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Abstract 

This thesis presents the Rising STAR (RSTAR) a newly developed crawling robot capable 

of reconfiguring its shape and moving the position of its center of mass. RSTAR belongs to the 

family of the STAR robots with similar sprawling capabilities allowing it to run in a planar 

configuration, either upright or inverted and change its mechanics from the lateral to the sagittal 

planes. The RSTAR is also fitted with four bar extension mechanism (FBEM) allowing it to 

extend the distance between its body and legs.  

This combination of sprawling and extension mechanisms enables RSTAR to overcome 

extremely challenging obstacles, crawl over flexible and slippery surfaces and even climb 

vertically in a tube or between two walls. The robot can extend its height and width three-fold 

and move its center of mass both in the fore-aft and vertical directions.  

We first describe a kinematic model and the dynamical analysis conducted to improve the 

design of the robot and evaluate its strength and motor requirements. Based on this analysis, we 

designed and built a 3D printed prototype and experimentally tested it. The robot can run upside 

down and climb over obstacles that are even higher than the diameter of its wheeled legs using a 

turtle-like gait. To increase its mobility, RSTAR can be fitted with wheels or spoked legs or a 

combination of the two, giving it superior ability to engage different terrains. 

However, defining trajectories that utilize the robot’s capabilities is difficult, especially 

when complex maneuvers are required. Here, we show how the use of reinforcement learning 

can serve to determine optimal strategies to overcome three typical obstacles: squeezing through 

two adjacent obstacles, ducking underneath an obstacle and climbing over an obstacle. We detail 

the implementation of the Q learning algorithm in a simulation environment with a physical 

engine (UNITYTM) for learning a feasible path in a minimum number of steps.  

We compare the trajectory found by the algorithm to trajectories devised by six human 

experts for the RSTAR simulation. Our results show that the algorithm was able to find a feasible 

trajectory in all cases. Moreover, the trajectories found by the algorithm were shorter than the 

trajectories determined by the human experts. Finally, we present experiments where the physical 

RSTAR robot can overcome different obstacles using the trajectories found in the simulation by 

the Q Learning algorithm (see attached videos [24][48]). 

Based on this research we published two papers: 

1. "Rising STAR: A Highly Reconfigurable Sprawl Tuned Robot," in IEEE Robotics and Automation Letters. 

2. “Beyond Human Performance: Overcoming Obstacles with a Reconfigurable Robot Using Reinforcement 

Learning” submitted for IEEE Access. 
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1 Introduction 

Miniature search and rescue ground robots that can be used in disaster areas have numerous 

advantages. There are several examples of palm sized search and rescue ground robots that can 

crawl, run and climb over obstacles.  These include the Mini-Whegs[1], Dyna-RoACH [2], 

DASH [3], iSprawl [4], OctoRoACH [5], RHex [6], Sprawlita [7] , STAR [8], 1STAR [9] and 

TAYLRoACH [10]. They can be deployed in large numbers to scout large areas while keeping 

operators out of harm’s way. Their low weight and small size are important for efficiently 

performing many tasks.  

Designing minimally actuated mechanisms is imperative at this scale given the inherent 

difficulty of implementing controlled active leg joints. Passive mechanical elements such as using 

springy legs and damping systems to achieve high speed while maintaining stability such as 

found in insects have been investigated by multiple research groups [11][12]. They have 

developed crawling models such as the spring loaded inverted pendulum model (SLIP) [13]-[15], 

which describes the locomotion of insects in the sagittal plane and in-plane (lateral) models of 

locomotion [16]-[19]. In parallel, multiple attempts have been made to produce robots with 

reconfigurable kinematics to overcome obstacles [20]-[22]. 

In a previous work [8], we presented a sprawl tuned autonomous robot (STAR) which can 

actively adjust its sprawl angle to transform its dynamics between the lateral and the sagittal 

planes through the use of a variable sprawl angle. STAR exhibited many unique capabilities such 

as moving on varying terrain surfaces and traversing obstacles. The RSTAR robot presented in 

this thesis (Figure 1.1) belongs to the family of STAR robots [8][9][23]; i.e., it can also vary its 

sprawl angle. However, thanks to its four bar extension mechanism (FBEM), this design has 

superior capabilities compared to our previously designed STAR in overcoming obstacles by 

reconfiguring its mechanics, and moving its center of mass (COM).  

At low sprawl angles, the contact angle of the foot with the surface is reduced, which 

minimizes collisions and reduces the uncontrolled vertical dynamics, resulting in smooth 

operation of the robot at all speeds. The sprawl angle can also be used to change the width and 

height of the robot so it can squeeze itself in between or under obstacles and ride over them. The 

characteristic length of the robot is 15 cm and has a weight of 308 grams including the battery 

and control board for either human control or autonomous operation. To improve stability and 

energy consumption, the robot is fitted with radially spoked legs or wheels or both (on each side). 
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Figure 1.1 - The Rising STAR (RSTAR) robot is a highly reconfigurable robot for search and rescue proposes 

(see video [24]). The sprawl mechanism allows the robot to move in and out of the plane whereas the four bar 

extension mechanism (FBEM) extends the arms holding the legs and relocates the center of mass. 

 

Although non-orthodox mechanisms can provide advanced solutions to various 

maneuverability needs, nevertheless executing trajectories involving these capabilities remains a 

complex problem. Here, we also describe a way to overcome this problem based on autonomous 

learning. Teleoperating a reconfigurable robot like the RSTAR requires a highly trained operator 

since different mechanisms often need simultaneous actuation.  

It is preferable to reduce human intervention by facilitating autonomous robot operations. 

One way to increase robot autonomy is to teach the robot to autonomously perform common 

operations. In the case of off-road missions these include climbing over obstacles, and maneuvers 

around or underneath obstacles. Machine learning, and specifically reinforcement learning (RL), 

can be used to teach the robot how to perform such maneuvers offline by repetitively performing 

experiments in a physical or simulated environment.  

Considerable efforts have been devoted over the years to devising methods for the 

autonomous learning of robotic motion trajectories. One of the most popular is reinforcement 

learning (RL)[27][29]. However, most researchers have concentrated on devising ways for the 

robot to learn how to avoid obstacles [30][34]. For example, Lee et al. [30] applied RL to navigate 

between obstacles with a quadruped robot. Similarly, Zhang et al. [31] use deep RL to address 

navigation issues faced in cluttered environments on  previously unknown rough terrain.   

Overcoming an obstacle (e.g., climbing over, or ducking under) rather than avoiding it, can 

lead to more efficient operations, and in some cases be critical for mission success. Successful 

operation typically requires a combination of kinematic and dynamic maneuvers. The motion 

plan must provide a feasible path as a function of the robot’s dynamic capabilities. The 

autonomous learning of such trajectories requires taking complex dynamic considerations into 
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account. It must also be done in setups that preserve the safety of the robot during the learning 

process. To date, very few projects have successfully met this challenge. Notable exceptions 

include M. Totani et al. [35] who used RL to learn a step climbing method for a crawler-type 

rescue robot. Dutta et al. [36] used multi-agent learning for locomotion learning in modular self-

reconfigurable robots (MSRs). 

One of the main drawbacks to RL is that learning times may be prohibitively long, when 

problem dimensionality is high. In robotic systems problem dimensionality grows with the 

number of controlled dimensions (e.g., actuators).  Due to the need for multiple learning episodes 

and due to potential hazards to the robotic system during leaning epochs, many researchers opt 

to use simulation platforms for the leaning process. A major challenge in such cases is reliably 

ensuring the transferability of the learning from the simulation to the physical environment.  

Many systems that apply RL have a very high degree of interaction between their multiple 

degrees of mobility and the environment, e.g., multi-rotor drones [37], where complex 

aerodynamic effects are caused by interactions between multi-rotor airflow and the environment. 

Other systems require intricate parameter tuning, e.g., underactuated legged robots [38][39] that 

are required to perform highly dynamic motion involving balance. In such cases the feasible 

solutions require very accurate determination. This necessitates searching for solution in 

continuous action spaces and this strains the transferability of simulation results. Much effort has 

been devoted in recent years for developing efficient RL algorithms suitable for such continuous 

action environments, that are not sensitive to hyperparameters, that require a manageable amount 

of leaning sequences, and for which results are transferable from simulated to physical 

environments [37]-[40].           

The unique design of the RSTAR robot affords very high maneuverability with a relatively 

small number of actuators (4). This makes the solution search space manageable. Moreover, the 

inherent stability of the RSTAR and its decoupled degrees of freedom (the different mechanisms 

and wheels can be actuated almost independently), facilitates relatively large tolerances to the 

feasible control policies. This facilitates using the much simpler discrete RL methods. Moreover, 

it increases the robustness of the solution to small discrepancies in the modeled dynamics, and 

therefore, increases the transferability of the solutions to the physical world. Still, as motion 

dynamics are key to mission success, a physical simulation engine is required for meaningful 

learning. In addition to simplifying the learning process, discretizing the action space simplifies 
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the required run-time control, as the polices can be represented as discrete sequences of required 

actions. 

