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Abstract

This thesis investigates the collaborative task of human to robot object handovers. Handovers are
a vital capability for collaborative robots. We focused on two crucial issues for embedding human-
like characteristics into robots. First, we examined the impact of robot's non-verbal communication
on human's experience and fluency of human to robot handovers. Second, we developed and
evaluated a robot controller based on reinforcement learning to perform a more natural sequential

handover.

The first part in the research investigated human's preference of the robot's eye gaze during human-
robot handovers. While there is some literature on robot gaze in robot-to-human handovers, there
is a dearth of literature on robot gaze in human-to-robot handovers. Prior research that studied
robot gaze behavior in human-to-robot handovers considered only the receiver's gaze patterns in
the "reach™ phase and used only one particular object in one configuration. Building upon this
work, this research studied gaze patterns for all three phases of the handover process: reach,
transfer, and retreat, both in video and in-person studies. This included investigation of whether
the object's size and fragility or the giver's posture affect the human's preference of the robot gaze

in terms of the perceived liking, anthropomorphism, and timing communication of the handover.

A public data-set of handovers videos were analyzed frame-by-frame to determine the most
frequent gaze behaviors in human-human handovers. The most frequent gaze behaviors were
found to be: gazing at the giver's hand and then at the giver's face (Hand-Face gaze), gazing
initially at the giver's face and then at the giver's hand and then back to look at the giver's face

(Face-Hand-Face gaze), and continuously look at the giver's hand (Hand gaze).

A Sawyer collaborative 7 DOF (degrees of freedom) robot was programmed to perform the
handover task and exhibit these gaze behaviors. Different objects with different types of giver-
receiver configurations were analyzed in two studies — a video study and an in-person study. In
the video study, 72 participants watched and compared videos of human to robot handovers
between an actor and a robot demonstrating the three gaze behaviors. In the in-person study, a
different set of participants physically performed object handovers with the robot and evaluated
their perception of the handovers for the robot's different gaze behaviors. Results revealed that for

both studies when the robot initially gazes at the giver's face and then at the giver's hand and then



back at the giver's face (Face-Hand-Face gaze), participants consider the handover to be more
likable, anthropomorphic, and communicative of timing (p < 0.005). However, we did not find

evidence of any effect of the object's size or fragility or the giver's posture on the gaze preference.

In the second part of the research, we assessed the potential of a model-based reinforcement
learning (RL) method, the Guided Policy Search (GPS), to train a robot controller for human-robot
object handovers. GPS is a data-efficient system that does not necessitate prior knowledge of the
robot and environment dynamics, providing a promising approach for the handover task.
Nevertheless, despite GPS demonstration on various navigation tasks and autonomous
manipulation, testing GPS in a physical human-robot collaborative task has not been reported. In
this study, the reach phase of a handover is formulated as an RL problem, with subsequent training
of the Panda collaborative 7 DOF robot arm both in a simulation environment and directly on the

physical robot.

Our results indicate that testing the policy learnt in the simulation environment on the real robot,
is an infeasible solution for real world implementation. When estimating only static targets, we
found that the performance of the global policies learnt by GPS generalize relatively well.
However, the global policy performance got slightly improved by adding local controllers in
regions with highest test errors. When evaluating the global policy trained with static targets on a
moving target, the robot generated highly inefficient trajectories and reached areas outside of its
cartesian position limits. Training on moving targets improved trajectories, but resulted with
significantly larger worst-case errors. However, this issue can be addressed by adding local
controllers to the training phase, improving the global policy’s performance.

Key Words: human-robot handovers, fluency, human-robot interaction, physical human-robot
interaction, robot eye gaze, non-verbal communication, manipulation planning, reinforcement

learning.
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Chapter 1. Introduction

1.1 Overview

Until recent years, the traditional paradigm dominating human-robot interaction and collaborative
robotics was keeping and operating robots in safety cages and separated from human operators. A
recent review of the literature shows that this approach is increasingly being left behind, granting
humans the capability to work alongside robots to complete various complex tasks (Magrini et al.,
2020; Robotics, 2019; Tantawi et al., 2019).

One of the key challenges in these collaborative systems is coordination among the partners
(Glasauer et al., 2010). Human-robot collaboration is often structured in a stop-and-go rigid regime
of turn-taking operations inducing delays (Hoffman & Breazeal, 2009). For robots to become
social or human-like in collaborative actions, robot-human interactions must reach a level of

fluency, close to that of human-human interactions (Hoffman & Breazeal, 2007).

Object handover is one of the essential skills required for a collaborative or assistive robot hence,
it is important for robots to carry out handovers autonomously. Tasks such as surgical assistance,
housekeeping, rehabilitation assistance, and collaborative assembly require a robot to give objects
to a human (robot-to-human handover) and take objects from a human (human-to-robot handover).
This seemingly simple action involves coordination in both time and space of hand movements,

grip forces, body postures, and other non-verbal cues like eye gaze.

There has been a constant growth of studies published regarding human-robot handovers over the
year due to the importance and complexity of these tasks. This research focuses on two main gaps
that remain understudied and unanswered. In the first part, with an agenda to excel robot's human-
like characteristics, we implemented non-verbal communication in human-robot handovers. In the
second part, we focused on motion planning of the reach phase of handovers. We implemented
and evaluated a robot controller that uses Guided Policy Search (GPS) algorithm to perform object

handovers with humans.



1.2 Background and problem description

1.2.1 Human-Robot interaction in industrial manufacturing

The industrial robotics field is expanding the usage of industrial robots, which used to be mostly
in safety cages, by developing human-robot collaborative systems (Kuo, 2020; Hentout et al.,
2019; Unhelkar et al., 2014; Duan et al., 2012). In order to achieve this goal, robots should be
designed with attention to qualities such as flexibility and adaptability (Umbrico et al., 2020).
Additionally, the robots should have the ability to share work and time space with humans
(Fitzgerald, 2013). These types of robots can be used for a variety of tasks in different industries
as multi-purpose robots which will work collaboratively with human workers. Examples of those
industries are assisting in the assembly of complicated objects or in the packaging of products with
various sizes, weights and shapes (Cherubini et al. 2016; Tsarouchi et al., 2016). Rethink Robotics
Sawyer and Baxter (Fitzgerald, 2013), and Panda (Franka Emika GmbH, 2020) robots are

considered to be among the new robotic developments promoting this approach.

According to recent HRI studies, humans tend to interact with computers in social ways ( Reeves
& Nass, 1996; Sproull et al., 1996). Humanlike stimuli are more likely to evoke social responses
than machinelike stimuli, because people have a propensity to seek an embodiment for intelligence
and a social locus of attention (Cassell, 2001). In support of this argument, Sproull et al. (Sproull
etal., 1996) showed that explicit humanlike cues such as a humanlike face presented on a computer
screen as compared with a text-based computer led people to make stronger attributions of
personality to the computer, present themselves more positively to it, and feel more relaxed and
assured by the computer. These results suggest that humanlike cues provide a sense of presence
and disambiguate what communicative channels are open to people (e.g., speech, gaze, facial
expressions, gesture), making communication more fluent and allowing people to have a more

certain mental representation of the computer (Kiesler, 2005).

1.2.2 Handovers

A handover is a complicated collaboration. In order to transfer control of an object, actors are
required to be coordinated in time and space. Handovers are an integral part of our day to day, for
example: a caregiver bringing a patient a glass of water, a mechanic receiving a tool from his
assistant, someone passing a bucket of water as part of a fire brigade, and a man on the sidewalk

handing over a flyer to a busy passer-by. People rely on understanding the context of events and



communication cues with those around them for successful handovers. The situation that surrounds
an action is called its context, it provides the knowledge for people on the ways to interpret others'
behaviors and to know what to expect from others. Through communication humans establish the
what, when, and where/how of the handover. For example: the mechanic establishes the "what"
by asking for a certain tool from his assistant and using context (the assistant is nearby) to expect
a handover, when a caregiver and a patient exchange looks to establish the™ when™ they are ready

to reach out and transfer the glass (Strabala et al., 2013).

1.2.3 Structure of the handover process

The handover process comprises a physical channel and a social cognitive channel (Strabala et al.,
2013). The physical channel is subdivided into three distinct phases (Strabala et al., 2013). In the
"approach” phase, both participants are heading towards each other. In the "reach” phase, both
participants spread their arms to the estimated handover location, and in the "transfer" phase, the
object is exchanged between the giver and the receiver, who then exit the joint activity. The social
cognitive channel provides the context needed for a fluent handover to occur. For example, where
and when the "transfer" phase will take place, and the establishment of the handover's object.

Basili et al. (Basili et al., 2009) showed that the three handover phases: approach, reach and
transfer are dynamic actions that blend seamlessly into each other, rather than separate and
consecutive actions. Nevertheless, researchers supporting a reductionist approach have analyzed
the handover phases as three distinct phases to get a methodical understanding of the

characteristics and actions of each phase.

1.2.4 Human-Human handovers

Handovers are complex interactions, yet humans are capable of performing handovers seamlessly
and without conscious thought (Roy & Edan, 2017) . This suggests that people share a common
procedure that guides the handover interaction. Experiments conducted to examine how people
hand over objects to each other (Strabala et al., 2013) revealed a structure consisting of carrying
(approaching with the object), signaling a readiness to do a handover, and transferring the object.
In 89% of the cases, the exact time when an actor starts reaching can be predicted from
communication cues that the actor uses right before the act, meaning the communication between

humans is so rich that signaling a readiness to do a handover can happen before either actor starts



reaching out. The experimenter reported that the cues came mainly from facial expressions,

gestures, and eye movement.

1.2.5 Robot-to-Human handovers

In order to understand the best way in which a robot should approach a human to initiate a
handover, many studies have been conducted (Basili et al., 2009; Koay et al., 2007; Mainprice et
al., 2012; Sayfeld et al., 2017; Someshwar et al., 2012, Someshwar, 2017). Basili et al. (Basili et
al., 2009) examined the way a human giver, with the purpose of handing over an object, carries
the object and approaches a human receiver. They noted that their findings could be transferred to
a robot giver. Koay et al. (Koay et al., 2007) investigated the interaction when a robot hands over
a can to a human, and specifically, human preference of robot coordination during these handovers.
Preferences such as the preferable distance from the human receiver in which the robot should
stop, and the direction of approach. In this study, the human receiver approached the robot, which
was at a fixed position. Still, advice concerning the positioning of the robot is offered in the above

studies.

Others (e.g., Cakmak et al., 2011; Cakmak et al., 2011; Dehais et al., 2011; Edsinger et al., 2007,
Huber et al., 2008) have shown that handover quality is affected by the route and the configuration
or pose of a robot. Edsinger and Kemp (Edsinger et al., 2007) showed that subjects understood the
robot's intention during a handover by the robot's approaching motion, even without vast
knowledge in robotics or exact directions. Cakmak et al. (Cakmak et al., 2011) proved that
handover intent also relies on handover poses. They showed that inadequately designed handover
poses might fail to carry handover intent. Creating a distinct difference between the handing the
object pose and the holding the object pose was their proposition to solve this issue. A different
research (Cakmak et al.,2011) suggested a handover configuration that best conveys the handover
intent. This configuration is composed along three Cartesian axes and includes an almost entirely
extended arm with a persistently monotonic configuration of the distal tip of the object and the
robot's elbow and wrist joint. Our work employed findings from the above studies in the design of
our robot's handover trajectory and configuration.



1.2.6 Gaze cues in social interaction

During social interaction, people spend more time looking at others (an average of 61% of the
interaction's time) than speaking (Argyle & Ingham, 1972). People study others' behavior by
gazing at others and, particularly, by looking in their eyes region (Cook, 1977).

The function of eye gaze in human social interaction is versatile. One can both perceive
information from other humans, and signal to others using his gaze (Argyle & Cook, 1976;
Cailigueral & Hamilton, 2019; Gobel et al., 2015; Risko et al., 2016). Simmel already stated that
"the eye cannot take unless at the same time it gives.” (Simmel, 1921). This is contrary to auditory
modality, where we use our ears to hear, but our mouth to speak. This makes our eyes a powerful

tool for social interactions, with a "uniquely sociological function™ (Simmel, 1921).

For any social interaction to be initiated and maintained, parties must establish eye contact.
Through establishing eye contact, people form "an ecological eye-to-eye huddle™ through which
they signal each other that they agree to engage in social interaction (Goffman, 1963). Simmel
(Simmel, 1921) describes this mutual behavior as "a wholly new and unique union between two
people [that] represents the most perfect reciprocity in the entire field of human relationship”.

People are extremely sensitive to being looked at (Gibson & Pick, 1963). The detection of direct
eye contact is a crucial element for survival, as it can manifest predator's intentions for an attack.
That may explain the evolving human's sensitivity to it (Emery, 2000). A designated 'eye direction
detector' in human's brain is postulated to support that kind of mechanism, according to
neurophysiological proofs (Baron-Cohen, 1995). Human's decision-making manners were found
to be influenced not only by pictures of eyes (Bateson et al., 2006), but also by imitated "eyespots™
on a computer screen (Haley & Fessler, 2005). Pedestrians who engage drivers, using their gaze,
have better chances to get stopped for on the road (Mutlu, 2009; Snyder, Grather, & Keller, 1974).
The tight coupling between gaze behavior and many other aspects of social interaction has made
the study of gaze behavior central to social psychology (Mutlu, 2009). Argyle and Cook argue,
"Any account of social behavior which fails to deal with the phenomena of gaze is quite
inadequate” (Argyle & Cook, 1976).

1.2.7 Controllers for human-robot handovers
Handovers possess a substantial role in physical human-robot interactions. Following the

realization of this concept, numerous studies regarding robot controllers for handovers have been

5



published. These controllers utilize various sensor interfaces, e.g., wearable devices, visual sensors
and physical sensors (Leal & Yihun, 2019). Several methods for controlling the robot in the
different handover phases exist today. For the handover's reach phase, robot controllers can be
subclassified as either offline or online. Offline controllers determine the motion plan of the robot
prior to the initiation of the reach phase without further adjustments during the reach phase. In
comparison, online controllers take into consideration the perceived behavior of the human while

continuously updating the robot's motion plan during the reach phase.

1.2.8 Guided policy search

Reinforcement Learning (RL) is a subfield of machine learning. The RL methods let the agent use
the rewards received in the interaction with the environment for learning the control policy (Du et
al., 2021). In recent years, it has developed rapidly, achieving profitable results in sequential
decision-making problems like robot learning (Kaelbling, 2020). Guided policy search (GPS) is
one of the well-established RL methods developed over the years and is used in various robot’s
manipulation (Chebotar et al., 2017; Levine et al., 2016; Levine et al., 2015; Levine & Abbeel,
2014), and locomotion (Zhang et al., 2016; Levine & Abbeel, 2014;Levine & Koltun, 2013, Levine
& Koltun, 2013b) tasks.

The GPS (Levine et al., 2014; Levine et al., 2015; Levine et al., 2016) method employs trajectory
optimization methods to instruct the optimization of neural network policy parameters without
encountering the local optimal dilemma. The sample efficiency is enhanced by the trajectory
optimization methods with learned dynamics. Benefitting from the great framework, GPS can
employ a more general neural network to parameterize the policy, increasing its ability to express

and generalize without damaging the data's efficiency (Du et al., 2021).

Most of the commercial robots and custom-built robots’ dynamics are unknown, partly because
these parameters may be difficult to obtain. One method to deal with this challenge is the
implementation of system identification techniques to develop dynamical models. However, this
requires extensive training data, notably for formulating global models of complex systems (Ibarz
et al., 2021). Hence, GPS is a data-efficient system that does not necessitate prior knowledge of
the robot and environment dynamics, providing a promising approach for the handover task.



1.3 Objectives

This thesis investigates on two crucial issues in the collaborative task of human to robot object
handovers. First, we examined the impact of robot's non-verbal communication on human's
experience and fluency of human to robot handovers. Second, we develop and evaluate a robot

controller based on reinforcement learning to perform a more natural sequential handover.

The main objective of the first study of the research is to investigate how different eye gaze
behaviors of a robot receiving an object from a human influence the perceived liking,
anthropomorphism, and timing of the handover. The specific research objectives in this first study

are to investigate:

1. Human-Human joint-actions in handover tasks for developing H-R collaborative systems
for handover tasks.
2. Parameters affecting Robot-to-Human handover actions:
e The robot's eye gaze pattern for better H-R team coordination and improved system
productivity in handover tasks.
e Investigate if the object size / fragility affects the user's ratings of the robot's gaze in a
human-to-robot handover.
o Investigate if the human-robot configuration affects the user's ratings of the robot's gaze

in a human-to-robot handover.

The second study in this thesis aims to implement and evaluate a robot controller that uses Guided
Policy Search (GPS), a model-based reinforcement learning (RL) method to perform object
handovers with humans. We investigate how does GPS perform with large variations in target
locations, moving targets, with a physical robot and compare training in a simulation environment

with training conducted directly on the physical robot.

1.4 Thesis overview

The overall research methodology is depicted in chapter 2. The research includes two separate
parts corresponding to two gaps in the handover process: implementing non-verbal communication
in human-robot handovers (study 1, chapter 3), and motion planning of the reach phase of
handovers (study 2, chapter 4). Conclusions and future research are discussed in chapter 5.



Chapter 2. Methodology

The overall methodology is presented in this chapter. This includes the research questions
regarding human-robot interaction during handover tasks. In the first study we examined what are
the most frequent gaze behaviors in a human-human handover. Then, with the purpose of
implementing these behaviors on a collaborative robot, we investigated whether and to what extent
the user's preference of the robot's gaze, when it is receiving an object from the human, and is this
dependent on the object size and type and on different human-robot configurations. In the second
study we developed a robot controller that uses Guided Policy Search (GPS) to perform object
handovers and evaluated the effect of different training scenarios (simulation and physical robot)

on performance.

2.1 Study 1: Human Preferences for Robot Eye Gaze in Human-

to-Robot Handovers

This study aims to investigate how the gaze behaviors of a robot, receiving an object from a human,
affect the human's subjective experience of a handover. Details are provided in Chapter 3 and in
publication J1. Previous research that studied robot gaze behavior in human-to-robot handovers
has only considered the receiver's "head gaze" behaviors in the "reach” phase and used only one
particular object in one configuration (i.e., they only used a bottle of water as the object, and only

considered situations in which the person was standing, Kshirsagar et al., 2020).

In this study, gaze patterns for all three phases of the handover process: reach, transfer, and retreat
were considered for different objects with a different type of giver-receiver configuration. First, to
identify the most frequent gaze behaviors in a handover, a frame-by-frame video analysis of a
public data-set of human-human handovers (Carfi et al., 2019) was performed. The database
consists of over 1000 videos of object handovers with 18 volunteers, 10 objects, and several
handover scenarios. The handover scenarios vary in terms of experiment type (volunteer-volunteer
or volunteer-experimenter), role of the volunteer (giver or receiver), and starting position (with
approach or without approach). For video analysis, we only considered the volunteer-volunteer
handovers as these would be more natural. This yielded a total of 288 videos recorded at 8pfs with

a resolution of 1280X720 pixels. These videos were analyzed for both the givers and receivers and



included a total of 18 people. We used video analysis even though the dataset contained motion
capture data for participants' heads, as we found that gaze is often enacted only with the
participant's eyes, without noticeable head-movement. Analysis of videos of human-human
handovers provided three candidate gaze patterns that were implemented on the robot:

1) Hand-Face: Initially look at the other person's face and then at the other person's hand. The
duration of Hand gaze is 70% of the total duration of the handover.
2) Face-Hand-Face: Initially look at the other person's face and then at the other person's hand
and then back to look at the other person's face.
The total duration of the handover is divided as follows: the first Face gaze (15%), the Hand
gaze (55%), and then back again to Face gaze (30%).
3) Hand gaze: Continuously look at the other person's hand.
We performed two types of user studies (video and in-person) with a collaborative robot that
exhibited these gaze behaviors while receiving an object from a human. The robot arm was
autonomous and programmed to reach a predefined position once the handover began. The robot
grasped the object when the object was close enough. Finally, the robot retreated to its home
position after the human released the object and started to retreat.
The system includes a robot arm receiving an object from a human, a distance sensor to detect the
giver's movement, and an infrared proximity sensor placed on the robot arm to detect the object
distance from the robot gripper. The sensors are controlled by an Arduino microcontroller. We
used Rethink Robotics' Intera SDK to program the robot, and Robot Operating System (ROS)
framework to connect all the components. Details of the Robotic system development are provided
in Appendix A.
To investigate the effect of object's size, object's fragility or the human's posture on human's
preferences for the robot gaze, objects of different sizes (a small box and a large box), different
fragility (a plastic bottle and a glass bottle) and different giver's posture (standing and sitting) were
used. In order to examine people's perception about the fragility of these objects, we conducted an
online survey. Details are provided in Appendix B. Ten different objects were used in the human-
to-human handovers videos, and three gaze patterns were received. Therefore, we chose to
examine whether the type of objects affected the human preferences of robot gaze in human-to-

robot handovers.



