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Abstract 

This thesis investigates the collaborative task of human to robot object handovers. Handovers are 

a vital capability for collaborative robots. We focused on two crucial issues for embedding human-

like characteristics into robots. First, we examined the impact of robot's non-verbal communication 

on human's experience and fluency of human to robot handovers. Second, we developed and 

evaluated a robot controller based on reinforcement learning to perform a more natural sequential 

handover. 

The first part in the research investigated human's preference of the robot's eye gaze during human-

robot handovers. While there is some literature on robot gaze in robot-to-human handovers, there 

is a dearth of literature on robot gaze in human-to-robot handovers.  Prior research that studied 

robot gaze behavior in human-to-robot handovers considered only the receiver's gaze patterns in 

the "reach" phase and used only one particular object in one configuration. Building upon this 

work, this research studied gaze patterns for all three phases of the handover process: reach, 

transfer, and retreat, both in video and in-person studies. This included investigation of whether 

the object's size and fragility or the giver's posture affect the human's preference of the robot gaze 

in terms of the perceived liking, anthropomorphism, and timing communication of the handover.  

A public data-set of handovers videos were analyzed frame-by-frame to determine the most 

frequent gaze behaviors in human-human handovers. The most frequent gaze behaviors were 

found to be: gazing at the giver's hand and then at the giver's face (Hand-Face gaze), gazing 

initially at the giver's face and then at the giver's hand and then back to look at the giver's face 

(Face-Hand-Face gaze), and continuously look at the giver's hand (Hand gaze).  

A Sawyer collaborative 7 DOF (degrees of freedom) robot was programmed to perform the 

handover task and exhibit these gaze behaviors. Different objects with different types of giver-

receiver configurations were analyzed in two studies – a video study and an in-person study. In 

the video study, 72 participants watched and compared videos of human to robot handovers 

between an actor and a robot demonstrating the three gaze behaviors.  In the in-person study, a 

different set of participants physically performed object handovers with the robot and evaluated 

their perception of the handovers for the robot's different gaze behaviors.  Results revealed that for 

both studies when the robot initially gazes at the giver's face and then at the giver's hand and then 



 
 

back at the giver's face (Face-Hand-Face gaze), participants consider the handover to be more 

likable, anthropomorphic, and communicative of timing (p < 0.005). However, we did not find 

evidence of any effect of the object's size or fragility or the giver's posture on the gaze preference. 

In the second part of the research, we assessed the potential of a model-based reinforcement 

learning (RL) method, the Guided Policy Search (GPS), to train a robot controller for human-robot 

object handovers. GPS is a data-efficient system that does not necessitate prior knowledge of the 

robot and environment dynamics, providing a promising approach for the handover task. 

Nevertheless, despite GPS demonstration on various navigation tasks and autonomous 

manipulation, testing GPS in a physical human-robot collaborative task has not been reported. In 

this study, the reach phase of a handover is formulated as an RL problem, with subsequent training 

of the Panda collaborative 7 DOF robot arm both in a simulation environment and directly on the 

physical robot.  

Our results indicate that testing the policy learnt in the simulation environment on the real robot, 

is an infeasible solution for real world implementation. When estimating only static targets, we 

found that the performance of the global policies learnt by GPS generalize relatively well. 

However, the global policy performance got slightly improved by adding local controllers in 

regions with highest test errors. When evaluating the global policy trained with static targets on a 

moving target, the robot generated highly inefficient trajectories and reached areas outside of its 

cartesian position limits. Training on moving targets improved trajectories, but resulted with 

significantly larger worst-case errors. However, this issue can be addressed by adding local 

controllers to the training phase, improving the global policy’s performance. 

Key Words: human-robot handovers, fluency, human-robot interaction, physical human-robot 

interaction, robot eye gaze, non-verbal communication, manipulation planning, reinforcement 

learning. 
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Chapter 1. Introduction 

 Overview 

Until recent years, the traditional paradigm dominating human-robot interaction and collaborative 

robotics was keeping and operating robots in safety cages and separated from human operators. A 

recent review of the literature shows that this approach is increasingly being left behind, granting 

humans the capability to work alongside robots to complete various complex tasks (Magrini et al., 

2020; Robotics, 2019; Tantawi et al., 2019). 

One of the key challenges in these collaborative systems is coordination among the partners 

(Glasauer et al., 2010). Human-robot collaboration is often structured in a stop-and-go rigid regime 

of turn-taking operations inducing delays (Hoffman & Breazeal, 2009). For robots to become 

social or human-like in collaborative actions, robot-human interactions must reach a level of 

fluency, close to that of human-human interactions (Hoffman & Breazeal, 2007).    

Object handover is one of the essential skills required for a collaborative or assistive robot hence, 

it is important for robots to carry out handovers autonomously. Tasks such as surgical assistance, 

housekeeping, rehabilitation assistance, and collaborative assembly require a robot to give objects 

to a human (robot-to-human handover) and take objects from a human (human-to-robot handover). 

This seemingly simple action involves coordination in both time and space of hand movements, 

grip forces, body postures, and other non-verbal cues like eye gaze.  

There has been a constant growth of studies published regarding human-robot handovers over the 

year due to the importance and complexity of these tasks. This research focuses on two main gaps 

that remain understudied and unanswered. In the first part, with an agenda to excel robot's human-

like characteristics, we implemented non-verbal communication in human-robot handovers. In the 

second part, we focused on motion planning of the reach phase of handovers. We implemented 

and evaluated a robot controller that uses Guided Policy Search (GPS) algorithm to perform object 

handovers with humans. 
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 Background and problem description  

 Human-Robot interaction in industrial manufacturing 

The industrial robotics field is expanding the usage of industrial robots, which used to be mostly 

in safety cages, by developing human-robot collaborative systems (Kuo, 2020; Hentout et al., 

2019; Unhelkar et al., 2014; Duan et al., 2012). In order to achieve this goal, robots should be 

designed with attention to qualities such as flexibility and adaptability (Umbrico et al., 2020). 

Additionally, the robots should  have the ability to share work and time space with humans 

(Fitzgerald, 2013). These types of robots can be used for a variety of tasks in different industries 

as multi-purpose robots which will work collaboratively with human workers. Examples of those 

industries are assisting in the assembly of complicated objects or in the packaging of products with 

various sizes, weights and shapes (Cherubini et al. 2016; Tsarouchi et al., 2016). Rethink Robotics 

Sawyer and Baxter (Fitzgerald, 2013), and Panda (Franka Emika GmbH, 2020) robots are 

considered to be among the new robotic developments promoting this approach.   

According to recent HRI studies, humans tend to interact with computers in social ways ( Reeves 

& Nass, 1996; Sproull et al., 1996). Humanlike stimuli are more likely to evoke social responses 

than machinelike stimuli, because people have a propensity to seek an embodiment for intelligence 

and a social locus of attention (Cassell, 2001). In support of this argument, Sproull et al. (Sproull 

et al., 1996) showed that explicit humanlike cues such as a humanlike face presented on a computer 

screen as compared with a text-based computer led people to make stronger attributions of 

personality to the computer, present themselves more positively to it, and feel more relaxed and 

assured by the computer. These results suggest that humanlike cues provide a sense of presence 

and disambiguate what communicative channels are open to people (e.g., speech, gaze, facial 

expressions, gesture), making communication more fluent and allowing people to have a more 

certain mental representation of the computer (Kiesler, 2005). 

 Handovers 

A handover is a complicated collaboration. In order to transfer control of an object, actors are 

required to be coordinated in time and space. Handovers are an integral part of our day to day, for 

example: a caregiver bringing a patient a glass of water, a mechanic receiving a tool from his 

assistant, someone passing a bucket of water as part of a fire brigade, and a man on the sidewalk 

handing over a flyer to a busy passer-by. People rely on understanding the context of events and 
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communication cues with those around them for successful handovers. The situation that surrounds 

an action is called its context, it provides the knowledge for people on the ways to interpret others' 

behaviors and to know what to expect from others.  Through communication humans establish the 

what, when, and where/how of the handover. For example: the mechanic establishes the "what" 

by asking for a certain tool from his assistant and using context (the assistant is nearby) to expect 

a handover, when a caregiver and a patient exchange looks to establish the" when" they are ready 

to reach out and transfer the glass (Strabala et al., 2013). 

 Structure of the handover process 

The handover process comprises a physical channel and a social cognitive channel (Strabala et al., 

2013). The physical channel is subdivided into three distinct phases (Strabala et al., 2013). In the 

"approach" phase, both participants are heading towards each other. In the "reach" phase, both 

participants spread their arms to the estimated handover location, and in the "transfer" phase, the 

object is exchanged between the giver and the receiver, who then exit the joint activity. The social 

cognitive channel provides the context needed for a fluent handover to occur. For example, where 

and when the "transfer" phase will take place, and the establishment of the handover's object. 

Basili et al. (Basili et al.,  2009) showed that the three handover phases: approach, reach and 

transfer are dynamic actions that blend seamlessly into each other, rather than separate and 

consecutive actions. Nevertheless, researchers supporting a reductionist approach have analyzed 

the handover phases as three distinct phases to get a methodical understanding of the 

characteristics and actions of each phase. 

 Human-Human handovers 

Handovers are complex interactions, yet humans are capable of performing handovers seamlessly 

and without conscious thought (Roy & Edan, 2017) . This suggests that people share a common 

procedure that guides the handover interaction. Experiments conducted to examine how people 

hand over objects to each other (Strabala et al., 2013) revealed a structure consisting of carrying 

(approaching with the object), signaling a readiness to do a handover, and transferring the object. 

In 89% of the cases, the exact time when an actor starts reaching can be predicted from 

communication cues that the actor uses right before the act, meaning the communication between 

humans is so rich that signaling a readiness to do a handover can happen before either actor starts 
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reaching out. The experimenter reported that the cues came mainly from facial expressions, 

gestures, and eye movement. 

 Robot-to-Human handovers 

In order to understand the best way in which a robot should approach a human to initiate a 

handover, many studies have been conducted (Basili et al., 2009; Koay et al., 2007; Mainprice et 

al., 2012; Sayfeld et al., 2017; Someshwar et al., 2012, Someshwar, 2017). Basili et al. (Basili et 

al., 2009) examined the way a human giver, with the purpose of handing over an object, carries 

the object and approaches a human receiver. They noted that their findings could be transferred to 

a robot giver. Koay et al. (Koay et al., 2007) investigated the interaction when a robot hands over 

a can to a human, and specifically, human preference of robot coordination during these handovers. 

Preferences such as the preferable distance from the human receiver in which the robot should 

stop, and the direction of approach. In this study, the human receiver approached the robot, which 

was at a fixed position. Still, advice concerning the positioning of the robot is offered in the above 

studies. 

Others (e.g., Cakmak et al., 2011; Cakmak et al., 2011; Dehais et al., 2011; Edsinger et al., 2007; 

Huber et al., 2008) have shown that handover quality is affected by the route and the configuration 

or pose of a robot. Edsinger and Kemp (Edsinger et al., 2007) showed that subjects understood the 

robot's intention during a handover by the robot's approaching motion, even without vast 

knowledge in robotics or exact directions. Cakmak et al. (Cakmak et al., 2011) proved that 

handover intent also relies on handover poses. They showed that inadequately designed handover 

poses might fail to carry handover intent. Creating a distinct difference between the handing the 

object pose and the holding the object pose was their proposition to solve this issue. A different 

research (Cakmak et al.,2011) suggested a handover configuration that best conveys the handover 

intent. This configuration is composed along three Cartesian axes and includes an almost entirely 

extended arm with a persistently monotonic configuration of the distal tip of the object and the 

robot's elbow and wrist joint. Our work employed findings from the above studies in the design of 

our robot's handover trajectory and configuration. 
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 Gaze cues in social interaction 

During social interaction, people spend more time looking at others (an average of 61% of the 

interaction's time) than speaking (Argyle & Ingham, 1972). People study others' behavior by 

gazing at others and, particularly, by looking in their eyes region (Cook, 1977).  

The function of eye gaze in human social interaction is versatile. One can both perceive 

information from other humans, and signal to others using his gaze (Argyle & Cook, 1976; 

Cañigueral & Hamilton, 2019; Gobel et al., 2015; Risko et al., 2016). Simmel already stated that 

"the eye cannot take unless at the same time it gives." (Simmel, 1921). This is contrary to auditory 

modality, where we use our ears to hear, but our mouth to speak. This makes our eyes a powerful 

tool for social interactions, with a "uniquely sociological function" (Simmel, 1921). 

For any social interaction to be initiated and maintained, parties must establish eye contact. 

Through establishing eye contact, people form "an ecological eye-to-eye huddle" through which 

they signal each other that they agree to engage in social interaction (Goffman, 1963). Simmel 

(Simmel, 1921) describes this mutual behavior as "a wholly new and unique union between two 

people [that] represents the most perfect reciprocity in the entire field of human relationship". 

People are extremely sensitive to being looked at (Gibson & Pick, 1963). The detection of direct 

eye contact is a crucial element for survival, as it can manifest predator's intentions for an attack. 

That may explain the evolving human's sensitivity to it (Emery, 2000). A designated 'eye direction 

detector' in human's brain is postulated to support that kind of mechanism, according to 

neurophysiological proofs (Baron-Cohen, 1995). Human's decision-making manners were found 

to be influenced not only by pictures of eyes (Bateson et al., 2006), but also by imitated "eyespots" 

on a computer screen (Haley & Fessler, 2005). Pedestrians who engage drivers, using their gaze, 

have better chances to get stopped for on the road (Mutlu, 2009; Snyder, Grather, & Keller, 1974). 