In this thesis, we focus our research on applying RL for autonomously learning how to 

exploit RSTAR’s advanced reconfiguration capabilities for overcoming obstacles by climbing 

over ducking underneath and squeezing through. We apply the Q-learning algorithm, an off-

policy, temporal differencing model free RL algorithm [29]. A model free algorithm was selected 

because the formulation of the dynamic equations of RSTAR is complex and prone to error which 

may can impede learning. We opted to use the algorithm with a discrete state and action space 

rather than applying deep RL methods (e.g., Deep-Q). Since motion dynamics is key to mission 

success, learning must be done in an environment reminiscent to the physical environment to be 

meaningful. Therefore, at the very least, a physical simulation engine is required. In such 

environments learning epochs are indeed shorter than in physical environments, but still 

relatively time consuming and thus limited. This makes the application of deep-RL methods 

costly. 

This thesis is divided into two main parts: a mechanical part and a learning part. In the first 

part (chapters 3-5), the mechanical design of the RSTAR is presented in Chapter 3. The 

kinematics and dynamics of the robot are described in Chapter 4 and the robot’s capabilities are 

depicted in series of experiments in Chapter 5. In the second part (chapters 6-8) the virtual 

environment used for the learning process and the learning algorithm itself are explained in detail 

(Chapter 6). The results of the learning process are presented in Chapter 7 and in Chapter 8  the 

results are implemented on the real RSTAR in set of experiments.  
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2 Background 

This section reviews some theoretical background relevant for this research including review 

about search and rescue robots and explanation about Q learning algorithm.  

 

 Reconfigure Abilities in The Use of Search and Rescue Robots 

Miniature crawling robots have been developed for off- road tasks such as search and rescue. 

Their small size, low weight and high navigability enable their deployment in large numbers to 

quickly inspect a large area. At the same time, however, small mobile robots are limited in their 

ability to traverse on varying terrains and climb over obstacles because the objects around them 

become relatively larger. 

This brief overview provides examples from the literature on search and rescue robots 

developed to adapt to overcome obstacles. Some of these robots can alternate between leg and 

wheel modes to take advantage of both systems whereas others are designed with reconfigurable 

kinematics to overcome obstacles. 

Wheel Transformer, a wheel-leg hybrid robot [20], utilizes a transformable wheel that 

combines the advantages of both circular and legged wheels. When it encounters an obstacle, the 

wheel transforms into a legged wheel with three legs (Figure 2.1) and can climb over steps higher 

than  the wheel’s radius. The switch  from the circular to the legged configuration implements  

the frictional force between the wheel and obstacle without additional actuators. 

 
Figure 2.1 - a wheel-leg hybrid robot, combines circular and legged wheels. 
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RiSE (Robots in Scansorial Environments) [21] is a legged robot capable of locomotion on 

both the ground and a variety of vertical building surfaces (Figure 2.2.a) including brick, stucco, 

and crushed stone. It climbs quietly without suction, magnets, or adhesives. RiSE has a range of 

motion of 190 degrees in its  “wing" degrees of freedom (Figure 2.2.b), which  allows the robot 

to walk with its legs underneath its body and climb with its legs in a sprawl position. 

 
Figure 2.2 – The RiSE robot, adjusting the angle between it body and legs it is capable to crawl on the ground 

and on a variety of vertical building surfaces. 

 

PUFFER (Pop-Up Flat Folding Explorer Robot) [22] is a palm-sized, origami-inspired 

wheeled rover designed to accompany larger spacecraft on future missions, and serve as a 

mobility enhancement to provide access to new terrains. PUFFER rovers are constructed with a 

collapsible “pop-up” chassis that folds into a compact volume for storage, as shown in  Figure 

2.3. PUFFER’s small size and folding chassis also provide mobility benefits that enable PUFFER 

to maneuver in extreme terrains inaccessible to the parent. This partial collapsibility can also be 

used to lower the platform’s center of gravity when climbing steep inclines. 

 
Figure 2.3 - PUFFER prototype, expanded (left) and folded (right) configurations. 
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In a previous work we presented the STAR (Sprawl Tuned Autonomous Robot) [8],[10] 

which is the original version of the RSTAR. The STAR (Figure 2.4.a) possesses high-mobility 

capabilities combining the benefits of wheeled and legged locomotion. It can actively adjust its 

sprawl angle (Figure 2.4.b-d) to transform its dynamics between the lateral and the sagittal planes 

through the use of a variable sprawl angle. In particular, large sprawl angles were found to be 

efficient on uneven terrain, whereas the low sprawl posture is better suited for traveling over 

smooth surfaces. The sprawl angle can also be used to change the width and height of the robot 

so it can squeeze itself in between or under obstacles and ride over them. STAR exhibited many 

unique capabilities such as moving on varying terrain surfaces and traversing obstacles. 

 
Figure 2.4 – The STAR robot, the original version of the RSTAR robot. It can change its sprawl angle of its 

legs from nearly flat posture to vertically oriented legs. 

 

The RSTAR can also change its sprawl angle. However, by adding its four bar extension 

mechanism (FBEM), it has modified capabilities with respect to overcoming obstacles compared 

to the original design of the STAR. The design of the RSTAR will be presented in more details 

in Chapter 3. 
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 Q Learning Algorithm 

This section reviews the Q learning algorithm, we used for learning optimal strategies to 

overcome obstacles.  For a better understanding of the Q learning algorithm, this overview  also 

includes an example of the algorithm’s implementation on a simple cube (Figure 2.5). The goal 

is to get the cube to the target by implementing the least number of actions and to do so while 

complying with certain rules of physical behavior; i.e., the cube can only move upwards when it 

is positioned in front of the step. 

 
Figure 2.5 – Cube learning to navigate in space toward the target using a Q learning algorithm. 

 

2.2.1 Basic Principles of Q Learning Algorithm 

Q learning is a form of model-free reinforcement learning (RL), which is a type of machine 

learning. RL algorithms [41] are based on a Markov Decision Process (MDP), in which the 

probability to reach a given state depends solely  on the previous state and the action that was 

taken. Throughout the learning process the algorithm learns a policy, 𝜋, that maps states to 

actions.  

In the Q-learning algorithm [42], an action-value function Q𝜋(s, a), also called Q function, 

is estimated over the learning process and stored in a tabular representation. Each state-action 

pair has a “Q value” that represents the expected sum of rewards the agent expects to receive by 

executing action, a, from state, s, following   policy 𝜋. The goal of the algorithm is to learn the 

optimal policy that maximizes the total expected rewards. 

The algorithm is based on repeating iterations of learning and experience  gathered by 

receiving reward feedback for taking actions. The Q-learning algorithm is guaranteed to converge 

to the optimal Q function under certain  conditions [43]. After it converges, the optimal Q 

function can be used to determine the optimal action to take in a given state. 
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The main components of  Q learning algorithm (see Figure 2.6) are: 

 The algorithm itself, also called the agent. 

 The environment of the problem, divided into range of possible states. 

 Actions the agent can take when interacting  with the environment.  

 The reward function, which defines the reward for taking action a from state s. 

 The Q function that represents the expected sum of rewards for each action-state pair. 

The learning process is iterative, such that at each iteration the agent takes the following steps:  

 The agent observes its current state, 𝑠𝑛, in the environment. 

 The agent selects and performs an action, 𝑎𝑛. 

 The subsequent state, 𝑠𝑛+1, is observed. 

 Reward, 𝑟𝑛, is received from the reward policy. 

 The algorithm updates the Q value of the state-action pair using the received reward. 

 
Figure 2.6 – The interaction of the main components in the Q Learning algorithm. 

 

As long as the number of iterations increases, performance improves. By repeating enough 

iterations will allow the agent to determine the optimal policy for the full range of possible states. 

 

2.2.2 States Determination 

The environment is divided into discrete states, where each state can be a composite of 

multiple components that define the agent in the environment such as position, orientation, etc. 

The discretization of the environment constitutes a tradeoff between accuracy and the complexity 

of the learning process. On one hand, dividing the environment into very small increments will 
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improve the accuracy of the definitions for the agent with respect to its surroundings, but on the 

other will increase the number of states the algorithm has to learn and hence increase the learning 

time.  

In the cube example (Figure 2.5), the state is determined to have two position components: an 

altitude position, [𝑦], and a position on the  2D plane, [𝑝]. According to the state determination, 

the discretization of the environment takes place as follows: the altitude dimension is divided 

into  two possible heights: floor height (𝑦 = 1) and step height (𝑦 = 2), and each of the two 

planes is divided into  (𝑛𝑥𝑚) squares as illustrated in Figure 2.7. This division enables the agent’s 

state, s, to be defined by two parameters: altitude, y, and position, p, so: 𝑠 = [𝑦][𝑝]. 

 
Figure 2.7 – State determination for the cube example, where the state is defined by the plane altitude and 

by its position on the plane. Accordingly, the environment is  divided into  discrete states that define the 

location of the cube on it. 

 

2.2.3 Action Possibilities 

Actions transfer the agent from state to state. Actions are associated with the actions the 

agent can perform to reach the target.  In the cube example, the cube can move in five possible 

directions: forward, backward, left, right and upwards. 

