o ® 3 !

=l s oo ;

15’ 1 ® e ©® 1 e
105 1 . . . . . ‘ : 1 E
10° [ (. | : -

00 0 0 0

1.0 ot cd | E :

(b) ' e Yaw=1:5< |Yaw| i !

i e Yaw=2:5< |Yaw| <10[ | i
= 05F ; e Yaw =3: |[Yaw| > 10 ' : Il

g |0 | 5

g ! 1 [}

é I I |
0.0" 1 1 -

= > 0 © ‘... '

0 ::oz!!!"’.'. |

o . l ;
O o5t : ! : -

.. Eeas

| I ;

-1.0 1 1 | 1 gt |
. 1 T T I T

I I I

| I

I )

) }

I |

| |

15 20 25
Advancing Direction [bins]
Figure 6.4 - Given reward (a) and initial Q value (b) as a function of the advancing direction and yaw angle.

6.6 Reward and Update

As in the Q matrix initialization, the workspace was divided into the same four zones (Figure
6.4-b). The rewards were negative in the first three zones to minimize the number of steps and

ensure convergence of the solution to an optimal solution:
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Zone (i): A highly negative rewards zone.
r(s, a,) =-30(Zy, —2). (26)

Zone (ii): The reward in this zone was also negative but monotonously increasing to
“encourage” the agent to leave the zone and advance forward. The reward was more negative if

the yaw angle was larger than 5° to ensure that the agent did not attempt to rotate sideways.

8(Zy—2)  |0|<5
r(s,,a,)=1-12(Z, -2) 5<[,,|<10. (27)
~16(Z, —2) 10<l,,
Zone (iii): The reward function in this zone was similar to zone (ii), and was designed to

ensure it continued attempting to advance forward.

Zone (iv): the success zone was highly positive to ensure that the agent advanced towards it

and finished its climbing learning.
r(s,,a,)=30000. (28)
The Q matrix was updated using:

Q(s,.a,) < (1-@)Q(s,.a,) +alr, + 7 maxQs,..,a)]. (29)

where r, was the reward for taking action an at state sn, Sn+1 Was the state of the agent after
taking the action an. The action a' was the one associated with the highest possible Q(sn+1,a)

value. The learning rate « was 0.6 whereas the discount factor y was 0.9.

6.7 Policy

The learning was conducted as an &-greedy policy where the probability of taking a random

action, ¢, decreased by:

& —&
— g - _"mn 30
£ ¢ N (30)

max

Where ¢, is the initial probability, ¢,

Is its minimum value and N, is the total number

n

of times random actions is taken. In all simulations we used: &, =1, ¢,,, =0and N, =30000.
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7 Simulation Results

In this section, we first present the convergence rate of the algorithm. Then an analysis of
the solution and its validity over a range of parameters is presented. Finally, a comparison

between the simulation and human operators is presented.

7.1 The Convergence Rate

The convergence rate of each simulation was tested using three parameters: the sum of
reward over a path received at every iteration, the number of actions per iteration, and the success
rate of the iterations. The results of squeezing through a channel, ducking underneath an obstacle

and climbing on top of an obstacle are presented on Figure 7.1-Figure 7.3 respectively.
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Figure 7.1 - The number of actions in each iteration (top); The sum of the rewards and value of ¢in each
iteration (bottom) of the squeezing through a channel use case.

-42 -



The algorithm started to find feasible solutions after 100 iterations (60% success) (Figure
7.1, top). Following that, the number of actions of the found solution decreases and after 600
iterations, the success rate is nearly 100%. The quality of the solution (the number of actions)
improve with the number of iterations and reaches an average of 20 actions per solution. With
the best solution (the smallest number of actions) performed with 17 actions. In section IV.E, we
will see that some of the solutions with a larger number of actions had advantages for overcoming
challenging obstacles not previously learned. The iterations started with a highly negative sum
of rewards (Figure 7.1, bottom) and as the iterations advanced, the sum of the rewards increased
(the absolute decreased) as the robot succeeded in finding feasible solutions after nearly 200

iterations and then continued to slowly improve.