The tight coupling between gaze behavior and many other aspects of social interaction has made 

the study of gaze behavior central to social psychology (Mutlu, 2009). Argyle and Cook argue, 

"Any account of social behavior which fails to deal with the phenomena of gaze is quite 

inadequate" (Argyle & Cook, 1976). 

 Controllers for human-robot handovers 

Handovers possess a substantial role in physical human-robot interactions. Following the 

realization of this concept, numerous studies regarding robot controllers for handovers have been 
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published. These controllers utilize various sensor interfaces, e.g., wearable devices, visual sensors 

and physical sensors (Leal & Yihun, 2019). Several methods for controlling the robot in the 

different handover phases exist today. For the handover's reach phase, robot controllers can be 

subclassified as either offline or online. Offline controllers determine the motion plan of the robot 

prior to the initiation of the reach phase without further adjustments during the reach phase. In 

comparison, online controllers take into consideration the perceived behavior of the human while 

continuously updating the robot's motion plan during the reach phase.  

 Guided policy search 

Reinforcement Learning (RL) is a subfield of machine learning. The RL methods let the agent use 

the rewards received in the interaction with the environment for learning the control policy (Du et 

al., 2021). In recent years, it has developed rapidly, achieving profitable results in sequential 

decision-making problems like robot learning (Kaelbling, 2020). Guided policy search (GPS) is 

one of the well-established RL methods developed over the years and is used in various robot’s 

manipulation (Chebotar et al., 2017; Levine et al., 2016; Levine et al., 2015; Levine & Abbeel, 

2014), and locomotion (Zhang et al., 2016; Levine & Abbeel, 2014;Levine & Koltun, 2013, Levine 

& Koltun, 2013b) tasks. 

The GPS (Levine et al., 2014; Levine et al., 2015; Levine et al., 2016) method employs trajectory 

optimization methods to instruct the optimization of neural network policy parameters without 

encountering the local optimal dilemma. The sample efficiency is enhanced by the trajectory 

optimization methods with learned dynamics. Benefitting from the great framework, GPS can 

employ a more general neural network to parameterize the policy, increasing its ability to express 

and generalize without damaging the data's efficiency (Du et al., 2021). 

Most of the commercial robots and custom-built robots’ dynamics are unknown, partly because 

these parameters may be difficult to obtain. One method to deal with this challenge is the 

implementation of system identification techniques to develop dynamical models. However, this 

requires extensive training data, notably for formulating global models of complex systems (Ibarz 

et al., 2021).  Hence, GPS is a data-efficient system that does not necessitate prior knowledge of 

the robot and environment dynamics, providing a promising approach for the handover task. 
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 Objectives 

This thesis investigates on two crucial issues in the collaborative task of human to robot object 

handovers. First, we examined the impact of robot's non-verbal communication on human's 

experience and fluency of human to robot handovers. Second, we develop and evaluate a robot 

controller based on reinforcement learning to perform a more natural sequential handover. 

The main objective of the first study of the research is to investigate how different eye gaze 

behaviors of a robot receiving an object from a human influence the perceived liking, 

anthropomorphism, and timing of the handover. The specific research objectives in this first study 

are to investigate: 

1. Human-Human joint-actions in handover tasks for developing H-R collaborative systems 

for handover tasks. 

2. Parameters affecting Robot-to-Human handover actions: 

• The robot's eye gaze pattern for better H-R team coordination and improved system 

productivity in handover tasks. 

• Investigate if the object size / fragility affects the user's ratings of the robot's gaze in a 

human-to-robot handover.  

• Investigate if the human-robot configuration affects the user's ratings of the robot's gaze 

in a human-to-robot handover. 

The second study in this thesis aims to implement and evaluate a robot controller that uses Guided 

Policy Search (GPS), a model-based reinforcement learning (RL) method to perform object 

handovers with humans. We investigate how does GPS perform with large variations in target 

locations, moving targets, with a physical robot and compare training in a simulation environment 

with training conducted directly on the physical robot. 

 Thesis overview 

The overall research methodology is depicted in chapter 2. The research includes two separate 

parts corresponding to two gaps in the handover process: implementing non-verbal communication 

in human-robot handovers (study 1, chapter 3), and motion planning of the reach phase of 

handovers (study 2, chapter 4). Conclusions and future research are discussed in chapter 5.  
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Chapter 2. Methodology 

The overall methodology is presented in this chapter. This includes the research questions 

regarding human-robot interaction during handover tasks. In the first study we examined what are 

the most frequent gaze behaviors in a human-human handover. Then, with the purpose of 

implementing these behaviors on a collaborative robot, we investigated whether and to what extent 

the user's preference of the robot's gaze, when it is receiving an object from the human, and is this 

dependent on the object size and type and on different human-robot configurations.  In the second 

study we developed a robot controller that uses Guided Policy Search (GPS) to perform object 

handovers and evaluated the effect of different training scenarios (simulation and physical robot) 

on performance. 

 

2.1 Study 1: Human Preferences for Robot Eye Gaze in Human-

to-Robot Handovers 

This study aims to investigate how the gaze behaviors of a robot, receiving an object from a human, 

affect the human's subjective experience of a handover. Details are provided in Chapter 3 and in 

publication J1.  Previous research that studied robot gaze behavior in human-to-robot handovers 

has only considered the receiver's "head gaze" behaviors in the "reach" phase and used only one 

particular object in one configuration (i.e., they only used a bottle of water as the object, and only 

considered situations in which the person was standing, Kshirsagar et al., 2020).  

In this study, gaze patterns for all three phases of the handover process: reach, transfer, and retreat 

were considered for different objects with a different type of giver-receiver configuration. First, to 

identify the most frequent gaze behaviors in a handover, a frame-by-frame video analysis of a 

public data-set of human-human handovers (Carfì et al., 2019) was performed. The database 

consists of over 1000 videos of object handovers with 18 volunteers, 10 objects, and several 

handover scenarios. The handover scenarios vary in terms of experiment type (volunteer-volunteer 

or volunteer-experimenter), role of the volunteer (giver or receiver), and starting position (with 

approach or without approach). For video analysis, we only considered the volunteer-volunteer 

handovers as these would be more natural. This yielded a total of 288 videos recorded at 8pfs with 

a resolution of 1280X720 pixels. These videos were analyzed for both the givers and receivers and 
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included a total of 18 people. We used video analysis even though the dataset contained motion 

capture data for participants' heads, as we found that gaze is often enacted only with the 

participant's eyes, without noticeable head-movement. Analysis of videos of human-human 

handovers provided three candidate gaze patterns that were implemented on the robot: 

1) Hand-Face: Initially look at the other person's face and then at the other person's hand. The 

duration of Hand gaze is 70% of the total duration of the handover.  

2) Face-Hand-Face: Initially look at the other person's face and then at the other person's hand 

and then back to look at the other person's face. 

The total duration of the handover is divided as follows: the first Face gaze (15%), the Hand 

gaze (55%), and then back again to Face gaze (30%). 

3) Hand gaze: Continuously look at the other person's hand.  

We performed two types of user studies (video and in-person) with a collaborative robot that 

exhibited these gaze behaviors while receiving an object from a human. The robot arm was 

autonomous and programmed to reach a predefined position once the handover began. The robot 

grasped the object when the object was close enough. Finally, the robot retreated to its home 

position after the human released the object and started to retreat.  

The system includes a robot arm receiving an object from a human, a distance sensor to detect the 

giver's movement, and an infrared proximity sensor placed on the robot arm to detect the object 

distance from the robot gripper. The sensors are controlled by an Arduino microcontroller. We 

used Rethink Robotics' Intera SDK to program the robot, and Robot Operating System (ROS) 

framework to connect all the components. Details of the Robotic system development are provided 

in Appendix A. 

To investigate the effect of object's size, object's fragility or the human's posture on human's 

preferences for the robot gaze, objects of different sizes (a small box and a large box), different 

fragility (a plastic bottle and a glass bottle) and different giver's posture (standing and sitting) were 

used. In order to examine people's perception about the fragility of these objects, we conducted an 

online survey. Details are provided in Appendix B. Ten different objects were used in the human-

to-human handovers videos, and three gaze patterns were received. Therefore, we chose to 

examine whether the type of objects affected the human preferences of robot gaze in human-to-

robot handovers. 
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We preformed statistical analysis using the one-sample Wilcoxon signed-rank tests, the Bradley-

Terry model, and also conducted Binary proportion difference tests and Equivalence tests1.  

A repetitive observation was attained in our open-ended responses regarding the preferred robot 

gaze (open-ended responses are presented in Appendix C). Participants favored the robot gaze 

perceived with the most human-like characteristics. This fact directed our search for additional 

ways to anthropomorphize our robot, generating a more intuitive human-robot interaction. After a 

thorough inspection of the literature, we found that other key components of HRI, which may 

influence humans, are the perceived naturalness and smoothness of the robot's movements. 

Therefore, we decided to pursue our second study regarding human-robot handover, implementing 

an online controller to produce reaching motion of the robot to further develop the acceptance and 

practical use of collaborative robots in the industry. 

 Study 2: Guided Policy Search for Human-Robot Handovers 

for Human-Robot Handovers in a Real-World Environment 

This study aims to evaluate the potential of a model-based RL method, Guided Policy Search 

(GPS), to train a robot controller for human-robot object handovers both in a simulation 

environment, and directly on a physical robot. Details are provided in Chapter 4.  

The controllers available nowadays for human-robot handovers necessitate precise robot 

kinematic/dynamic models. Moreover, tuning controller parameters which are non-intuitive, i.e., 

weights of movement primitives or velocity tracking gain, is required. To address these issues,  we 

used a "Guided Policy Search (GPS)" (Levine et al., 2014; Levine et al., 2015; Levine et al., 2016) 

to generate an online handover controller which does not necessitate tuning non-intuitive controller 

parameters or the robot's dynamic/kinematic models. Also previous research evaluating GPS for 

human-robot handover was merely conducted in a simulation environment, without 

implementation on a real robot (Kshirsagar et al., 2021). The application in a real-world context is 

important.  

                                                 

 

1 The equivalence test was added based on a request of a single reviewer of the IJSR paper; we are not convinced it 

should have been used in this type of rsearch. 
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We formulated the reach phase of a human-to-robot handover as a policy search problem. The 

system state representation consists of the robot's joint angles, joint velocities, object's positions 

and velocities, and the human's hand in relation to the robot end-effector, and load-share estimate 

(proportion of the weight of the object supported by the robot). The control input consists of 

torques applied to the robot's joints. We define a multi-modal cost function for the handovers task 

that rewards the robot's movement towards the human hand only if the human hand is moving 

towards the robot. 

We evaluated the controller with a physical robot while the training was conducted both in a 

simulation environment and directly on the physical robot. The physical robot used to perform 

handover reaching motions in a real environment was the Panda robot. Panda Robot is a sensitive 

and agile 7 DOF arm with torque sensors at each joint, allowing adjustable stiffness/compliance 

and advanced torque control. We used a physics engine called MuJoCo (Multi-Joint dynamics 

with Contact) (Todorov et al., 2012) to train the robot to perform handover reaching motions in 

simulation and then tested the policy in real environment on a Panda robot. The performance of 

the global policy was measured in terms of the error between the human hand's position and the 

end-effector's position. 

In the first experiment, we wanted to test the policy learnt in the simulation environment on the 

real robot. To do so, we tried to tune the MuJoCo model parameters to match the real robot 

parameters. It was proved to be an infeasible solution and did not achieve operational results. Thus, 

we decided to train the physical robot instead of a simulated robot, with a simulated target. 

In the second experiment, we trained and tested the real Panda collaborative robot to perform 

handovers over repeated trials for two scenarios: large variations in target locations and moving 

targets. We used recorded human hand motions in all training iterations during the training/testing 

process.  The region for training and testing was selected by trial and error to ensure that the robot 

does not run into joint position/velocity limits in the training/testing process. For each angle in 

5deg increments, we tested it on a grid of 3×3 targets, resulting in 90 test locations.  

The first research question examined in our study was how does the GPS perform for significant 

spatial differences between training and testing locations. We compared two scenarios of local 

controllers: one with 8 local controllers and another with 12 local controllers.  
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The second research question examined in our study was how does the GPS perform with moving 

targets. First, we used the global policy trained with static targets, but instead of a static tester, we 

used a recorded human reaching motion. In this case, the robot generated highly inefficient 

trajectories and reached areas outside of its cartesian position limits. To address this issue, we 

trained the robot with moving targets (recorded human reaching motions), and tested the policy on 

another set of recorded human’s reaching motions.  
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Chapter 3. Human Preferences for Robot Eye Gaze in 

Human-to-Robot Handovers 

Faibish, T., Kshirsagar, A., Hoffman G., Edan, Y. 2022. Human Preferences for Robot Eye 

Gaze in Human-to-Robot Handovers. International Journal of Social Robotics, 1-18. 
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Chapter 4. Implementation and Evaluation of  

Guided Policy Search for  

Robot Reaching Towards Moving Targets 

 Introduction 

This study evaluates and implements Guided Policy Search (GPS) on a robot controller to perform 

human-robot object handovers. Handovers play an essential role in the current use of collaborative 

and assistive robots alongside humans, for instance, in household chores, elderly care, 

collaborative assembly, and surgical assistance. Out of the three phases comprising a handover: 

reach, transfer and retreat (Kshirsagar et al., 2019), we focus on the first phase - the reach phase. 