 

2.2.4 Q Function 

The Q function contains values for each action-state pair. Each value Q(a, s) estimates the 

sum of rewards the agent is expected to receive for taking action, a, from state, s. In cases of 

discrete problems, the Q function can be presented as a Q matrix, where the number of existing 

matrix values is a multiplication of the number of actions by the number of states.  

The Initialization of the Q matrix influences  the learning time of the algorithm [44] 

considerably and affects the learning policy at the beginning of the learning process. By setting 
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even initial conditions, all states are rated equally and the algorithm has to learn all the possible 

states to converge to a solution. Uneven initial conditions can shorten the learning time by 

distinguishing between attractive states and states that make no contribution to reaching the 

target. Attractive states are initialized with high values relative the other states. 

In the cube example, the Q matrix is a 3D matrix (action dimensions and a 2D state 

dimension), so that each Q value is defined by: Q = [a][y][p] (see Figure 2.8). Each state s =

[y][p], is associated with five different values, where each value is related to another action taken 

from state s.  

 
Figure 2.8 –The Q matrix for the cube example, where each cell in the matrix contains the expected sum of 

rewards for taking action, a, from plane position, p, at altitude y. 

 

2.2.5 Exploitation policy vs. Exploration policy 

When selecting an action to perform, the agent needs to resolve the exploitation-exploration 

dilemma. In case of exploitation, the agent exploits its current knowledge and selects the action 

with the highest Q value (greedy action). In the case of exploration, it randomly selects one non-

greedy action and improves its estimate of the non-greedy action values.  

Selecting actions solely by exploitation usually results in finding and preferring local optima 

rather than the global goal. Exploration avoids this problem by exploring new states and actions 

even though the agent is more likely to continue to randomly explore areas that are not of interest 

and can increase the learning time. Therefore, the policy adopted while learning must be chosen 

to balance these concerns and promote efficient convergence of the algorithm.  

One possible way to combine exploitation and exploration is by using the 𝜖-greedy policy. 

In this policy the agent starts exploring from the outset with high probability of taking random 

actions, such that as the learning process proceeds, the probability for exploration decreases and 
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actions are more likely to be selected by exploitation (greedy policy). Given that 𝜖 represents the 

probability for taking random actions we have: 

 

 

 

 









n a n

n i

if   probability

a max Q a ,s

else

a random a

decrease

 (1) 

 

2.2.6 Reward Function 

The reward function determines the immediate reward after executing an action from a given 

state. The reward function plays an important role  in RL algorithms [44], since a reward function 

tailored to the problem can accelerate the convergence rate whereas inappropriate rewards can 

increase the learning time and even cause the algorithm to diverge.  

For this reason, several methods have been proposed for designing the reward function. In 

[45] a methodology for designing reward functions was suggested that takes advantage of implicit 

domain knowledge. [46] explored reward shaping, where the rewards from the environment are 

augmented with additional rewards. 

For the cube example, the reward function is illustrated in Figure 2.9. Because the algorithm 

seeks a solution with the maximum reward (greedy policy), most actions are rewarded negatively 

to ensure a solution with minimum number of actions. To reach a solution that involves the right 

physical behavior, nonphysical actions are rewarded more negatively than other actions. For 

example, the punishment for movement on the upper plane (when the step is not located 

underneath) is twice the punishment for navigating on the floor. 

To accelerate the convergence, positive rewards are also delivered for taking specific actions 

from specific states (advancing forward in certain states and climbing from states located in front 

of the step). After getting to the target, a high positive reward is delivered to encourage the agent 

to return to the target state in the next iterations. 
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Figure 2.9 - The reward function for the example of a cube navigating towards the defined target. 

 

2.2.7 Q Function Update 

The update of the matrix Q is executed using: 

 1
'

( , ) (1 ) ( , ) [ max ( ', )]n n n n n n
a

Q a s Q a s r Q a s       . (2) 

where rn is the reward for taking action an at state sn, sn+1 is the state of the agent after taking 

action an. Action a' is the one associated with the highest possible Q(sn+1, a) value. The learning 

rate α is set to between 0 and 1. Setting α to 0 means that the Q-values are never updated; hence, 

nothing is learned. Setting a high value such as 0.9 means that learning can occur quickly. The 

discount factor γ is also set to between 0 and 1. This models how important future rewards are to 

the current state. Mathematically, the discount factor needs to be set to less than 1 for the 

algorithm to converge. 

To provide insights into equation (2) we present an update stage on the cube problem. The 

cube is positioned in state 𝑆𝑛 = [35][1] and moves right (let’s assume this action is presented 

with  index 4 on the Q matrix). For a learning rate of 0.6, a discount factor of 0.9 and a given 

reward of -2 (see Figure 2.9), the update of the Q value will be in the form of: 

 
'

(4,35,1) (1 0.6) (4,35,1) 0.6 [ 2 0.9max ( ,36,1)]
a

Q Q Q a       . (3) 
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Figure 2.10 - Example of a Q update in the cube problem. The cube moves right from state 𝑺𝒏 and the 

related Q value is updated. 

 
Note that the state 𝑆𝑛 = [35][1] is related to five different Q values (one value for one 

action), and the updated Q value is the one associated with the action made by the cube, i.e., 

moving right (with the index 4). 

To take future rewards into account, the algorithm seeks the maximum Q value in the 

subsequent state 𝑆𝑛+1 (this value is associated with  action a’). In the case above, the maximum 

Q value of state 𝑆𝑛+1 is related to 𝑎’ = 1 (the index for moving forward). By assigning the 

appropriate values from Figure 2.10, the updated Q value for moving right from state 𝑆𝑛 =

[35][1]: 

 '
(4,35,1) 0.4 (4,35,1) 0.6 [ 2 0.9max (1,36,1)]

0.4 0.13 0.6 [ 2 0.90.21] 1.035

a
Q Q Q      

       
. (4)
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3 Mechanical Design and Manufacturing 

This section specifies the mechanical design of the RSTAR and its main parameters, as well 

as the materials used for manufacturing of the robot. The primary design goal of RSTAR is to 

achieve a highly maneuverable robot capable of crawling over different terrains and overcoming 

obstacles. The robot must also be lightweight and capable of carrying the substantial payloads 

that may be required to perform search and rescue missions including cameras, communication 

equipment and sensors. One of the key requirements was to keep the cost of transport (COT) of 

the robot as low as possible. These goals are achieved by the combination of the active sprawl 

angle together with the FBEM, which allow the robot to transform its kinematics and 

substantially change its dimensions to overcome obstacles. 

 

 Robot Design 

The RSTAR consists from a main rigid body and a pair of legs fitted with wheels and spoke 

legs as presented in Figure 3.1. The body holds the controllers, the onboard batteries, the sprawl 

mechanism and FBEM mechanism. Each of these mechanisms is actuated by a single motor. 

Both sides of the robot are phased together and move symmetrically relative to its center. The 

wheels of each legs are actuated by a single motor. In total, the robot has four motors. 

 

 
Figure 3.1: Isometric view of the RSTAR robot. 
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3.1.1 The Sprawling mechanism 

The relative angle between the legs and the main body, as presented in Figure 3.2, forms the 

sprawl angle s  , which is defined as 0s  when the legs are coplanar with the ground. The 

sprawl angle can be varied in the range [-90, 90] (the positive sense of the sprawl angle is 

downwards), as shown in Figure 3.2, allowing the robot to continue running in the same direction 

even when upside down.  

 
Figure 3.2 – Definition of the sprawl angle, the relative angle between the legs and the main body. Changing 

the sprawl angle can increase or lower the robot width and height. 

 

The sprawl angles at both sides of the robot are actuated symmetrically through a single motor 

and four spur gears which provides 16:25 gear ratio to increase the motor torque, see Figure 3.3. 

This mechanism ensures both sides to rotate at identical sprawl angle but in opposite directions. 

As depicted in Figure 3.3, two extra spur gears and an angular potentiometer are also attached to 

one of the robot's legs to measure the sprawl angle. 

 

 
Figure 3.3 - The mechanical design of the sprawl rotation mechanism, consists from DC motor and four spur 

gears that ensure symmetrically rotation of both sides relative to the main body. 
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3.1.2 The Four Bar Extension Mechanism (FBEM) 

The rotation angle of the four bar extension mechanism is denoted by F  and presented in 

Figure 3.4. The FBEM angle can be varied in the range [-72, 72], the rotation angle F  is defined 

zero when the two bars are perpendicular to the body and the legs. 

 
Figure 3.4 - Definition of the FBEM angle. By changing the FBEM angle the width and the length of the robot 

can be changed.  

 

The FBEM is attached to the sprawl mechanism and rotates together with it because of the 

shape of the rack spur gear (see Figure 3.5). Both sides of the FBEM are actuated using the same 

motor and are symmetric relative to the body. Worm gear is used to provide a high gear ratio and 

self-locking when not activated. Rotating the gears attached to the worm gear results in linear 

movement of the rack spur gear along the shaft. The movement of the rack spur gear rotates the 

two parallel bars of the FBEM. That bars that connect the sprawl mechanism to the robot legs 

and are synchronized to rotate at the same speed. An angular Potentiometer is also connected to 

one of the leg bars to measure the FBEM angle. 