We preformed statistical analysis using the one-sample Wilcoxon signed-rank tests, the Bradley-

Terry model, and also conducted Binary proportion difference tests and Equivalence tests?.

A repetitive observation was attained in our open-ended responses regarding the preferred robot
gaze (open-ended responses are presented in Appendix C). Participants favored the robot gaze
perceived with the most human-like characteristics. This fact directed our search for additional
ways to anthropomorphize our robot, generating a more intuitive human-robot interaction. After a
thorough inspection of the literature, we found that other key components of HRI, which may
influence humans, are the perceived naturalness and smoothness of the robot's movements.
Therefore, we decided to pursue our second study regarding human-robot handover, implementing
an online controller to produce reaching motion of the robot to further develop the acceptance and

practical use of collaborative robots in the industry.

2.2 Study 2: Guided Policy Search for Human-Robot Handovers

for Human-Robot Handovers in a Real-World Environment

This study aims to evaluate the potential of a model-based RL method, Guided Policy Search
(GPS), to train a robot controller for human-robot object handovers both in a simulation

environment, and directly on a physical robot. Details are provided in Chapter 4.

The controllers available nowadays for human-robot handovers necessitate precise robot
kinematic/dynamic models. Moreover, tuning controller parameters which are non-intuitive, i.e.,
weights of movement primitives or velocity tracking gain, is required. To address these issues, we
used a "Guided Policy Search (GPS)" (Levine et al., 2014; Levine et al., 2015; Levine et al., 2016)
to generate an online handover controller which does not necessitate tuning non-intuitive controller
parameters or the robot's dynamic/kinematic models. Also previous research evaluating GPS for
human-robot handover was merely conducted in a simulation environment, without
implementation on a real robot (Kshirsagar et al., 2021). The application in a real-world context is

important.

! The equivalence test was added based on a request of a single reviewer of the 1JSR paper; we are not convinced it
should have been used in this type of rsearch.
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We formulated the reach phase of a human-to-robot handover as a policy search problem. The
system state representation consists of the robot's joint angles, joint velocities, object's positions
and velocities, and the human's hand in relation to the robot end-effector, and load-share estimate
(proportion of the weight of the object supported by the robot). The control input consists of
torques applied to the robot's joints. We define a multi-modal cost function for the handovers task
that rewards the robot's movement towards the human hand only if the human hand is moving

towards the robot.

We evaluated the controller with a physical robot while the training was conducted both in a
simulation environment and directly on the physical robot. The physical robot used to perform
handover reaching motions in a real environment was the Panda robot. Panda Robot is a sensitive
and agile 7 DOF arm with torque sensors at each joint, allowing adjustable stiffness/compliance
and advanced torque control. We used a physics engine called MuJoCo (Multi-Joint dynamics
with Contact) (Todorov et al., 2012) to train the robot to perform handover reaching motions in
simulation and then tested the policy in real environment on a Panda robot. The performance of
the global policy was measured in terms of the error between the human hand's position and the
end-effector's position.

In the first experiment, we wanted to test the policy learnt in the simulation environment on the
real robot. To do so, we tried to tune the MuJoCo model parameters to match the real robot
parameters. It was proved to be an infeasible solution and did not achieve operational results. Thus,
we decided to train the physical robot instead of a simulated robot, with a simulated target.

In the second experiment, we trained and tested the real Panda collaborative robot to perform
handovers over repeated trials for two scenarios: large variations in target locations and moving
targets. We used recorded human hand motions in all training iterations during the training/testing
process. The region for training and testing was selected by trial and error to ensure that the robot
does not run into joint position/velocity limits in the training/testing process. For each angle in

5deg increments, we tested it on a grid of 3x3 targets, resulting in 90 test locations.

The first research question examined in our study was how does the GPS perform for significant
spatial differences between training and testing locations. We compared two scenarios of local

controllers: one with 8 local controllers and another with 12 local controllers.
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The second research question examined in our study was how does the GPS perform with moving
targets. First, we used the global policy trained with static targets, but instead of a static tester, we
used a recorded human reaching motion. In this case, the robot generated highly inefficient
trajectories and reached areas outside of its cartesian position limits. To address this issue, we
trained the robot with moving targets (recorded human reaching motions), and tested the policy on

another set of recorded human’s reaching motions.
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Chapter 3. Human Preferences for Robot Eye Gaze Iin
Human-to-Robot Handovers

Faibish, T., Kshirsagar, A., Hoffman G., Edan, Y. 2022. Human Preferences for Robot Eye

Gaze in Human-to-Robot Handovers. International Journal of Social Robotics, 1-18.
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Abstract

This paper investigates human's preferences for a robot’s eye gaze behavior during human-to-robot handovers. We studied
gaze patterns for all three phases of the handover process: reach, transfer, and retreat, as opposed to previous work which only
focused on the reaching phase. Additionally, we investigated whether the object’s size or fragility or the human’s posture affect
the human’s preferences for the robot gaze. A public data-set of human-human handovers was analyzed to obtain the most
frequent gare behaviors that human receivers perform. These were then used to program the robot’s receiver gaze behaviors.
In two sets of user studies (video and in-person), a collaborative robot exhibited these gaze behaviors while receiving an
object from a human. In the video studies, 72 participants watched and compared videos of handovers between a human
actor and a robot demonstrating each of the three paze behaviors. In the in-person studies, a different set of 72 panicipants
physically performed object handovers with the robot and evalvated their perception of the handovers for the robot’s different
gaze behaviors. Results showed that, for both observers and participants in a handover, when the robot exhibited Face-Hand-
Face gaze (gazing at the giver's face and then at the giver’s hand during the reach phase and back at the giver's face during
the retreat phase), participants considered the handover to be more likable, anthropomorphic, and communicative of timing
{p = 0.0001). However, we did not find evidence of any effect of the object’s size or fragility or the giver's posture on the
gaze preference.

Keywords Human-robot handovers - Human-robot interaction - Robot eye gaze - Human-human-handovers - Non-verbal
communication

1 Introduction

People frequently hand over objects to others or receive
objects from others. Robots in domestic and industrial envi-
Tair Faibish and Alap Kshirsagar contributed equally to this work. ronments will be expected to perform such handovers with
humans. For example, collaborative manufacturing (e.g.,
This work was part of Thir Faibish Engincering Final Project and M5c assembly‘,l, su |}_,'rical assistance, household chores, Sh':'l:']:"j ng

thesis. . - .
assistance, and elder care involve object handovers between

[ Tair Faibish the actors. In this work, we investigate where should a robot
tairse® post bauw.ac.il direct its gaze when it is receiving an object from a human.
Alap Kshirsagar A handover typically consists of three phases [1]: a reach
ak2458 @ cornell.edu phase in which both actors extend their arms towards the
Guy Hoffman handover location, a transfer phase in which the object is
hoffman@ cornelLedu transferred from the giver's hand to the receiver's hand, and
Yael Edan a retreat phase in which the actors exit the interaction. These
yael @hau.ac.il phases involve both physical and social interactions consist-

ing of hand movements, grasp forces, body postures, verbal

1 . . .
Diepartment of Industrial Engineering and Management and cues and eye gazes.

the ABC Rohotics Initiative, Ben-Gurion University of the

Megev, Be'er Sheva, Isracl Most of the research on human-human and human-robot
2 Sibley School of Mechanical and Aerospace Engineering., handovers has focused on arm movement and grasping in
Cormnell University, Ithaca, USA handovers, with only a few works that studied the social inter-
Published online: 21 January 2022 &) Springer
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actions. Eye gaze is an important non-verbal communication
maode in human-human and human-robot interactions, and it
has been shown to affect the human’s subjective experience
of human-robot handovers [2-6]. However, except for our
previous work [6], all of the prior studies of gaze behaviors
in handovers considered only the robots-as-givers scenario
Le. robot-to-human handovers. Human-to-robot handovers
are equally important with many applications in various
domains. Some examples include a collaborative assembly
task in which the robot receives parts from the human or an
elder care robot that takes an empty tray from an older adult
after giving him/her food.

In our previous work [6], we studied the effects of
robot head gaze during the reach phase of human-to-robot
handover. Results revealed that observers of a handover per-
ceived a Face-Hand transition gaze, in which the robot
initially looks at the giver's face and then at the giver's hand,
as more anthropomorphic, likable and communicative of tim-
ing compared to continuously looking at the giver's face
( Face gaze) or hand (Hand gaze). Participants in a handover
perceived Face gaze or Face-Hand transition paze as more
anthropomorphic and likable compared to Hand pare. How-
ever, these results were limited to a specific scenario where
the giver stood in front of the robot and handed over a specific
object (a plastic bottle) to the robot. Furthermore, the robot’s
gaze behaviors were studied only in the reach phase of the
handover.

The goal of this paper is to expand and generalize the find-
ings from our previous work. Here, we study the human’s
preference for robot gaze behaviors in human-to-robot han-
dovers for all three phases of a handover for four different
object types and two giver postures. Also, we use eye gaze
instead of head garze since it is more common. We also
contribute to the literature on human-human handovers by
identifying common garze behaviors of humans in handovers.

2 Related Work
2.1 Human-to-Robot Handovers

Researchers have studied human-to-robot handovers to under-
stand human preferences for robot behaviors in the approach,
reach and transfer phases of handovers. In this work, we use
the findings from these studies to design the robot’s handover
trajectory and configuration.

Investigation of the interaction of a robot handing over
a can to a human [7] revealed that the preferred interper-
sonal distance between the human and the robot is within
personal distance (0.6m - 1.23m), suggesting that people may
treat robots similar to other humans. Previous research also
showed that subjects understood the robot's intention during
a handover by the robot's approaching motion, even without

&) Springer
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prior knowledge in robotics or exact directions [8]. Further-
more, Cakmak et al. [9] found that handover intent also
relies on handover poses, and inadequately designed han-
dover poses might fail to convey the handover intent. Their
recommendation was to create the handover pose distinct
from the object holding pose. They also suggested that the
best handover intent is conveyed by an almost extended arm
[10]. A study of effect of participant’s previous encounters
with robots on human-robot handovers showed that naive
users, as opposed to experienced ones, expect the robot to
monitor the handover visually, rather than merely use the
force sensor [ 11]. A study of the impact of repeated handover
experiments on the robot’s social perception [ 12] showed that
participants’ emotional warmth towards the robot and com-
fort were improved by repeated expeniments.

2.2 Gaze In Handovers

There is surprisingly little work on gaze behaviors in human-
to-human handovers or object passing tasks [6]. Flanagan
et al. [13] investigated gaze behavior in a block stacking
task. Contrary to previous assumptions, they showed that
human gazes were not reactive during the task Le. people did
not focus on the gripped object or the object in movement.
Instead, human gazes were found to be predictive; their gazes
focused on the object’s final destinations. Investigation of
the discriminative features that represent the intent to start a
handover revealed that mutual gaze during the task, which
is often considered crucial for communication, was not a
critical discriminative feature [14]. Instead, givers” initiation
of a handover was better predicted using asynchronous eye
gaze exchange.

In a human-to-human handover study of a water bottle [2],
it was found that the givers exhibited two types of gaze behav-
iors: shared attention gaze and turn-taking gaze. In shared
attention gaze, the giver looked at the handover location, and
in turn-taking gaze, the giver initially looked at the handover
location and then at the receiver’s face. In our prior work
[6]. we found that the most commeon gaze behavier for both
the giver and the receiver was to continuously look at the
other person’s hand during the reach phase of a handover.
Receivers exhibited this behavior almost twice as frequently
as the givers. However, our prior work studied the gaze behav-
iors only in the reach phase of human-to-human handovers.
T the best of our knowledge, there is no prior work that
studies both the giver's and the receiver's gaze in all three
phases of the handover process: reach, transfer, retreat. This
gap is addressed in Sect. 3.3.

Past research revealed that robot gaze affects the sub-
Jective experience and timing of robot-to-human handovers
[2-5,15]. A “tumn-taking gaze” in which the robot switched
its gaze from the handover location to the receiver’s face
halfway through the handover was favoured [2]. In a follow-
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up study, results revealed that the participants reached for
the object sooner when the robot exhibited a “face gare”
i.e. continuously looked at receiver's face, as opposed to a
shared attention gaze |3]. Fischer et al. [4] assigned a robot to
retrieve parts according to participants’ directions and com-
pared two robot gare behaviors during this task. They found
that when the robot looked at the person’s face instead of
looking at it’s own arm, participants were quicker to engage
with the robot, smiled more often, and felt more responsible
for the task. In a similar study, [5] it was found that when the
robot looked at the participant’s face while approaching them
with an object, it significantly increased the robot’s social
presence, perceived intelligence, animacy, and anthropomor-
phism. Admoni et al. [15] used the robot’s paze behavior o
instruct the human to place the handed-over object at a spe-
cific location. They showed that delays in the robot's release
of an object draws human attention to the robot head and gare
and increases the participants’ compliance with the robot’s
gaze behavior. In our prior work [6], we found that observers
of a human-to-robot handover preferred a transition gaze in
which the robot initially looked at their face and then at their
hand during the reach phase. For participants in human-to-
robot handovers, a face gaze was almost equally preferred as a
transition gaze, though the evidence was statistically weaker.

A common limitation of these prior studies is that they
do not investigate the effect of the object or the human’s
posture on the human’s preference of robot gaze. Therefore,
in the current study, as described in Sections 4-5, human
preferences towards robot gaze behaviors in human-to-robot
handovers for four different object types and two human pos-
tures is compared.

3 Methodology
3.1 Overview

This research aims to investigate human preferences for robot
gaze behaviors in human-to-robot handovers for all three
phases of the handover process (reach, transfer and retreat).
To obtain possible options for robot gaze behaviors we first
studied gaze behaviors in human-to-human handovers. A
data set of videos of human-human handovers was analyzed,
and the most common gaze behaviors of receivers were iden-
tified. Informed by this analysis. we conducted two user
studies of the robot’s paze while receiving the object from
the human in different situations. We investigated whether
different object types or giver's postures affect the human
preferences of robot gaze in human-to-robot handovers.

3.2 Hypotheses

The research hypotheses are:

16

H1I: People prefer certain robot gaze behaviors over oth-
ers in terms of likability, anthropomorphism and timing
communication.

H2: Object size affects the user’s ratings of the robot’s
gaze in a human-to-robot handover.

H3: Object fragility affects the user’s ratings of the robot’s
2aze in a human-to-robot handover.

H4: User's posture (standing and sitting) affects the user’s
ratings of the robot's gaze in a human-to-robot handover.
H5: Observers of a handover and participants in a han-
dover have different preference ratings of the robot's gaze
in a human-to-robot handover.

H1 is motivated by prior work which found evidence for
different user preference ratings for robot gaze behaviors. We
do not have a-priori hypothesis about the preference order
of gare behaviors. H2 and H3 are based on the intuition
that the object’s size and fragility could affect the preferred
gaze behavior of a receiver. For example, when receiving
large or fragile objects, the robot could be expected to con-
vey attentiveness by looking at the piver's hand, whereas,
when receiving small or non-fragile objects, the robot could
be better off looking at the giver's face to convey friendli-
ness. H4 is based on the intuition that a standing giver may
have different preferred gaze behavior of a receiver than a
sitting giver. For example, a standing person could like the
robot gaze at their face as their eves are at the same level,
whereas a sitting person could feel uncomfortable with the
robot gazing down at their face. HS results from our previous
finding that observers of a handover and participants in a han-
dover had different preference ratings of robot gaze behaviors
in the reach phase [6]. This research examines whether this
holds true for robot gaze behaviors in all three phases of a
handover and for handovers with different object types and
giver postures.

3.3 Analysis of Gaze In Human-Human Handovers

We analyzed gaze behaviours in human-to-human han-
dovers by annotating all three phases of each handover in
a public dataset of human-human handovers [ 16], similar to
our previous work [6]. A frame-by-frame video encoding was
performed followed by annotating the giver's and receiver’s
gaze locations in each phase in each frame with the following
discrete varables | G: Giver, R: Receiver) L
111G gaze: R's face/R’s hand/Own Hand/Other
21 ’s phase: Reach/Transfer/Retreat
3)R’s gaze: G's face/C’s hand/Own Hand/Other
4) R's phase: Reach/Transfer/Retreat

I The annotations are available at: https:fgithub.com/alapkshirsagar/
hamdover- gare- annotations/.
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Fig. 1 Examples of gaze annotations of the human-human handovers
dataset [16]. On the left is the giver and on the right the receiver: a
Reach phase : The giver is gazing at the other's face while the receiver

is gazing at the other’s hand, b Transfer phase : Both the giver and
receiver are gazing at the other’s hand, ¢ Retreat phase: Both the giver
and the receiver are gazing at the other’s face

Giver's Hand | Rk Trasafer Retres 21 frames
Recefvers Hard. | each Traraer atren 20,43 frames

j Wasd-Face, | Giver's Hasd | Giver's Face |1r28m =515
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Fig. 2 Analysis of gaze behaviors in the reach, transfer and retreat
phases of human-human handovers. Time flows left to right. Back-
ground colors (labeled on top two rows) comrespond to cach phase of
a handover: red: reach: blue: transfer; green: retreat. The bottom six

Figure | shows some examples of gaze annotations in the

three phases of handovers. The analysis (Fig. 2) revealed that
the most common gaze behaviors employed by people during
handovers are:
1) Hand-Face gaze: The person continuously looks at the
other person’s hand during the reach and the transfer phases,
and then looks at the other person’s face during the retreat
phase. The transition from hand to face happens slightly after
the beginning of the retreat phase. More than 50% of receivers
showed this behavior, whereas. only 25% of the givers in
those videos exhibited this behavior.

&) Springer

rows show one handover behavior each, three for the receiver and three
for the giver. Boundanies comrespond to average length of each phase.
Prevalence of each behavior is noted at the right edge of the row. Givers
and receivers have dissimilar frequently observed gaze behaviors

2) Face-Hand-Face gaze: During the reach phase, the per-
son initially looks at the other person’s face and then at the
other person’s hand. They then continue looking at the other
person’s hand during the transfer phase. Finally they look
at the other person’s face during the retreat phase. The tran-
sition from face to hand occurs halfway through the reach
phase, while the transition from hand to face occurs halfway
through the retreat phase. More than 40% of givers exhibited
this gaze. whereas only 25% of receivers did.

3) Hand gaze: Continuously looks at the other person’s hand.
The least frequent gaze. only 17.4% of receivers and 15.9%
of givers showed this behavior.
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3.4 Human-Robot Handover Studies

Two within-subject studies were conducted, a video study
and an in-person study. The video study aimed to investigate
an observer’s preferences of robot gaze behaviors, whereas
the in-person study aimed to investigate a giver’s preferences
of robot gaze behaviors.