In this phase, both participants spread their arms towards the handover location. Previous HRI 

studies have suggested several online (Kshirsagar et al., 2021; Yang et al., 2020; Kshirsagar et al., 

2019; Pan et al., 2019; Scimmi et al., 2019; Pan et al., 2018; Vogt et al., 2018; Zhao et al., 2018; 

Medina et al., 2016; Maeda et al., 2014; Bdiwi et al., 2013; Yamane et al., 2013; Micelli et al., 

2011) and offline ( Rasch et al., 2019; Peternel et al., 2017; Moon et al., 2014; Sisbot & Alami, 

2012; Cakmak et al., 2011;Cakmak et al., 2011b) controllers for the reach phase of handovers. 

Yet, these methods require precise robot's dynamics models and\or human kinematics models. 

Lately, Guided Policy Search (GPS) (Levine et al., 2014; Levine et al., 2015; Levine et al., 2016), 

a model-based reinforcement learning algorithm, has become the focus of interest for many 

researchers. The GPS algorithm has been used to learn controllers without known robot dynamics 

and showed encouraging success in several autonomous tasks (Levine et al., 2016; S Levine et al., 

2015; Levine & Abbeel, 2014), but with no human interaction. This method uses an iterative 

adaptation of local controllers, a dynamic model, and a global policy to optimize a policy over 

repeated trials, without prior knowledge of the robot dynamics. 

To the best of our knowledge, most GPS algorithms have been tested on autonomous manipulation 

(Chebotar et al., 2017; Levine et al., 2016; Levine et al., 2015; Levine & Abbeel, 2014), and 

locomotion tasks (Zhang et al., 2016; Levine & Abbeel, 2014;Levine & Koltun, 2013, Levine & 

Koltun, 2013b). No work has used GPS for HRI tasks, like object handovers on a real robot 

(Kshirsagar et al., 2021). GPS has also been used for learning manipulation tasks, i.e. placing a 

hanger on a bar, inserting shapes into a sorting cube, inserting a hammer underneath a nail, 
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screwing a bottle cap stacking small blocks, assembling toys, inserting rings on wooden pegs 

(Levine & Abbeel, 2014). The use of fixed targets, fixed robot dynamics, and small variations in 

the test locations is common to all GPS applications discussed above.  

An object handover task is different, requiring novel tools to handle it. First, it requires motion 

planning for a moving (non-fixed) target, i.e., the human's hand. Second, the robot dynamics is not 

fixed due to the diverse objects being handed over. Finally, the training target trajectories and the 

testing target trajectories could differ substantially when human's unpredictable behavior is taken 

into consideration.  

Prior research of this field included simulation testing with a robot arm substituting for the human, 

generating the variability and movement of the handover target location (Kshirsagar et al., 2021). 

Despite providing important insights, their application to a real-world environment is limited. In 

this work, we evaluated a robot controller that uses Guided Policy Search with a physical robot, 

with training conducted both in a simulation environment and directly on the physical robot.  
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 Related work 

In this section, we provide a brief summary of existing controllers for the reach phase of human-

robot handovers, and previous works using GPS. 

4.2.1 Human-Robot handover reach phase controllers 

Numerous offline or online controllers have been suggested for refining human-robot interaction 

during the reach phase of human-robot handovers. Offline controllers (Rasch et al., 2019; Peternel 

et al., 2017; Moon et al., 2014; Sisbot & Alami, 2012; Cakmak et al., 2011;Cakmak et al., 2011b) 

encompass a few disadvantages. Lack of adaptability is one distinct disadvantage. The robot's 

motion plan is computed before the reach phase initiation and does not update simultaneously to 

the changing human's actions during this phase. Therefore, offline controllers may not be desirable, 

in particular, if the human operator is preoccupied with other tasks and does not pay his/her 

undivided attention to the handover, thus, possibly resulting in an unsuccessful handover. We 

propose here an online controller that continuously updates the robot's motion plan throughout the 

reach phase while observing the momentary state of the human operator. 

The visual servoing approach, i.e., directing a robot towards the human's hand, is the simplest 

approach used in online controllers for the reach phase of handovers (Pan et al., 2018; Bdiwi et 

al., 2013; Micelli et al., 2011). This controller generates velocities proportional to the distance 

between the position of the human's hand and the robot's gripper, allowing it to continuously 

update the robot's motion plan. Other velocity profiles and motion planners have been used to 

direct the robot towards the predicted handover location. Pan et al. (Pan et al., 2019) attempted to 

achieve smooth minimum-jerk trajectories using Bézier curves. Scimmi et al. (Scimmi et al., 2019) 

applied a predefined smooth velocity profile. Kshirsagar et al. (Kshirsagar et al., 2019) investigated 

the possibility of specifying the robot's handover behavior by synthesizing handovers 

automatically. All of these controllers lack human effortlessness and fluency in motion.  

With the objective to imitate the reaching phase in human handovers, several online controllers 

have used various movements primitives, i.e., Dynamic Movement Primitives (DMPs) (Prada et 

al., 2014), Probabilistic Movement Primitives (ProMPs) (Maeda et al., 2014), and triadic 

interaction meshes (IMs) (Vogt et al., 2018). Other approaches have used human demonstrations 
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to implement the reaching phase in robots by using dynamical systems (Medina et al., 2016), look-

up tables (Yamane et al., 2013), or neural networks (Yang et al., 2020; Zhao et al., 2018). Some 

researchers have proposed reinforcement learning to learn online controllers for the reach phase 

from human feedback  (Kupcsik et al., 2018; Riccio et al., 2016). 

However, all these existent controllers require the robot dynamics. Dynamical parameters may be 

difficult to obtain for proprietary claimed commercial robots and custom-built robots. One 

possibility to address this challenge is the use of system identification methods and learning of 

dynamical models. However, this requires extensive training data as global and complex 

dynamical models need to be learned. On the contrary, GPS builds local control models, integrates 

them with a global policy trained by the local controllers through supervised learning, and is 

thereby data-efficient. 

4.2.2 Guided policy search for human-robot handovers 

Most of the existing controllers for human-robot handovers require precise robot 

kinematic/dynamic models. Moreover, many require controller parameters which are non-intuitive 

and difficult to tune, such as weights of movement primitives or velocity tracking gains. In 

contrast, "Guided Policy Search (GPS)" (Levine et al., 2014; Levine et al., 2015; Levine et al., 

2016) can be used to generate an online handover controller which does not require tuning of 

control parameters or the robot's dynamic/kinematic models. A few of the algorithm's compelling 

features include generalizability, sample efficiency, and local minima avoidance (Du et al., 2021; 

Kshirsagar et al., 2021). It combines learned local dynamic models with a global optimal control 

policy, and by the use of deep neural networks, it can generalize from local policies. 

4.2.2.1 Guided policy search 

Of the various Reinforcement Learning methods, policy search methods focus on discovering 

suitable parameters for a given policy parameterization (Deisenroth et al., 2013). Since policy 

search methods depend on trial and error to optimize their parameters, they are prone to get stuck 

in local minima, in particular, for policies with a large number of parameters. To address this issue, 

prior studies have suggested “Guided Policy Search”, a policy search method that allows the 

combination of supervised learning of the policy with local trajectory optimization. 

The first “Guided Policy Search” algorithm proposed by Levine and Koltun (Levine & Koltun, 

2013) was comprised of differential dynamic programming as a means to produce locally optimal 
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controllers which guided, with a large number of parameters, the supervised learning of neural 

network policies. They used demonstrations to initialize trajectories and applied importance 

sampling to generate new samples of optimized trajectories to each gradient step. They applied 

their method by learning locomotion tasks, for instance, walking, running, hooping and planar 

swimming. In order to combine policy search with trajectory optimization, Levine and Koltun 

applied in another study (Levine & Koltun, 2013b) variational decomposition of a maximum 

likelihood objective rather than using their previous importance sampling method. They proved 

that with respect to the previously considered locomotion tasks (like walking, running, hopping, 

and planar swimming), this method surpasses the importance sampling GPS method. Levine and 

Koltun (Levine & Koltun, 2014) utilized a policy agreement constraint for the guidance of policy 

search with trajectory optimization. To solve the constrained optimization problem, differential 

dynamic programming (DDP) and dual gradient descent was used. They showed that in 

comparison to their prior importance sampling and variational GPS algorithms, the constrained 

GPS algorithm yielded better results on the locomotion tasks. In addition, they were able to learn 

complicated tasks like walking on uneven terrain and bipedal push recovery. In all these GPS 

variants, knowledge of the system dynamics was required.         

In a subsequent study, Levine and Abbeel (Levine & Abbeel, 2014) suggested a method for 

trajectories optimization with unknown system dynamics. They used Levine and Koltun's (Levine 

& Koltun, 2014) constrained GPS algorithm and extended it by refitting locally linear dynamics 

models iteratively. They showed that their method required fewer samples compared to model-

free methods and eliminated the need to learn global models, which is challenging for complex 

systems. The method was evaluated by simulating robotic locomotion tasks, such as, swimming 

and walking, and robotic manipulation tasks, such as peg insertion. Levine et al. (Levine et al., 

2015) used the constrained GPS algorithm and adjusted it to study manipulation skills on a real 

robot with unknown dynamics. An adaptive scheme was added for choosing the number of samples 

and step size, and an augmentation method for policy training with synthetic samples. They 

performed various experiments with a PR-2 robot (a two-arm robotic system with 7 DOF in each 

arm), such as assembling toys, stacking Lego blocks, inserting a shoe tree, screwing bottle caps, 

and inserting rings on wooden pegs to demonstrate their algorithm. 

In another study, Levine et al. (Levine et al., 2016) provided an end-to-end algorithm using GPS 

to transform sensory input (raw images) into motor output (joint torques). They formulated the 
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constrained GPS algorithm as an instance of Bregman-Alternating Direction Method of Multipliers 

(BADMM). They examined their method on different tasks requiring visual and control close 

coordination, e.g., placing a hanger on a bar, inserting shapes into a sorting cube, inserting a 

hammer underneath a nail, and screwing a bottle cap. Zhang et al. (Zhang et al., 2016) enhanced 

the original GPS algorithm to form training data without disastrous failures by adding a model 

predictive control (MPC) scheme. During the training phase, they used an instrumented setup to 

gain full state observations and trained a deep neural network policy with samples produced by 

MPC. During the testing phase, partial system observations were sufficient for the policy to 

produce control inputs. They showed that their enhanced GPS algorithm with MPC was 

comparable to the original GPS algorithm without model errors. They also showed that the 

enhanced GPS algorithm exceeded the original one with the introduction of model errors. Chebotar 

et al. (Chebotar et al., 2017) provided another modification to the GPS algorithm. Rather than 

using the former iterative linear quadratic regulator (iLQR) to generate local controllers, they 

added a model-free local optimizer based on path integral (PI) stochastic optimal control. 

Furthermore, contrary to Levine and Koltun GPS algorithms, which generate training data by local 

controllers, Chebotar et al., ran global policy on new sets of task cases in each iteration to generate 

the training samples. They first configured the local policies using kinesthetic teaching and 

initialized the global policy by performing numerous standard GPS iterations with local policy 

sampling using PI. The algorithm performed better than iLQR-based GPS, on tasks which included 

intermittent and variable contacts (contacts at different changing spatial locations) as well as 

discontinuous cost functions.  
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As depicted in Fig. 1, the GPS algorithm alternates between generating optimal trajectories for 

each initial condition (local iLQR controllers) and training a global policy supervised by the local 

controllers. The global policy's role is to improve the local controllers, retaining them close to the 

global policy. This algorithm does not require knowledge of the dynamics model as it utilizes the 

training data with locally linear models to approximates the dynamics. 

Most GPS algorithms have been tested on autonomous manipulation (Chebotar et al., 2017; Levine 

et al., 2016; Levine et al., 2015; Levine & Abbeel, 2014), and locomotion tasks (Zhang et al., 2016; 

Levine & Abbeel, 2014;Levine & Koltun, 2013, Levine & Koltun, 2013b). A recently published 

study by Kshirsagar et al, evaluated the potential of GPS to train a robot controller for human-

robot object handovers (Kshirsagar et al., 2021) and explored the sensitivity of GPS to different 

state representations. Three different system state representation were investigated (FULL, 

RELATIVE, REDUCED). 

The full state representation consisted of the robot joint angles, the robot joint velocities, the human 

arm joint angles, the human arm joint velocities, the positions and velocities of three points on the 

Figure 1: Guided policy search algorithm. Iteratively updates the local controllers (local policies) 

and the global policy. The local policies serve as the “experts” for supervised learning of the 

global policy. The local policies are also updated to avoid drifting away from the global policy. 
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object, the human hand, and the robot gripper, and the robot gripper’s width. This study has shown 

that a policy trained with Relative state representation (does not include the human's joint angles 

and velocities from the state representation, and expressing the human hand's position and velocity 

in a reference frame attached to the robot gripper) has a better overall performance, and therefore 

we used the Relative state representation.  