 
Figure 3.5 - The mechanical design of the FBEM. The motor rotation is converted to linear movement of the 

rack spur gear along the shaft which rotates the leg bars. 
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3.1.3 The Driving Mechanism  

The RSTAR has a differential driving mechanism actuated by single motor on each leg as 

presented in Figure 3.6. Motor rotation is transmitted to the wheels using nine identical spur 

gears. An encoder is attached to each motor to measure the rotation rate of the wheels. 

 

 
Figure 3.6 – The driving mechanism consists from DC motor, spur gears and wheels. 

 

To improve stability and lower energy consumption, RSTAR can be fitted with wheels, spoked 

legs, or a combination of the two, giving it superior ability to engage different terrains. The round 

wheels fit for smooth surfaces while the spoke wheels are more efficient in unstructured 

environments. The RSTAR can flip its body upside down and drive inverted using dynamic 

maneuvers to change the type of wheels contacting the ground. 

 

 Robot Actuation  

RSTAR is actuated using four motors. We used 12 mm diameter off-the-shelf motors (6-9 

volts manufactured by Pololulu that are available with encoders which can be purchased at 

different gear ratios). The gearboxes with different gear ratios are of the same size, which 

simplifies their replacement without having to modify any other parts.  
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For higher driving speeds we used the lower gear ratio of 1:100 in the legs motors and for 

climbing we used a gear ratio of 1:300 (providing a torque of 0.18 Nm and 0.5 Nm respectively). 

The high ratio ensures high torque output and steady velocity. In the FBEM we used a 1:300 gear 

ratio, and in the sprawl mechanism a 1:1000 gear ratio was used for the high sprawling torque of 

1.18 Nm. The robot is powered with three 3.7 Volts LiPo batteries; motors are powered with two 

1000mAh batteries connected in series and the microcontroller is powered by a 400mAh battery. 

 

 Control System  

The RSTAR can be controlled by either a human operator or by using a micro controller. In 

the human operator mode, a 2.4 GHz receiver is used to control the robot mechanisms. In the 

program mode, an off-the-shelf programmable Teensy 3.5 controller is used (32 bit, 120 MHz 

and compatible with Arduino libraries) and the robot is given a set of actions to perform. The 

main components of the control system are illustrated in Figure 3.7. 

The sprawl and FBEM angles are controlled in a closed loop PD using the angular 

potentiometer attached to each mechanism. The rotational speed of the wheels is measured using 

magnetic encoders directly fitted to the shaft of the motors that provide 12 counts per motor 

revolution (1200 or 3600 counts per wheel revolution depending on the gear ratio of the motor).   

 
Figure 3.7 - The main components of the control system. The micro controller (Teensy 3.5) activates the 

motors using the motor drivers (H-bridge) and controls the RSTAR mechanisms in closed loop using the 

attached sensors (encoders and potentiometers). One battery supplies the voltage to the micro controller and 

another pair of batteries power the motors with increased voltage. 
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 Manufacturing 

The RSTAR mechanical parts are almost all manufactured with 3D printing. The 

components were printed by several 3D printing technologies depending on the required strength 

and the accuracy. Small parts or parts that required higher accuracy (like the gears or the robot 

body) were printed in PolyJet printing (“Objet Connex 350” 3D printer [A], “VeroWhitePlus” 

printing material [B]) or SLA printing (“FORMLABS FORM 2” 3D printer [C], Form resins 

[D]). Other parts were produced using FDM printing (“UPBOX” [E] or “Ultimaker 2” [F] 3D 

printers using PLA printing material [G]). 

Considerable effort was made to simplify part replacement such as the motors, the bars of 

the FBEM, the spoke legs and wheels. Easy part replacement is essential for experimentation in 

different conditions and in case components are damaged during risky maneuvers. 

Three versions of the RSTAR were manufactured as part of this dissertation  and are 

illustrated in Figure 3.8. The main design differences are between version I and II, most of which 

concerned the sprawl mechanism and the FBEM. Version III is based on its previous version 

with adjustments made for adding angular potentiometers to the configuration mechanisms.  

 
Figure 3.8 – The three versions of the RSTAR produced through this research. 
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4 Kinematic and Dynamic Analysis 

In this section, we analyze the kinematics and dynamics of the robot. We present the different 

configurations that the robot can achieve and evaluate the torque requirements of the motors as a 

function of the external forces. This force and torque analysis was implemented during the design 

of the robot and motor choice (with a safety factor of 3-4).  

 
Figure 4.1 - Parameters for defining the RSTAR geometry.  

 

 Kinematic Analysis 

The position of the legs of the RSTAR is a function of the sprawl angle and FBEM 

orientation. The work volume of the legs constitutes a two- dimensional shell as illustrated in 

Figure 4.2.  

 

Figure 4.2 - The work volume of the RSTAR’s legs consists of two shells: a) the work volume of the FBEM 

angle, b) the work volume of the sprawl. 
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The width of the legs (as defined in Figure 4.1) is: 

      3 1 2sin 2 cos cosw s leg bar F swidth L L L L L L          . (5) 

Because the robot can move the FBEM mechanism orientation from negative 72° to positive 

72°, the legs can move in the fore-aft direction relative to the body by: 

  2 cos 72 1.9bar F barforeaft L L     . (6) 

The height of the robot is: 

       1 2 3cos sin cosleg bar F s h sheight L L L L L L        . (7) 

Because the sprawl angle can be moved in the range of negative 90° to positive 90°, the tips 

of the legs can be moved in the vertical direction by: 

     1 22 cos sin 90leg bar F sheight L L L L         . (8) 

 

 The Mobility of the Center of Mass 

The mobility of the center of mass (COM) can be used to enhance the stability of the robot 

and increase its maneuverability and ability to climb over obstacles. Raising and lowering the 

COM and moving it forward and backward relative to the legs can be used to flip the robot upside 

down and climb over a variety of obstacles.  

In the fore-aft direction, the position of the COM is varied by activating the FBEM alone 

(see Figure 4.3). The core mass of the robot is on the main body, which we denote by bodym  

whereas the mass of each set of legs is legm . 

 
Figure 4.3 – The mobility of the COM in the fore-aft direction using the FBEM. 
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By denoting maxF   as the maximum orientation angle of the FBEM and after neglecting the 

weight of the bars (nearly 3 grams each), the position of the center of mass is shifted forward and 

backward by: 

 
 max2 sin

2

bar F body

foreaft

body leg

L m
COM

m m

 
 


. (9) 

 

In the vertical direction, the COM can be moved from the in-plane configuration at zero 

sprawl (minimum height) to the 90 degrees sprawl configuration (maximum height) as illustrated 

in Figure 4.4: 

 

Figure 4.4 –The mobility of the COM in the vertical direction, can be moved by changing the FBEM and\or 

the sprawl mechanism.  

 

The mobility of the COM in the vertical direction: 

 
 1 2

2

leg bar body

height

body leg

L L L L m
COM

m m

  
 


. (10) 

 

For the given values of the actual robot: 213bodym  grams, 104legm  grams, 50barL  mm, 

29legL  mm, 1 14L  mm and 2 20L  mm, the COM can be shifted in the fore-aft direction by 

48.1 mm and in the vertical direction by 57.2 mm.  

The angle Φ is the maximum tilt angle that the robot can statically withstand in the pitch 

direction before tipping over. Alternatively, by accelerating forward, the robot can pitch upward 

and flip itself upside down (see Figure 5.2). In addition, a climbing technique is based on pitching 

upward by accelerating, see Figure 5.7. The required acceleration a to pitch upward is: 

  tana g  . (11) 
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 Force and Torque Analysis 

In this section, we calculate the forces acting on the robot and the torques that must be 

provided by the different motors of the robot when moving on a horizontal surface and during 

climbing vertically between two walls. We analyze the cases where the robot works against 

gravity (raising its COM) which require larger torque forces. The absolute values of the forces 

acting on one side of the legs, in the normal, side, and fore-aft directions, relative to the body of 

the robot, are denoted by normalF , sideF , and foreaftF . 

 

4.3.1 Moving Over a Horizontal Surface 

A force diagram of the robot when moving on a horizontal surface is presented in Figure 4.5: 

 
Figure 4.5 – The forces acting on the robot when moving over a horizontal surface. When lifting its body 

through the sprawl or the FBEM mechanisms, both the normal force and the friction side forces resist the 

motion. 

 

When the robot lifts its body over a horizontal surface, either by increasing the sprawl angle 

or by extending its legs using the FBEM, and assuming low accelerations, the normal force normalF  

is: 

 
2

normal

mg
F  . (12) 

 

Where m is the total mass of the robot. The side force 𝐹𝑠𝑖𝑑𝑒 is: 

 
2

side

mg
F  . (13) 

 

Note that sideF  is pointed outwards when the robot increases the sprawl angle and inwards 

when it extends the length of its legs using the FBEM.  
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The torque acting on the sprawl joint 
sprawlT  is a function of the sprawl angle 

s  and the 

FBEM orientation
F .  