2001

x . Zoom In To Convergence
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Figure 7.2 - The number of actions in each iteration (top); The sum of the rewards and value of gin each
iteration (bottom) of the ducking underneath an obstacle use case.
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Figure 7.3 - The number of actions in each iteration (top); The sum of the rewards and value of gin each
iteration (bottom) of the climbing on top of an obstacle use case.

7.2 Squeezing Through a Channel

The simulation converged to a successful solution (with 17 actions) after about 600
iterations. The simulation presented in Figure 7.4 shows that starting in (a) for a channel width
of 240 mm, the simulated robot performed four actions to lower its sprawl from 48 to 18 degrees
and to decrease its width from 240 mm to 163 mm. When the width of the robot was smaller than
that of the channel (180 mm), the simulated robot continued advancing to reach its target. (see
video [48]).
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Figure 7.4 — The simulated RSTAR crawling between two walls. Starting at (a), the robot increased the
sprawl to reduce its width (b-c) and continued advancing toward its target (see video [48]).

7.3 Crawling Underneath an Obstacle

In this use case the simulation converged after 700 iterations to a solution with 14 actions.
Starting from an initital configuration in which the simulated RSTAR’s height was 100 mm
(compared to the 55 mm clearance of the obstacle), the simulated RSTAR first moved its FBEM
forward (b) and then lowered its sprawl until reaching a height of 51 mm (c), then it continued to

advance (d) to reach its target.

Figure 7.5 - Startihg from ité initial configuration (a), the simulated RSTAR moved its FBEM forward (b),
then lowered it sprawl (c) and continued advancing forward. (see video [48]).
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7.4 Climbing on Top of an Obstacle

The RSTAR was trained to climb from the ground as in Figure 7.6 (a) to the top of the step
as in Figure 7.6 (f). Given the fact that the obstacle was substantially higher than the radius of
the wheels, this use case was complex (even for experienced human operators). It required more
complex dynamic maneuvers relative to the previous two use cases and its solution required more

actions to perform. In order to reduce the learning time and ensure solution convergence,

the learning process was divided into two parts. In the first part, the agent was initially placed
with its wheels on the tip of the step (Figure 7.6 (d)) and had to learn how to finish climbing as
illustrated in Figure 7.6 (d)-(f). After the convergence of the first part, the Q values were saved
and were set to be the initial values of the second learning part (the random action factor ¢ was
reset to 0.6).

Thus, at the start of the second learning part, the robot already knew how to climb from d to
f. In the second learning part, the agent learned how to start climbing from the ground (a) until it
placed its wheels at the tip of the step (c). Together with the first learning part, the robot

successfully learned how to fully climb over the step starting from the ground.

. % 2‘;& - - . ~
Figure 7.6 - The RSTAR climbing on top of an obstacle. Starting in (a), the robot moved its COM backward
(b) to pitch upwards (c). Then it moved its COM forward (d) and lowered it (e) to finish climbing (f). (see
video [48])
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The algorithm produced multiple solutions to climb over the obstacle, with a range of 24 to

27 actions. The difference between the different solutions is analyzed in Section (IV.E).

Figure 7.6 illustrates how the simulated RSTAR climbed over a step obstacle. The step was
50 mm high compared to the 58 mm diameter of the RSTAR’s wheels. Starting in (a), the
simulated robot moved its COM backward using its FBEM (b) and advanced forward to pitch
upwards and place its front wheels on the edge of the obstacle (c). Note e that dynamically,
moving the COM was essential to allow pitching upwards. After placing its front wheels and
leaning on the step, it sprawled down to lower it COM (d) and then advanced its COM forward
using the FBEM (e). Both actions were also critical to climbing, since otherwise the robot would
pitch on its back when it attempted to advance forward. The robot continued advancing using its

wheels to finish climbing over the obstacle (f). (See video [48]).