They also showed that the use of GPS creates a global policy that does not perform well for target 

test locations that are spatially too distant from target training locations. This issue can be mitigated 

by adding local controllers trained over target locations within the high error regions. More 

efficient reaching trajectories can be obtained by training on moving targets, although it results in 

higher worst-case errors. Lastly, they found that changes in the robot's end-effector mass, inducing 

changes in robot dynamics, are well tolerated and adjusted by the global policy. In this study, 

training and testing was conducted in a simulated environment. In this thesis, we repeated the study 

on a physical robot and tested GPS for object handovers in a real-world context. To the best of our 

knowledge, GPS has not been applied to object handovers on a real robot (Kshirsagar et al., 2021). 

This gap has been addressed in this study.   
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 Policy search formulation of handover 

We start by briefly describing the GPS algorithm and then we formalize the handover task’s reach 

phase as a reinforcement learning problem.  

4.3.1 Guided policy search algorithm  

Policy search algorithms aim to discover a policy 𝜋𝜃(𝒖𝑡|𝑥𝑡) that will minimize the execution cost 

𝐸𝜋𝜃
[∑ 𝑙(𝑥𝑡, 𝒖𝑡)𝑇

𝑡=1 ] of the desired task. Here, 𝜃 indicates the policy parameters, for instance, the 

weights of a neural network. The system at time t is defined by state 𝑥𝑡  (for example, the joints 

angles, joints velocities, end-effector angles, end-effector velocities, and object’s positions), 

control inputs 𝒖𝑡  (for example, motor torque commands) and a cost function (𝑥𝑡, 𝒖𝑡).  

When trying to solve this minimization problem using reinforcement learning, large amounts of 

training data are required, and the algorithm is susceptible to local minima. Guided policy search 

algorithms surmount these concerns by using "local" controllers 𝑝𝑖(𝒖𝑡|𝑥𝑡) (guiding distributions) 

to train a "global" policy 𝜋𝜃(𝒖𝑡|𝑥𝑡) through supervised learning. The training of local controllers 

could be via trajectory optimization methods like iLQR. Hence, GPS is formulated in terms of a 

constrained optimization problem, given by 

𝑚𝑖𝑛𝑝,𝜃 𝐸𝜋𝜃
[∑ 𝑙(𝑥𝑡, 𝒖𝑡)]   𝑠. 𝑡    𝑝(𝒖𝑡|𝑥𝑡)𝑇

𝑡=1 = 𝜋𝜃(𝒖𝑡|𝑥𝑡)  ∀𝑡    (1), 

where 𝑝(𝒖𝑡|𝑥𝑡) is a guiding distributions mixture 𝑝𝑖(𝒖𝑡|𝑥𝑡). The cost is minimized  with respect 

to 𝑝(𝜏) = 𝑝(𝑥1) ∏ 𝑝(𝑥𝑡+1|𝑥𝑡 , 𝒖𝑡)𝑇
𝑡=1 𝑝(𝒖𝑡|𝑥𝑡) over trajectories  𝜏 = {𝑥1, 𝒖1, … , 𝑥𝑇 , 𝒖𝑇} with 

dynamic model of the system given by 𝑝(𝑥𝑡+1|𝑥𝑡 , 𝒖𝑡). 

As Section 4.2.2 details, few GPS algorithm variants require knowledge of the robot dynamic 

models, whereas others, iteratively learn locally linear dynamics models using training data. In 

this study, we use an algorithm introduced by Levine et al. (Levine et al., 2016), which does not 

require knowledge of the robot dynamics and uses the Bregman-Alternating Direction Method of 

Multipliers (BADMM). This algorithm represents the local controllers 𝑝𝑖(𝒖𝑡|𝑥𝑡) and the dynamics 

𝑝𝑖(𝑥𝑡+1|𝑥𝑡 , 𝒖𝑡) as linear, time-varying Gaussians:    

 

𝑝𝑖(𝒖𝑡|𝑥𝑡) = 𝒩(𝑲𝑡,𝑖𝑥𝑡,𝑖 + 𝒌𝑡,𝑖, 𝑪𝑡,𝑖),       (2) 

𝑝𝑖(𝑥𝑡+1|𝑥𝑡 , 𝒖𝑡) = 𝒩(𝑓𝑥𝑡,𝑖𝑥𝑡 + 𝑓𝒖𝑡,𝑖𝒖𝑡 + 𝑓𝑐𝑡,𝑖𝑭𝑡,𝑖).      (3) 
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These type of controllers may serve as an appropriate choice for guiding distribution optimization, 

as they can be efficiently learned, using a small number of real-world samples. For each training 

target trajectory (in our case: the reach motion of the human), a different set of controller and 

dynamics parameters are suited. However, all of the local controllers supervise a single global 

policy, making it generalizable to various test target trajectories. To make the constraint in (1) 

tractable, Levine et al. (Levine et al., 2016) proposed modifying the constraint  by multiplying 

with 𝑝(𝑥𝑡) and applying it to expected action:  

𝑚𝑖𝑛𝑝,𝜃 𝐸𝑝[∑ 𝑙(𝑥𝑡, 𝒖𝑡)]   𝑠. 𝑡    𝐸𝑝(𝒖𝑡|𝑥𝑡)[𝒖𝑡] 
𝑇

𝑡=1
= 𝐸𝑝(𝑥𝑡)𝜋𝜃(𝒖𝑡|𝑥𝑡)[𝒖𝑡]   ∀𝑡   .    (4) 

The GPS algorithm alternates between training a global policy supervised by the local controllers 

and generating optimal trajectories for each local controller using iLQR. Additional use of the 

global policy is to improve the local controllers, so that the local controllers stay close to the global 

policy. Thus, GPS alternates minimization of 𝜃 and 𝑝 as follows: 

𝜃 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ∑ 𝐸𝑝(𝑥𝑡)𝜋𝜃(𝒖𝑡|𝑥𝑡)[𝒖𝑡
𝑇𝜆𝜇𝑡] +

𝑇

𝑡=1
𝑣𝑡𝐸𝑝(𝑥𝑡)[𝐷𝐾𝐿(𝑝(𝒖𝑡|𝑥𝑡)||𝜋𝜃(𝒖𝑡|𝑥𝑡))],    (5) 

𝑃 ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑃 ∑ 𝐸𝑝(𝑥𝑡,𝒖𝑡)[𝑙(𝑥𝑡, 𝒖𝑡)] − 𝒖𝑡
𝑇𝜆𝜇𝑡] +

𝑇

𝑡=1
𝑣𝑡𝐸𝑝(𝑥𝑡)[𝐷𝐾𝐿(𝜋𝜃(𝒖𝑡|𝑥𝑡)||𝑝(𝒖𝑡|𝑥𝑡))],    (6) 

𝜆𝜇𝑡 ← 𝜆𝜇𝑡 + 𝛼𝑣𝑡(𝐸𝑝(𝑥𝑡)𝜋𝜃(𝒖𝑡|𝑥𝑡)[𝒖𝑡] −   𝐸𝑝(𝑥𝑡)𝑝(𝒖𝑡|𝑥𝑡)[𝒖𝑡]),    (7) 

where 𝜆𝜇𝑡 is the Lagrange multiplier on the expected action at time 𝑡, 𝑣𝑡 is the weight of the 

Kullback–Leibler divergence term that serves to keep 𝑝(𝒖𝑡|𝑥𝑡) close to 𝜋𝜃(𝒖𝑡|𝑥𝑡). For a more 

comprehensive description of GPS algorithms, see (Levine et al., 2016) 

4.3.2 System state representation 

As discussed in Sec. 4.2.2.1 we used the Relative system state representation (Kshirsagar et al., 

2021). The Relative state representation consists of the robot joint angles 𝜃𝑟, the robot joint 

velocities 𝜃𝑟̇, the positions and velocities of the object in the robot end-effector frame (𝑝𝑜
𝑟 , 𝑝̇𝑜

𝑟),  

the positions and velocities of the human hand in the robot end-effector frame (𝑝ℎ
𝑟 , 𝑝̇ℎ

𝑟): 

𝑥𝑡 = [𝜃𝑟 , 𝜃𝑟̇ , 𝑝𝑜
𝑟 , 𝑝ℎ

𝑟 , 𝑝̇𝑜
𝑟 , 𝑝̇ℎ

𝑟]𝑡,    (8) 
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The robot’s control input 𝑢𝑡 consists of the robot joint torques 𝜏 and the force applied by the 

gripper’s actuator 𝑓𝑔, constrained by 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑡 ≤ 𝑢𝑚𝑎𝑥:  

𝑢𝑡 = [𝜏, 𝑓𝑔]𝑡.     (9) 

To consider the robot's dynamics we used torques rather than a kinematic model in terms of 

velocities or positions as control inputs.  By that, the need for tuning low-level position/velocity 

controllers is eliminated. Moreover, position or velocity controllers might apply considerable 

impact forces on the human., and thus, endanger human safety.  

4.3.3 Cost function 

The task of the robot (moving its gripper towards the human's hand in the reach phase of 

handovers) is described in terms of the following cost function: 

𝑐𝑟𝑒𝑎𝑐ℎ = [‖𝑝𝑟 − 𝑝ℎ‖ 2  + ln (‖𝑝𝑟 − 𝑝ℎ‖ 2 + 𝛼𝑟𝑒𝑎𝑐ℎ)],     (10) 

where 𝑝𝑟 is the position of the robot and 𝑝ℎ is the position of the human hand. This cost function 

penalizes and encourages the robot according to the following conditions: This cost function first 

penalizes the robot for spatial distance from the human's hand. Second,  it encourages the robot 

for accurate placement owing to its concave shape, as described in (Levine et al., 2015). In other 

words, this cost function encourages the robot to quickly and accurately reach the human's hand. 

𝛼𝑟𝑒𝑎𝑐ℎ is the parameter that determines the penalty in the target's surroundings. As in Levine et al. 

(2015), we set 𝛼𝑟𝑒𝑎𝑐ℎ = 1𝑒 − 5 (Sec. 4.5).  
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 Implementation 

To evaluate a robot controller that uses Guided Policy Search with a physical Panda (Franka 

Emika) robot, we train a collaborative robot to perform handover reaching motions, in both a 

simulation environment (sim-to-real) and directly on the physical robot (real-to-real) over repeated 

trials. 

 MuJoCo simulation environment  

We build upon the BADMM-GPS implementation by Finn et al. (Finn et al., 2016) and Kshirsagar 

et al. (Kshirsagar et al., 2021). The collaborative robot in the handover task is simulated in MuJoCo 

(Multi-Joint dynamics with Contact) (Todorov et al., 2012). MuJoCo is a physics engine aiming 

to facilitate research and development where fast and accurate simulation is needed. MuJoCo 

provides a unique combination of speed, 

accuracy and modeling power. MuJoCo was 

used to train the robot in simulation. We 

imported the Panda URDF file to MuJoCo in 

order to simulate the Panda robot. 

Fig. 2 shows the MuJoCo simulation 

environment was built for the previous study 

(Kshirsagar et al., 2021), and used for this 

study. Fig. 2 shows a Panda robot with 7 

degrees-of-freedom (DOF), equipped with a 

two fingered gripper. The environment also 

includes a pseudo-robot arm with two DOF 

and a mass rigidly attached to its end-

effector, substituting the human operator. 

 

 

 

 

Figure 2: MuJoCo (Multi-Joint dynamics with Contact) 

simulation environment for human handover tasks. A 

Panda robot (right) was trained in simulation on 

reaching movements in a human-to-robot handover task. 

The human operator is represented by a pseudo-robot 

(left). 
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 The Panda robot 

We trained a Panda robot (Fig. 3) to perform handover reaching motions. The Panda Robot is a 7 

DOF anthropomorphic arm with torque sensors at each joint, allowing adjustable 

stiffness/compliance and advanced torque control. It weighs 17.8 kg, has a payload of 3 kg, a reach 

of 855 mm and a workspace coverage of 94.5%. 

We used a Panda robot as it facilitates to conduct research due to its add-on Franka Control 

Interface (FCI), allowing to study control and motion algorithms, grasping strategies, interaction 

scenarios and machine learning, FCI allows a fast low-level bidirectional connection to the robot’s 

arm and hand. The FCI provides the current status of the robot and enables its direct control  at a 

rate of 1kHz (Franka Emika GmbH, 2020). 

libfranka is a C++ software library that implements the client-side interface of the FCI, i.e. the 

drivers implementing the 1 kHz UDP-based communication with the robot. It also gives access to 

the robot model library, which provides the kinematic and dynamic model of the robot. franka_ros 

connects Panda with the entire ROS ecosystem. It integrates libfranka into ROS Control, and 

includes URDF models and detailed 3D meshes of the robot and end-effector for visualization 

(e.g. RViz) and kinematic simulations. 

In the beginning of our training attempts, the robot was fixed 

to a table. Then, in an attempt to reach the object, during one 

of the training sessions, the robot bumped into the table and 

took a hit that caused a permanent offset in the torque sensing 

module of joint six (which affects the torque sensing 

capabilities and control of the arm). We had to use another 

robotic arm, since Franka-Emika did not offer a repair service 

for the arm. To avoid such situations in the future, we 

designed a different mount for the robot as shown, in Fig 3. A 

plate that was attached to the robot’s base and mounted on a 

pillar fixed to the floor. Hence, the robot had no possibility to 

crash. 