 

   

      

1 2

1 2 3

cos cos
2

cos sin cos
2

sprawl leg bar F s

leg bar F s s

mg
T L L L L

mg
L L L L L

 

   

      

     
 

, (14)  

 

Denoting 𝐿𝑡 by the term: 

  1 2 cost leg bar FL L L L L     , (15)  

And rearranging (14), we obtain:    

      3 cos sin
2

sprawl t s t s

mg
T L L L        . (16) 

 

Figure 4.6 presents the magnitude of sprawl torque required for lifting the body when the 

COF µ value is 0.3 (plastic contact with tile floor). The maximum value of 
sprawlT  is 258.5 Nmm 

and it obtained at 16s    and 0F  . 

 
Figure 4.6 – The required sprawling torque for lifting the body in different sprawl and BEM angles. 

 

The required torque by the FBEM when extending its legs is: 

       sin cos sin
2

FBME s s bar F

mg
T L     . (17) 
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Figure 4.7 presents the FBEM torque required when rising the COM assuming that the COF 

µ is 0.3 (plastic contact with tile floor). The maximum value of FBEMT  is 105.4 Nmm and it 

obtained at 73.5s    and 72F   . 

 

Figure 4.7 - The required FBEM torque when working against gravity in different sprawl and BEM angles. 

 

4.3.2 Climbing Vertically Between Two Walls 

Figure 4.8 presents a force diagram acting on the RSTAR when climbing vertically between 

two parallel walls: 

 
Figure 4.8 - The forces acting on the robot when while climbing vertically between two walls. 



- 27 - 

 

When the robot climbs vertically at constant speed inside a canal, the forces acting on the 

robot are in the fore-aft and side directions alone. The fore-aft force foreaftF  that results from the 

friction force of the legs against the wall of the canal is equal to half of the weight: 

 
2

foreaft

mg
F  . (18) 

 

When climbing vertically between two walls, the robot must apply a side force: 

 
2

side

mg
F


 . (19) 

 

The torque that the sprawl mechanism must apply: 

       1 2 3cos sin cos
2

sprawl leg bar F s s

mg
T L L L L L  


     
  . (20) 

 

The torque required by the FBEM is: 

       sin cos sin
2

FBME s s bar F

mg
T L   


  . (21) 

 

The torque acting on each set of legs, 𝑇𝑙𝑒𝑔, during climbing in between two walls is: 

 
2

leg leg

mg
T L . (22) 

 

where 𝐿𝑙𝑒𝑔 is the radius of the wheels. Note that climbing is much easier with wheels rather than 

with spoke wheels. 
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5 Robot Locomotion Capabilities 

This section presents the locomotion capabilities of the RSTAR. Here, the RSTAR was operated 

by remote control and was tested in variety of scenarios:  running over different surface 

conditions, executing various maneuvers which included crawling over obstacles, climbing 

between two walls, and demonstrating the turtle locomotion gait in which the robot can move 

without rotating its legs (see video [24]). 

 

 Running over a Variety of Surfaces 

We tested the robot outdoors on a variety of surfaces, see Figure 5.1. The robot successfully 

crawled over gravel and even climbed a small rocky incline. The robot also crawled successfully 

over grass and rough sandy surfaces and climbed over concrete. 

 
Figure 5.1 – RSTAR crawling on variety of surfaces including gravel, soft ground, leaves and grass (see 

video [24]). 

 

 Inverted Running, Combining Wheels and Spoke Wheels 

RSTAR can flip itself upside down and vice versa without external intervention as 

illustrated in Figure 5.2. This feature can be used to decrease its cost of transport and reduce 

oscillations by fitting its legs with regular wheels on one side for running over smooth surfaces 

and fitting spoke legs on the other side for running over unstructured terrains. Note that inverting 
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the body will bring the outside swing of the legs in contact with the ground, resulting in the 

original direction drive. In this double inversion, all control laws are consistent and the leg drive 

and steering control continue to function as expected. 

 
Figure 5.2 – RSTAR can flip itself upside down so that it can be driven on one side with wheels over flat 

surfaces and the other side with spoke wheels over challenging surfaces in unstructured environments (see 

video [24]). 

 

Self-flipping is executed by changing the position of the COM, as shown in Figure 5.2. 

First, the RSTAR accelerates when its COM is backward (5.2.a) and by immediate braking, its 

body falls backward (5.2.b). By flattening its sprawl angle (5.2.c) and moving its COM backward 

using the FBEM (5.2.d-5.2.e) the robot flips backward (5.2.f). After the robot is inverted, 

actuating the sprawl mechanism lifts the body upwards and makes the wheels contact the ground 

(5.2.g-5.2.i). The result of this process is that the wheels change from spoke legs (5.2.a) to regular 

wheels (5.2.i). 

In previous work [8] we showed that the spoke wheels at a low sprawl angle (15 degrees) 

have a mechanical COT (not including electrical losses) of nearly 0.2. Although this COT is 

relatively low compared to robots at this scale, it remains two orders of magnitude higher than 

the rolling friction (or rolling resistance) of the wheels. Therefore, to reduce the COT (and 
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therefore extend the working range of the robot) and to reduce the vibrations resulting from the 

spoke wheel collisions with the surface, the robot can be run when inverted over smooth surfaces 

such that the regular wheels engage the surface. 

 

 Turtle Locomotion Gait 

One of the unique locomotion gaits that the RSTAR can perform is a turtle-like locomotion in 

which the robot advances without rotating its wheels [25] (somewhat similar to inchworming 

[26]). While the turtle gait is a slow method of crawling, it is very effective on soft and slippery 

ground and when crossing canals.  

This gait is made up of a sequence of four steps and is done by activating the sprawl angle 

and the FBEM without driving the wheels as demonstrated in Figure 5.3. Starting in an almost 

flat configuration (5.3.a), the body is lifted until it no longer touches the ground using the sprawl 

mechanism (5.3.b). Then the body is pushed forward (5.3.b-5.3.d) using the FBME. In (5.3.f), 

the robot lifts its legs using the sprawl mechanism. Once the legs are in the air, the robot moves 

its legs forward using the FBME (5.3.f-5.3.h). Finally, the robot pushes its legs downwards (5.3.i) 

to complete a full turtle gait cycle. In our experiment consisting of 6 cycles, the robot advanced 

60 cm in 1:50 minutes at a rate of 10 cm/cycle.  

 
Figure 5.3 – Full cycle of turtle gait locomotion, the RSTAR is advancing forward using it legs without rotating 

its wheels (see video [24]).  
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 Vertical Climbing 

RSTAR was designed for easy motor replacement. In our horizontal experiments we used 

a 100:1 gear ratio which allows the robot to run at a maximum speed of nearly 1m/s. The nominal 

thrust force at a 1:100 gear ratio is 6.4 N, which theoretically speaking, is sufficient for climbing 

vertically (almost twice the weight). However, due to internal friction losses which increase 

substantially during climbing because of the normal forces that must be applied to the walls, we 

had to increase the gear ratio to 1:300. At this ratio, the horizontal speed drops to 35 cm/s but the 

thrust force increased to 17 N and the robot successfully climbed when placed vertically at 20 

cm/s (see Figure 5.4). Note that although the robot can pitch upwards and change its width to 

touch the two sides of the wall, we had to place the robot vertically between them. We believe 

that the transition from horizontal locomotion to vertical climbing is feasible and will be the focus 

of our future research. 

 
Figure 5.4 - When placed between two walls, the RSTAR fitted with wheels can climb at 20 cm/s. The 

RSTAR’s width can be varied to touch both sides of the walls (see video [24]). 
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 Crawling Between Two Walls  

RSTAR can also crawl horizontally between two parallel walls (see Figure 5.5) by applying 

enough pressure on the walls with its wheels using the sprawl mechanism and the FBEM. It can 

also switch from horizontal crawling to vertical climbing and vice versa. This feature is very 

useful for movement inside pipes and can also be used for skipping over  obstacles as illustrated 

in Figure 5.5. 

 
Figure 5.5 – horizontal crawling between two walls, using the sprawl and FBEM RSTAR can adjust its width 

and create enough pressure with the walls (see video [24]). 

 

The transformation from horizontal crawling to vertical climbing can be done by moving the 

COM position using the configuration mechanisms (sprawl and FBEM) which change the pitch 

angle of the robot while it continues to advance. Note that a necessary condition to prevent the 

RSTAR from losing contact with the walls and fall down’ it has to keep its width constant while 

changing the COM position. Currently the lab is working on developing control system that can 

control the configuration mechanisms in the case of movement in curved pipes. 
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 Overcoming Obstacles 

The ability of the RSTAR to reconfigure its shape and move its COM impart the RSTAR 

with improved ability to overcome different types of obstacles. It can crawl through low passages 

by minimizing its height to 49 mm by changing the sprawl angle to a nearly flat configuration (a 

minimum of 3 to 5 degrees sprawl is required to ensure it can advance). By narrowing its width 

up to 115 mm, the RSTAR can also traverse narrow passages. In addition, the RSTAR is very 

efficient in climbing over obstacles of up to 6.5 cm by implementing different techniques using 

the sprawl and FBEM mechanisms combining shape configuration and COM mobility.  