A total of 144 undergraduate industrial engineering stu-
dents participated in the experiment (72 in each study)
and were compensated with one bonus point to their grade
in a course for their participation. The average participa-
tion time was about 25 minutes. In the video study, there
were 34 females and 38 males aged 23-29. In the in-person
study. there were 36 females and 36 males aged 23-30. The
study design was approved by the Human Subjects Research
Committee at the Department of Industrial Engineering and
Management, Ben-Gurion University of the Negev.

The following three gaze behaviors were implemented on
a Sawyer cobot based on insights from the human-human
handover analyses:

i. Hand-Face gaze: The robot’s eyes continuously looked in
the direction of the giver's hand during the reach and transfer
phases. After the robot started to retreat, the eyes transitioned
to look at the giver’s face. Both the hand gaze and the face
gaze were programmed manually to fixed locations.

1. Face-Hand-Face gaze: The robot’s eyes looked at the
giver’s face during the reach phase, giver’s hand during the
transfer phase and giver's face during the retreat phase.

1. Hand gaze: The robot’s eyes continuously looked in the
direction of the giver's hand.

Given that the human gaze behavior was tied to the han-
dover phase, as described above, we did not use fixed timings
for the robot trajectory. Instead, the robot was programmed
to use sensor information to initiate the handovers and gaze
behaviors depending on the phase of the handover. The robot
arm was programmed to reach a predefined position once the
giver started the handover which was detected using a range
sensor. The robot’s gripper was equipped with an infrared
proximity sensor, and it grasped the object when the object
was close enough. The robot retreated to its home posi-
tion after grasping the object. The robot was programmed
in the Robot Operating System (ROS) environment with
Rethink Robotics Intera software development kit (SDK).
The sensors were interfaced with the robot using an Arduino
micro-controller.

Figure 3a shows a snapshot of a video recording illustrat-
ing the experimental setup.”

2 The videos are available at: hitps://youtu.be/9dD1 YHG2Nco.

(b)

Participant |
3 Infrared sennor Robot

i Table

Distance sensor Experimenter

(c)

Fig.3 Experimental Setup: Video frames of an actor handing over an
object to the robot, used in the video study: a “Standing™ posture b
“Sitting” posture ¢ Diagram of the setup for the in-person study

4 Video Study of Human-to-Robot
Handovers

4.1 Experimental Procedure and Evaluation

The study was conducted remotely, and each participant
received links to the videos, electronic consent form, and
online questionnaires with study instructions. After signing

the consent form and reading the instructions, they completed
a practice session followed by 12 study sessions. Each ses-

&) Springer
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sion included one of the six pairing of the gaze patterns listed
in Table 2. for a single condition out of the three listed in
Table 13. So that each participant watched all six pairs of
gaze patterns twice, one for condition @ and one for condition
b. To reduce the recency effect of participants forgetting the
previous conditions counterbalanced pairwise comparisons
were performed instead of three-way comparisons. All six
pairwise comparisons were combined into a ranked ordered
list of three gaze patterns [ 18]. In each session. they watched
two handover videos. consecutively. The different objects and
postures used in the experiment are shown in Figs. 4 and 3
respectively.

The instructions at the start of the experiment, as well as
the caption for each video, stated that participants should pay
close attention to the robot’s eyes in the video. After every
two videos. the participants were asked to fill out a question-
naire which collected subjective measures as detailed below.
The questionnaire was identical to the one used in our pre-
vious study [6] and in Zheng et al.’s study [3]. Questions |
and 2 measure the metric likability (Cronbach’s & = 0.83).
Questions 3 and 4 measure the metric anthropomorphism
(Cronbach’s o = 0.91). Question 5 measures the metric tim-
ing communication.

1) Which handover did you like better? (1st or 2nd)

2) Which handover seemed more friendly? (Ist or 2ad)

3) Which handover seemed more natural? (1st or 2nd)

4) Which handover seemed more humanlike? (Ist or 2nd)
5) Which handover made it easier to tell when, exactly. the
robot wanted the giver to give the object? (1st or 2nd)

6) Any other comments (optional)

4.2 Experimental Design

The experiment was designed as a between-within experi-
ment, using likability, anthropomorphism, timing commu-

 To represent objects of different fragility a plastic bottle and a glass
bottle were used. In order to examine people’s perception about the
fragility of these objects, we conducted an online survey. This survey
was conducted post experiment based on reviewers’ feedback. A total
of 24 participants responded to the survey. The participants were under-
graduate students from the Department of Industrial Engineering and
Management at Ben-Gurion University, similar to the students who par-
ticipated in our video and in-person experiments. The participants were
told that this study deals with object handovers between a human and a
robot.

The survey included 10 pictures of objects, made from different materi-
als. The plastic bottle and the glass bottle used in our experiment were
among these objects. Each picture was followed by a yes or no question:
“Do you perceive this object to be fragile?”. Results revealed that all
of the 24 participants perceived the plastic bottle to be non-fragile. 23
out of 24 participants perceived the glass bottle to be fragile. Addition-
ally. when asked the same guestion for three other different plastic and
glass bottles, 24 participants denoted the plastic bottles as noa-fragile
and 23 denoted the glass bottles as fragile. Details about this survey are
available in [17]. This supports our decision to choose plastic and glass
bottles to represents objects of different fragility.

&) springer

(b)

Fig. 4 The objects used in the experiments: a Object size (small box
and large box), b Object fragility (plastic bottle and glass bottle)

Table 1 Study Conditions (24 participants per condition)

Condition 1: Object Size a. Small Box
b. Large Box
Condition 2: Object fragility a. Plastic Bottle
b. Glass Bottle
Condition 3: User’s Posture a. Sitting
b. Standing

Table 2 Six pairings of the three gaze patterns and their reverse order
for cach object or posture. Each participant experienced two versions
(a/b of a single condition) of these pairings, for a total of 12 pairings

Second Handover

First Handover

Hand-Face Face-Hand-Face
Hand-Face Hand
Face-Hand-Face Hand
Face-Hand-Face Hand-Face
Hand Hand-Face
Hand Face-Hand-Face

nication as the dependent variables. The participants were
divided into three groups of 24 participants. Each group per-
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Table 5 Combined preferences of gaze behaviors in the video study for the standing and sitting conditions
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formed one of the three study conditions listed in Table 1.
The order of the 12 sessions were randomized and counter-
balanced among the subjects.

4.3 Analysis

The participants” ratings for the likability and anthropomor-
phism of the gaze behaviors were measured by averaping
their responses to Questions 1-2 and 3-4 respectively. The
one-sample Wilcoxon signed-rank test was used to check
if participants exhibited any bias towards selecting the first
or the second handover. Similar to our previous work [6]
and Zheng et. al’s work [3], the Bradley-Terry model [19]
was used to evaluate participants” rankings of the likeahbil-
ity anthropomorphism and timing communication of gare
behaviors. To evaluate the hypothesis HL, ie. F; £ Pj%¥i £
J. where F; is the probability that one gaze condition is
preferred over others. the 2 values for each metric were
computed, as proposed by Yamaoka et. al [20]:

E:nZ!ug{P;+PJ;]—Za;!ogﬂ-: (n
iz i
¥ =ngig — 1)in2 — 2BIn10, (2

where, ¢ = 3 is the number of gare behaviors, n is the
number of participants, a; is the sum of ratings in each row
of Tables 3-7 (Appendix).

In order to examine H2-H4. we conducted two series of
tests for each measured metric (likability, anthropomorphism
and timing communication), and for each study scenano:

« Binary proportion difference tests for matched pairs [21],
in which the difference between the proportion of partic-
ipants who chose one gaze condition pp over other p;
was evaluated in each study scenario. The distribution of
differences pp — pc is:

i +p.— _ 7
Pb— pe ~ (D, | Pp+ Pr ni.l’?b Pl ) 3

where n = 24 is the number of participants in each
scenario. The Z-score is calculated according to the fol-
lowing formula:

Z — [Pb - FE) f‘”
suar(ps — pch

A low Z-score means that the distribution of differences
has zero mean with high probability.

+ Equivalence tests based on McNemar's test for matched
proportions [22,23], in which the proportion of partici-
pants who changed their gaze preferences in each study
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scenario was compared within equivalence bounds of
M =20.1.
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Table 7 Combined preferences of gaze behaviors in the in-person study for the non-fragile cbject and fragile cbject conditions
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4.4 Results
4.4.1 Quantitative Results

T test for order effects, we checked, but did not find any bias
towards selecting the first or the second handover [like: z =-
(.68, p=0.50; friendly: z=1.22, p=0.22; natural: z =0.20, p
=0.84; humanlike: z=1.36, p = (0.17; timing communication:
z=1.23, p=0.22].

Tables 3 - 5 (Appendix) and Fig. 5-7 show the robot gaze
preferences of the participants in terms of likability, anthro-
pomorphism and timing communication.

Gaze conditions differ significantly in ratings (all 2 val-
ues are large (p = 0.0001)), supporting H1. Participants
prefer the Face-Hand-Face transition gazes over Hand-Face
and Hand gazes. Hand gaze is the least preferred condition.

Based on the binary proportion difference test, we did
not find evidence that the proportion of observers of a
handover preferning one gaze condition over the other
is affected by object size (Table 9, Appendix), object
fragility (Table 10, Appendix} and user’s posture (Table 11,
Appendix). Hypotheses H2, H3 and H4 are not supported
(all p values are over 0.2).

However, based on the equivalence tests, we did not find
evidence that the proportion of observers of a handover pre-
ferring one gaze condition over the other is equivalent for
the two object sizes (Table 9, Appendix), object fragili-
ties (Table 10, Appendix), or user's postures (Table 11,
Appendix). Thus, hypotheses H2, H3 and H4 can also not
be rejected (all p values are over 0.15).

4.4.2 Open-ended Responses

All open-ended responses are presented in [17] with major
insights detailed below.

10 out of 72 participants pave at least one additional
comment. Four out of the eight participants, who made
Hand-Face gaze vs. Face-Hand-Face gaze comparisons, pre-
ferred Face-Hand-Face gare over Hand-Face gaze due to the
extended eye contact by the robot.

POS9 - “As much eve contact as possible.”
P08 - “I preferved handover 2 { Face-Hand-Face gaze)
because the robot looked more at the human”

Two participants mentioned that they could not distinguish
between Face-Hand-Face gaze and Hand-Face gaze, while
two participants commented about the advantages and dis-
advantages of the two gaze patterns.

PO41 - “In handover 1 (Hand-Face gaze) you could tell
that the robot was ready to receive the object. However,
handover 2 { Face-Hand-Face gaze) felt more human-
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ized because the robot looked at the piver’s eves right
wntil the transfer was made™.

Four out of six participants, who commented on the com-
parison between Hand-Face pare and Hand gaze, preferred
Hand-Face gaze because of the eye movement.

POOB - “In my opinion, the change in eye movement
creates a better human-robot interaction.”

PO09 - “In the second handover (Hand-Face gaze) the
eve movement, pave a good indication for the commu-
mication.”

Two participants mentioned that they could not distinguish
between Hand-Face gaze and Hand gaze.

Six participants commented on Face-Hand-Face gaze vs.
Hand gaze comparison. All of them said that they preferred
Face-Hand-Face gaze over Hand gaze.

PO0O - “Ar handover 2 (Face-Hand-Face gaze), the
robot [ooked at the object precisely when it wanted to
take it, 50 it was perceived more understandable.”
PO3T - “In my opinion video 2 ( Face-Hand-Face paze)
best simulated human-like behavior out of all the videos
I have seen so far”

5 In-person Study of Human-to-Robot
Handovers

In the in-person study, another set of 72 participants were
asked to perform object handovers with the Sawyer robot
arm in a similar setup (Fig. 3¢). The robot arm and the robot
eyes were programmed in the same way as the video study
described in Sect. 4.

5.1 Experimental Procedure, Design and Evaluation

The experiment was conducted during the COVID-19 pan-
demic. Therefore, several precautions were taken. The par-
ticipants were asked to wash their hands with soap when
they entered and exited the lab. The equipment was steril-
ized before and after each participant, and the experiment
room’s door remained open at all times. Only one participant
was allowed at a time inside the room. Both the participant
and conductor of the experiment wore masks and kept at least
2 meters distance between them.

After entering the experiment room, participants signed
the electronic consent form, and answered a question on a
computer: How familiar are you with a collaborative robot
(such as the one shown)? Participants ranked this question
on a scale from 1 - “Not at all familiar™ to 5 - “Extremely
familiar”. The mean familiarity with this type of robot was
found to be low (M=1.49, 5D = (.60, on a scale of [-3).
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Table® Results of binary propostion difference test and equivalence test for matched pairs comparing small object and larpe object user's preferences
of robot gare in handovers. Gare condition in bold is the preferred choice in each pairwise comparison

Metrics Gaze Conditions Binary Proportion Difference Test Equivalence Test
Lscore  P-value Lscore  Pevalue

Video Study Likability Hand-Face vs. Face-Hand-Face  —0.15 044 0.39 035
Hand-Face vs. Hand oo 0.50 —0.92 N E
Face-Hand-Face vs. Hand 038 0.36 0.9 058
Anthropomorphism Hand-Face vs. Face-Hand-Face — —0.78 022 0.31 038
Hand-Face vs. Hand oo 0.50 0,80 021
Face-Hand-Face v=. Hand 027 040 —0.32 038
Timing communication  Hand-Face vs. Face-Hand-Face 041 034 —0.75 023
Hand-Face v=. Hand —0.16 044 —0.25 G0
Face-Hand-Face v=. Hand LG5 0.26 004 052
In-Person Study  Likahility Hand-Face vs. Face-Hand-Face  —0.20 042 051 030
Hand-Face v=. Hand oz 045 0.45 033
Face-Hand-Face vs. Hand oo 0.50 0.96 7
Anthropomorphism Hand-Face vs. Face-Hand-Face  —0.27 040 0.59 028
Hand-Face vs. Hand iz 0.38 006 047
Face-Hand-Face vs. Hand —0.08 047 0.27 a9
Timing communication  Hand-Face vs. Face-Hand-Face — —0.25 040 027 039
Hand-Face vs. Hand 055 0.29 0.36 036
Face-Hand-Face vs. Hand (L1 0.50 0.30 038

Table 10 Results of binary proportion difference test and equivalence test for matched pairs comparing fragile object and non-fragile object user’s
preferences of mbot gaze in handovers. Gaze condition in bold is the preferred choice in each pairwise comparison

Metrics Gaze Conditions Binary Proportion Difference Test Equivalence Test
ZLscore  P-value Lscore  Pevalue

Video Study Likability Hand-Face vs. Face-Hand-Face — —0.27 0.39 0.29 038
Hand-Face vs. Hand —0.24 041 —0.57 028
Face-Hand-Face vs. Hand —0.08 047 —0.92 N E
Anthropomorphism Hand-Face vs. Face-Hand-Face — —0.41 034 —067 .25
Hand-Face vs. Hand —0.20 042 —0.34 037
Face-Hand-Face vs. Hand —-0.12 045 0.83 020
Timing communication  Hand-Face vs. Face-Hand-Face — —0.13 045 —0u03 51
Hand-Face vs. Hand oo 0.50 —0.33 037
Face-Hand-Face vs. Hand oo 0.50 0.31 038
In-Person Study  Likahility Hand-Face vs. Face-Hand-Face — —0.61 0.27 —0.20 58
Hand-Face vs. Hand —0.07 047 0.41 U6
Face-Hand-Face v=. Hand 026 040 0.32 62
Anthropomorphism Hand-Face vs. Face-Hand-Face — —047 032 043 033
Hand-Face v=. Hand uog 047 0.56 071
Face-Hand-Face v=. Hand o9 043 —0.23 41
Timing communication  Hand-Face vs. Face-Hand-Face — —0.24 041 —0.03 051
Hand-Face v=. Hand uog 047 —0.14 44
Face-Hand-Face vs. Hand 24 041 —0L66 025
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Table 11

Results of binary proportion difference test and equivalence test for matched pairs comparing sitting and standing user’s preferences of

robot gare in handovers. Gaze condition in bold is the preferred choice in each pairwise comparison

Metrics Gare Conditions Binary Proportion Difference Test Equivalence Test
Lscore  P-value Escore  P-valoe

Video Study Likability Hand-Face vs. Face-Hand-Face  — 108 015 —0.63 026
Hand-Face vs. Hand 0.20 042 —0u4 052
Face-Hand-Face vs. Hand 0.24 041 —0u035 052
Anthropomorphism Hand-Face vs. Face-Hand-Face — —0.49 031 071 04
Hand-Face vs. Hand 0.24 041 —0.65 074
Face-Hand-Face v=. Hand 0.24 041 —060 072
Timing communication  Hand-Face vs. Face-Hand-Face — —0.27 040 044 033
Hand-Face vs. Hand 033 0.37 0.6 043
Face-Hand-Face vs. Hand —0.08 047 —0.21 0.58
In-Person Study  Likahility Hand-Face vs. Face-Hand-Face 020 042 —0.28 039
Hand-Face vs. Hand —0.21 042 —0.51 0.31
Face-Hand-Face v=. Hand —0.37 0.36 0.72 024
Anthropomorphism Hand-Face vs. Face-Hand-Face oe 043 —0.20 042
Hand-Face vs. Hand —0.21 0.42 —0.39 0.35
Face-Hand-Face vs. Hand —0.40 0.35 0.06 048
Timing communicativn ~ Hand-Face vs. Face-Hand-Face o 026 —0.45 .33
Hand-Face vs. Hand —0.16 044 0.48 0.32
Face-Hand-Face vs. Hand .08 047 —0.32 038

The study instructions were given orally by the exper
imenter. Participants then completed a practice session
followed by 12 randomly assigned study sessions. In each
session, the participants performed two sequential handovers
with the robot. The 12 sessions consisted of the same pair-
ings of gaze behaviors as in the video expenment, followed
by the same questionnaire questions. The only difference was
in Question 5, which was “Which handover made it easier to
tell when, exactly, the robot wanted you to give the object?
(1st or 2nd)”. The experimental design was also same as the
video study.

5.2 Analysis

The hypotheses H1-H4 were evaluated using the same pro-
cedure as described in Sect. 4.3.

Ta evaluate hypothesis HS, we conducted two series of
tests for each measured metric (likability, anthropomorphism
and timing communication), and for each study scenario.
These tests are different from the tests for “matched pairs™
which we performed for testing H2-H4, since for testing HS
we need to compare two different participants” groups:

+ Binary proportion difference tests for unmatched pairs
[24]. in which the difference between the proportion of
participants who chose one gaze condition over other in
each study scenario for the video pp and in-person pe

26

studies was evaluated. The distribution for the differences
e — P st

. 1 |
e — P~ N0, \/pd{l—.ﬂd}[—— —1 (5)
I

T

where np = 24 and n, = 24 are the number of partici-
pants in each scenario of the video study and in-person
study respectively, and py is the pooled proportion cal-
culated as follows:

_ xb"'xc

= (6)
T

where Xy and X are the number of participants who
preferred one gaze condition over the other {(shown in
Tables 3 - 8, Appendix) in the video and in-person study
respectively. Then, the Z-score is calculated same as
equation (4).

Equivalence tests for unmatched proportions [25], in
which the proportion of participants who chose one gaze
condition over other in each study scenario for the video
pi and in-person e studies was tested for equivalence
within the bounds of A = 20.1.
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£.3 Results
5.3.1 Quantitative Results

There was no bias towards selecting the first or the second
handover [like: z =0.88, p = 0.38; friendly: z = -0.27, p =
0.79; natural: z =-0.48, p = 0.63; humanlike: z = -1.16, p =
0.25; timing communication:  =0.34, p = 0.73]. Tables 6-8
(Appendix) and Fig. 8- 10 show the robot gaze preferences
of the participants in terms of likability, anthropomorphism
and timing communication. In all six experimental con-
ditions, the gaze conditions differ significantly in ratings
(p = 0.0001), supporting H1. As in the video study, partic-
ipants preferred the Face-Hand-Face transition gazres over
Hand-Face and Hand gazes. Hand gaze was the least pre-
ferred (p = 0.0001).