Figure 3: Panda robot developed by 

Franka-Emika connected to a designed 

floating position. 
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 OptiTrack motion tracking system 

The OptiTrack motion tracking system was used to track the positions of the human’s hand and 

the robot end effector. Since it is not practical to have a human trainer/tester perform exactly the 

same handover motion in all training/testing iterations, we use recorded human hand motions 

during the training process.  The OptiTrack system used 8 multiple synchronized 2D cameras in 

our setup (Fig. 4), capturing images of reflective markers. To compute the markers’ 3D positions 

these 2D positions are superimposed and triangulation is used. The mocap_optitrack ROS package 

was used to stream OptiTrack mocap data to tf. 

This package contains a node that translates 

motion capture data from an OptiTrack rig to tf 

transforms, poses and 2D poses. The node 

receives packets that are streamed by a NatNet 

compliant source, decodes them and broadcasts 

the poses of configured rigid bodies as tf 

transforms, poses, and/or 2D poses.  

 

 Robot operating Ssystem 

The Robot Operating System (ROS) was used. ROS is a collection of tools, code libraries, and 

protocols providing a flexible framework for writing robot programs (Casañ et al., 2015). It offers 

a messaging interface that allows communication between different code elements. The topic 

interface is anonymous and asynchronous, allowing fast and convenient data transfer and 

processing. 

In this project, ROS was used to operate the Panda robot and to get messages from the OptiTrack 

motion tracking system. We used the distributed computing capabilities of ROS and ran different 

ROS packages/nodes on different machines as shown in Fig 5. 

Figure 4: Diagram of the setup for the experiments. 

Our setup consisted of Panda robot and OptiTrack 

motion tracking system with 8 cameras. 
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Figure 5: Distribution of ROS nodes across different computers and 

connections between them using ROS topics 
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 Guided policy search suite 

The BADMM-GPS implementation used in this thesis work was written by Chelsea Finn (Finn et 

al., 2016), at that time a researcher in Levine’s group. The addition of a ROS controller and GPS 

agent for a KUKA robot was developed by Jack White (White, 2018). Using Jack White's 

additions, we added an interface for the Panda robot. 

 GPS agent 

In Finn's GPS implementation, the agent is the central component. Following loading up of the 

experimental configuration, the agent handles the running of the general policy training, the local 

policy generator/optimizer, and communicates with the controller. An agent class, stemming from 

Finn's base class, must be composed to communicate with the controller (to transmit actions to the 

controller and accept the state's transmission from the controller). However, selecting a controller 

(and robot or another process) fully depends on the user. 

In the case of the Panda robot (similarly to the KUKA by Jack White), ROS topics are used to 

transmit and receive these quantities. Therefore, the agent must register as a ROS node and 

establish publishers for the GPS commands. The GPS sends to the robot the following commands: 

• Get data: sends a request to the controller for the latest state and expects a response 

• Relax arm: tells the controller to stop sending torques to the robot 

• Reset arm: tells the controller to return the robot to the initial position specified for this 

round of trajectory optimizations—does not expect a response 

• Trial command: sends the controller a policy and expects the return of a trajectory. 

The GPS agents, implemented for different robots, vary merely in the communication method 

between the controller and the agent. In Panda's agent (similarly to the KUKA by Jack White), the 

only difference from the PR-2 controller was that this agent did not send commands to the passive 

arm and did not expect replies from the passive arm (as a part of general updates) since that the 

Panda and the KUKA are one-armed robots as opposed to the two-armed PR-2 robot. 

 GPS controller 

In the context of the GPS algorithm, the GPS controller serves as an interface between the different 

kinds of robots or another conceptual control layer and the GPS agent. The controller created by 

Finn, named RobotPlugin, is a complex base class written in C++. Since this base class does not 
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have any prior knowledge of the robot, or the hardware abstraction that will be used, separate 

classes, instantiated in RobotPlugin, abstract components in the following ways: 

• Sensors: 

o The sensors are responsible for abstractions of physical state sensors, e.g., the states 

of the joints arriving from the robot (the robot joint angles, the robot joint velocities) 

• Controllers: 

o Trial controller - commands the robot to perform sequential trials and return a set 

of trajectories. 

o Position controller - commands the robot to rest by an in-built PID controller. 

Finn's software remained partially completed, regardless of the efforts invested in abstraction. The 

most notable gap is rooted in the fact that the RobotPlugin class assumes two physical robots. This 

assumption is made because it was originally implemented on a PR-2 robot, which has two arms. 

An actual PID controller runs on one arm and trial torques are sent, whereas, on the other arm, a 

dummy PID controller runs and no torques are sent. PID controllers and torque commands are 

required for any ROS controller derived directly from RobotPlugin. 

In the suite provided by Finn is a derivative C++ class of RobotPlugin, called PR2Plugin, 

specifically designed for the PR-2 robot. Instead of managing two instances of a one-arm 

RobotPlugin class, RobotPlugin contains the code for two arms and PR2Plugin merely extends 

this with more PR-2-specific code.  Directly inheriting the RobotPlugin class for a single robot 

arm is not possible due to the use of two arm trial controllers. Trying to implement GPS for a 

KUKA LWR4+ robot, Jack White implemented one arm based code by writing a new GPS 

controller, which is based on the PR2Plugin class and derived from the RobotPlugin class. He 

added an intermediate class, SingleArmPlugin, between RobotPlugin and KUKALWRPlugin to 

feed the variables related to the passive trial arm from the RobotPlugin class and to force it to not 

expect updates. We use the same GPS controller as in Jack White’s work, but modify it to work 

with the Panda robot and OptiTrack motion capture system. The structure of our Panda controller 

is depicted in Fig. 6. Our full experimental configuration is described in Appendix D. The changes 

are summarized below: 

1. Tune PID parameters- A PID joint position controller is used to reset the arm before beginning 

the GPS trial/test. The controller commands the robot to move to a predefined position, defined 
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in terms of the joint angles. The ``proportional’’ part of the controller applies control input 

proportional to the error between the current position and the target position. The ``integral’’ 

part of the controller applies control input depending on the integration of error between the 

current position and the target position. The ``derivative’’ part of the controller applies control 

input depending on the difference between the derivatives of the current position and the target 

position. The default parameters of this PID controller did not work with the real Panda robot. 

With the default parameters, the robot’s joints did not move at all, only the tip joint would 

barely turn.  We tuned the PID parameters to work with the Panda robot (Table 1). A large 

variety of different PID parameters were tried, but the integral and derivative gains had little 

effect. Making the proportional gain too high resulted in the robot crashing or abruptly halting 

as it exceeded the joint velocity limits.  

Table 1: PID parameters before and after changes 

Joint 

Number 

LWR Values [Jack White reference] Panda Values 

P I D I_clamp P I D I_clamp 

Joint 1 2400 0 18 4 6 3 3 1 

Joint 2 1200 0 20 4 6 3 3 1 

Joint 3 1000 0 6 4 6 3 3 1 

Joint 4 700 0 4 4 6 3 3 1 

Joint 5 300 0 6 2 2.5 1 1 1 

Joint 6 300 0 4 2 2.5 1 1 1 

Joint 7 300 0 2 2 2.5 1 1 1 

 

2. Tune the initial local controllers- The initial local controllers used in the GPS training process 

are linear gaussian controllers which try to hold the robot’s initial position. The initial 

controller gains are computed with LQR, defined by the parameters described below. It is 

important to initialize these parameters to ensure that the robot starts the learning process while 

maintaining stability. The default parameters used in Finn’s code for PR-2 or Jack White’s 

code for LWR did not work with the Panda robot. With these parameters, the robot did not 
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move at all. The initial controller values that worked with the Panda robot were obtained by 

trial-and-error (Table 2).  

a. Robot joint gains: - A vector of scalar gains, one for each torque/joint of the robot. 

These are used to guess the initial dynamics of the robot by LQR.  The initial local 

controllers are extremely sensitive to these gains; a too high gain leads to exceed the 

joint limits, whereas  a too low gain prevents the joint from moving at all. 

b. Initial variance, stiffness, stiffness velocity– These three values are used to compute 

the Hessian of the loss with respect to trajectory at a single timestep. The initial variance 

affects the state-space explored by the robot in the initial training step. A higher initial 

variance results in larger explored state-space but with higher control inputs, which 

might exceed the joint limits in some cases causing the robot to halt. A lower initial 

variance results in smaller control inputs, but also a smaller explored state-space 

causing the robot to not learn the task.  

Table 2: Initial controller values of PR-2, LWR, Panda robots. 

Parameter PR-2 LWR Panda 

Joint 1 gain 3.09 24 0.1 

Joint 2 gain 1.08 12 0.1 

Joint 3 gain 0.393 10 0.1 

Joint 4 gain 0.674 7 0.1 

Joint 5 gain 0.111 3 0.001 

Joint 6 gain 0.152 3 0.001 

Joint 7 gain 0.098 6 0.001 

Initial variance 1 30 0.5 

Stiffness 0.5 60 1.0 

Stiffness velocity 0.25 0.25 0.5 
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3. Use Franka HW interface (franka_ros ROS package) instead of LWR HW interface (kuka_lwr 

ROS package)  

4. Feed OptiTrack data to FrankaPlugin through ROSTopic sensor abstraction of GPS controller 

5. Replace the former PC with a more powerful PC for controlling the robot- during our 

implementation trials of the GPS algorithm on the real Panda robot (Fig. 2), we encountered 

communication constraints violation errors. To overcome these, we tried replacing the network 

(network speed was 1000Mb/s) and the networks cables, but without success. Then, we tried 

using a local network (with no internet communication), which also had no effect, and also ran 

all the network tests, which showed no network issues. Finally, according to a consultation 

with the Franka support team, we replaced the PC with a more powerful PC (with an upgraded 

CPU. Further details are attached in Appendix E), which solved the communication constraints 

violation errors. 

6. Clamp the torques- following plenty of trials and errors, we realized that the torques sent to 

the robot's joints needed to be limited to a maximum range to work without velocity or joint's 

position violation errors. First, we tried implementing penalization for out-of-limits velocities 

and torques, but with no success; The torques generated by the local controllers remained high. 

Therefore, we created a clamp function to limit the torques to a range of [-3,3] and added it to 

the trial controller class before the torques were sent to the robot's joints. 

7. A new report ROS publisher- we re-encountered communication problems with the initiation 

of the training phase. These problems were manifested by sudden stops of the robot's 

movement during the training process. After substantial debugging efforts, we realized that the 

robot did not receive the published result of a trial of completion, sent from the real-time report 

ROS publisher (RobotPlugin). To address this issue, we wrote a non-real time ROS publisher 

which replaced the real-time report publisher written by (Finn et al., 2016). 
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Figure 6: The structure of a Panda controller similar to LWR controller of (White, 2018). 
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 Evaluation 

We evaluated the performance of a robot controller that uses Guided Policy Search on a physical 

robot. Training is conducted both in a simulation environment and directly on the physical robot. 

The performance of the global policy was measured by calculating the error between the end-

effector's position and the human hand's position at the last time step. To do so, we conducted two 

experiments:  

 Sim-to-Real  

In the first experiment, we trained the Panda robot to perform handovers over repeated trials in a 

simulation environment and tested it on a real Panda robot on novel target trajectories. We found 

that the policy trained in simulation could not be transferred to the real robot, because the 

simulation model of the robot is different from the real robot in three ways: 

1. Torques and joints velocity limits. Limited torques can be generated on the real robot 

(for joints 1-4: −87[𝑁𝑚] ≤ 𝜏 ≤ 87[𝑁𝑚] and for joints 5-7: −12[𝑁𝑚] ≤ 𝜏 ≤ 12[𝑁𝑚]). 

The learned global policy in simulation generated very high torques (hundreds and even 

thousands Nm), and thus, could not be tested on the real robot. To reduce the torques 

computed in the simulation, we tried the following: 

• add to the cost function a penalization term for out of limit velocities and out of 

limit torques. The torques were reduced slightly but not enough to run the global 

policy on the real robot. 

• clamp the torques before the torques were sent to the robot's joints. In that case, the 

robot could not learn at all and barely moved from its initial position. 

2. Robot mass.  When the mass of the robot in the MuJoCo model was set the same as the 

mass of the real robot, MuJoCo required much higher values of joint torques to move the 

robot. One possible explanation is that the joint damping values in MuJoCo model were 

different from the real robot. We tried to scale down the mass of the MuJoCo model, but 

unfortunately, without success in improving the learning process in simulation. If the mass 

is too low, the robot overshoots the target (the robot arm seems like flying), and if the mass 

is high, the robot barely moves from its initial position. In both cases, the robot did not 

learn at all. 
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3. Damping values. As described above, the joint damping values in MuJoCo model were 

different from the real robot. The correct values were not provided by Franka-Emika. We 

tried to tune the damping to improve the MuJoCo model. If the damping values are too 

low, less friction acts on the joints and the robot does not hold its initial position and falls 

down. For high damping values, the robot does not move much. 

Overall, tuning the MuJoCo model parameters to match the real robot parameters proved to be 

an infeasible solution. Thus, we decided to train the physical robot instead of a simulated robot, 

with a simulated target.  

 

 Real-to-Real 

In the remaining text, we denote the Panda robot the “learner”, and the human is denoted as the 

“trainer” when we are in the training phase or the “tester” when we are in the testing phase. 

In the second experiment we train and test the real Panda robot to perform handovers over repeated 

trials for two scenarios: large variations in target locations and moving targets. Since it is not 

practical to have a human trainer/tester perform exactly the same handover motion in all training 

iterations, we use recorded human hand motions during the training/testing process.  

The first research question examined in our study is the spatial generalizability of the learned 

global policy, i.e., how does the global policy perform for significant spatial differences between 

training and testing locations.  