 

5.6.1 Turtle Gait Climbing 

The turtle gait an efficient way to climb over obstacles, In Figure 5.6 the turtle gait is 

demonstrated, climbs over a 53 mm obstacle with 58 mm diameter wheels. 

 
Figure 5.6 - RSTAR climbing over an obstacle using the turtle locomotion gait which is achieved by the 

actuation of both the sprawl angle and the four bar extension mechanisms (see video [24]). 

 

 After the robot is positioned in front of the step (5.6.a), its legs are lifted using the sprawl 

mechanism (5.6.a-5.6.c) until its front wheels are located above the step. While the legs are in 

the air, the legs are oriented forward as far as possible using the FBME (5.6.d-5.6.e). Then, using 
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the sprawl mechanism the body is lifted and the front wheels touch the step (5.6.f) until the 

RSTAR leans on the step in a stable fashion. In (5.6.f-5.6.h) the body is moved forward using the 

FBME. The movement of the COM forward enables climbing by rotating the wheels forward 

(5.6.i) and by lowering the COM with the sprawl mechanism (5.6.j) the robot falls forward (5.6.k) 

and is able to advance on the step using its wheels (5.6.l). 

 

5.6.2 Pitching Upward for Climbing 

The robot can reach the tip of the obstacle by pitching its body upward and advancing 

towards the obstacle see demonstration in Figure 5.7. Starting from (5.7.a), the robot raises its 

body (5.7.b) and then accelerates (5.7.c) to pitch its body upwards (5.7.d). Using the spoke 

wheels, the robot advances to the obstacle (5.7.e) and by reducing the sprawl it falls on the 

obstacle (5.7.f). At this point, the robot moves its COM forward (5.7.g) and drives its spoke 

wheels forward to complete its climb (5.7.h). 

 
Figure 5.7  -  The robot is climbing on top of the obstacle by pitching its body upward and then moving its 

COM across the edge of the obstacle (see video [24]). 
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6 Implementation of Reinforcement Learning on the RSTAR  

This section details the simulated virtual environment used for the learning process, the 

different obstacles that the robot learned to overcome, the discretization of the state space, and 

the learning algorithm.  

 Simulation Environment and Obstacle Definition 

The simulations were conducted using a Unity® software environment (real-time engine 

development platform) [47] and included a (1:1 ratio) model of the RSTAR and the different 

obstacles. We defined the RSTAR’s kinematics and tuned its speed and contact properties with 

the surface to mimic those of the physical robot.  

Three common use cases in which the robot can overcome an obstacle were learned in three 

separate simulations: (1) A narrow (180 mm wide) channel in which the robot has to reduce its 

width to pass through (Figure 6.1– a). (2) A low entry (55 mm high) where the robot has to lower 

its body to crawl underneath (Figure 6.1- b). (3) A 50 mm step obstacle the robot needs to climb 

over by shifting its center of mass (Figure 6.1 – c). The geometric properties were modifiable so 

that the simulation results could be tested for relevancy on obstacles of different sizes. The 

simulations were performed on an Intel® Core™ i7-3632QM processor 2.2GHz, 8GB RAM 

memory running a Windows 10 operating system x64 bits. 

 
Figure 6.1 - The different obstacle use cases that RSTAR learned (a)  A squeezing through a 180 mm channel. 

(b) Crawling underneath a 55 mm high opening. (c) Climbing over a 50 mm high step. 
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 Learning Procedure 

The Q-learning algorithm was applied using the RSTAR Unity® model. Figure 6.2 

illustrates the iterative procedure of the learning process: the RSTAR observes its state, s, 

performs the action, a, and receives a reward, r. Its next state, s’, is produced by the environment, 

and finally the Q value of the related action-value pair is updated. Each learning iteration ends 

when one of the following conditions is met:  

1) The RSTAR successfully reached its target.  

2) The number of actions performed exceeded the maximal number of actions allotted.  

3) The RSTAR reached a “dead end” by moving sideways past obstacle borders. 

4) The RSTAR flipped over.  

All the intermediate learning data including states, actions, rewards, and Q matrix values, 

were retained for convergence analysis and validation. 

 

 
Figure 6.2 -The learning process using the physical Unity® engine and Q-learning algorithm. 
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 States  

The state of the agent (the RSTAR) was based on its position, orientation, and configuration. 

To reduce the dimensionality of the state space, the position of the robot was limited to the 

advancing direction (z) alone and roll was neglected. Altogether, the agent’s state was composed 

of five parameters: a) the position in the advancing direction, b) the yaw, c) the pitch, d) the 

FBEM angle, and e) the sprawl angle, as illustrated in Figure 6.3. 

 
Figure 6.3 - The partition of the state and action spaces into discrete values. Partition of sprawl was adapted 

to the required sensitivity of the use case. 
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The partition of the state and action spaces into discrete values was slightly different as a 

function of case. The partition of the advancing direction and the FBEM was constant and equal 

to 18 mm and 12o respectively in all three simulations. The yaw angle, , was divided into three 

angle ranges in all simulations: 0||<5, 5||<10, and 10||. The sprawl angle was partitioned 

into step sizes of 9o or 15o depending on the use case and required sensitivity (Table 1). Because 

the first two problems (squeezing through a channel or a low opening) did not involve climbing, 

the pitch was ignored. In the third problem in which the robot needed to climb over  the step, the 

pitch angle, , was divided into two ranges, 0<5o, 5o<180o. 

 

 Actions 

The action space consisted of five actions (Figure 6.3): 1) Rotate the wheels forward by one 

third revolution (60.7 mm). 2-3) decrease the FBEM angle (2) or increase it (3). 4-5) increase (4) 

or reduce (5) the sprawl angle. Note that the robot might not be able to perform a specific action 

if   prevented to do so by an obstacle. For example, in Action type 1, the wheels simply slide if 

the robot cannot advance forward. 

Table 1 - Number of states and actions in each simulation 

                               Use case 

Partition 

number and size  

Through a 

channel 
Low opening High obstacle 

Position (z direction) 43 34 24 

Size: 18 mm 18 mm 18 mm 

Yaw Angle 3 3 3 

Range: 0||<5, 5||<10, and 10|| 

Pitch Angle - - 2 

Range: 0<5o, 5o<180o 

FBEM 12 12 12 

Size: 12o 12o 12o 

Sprawl 12 20 12 

Size: 15o 9o 15o 

Possible Actions 5 5 5 

Q matrix cells 92,880 122,400 103,680 
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 Q Matrix initiation 

Each action-state pair was rated based on the expected value of taking the action when in 

that state. The Q matrix was 5D for the use cases of squeezing through a channel and ducking 

underneath an obstacle and 6D for the climbing over the obstacle use case. The number of Q 

matrix cells was on the order of 105 (Table 1).  

To encourage the robot to advance towards the obstacle and overcome it, the initial Q matrix 

values were based on the advancing direction and the yaw angle. The values increased as a 

function of the advancing direction and decreased with the absolute value of the yaw. In all use 

cases, the workspace was divided into four zones (i-iv) along the advancing direction (z). Figure 

6.4-a presents the specific zone borders of the climbing over  an obstacle use case. The other use 

cases had a similar pattern but different border values.  

Zone (i): Located behind the agent’s initial position ( 3z  ) and was characterized by 

negative equal values for all yaw angles: 

  ( , ) 100i n n totQ s a Z z   .  (23) 

where Ztot is the total number of partitions in the z (advancing) direction and 3z  . This zone 

could be reached if the RSTAR moved its COM backwards using the FBEM. 

Zone (ii): Located between the agent’s initial position and proximity line (4 bins before the 

success line 3 15z  ). In this zone, the Q started with positive values and monotonously 

increased as the robot advanced towards the success zone. Lower values were given to greater 

yaw angles between 5o to 10o and even lower to values beyond 10o to encourage the robot to 

maintain a straight orientation.  

 

100 5

( , ) 5 5 10

10

yaw

i n n yaw

yaw

z

Q s a z

z

  



   


 

.  (24) 

Zone (iii): In proximity to the success zone, with  length in 4 partitions (in the advancing 

direction 15 19z  ) and  Q values that were  substantially higher than zone (ii). I this zone, The 

Q values were independent of the yaw: 

 ( , ) 1000i n nQ s a z .  (25) 



- 40 - 

 

Zone (iv):  The success zone, characterized by the highest initial Q values (identical to Eq.25) 

to ensure that the robot was attracted to the success zone and remained in it.  

 
Figure 6.4 - Given reward (a) and initial Q value (b) as a function of the advancing direction and yaw angle. 

 

 Reward and Update 

As in the Q matrix initialization, the workspace was divided into the same four zones (Figure 

6.4-b). The rewards were negative in the first three zones to minimize the number of steps and 

ensure convergence of the solution to an optimal solution:  
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Zone (i): A highly negative rewards zone. 

  ( , ) 30n n totr s a Z z   .  (26) 

Zone (ii): The reward in this zone was also negative but monotonously increasing to 

“encourage” the agent to leave the zone and advance forward. The reward was more negative if 

the yaw angle was larger than 5o to ensure that the agent did not attempt to rotate sideways. 
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.  (27) 

Zone (iii): The reward function in this zone was similar to zone (ii), and was designed to 

ensure it continued attempting to advance forward.  