Based on the hinary proportion difference test, the pro-
portion of participants in a handover preferring one gaze
condition over other can not be claimed to be affected by
object size (Table 9, Appendix), object fragility (Table 10,
Appendix) and user’s posture (Table 11, Appendix), con-

&) Springer

Likeabiliny {X7 = 13.55)
Anthropemorphism (2= 11.53)

e 0S5 [0S
031 S
e 0s2 pad

u Hand

Timing communication { x%s 14.98)

Hand-Face o Face-Hamd-Face
{a)

ozs [z
028 [ ol @R
030  [TEETEEE
Hand-Face m Face-Hand-Face m Hand

ib)

Likability 2= 23.897)
Arthropemorphitsm %= 22,53]

Timing communication | x2= 17.77)
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tradicting hypotheses H2, HY and H4. The proportion of
participants in a handover prefernng one gaze condition over
other (Table 12, Appendix) also cannot be claimed to be
affected by the interaction modality (video or in-person),
contradicting HS.

However, based on the equivalence tests, we did not find
evidence that the proportion of participants in a handover
preferning one gaze condition over the other is eguivalent
for the two object sizes (Table 9, Appendix), object fragili-
ties (Table 10, Appendix), or user's postures (Table 11,
Appendix). Thus, hypotheses H2, H3 and H4 can also not
be rejected (all p values are over (L15). We also did not find
evidence that the proportion of participants in a handover pre-
ferring one gaze condition over other (Table 12, Appendix)
is equivalent for the two interaction modalities (video or in-
person). Thus hypothesis HS can also not be rejected.

5.3.2 Open-Ended Responses

14 out of 72 participants gave additional comments.

Seven participants made Hand-Face gaze vs. Face-Hand-
Face gaze comparisons. Two of these participants stated
that they preferred Face-Hand-Face over Hand-Face gaze
because they preferred longer eye contact by the robaot.

PO20- “I preferred handover I Face-Hand-Face paze)
because the robot stared at me before and after the
handover, and [ felt accompanied by it during the entire
handover.”

Four participants mentioned that they could not distinguish
between the two conditions, while one participant mentioned
that Face-Hand-Face gaze pattern didn’t feel natural.

Four out of the seven participants who commented on the
comparison between Hand-Face gaze and Hand gaze, said
that they preferred Hand-Face gaze.
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PO14 - “In the first handover (Hand-Face paze) the
robot looked straight at me after the handover and
seemed to be more friendly.”

POSO - “In the first handover {Hand-Face gaze), the
robot’s eve movement was fully accompanied by the
handover movement, and therefore it seemed more nai-
wral.”

Three participants mentioned that they could not distinguish
between Hand-Face gaze and Hand gaze.

Seven out of eight participants, who commented on the
comparison between Face-Hand-Face gaze and Hand gaze
gazes, said that they preferred Face-Hand-Face gaze over
Hand gaze becavse of a longer eye contact by the robot.

P04 - “In the first handover (Hand paze), the robot
focused only on the object, and in the second handover
{ Face-Hand-Face paze) it focused on me too, so it felt
maore natural.”

PO16 - “I preferred the second handover { Face-Hand-
Face gaze) mainly because the robot looked me in the
eves at the beginning and the end.”

6 Discussion

Prior works studying robot gaze in handovers did so either
for a robot as giver, or—in our own prior work on robot
receiver gaze—Tfor a small and non-fragile object, and one
specific posture of the human. However, for a robot receiver,
the object type or giver posture might influence preferences
of robot gaze behavior. This raises the question whether the
findings in the prior work generalize over variations in the
handover task. In this work we investigated the effect of
different object types and giver postures on preferred robot
gaze behavior in a human-to-robot handover. We did not find
evidence that the participants’ gaze preference for a robot
receiver in a handover is affected by small, large, fragile and
non-fragile objects, standing or sitting postures, and the inter-
action modality i.e. video orin-person. However, in our study,
the proportion of participants preferring one gaze condition
over other is not statistically equivalent. Thus we cannot
completely reject the effect of these scenarios over gaze
preferences. In addition, the above-mentioned prior work [6]
studied the robot receiver’s gaze behaviors only in the reach
phase of human-to-robot handovers. The work presented in
this paper extends the empirical evidence by studying the
gaze patterns for all three phases of the handover: reach,
transfer and retreat.

Asin the previous study [6], results revealed that the most
preferred gaze behavior for a robot receiver was differ-
ent from the observed most frequent behavior of a human
receiver. When a person receives an object from another per-

son, the most frequent gaze behavior is a Hand-Face gaze, in
which the receiver looks at the giver’s hand throughout the
reach and transfer phases, and then at the giver’s face in the
retreat phase. This indicates that receivers must keep their
gaze focused on the task and thus sacnifice the social bene-
fits of the face garze. The previous findings [6] had revealed
that a robot receiver can utilize the flexibility of its percep-
tion system to incorporate a face-oriented gaze for social
engagement. This finding is reinforced by our current study as
the participants preferred a Face-Hand-Face transition gaze
behavior, in which, the robot initially looked at their face,
then transitioned its gaze to their hand during the reach phase,
continued to look at their hand during the transfer phase, and
finally transitioned its gaze back to again look at their face
during the retreat phase. Open-ended responses suggested
that penple preferred the robot looking at their face at the
beginning and the end of the handover, and the robot’s
eyes following the object during the transfer phase. This
gaze behavior complemented the robot’s handover motion,
and thus portrayed the robot as more human-like, natural,
and friendly. Another possible explanation is that the social
aspects of a human receiver are implicit, whereas a robot has
to establish its social agency for a better handover experience.
Based on these findings, we recommend to HRI design-
ers to implement a Face-Hand-Face transition gaze when
the robot receives an object from a human, regardless
of human posture and characteristics of the object being
handed over.

There are several limitations of this study which could
motivate future work. The results are limited by the sample
size and the specific cultural and demographic makeup of
its participants. Larger population samples of different age
groups, backgrounds, and cultures should be investigated to
help generalize the findings of our experiments. Moreover,
as with any experimental study, there is a question of external
validity. A handover that is part of a more complex collabo-
rative or assistive task might elicit different expectations of
the robot's gare, a fact that should be considered by design-
ers of HRI systems. To better understand these contextual
requirements, additional realistic scenarios of assistive and
collaborative tasks should be considered.

7 Conclusion

Video watching studies and in-person studies of robot gaze
behaviours in human to robot handovers, revealed that:

& The participants preferred a gaze pattern in which the
robot initially looks at their face and then transitions its
gaze to their hand and then transitions its gaze back to
look at their face again.

&1 springer
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Table 12 Results of binary proportion difference test and equivalence choice in each pairwise comparison. L: Likability, A: Anthropomor-
test for unmatched pairs comparing video and in-person user’s prefer- phism, T: Timing communication
ences of robot gaze in handovers. Gaze condition in bold is the preferred

Study Scenario Metrics Gazre Conditions Binary Eguivalence Test
Test Statistic Pvalue Test Statistic Pvalue

Ohject Size Small Object L Hand-Face vs. Face-Hand-Face —0.42 06T 0.39 0.35
Hand-Face vs. Hand 011 091 —0.92 0.18
Face-Hand-Face vs. Hand 1.48 o4 019 0.58
A Hand-Face vs. Face-Hand-Face —0.51 61 0.31 0.38
Hand-Face vs. Hand —0.21 0.E3 LED 021
Face-Hand-Face vs. Hand 0.85 040 —0.32 038
T Hand-Face vs. Face-Hand-Face 0,00 1.00 —0.75 0.23
Hand-Face vs. Hand —1.23 0.22 —0.25 060
Face-Hand-Face vs. Hand 0.99 032 (L4 0.52
Large Ohject L Hand-Face vs. Face-Hand-Face —0.49 062 029 0.38
Hand-Face vs. Hand 0.41 068 —0.57 0.28
Face-Hand-Face vs. Hand 011 0.91 —0.92 018
A Hand-Face vs. Face-Hand-Face .08 0.o4 —0L.67 0.25
Hand-Face vs. Hand 0.57 057 —0.34 0.37
Face-Hand-Face vs. Hand —0.22 0.E3 0.3 0.20
T Hand-Face vs. Face-Hand-Face —0.79 043 —0.03 0.51
Hand-Face vs. Hand 0.54 059 —0.33 0.37
Face-Hand-Face vs. Hand —0.51 61 0.31 0.38
Oibject Stiffness MNon-Fragile Object L Hamnd-Face vs. Face-Hand-Face 017 087 —0.63 0.26
Hand-Face vs. Hand —L05 0.29 —0.04 0.52
Face-Hand-Face vs. Hand —1.24 021 —0.05 0.52
A Hand-Face vs. Face-Hand-Face —0.08 o4 )| 0.24
Hand-Face vs. Hand —1.59 ol —0.65 0.74
Face-Hand-Face vs. Hand —L.61 ol —0.60 0.72
T Hand-Face vs. Face-Hand-Face —0.31 076 044 0.33
Hand-Face vs. Hand —0.82 041 016 043
Face-Hand-Face vs. Hand —1.03 0.30 —0.21 0.58
Fragile Object L Hand-Face vs. Face-Hand-Face —0.23 g2 051 030
Hand-Face vs. Hand —0.74 046 045 0.33
Face-Hand-Face vs. Hand —0.11 091 .96 017
A Hand-Face vs. Face-Hand-Face —0.15 0.E8 059 0.28
Hand-Face vs. Hand —0.93 0.35 .06 047
Face-Hand-Face vs. Hand —0.73 0.47 027 0.39
T Hand-Face vs. Face-Hand-Face —0.46 0.65 0.27 0.39
Hand-Face vs. Hand —0.60 055 0.36 0.36
Face-Hand-Face vs. Hand —0.49 062 030 038
User's Posture Standing L Hand-Face vs. Face-Hand-Face —1L.00 032 —0.20 0.58
Hand-Face vs. Hand 1.27 020 041 .66
Face-Hand-Face vs. Hand 1.1% 0.23 032 0.62
A Hand-Face vs. Face-Hand-Face —0.31 076 043 0.33
Hand-Face vs. Hand 1.37 o7 056 0.71
Face-Hand-Face vs. Hand 0.62 0.54 —0.23 0.41
T Hand-Face vs. Face-Hand-Face —0.77 044 =003 0.51
Hand-Face vs. Hand 0.71 048 —0.14 044
@ Springer

29



International Journal of Social Robotics

Table 12 continued

Study Scenario Metrics Gare Conditions Binary Equivalence Test
Test Statistic Pvalue Test Statistic Pvalue
Face-Hand-Face vs. Hand 017 nE7 —0.66 025
Sitting L Hamnd-Face vs. Face-Hand-Face 0.47 64 —0.28 039
Hand-Face vs. Hand 0.36 n72 —0.51 031
Face-Hand-Face vs. Hand —0.19 .85 072 0.24
A Hand-Face vs. Face-Hand-Face 0.53 G0 —0.20 042
Hand-Face vs. Hand 043 67 —0.39 035
Face-Hand-Face vs. Hand —0.82 041 (.06 048
T Hand-Face vs. Face-Hand-Face 0.32 075 —0.45 033
Hand-Face vs. Hand —0.34 073 048 032
Face-Hand-Face vs. Hand 0.52 LG —0.32 038
» The participants” gaze preference did not change for  Appendix

changes in the object size, object fragility, or the user’s
posture. However, the gare preferences were also not
statistically equivalent for different object size, object
fragility, or the user’s posture.

These results could help the design of non-verbal coes in
human-to-robot object handovers, which are integral to col-
laborative and assistive tasks in the workplace and at home.
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Tables 3 - # show the robot paze preferences of the partici-
pants in terms of Likability, Anthropomorphism and Timing
Communication. The values in the first three columns indi-
cate the number of “wins” of a row condition over a column
condition i.e. the number of participants who preferred a row
condition over a column condition. For example, in Table 3
a Likability rating of 21 in the small object, “Hand-Face™
row and “Hand™ column shows that 21 participants liked the
Hand-Face gaze over the Hand gaze. We obtained these rat-
ings by averaging the participants’ responses for both ordered
pairwise comparisons, and thus some of these values are frac-
tions. The values in a; column show the sum of the ratings for
each row. The probability that a row condition is preferred
over other conditions was calculated using an iterative esti-
mation algorithm [18] and the probability values are shown
in P column.

Tables 9-11 show the results of binary proportion differ-
ence tests and equivalence tests for matched pairs which we
used to evaluate H2-H4. We evaluated the user’s preferred
gaze behaviorin terms of Likability, Anthropomorphism, and
Timing Communication for different study conditions. The
values in “Z-score” column represent the test statistic. For
example, in Table 9, a Z-score of 0.00 and a P-value of 0.5
for Likability in Hand-Face vs. Hand gaze conditions means
that the proportion of participants in the video study who
liked Hand-Face over Hand condition for both small and
large object is not statistically different. However, for the
same scenario, a Z-score of -0.92 and a P-valve of (.18 for
the Equivalence Test indicates that the proportions are not
statistically equivalent as well.

Table 12 show the results of binary proportion difference
tests for unmatched pairs which we used to evaluate HS.
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Chapter 4. Implementation and Evaluation of
Guided Policy Search for
Robot Reaching Towards Moving Targets

4.1 Introduction

This study evaluates and implements Guided Policy Search (GPS) on a robot controller to perform
human-robot object handovers. Handovers play an essential role in the current use of collaborative
and assistive robots alongside humans, for instance, in household chores, elderly care,
collaborative assembly, and surgical assistance. Out of the three phases comprising a handover:
reach, transfer and retreat (Kshirsagar et al., 2019), we focus on the first phase - the reach phase.
In this phase, both participants spread their arms towards the handover location. Previous HRI
studies have suggested several online (Kshirsagar et al., 2021; Yang et al., 2020; Kshirsagar et al.,
2019; Pan et al., 2019; Scimmi et al., 2019; Pan et al., 2018; Vogt et al., 2018; Zhao et al., 2018;
Medina et al., 2016; Maeda et al., 2014; Bdiwi et al., 2013; Yamane et al., 2013; Micelli et al.,
2011) and offline ( Rasch et al., 2019; Peternel et al., 2017; Moon et al., 2014; Sisbot & Alami,
2012; Cakmak et al., 2011;Cakmak et al., 2011b) controllers for the reach phase of handovers.
Yet, these methods require precise robot's dynamics models and\or human kinematics models.
Lately, Guided Policy Search (GPS) (Levine et al., 2014; Levine et al., 2015; Levine et al., 2016),
a model-based reinforcement learning algorithm, has become the focus of interest for many
researchers. The GPS algorithm has been used to learn controllers without known robot dynamics
and showed encouraging success in several autonomous tasks (Levine et al., 2016; S Levine et al.,
2015; Levine & Abbeel, 2014), but with no human interaction. This method uses an iterative
adaptation of local controllers, a dynamic model, and a global policy to optimize a policy over

repeated trials, without prior knowledge of the robot dynamics.

To the best of our knowledge, most GPS algorithms have been tested on autonomous manipulation
(Chebotar et al., 2017; Levine et al., 2016; Levine et al., 2015; Levine & Abbeel, 2014), and
locomotion tasks (Zhang et al., 2016; Levine & Abbeel, 2014;Levine & Koltun, 2013, Levine &
Koltun, 2013b). No work has used GPS for HRI tasks, like object handovers on a real robot
(Kshirsagar et al., 2021). GPS has also been used for learning manipulation tasks, i.e. placing a

hanger on a bar, inserting shapes into a sorting cube, inserting a hammer underneath a nail,
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screwing a bottle cap stacking small blocks, assembling toys, inserting rings on wooden pegs
(Levine & Abbeel, 2014). The use of fixed targets, fixed robot dynamics, and small variations in

the test locations is common to all GPS applications discussed above.

An object handover task is different, requiring novel tools to handle it. First, it requires motion
planning for a moving (non-fixed) target, i.e., the human's hand. Second, the robot dynamics is not
fixed due to the diverse objects being handed over. Finally, the training target trajectories and the
testing target trajectories could differ substantially when human's unpredictable behavior is taken
into consideration.

Prior research of this field included simulation testing with a robot arm substituting for the human,
generating the variability and movement of the handover target location (Kshirsagar et al., 2021).
Despite providing important insights, their application to a real-world environment is limited. In
this work, we evaluated a robot controller that uses Guided Policy Search with a physical robot,

with training conducted both in a simulation environment and directly on the physical robot.
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4.2 Related work

In this section, we provide a brief summary of existing controllers for the reach phase of human-

robot handovers, and previous works using GPS.

4.2.1 Human-Robot handover reach phase controllers
Numerous offline or online controllers have been suggested for refining human-robot interaction
during the reach phase of human-robot handovers. Offline controllers (Rasch et al., 2019; Peternel
etal., 2017; Moon et al., 2014; Sisbot & Alami, 2012; Cakmak et al., 2011;Cakmak et al., 2011b)
encompass a few disadvantages. Lack of adaptability is one distinct disadvantage. The robot's
motion plan is computed before the reach phase initiation and does not update simultaneously to
the changing human's actions during this phase. Therefore, offline controllers may not be desirable,
in particular, if the human operator is preoccupied with other tasks and does not pay his/her
undivided attention to the handover, thus, possibly resulting in an unsuccessful handover. We
propose here an online controller that continuously updates the robot's motion plan throughout the

reach phase while observing the momentary state of the human operator.

The visual servoing approach, i.e., directing a robot towards the human's hand, is the simplest
approach used in online controllers for the reach phase of handovers (Pan et al., 2018; Bdiwi et
al., 2013; Micelli et al., 2011). This controller generates velocities proportional to the distance
between the position of the human's hand and the robot's gripper, allowing it to continuously
update the robot's motion plan. Other velocity profiles and motion planners have been used to
direct the robot towards the predicted handover location. Pan et al. (Pan et al., 2019) attempted to
achieve smooth minimume-jerk trajectories using Bézier curves. Scimmi et al. (Scimmi et al., 2019)
applied a predefined smooth velocity profile. Kshirsagar et al. (Kshirsagar et al., 2019) investigated
the possibility of specifying the robot's handover behavior by synthesizing handovers
automatically. All of these controllers lack human effortlessness and fluency in motion.

With the objective to imitate the reaching phase in human handovers, several online controllers
have used various movements primitives, i.e., Dynamic Movement Primitives (DMPs) (Prada et
al., 2014), Probabilistic Movement Primitives (ProMPs) (Maeda et al., 2014), and triadic

interaction meshes (IMs) (Vogt et al., 2018). Other approaches have used human demonstrations
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to implement the reaching phase in robots by using dynamical systems (Medina et al., 2016), look-
up tables (Yamane et al., 2013), or neural networks (Yang et al., 2020; Zhao et al., 2018). Some
researchers have proposed reinforcement learning to learn online controllers for the reach phase
from human feedback (Kupcsik et al., 2018; Riccio et al., 2016).

However, all these existent controllers require the robot dynamics. Dynamical parameters may be
difficult to obtain for proprietary claimed commercial robots and custom-built robots. One
possibility to address this challenge is the use of system identification methods and learning of
dynamical models. However, this requires extensive training data as global and complex
dynamical models need to be learned. On the contrary, GPS builds local control models, integrates
them with a global policy trained by the local controllers through supervised learning, and is

thereby data-efficient.

4.2.2 Guided policy search for human-robot handovers
Most of the existing controllers for human-robot handovers require precise robot
kinematic/dynamic models. Moreover, many require controller parameters which are non-intuitive
and difficult to tune, such as weights of movement primitives or velocity tracking gains. In
contrast, "Guided Policy Search (GPS)" (Levine et al., 2014; Levine et al., 2015; Levine et al.,
2016) can be used to generate an online handover controller which does not require tuning of
control parameters or the robot's dynamic/kinematic models. A few of the algorithm's compelling
features include generalizability, sample efficiency, and local minima avoidance (Du et al., 2021;
Kshirsagar et al., 2021). It combines learned local dynamic models with a global optimal control

policy, and by the use of deep neural networks, it can generalize from local policies.