To answer this question, we tried to test the learnt global policy at different locations of a static 

tester on a region around the learner robot, as shown in Fig. 7.  The dimensions of the region are: 

Inner radius= 700 mm, Outer radius = 800 mm, Min height = 200 mm, Max height = 250 mm, 

Min angle = 0 º, max angle = 45º, measured from the robot’s base. This region was selected by 

trial and error to ensure that the robot does not run into joint position/velocity limits in the 

training/testing process. For each angle in 5deg increments, we test on a grid of 3×3 targets, 

resulting in 90 test locations. We compared two scenarios of local controllers: one with 8 local 

controllers and another with 12 local controllers.  The global policy was trained with these local 

controllers for 11 iterations. Both the learner and the trainer/tester commenced their movement in 

each trail simultaneously. The learner's movement lasted 5 seconds, while the trainer/tester's 

movement lasted 1 second (which corresponds with the movement duration of humans in the reach 
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phase of a handover). The test performance is measured as the mean error between the learner's 

gripper position and the tester's hand position over the last time step of each trial. 

(a) (b) 

Figure 7: The training and testing region for: (a) 8 local controllers, and for (b) 12 local controllers. The 

yellow circles represent the initial 8 training locations, and the orange circles represent the additional 4 

training locations that were located in a vertical plane dividing the workspace. This region was selected by 

trial and error to ensure that the robot does not run into joint position/velocity limits in the training/testing 

process. 

The performance of the learned global policy is presented in Fig. 8(a). The black circle represents 

the learner's gripper's initial position, and the black squares represent the training locations. Mean 

error, range, and standard deviation are presented in Fig. 9 (left). The mean testing error (41.71 

mm) is about twice as large as the mean training error (22.67 mm). As the test error can be reduced 

by adding more local controllers (Kshirsagar et al., 2021), we added 4 additional local controllers. 

They were located in a vertical plane dividing the workspace (Fig. 8(b)). The mean and standard 

deviation of the testing error of the global policy, trained with 12 local controllers, was reduced to 

29±18 mm. 

Next, we investigated how GPS performs when the target is moving. First, we used the same global 

policy shown in Fig. 8(a) (static training), but instead of a static tester, we used a moving target 

encoded in a recorded human reaching motion. The final position of the motion was in a region 

similar to the one shown in Fig. 7. The robot generated highly inefficient trajectories and reached 

areas outside of its Cartesian position limits, and thus, could not execute these trajectories.  
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A possible way to address this issue, as found in our previous study (Kshirsagar et al., 2021), is to 

train the controller with a moving target. We trained the robot with recorded human reaching 

motions, and tested the policy on another set of recorded human reaching motions. Some samples 

of these reaching motions are shown in the video attachment. Figures 8(c) and 8(d) show the 

performance of the global policy for various final positions of the tester's gripper, defined as in 

previous trials. Fig. 9 (right) shows error distributions. 

For the global policy trained with a moving trainer and 8 local controllers (Fig. 8(c)), the mean 

testing error is 124.28 mm. Although the test errors are high as compared to the static tester 

scenario, the robot stayed within the joint and Cartesian limits. Moreover, the variance over target 

location is high, and the worst-case error is 791.11 mm, 442% higher than the maximum error for 

static tester condition (179 mm). Surprisingly, this maximum error occurred for a test motion close 

to one of the training motions. This could be attributed to the highly non-linear nature of the global 

policy. Interestingly, GPS did not converge to a low training error, which was 123.23 mm, 544% 

higher than for static training (22.67 mm). Training the global policy with a moving trainer and 12 

local controllers (Fig. 8(d)), reduced the mean testing error to 37.93 mm. The worst-case error also 

improved (138.71 mm). An inspection of the generated trajectories and torques shows that this 

approach results in trajectories and torques similar to those achieved with static targets. 

Distributions of training and testing performance for each target scenario are presented in Fig. 9. 

Each point is the mean error between the learner's gripper position and the tester's hand position 

over the last time step of a trial. Error bars show one standard deviation around the mean of each 

distribution. 
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(a) Static Trainer (8 Local Controllers), Static Tester (b) Static Trainer (12 Local Controllers), Static Tester  

(c) Moving Trainer (8 Local Controllers), Moving Tester  (d)  Moving Trainer (12 Local Controllers), Moving Tester 

Figure 8: Global policy evaluation for different types of trainers and testers. The black circle represents the 

learner's gripper's initial position, and the black squares represent the training locations. In the ‘static’ 

case, the trainer/tester stays in a fixed configuration.  In the ‘moving’ case, the trainer/tester moves with a 

human-like trajectory (that were recorded in advanced) and reaches the locations given by colored dots. 

Thus, each point corresponds to the final position of the tester's gripper in a trial. Error between the 

learner's gripper position and the tester's gripper position is calculated over the last time step of each trial. 
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Figure 9: Distributions of training and testing 

performance for each target scenario. Each point is the 

mean error between the learner's gripper position and the 

tester's hand position over the last time step of a trial. 

Error bars show one standard deviation around the mean 

of each distribution. 
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 Conclusions and future work 

Our work evaluated the feasibility of GPS as a learning method for human-robot handovers in a 

real-world environment for large variations in target locations and for moving targets. Training 

was analyzed both in a simulation environment and directly on a physical robot. We used a variant 

of GPS that does not require prior knowledge of robot dynamics. Instead, it learns locally linear 

dynamics models from the training data (Levine et al., 2016). Prior studies used GPS for 

autonomous manipulation (Chebotar et al., 2017; Levine et al., 2016; Levine et al., 2015; Levine 

& Abbeel, 2014) and locomotion tasks (Zhang et al., 2016; Levine & Abbeel, 2014;Levine & 

Koltun, 2013, Levine & Koltun, 2013b) which are characterized by small variations in target 

locations and a static environment. However in a handover task, the robot operates in a dynamic 

environment due to unpredictable and non-static human behavior, resulting in a wider spread of 

target locations. These challenges have been addressed  in a recently published study by 

(Kshirsagar et al., 2021). In this study, the potential of GPS to train a robot controller for human-

robot object handovers in a simulation environment has been explored. Despite uncovering 

important insights, their application to a real-world environment is limited, as this study showed. 

Unlike a real-world environment, which warrants constant human supervision (for resetting 

experiments, monitoring hardware status, and ensuring safety), data can be continuously obtained 

with no need for human intervention in simulation. Hence, a simulation environment is faster, 

cheaper, and safer than experimenting on a real robot. However, the reality gap is a significant 

obstacle, preventing learning to robotic's applications. In simulations, for instance, the robots can 

learn to perform bicycle stunts (Tan et al.,2014), while in the real world, it is still challenging to 

teach robots basic tasks like walking. To fully exploit robotic's potential benefits, bridging the 

reality gap is crucial. This bridging would result in a better simulation benchmark for robotics, 

focusing the research efforts on the most pressing robot learning challenges. In this study, we first 

tried to learn the policy in a simulation environment and then deployed it to the real robot. It was 

found to be an infeasible solution, as the MuJoCo model parameters did not match the real robot 

parameters. Thus, we decided to train directly on the physical robot. 

We found that it was not possible to train the physical robot for the same target locations used in 

(Kshirsagar et al., 2021) as the Panda robot always ran into some joint velocity or Cartesian 

position limits during the training process. Thus we had to reduce the robot’s target workspace by 
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trial-and-error to avoid these limits. In this reduced workspace (Fig. 7), we found that when the 

robot was trained to reach only static target locations, the global policy performance could be 

slightly improved by adding local controllers in regions with highest test errors (in the middle of 

the working plane) (Fig. 8(a) compared to Fig. 8(b)).  

When evaluating the global policy trained with static targets on a moving test target, the robot 

generated highly inefficient trajectories and reached areas outside of its Cartesian position limits. 

To overcome this issue, we trained the global policy with moving targets. Nevertheless, this 

solution was not free of drawbacks. It successfully reduced the mean error and resulted in more 

efficient and low-torque trajectories, but resulted in a high-variance (unreliable) global policy with 

significantly larger worst-case errors. This issue can be addressed by adding local controllers to 

the training phase, improving the global policy performance (Fig. 8(d)).  

This study introduces preliminary steps toward implementing GPS in a real-world environment 

for human-robot handovers. Nevertheless, we did not take into account numerous essential aspects 

of handovers, such as the robot’s movement legibility and the human’s adaptation to the robot’s 

movements. Our studies were also conducted in a limited workspace. The workspace selected for 

the learning process was relatively small because the robot ran into joint or cartesian limits in the 

training phase of a larger workspace. The robot’s low-level controller had inbuilt safety stops that 

interfered with the robot controller whenever it reached any joint/Cartesian 

position/velocity/torque limits (Appendix F). It was not possible to override these limits, which 

made it difficult to train the robot. To examine the GPS algorithm for a larger workspace, we 

recommend to use a robot that allows overriding these limits. Also, there is a need to develop GPS 

algorithms that will train local controllers and global policy while obeying these limits. Despite 

these aforementioned limitations, this study contributes to the understanding of the challenges and 

applicability of GPS in a real-world context. Also, it demonstrates the potential benefits and 

drawbacks of GPS as an algorithmic tool to further develop the field of human-robot collaboration 

in general and the area of human-robot handovers in specific. 
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Chapter 5. Summary 

In recent years, we have witnessed a substantial shift towards a more direct human-robot 

collaboration in the industry. The technological advances in robot hardware have enabled 

researchers from the industry to envision an entirely shared environment. Robots would interact 

with and act on their surroundings in this foreseen environment, including other agents like human 

workers and robots. The recent COVID-19 pandemic has highlighted the need for developing 

independently operating as well as collaborative robots to use in additional fields such as the 

medical field (hospitals and care homes). In this context, robots must be developed with the 

abilities to exchange objects for successful cooperation and to collaborate in manipulation tasks. 

In this thesis, we focused on two main aspects regarding human-to-robot handovers. In the first 

study we analyzed what are the most frequent gaze behaviors in a human-human handover. we 

found that the most common gaze behaviors of receivers were: hand-face, face-hand-face and hand 

gaze. Then, with the purpose of implementing these behaviors on a collaborative robot, we 

investigated whether and to what extent the user's preference of the robot's gaze, when it is 

receiving an object from the human, and is this dependent on the object size and type and on 

different human-robot configurations. We performed two types of user studies (video and in-

person) with a collaborative robot that exhibited these gaze behaviors while receiving an object 

from a human. To investigate the effect of object's size, object's fragility or the human's posture 

on human's preferences for the robot gaze, objects of different sizes (a small box and a large box), 

different fragility (a plastic bottle and a glass bottle) and different giver's posture (standing and 

sitting) were used. The results of both studies were similar. The participants preferred the gaze 

behavior in which the robot initially looked at their face, then transitioned its gaze to their hand 

(during the reach phase and the transfer phase) and then transitioned its gaze back to look at their 

face again (during the retreat phase). Open-ended responses suggested that the change between 

looking at the giver’s face and then at the giver’s hand and then back at the giver’s face portrayed 

the robot as more humanlike, natural, and friendly. Also, they felt that this behavior complemented 

the robot’s handover. people preferred the robot looking at their face at the beginning and the end 

of the handover, and the robot's eyes following the object during the transfer phase. This gaze 

behavior complemented the robot’s handover motion, and thus portrayed the robot as more human-

like, natural, and friendly. Another possible explanation is that the social aspects of a human 
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receiver are implicit, whereas a robot has to establish its social agency for a better handover 

experience. Based on these findings, we recommend to HRI designers to implement a Face-Hand-

Face transition gaze when the robot receives an object from a human, regardless of human posture 

and characteristics of the object being handed over. There are several limitations of this study 

which could motivate future work. The results are limited by the sample size and the specific 

cultural and demographic makeup of its participants. Larger population samples of different age 

groups, backgrounds, and cultures should be investigated to help generalize the findings of our 

experiments. It would also be interesting to evaluate if the specific gazes are dependent on the 

population sample (age group, experience with technology, extrovert vs. introvert), task (time 

critical, entertainment), environment (industry/hospital/restaurant) and robot (e.g., reliability, 

motion smoothness). 

Moreover, as with any experimental study, there is a question of external validity. A handover that 

is part of a more complex collaborative or assistive task might elicit different expectations of the 

robot's gaze, a fact that should be considered by designers of HRI systems. To better understand 

these contextual requirements, additional realistic scenarios of assistive and collaborative tasks 

should be considered.  