7.5 Solution Suitability for Untrained Obstacle Sizes

To examine the level of compatibility of the solutions to obstacle size variation, we tested
the learned solutions with obstacles of different sizes (Table 2). To squeeze through a channel,
the solution learned for the 180 mm wide channel emerged as suitable for narrower channels up
to 164 mm wide. For ducking underneath an obstacle, the solution for a clearance of 55 mm was
appropriate for a 51 mm clearance. To climb over an obstacle, the solution with the smallest
number of actions (24) was only suitable for climbing over the obstacle it was trained on (50
mm). However, solutions with more actions were more versatile. Two solutions with 26 and 27

actions allowed the robot to climb on top of obstacles that were 51 and even 55 mm high.

Table 2 - Compatibility of the simulation results.

Squeezing through a 180 mm channel. 17 164 mm and wider

Ducking underneath a 55 mm opening. 14 51 mm and higher
24 Up to 50 mm

Climbing over a 50 mm obstacle. 26 Up to 51 mm
27 Up to 55 mm
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7.6 Outperforming Human Experts

To estimate the quality of the learning process, we compared the algorithm’s results to
human solutions. This comparison was conducted for the most challenging case of climbing over
a step. Human solutions were composed from two groups of six M.Sc. students from the Bio-
Inspired and Medical Robotics Lab., who are familiar with the physical RSTAR robot and its
kinematics. Both groups were asked to solve the climbing use case using the simulation. Each
student was given an explanation of the different action possibilities and then was allotted one
full hour to find a solution. The students worked separately and were not allowed to work with
each other.

The first group composed a solution by listing a sequence of actions to perform, the students
were told how many actions the simulation needed (24) but not the action set. The students in the
second group controlled the RSTAR using a joystick and their performance was recorded in terms

of motors actuation. The results of the second group are presented in Figure 7.7 - Figure 7.9.
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Figure 7.7 — Rotation of the RSTAR wheels in the solutions of the second group compared to the algorithm.
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Figure 7.9- The change of the sprawl angle in the solutions of the second group compared to the algorithm

Interestingly, and surprisingly at least to the authors of this manuscript, the Q learning
algorithm outperformed all the “human experts” in both groups. In the first group, none of the
students was able to find a solution with a lesser number of actions. Two students were not able
to find a climbing solution at all, while four others found solutions ranging from 25 to 28 actions
compared to the Q learning solution of 24 actions. In the second group, all the students succeeded
to climb over the step using the joystick and two students even succeeded to climb without
changing the sprawl mechanism but their total solutions demanded more actuation of the FBEM
and driving motors as presented in Figure 7.7- Figure 7.9. Table 111 summarize the results of the

second group compared to the algorithm.

Table 3 - Comparison between the algorithm result to human solutions.

Algorithm 7.8 69.8 159.7 5,039
Average 115 41.9 511.9 14,525

Humans Standard
deviation 2.2 56.9 211.8 5,283
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8 Hardware Implementation and Validation

This section presents the implementation of algorithm’s results on an actual RSTAR
prototype. In each experiment, the initial conditions of the RSTAR (position and configuration)
and the obstacle’s geometric properties were (nearly) identical to the learned dimensions. In each
case, a sequence of actions was uploaded to the RSTAR’s control system. The uploaded sequence
was the set learned using the Q learning algorithm. To squeeze through a channel the robot
reduced its width and advanced between the two walls (Figure 8.1). The robot also successfully
lowered its body and ducked underneath the obstacle (Figure 8.2). In both cases, the robot

successfully performed its task in the physical environment as of the first attempt.

Figure 8.1 - RSTAR successfully reduced its width (b) and crawled between two walls 18 cm apart (c)-(d).
(See video [48]).

Figure 8.2 - RSTAR lowered its body and crawled underneath an obstacle 5.5 cm in height. (See video[48]).
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The robot was able to climb over obstacles measuring 45 mm in height but not obstacles 50
mm high using its minimal 24 actions sequence. The 10% difference between the simulation and
the actual robot can be attributed to the minor differences in the definition of the mechanical and
geometrical properties and the accuracy of the solution of the physical engine. Interestingly, the
robot successfully climbed over the 50 mm high obstacles using the 27 action solution (which
according to simulation would allow it to climb over 55 cm steps). This result is consistent with
the Q learning solution which suggested that the 27 actions solution would increase its climbing

capability by 5 mm.