4221 Guided policy search
Of the various Reinforcement Learning methods, policy search methods focus on discovering
suitable parameters for a given policy parameterization (Deisenroth et al., 2013). Since policy
search methods depend on trial and error to optimize their parameters, they are prone to get stuck
in local minima, in particular, for policies with a large number of parameters. To address this issue,
prior studies have suggested “Guided Policy Search”, a policy search method that allows the
combination of supervised learning of the policy with local trajectory optimization.

The first “Guided Policy Search” algorithm proposed by Levine and Koltun (Levine & Koltun,

2013) was comprised of differential dynamic programming as a means to produce locally optimal
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controllers which guided, with a large number of parameters, the supervised learning of neural
network policies. They used demonstrations to initialize trajectories and applied importance
sampling to generate new samples of optimized trajectories to each gradient step. They applied
their method by learning locomotion tasks, for instance, walking, running, hooping and planar
swimming. In order to combine policy search with trajectory optimization, Levine and Koltun
applied in another study (Levine & Koltun, 2013b) variational decomposition of a maximum
likelihood objective rather than using their previous importance sampling method. They proved
that with respect to the previously considered locomotion tasks (like walking, running, hopping,
and planar swimming), this method surpasses the importance sampling GPS method. Levine and
Koltun (Levine & Koltun, 2014) utilized a policy agreement constraint for the guidance of policy
search with trajectory optimization. To solve the constrained optimization problem, differential
dynamic programming (DDP) and dual gradient descent was used. They showed that in
comparison to their prior importance sampling and variational GPS algorithms, the constrained
GPS algorithm yielded better results on the locomotion tasks. In addition, they were able to learn
complicated tasks like walking on uneven terrain and bipedal push recovery. In all these GPS
variants, knowledge of the system dynamics was required.

In a subsequent study, Levine and Abbeel (Levine & Abbeel, 2014) suggested a method for
trajectories optimization with unknown system dynamics. They used Levine and Koltun's (Levine
& Koltun, 2014) constrained GPS algorithm and extended it by refitting locally linear dynamics
models iteratively. They showed that their method required fewer samples compared to model-
free methods and eliminated the need to learn global models, which is challenging for complex
systems. The method was evaluated by simulating robotic locomotion tasks, such as, swimming
and walking, and robotic manipulation tasks, such as peg insertion. Levine et al. (Levine et al.,
2015) used the constrained GPS algorithm and adjusted it to study manipulation skills on a real
robot with unknown dynamics. An adaptive scheme was added for choosing the number of samples
and step size, and an augmentation method for policy training with synthetic samples. They
performed various experiments with a PR-2 robot (a two-arm robotic system with 7 DOF in each
arm), such as assembling toys, stacking Lego blocks, inserting a shoe tree, screwing bottle caps,

and inserting rings on wooden pegs to demonstrate their algorithm.

In another study, Levine et al. (Levine et al., 2016) provided an end-to-end algorithm using GPS

to transform sensory input (raw images) into motor output (joint torques). They formulated the
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constrained GPS algorithm as an instance of Bregman-Alternating Direction Method of Multipliers
(BADMM). They examined their method on different tasks requiring visual and control close
coordination, e.g., placing a hanger on a bar, inserting shapes into a sorting cube, inserting a
hammer underneath a nail, and screwing a bottle cap. Zhang et al. (Zhang et al., 2016) enhanced
the original GPS algorithm to form training data without disastrous failures by adding a model
predictive control (MPC) scheme. During the training phase, they used an instrumented setup to
gain full state observations and trained a deep neural network policy with samples produced by
MPC. During the testing phase, partial system observations were sufficient for the policy to
produce control inputs. They showed that their enhanced GPS algorithm with MPC was
comparable to the original GPS algorithm without model errors. They also showed that the
enhanced GPS algorithm exceeded the original one with the introduction of model errors. Chebotar
et al. (Chebotar et al., 2017) provided another modification to the GPS algorithm. Rather than
using the former iterative linear quadratic regulator (iLQR) to generate local controllers, they

added a model-free local optimizer based on path integral (PI) stochastic optimal control.

Furthermore, contrary to Levine and Koltun GPS algorithms, which generate training data by local
controllers, Chebotar et al., ran global policy on new sets of task cases in each iteration to generate
the training samples. They first configured the local policies using kinesthetic teaching and
initialized the global policy by performing numerous standard GPS iterations with local policy
sampling using PI. The algorithm performed better than iLQR-based GPS, on tasks which included
intermittent and variable contacts (contacts at different changing spatial locations) as well as

discontinuous cost functions.
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As depicted in Fig. 1, the GPS algorithm alternates between generating optimal trajectories for
each initial condition (local iLQR controllers) and training a global policy supervised by the local

controllers. The global policy's role is to improve the local controllers, retaining them close to the

——————————————————————————————————————————————————————————————————————————————————

pi(uc|x¢)) on robot,

Run policy (all
collect D = {7;}
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\ /

Figure 1: Guided policy search algorithm. Iteratively updates the local controllers (local policies)
and the global policy. The local policies serve as the “experts” for supervised learning of the
global policy. The local policies are also updated to avoid drifting away from the global policy.

global policy. This algorithm does not require knowledge of the dynamics model as it utilizes the

training data with locally linear models to approximates the dynamics.

Most GPS algorithms have been tested on autonomous manipulation (Chebotar et al., 2017; Levine
etal., 2016; Levine etal., 2015; Levine & Abbeel, 2014), and locomotion tasks (Zhang et al., 2016;
Levine & Abbeel, 2014;Levine & Koltun, 2013, Levine & Koltun, 2013b). A recently published
study by Kshirsagar et al, evaluated the potential of GPS to train a robot controller for human-
robot object handovers (Kshirsagar et al., 2021) and explored the sensitivity of GPS to different
state representations. Three different system state representation were investigated (FULL,
RELATIVE, REDUCED).

The full state representation consisted of the robot joint angles, the robot joint velocities, the human

arm joint angles, the human arm joint velocities, the positions and velocities of three points on the
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object, the human hand, and the robot gripper, and the robot gripper’s width. This study has shown
that a policy trained with Relative state representation (does not include the human's joint angles
and velocities from the state representation, and expressing the human hand's position and velocity
in a reference frame attached to the robot gripper) has a better overall performance, and therefore

we used the Relative state representation.

They also showed that the use of GPS creates a global policy that does not perform well for target
test locations that are spatially too distant from target training locations. This issue can be mitigated
by adding local controllers trained over target locations within the high error regions. More
efficient reaching trajectories can be obtained by training on moving targets, although it results in
higher worst-case errors. Lastly, they found that changes in the robot's end-effector mass, inducing
changes in robot dynamics, are well tolerated and adjusted by the global policy. In this study,
training and testing was conducted in a simulated environment. In this thesis, we repeated the study
on a physical robot and tested GPS for object handovers in a real-world context. To the best of our
knowledge, GPS has not been applied to object handovers on a real robot (Kshirsagar et al., 2021).

This gap has been addressed in this study.
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4.3 Policy search formulation of handover

We start by briefly describing the GPS algorithm and then we formalize the handover task’s reach

phase as a reinforcement learning problem.

4.3.1 Guided policy search algorithm
Policy search algorithms aim to discover a policy g (u;|x;) that will minimize the execution cost
Eg, [XT_, I(x;,u,)] of the desired task. Here, 8 indicates the policy parameters, for instance, the
weights of a neural network. The system at time t is defined by state x, (for example, the joints
angles, joints velocities, end-effector angles, end-effector velocities, and object’s positions),

control inputs u, (for example, motor torque commands) and a cost function (x;, u;).

When trying to solve this minimization problem using reinforcement learning, large amounts of
training data are required, and the algorithm is susceptible to local minima. Guided policy search
algorithms surmount these concerns by using "local™ controllers p; (u;|x;) (guiding distributions)
to train a "global™ policy mq (u:|x;) through supervised learning. The training of local controllers
could be via trajectory optimization methods like iLQR. Hence, GPS is formulated in terms of a

constrained optimization problem, given by

miny g En, [Dte1l(xeue)] s.t p(uelxe) = mo(uelx,) Vvt (1),

where p(u;|x;) is a guiding distributions mixture p; (u;|x;). The cost is minimized with respect
to p(t) = p(xy) [TFe1 pOcpn | , ue) p(ue|xy) over trajectories t = {x;,uy, ..., xp, ur} With

dynamic model of the system given by p(x;41|x: , us).

As Section 4.2.2 details, few GPS algorithm variants require knowledge of the robot dynamic
models, whereas others, iteratively learn locally linear dynamics models using training data. In
this study, we use an algorithm introduced by Levine et al. (Levine et al., 2016), which does not
require knowledge of the robot dynamics and uses the Bregman-Alternating Direction Method of
Multipliers (BADMM). This algorithm represents the local controllers p; (u;|x;) and the dynamics

pi(xe41lx: , up) as linear, time-varying Gaussians:

pi(uelx,) = N(Kpixe; + kei, Crp),  (2)

Di(Xppq|xe , up) = N(fxt,ixt + futitle + fct,iFt,i)- 3)
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These type of controllers may serve as an appropriate choice for guiding distribution optimization,
as they can be efficiently learned, using a small number of real-world samples. For each training
target trajectory (in our case: the reach motion of the human), a different set of controller and
dynamics parameters are suited. However, all of the local controllers supervise a single global
policy, making it generalizable to various test target trajectories. To make the constraint in (1)
tractable, Levine et al. (Levine et al., 2016) proposed modifying the constraint by multiplying
with p(x;) and applying it to expected action:

T
ming g Ep[ztzll(xtfut)] s-t Epau|x)[Ue] = Epeepmy(ug|x,) el VE . (4)

The GPS algorithm alternates between training a global policy supervised by the local controllers
and generating optimal trajectories for each local controller using iLQR. Additional use of the
global policy is to improve the local controllers, so that the local controllers stay close to the global
policy. Thus, GPS alternates minimization of 8 and p as follows:

T

6 < argming Zt—l Ep(xt)ng(ut|xt)[uz:/1ut] + V¢ Ep (o) [Dic, (P (e [0 | | (ue|x))], - (5)

T
P« ar.gminP Zt_lEp(xt,ut) [l(xt'ut)] - ug/lut] + vtEp(xt) [DKL(T[B (utlxt)”p(utlxt))]: (6)

Aut < At + AV (Ep e ympugloe) [Ue] = Epepp(ug|x,) e, (7)

where 1, is the Lagrange multiplier on the expected action at time ¢, v, is the weight of the

Kullback-Leibler divergence term that serves to keep p(u;|x;) close to mg(u;|x;). For a more

comprehensive description of GPS algorithms, see (Levine et al., 2016)

4.3.2 System state representation
As discussed in Sec. 4.2.2.1 we used the Relative system state representation (Kshirsagar et al.,
2021). The Relative state representation consists of the robot joint angles 6,., the robot joint
velocities 6, the positions and velocities of the object in the robot end-effector frame (pZ, 1),

the positions and velocities of the human hand in the robot end-effector frame (p;,, p7,):

Xt = [61”» grf pg' p;v p'(r)" plri]t' (8)
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The robot’s control input u, consists of the robot joint torques t and the force applied by the

gripper’s actuator f,, constrained by upm;, < up < Upgy:

Ur = [T'fg]t- 9

To consider the robot's dynamics we used torques rather than a kinematic model in terms of
velocities or positions as control inputs. By that, the need for tuning low-level position/velocity
controllers is eliminated. Moreover, position or velocity controllers might apply considerable
impact forces on the human., and thus, endanger human safety.

4.3.3 Cost function
The task of the robot (moving its gripper towards the human's hand in the reach phase of
handovers) is described in terms of the following cost function:

Creach = [llpr — pall Z + In(llp, — prll 2+ ®reacn)],  (10)

where p,. is the position of the robot and p;, is the position of the human hand. This cost function
penalizes and encourages the robot according to the following conditions: This cost function first
penalizes the robot for spatial distance from the human's hand. Second, it encourages the robot
for accurate placement owing to its concave shape, as described in (Levine et al., 2015). In other
words, this cost function encourages the robot to quickly and accurately reach the human's hand.
Areqch 1S the parameter that determines the penalty in the target's surroundings. As in Levine et al.
(2015), we set ypqcn, = 1e — 5 (Sec. 4.5).
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4.4 Implementation

To evaluate a robot controller that uses Guided Policy Search with a physical Panda (Franka
Emika) robot, we train a collaborative robot to perform handover reaching motions, in both a
simulation environment (sim-to-real) and directly on the physical robot (real-to-real) over repeated
trials.

4.4.1 MuJoCo simulation environment
We build upon the BADMM-GPS implementation by Finn et al. (Finn et al., 2016) and Kshirsagar
etal. (Kshirsagar etal., 2021). The collaborative robot in the handover task is simulated in MuJoCo
(Multi-Joint dynamics with Contact) (Todorov et al., 2012). MuJoCo is a physics engine aiming
to facilitate research and development where fast and accurate simulation is needed. MuJoCo
provides a unique combination of speed,
accuracy and modeling power. MuJoCo was
used to train the robot in simulation. We
imported the Panda URDF file to MuJoCo in
order to simulate the Panda robot.

Fig. 2 shows the MuJoCo simulation
environment was built for the previous study
(Kshirsagar et al., 2021), and used for this
study. Fig. 2 shows a Panda robot with 7
degrees-of-freedom (DOF), equipped with a

two fingered gripper. The environment also

includes a pseudo-robot arm with two DOF

and a mass rigidly attached to its end- Figure 2: MuJoCo (Multi-Joint dynamics with Contact)
effector, substituting the human operator. simulation environment for human handover tasks. A
Panda robot (right) was trained in simulation on
reaching movements in a human-to-robot handover task.
The human operator is represented by a pseudo-robot

(left).
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4.4.2 The Panda robot

We trained a Panda robot (Fig. 3) to perform handover reaching motions. The Panda Robot is a 7
DOF anthropomorphic arm with torque sensors at each joint, allowing adjustable
stiffness/compliance and advanced torque control. It weighs 17.8 kg, has a payload of 3 kg, a reach
of 855 mm and a workspace coverage of 94.5%.
We used a Panda robot as it facilitates to conduct research due to its add-on Franka Control
Interface (FCI), allowing to study control and motion algorithms, grasping strategies, interaction
scenarios and machine learning, FCI allows a fast low-level bidirectional connection to the robot’s
arm and hand. The FCI provides the current status of the robot and enables its direct control at a
rate of 1kHz (Franka Emika GmbH, 2020).

libfranka is a C++ software library that implements the client-side interface of the FCI, i.e. the
drivers implementing the 1 kHz UDP-based communication with the robot. It also gives access to
the robot model library, which provides the kinematic and dynamic model of the robot. franka_ros
connects Panda with the entire ROS ecosystem. It integrates libfranka into ROS Control, and
includes URDF models and detailed 3D meshes of the robot and end-effector for visualization

(e.g. RViz) and kinematic simulations.

In the beginning of our training attempts, the robot was fixed
to a table. Then, in an attempt to reach the object, during one
of the training sessions, the robot bumped into the table and
took a hit that caused a permanent offset in the torque sensing
module of joint six (which affects the torque sensing
capabilities and control of the arm). We had to use another
robotic arm, since Franka-Emika did not offer a repair service
for the arm. To avoid such situations in the future, we
designed a different mount for the robot as shown, in Fig 3. A

plate that was attached to the robot’s base and mounted on a

pillar fixed to the floor. Hence, the robot had no possibility to

Figure 3: Panda robot developed by
crash. Franka-Emika connected to a designed
floating position.
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4.4.3 OptiTrack motion tracking system

The OptiTrack motion tracking system was used to track the positions of the human’s hand and
the robot end effector. Since it is not practical to have a human trainer/tester perform exactly the
same handover motion in all training/testing iterations, we use recorded human hand motions
during the training process. The OptiTrack system used 8 multiple synchronized 2D cameras in
our setup (Fig. 4), capturing images of reflective markers. To compute the markers’ 3D positions

these 2D positions are superimposed and triangulation is used. The mocap_optitrack ROS package

was used to stream OptiTrack mocap data to tf. [ 1 2 3 4

This package contains a node that translates

motion capture data from an OptiTrack rig to tf Pp@j Mkobo,

transforms, poses and 2D poses. The node

Tracking system cameras

receives packets that are streamed by a NatNet . p
— 7 5

compliant source, decodes them and broadcasts
Figure 4: Diagram of the setup for the experiments.

Our setup consisted of Panda robot and OptiTrack
transforms, poses, and/or 2D poses. motion tracking system with 8 cameras.

the poses of configured rigid bodies as tf

4.4.4 Robot operating Ssystem

The Robot Operating System (ROS) was used. ROS is a collection of tools, code libraries, and
protocols providing a flexible framework for writing robot programs (Casafi et al., 2015). It offers
a messaging interface that allows communication between different code elements. The topic
interface is anonymous and asynchronous, allowing fast and convenient data transfer and

processing.

In this project, ROS was used to operate the Panda robot and to get messages from the OptiTrack
motion tracking system. We used the distributed computing capabilities of ROS and ran different

ROS packages/nodes on different machines as shown in Fig 5.
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Figure 5: Distribution of ROS nodes across different computers and
connections between them using ROS topics
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4.4.5 Guided policy search suite

The BADMM-GPS implementation used in this thesis work was written by Chelsea Finn (Finn et
al., 2016), at that time a researcher in Levine’s group. The addition of a ROS controller and GPS
agent for a KUKA robot was developed by Jack White (White, 2018). Using Jack White's

additions, we added an interface for the Panda robot.

4.4.5.1 GPS agent

In Finn's GPS implementation, the agent is the central component. Following loading up of the
experimental configuration, the agent handles the running of the general policy training, the local
policy generator/optimizer, and communicates with the controller. An agent class, stemming from
Finn's base class, must be composed to communicate with the controller (to transmit actions to the
controller and accept the state's transmission from the controller). However, selecting a controller

(and robot or another process) fully depends on the user.

In the case of the Panda robot (similarly to the KUKA by Jack White), ROS topics are used to
transmit and receive these quantities. Therefore, the agent must register as a ROS node and
establish publishers for the GPS commands. The GPS sends to the robot the following commands:

e Get data: sends a request to the controller for the latest state and expects a response

e Relax arm: tells the controller to stop sending torques to the robot

e Reset arm: tells the controller to return the robot to the initial position specified for this
round of trajectory optimizations—does not expect a response

e Trial command: sends the controller a policy and expects the return of a trajectory.

The GPS agents, implemented for different robots, vary merely in the communication method
between the controller and the agent. In Panda's agent (similarly to the KUKA by Jack White), the
only difference from the PR-2 controller was that this agent did not send commands to the passive
arm and did not expect replies from the passive arm (as a part of general updates) since that the
Panda and the KUKA are one-armed robots as opposed to the two-armed PR-2 robot.

4.4.5.2 GPScontroller
In the context of the GPS algorithm, the GPS controller serves as an interface between the different
kinds of robots or another conceptual control layer and the GPS agent. The controller created by

Finn, named RobotPlugin, is a complex base class written in C++. Since this base class does not
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have any prior knowledge of the robot, or the hardware abstraction that will be used, separate
classes, instantiated in RobotPlugin, abstract components in the following ways:
e Sensors:
o The sensors are responsible for abstractions of physical state sensors, e.g., the states
of the joints arriving from the robot (the robot joint angles, the robot joint velocities)

e Controllers:

o Trial controller - commands the robot to perform sequential trials and return a set

of trajectories.

o Position controller - commands the robot to rest by an in-built PID controller.
Finn's software remained partially completed, regardless of the efforts invested in abstraction. The
most notable gap is rooted in the fact that the RobotPlugin class assumes two physical robots. This
assumption is made because it was originally implemented on a PR-2 robot, which has two arms.
An actual PID controller runs on one arm and trial torques are sent, whereas, on the other arm, a
dummy PID controller runs and no torques are sent. PID controllers and torque commands are

required for any ROS controller derived directly from RobotPlugin.