According to the results of our first study, with correlation to the relevant literature, we discover 

that other key components of HRI, which may influence human’s acceptance of robotics, are the 

perceived naturalness and smoothness of the robot's movements. Therefore, we decided to pursue 

our second study regarding human-robot handover, implementing an online controller to produce 

reaching motion of the robot to further develop the acceptance and practical use of collaborative 

robots in the industry. In the second study we developed a robot controller that uses Guided Policy 

Search (GPS) to perform object handovers and evaluated the effect of different training scenarios 

(simulation and physical robot) on performance. We evaluated the controller with a physical robot 

while the training was conducted both in a simulation environment and directly on the physical 

robot. In the first experiment, in an attempt to bridge the reality gap from simulation, we wanted 

to test the policy learnt in the simulation environment on the real robot.  To do so, we tried to tune 

the MuJoCo model parameters to match the real robot parameters. It was proved to be an infeasible 

solution because the learned global policy in simulation generated very high torques (hundreds 

and even thousands Nm), and thus, could not be tested on the real robot. Therefore, we decided to 

train the physical robot instead of a simulated robot, with a simulated target. 
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In the second experiment, we train and test the real Panda collaborative robot to perform handovers 

over repeated trials for two scenarios: large variations in target locations and moving targets. The 

first research question examined in our study was how does the GPS perform for significant spatial 

differences between training and testing locations. We found the global policy performance 

slightly improved by using 12 local controllers. The second research question examined in our 

study was how does the GPS perform with moving targets. First, we used the global policy trained 

with static targets, but instead of a static tester, we used a recorded human reaching motion. In this 

case, the robot generated highly inefficient trajectories and reached areas outside of its cartesian 

position limits. To address this issue, we trained and test the robot with moving targets. It 

successfully reduced the mean error and resulted in more understandable and low-torque efficient 

trajectories, but resulted in a more high-variance (unreliable) global policy with significantly larger 

worst-case errors. This issue can be addressed by adding local controllers to the training phase, 

improving the global policy performance.  

This study contributes to the knowledge regarding the applicability of GPS in a real-world context. 

Also, it demonstrates the potential benefits and the drawbacks of GPS as a tool to further develop 

the field of human-robot collaboration. We did not take into account numerous essential aspects 

of handovers, such as the robot’s movement legibility and the human’s adaptation to the robot’s 

movements. Our studies were also conducted in a limited workspace.  During the training process 

the Panda robot ran into some joint velocity or cartesian position, so we had to reduce the robot’s 

target workspace by trial-and-error to avoid these limits. To examine the GPS algorithm for a 

larger workspace, we recommend to use a robot that allows overriding these limits. Also, there is 

a need to develop GPS algorithms that will train local controllers and global policy while obeying 

these limits. 
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Appendices 

Appendix A- Robotic system development 

System description 

The system (Fig. 10) includes a robot arm receiving an 

object from a human, a distance sensor to detect the 

giver's movement, and an infrared proximity sensor 

placed on the robot arm to detect the object distance 

from the robot gripper. The sensors are controlled by an 

Arduino microcontroller, which transmits the data to 

the robot. 

 

Hardware 

The system consists of several components connected to a single computer. The components 

include a Sawyer robot, distance sensor, photoelectric sensor, and Arduino nano development 

board.  

Sawyer robot  

A Sawyer robot was used for the experiments (Fig. 11). The robot arm is 

autonomous and programmed to reach a predefined position once the 

handover begins. The robot grasps the object when the object gets close 

enough. Finally, the robot retreats to its home position after the human 

releases the object and starts to retreat. 

Category: Small robots 

Lifting load: up to 4 kg 

Number of degrees of freedom: 7  

Self-weight: 19 kg 

Arm speed: 7.2 km/h 

Figure 10: The experimental setup 

Figure 11: The Sawyer robot 
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DS35 Mid-Range Distance Sensor 

A SICK DS35 mid-range photoelectric distance sensor (Fig. 12) was used. 

This sensor uses HDDM (high definition distance measurement) technology to ensure 

maximum reliability and accuracy for distance measurement detection.  

Target: Natural objects 

Resolution: 0.1 mm 

Accuracy: ±10 mm 

In this project, this sensor was used to detect when the giver starts reaching. 

Contrinex LTK-1180-103 Photoelectric Sensor 

A Contrinex standard photoelectric sensor was placed on the robot arm and used to 

detect the object distance from the robot gripper. The Contrinex through-beam (Fig. 13) 

photoelectric sensor utilizes infrared, visible and laser light sources to detect targets, 

reliably and repeatably, at extended distances (Pcr & Kit, 2012). 

• Setting range: 40-600mm 

• Time delay before availability: 60msec 

Arduino Nano 

 Arduino is a single-board microcontroller with open-source hardware 

(Zlatanov, 2016), enabling to connect inputs and outputs (Fig. 14) (Wong et 

al., 2019). For this purpose, we used the Arduino programming language 

(based on Wiring), and the Arduino Software (IDE), based on Processing. The 

microcontroller can be programmed using C and C++ programming 

languages. In addition to using traditional compiler toolchains, the Arduino 

project provides an integrated development environment (IDE) based on the 

Processing language project. 

A breadboard was used to connect the distance sensor and the photoelectric sensor to the 

Arduino. Additionally, we connected a battery (to provide a power source), resistors, and the 

ground to the breadboard, as depicted in Fig. 15 and Fig. 16. The Arduino, which is connected to 

Figure 12: DS35 Mid-

Range Distance Sensor 

Figure 14: Arduino Nano 

Figure 13: Contrinex 

LTK-1180-103 

Photoelectric Sensor 
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the main computer, continuously receives signals from the sensors, and transfers them to the 

sawyer robot via analog input (A1) and digital input (D1)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Software 

This section reviews the developed system (Fig. 17) and explains the code, which consists of three 

Python classes and one class in C++. Full code is detailed in .שגיאה! מקור ההפניה לא נמצא. 

 

 

 

 

 

 

Figure 15: Circuit implementation 

Figure 16: Schematic hardware connection 

Figure 17: The Developed System 
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ROS 

In this project, ROS was used to control the robot movement, to get messages from the Arduino 

indicating the sensors' measurements, and to control the robot screen. 

Robot movement- python 

The robot class, sends motion commands to the robot. In order to 

assess the beginning of the handover, the robot gets signals from the 

distance sensor, indicating on the position of the participant's arm. 

The robot arm is autonomous and programmed to reach a predefined 

position once the handover begins. Using a photoelectric sensor to 

assess the distance from the object, the robot grasps the object when 

the object gets close enough. Finally, the robot retreats to its home 

position after the human releases the object and starts to retreat. 

 

 

 

 

 

 

 

  

Figure 18: Flow chart of the robot 

movement 
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Eye gaze 

The robot's eye gaze was created in three steps: first, creating animations for eye movements. 

Second, programming a Python class that controls and projects the robot's eye gaze on the robot's 

screen. Finally, programming a Python class that was responsible for keeping the robot's head 

straight, instead of moving correspondingly with the robot's arm axis. 

1. Eye movement animation- Adobe After Effects:  The eye movement animations were 

created in Adobe After Effects. Adobe After Effects is a digital visual-effects, motion 

graphics, and compositing application developed by Adobe Systems and used in the post-

production process of film making, video games, and television production. In this project, 

3D eye movement animations were created, which simulated the three most common gaze 

(Hand-Face, Face-Hand-Face, Hand gaze) that were identified in human-human handovers 

analysis. In order to discover human's preferable gaze pattern, these animations were 

projected during our experiments on the Sawyer robot's built-in screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Pictures from the 3D eye movement animation. 

The top figure portrays the robot's eyes as they look toward the 

participant's eyes, and the bottom figure portrays the robot's 

eyes as they look toward the participant's hand. 
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2. Eye gaze- Python class: This class controls and projects the robot's eye gaze on the robot's 

screen. The three gaze patterns that were implemented are: Hand-Face, Face-Hand-Face, 

Hand gaze (which were identified in human-human handovers analysis). In this code, the 

eye gaze pattern for the session was chosen. Each eye gaze pattern has a defined function 

that runs a different eye movement animation depending on the handover phase. 

3. The robot's head- Python class: For the eye gazes to look more natural and human, the 

robot's head needed to stay straight. By default, when the robot moves its hand, the head 

rotates along with the base joint. This Python class is responsible for keeping the head 

straight toward the subject's face by countering the base rotation. 

Figure 20: Flow chart of the robot’s eye gaze 



78 
 

Arduino- C++ 

In this class, the signals are regularly received from the distance sensor and the photoelectric 

sensor. After retrieving the signals information from the sensors, it sends it to ROS via the ROS-

Arduino interface. 

The algorithm consist of the following steps: 

1. Power ON the system which includes the microcontroller and sensors 

2. Initialise the system 

3. Read data from the sensors and send it to ROS via the ROS-Arduino interface 
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Appendix B- Online survey – people’s perception of objects’ fragility 

To represent objects of different fragility a plastic bottle and a glass bottle were used. In order to 

examine people's perception about the fragility of these objects, we conducted an online survey. 

This survey was conducted post experiment based on reviewers' feedback.  

A total of 24 participants responded to the survey. The participants were undergraduate students 

from the Department of Industrial Engineering and Management at Ben-Gurion University, similar 

to the students who participated in our video and in-person experiments. The participants were told 

that this study deals with object handovers between a human and a robot. 

The survey included 10 pictures of objects, made from different materials (Fig. 21). The plastic 

bottle and the glass bottle used in our experiment were among these objects. Each picture was 

followed by a yes or no question: "Do you perceive this object to be fragile?".  

Results revealed that all of the 24 participants perceived the plastic bottle to be non-fragile. 23 out 

of 24 participants perceived the glass bottle to be fragile. Additionally, when asked the same 

question for three other different plastic and glass bottles, 24 participants denoted the plastic bottles 

as non-fragile and 23 denoted the glass bottles as fragile. This supports our decision to choose 

plastic and glass bottles to represents objects of different fragility. 

 

  

  

 

   
  

Figure 21: 10 pictures of objects, made from different materials presented in the online survey. 
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4.1 Appendix C- Open-ended responses 

Video study of human-to-robot handovers 

10 out of 72 participants gave at least one additional comment. Eight participants made Hand-Face 

gaze vs. Face-Hand-Face gaze comparisons. Two participants mentioned that they could not 

distinguish between them, saying, "I did not see a significant change between the two videos", 

"They looked the same to me". Two participants preferred Face-Hand-Face gaze over Hand-Face 

gaze owing to the extended robot's eye contact, saying, "As much eye contact as possible", "I 

preferred handover 2 (Face-Hand-Face gaze) because the robot looked more at the human". Two 

participants thought that Face-Hand-Face gaze seemed more natural and human-like, and 

mentioned: "Handover 1 (Face-Hand-Face gaze) felt more human-like", "I preferred the second 

handover (Face-Hand-Face gaze) because it was more natural for the robot to look down as he 

extends his arm". Nevertheless, two participants said that they found advantages and disadvantages 

in both of the gaze patterns, and said: "It is easier when the robot looks at the object, so the giver 

could know when it is required to hand the object over. Yet, not looking in the eyes may be 

considered rude", "In handover 1 (Hand-Face gaze) you could tell that the robot was ready to 

receive the object. However, handover 2 (Face-Hand-Face gaze) felt more humanized because the 

robot looked at the giver's eyes right until the transfer was made". 

While, two out of six participants, who commented on comparing Hand-Face gaze vs. 

Hand gaze, mentioned that they could not distinguish between them, saying, "There is no 

difference", "The 2 handovers looked the same". The other four participants said that they preferred 

Hand-Face gaze, saying, "In my opinion, the change in eye movement creates a better human-

robot interaction", "In the second handover (Hand-Face gaze) the eye movement, gave a good 

indication for the communication", "It is easier to understand the robot "willingness" to receive 

the box when the robot's eyes move as its arm progresses", "It's nice that the robot looks straight 

at you after delivering an object" 

Six participants made Face-Hand-Face gaze vs. Hand gaze comparisons. They said that 

they preferred Face-Hand-Face gaze over Hand gaze because they preferred much eye contact as 

possible and they thought that the Face-Hand-Face gaze was clearer, saying for instance, "At 

handover 2 (Face-Hand-Face gaze), the robot looked at the object precisely when it wanted to 
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take it, so it was perceived more understandable", "In my opinion video 2 (Face-Hand-Face gaze) 

best simulated human-like behavior out of all the videos I have seen so far" 

In-person study of human-to-robot handovers 

14 out of 72 participants gave at least one additional comment. Seven participants made Hand-

Face gaze vs. Face-Hand-Face gaze comparisons. Four participants mentioned that they could not 

distinguish between them, saying, "Felt quite the same", "I didn't notice a difference". Two 

participants stated that they preferred Face-Hand-Face over Hand-Face gaze because they 

preferred longer eye communication, saying, "In Handover number 2 (Face-Hand-Face gaze) the 

robot looked at me for the longest amount of time, and it was the best handover so far", "I preferred 

handover 1 (Face-Hand-Face gaze) because the robot stared at me before and after the handover, 

and I felt accompanied by it during the entire handover". Nevertheless, one participant argued that 

in his opinion Face-Hand-Face gaze pattern didn't feel natural, and used the following words, 

"handover number 2 (Face-Hand-Face gaze) did not feel natural" 

While three out of seven participants, who commented on comparing Hand-Face gaze vs. 

Hand gaze, mentioned that they could not distinguish between them, saying, "They looked the 

same to me", "Indifference between first and second handover". Four of them said that they 

preferred Hand-Face gaze, and mentioned: "In the first handover (Hand-Face gaze) the robot 

looked straight at me after the handover and seemed to be more friendly", "In the second handover 

(Hand-Face gaze) the robot looked directly at me, and it felt more human-like", "In the first 

handover (Hand-Face gaze), the robot's eye movement was fully accompanied by the handover 

movement, and therefore it seemed more natural" 

Seven out of eight participants, who commented on comparing Face-Hand-Face gaze vs. 

Hand gaze gazes, said that they preferred Face-Hand-Face gaze over Hand gaze because they 

preferred much eye contact, and some of them described that Face-Hand-Face was more natural, 

saying, "In the first handover (Hand gaze), the robot focused only on the object, and in the second 

handover (Face-Hand-Face gaze) it focused on me too, so it felt more natural", "I preferred the 

second handover (Face-Hand-Face gaze) mainly because the robot looked me in the eyes at the 

beginning and the end". However, one participant said he felt that both handovers seemed to be 

unfriendly, and used the following words: "In both handovers the robot looked down, unfriendly". 