Figure 8.3 - The RSTAR successfully climbs over an obstacle 50 mm in height (27 actions solution).
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9 Conclusions

In this thesis, we presented a novel sprawled tuned reconfigurable robot that can perform
multiple maneuvers without any external modification. The robot is fitted with two unique
mechanisms; a sprawl mechanism that tilts the rotation axis of the legs, and a four bar extension
mechanism (FBEM) that prolongs the distance between the body and the legs and moves the
COM in the fore-aft direction. The sprawl allows the robot to change its dynamics from the lateral
to the sagittal plane and for inverted locomotion. The FBEM extends the length of the legs while
keeping them parallel to the body. Using a combination of these two mechanisms, the robot can
change its width and height three fold (and even more if we use longer extension bars) and move
the COM in both the fore-aft and vertical directions.

The RSTAR can perform multiple original locomotion movements and execute many climbing
maneuvers thus outperforming our previously designed STAR robot. The RSTAR can perform a
unique turtle locomotion gait which allows the robot to crawl over extremely soft surfaces such
as thick mud or sand where the wheels would get entrenched. The turtle gait can also be used to
climb over obstacles whose height is greater than the diameter of its spoke wheels. By
extending/narrowing its width the robot is capable of crawling vertically in a tube or a canal by

applying pressure to the walls.

The RSTAR can also flip its body upside down by changing the position of its COM. This
feature can be used to decrease its cost of transport and reduce oscillations by fitting its legs with
regular wheels on one side for running over smooth surfaces and fitting spoke legs on the other

side for running over unstructured terrains.

In addition to the mechanical design, we also applied a Q learning algorithm in order to learn
to overcome autonomously three typical obstacle use cases. These included squeezing through a
channel, ducking underneath an obstacle, and climbing over an obstacle (which requires a very
skilled operator). To simplify the process, safeguard the robot and reduce the learning time, all
the learning took place in a simulated environment using Unity software. The algorithm found

solutions to all the use cases.

Results were implemented on the physical RSTAR. The robot was placed in an environment
reminiscent of the simulated environment and preprogrammed to perform the learned set of
actions. With no human intervention, the RSTAR successfully overcame all three obstacles on

its first attempts.

-52-



The learned solutions are also suitable for similar obstacles with different geometries. For
instance, the solution of squeezing through a channel was developed for a width of 180 mm but
is also suitable for a narrower channel 164 mm wide. The same sequence for climbing over a 50
mm obstacle is also compatible for steps with lower heights. To climb over an obstacle, the
algorithm provided multiple solutions with different numbers of actions. An analysis of the
solutions showed that some of the solutions with a larger number of actions were suitable for
climbing over higher obstacles. For example, the simulated robot climbed over a 50 mm step
with 24 actions, and over a 55 mm step with 27 actions. This result was also validated in

experiments.

The climbing use case was especially challenging. Although the algorithm had no prior
knowledge of the kinematics of RSTAR or the obstacles, it generated mechanically intelligent
results for climbing on the step. The result included moving the COM backward and then forward
and changing its height to overcome the obstacle. This solution outperformed other solutions

devised by two groups of human experts.

Based on these encouraging results, future work will focus on the inclusion of perception

capabilities in the learning setup to learn action sequences directly based on perceptual input.
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11 Appendices

[A] 3D Printer - Objet Connex3

http://www.stratasys.com/3d-printers/objet-350-500-connex3

Stratasys

FOR A 30 WORLD

Driven by powerful

PolyJet™ technology

Proven PolyJet 3D Printing is famous
for smooth surfaces, fine precision and
diverse material properties. It works a bit
like inkjet document printing, but instead
of jetting drops of ink onto paper, the

Objet350 and
Objetb00 Connex3

System Specifications

Model Materials

Rigid Opaque: VeroPureWhite™, VeroWhitePlus™, VeroBlackPlus™, VeroGray™, Vero-
Blue™, VeroCyan'™, VeroMagenta™, VeroYellow™
Rubber-like: TangoPlus™, Tang

Transparent: VeroClear™ and RGD720

Simulated Polypropylene: Rigur™ and Durus™
High Temperature

Bio-compatible

print head jets microscopic layers of
liquid photopolymer onto a build tray
and instantly cures them with UV light.