Zone (iv): the success zone was highly positive to ensure that the agent advanced towards it 

and finished its climbing learning. 

 ( , ) 30000n nr s a  .  (28) 

The Q matrix was updated using: 

 1
'

Q( , ) (1 )Q( , ) [ maxQ( , ')]n n n n n n
a

s a s a r s a       . (29) 

where rn was the reward for taking action an at state sn, sn+1 was the state of the agent after 

taking the action an. The action a' was the one associated with the highest possible Q(sn+1,a) 

value. The learning rate α was 0.6 whereas the discount factor γ was 0.9. 

 

 Policy 

The learning was conducted as an -greedy policy where the probability of taking a random 

action, ϵ, decreased by:  

 min

max

i

N

 
 


  .  (30) 

Where 
i  is the initial probability, 

min  is its minimum value and 
maxN  is the total number 

of times random actions is taken.  In all simulations we used: 1i  , 
min 0 and 

max 30000N  .
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7 Simulation Results 

In this section, we first present the convergence rate of the algorithm. Then an analysis of 

the solution and its validity over a range of parameters is presented. Finally, a comparison 

between the simulation and human operators is presented. 

 The Convergence Rate 

The convergence rate of each simulation was tested using three parameters: the sum of 

reward over a path received at every iteration, the number of actions per iteration, and the success 

rate of the iterations. The results of squeezing through a channel, ducking underneath an obstacle 

and climbing on top of an obstacle are presented on Figure 7.1-Figure 7.3 respectively.  

 

Figure 7.1 - The number of actions in each iteration (top); The sum of the rewards and value of  in each 

iteration (bottom) of the squeezing through a channel use case.   
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The algorithm started to find feasible solutions after 100 iterations (60% success) (Figure 

7.1, top). Following that, the number of actions of the found solution decreases and after 600 

iterations, the success rate is nearly 100%. The quality of the solution (the number of actions) 

improve with the number of iterations and reaches an average of 20 actions per solution. With 

the best solution (the smallest number of actions) performed with 17 actions. In section IV.E, we 

will see that some of the solutions with a larger number of actions had advantages for overcoming 

challenging obstacles not previously learned. The iterations started with a highly negative sum 

of rewards (Figure 7.1, bottom) and as the iterations advanced, the sum of the rewards increased 

(the absolute decreased) as the robot succeeded in finding feasible solutions after nearly 200 

iterations and then continued to slowly improve. 

 

Figure 7.2 - The number of actions in each iteration (top); The sum of the rewards and value of  in each 

iteration (bottom) of the ducking underneath an obstacle use case.   
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Figure 7.3 - The number of actions in each iteration (top); The sum of the rewards and value of  in each 

iteration (bottom) of the climbing on top of an obstacle use case. 

 

 Squeezing Through a Channel 

The simulation converged to a successful solution (with 17 actions) after about 600 

iterations. The simulation presented in Figure 7.4 shows that starting in (a) for a channel width 

of 240 mm, the simulated robot performed four actions to lower its sprawl from 48  to 18 degrees 

and to decrease its width from 240 mm to 163 mm. When the width of the robot was smaller than 

that of the channel (180 mm), the simulated robot continued advancing to reach its target. (see 

video [48]). 
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Figure 7.4  – The simulated RSTAR crawling between two walls. Starting at (a), the robot increased the 

sprawl to reduce its width (b-c) and continued advancing toward its target (see video [48]). 

 

 Crawling Underneath an Obstacle 

In this use case the simulation converged after 700 iterations to a solution with 14 actions. 

Starting from an initital configuration in which the simulated RSTAR’s height was 100 mm 

(compared to the 55 mm clearance of the obstacle), the simulated RSTAR first moved its FBEM 

forward (b) and then lowered its sprawl until reaching a height of 51 mm (c), then it continued to 

advance (d) to reach its target.  

 
Figure 7.5 – Starting from its initial configuration (a), the simulated RSTAR moved its FBEM forward (b), 

then lowered it sprawl (c) and continued advancing forward. (see video [48]). 
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 Climbing on Top of an Obstacle 

The RSTAR was  trained to climb from the ground as in Figure 7.6 (a) to the top of the step 

as in Figure 7.6 (f). Given the fact that the obstacle was substantially higher than the radius of 

the wheels, this use case was complex (even for experienced human operators). It required more 

complex dynamic maneuvers relative to the previous two use cases and its solution required more 

actions to perform. In order to reduce the learning time and ensure solution convergence,  

the learning process was divided into two parts. In the first part, the agent was initially placed 

with its wheels on the tip of the step (Figure 7.6 (d)) and had to learn how to finish climbing as 

illustrated in Figure 7.6 (d)-(f). After the convergence of the first part, the Q values were saved 

and were set to be the initial values of the second learning part (the random action factor ϵ was 

reset to 0.6).  

Thus, at the start of the second learning part, the robot already knew how to climb from d to 

f. In the second learning part, the agent learned how to start climbing from the ground (a) until it 

placed its wheels at the tip of the step (c). Together with the first learning part, the robot 

successfully learned how to fully climb over the step starting from the ground.   

 
Figure 7.6 - The RSTAR climbing on top of an obstacle. Starting in (a), the robot moved its COM backward 

(b) to pitch upwards (c). Then it moved its COM forward (d) and lowered it (e) to finish climbing (f). (see 

video [48]) 
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The algorithm produced multiple solutions to climb over the obstacle, with a range of 24 to 

27 actions. The difference between the different solutions is analyzed in Section (IV.E).  

Figure 7.6 illustrates how the simulated RSTAR climbed over a step obstacle. The step was 

50 mm high compared to the 58 mm diameter of the RSTAR’s wheels. Starting in (a), the 

simulated robot moved its COM backward using its FBEM (b) and advanced forward to pitch 

upwards and place its front wheels on the edge of the obstacle (c). Note e that dynamically, 

moving the COM was essential to allow pitching upwards. After placing its front wheels and 

leaning on the step, it sprawled down to lower it COM (d) and then advanced its COM forward 

using the FBEM (e). Both actions were  also critical to climbing, since otherwise the robot would 

pitch on its back when it attempted to advance forward. The robot continued advancing using its 

wheels to finish climbing over the obstacle (f). (See video [48]). 

 

 Solution Suitability for Untrained Obstacle Sizes  

To examine the level of compatibility of the solutions to obstacle size variation, we tested 

the learned solutions with obstacles of different sizes (Table 2). To squeeze through a channel, 

the solution learned for the 180 mm wide channel emerged as suitable for narrower channels up 

to 164 mm wide. For ducking underneath an obstacle, the solution for a clearance of 55 mm was 

appropriate for a 51 mm clearance. To climb over an obstacle, the solution with the smallest 

number of actions (24) was only suitable for climbing over the obstacle it was trained on (50 

mm). However, solutions with more actions were more versatile. Two solutions with 26 and 27 

actions allowed the robot to climb on top of obstacles that were 51 and even 55 mm high. 

Table 2 - Compatibility of the simulation results. 

Use Case Number of Actions 
Solution 

Compatibility 

Squeezing through a 180 mm channel. 17 164 mm and wider 

Ducking underneath a 55 mm opening. 14 51 mm and higher 

Climbing over a 50 mm obstacle. 

24 Up to 50 mm 

26 Up to 51 mm 

27 Up to 55 mm 
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 Outperforming Human Experts 

To estimate the quality of the learning process, we compared the algorithm’s results to 

human solutions. This comparison was conducted for the most challenging case of climbing over 

a step. Human solutions were composed from two groups of six M.Sc. students from the Bio-

Inspired and Medical Robotics Lab., who are familiar with the physical RSTAR robot and its 

kinematics. Both groups were asked to solve the climbing use case using the simulation. Each 

student was given an explanation of the different action possibilities and then was allotted one 

full hour to find a solution. The students worked separately and were not allowed to work with 

each other.  

The first group composed a solution by listing a sequence of actions to perform, the students 

were told how many actions the simulation needed (24) but not the action set. The students in the 

second group controlled the RSTAR using a joystick and their performance was recorded in terms 

of motors actuation. The results of the second group are presented in Figure 7.7 - Figure 7.9. 

 
Figure 7.7 – Rotation of the RSTAR wheels in the solutions of the second group compared to the algorithm.  

 
Figure 7.8 –The change of the FBEM angle in the solutions of the second group compared to the algorithm. 
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Figure 7.9- The change of the sprawl angle in the solutions of the second group compared to the algorithm 

 

Interestingly, and surprisingly at least to the authors of this manuscript, the Q learning 

algorithm outperformed all the “human experts” in both groups. In the first group, none of the 

students was able to find a solution with a lesser number of actions. Two students were not able 

to find a climbing solution at all, while four others found solutions ranging from 25 to 28 actions 

compared to the Q learning solution of 24 actions. In the second group, all the students succeeded 

to climb over the step using the joystick and two students even succeeded to climb without 

changing the sprawl mechanism but their total solutions demanded more actuation of the FBEM 

and driving motors as presented in Figure 7.7- Figure 7.9. Table III summarize the results of the 

second group compared to the algorithm. 

Table 3 - Comparison between the algorithm result to human solutions. 