In the suite provided by Finn is a derivative C++ class of RobotPlugin, called PR2Plugin,
specifically designed for the PR-2 robot. Instead of managing two instances of a one-arm
RobotPlugin class, RobotPlugin contains the code for two arms and PR2Plugin merely extends
this with more PR-2-specific code. Directly inheriting the RobotPlugin class for a single robot
arm is not possible due to the use of two arm trial controllers. Trying to implement GPS for a
KUKA LWR4+ robot, Jack White implemented one arm based code by writing a new GPS
controller, which is based on the PR2PIlugin class and derived from the RobotPlugin class. He
added an intermediate class, SingleArmPlugin, between RobotPlugin and KUKALWRPIugin to
feed the variables related to the passive trial arm from the RobotPlugin class and to force it to not
expect updates. We use the same GPS controller as in Jack White’s work, but modify it to work
with the Panda robot and OptiTrack motion capture system. The structure of our Panda controller
is depicted in Fig. 6. Our full experimental configuration is described in Appendix D. The changes

are summarized below:

1. Tune PID parameters- A PID joint position controller is used to reset the arm before beginning
the GPS trial/test. The controller commands the robot to move to a predefined position, defined
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in terms of the joint angles. The “‘proportional’’ part of the controller applies control input
proportional to the error between the current position and the target position. The "‘integral’’
part of the controller applies control input depending on the integration of error between the
current position and the target position. The ““derivative’’ part of the controller applies control
input depending on the difference between the derivatives of the current position and the target
position. The default parameters of this PID controller did not work with the real Panda robot.
With the default parameters, the robot’s joints did not move at all, only the tip joint would
barely turn. We tuned the PID parameters to work with the Panda robot (Table 1). A large
variety of different PID parameters were tried, but the integral and derivative gains had little
effect. Making the proportional gain too high resulted in the robot crashing or abruptly halting
as it exceeded the joint velocity limits.

Table 1: PID parameters before and after changes

Joint LWR Values [Jack White reference] Panda Values
Number P I D |_clamp P I D |_clamp
Joint 1 2400 0 18 4 6 3 3 1
Joint 2 1200 0 20 4 6 3 3 1
Joint 3 1000 0 6 4 6 3 3 1
Joint 4 700 0 4 4 6 3 3 1
Joint 5 300 0 6 2 2.5 1 1 1
Joint 6 300 0 4 2 2.5 1 1 1
Joint 7 300 0 2 2 2.5 1 1 1

2. Tune the initial local controllers- The initial local controllers used in the GPS training process
are linear gaussian controllers which try to hold the robot’s initial position. The initial
controller gains are computed with LQR, defined by the parameters described below. It is
important to initialize these parameters to ensure that the robot starts the learning process while
maintaining stability. The default parameters used in Finn’s code for PR-2 or Jack White’s

code for LWR did not work with the Panda robot. With these parameters, the robot did not
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move at all. The initial controller values that worked with the Panda robot were obtained by
trial-and-error (Table 2).

a. Robot joint gains: - A vector of scalar gains, one for each torque/joint of the robot.

These are used to guess the initial dynamics of the robot by LQR. The initial local
controllers are extremely sensitive to these gains; a too high gain leads to exceed the
joint limits, whereas a too low gain prevents the joint from moving at all.

b. Initial variance, stiffness, stiffness velocity— These three values are used to compute

the Hessian of the loss with respect to trajectory at a single timestep. The initial variance
affects the state-space explored by the robot in the initial training step. A higher initial
variance results in larger explored state-space but with higher control inputs, which
might exceed the joint limits in some cases causing the robot to halt. A lower initial
variance results in smaller control inputs, but also a smaller explored state-space

causing the robot to not learn the task.

Table 2: Initial controller values of PR-2, LWR, Panda robots.

Parameter PR-2 LWR Panda
Joint 1 gain 3.09 24 0.1
Joint 2 gain 1.08 12 0.1
Joint 3 gain 0.393 10 0.1
Joint 4 gain 0.674 7 0.1
Joint 5 gain 0.111 3 0.001
Joint 6 gain 0.152 3 0.001
Joint 7 gain 0.098 6 0.001
Initial variance 1 30 0.5
Stiffness 0.5 60 1.0
Stiffness velocity 0.25 0.25 0.5
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Use Franka HW interface (franka_ros ROS package) instead of LWR HW interface (kuka_lwr
ROS package)

Feed OptiTrack data to FrankaPlugin through ROSTopic sensor abstraction of GPS controller
Replace the former PC with a more powerful PC for controlling the robot- during our
implementation trials of the GPS algorithm on the real Panda robot (Fig. 2), we encountered
communication constraints violation errors. To overcome these, we tried replacing the network
(network speed was 1000Mb/s) and the networks cables, but without success. Then, we tried
using a local network (with no internet communication), which also had no effect, and also ran
all the network tests, which showed no network issues. Finally, according to a consultation
with the Franka support team, we replaced the PC with a more powerful PC (with an upgraded
CPU. Further details are attached in Appendix E), which solved the communication constraints
violation errors.

Clamp the torques- following plenty of trials and errors, we realized that the torques sent to
the robot's joints needed to be limited to a maximum range to work without velocity or joint's
position violation errors. First, we tried implementing penalization for out-of-limits velocities
and torques, but with no success; The torques generated by the local controllers remained high.
Therefore, we created a clamp function to limit the torques to a range of [-3,3] and added it to
the trial controller class before the torques were sent to the robot's joints.

. A new report ROS publisher- we re-encountered communication problems with the initiation
of the training phase. These problems were manifested by sudden stops of the robot's
movement during the training process. After substantial debugging efforts, we realized that the
robot did not receive the published result of a trial of completion, sent from the real-time report
ROS publisher (RobotPlugin). To address this issue, we wrote a non-real time ROS publisher

which replaced the real-time report publisher written by (Finn et al., 2016).
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Figure 6: The structure of a Panda controller similar to LWR controller of (White, 2018).
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4.5 Evaluation

We evaluated the performance of a robot controller that uses Guided Policy Search on a physical
robot. Training is conducted both in a simulation environment and directly on the physical robot.
The performance of the global policy was measured by calculating the error between the end-
effector's position and the human hand's position at the last time step. To do so, we conducted two

experiments:

4.5.1 Sim-to-Real

In the first experiment, we trained the Panda robot to perform handovers over repeated trials in a
simulation environment and tested it on a real Panda robot on novel target trajectories. We found
that the policy trained in simulation could not be transferred to the real robot, because the

simulation model of the robot is different from the real robot in three ways:

1. Torques and joints velocity limits. Limited torques can be generated on the real robot
(for joints 1-4: —87[Nm] < t < 87[Nm] and for joints 5-7: —12[Nm] < 7 < 12[Nm]).
The learned global policy in simulation generated very high torques (hundreds and even
thousands Nm), and thus, could not be tested on the real robot. To reduce the torques
computed in the simulation, we tried the following:

e add to the cost function a penalization term for out of limit velocities and out of
limit torques. The torques were reduced slightly but not enough to run the global
policy on the real robot.

e clamp the torques before the torques were sent to the robot's joints. In that case, the
robot could not learn at all and barely moved from its initial position.

2. Robot mass. When the mass of the robot in the MuJoCo model was set the same as the
mass of the real robot, MuJoCo required much higher values of joint torques to move the
robot. One possible explanation is that the joint damping values in MuJoCo model were
different from the real robot. We tried to scale down the mass of the MuJoCo model, but
unfortunately, without success in improving the learning process in simulation. If the mass
is too low, the robot overshoots the target (the robot arm seems like flying), and if the mass
is high, the robot barely moves from its initial position. In both cases, the robot did not
learn at all.
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3. Damping values. As described above, the joint damping values in MuJoCo model were
different from the real robot. The correct values were not provided by Franka-Emika. We
tried to tune the damping to improve the MuJoCo model. If the damping values are too
low, less friction acts on the joints and the robot does not hold its initial position and falls
down. For high damping values, the robot does not move much.

Overall, tuning the MuJoCo model parameters to match the real robot parameters proved to be

an infeasible solution. Thus, we decided to train the physical robot instead of a simulated robot,

with a simulated target.

4.5.2 Real-to-Real
In the remaining text, we denote the Panda robot the “learner”, and the human is denoted as the

“trainer” when we are in the training phase or the “tester” when we are in the testing phase.

In the second experiment we train and test the real Panda robot to perform handovers over repeated
trials for two scenarios: large variations in target locations and moving targets. Since it is not
practical to have a human trainer/tester perform exactly the same handover motion in all training

iterations, we use recorded human hand motions during the training/testing process.

The first research question examined in our study is the spatial generalizability of the learned
global policy, i.e., how does the global policy perform for significant spatial differences between

training and testing locations.

To answer this question, we tried to test the learnt global policy at different locations of a static
tester on a region around the learner robot, as shown in Fig. 7. The dimensions of the region are:
Inner radius= 700 mm, Outer radius = 800 mm, Min height = 200 mm, Max height = 250 mm,
Min angle = 0 °, max angle = 45° measured from the robot’s base. This region was selected by
trial and error to ensure that the robot does not run into joint position/velocity limits in the
training/testing process. For each angle in 5deg increments, we test on a grid of 3x3 targets,
resulting in 90 test locations. We compared two scenarios of local controllers: one with 8 local
controllers and another with 12 local controllers. The global policy was trained with these local
controllers for 11 iterations. Both the learner and the trainer/tester commenced their movement in
each trail simultaneously. The learner's movement lasted 5 seconds, while the trainer/tester's

movement lasted 1 second (which corresponds with the movement duration of humans in the reach
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phase of a handover). The test performance is measured as the mean error between the learner's

gripper position and the tester's hand position over the last time step of each trial.

¥ .100‘:‘6“ " 700 mm
o = ! \\

Figure 7: The training and testing region for: (a) 8 local controllers, and for (b) 12 local controllers. The
yellow circles represent the initial 8 training locations, and the orange circles represent the additional 4
training locations that were located in a vertical plane dividing the workspace. This region was selected by
trial and error to ensure that the robot does not run into joint position/velocity limits in the training/testing
process.

The performance of the learned global policy is presented in Fig. 8(a). The black circle represents
the learner's gripper's initial position, and the black squares represent the training locations. Mean
error, range, and standard deviation are presented in Fig. 9 (left). The mean testing error (41.71
mm) is about twice as large as the mean training error (22.67 mm). As the test error can be reduced
by adding more local controllers (Kshirsagar et al., 2021), we added 4 additional local controllers.
They were located in a vertical plane dividing the workspace (Fig. 8(b)). The mean and standard
deviation of the testing error of the global policy, trained with 12 local controllers, was reduced to
29+18 mm.

Next, we investigated how GPS performs when the target is moving. First, we used the same global
policy shown in Fig. 8(a) (static training), but instead of a static tester, we used a moving target
encoded in a recorded human reaching motion. The final position of the motion was in a region
similar to the one shown in Fig. 7. The robot generated highly inefficient trajectories and reached

areas outside of its Cartesian position limits, and thus, could not execute these trajectories.
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A possible way to address this issue, as found in our previous study (Kshirsagar et al., 2021), is to
train the controller with a moving target. We trained the robot with recorded human reaching
motions, and tested the policy on another set of recorded human reaching motions. Some samples
of these reaching motions are shown in the video attachment. Figures 8(c) and 8(d) show the
performance of the global policy for various final positions of the tester's gripper, defined as in

previous trials. Fig. 9 (right) shows error distributions.

For the global policy trained with a moving trainer and 8 local controllers (Fig. 8(c)), the mean
testing error is 124.28 mm. Although the test errors are high as compared to the static tester
scenario, the robot stayed within the joint and Cartesian limits. Moreover, the variance over target
location is high, and the worst-case error is 791.11 mm, 442% higher than the maximum error for
static tester condition (179 mm). Surprisingly, this maximum error occurred for a test motion close
to one of the training motions. This could be attributed to the highly non-linear nature of the global
policy. Interestingly, GPS did not converge to a low training error, which was 123.23 mm, 544%
higher than for static training (22.67 mm). Training the global policy with a moving trainer and 12
local controllers (Fig. 8(d)), reduced the mean testing error to 37.93 mm. The worst-case error also
improved (138.71 mm). An inspection of the generated trajectories and torques shows that this
approach results in trajectories and torques similar to those achieved with static targets.
Distributions of training and testing performance for each target scenario are presented in Fig. 9.
Each point is the mean error between the learner's gripper position and the tester's hand position
over the last time step of a trial. Error bars show one standard deviation around the mean of each

distribution.
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Figure 8: Global policy evaluation for different types of trainers and testers. The black circle represents the
learner’s gripper’s initial position, and the black squares represent the training locations. In the ‘static’
case, the trainer/tester stays in a fixed configuration. In the ‘moving’ case, the trainer/tester moves with a
human-like trajectory (that were recorded in advanced) and reaches the locations given by colored dots.
Thus, each point corresponds to the final position of the tester’s gripper in a trial. Error between the

learner's gripper position and the tester’s gripper position is calculated over the last time step of each trial.
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4.6 Conclusions and future work

Our work evaluated the feasibility of GPS as a learning method for human-robot handovers in a
real-world environment for large variations in target locations and for moving targets. Training
was analyzed both in a simulation environment and directly on a physical robot. We used a variant
of GPS that does not require prior knowledge of robot dynamics. Instead, it learns locally linear
dynamics models from the training data (Levine et al., 2016). Prior studies used GPS for
autonomous manipulation (Chebotar et al., 2017; Levine et al., 2016; Levine et al., 2015; Levine
& Abbeel, 2014) and locomotion tasks (Zhang et al., 2016; Levine & Abbeel, 2014;Levine &
Koltun, 2013, Levine & Koltun, 2013b) which are characterized by small variations in target
locations and a static environment. However in a handover task, the robot operates in a dynamic
environment due to unpredictable and non-static human behavior, resulting in a wider spread of
target locations. These challenges have been addressed in a recently published study by
(Kshirsagar et al., 2021). In this study, the potential of GPS to train a robot controller for human-
robot object handovers in a simulation environment has been explored. Despite uncovering

important insights, their application to a real-world environment is limited, as this study showed.

Unlike a real-world environment, which warrants constant human supervision (for resetting
experiments, monitoring hardware status, and ensuring safety), data can be continuously obtained
with no need for human intervention in simulation. Hence, a simulation environment is faster,
cheaper, and safer than experimenting on a real robot. However, the reality gap is a significant
obstacle, preventing learning to robotic's applications. In simulations, for instance, the robots can
learn to perform bicycle stunts (Tan et al.,2014), while in the real world, it is still challenging to
teach robots basic tasks like walking. To fully exploit robotic's potential benefits, bridging the
reality gap is crucial. This bridging would result in a better simulation benchmark for robotics,
focusing the research efforts on the most pressing robot learning challenges. In this study, we first
tried to learn the policy in a simulation environment and then deployed it to the real robot. It was
found to be an infeasible solution, as the MuJoCo model parameters did not match the real robot

parameters. Thus, we decided to train directly on the physical robot.

We found that it was not possible to train the physical robot for the same target locations used in
(Kshirsagar et al., 2021) as the Panda robot always ran into some joint velocity or Cartesian

position limits during the training process. Thus we had to reduce the robot’s target workspace by
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trial-and-error to avoid these limits. In this reduced workspace (Fig. 7), we found that when the
robot was trained to reach only static target locations, the global policy performance could be
slightly improved by adding local controllers in regions with highest test errors (in the middle of
the working plane) (Fig. 8(a) compared to Fig. 8(b)).

When evaluating the global policy trained with static targets on a moving test target, the robot
generated highly inefficient trajectories and reached areas outside of its Cartesian position limits.
To overcome this issue, we trained the global policy with moving targets. Nevertheless, this
solution was not free of drawbacks. It successfully reduced the mean error and resulted in more
efficient and low-torque trajectories, but resulted in a high-variance (unreliable) global policy with
significantly larger worst-case errors. This issue can be addressed by adding local controllers to

the training phase, improving the global policy performance (Fig. 8(d)).

This study introduces preliminary steps toward implementing GPS in a real-world environment
for human-robot handovers. Nevertheless, we did not take into account numerous essential aspects
of handovers, such as the robot’s movement legibility and the human’s adaptation to the robot’s
movements. Our studies were also conducted in a limited workspace. The workspace selected for
the learning process was relatively small because the robot ran into joint or cartesian limits in the
training phase of a larger workspace. The robot’s low-level controller had inbuilt safety stops that
interfered with the robot controller whenever it reached any joint/Cartesian
position/velocity/torque limits (Appendix F). It was not possible to override these limits, which
made it difficult to train the robot. To examine the GPS algorithm for a larger workspace, we
recommend to use a robot that allows overriding these limits. Also, there is a need to develop GPS
algorithms that will train local controllers and global policy while obeying these limits. Despite
these aforementioned limitations, this study contributes to the understanding of the challenges and
applicability of GPS in a real-world context. Also, it demonstrates the potential benefits and
drawbacks of GPS as an algorithmic tool to further develop the field of human-robot collaboration

in general and the area of human-robot handovers in specific.
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Chapter 5. Summary

In recent years, we have witnessed a substantial shift towards a more direct human-robot
collaboration in the industry. The technological advances in robot hardware have enabled
researchers from the industry to envision an entirely shared environment. Robots would interact
with and act on their surroundings in this foreseen environment, including other agents like human
workers and robots. The recent COVID-19 pandemic has highlighted the need for developing
independently operating as well as collaborative robots to use in additional fields such as the
medical field (hospitals and care homes). In this context, robots must be developed with the
abilities to exchange objects for successful cooperation and to collaborate in manipulation tasks.

In this thesis, we focused on two main aspects regarding human-to-robot handovers. In the first
study we analyzed what are the most frequent gaze behaviors in a human-human handover. we
found that the most common gaze behaviors of receivers were: hand-face, face-hand-face and hand
gaze. Then, with the purpose of implementing these behaviors on a collaborative robot, we
investigated whether and to what extent the user's preference of the robot's gaze, when it is
receiving an object from the human, and is this dependent on the object size and type and on
different human-robot configurations. We performed two types of user studies (video and in-
person) with a collaborative robot that exhibited these gaze behaviors while receiving an object
from a human. To investigate the effect of object's size, object's fragility or the human's posture
on human's preferences for the robot gaze, objects of different sizes (a small box and a large box),
different fragility (a plastic bottle and a glass bottle) and different giver's posture (standing and
sitting) were used. The results of both studies were similar. The participants preferred the gaze
behavior in which the robot initially looked at their face, then transitioned its gaze to their hand
(during the reach phase and the transfer phase) and then transitioned its gaze back to look at their
face again (during the retreat phase). Open-ended responses suggested that the change between
looking at the giver’s face and then at the giver’s hand and then back at the giver’s face portrayed
the robot as more humanlike, natural, and friendly. Also, they felt that this behavior complemented
the robot’s handover. people preferred the robot looking at their face at the beginning and the end
of the handover, and the robot's eyes following the object during the transfer phase. This gaze
behavior complemented the robot’s handover motion, and thus portrayed the robot as more human-

like, natural, and friendly. Another possible explanation is that the social aspects of a human
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receiver are implicit, whereas a robot has to establish its social agency for a better handover
experience. Based on these findings, we recommend to HRI designers to implement a Face-Hand-
Face transition gaze when the robot receives an object from a human, regardless of human posture
and characteristics of the object being handed over. There are several limitations of this study
which could motivate future work. The results are limited by the sample size and the specific
cultural and demographic makeup of its participants. Larger population samples of different age
groups, backgrounds, and cultures should be investigated to help generalize the findings of our
experiments. It would also be interesting to evaluate if the specific gazes are dependent on the
population sample (age group, experience with technology, extrovert vs. introvert), task (time
critical, entertainment), environment (industry/hospital/restaurant) and robot (e.g., reliability,

motion smoothness).