Digital Materials

Digital ABS™ and Digital ABS2™ in ivory and green

Hundreds of vibrant, repeatable colors in opaque and translucent
Rubber-like blends in a range of Shore A values and color
Simulated polypropylene materials with improved heat resistance

The fine layers build up to create a
prototype or production part.

Material Options

Over 1,000

Maximum Materials per Part

82

Along with the selected model material,
the 3D printer features two support
material options: SUP705, removed with

Support Material

SUP705 (WaterJet removable)

SUP706 (soluble)

a WaterJet; and SUP706, which is easily
removed and soluble for automated

Maximum Build Size (XYZ)

Objet350: 342 x 342 x 200 mm (13.4x 13.4x7.9in.)
Obijet500: 490 x 390 x 200 mm (19.3 x 15.4 x 7.9 in.)

post-processing and increased
geometric freedom to print complex and

System Size and Weight

1400 x 1260 x 1100 mm (55.1 x 49.6 x 43.4 in.); 430 kg (948 Ibs.)
Material Cabinet: 330 x 1170 x 640 mm (13 x 46.1 x 26.2 in.); 76 kg (168 Ibs.)

delicate features and small cavities.

Resolution

X-axis: 600 dpi; Y-axis: 600 dpi; Z-axis: 1600 dpi

With its astonishingly realistic aesthetics

Accuracy

20-85 microns for features below 50 mm; up to 200 microns for full model size

and ability to deliver special properties

Minimum Layer Thickness

Horizontal build layers as fine as 16 microns (.0006 in.)

such as transparency, flexibility and
even bio-compatibility, PolyJet 3D
Printing offers a competitive edge

in consumer products prototyping,

Build Modes Digital Material: 30-micron (.001 in.) resolution
High Quality: 16-micron (.0006 in.) resolution
High Speed: 30-micron (.001 in.) resolution

Software Objet Studio intuitive 3D printing software

precision tooling and specialized
production parts.

Workstation Compatibility

Windows 7/ Windows 8

Network Connectivity

LAN - TCP/IP

Operating Conditions

Temperature 18-25°C (64-77°F); relative humidity 30-70% (non-condensing)

Power Requirements

110-240 VAC 50/60Hz; 1.5 kW single phase

Regulatory Compliance

CE,FCC

-57 -


http://www.stratasys.com/3d-printers/objet-350-500-connex3

[B] Printing Material — VeroWhitePlus

https://store.stratasys.com/stratasysstorefront/stratasys/en/Materials-%26-Service-
Consumables/NA/Flavors/VeroWhitePlus%2C-RGD835/p/P034

POLYJET MATERIALS DATASHEET

RIGID OPAQUE MATERIALS

'ER U Vi E al VEROCG ! vV OBLA ’LUS RG 'EROWHITEPLUS

ASTM METRIC  UNITS IMPERIAL
: Tensile strength D-638-03 MPa 50-85 psi 7250-9450
Elongation at break D-638-05 % 10-25 % 10-25
‘ Modulus of elasticity D-638-04 MPa 2000-3000 | psi 290,000-435,000
» Flexural Strength D-790-03 MPa 75-110 psi 11000-16000
.L Flexural Modulus D-7980-04 MPa 2200-3200 | psi 320,000-465,000
[HDT, °C @ 0.45MPa D-648-06 C 45-50 F 113-122 |
| HDT, °C @ 1.82MPa D-648-07 °C 45-50 °F 113-122
. Izod Notched Impact D-256-08 J/m 20-30 ft Io/inch | 0.375-0.562
| Water Absorption D-570-98 24hr | % 1.1-1.5 % 1.1-1.5
Ta DMA, E» °’C 52-54 °F 126-129
" Shore Hardness (D) Scale D Scale 0 |83-86 Scale D | 83-86
Rockwell Hardness Scale M ScaleM |73-76 Scale M | 73-76
| Polymerized density D792 gfemd | 1.17-1.18
| Ash content VeroGray, usP281 % 0.23-0.26 % 0.23-0.26
VeroWhitePlus
| Ash content VeroBlackPlus usp2s1 % 0.01-0.02 % 0.01-0.02
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[C] 3D Printer - FORMLABS FORM 2