 

 

 

 

Time 

[sec] 

Sprawl 

[deg] 

FBEM 

[deg] 

Wheels Rotation 

[deg] 

Algorithm 7.8 69.8 159.7 5,039 

Humans 

Average 11.5 41.9 511.9 14,525 

Standard 

deviation 2.2 56.9 211.8 5,283 



- 50 - 

 

8 Hardware Implementation and Validation 

This section presents the implementation of algorithm’s results on an actual RSTAR 

prototype. In each experiment, the initial conditions of the RSTAR (position and configuration) 

and the obstacle’s geometric properties were (nearly) identical to the learned dimensions. In each 

case, a sequence of actions was uploaded to the RSTAR’s control system. The uploaded sequence 

was the set learned using the Q learning algorithm. To squeeze through a channel the robot 

reduced its width and advanced between the two walls (Figure 8.1). The robot also successfully 

lowered its body and ducked underneath  the obstacle (Figure 8.2). In both cases, the robot 

successfully performed its task in the physical environment as of the first attempt. 

 
Figure 8.1 - RSTAR successfully reduced  its width (b) and crawled between two walls 18 cm  apart (c)-(d). 

(See video [48]). 

 
Figure 8.2 - RSTAR lowered its body and crawled underneath an obstacle  5.5 cm in height. (See video[48]). 
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The robot was able to climb over obstacles measuring 45 mm in height but not obstacles 50 

mm high using its minimal 24 actions sequence. The 10% difference between the simulation and 

the actual robot can be attributed to the minor differences in the definition of the mechanical and 

geometrical properties and the accuracy of the solution of the physical engine. Interestingly, the 

robot successfully climbed over the 50 mm high obstacles using the 27 action solution (which 

according to simulation would allow it to climb over 55 cm steps). This result is consistent with 

the Q learning solution which suggested that the 27 actions solution would increase its climbing 

capability by 5 mm.  

 
Figure 8.3 - The RSTAR successfully climbs over an obstacle 50 mm in height (27 actions solution). 
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9 Conclusions 

In this thesis, we presented a novel sprawled tuned reconfigurable robot that can perform 

multiple maneuvers without any external modification. The robot is fitted with two unique 

mechanisms; a sprawl mechanism that tilts the rotation axis of the legs, and a four bar extension 

mechanism (FBEM) that prolongs the distance between the body and the legs and moves the 

COM in the fore-aft direction. The sprawl allows the robot to change its dynamics from the lateral 

to the sagittal plane and for inverted locomotion. The FBEM extends the length of the legs while 

keeping them parallel to the body. Using a combination of these two mechanisms, the robot can 

change its width and height three fold (and even more if we use longer extension bars) and move 

the COM in both the fore-aft and vertical directions. 

The RSTAR can perform multiple original locomotion movements and execute many climbing 

maneuvers thus outperforming our previously designed STAR robot. The RSTAR can perform a 

unique turtle locomotion gait which allows the robot to crawl over extremely soft surfaces such 

as thick mud or sand where the wheels would get entrenched. The turtle gait can also be used to 

climb over obstacles whose height is greater than the diameter of its spoke wheels. By 

extending/narrowing its width the robot is capable of crawling vertically in a tube or a canal by 

applying pressure to the walls. 

The RSTAR can also flip its body upside down by changing the position of its COM. This 

feature can be used to decrease its cost of transport and reduce oscillations by fitting its legs with 

regular wheels on one side for running over smooth surfaces and fitting spoke legs on the other 

side for running over unstructured terrains. 

In addition to the mechanical design, we also applied a Q learning algorithm in order to learn 

to overcome autonomously three typical obstacle use cases. These included squeezing through a 

channel, ducking underneath an obstacle, and climbing over an obstacle (which requires a very 

skilled operator). To simplify the process, safeguard the robot and reduce the learning time, all 

the learning took place in a simulated environment using Unity software. The algorithm found 

solutions to all the use cases.  

Results were implemented on the physical RSTAR. The robot was placed in an environment 

reminiscent of the simulated environment and preprogrammed to perform the learned set of 

actions. With no human intervention, the RSTAR successfully overcame all three obstacles on 

its first attempts. 



- 53 - 

 

The learned solutions are also suitable for similar obstacles with different geometries. For 

instance, the solution of squeezing through a channel was developed for a width of 180 mm but 

is also suitable for a narrower channel 164 mm wide. The same sequence for climbing over a 50 

mm obstacle is also compatible for steps with lower heights. To climb over an obstacle, the 

algorithm provided multiple solutions with different numbers of actions. An analysis of the 

solutions showed that some of the solutions with a larger number of actions were suitable for 

climbing over higher obstacles. For example, the simulated robot climbed over a 50 mm step 

with 24 actions, and over a 55 mm step with 27 actions. This result was also validated in 

experiments. 

The climbing use case was especially challenging. Although the algorithm had no prior 

knowledge of the kinematics of RSTAR or the obstacles, it generated mechanically intelligent 

results for climbing on the step. The result included moving the COM backward and then forward 

and changing its height to overcome the obstacle. This solution outperformed other solutions 

devised by two groups of human experts.  

Based on these encouraging results, future work will focus on the inclusion of perception 

capabilities in the learning setup to learn action sequences directly based on perceptual input.   
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 תקציר

 

להזיז את ואת צורתו  שנותמסוגל לה זעיררובוט Rising STAR (RSTAR ,) -רובוט הב עוסקזה  חקרמ

המאופיינים ביכולת לשנות את זווית  STAR-ה שייך למשפחת רובוטי RSTAR-המיקום מרכז המסה שלו. 

המישור בו נמצאות ולשנות את  ות שונותבתצור נועו להמאפשרת ל הפישוק של הרגליים ביחס לגוף, יכולת

ו בין גופהיחסי את המרחק  שנותהמאפשר לו ל ,FBEMנוסף, מנגנון  במנגנון מצויד RSTAR -. ההרגליים

 ו.לרגלי

ים, מכשולים מאתגרמגוון להתגבר על יכולת  RSTAR -ל שני מנגנוני הקונפיגורציה הנ"ל מקניםשילוב 

את גובהו לטפס אנכית בתוך צינור או בין שני קירות. הרובוט יכול להאריך ו שטח מגווניםתוואי  לנוע על גבי

מטה( ובכיוון מקביל לרצפה –בכיוון אנכי לרצפה )מעלה את מרכז המסה שלו הן  זיזורוחבו פי שלושה ולה

 .אחורה( –)קדימה 

ביחס הרובוט  ןאת תככדי לשפר בוצע ניתוח הדינמי שוה של הרובוט קינמטיהמודל יוצג הראשית 

רובוט באמצעות של הטיפוס -אב נבנה. על סמך ניתוח זה, יםהמנועמדרישות האת ולהעריך לגרסאות קודמות 

-ה. ת, על הרובוט בוצעו ניסויים מגוונים לבדיקת יכולות התנועה שלו במצבים שוניםדיממ-תלתהדפסה 

RSTAR  בעזרת  שלו םהגלגלי יותר מקוטר גבוהיםטפס מעל מכשולים שלהצליח( שיטת טיפוסTurtle Gait )

או  גילים, גלגלים משולשיםרגלגלים  RSTAR -. ניתן להתאים לשעושה שימוש ביכולות שינוי הצורה שלו

 .נוע בסביבות קרקע שונותל שופרתלהעניק לו יכולת מ שילוב של השניים, וכך

ששליטה בכל מנועי הרובוט במקביל היא משימה מאתגרת  במהלך הניסויים היה ניכרעם זאת, יחד 

בלמידת מכונה, שימוש לכן נעשה . לבצע פעולות מורכבות יחסית כמו מעבר מכשוליםבמיוחד כאשר יש צורך 

על מנת ללמד את הרובוט כיצד להתמודד עם מעבר מכשולים  (Reinforcement Learning) חיזוקיםה בשיטות

תנועה במעבר צר, זחילה מכשולים טיפוסיים:  השלושרבות מפעיל אנושי. נלמדו ללא התע ,בצורה אוטומטית

 Q Learningבמהלך  דוח זה יוצג יישום של אלגוריתם למידה מסוג . דרגהוטיפוס מעל מתחת פתח נמוך 

 .ייקלעם מנוע פיז  (™UNITY)ממוחשבת  בסביבת סימולציה

ת המקרים שנבחנו. לאחר קבלת תוצאות הלמידה,  אלגוריתם הלמידה הצליח למצוא פתרונות עבור שלוש

התוצאות כי התקבל . בעלי רקע רלוונטי אנושיים פעיליםשישה מהתוצאות הושוו לתוצאות שניתנו על ידי 

ביחס לתוצאות  מבחינת מספר הפעולות הנדרשות לביצוע, יותר ותעל ידי האלגוריתם היו קצר שהתקבלו

נבחנו תוצאות ניסוי בו  בוצע שנלמדו בנוסף לכך עבור כל אחד מהמכשוליםעל ידי המומחים האנושיים. שניתנו 

 (.[24][48]  פיםמצור ניםסרטו י\)ראההאמיתי שנבנה.  RSTAR-הלמידה על רובוט ה
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