Moreover, as with any experimental study, there is a question of external validity. A handover that
is part of a more complex collaborative or assistive task might elicit different expectations of the
robot's gaze, a fact that should be considered by designers of HRI systems. To better understand
these contextual requirements, additional realistic scenarios of assistive and collaborative tasks
should be considered.

According to the results of our first study, with correlation to the relevant literature, we discover
that other key components of HRI, which may influence human’s acceptance of robotics, are the
perceived naturalness and smoothness of the robot's movements. Therefore, we decided to pursue
our second study regarding human-robot handover, implementing an online controller to produce
reaching motion of the robot to further develop the acceptance and practical use of collaborative
robots in the industry. In the second study we developed a robot controller that uses Guided Policy
Search (GPS) to perform object handovers and evaluated the effect of different training scenarios
(simulation and physical robot) on performance. We evaluated the controller with a physical robot
while the training was conducted both in a simulation environment and directly on the physical
robot. In the first experiment, in an attempt to bridge the reality gap from simulation, we wanted
to test the policy learnt in the simulation environment on the real robot. To do so, we tried to tune
the MuJoCo model parameters to match the real robot parameters. It was proved to be an infeasible
solution because the learned global policy in simulation generated very high torques (hundreds
and even thousands Nm), and thus, could not be tested on the real robot. Therefore, we decided to

train the physical robot instead of a simulated robot, with a simulated target.
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In the second experiment, we train and test the real Panda collaborative robot to perform handovers
over repeated trials for two scenarios: large variations in target locations and moving targets. The
first research question examined in our study was how does the GPS perform for significant spatial
differences between training and testing locations. We found the global policy performance
slightly improved by using 12 local controllers. The second research question examined in our
study was how does the GPS perform with moving targets. First, we used the global policy trained
with static targets, but instead of a static tester, we used a recorded human reaching motion. In this
case, the robot generated highly inefficient trajectories and reached areas outside of its cartesian
position limits. To address this issue, we trained and test the robot with moving targets. It
successfully reduced the mean error and resulted in more understandable and low-torque efficient
trajectories, but resulted in a more high-variance (unreliable) global policy with significantly larger
worst-case errors. This issue can be addressed by adding local controllers to the training phase,

improving the global policy performance.

This study contributes to the knowledge regarding the applicability of GPS in a real-world context.
Also, it demonstrates the potential benefits and the drawbacks of GPS as a tool to further develop
the field of human-robot collaboration. We did not take into account numerous essential aspects
of handovers, such as the robot’s movement legibility and the human’s adaptation to the robot’s
movements. Our studies were also conducted in a limited workspace. During the training process
the Panda robot ran into some joint velocity or cartesian position, so we had to reduce the robot’s
target workspace by trial-and-error to avoid these limits. To examine the GPS algorithm for a
larger workspace, we recommend to use a robot that allows overriding these limits. Also, there is
a need to develop GPS algorithms that will train local controllers and global policy while obeying

these limits.
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Appendices

Appendix A- Robotic system development

System description

The system (Fig. 10) includes a robot arm receiving an
object from a human, a distance sensor to detect the
giver's movement, and an infrared proximity sensor
placed on the robot arm to detect the object distance
from the robot gripper. The sensors are controlled by an
Arduino microcontroller, which transmits the data to
the robot.

Hardware

Participant

%@

I.nfra.ted sensor Robot

i Table

Distance sensor Experimenter

Figure 10: The experimental setup

The system consists of several components connected to a single computer. The components

include a Sawyer robot, distance sensor, photoelectric sensor, and Arduino nano development

board.

Sawyer robot

A Sawyer robot was used for the experiments (Fig. 11). The robot arm is
autonomous and programmed to reach a predefined position once the
handover begins. The robot grasps the object when the object gets close

enough. Finally, the robot retreats to its home position after the human

releases the object and starts to retreat.
Category: Small robots

Lifting load: up to 4 kg

Number of degrees of freedom: 7
Self-weight: 19 kg

Arm speed: 7.2 km/h
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Figure 11: The Sawyer robot



DS35 Mid-Range Distance Sensor

A SICK DS35 mid-range photoelectric distance sensor (Fig. 12) was used.

s

This sensor uses HDDM (high definition distance measurement) technology to ensure

maximum reliability and accuracy for distance measurement detection.

Target: Natural objects

Resolution: 0.1 mm

Figure 12: DS35 Mid-
Accuracy: #10 mm Range Distance Sensor
In this project, this sensor was used to detect when the giver starts reaching.

Contrinex LTK-1180-103 Photoelectric Sensor

A Contrinex standard photoelectric sensor was placed on the robot arm and used to ¢ &
N

detect the object distance from the robot gripper. The Contrinex through-beam (Fig. 13) E

photoelectric sensor utilizes infrared, visible and laser light sources to detect targets,

reliably and repeatably, at extended distances (Pcr & Kit, 2012).

e Setting range: 40-600mm . .
Figure 13: Contrinex

e Time delay before availability: 60msec LTK-1180-103
Arduino Nano Photoelectric Sensor

Arduino is a single-board microcontroller with open-source hardware
(Zlatanov, 2016), enabling to connect inputs and outputs (Fig. 14) (Wong et
al., 2019). For this purpose, we used the Arduino programming language
(based on Wiring), and the Arduino Software (IDE), based on Processing. The

microcontroller can be programmed using C and C++ programming

languages. In addition to using traditional compiler toolchains, the Arduino
project provides an integrated development environment (IDE) based on the

Processing language project. Figure 14: Arduino Nano

A breadboard was used to connect the distance sensor and the photoelectric sensor to the
Arduino. Additionally, we connected a battery (to provide a power source), resistors, and the

ground to the breadboard, as depicted in Fig. 15 and Fig. 16. The Arduino, which is connected to
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the main computer, continuously receives signals from the sensors, and transfers them to the

sawyer robot via analog input (A1) and digital input (D1)

‘CoxmectingtheArduinotothegrmmd ‘

\
— + |l
|

Y - o |

Power S_upply | Connecting the sensors to the
connection Sensor Arduino's analog and digital input
connection

Figure 15: Circuit implementation

Figure 16: Schematic hardware connection
Software

This section reviews the developed system (Fig. 17) and explains the code, which consists of three

Python classes and one class in C++. Full code is detailed in .xx»1 8% 72077 2900 IINBW.

Eye
movement

Control the sensors using Arduino Nano

Adabe After Effects CC

—— 2ROS

Robot Operating System

The robot
movement pﬂ on

Figure 17: The Developed System
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ROS

In this project, ROS was used to control the robot movement, to get messages from the Arduino

indicating the sensors' measurements, and to control the robot screen.

Robot movement- python

The robot class, sends motion commands to the robot. In order to EGO 1o home
osifion
assess the beginning of the handover, the robot gets signals from the

distance sensor, indicating on the position of the participant's arm. Open gripper

The robot arm is autonomous and programmed to reach a predefined

. . . . s h No -
position once the handover begins. Using a photoelectric sensor to Q{]‘D—-

assess the distance from the object, the robot grasps the object when .

the object gets close enough. Finally, the robot retreats to its home Goto

handowver
location

position after the human releases the object and starts to retreat.

Is the
objectina
graspable
istanceg

Wait

Yes

Close gripper

Y
Go to home

position

End

Figure 18: Flow chart of the robot
movement
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Eye gaze

The robot's eye gaze was created in three steps: first, creating animations for eye movements.
Second, programming a Python class that controls and projects the robot's eye gaze on the robot's
screen. Finally, programming a Python class that was responsible for keeping the robot's head

straight, instead of moving correspondingly with the robot's arm axis.

1. Eye movement animation- Adobe After Effects: The eye movement animations were

created in Adobe After Effects. Adobe After Effects is a digital visual-effects, motion
graphics, and compositing application developed by Adobe Systems and used in the post-
production process of film making, video games, and television production. In this project,
3D eye movement animations were created, which simulated the three most common gaze
(Hand-Face, Face-Hand-Face, Hand gaze) that were identified in human-human handovers
analysis. In order to discover human's preferable gaze pattern, these animations were

projected during our experiments on the Sawyer robot's built-in screen.

Figure 19: Pictures from the 3D eye movement animation.
The top figure portrays the robot’s eyes as they look toward the
participant’s eyes, and the bottom figure portrays the robot’s
eyes as they look toward the participant’s hand.



2. Eye gaze- Python class: This class controls and projects the robot's eye gaze on the robot's

screen. The three gaze patterns that were implemented are: Hand-Face, Face-Hand-Face,

Hand gaze (which were identified in human-human handovers analysis). In this code, the

eye gaze pattern for the session was chosen. Each eye gaze pattern has a defined function

that runs a different eye movement animation depending on the handover phase.

Haond-Face Gaoze

Look down (to
hand pesition)

L

Face-Hand-Facs Gaze

Look up [to face
position)

Is the robot
retreating®

Wait

Look up (to face
pasition)

l

Figure 20: Flow chart of the robot’s eye gaze

.

Hand Gaze

L

Is hurman
reaching?

Yes

Look down (fo
hand position)

It is time for
face-hand
fransition®

Look down [to
hand position)

Y,

Is the robot
refrecting®

_I_‘res

Mo

Wait

Itis fime for
hand-face
transition®

Look up [to foce
position)

Wit

l

3. The robot's head- Python class: For the eye gazes to look more natural and human, the

robot's head needed to stay straight. By default, when the robot moves its hand, the head

rotates along with the base joint. This Python class is responsible for keeping the head

straight toward the subject's face by countering the base rotation.
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Arduino- C++

In this class, the signals are regularly received from the distance sensor and the photoelectric
sensor. After retrieving the signals information from the sensors, it sends it to ROS via the ROS-
Arduino interface.

The algorithm consist of the following steps:

1. Power ON the system which includes the microcontroller and sensors
2. Initialise the system

3. Read data from the sensors and send it to ROS via the ROS-Arduino interface

78



Appendix B- Online survey — people’s perception of objects’ fragility
To represent objects of different fragility a plastic bottle and a glass bottle were used. In order to

examine people's perception about the fragility of these objects, we conducted an online survey.

This survey was conducted post experiment based on reviewers' feedback.

A total of 24 participants responded to the survey. The participants were undergraduate students
from the Department of Industrial Engineering and Management at Ben-Gurion University, similar
to the students who participated in our video and in-person experiments. The participants were told

that this study deals with object handovers between a human and a robot.

The survey included 10 pictures of objects, made from different materials (Fig. 21). The plastic
bottle and the glass bottle used in our experiment were among these objects. Each picture was

followed by a yes or no question: "Do you perceive this object to be fragile?".

Results revealed that all of the 24 participants perceived the plastic bottle to be non-fragile. 23 out
of 24 participants perceived the glass bottle to be fragile. Additionally, when asked the same
question for three other different plastic and glass bottles, 24 participants denoted the plastic bottles
as non-fragile and 23 denoted the glass bottles as fragile. This supports our decision to choose

plastic and glass bottles to represents objects of different fragility.

Z

X

A
i

—_—
3
L] |
i ) ]
' g : ’ ) | 4‘
L wh, & -

Figure 21: 10 pictures of objects, made from different materials presented in the online survey.
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4.1 Appendix C- Open-ended responses

Video study of human-to-robot handovers

10 out of 72 participants gave at least one additional comment. Eight participants made Hand-Face
gaze vs. Face-Hand-Face gaze comparisons. Two participants mentioned that they could not
distinguish between them, saying, "I did not see a significant change between the two videos”,
"They looked the same to me". Two participants preferred Face-Hand-Face gaze over Hand-Face
gaze owing to the extended robot's eye contact, saying, "As much eye contact as possible™, "I
preferred handover 2 (Face-Hand-Face gaze) because the robot looked more at the human™. Two
participants thought that Face-Hand-Face gaze seemed more natural and human-like, and
mentioned: "Handover 1 (Face-Hand-Face gaze) felt more human-like™, "I preferred the second
handover (Face-Hand-Face gaze) because it was more natural for the robot to look down as he
extends his arm". Nevertheless, two participants said that they found advantages and disadvantages
in both of the gaze patterns, and said: "It is easier when the robot looks at the object, so the giver
could know when it is required to hand the object over. Yet, not looking in the eyes may be
considered rude”, "In handover 1 (Hand-Face gaze) you could tell that the robot was ready to
receive the object. However, handover 2 (Face-Hand-Face gaze) felt more humanized because the

robot looked at the giver's eyes right until the transfer was made".

While, two out of six participants, who commented on comparing Hand-Face gaze vs.
Hand gaze, mentioned that they could not distinguish between them, saying, "There is no
difference”, "The 2 handovers looked the same". The other four participants said that they preferred
Hand-Face gaze, saying, "In my opinion, the change in eye movement creates a better human-
robot interaction”, "In the second handover (Hand-Face gaze) the eye movement, gave a good
indication for the communication”, "It is easier to understand the robot "willingness" to receive
the box when the robot's eyes move as its arm progresses™, "It's nice that the robot looks straight

at you after delivering an object”

Six participants made Face-Hand-Face gaze vs. Hand gaze comparisons. They said that
they preferred Face-Hand-Face gaze over Hand gaze because they preferred much eye contact as
possible and they thought that the Face-Hand-Face gaze was clearer, saying for instance, "At
handover 2 (Face-Hand-Face gaze), the robot looked at the object precisely when it wanted to
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take it, so it was perceived more understandable”, "In my opinion video 2 (Face-Hand-Face gaze)

best simulated human-like behavior out of all the videos | have seen so far"

In-person study of human-to-robot handovers

14 out of 72 participants gave at least one additional comment. Seven participants made Hand-
Face gaze vs. Face-Hand-Face gaze comparisons. Four participants mentioned that they could not
distinguish between them, saying, "Felt quite the same", "I didn't notice a difference”. Two
participants stated that they preferred Face-Hand-Face over Hand-Face gaze because they
preferred longer eye communication, saying, "'In Handover number 2 (Face-Hand-Face gaze) the
robot looked at me for the longest amount of time, and it was the best handover so far”, "I preferred
handover 1 (Face-Hand-Face gaze) because the robot stared at me before and after the handover,
and | felt accompanied by it during the entire handover". Nevertheless, one participant argued that
in his opinion Face-Hand-Face gaze pattern didn't feel natural, and used the following words,

"handover number 2 (Face-Hand-Face gaze) did not feel natural™

While three out of seven participants, who commented on comparing Hand-Face gaze vs.
Hand gaze, mentioned that they could not distinguish between them, saying, "They looked the
same to me", "Indifference between first and second handover”. Four of them said that they
preferred Hand-Face gaze, and mentioned: "In the first handover (Hand-Face gaze) the robot
looked straight at me after the handover and seemed to be more friendly", "'In the second handover
(Hand-Face gaze) the robot looked directly at me, and it felt more human-like"”, "In the first
handover (Hand-Face gaze), the robot's eye movement was fully accompanied by the handover

movement, and therefore it seemed more natural”

Seven out of eight participants, who commented on comparing Face-Hand-Face gaze vs.
Hand gaze gazes, said that they preferred Face-Hand-Face gaze over Hand gaze because they
preferred much eye contact, and some of them described that Face-Hand-Face was more natural,
saying, "In the first handover (Hand gaze), the robot focused only on the object, and in the second
handover (Face-Hand-Face gaze) it focused on me too, so it felt more natural™, "I preferred the
second handover (Face-Hand-Face gaze) mainly because the robot looked me in the eyes at the
beginning and the end". However, one participant said he felt that both handovers seemed to be

unfriendly, and used the following words: "In both handovers the robot looked down, unfriendly".
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Appendix D- Agent configuration

Component/ Variable Description Default value(s)
Sim-to-Real | Real-to-Real
EE_POINTS Two point offsets. To ascertain that the
end-effector  attain  the  correct
orientation and not merely reaches the 0.22 —0.07
correct position, the GPS backend [<_0-025>' [< 0.06 )
requires at least two point offset. At the 092525 88%3
end of the local policy training (_0_025)] (_0_025)]
subtraction of world-space end-effector —0.55 —0.55
position from the positions of these
points is conducted.
Panda _Gains A vector of scalar gains, one for each (0.1,0.01,0.1,| (0.1,0.1,0.1,
torque/joint of the robot. 0.01,0.01, 0.1,0.001,
0.01,0.01) | 0.001,0.001)
Agent Top-level configuration and details of
the agent that was used.
type Name of the agent. AgentROSCo | AgentMuJoC
ntrolArm o/
AgentROSCo
ntrolArm
dt Step size [s]. 0.05
T The trajectory length [steps]. 400 ‘ 100

state_include

A list of the internal variables that
represent the system state.

[Joint angles, joint velocities,

end-effector

points,  end-

effector point velocities]

algorithm The details of the policy-improvement
algorithm to be used by GPS.
type AlgorithmBADMM
iterations Number of full iterations of 11
optimization.
init_traj_distr Set-up for the differential dynamic
programming initialization of the linear
quadratic regulator.
init_gains The initial joint gains. 1
Panda_Gains
init_var The variance of the initial trajectory 1000 0.5

distribution. The initial variance affects
the state-space explored by the robot in
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the initial training step. A higher initial
variance results in larger explored
state-space but with higher control
inputs, which might exceed the joint
limits in some cases causing the robot
to halt. A lower initial variance results
in smaller control inputs but also a
smaller explored state-space causing
the robot to not learn the task.

stiffness

Initial stiffness of the joints. Important to
get the joints turning in the initial
distributions before the true dynamics
begin to be discovered.

stiffness_vel

Initial velocity stiffness.

0.5

0.5

cost

The weighted sum of the cost terms
defined below.

weights

The external weights of each cost term.

[1,1]

dynamics

Specifies the type of dynamic model
prior used to optimize the trajectories.

Maximum
Gaussian

20——cluster
mixture model.

fk_cost

wp

The internal vector (length T) of
weights per trajectory step.

[1,1,1]

11

The internal weight of the L1 norm
sub-term

12

The internal weight of the L2 norm
sub-term

alpha

le—5

config

Connects  above  options, the
optimization algorithm and the agent

num_sapmles

The number of trajectory samples used
on each iteration to improve the
dynamic model.
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Appendix E- PC information

Power
supply

HEC Cougar VTEG600 // XPG Probe - Dual GPU compatible power supply 600W
Active PFC, 12cm silent fans, 80 PLUS® Bronze certified

Processor

Intel® Core™ i9-10900, LGA1200 Package 2.8GHz
10 Core with Hyper-Threading, 14nm, 65W, 20MB Cache L3
Intel® Max Turbo Boost Technology up to 5.1GHz, Enhanced Intel SpeedStep®
SSE4.2, AVX2.0, TSX-NI, Secure Key. Intel Virtualization Technology VT-x/d
Dual Channels of DDR4 2933MHz memory controller
Integrated Intel® UHD Graphics 630 up to 1.2GHz, 3 displays up to 4096x2304
Antec C40 high effectivity, silent CPU cooler

Mother
board

ASUS TUF Gaming B460M-Plus
LGA1200 Socket, Intel® 10th generation Intel® Core™ processor ready.
B460 Chipset. Type-A 2(+4)*USB2.0 & 4(+2)*USB3.2 G1. microATX.
4*DIMM 240-pin Dual Channel DDR4 2133-2933MHz up to 128GB
2*PCI Exp. x16 v3.0 (1*x16 & 1*x4), 1*PCI Exp. x1 v3.0. Aura RGB strip headers
B460 PCH 6*SATA-3, Matrix RAID (0,1,10,5) Smart Response, Optane™ memory
2 port M2 SATA3.0 or PCle v3.0 up to 32Gb/s M-key up to 2280
Integrated: Realtek ALC S1200A High Definition Audio 7.1 codec.
Intel® 1219-V 1.0Gbps RJ45 Ethernet controller. Serial port header
Video out ports: DVI-D, HDMI 1.4b & DisplayPort 1.4 (4096x2160)

Memory

Kingston Hyper-X 32GB DDR-4 2933(3200)MHz Dual Channel (2x16GB)

SSD HD

WD Black SN750 Series SSD Drive 500GB
PCle NVMe 3.0 x4 M2 2280, Read//Write up to 3430//2600MB/s.
AES 256-bit Encryption. 5 year warranty or 300TBW

Ethernet
network
adapter

Intel® Ethernet Converded network adapter X550-T2
Dual port, RJ-45 10 Gbps port.
PCI Express x4 slot. Low Profile and Full Height
Virtual Machine Device Queues (VMDQ) support
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Appendix F- Joint space limits of the Panda robot

Name Jointl |[Joint2 |Joint3 |Joint4 |Joint5 |Joint6 |Joint7 | Unit
Qmax | 2.8973 | 1.7628 |2.8973 |-0.0698 |2.8973 |3.7525 |2.8973 rad
Qmin | -2.8973 | -1.7628 | -2.8973 | -3.0718 | -2.8973 |-0.0175 | -2.8973 rad
Amax 2.1750 |2.1750 |2.1750 |2.1750 |2.6100 |2.6100 |2.6100 @

s
Gmax | 15 75 10 125 |15 20 20 rad

S
Amax | 7500 3750 5000 6250 7500 10000 10000 2

S
Yax | 87 87 87 87 12 12 12 Nm
: N
Umax | 1000 1000 1000 1000 1000 1000 1000 am
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Implementation and Evaluation of Guided Policy Search for Robot Reaching
Towards Moving Targets

Alap Kshirsagar'®, Tair Faibish®', Guy Hoffman' and Armin Biess?