https://formlabs.com/3d-printers/form-2/

Technical Specifications

PRINTER PRINTING PROPERTIES
Price $3499 Technology Stereolithography (SLA)
DI . 35x33x52cm Peel Mechanism Sliding peel process
el 135x13x205in with wiper
Weight 13 kg /28.5 Ibs Resin Fill System Automated cartridge system
o ting T " Autoheats to 35° C or 95° F Build Volume 145 x 145 x 175 mm
perating lemperature oo ¢ heating Resin Tank 57x57x6.9in
100-240 V Layer Thickness 25, 50,100, 200 microns
Power Requirements 1.5 A 50/60 Hz (Axis Resolution) 0.001, 0.002, 0.004, 0.008 in.
65 W
Laser Spot Size 140 microns
EN 60825-1:2007 certified (FWHM) 0.0055 inches
Laser Specifications Class:laser; product
405 nm violet laser Supports Auto-generated
250 mW laser Easily removable
Connectivity Wi-Fi, Ethernet, and USB
Printer Control Interactive touch screen FINISHING KIT
Includes
PREFORM SOFTWARE
- Finishing tray - Flush cutters
System Requirements  Windows 7 and up . Scraper . Tweezers
Mac OS X 107 and up .Pre and post- . Disposable
rinse tubs Nitrile gloves
File Type .STL or .OBJ - Rinse basket - Removal tool
- Squeeze bottle - Removal jig

ORDER TODAY
formlabs.com/store

LEARN MORE
formlabs.com/dentistry

QUESTIONS?
hello@formlabs.com
+1 617 702 8476

8 FORM 2: 3D Printing for Digital Dentistry
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[D] Printing Material - Form Resins

https://archive-media.formlabs.com/upload/XL-DataSheet.pdf

STANDARD RESINS
CLEAR FLGPCLO4 | WHITE FLGPWHO4 | GREY FLGPGR04 | BLACK FLGPBKO4 | COLOR BASE FLGPCBO1

METRIC' IMPERIAL’ METHOD
Green? Post-Cured? Green? Post-Cured?

Tensile Properties

Ultimate Tensile Strength 38 MPa 65 MPa 5510 psi 9380 psi ASTM D 638-10

Tensile Modulus 16 GPa 28GPa 234 ksi 402 ksi ASTM D 638-10

Elongation at Break 12 % 6% 12% 6% ASTM D 638-10
Flexural Properties

Flexural Modulus 13 GPa 2.2GPa 181 ksi 0.5 ksi ASTM C 790-10
Impact Properties

Notched IZOD 16 J/m 25 Jim 0.3 ft-Ibffin 0.46 ft-Ibf/in ASTM D 256-10
Thermal Properties

Heat Deflection Temp. @ 1.8 MPa 427°C 58.4°C 108.8°F 1371°F ASTM D 648-07

Heat Deflection Temp. @ 0.45 MPa 497 °C F31°C 1215°F 1636°F ASTM D 648-07

DENTAL MODEL

FLDMBEO2
METRIC! IMPERIAL' METHOD
Green? Post-Cured? Green? Post-Cured®

Tensile Properties

Tensile Strength at Yield 33 MPa 61 MPa 4800 psi 8820 psi ASTM D 638-14

Tensile Modulus 10 GPa 27 GPa 230 ksi 397 ksi ASTM D 638-14

Elongation at Failure 25% 5% 25% 5% ASTM D 638-14
Flexural Properties

Flexural Modulus 0.95 GPa 25 GPa 138 ksi 365 ksi ASTM D 790-15

Flexural Strength at 5% Strain 339 MPa 95.8 MPa 4910 psi 13800 psi ASTM D 790-15
Impact Properties

Notched IZ0OD 27 Jim 33 Jim 0.5 fi-Ibffin 0.6 ft-Ibflin ASTM D256-10
Thermal Properties

Heat Deflection Temp. @ 1.8 MPa 328°C 459°C S11°F N46°F ASTM D 648-16

Heat Deflection Temp. @ 0.45 MPa 40.4°C 485°C 1047 °F N83°F ASTM D 648-16

GREY PRO RESIN

FLPRGRO1
METRIC® IMPERIAL' METHOD
Green? Post-Cured? Green? Post-Cured?