82 
 

Appendix D- Agent configuration 

Component/ Variable Description Default value(s) 

Sim-to-Real Real-to-Real 

EE_POINTS Two point offsets. To ascertain that the 

end-effector attain the correct 

orientation and not merely reaches the 

correct position, the GPS backend 

requires at least two point offset. At the 

end of the local policy training 

subtraction of world-space end-effector 

position from the positions of these 

points is conducted. 

[(
0.22

−0.025
0.55

), 

(
0.22

−0.025
−0.55

)] 

[(
−0.07
0.06

0.013
), 

(
0.22

−0.025
−0.55

)] 

Panda _Gains A vector of scalar gains, one for each 

torque/joint of the robot. 

(0.1, 0.01,0.1, 

 0.01, 0.01, 

 0.01, 0.01) 

(0.1, 0.1, 0.1, 

 0.1, 0.001, 

0.001, 0.001) 

Agent Top-level configuration and details of 

the agent that was used. 

 

 type Name of the agent. AgentROSCo

ntrolArm 

AgentMuJoC

o/ 

AgentROSCo

ntrolArm 

 dt Step size [s]. 0.05 

 T The trajectory length [steps]. 400 100 

 state_include A list of the internal variables that 

represent the system state. 

[Joint angles, joint velocities, 

end-effector points, end-

effector point velocities] 

algorithm The details of the policy-improvement 

algorithm to be used by GPS. 

  

 type  AlgorithmBADMM 

 iterations Number of full iterations of 

optimization. 

11 

 init_traj_distr Set-up for the differential dynamic 

programming initialization of the linear 

quadratic regulator. 

 

 init_gains The initial joint gains. 1

Panda_Gains
 

 init_var The variance of the initial trajectory 

distribution. The initial variance affects 

the state-space explored by the robot in 

1000 0.5 



83 
 

the initial training step. A higher initial 

variance results in larger explored 

state-space but with higher control 

inputs, which might exceed the joint 

limits in some cases causing the robot 

to halt. A lower initial variance results 

in smaller control inputs but also a 

smaller explored state-space causing 

the robot to not learn the task. 

 stiffness Initial stiffness of the joints. Important to 

get the joints turning in the initial 

distributions before the true dynamics 

begin to be discovered. 

1 1 

 stiffness_vel Initial velocity stiffness. 0.5 0. 5 

 cost The weighted sum of the cost terms 

defined below. 

 

 weights The external weights of each cost term. [1, 1] 

 dynamics Specifies the type of dynamic model 

prior used to optimize the trajectories. 

Maximum 20—cluster 

Gaussian mixture model. 

fk_cost   

 wp The internal vector (length T) of 

weights per trajectory step.  

[1, 1, 1] 

 l1 The internal weight of the L1 norm 

sub-term 

2 

 l2 The internal weight of the L2 norm 

sub-term 

2 

 alpha  1𝑒 − 5 

config Connects above options, the 

optimization algorithm and the agent 

 

 num_sapmles The number of trajectory samples used 

on each iteration to improve the 

dynamic model. 

5 
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Appendix E- PC information 

Power 

supply 

HEC Cougar VTE600 // XPG Probe  - Dual GPU compatible power supply 600W 

Active PFC, 12cm silent fans, 80 PLUS® Bronze certified 

Processor Intel® Core™ i9-10900, LGA1200 Package 2.8GHz 

10 Core with Hyper-Threading, 14nm, 65W, 20MB Cache L3 

Intel® Max Turbo Boost Technology up to 5.1GHz, Enhanced Intel SpeedStep®   

SSE4.2, AVX2.0, TSX-NI, Secure Key. Intel Virtualization Technology VT-x/d 

Dual Channels of DDR4 2933MHz memory controller 

Integrated Intel® UHD Graphics 630 up to 1.2GHz, 3 displays up to 4096x2304 

Antec C40 high effectivity, silent CPU cooler 

Mother 

board 

ASUS TUF Gaming B460M-Plus  

LGA1200 Socket, Intel® 10th generation Intel® Core™ processor ready.  

B460 Chipset. Type-A 2(+4)*USB2.0 & 4(+2)*USB3.2 G1. microATX. 

4*DIMM 240-pin Dual Channel DDR4 2133-2933MHz up to 128GB 

2*PCI Exp. x16 v3.0 (1*x16 & 1*x4), 1*PCI Exp. x1 v3.0. Aura RGB strip headers  

B460 PCH 6*SATA-3, Matrix RAID (0,1,10,5) Smart Response, Optane™ memory 

2 port M2 SATA3.0 or PCIe v3.0 up to 32Gb/s M-key up to 2280 

Integrated: Realtek ALC S1200A High Definition Audio 7.1 codec.  

Intel® I219-V 1.0Gbps RJ45 Ethernet controller. Serial port header 

Video out ports: DVI-D, HDMI 1.4b & DisplayPort 1.4 (4096x2160) 

Memory Kingston Hyper-X 32GB DDR-4 2933(3200)MHz Dual Channel (2x16GB) 

SSD HD WD Black SN750 Series SSD Drive 500GB  

PCIe NVMe 3.0 x4 M2 2280, Read//Write up to 3430//2600MB/s.  

AES 256-bit Encryption. 5 year warranty or 300TBW 

Ethernet 

network 

adapter 

Intel® Ethernet Converded network adapter X550-T2 

Dual port, RJ-45 10 Gbps port.  

PCI Express x4 slot. Low Profile and Full Height 

Virtual Machine Device Queues (VMDq) support  
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Appendix F- Joint space limits of the Panda robot 

Name Joint 1 Joint 2 Joint 3 Joint 4 Joint 5 Joint 6 Joint 7 Unit 

𝑞𝑚𝑎𝑥 2.8973 1.7628 2.8973 -0.0698 2.8973 3.7525 2.8973 𝑟𝑎𝑑 

𝑞𝑚𝑖𝑛 -2.8973 -1.7628 -2.8973 -3.0718 -2.8973 -0.0175 -2.8973 𝑟𝑎𝑑 

𝑞̇𝑚𝑎𝑥 
2.1750 2.1750 2.1750 2.1750 2.6100 2.6100 2.6100 

𝑟𝑎𝑑

𝑠
 

𝑞̈𝑚𝑎𝑥 
15 7.5 10 12.5 15 20 20 

𝑟𝑎𝑑

𝑠2
 

𝑞𝑚𝑎𝑥 
7500 3750 5000 6250 7500 10000 10000 

𝑟𝑎𝑑

𝑠3
 

𝜏𝑗𝑚𝑎𝑥
 87 87 87 87 12 12 12 𝑁𝑚 

𝜏𝑗̇𝑚𝑎𝑥
 

1000 1000 1000 1000 1000 1000 1000 
𝑁𝑚

𝑠
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Appendix F- Implementation and Evaluation of Guided Policy 

Search for Robot Reaching Towards Moving Targets 
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 תקציר

תזה זו עוסקת במחקר המשימה השיתופית של מסירת אובייקטים מאדם לרובוט. מסירות הן יכולת חיונית לרובוטים 

, בחנו את השפעת התקשורת שיתופיים. התמקדנו בשני נושאים חיוניים להטמעת מאפיינים דמויי אדם ברובוטים. ראשית

הבלתי מילולית של הרובוט על החוויה של האדם, ועל השטף של מסירות מאדם לרובוט. שנית, אנו מפתחים ומעריכים 

 .לביצוע מסירה רציפה וטבעית יותר למידה באמצעות חיזוקיםבקר רובוט המבוסס על 

ספרות קיימת  אומנםרובוט. -הלך מסירות אדםהרובוט במ בנוגע למבטהחלק הראשון במחקר חוקר את העדפת האדם 

לרובוט. -רובוט בהעברות אדםהלאדם, אך קיים מחסור בספרות בדבר מבט -רובוט בין רובוט בהעברותהבנושא מבט 

לרובוט בחן את דפוסי המבט של מקבל האובייקט בשלב -מחקר קודם שחקר את התנהגות מבט הרובוט בהעברות אדם

אחת בלבד. בהתבסס על עבודה זו, במחקר הנוכחי חקרנו דפוסי  בתנוחהאובייקט מסוים אחד ה"הגעה" בלבד, והשתמש ב

. כחלק פרונטלייםמבט עבור כל שלושת השלבים של תהליך המסירה: הגעה, העברה ונסיגה, הן בווידאו והן במחקרים 

יעים על העדפת האדם למבט מהמחקר נבדקו גם האם גודלו ושבריריותו של האובייקט או תנוחת נותן האובייקט משפ

 .הרובוט במונחים של החיבה הנתפסת, האנשת הרובוט ותזמון התקשורת של המסירה

מערך נתונים ציבורי של סרטוני מסירות נותח פריים אחר פריים כדי לקבוע את התנהגויות המבט השכיחות ביותר 

שר נמצאו היו: התבוננות בידו של הנותן ולאחר אדם. התנהגויות המבט השכיחות ביותר אל-אדםאובייקטים בין ת ובהעבר

פנים(, מבט תחילה בפניו של הנותן, לאחר מכן ביד הנותן ולאחר מכן חזרה להסתכלות -מכן בפניו של הנותן )מבט יד

 .פנים(, והסתכלות רציפה על ידו של הנותן )מבט יד(-יד-בפניו של הנותן )מבט פנים

פש תוכנת לבצע את משימת המסירה ולהציג התנהגויות מבט אלו. אובייקטים דרגות חו 7בעל  Sawyerרובוט שיתופי 

 72מחקר וידאו ומחקר פרונטלי. במחקר הווידאו,  -מקבל נותחו בשני מחקרים -נותן תנוחותשונים עם סוגים שונים של 

המבט, והשוו מדגימים את שלושת התנהגויות , הלאדם-רובוט אובייקטים בין העברותם של משתתפים צפו בסרטוני

הרובוט והעריכה את תפיסת  אלביניהם. במחקר הפרונטלי, קבוצה אחרת של משתתפים ביצעה פיזית מסירות אובייקטים 

המסירות בנוגע להתנהגויות המבט השונות של הרובוט. התוצאות הראו שבשני המחקרים, כאשר הרובוט מביט תחילה 

פנים(, המשתתפים החשיבו -יד-ר מכן בחזרה בפניו של הנותן )מבט פניםבפניו של הנותן, לאחר מכן בידו של הנותן ולאח

עם זאת, לא מצאנו עדויות להשפעת גודל החפץ, שבריריותו  (.p<0.005יותר)את המסירה כחביבה, אנושית ומתוזמנת 

 .או תנוחת הנותן על העדפת המבט

, שזוהי שיטת למידה מבוססת "ניות מודרךחיפוש מדי" אלגוריתם בחלק השני של המחקר, הערכנו את הפוטנציאל של

לרובוט. חיפוש מדיניות מודרך -רובוט להעברות אובייקטים בין אדם-חיזוקים, לאימון בקר ה באמצעותשל למיד ,מודל

היא מערכת חסכונית בנתונים שאינה מחייבת ידע מוקדם בנוגע לנתוני הדינמיקה של הרובוט והסביבה, ומספקת גישה 

העברה. עם זאת, על אף הדגמת חיפוש מדיניות מודרך במשימות ניווט שונות ומשימות מניפולציה  מבטיחה למשימות

חיפוש מדיניות מודרך במשימה פיזית של שיתוף פעולה בין אדם לרובוט. אלגוריתם אוטונומית, לא דווח על בחינת 
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אימון של זרוע הרובוט התבצע חר מכן חיזוקים, ולא ה באמצעותבמחקר זה, שלב ההגעה של המסירה מנוסח כבעיית למיד

 .דרגות חופש הן בסביבת סימולציה והן ישירות על הרובוט הפיזי 7עם  Panda השיתופי

התוצאות שלנו מצביעות על כך שבחינת המדיניות שנלמדת בסביבת הסימולציה על הרובוט האמיתי, היא פתרון בלתי 

ם בלבד, מצאנו שהביצועים של המדיניות הגלובלית שנלמד על אפשרי ליישום בעולם האמיתי. בהערכת יעדים סטטיי

עם זאת, ביצועי המדיניות הגלובלית השתפרו מעט על ידי הוספת . ידי חיפוש מדיניות מודרך ניתנים להכללה טובה יחסית

טרות הגבוהות ביותר. בעת הערכת המדיניות הגלובלית שאומנה עם מ בחינהשגיאות הבעלי בקרים מקומיים באזורים 

סטטיות על מטרה נעה, הרובוט יצר מסלולים מאוד לא יעילים והגיע לאזורים מחוץ לגבולות המיקום הקרטזיאניים שלו. 

זאת, ניתן גדולות יותר. עם  "המקרה הגרוע ביותרשגיאות "אימון על מטרות נעות שיפר את המסלולים, אך הוביל ל

 לטפל בבעיה זו על ידי הוספת בקרים מקומיים לשלב האימון, ובכך לשפר את ביצועי המדיניות הגלובלית.

רובוט פיזית, מבט הרובוט, -אדם תרובוט, אינטראקציי-אדם תרובוט, שטף, אינטראקציי-העברות אדם :מפתחמילות 

 יזוקים.מילולית, תכנון מניפולציות, למידה באמצעות ח-תקשורת בלתי
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