Tensile Properties

Ultimate Tensile Strength 33 MPa &1 MPa 5076 psl 8876 psl ASTM D 638-14

Tensile Modulus 1.4 GPa 26 GPa 203 ksl 377 ksl ASTM D 638-14

Elongation at Break 3% 3% 3% 13% ASTM D 638-14
Flexural Properties

Flexural Stress at 5% Strain 39 MPa 86 MPa 5598 psl 12400 psi ASTM D 790-15

Flexural Modulus 09 GPa 2.2 GPa 136 ksl 319 ksl ASTM D 790-15
Impact Properties

Notched IZOD not tested 187 Jim not tested 0351 ft-Ibfin ASTM D256-10
Thermal Properties.

Heat Deflection Temp. @& 1.8 MPa not tested 624°C not tested 1443°F ASTM D 648-16

Heat Deflection Temp. @ 0.45 MPa not tested Ti5°C not tested T75°F ASTM D 648-16

E;;?;c;eéfé’; Thermal Expansion nottested | 785pum/mrC | nottested | 434 pinAnsE ASTM E 83113
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[E] 3D Printer — UPBOX

https://www.tiertime.com/up-box-plus/

UP BOX Specifications

Printing Technology MEM (Melted Extrusion Modeling)

Build Volume fg?;gf’f é(.205mm s a8

Print Head Single, Modular for easy replacement.

Z-Resloution 0.1/0.15/0.20 /0.25 /0.30 /0.35 /0.40 mm
SUPDOKINY STICHED gmg:wfc;ipc);ﬁ;t Jgﬁgr:\?g%gyéasy to remove, fine-tunable.
Platform Leveling Fully automatic leveling with integrated leveling probe.
Print Surface Heated bed with perf board

Unterthered Printing Yes

Average Operational Noise 51dB

Advanced Features Door Sensor, Air Filtration, Full-Color LED Bar
Bundled Software UP Software

Compatible File Formats STL, UP3, UPP

Connectivity USB

Operating System WinXP/Nista/7/8, Mac OS

Power adapter 110-240VAC, 50-60Hz, 220W

Chassis Plastic case with metal frame, enclosed

Printer Weight 20KG /44 LB

Printer Dimiension ‘1‘3?55 :23";?;728? L xWixty

Weight with Packaging 30 Kg

Packaging Dimension gg%x fgg’;i 5321{3“ kel
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[F] 3D Printer — Ultimaker 2

https://ultimaker.com/download/7385/UserManual-UM2-v2.1.pdf

Printing

Print technology
Build volume
Layer resolution

Positioning precision
Filament diameter
Nozzle diameter
Print speed

Travel speed

Software
Supplied software
File types
Supported OS

Electrical
AC Input

Connectivity

Physical dimensions
Desktop space
Shipping dimensions
Weight

Shipping weight

Temperature

Ambient operation temperature
Storage temperature

Nozzle operation temperature
Heated bed operation temperature

Sound
Average operational noise

CAUTION: The Ultimaker 2 generate

naker 2 while it is in operation. Always ¢

ck. Allo!

tthe b

ning the

CAUTION: When

able is ¢ ne

CAUTION: Only use t

s high temperatures and has hot moving

tima

from the wall s

supply that ca

Ultimaker =

'
I'm
Ultimaker L n
| e “F
1 AL — .

SPECIFICATIONS

Fused Filament Fabrication

223 mm/223 mm/ 205 mm

Fast: 200 micron (0.2 mm)
Normal: 100 micron (0.1 mm)
High: 60 micron (0.06 mm)
Ulti: 40 micron (0.04 mm)
12.5 micron / 12.5 micron / 5 micron
2.85mm

0.4 mm

30 mm/s - 300 mm/s

30 mm/s - 350 mm/s

Cura - Official Ultimaker Software
STL/ OBJ/ DAE / AMF
Windows / Mac / Linux

100 - 240V

Approx. 1.4 AMPS

50 - 60 Hz

221 Watt max.

Stand-alone SD card printing

357 mm /342 mm /388 mm
400 mm /400 mm / 550 mm
1.2 kg
18.0 kg

15-32°C
0-32°C
180 - 260 °C
50-100°C
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[G] Printing Material — PLA
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SERIES PRINTERS

At the core:

Advanced FDM Technology
Stratasys’ FDM? (fused deposition
modeling) technology works with
engineering-grade thermoplastics

to build strong, long-lasting and
dimensionally stable parts with the
best accuracy and repeatability of
any FDM technology. These parts are
tough enough to be used as advanced
conceptual models, functional
prototypes, manufacturing tools and
production parts.

Meet production demands
FDM systems are as versatile and
durable as the parts they produce.
Advanced FDM 3D Printers boast the
largest build envelopes and material
capacities in their class, delivering
longer, uninterrupted build times,
bigger parts and higher quantities than
other additive manufacturing systems,
delivering high throughput, duty cycles
and utilization rates.

Opening the way for new
possibilities

FDM 3D Printers streamline processes
from design through manufacturing,
reducing costs and eliminating traditional
barriers along the way. Industries can cut
lead times and costs, products turn out
better and get to market faster.

No special facilities needed
FDM 3D Printers are easy to operate
and maintain compared to other
additive fabrication systems because
there are no messy powders or resins
to handle and contain, and no special
venting is required because FDM
systems don't produce noxious fumes,
chemicals or waste.

stratasys

MECHANICAL TEST ENGLISH

PROPERTIES' METHOD ZX AXIS

Tensile ASTM D638 6,580 psi 3,790 psi 45 MPa

Strength, Yield
(Type 1, 0.125",
0.2"/min)

METRIC

26 MPa

Tensile ASTM D638 6,990 psi 3,830 psi 48 MPa
Strength,

Ultimate
(Type 1, 0.125",
0.2"/min)

26 MPa

Tensile ASTM D638 440,730 psi 368,200 psi 3,039 MPa
Modulus
(Type 1, 0.125",
0.2"/min)

2,539 MPa

Elongation ASTM D638 2.5% 1.0% 2.5%
at Break
(Type 1, 0.125",
0.2"/min)

Elongation ASTM D638 1.5% 1.0% 1.5%

at Yield
(Type 1, 0.125",
0.2"/min)

Flexural ASTM D790 12,190 psi 6,570 psi 84 MPa

Strength
(Method 1,
0.05"/min)

45 MPa

Flexural ASTM D790 425,010 psi 358,290 psi 2,930 MPa
Modulus
(Method 1,
0.05"/min)

2,470 MPa

Flexural Strain | ASTM D790 41% 1.9% 41%
at Break

1ZOD impact - | ASTM D256 0.5 ft-Ib/in N/A 27 J/m

notched
(Method A, 23 °C)

N/A

1ZOD impact - | ASTM D256 3.6 ft-Ib/in N/A 192 J/m

unnotched
(Method A, 23 °C)

N/A

THERMAL TEST METHOD ENGLISH

PROPERTIES

Heat Deflection (HDT) ASTM D648 127 °F
@ 66 psi

METRIC

Heat Deflection (HDT) ASTM D648 124 °F
@ 264 psi

Vicat Softening ASTM D1525 129 °F
Temperature (Rate B/50)

Glass Transition DMA (SSYS) 145 °F
Temperature (Tg)

63 °C

Coefficient of Thermal ASTM E831 56x10°% pin/(in-"F)
Expansion (flow)

101x10°% pm/(m-°C)

Coefficient of Thermal ASTM E831 57x10% pin/(in-"F)
Expansion (xflow)

102x10 um/(m-°C)
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