Absiract— We investigate the performance of a model-hased
reinforcement learning (RL) method, Guided Policy Search
(GPS), for generating reaching motions of a collaborative robot
arm. We conduct this evaluation in the conmtext of a robot
controller for the mach phase of a human-robot handover.
In a previous work, we evaluated GPS for the same task
but only in a simulation environment. This paper provides
new insights on the limitations of GPS on a physical robot
platform. First, we find that a policy learnt in simulation
does not transfer to the physical robot owing to differences
in model parameters. Second, the robot’s workspace needs
to be severely reduced to snccessfully train with GPPS owing
to the joint-space limitations of the physical robot. Third, a
policy trained with moving targets results in large worst-case
errors even in regions spatially close to the training farget
locations, Our findings could motivate further research towards
utilizing machine lkearning algorithms for physical human-robot
collaboration.

Index Terms— Physical Human-Robot Interaction, Reinforce.
ment Learning, Manipulation Flanning

I. INTRODUCTION

In this work, we evaluate the potential of Guided Policy
Search (GPS) for reactive robot reaching motion towards
a moving target Several tasks in domestic and industrial
environments require robots to reach towards moving targets.
Examples include human-robot object handovers, manipula-
tion of objects on conveyor belts and catching flying objects.
We focus on the scenario of human-to-robot object handover
in which the robot needs to reach towards a moving target
i.e. the human’s hand. Researchers have suggested several
closed-loop controllers for the reach phase of human-to-
robot object handovers [1]-[17]. However, these methods
require prior knowledge of the robot’s dynamics andfor
human kinematics.

GPS5-Bregman Alternating Direction Method of Mul-
tipliers (BADMM) [18] is a reinforcement learning al-
gorithm that does not require prior knowledge of the
robotlenvironment dynamics. It uses an iterative adaptation
of local controllers, local dynamics model, and a global
policy over repeated trials. GPS was initially proposed by
Levine et. al [19]-[21], and since then mesearchers have
proposed several variations of the GPS algorthm [22].
GPS algorithms have been successfully demonstrated for

1 Alap Kshirsagar and Tair Faibish coniributed egually to this work.

'Alap Kshirsapar (Comesponding Author, akZd5BEcornell.edu)
and Prof. Guy Hoffman (hoffman@cornell.edu) are with the Sibley
School of Mechanical and Aerospace Engineering, Comell University, USA.

2 Tair Faibish {tairsefbgu.ac.il) and Dr Armin Biess (Cormre-
sponding Author, armin. biess@gmail. com) are with the Department
of Industrial Engineering and Management, Ben-Gurion University of the
Megev, Be'er Sheva, Israsl

autonomous manipulation [18], [23]-[25], and locomotion
tasks [19]. [20]. [24]. [26]. However, to the best of our
knowledge, GPS has not been tested on physical robots for
tasks that reguire the robot to reach towards unpredictable
moving targets, such as human-to-robot object handovers.
We seck to address this gap by evaluating GPS for the reach-
to-handover motion generation of a collaborative robot

In owur previous work [27], we used GPS-BADMM to
train a robot arm to perform reach-to-handover motions in a
simulation environment. We found that the policy learnt with
GPS does not perform well for test locations that are spatially
distant from training locations. This issue can be mitigated by
adding more local controllers trained over target locations in
those high error regions. Further, a policy trained with static
targets generates high joint torques when tested with moving
targets. More efficient reaching trajectories can be obtained
by training on moving targets, although it results in higher
worst-case errors. Despite providing important insights, our
prior work is limited in it"s application to a real-world
environment. The goal of our present work is twofold: first to
replicate our previous findings on a physical robot arm, and
second, to provide new insights on the challenges associated
with the real world implementation of GPS.

II. PoLICY SEARCH FORMULATION OF HANDOVERS

We formalize the reach phase of a handover task as a
reinforcement leamning problem by specifying the state/action
space, as well as a cost/reward function over the system states
and control inputs.

A. SimefAction Space

In our previous work [27], we explored the sensitivity of
GPS to different state representations. We investigated three
different system state representations: FULL, RELATIVE,
REDUCED. We found that a policy trained with RELATIVE
state representation had a better overall performance. Thus in
this work, we use the RELATIVE state representation which
consists of the robot joint angles &, the robot joint velocities
i, the positions and velocities of the robotend effector in
the world frame attached to the base of the robot (p..p.).
and the positions and velocities of the human hand in the
robot end-effector frame (p}.pL)

X; = [fr.0r. Dy D} Pr. DR (1)

Similar to our previous work, the robot’s control input
consists of the robot joint torques 7 and the force applied
by the gripper’s actuator f,, constrained by Wgmi, < u, <

Wyrine -



(2)

u; = [""-. .Fg]t
B. Cosi Function
We use a cumulative error cost function to describe the
reach-to-handover motion of a robot,
T
Creach = 3 [|IDr — Bkl + In(||Dy — Da||* + Creach)], -

t=il

(3)
where p,- is the position of the robot and py, is the position
of the human hand, and T is the duration of each trial. This
cost function penalizes the robot for spatial distance away
from the human’s hand, and it encourages precise placement
owing to its concave shape, as described in [25]. To be
consistent with prior works [25], [27], we set ctragen = 16—5

in the evaluations described in the next section.

C. GPS-BADMM Algorithm

As depicted in Fig. [1] the GPS algorithm alternates be-
tween generating optimal trajectories for each initial con-
dition (local iLQR controllers) and training a global policy
supervised by the local controllers. The global policy’s Tole
is to improve the local controllers, retaining them close
to the global policy. The BADMM varant of the GPS
algorithm does not require knowledge of the dynamics model
as it utilizes the training data with locally linear models to
approximates the dynamics.

Liseal pubey gy, fe) geveeation + Clelal palicy malhg e, raining H

Furs all g i ey )
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G
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Fig. 1: Guided policy search algorithm iteratively updates the local con-
trodlers or policies and the global policy. The local policies serve as the
“gxperts” for supervised leaming of the global policy. These local policies
are also updated to avoid drifting away from the global policy.

Meat lteration

ITI. IMPLEMENTATION OF GPS-BADMM ON A
Framka-Panpa RoBOT

We train a collaborative robot, Franka-Panda Emika, to
perform reach-to-handover motions with the GPS-BADMM
algorithm. The Panda robot, shown in Fig. [} is a 7 degrees of
freedom robot arm with torque sensors at each joint, allowing
adjustable stiffness/compliance and advanced torque control
We use OptiTrack motion tracking system to track the posi-
tions of the human's hand and the robot end effector. Since it
is not practical to have a human trainer'tester perform exactly

[ B]

the same handover motion in all trainingftesting iterations,
we use recorded human hand motions during the training
process. We build on the GPS-BADMM implementation of
White [28], which was done for a Kuka robot in Garebo
simulation environment. White's code itself was built on the
GPS implementation of Finn [29] for a PR2 robot. We use
the distributed computing capabilities of Robot Operating
Systems (ROS) and run different ROS packages/nodes on
different machines as shown in Fig One PC ("Opti-
Track Computer™) runs the OptiTrack Motive software and
streams the motion tracking data on a local network via
ROS topics mocap_opiirack(franka_gripper/pose and mo-
cap_opiitrack/fuman_hand’pose. The mocap_optitrack node
runs on the second PC (GPS Compurer) and converts the
motion tracking data to ROS ¢f coordinate frames. These
coordinate frames are comverted to our RELATIVE state
representation by the oprirradt_publisher node and sent to the
ageni_res_conirel_arm node via mecap_oprirack_dara_topic.
The agenrros_conmrol_arm node communicates with the
Jfranka_ros node running on the third PC (Franke Compuier
which is connected to the Franka-Panda robot.

Opti-Track Computer

e

|| Motve Data Sweaming Engne

mecap_optitrack franka_gnipperpose
mocip_ophtrackuman_hend posa

K

i

—

GPS Computer

1% oo optinsck ROS)

* optirack_poblisher (ROS)

mocip_oprtack_dotn_lopd:

+| ageat fos_coawol arm(ROS)

tnal_command_servics

Teset_command_service
el B _ o e d_service
relax amn command servios

‘H-\_‘—\—

e —
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N

Fig. 2: Distribution of ROS nodes across different computers and connec-
tions between them osing ROE topics. The nodes are shown in the coloned
boxes and topics’services are shown in dotted boxes.

frankn,_ros (ROS) |

Our medifications to the implementation of White [28] are
summarized below.

1) Tune PID parameters: A PID joint position controller
is used to reset the arm before beginning the GPS trial/test.
The controller commands the robot to move to a prede-
fined position, defined in terms of the joint angles. The
“proportional” part of the controller applies control input
proportional to the error between the curmrent position and the
target position. The “integral” part of the controller applies
control input depending on the integration of error between
the current position and the target position. The “derivative”
part of the controller applies control input depending on the
difference between the derivatives of the cument position
and the target position. The default parameters of this PID



TABLE I: Comparison of PID parameters of position controller for resetting
the IR and Panda robots.

Joint IWR Values [18] Panda Values
P I D .Fﬂ]a_m_p P I D .F.:ﬂnmp
1 400 0O I8 4 6 31 3 1
2 1200 0 20 4 & 3 3 1
3 Iy 0O 6 4 6 3 3 1
4 T00 oD 4 4 6 3 3 1
5 300 D 6 2 25 1 1 1
] om0 4 2 25 1 1 1
7 300 g 2 2 25 1 1 1

controller did not work with the real Panda robot. With the
default parameters, the robot's joints did not move at all, only
the tip joint would barely turn. We tuned the PID parameters
to work with the Panda robot. Table [l shows the values used
by White [28] for LWR robot in Gazebo simulation, and the
values we used for a real Franka-Panda robot. We found
that high values of proportional gain resulted in the robot
crashing or abruptly halting as it exceeded the joint velocity
limits. For more details about the PID parameters we refer
the reader to [30].

2) Tune the initial local comtrollers: The initial local con-
trollers used in the GPS training process are linear gaussian
controllers which try to hold the robot’s initial position. The
initial controller gains are computed with LOR, defined by
the parameters described below. It is important to initialize
these paramelers to ensure that the robot starts the leaming
process while maintaining stability. The default parameters
used in Finn's code for PR-2 or Jack White's code for LWR
did not work with the Panda robot. The robot did not move at
all with those parameters. We obtained the initial controller
parameters for the Panda robot by trial-and-error. The first
parameter is Robor Jeint Gains, which is a vector of scalar
values, one for each torquefjoint of the robot. These are used
to guess the initial dynamics of the robot by LOR. The initial
local controllers are extremely sensitive to these gains; a too
high gain leads to robot exceeding the joint limits, whereas
a too low gain prevents the joint from moving at all. The
second parameter is the initial variance, which affects the
state-space explored by the robot in the initial training step.
A higher initial variance results in a larger explored state-
space but with higher control inputs, which might exceed the
joint limits in some cases causing the robot to halt. A lower
imitial variance results in smaller control inputs, but also a
smaller explored state-space causing the robot to not leamn
the task.

3) Robor HW Interface: We used Franka HW interface
provided by the franka_res ROS package, instead of the Kuka
LWR HW interface used in White's work.

4) Motion Tracking Feedbadi: We used the rostapicsen-
sor abstraction of Finn's code to the position of the human's
hand and the robot gripper obtained from OptiTrack motion
tracking system to the GPS controller.

5) Torgue Limirs: We found that the control input i.e. joint
torques, generated by the GPS controller resulted in joint
positionfvelocity violation on the Franka-Panda robot. We

TABLE II: Initial controller values of PR-2, LWER, and Panda robols.

Parameler PR-2[2] LWR [28] Panda
Joint 1 Gain 300 24 0.1
Joint 2 Gain LOE 12 0.1
Joint 3 Gain 0,393 10 0.1
Joint 4 Gain 0.674 7 0.1
Joint 5 Gain o 3 0.001
Joint 6 Gain 0.152 3 0.001
Joint 7 Gain 0,098 6 0.001

Initial Variance 1 30 0.5
Stiffness 0.5 i) L0
Stiffness Velocity 0.2% 0.25 0.5

had to restrict the control input to a range of [—3N.m, 3N.m|
in the irialconreller class of Finn's code.

1) Trial Repori Publisher: We encountered communica-
tion failures with the robot during the training phase because
the robot did not receive the published result of a finished
training iteration. To address this issue, we had to replace the
real-time trial report publisher of Finn's GP3 implementation
with a non-real time trial report publisher.

IV. RESULTS
A. Sim-to-Real Evaluation

In our previcus work [27], we had evaluated GPS in
a simulation environment MudoCo (Multi-loint dynamics
with Contact) [31] as shown in Fig. B} We had trained a
Panda robot for the handovers task with a pseudo-robot arm
with a mass rigidly attached to its end-effector, substituting
the human operator. In the first experiment of the present
work, we are interested to check the feasibility of sim-to-
real transfer of the learnt policy.

We find that the policy trained in the simulation does not
work on the physical physical Franka-Panda robot. This robaot
has limited acceptable ranges of joint positions, velocities
and l-:nrqueﬂ The torques generated by the GPS policy
leamed in the simulation are beyond these limits, and thus
the policy does not work on the real robot.

B. Real-to-Real Evaluation

We train a real Panda robot to perform reaching motions
towards a human’s hand over repeated trials with GPS, and
test the learnt global policy for large variations in target
locations and moving targets. In the remaining text, we
denote the Panda robot the “leamer”, and the human is
denoted as the “trainer” for the training phase or the “tester”
for the testing phase. Since it is not practical to have a human
trainerftester perform exactly the same reaching motion in
all training iterations, we use recorded human hand motions
and feed them to the robot via the rosiopicsensor interface
as described in Section [T .

The first research question examined in our study is the
spatial generalizability of the leamed global policy, i.e., how
does the global policy perform for large spatial differences
between training and testing locations. To answer this ques-
tion, we test the learnt global policy at different locations of a

Franka-Panda Specifications: |htt1:us :fffrankaemika. :;i:':_'_'b_|
[fo/docs/contrel_parameters. html)
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Fig. 3: The training and testing region for: (a) 8 local controllers, and for
(b) 12 local controllers. The yellow circles represent the initial 8 training
locations, and the orange circles mpresent the additional 4 training locations
that were located in a vertical plane dividing the workspace. This region
was selected by trial and error to ensure that the robot does not run into
joint position/velocity limits in the training/esting process.

static tester on a region around the learner robot, as shown in
Fig. [3] For each angle in 5 deg increments, we test on a grid
of 3 x 3 targets, resulting in 90 test locations. We compare
two scenarios of local controllers: one with 8 local controllers
and another with 12 local controllers. The global policy is
trained with these local controllers for 11 iterations. Both the
leamer and the trainer/tester commence their movement in
each trial simultaneously. The learner's movement lasts for
5 seconds, while the trainer’s/tester’s movement lasts for 1
second. The test performance is measured as the mean error
between the leamer’s gripper position and the tester's hand

Fig. ¢ MuoCo (Multi-Joint dynamics with Contact) simulation environ-
ment for human handover tasks. A Panda robot (right) was trained in
simulation on raching movements in a human-to-robot handover task. The
human operator is represented by a pseudo-robot (left).

position at the last time step of each trial.

The performance of the leamed global policy is shown in
Fig. Pal The black circle represents the leamer’s gripper’s
initial position, and the black squares represent the training
locations. Mean error, range, and standard deviation are
presented in Fig. (left). The mean testing error (41.71mm)
is about twice as large as the mean training error (22.67mm).
To replicate our previous findings [27] that the test error
can be reduced by adding more local controllers in high
error regions, we add 4 additional local controllers in a
vertical plane dividing the workspace (Fig. 5b). We find that
the mean and standard deviation of the testing error of the
global policy, trained with 12 local controllers, is reduced to
29 + 2mm.

Next, we investigate how GPS performs when the target
is moving. First, we use the same global policy shown in
Fig. [E (static training), but instead of a static tester, we use
a moving target i.e. a recorded human reaching motion. The
final position of the motion is in a region similar to the one
shown in Fig. [}] We find that the robot generates highly
inefficient trajectories, and sometimes does not even execute
these trajectories due to joint/cartesian limits violations. A
possible way to address this issue, as found in our previous
study [27], is to train the controller with a moving target.
We train the robot with recorded human reaching motions,
and test the policy on another set of recorded human reaching
motions. Some samples of these reaching motions are shown
in the video attachment. Fig. [5q and Fig. [5d) show the
performance of the global policy for various final positions
of the tester’s gripper, defined as in previous trials. Fig.
(right) shows error distributions.

For the global policy trained with a moving trainer and
8 local controllers (Fig. [5c), the mean testing error is
124.28mm. Although the test errors are high as compared
to the static tester scenario, the robot stays within the joint
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Fig. 5: Global policy evaluation for different types of trainers and iesters. The black circle represents the leamer’s gripper’s initial position, and the black
squares represent the training locations. In the ‘static’ case, the trainertester siays in a fixed configuration. In the ‘moving’ case, the trainerfiester moves
with a human-like trajectory (that were recorded in advanced) and reaches the locations given by colored dots. Thus, each point comesponds to the fimal
position of the tester’s gripper in a trial. Error between the leamer’s gripper position and the ester's gripper position is calculated over the last time step
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Fig. & Distributions of training and testing performance for each target
scenario. Each point is the mean error between the leamer’s gripper position
and the tester’s hand position over the last time step of 2 trial. Error bars
show one standard deviation around the mean of each distribution

and cartesian limits. Moreover, the variance over target
location is high, and the worst-case error is 791.11mm, 442%
higher than the maximum error for static tester condition
(17%mm). Surprisingly, the tester’s motion for the worst-case
error is close to one of the training motions. This can be
attributed to the highly non-linear nature of the global policy.
Interestingly, GPS does not converge to a low training error
for the moving trainer scenario, 123.23mm which is 544%
higher than the training error for a static trainer 22.67mm.
Training the global policy with a moving trainer and 12
local controllers (Fig. [5d), reduces the mean testing error to
37.93mm, and the worst-case error also improves to 138.71
mm. Fig. [6] shows the distributions of training and testing
performance for each target scenario.

V. Discussion aAND CONCLUSION

Our work evaluates the feasibility of GPS as a leaming
method for generating robot reaching motions in a real-
world environment for large wvariations in target locations



and for moving targets. We find some open challenges both
in transferring the leaming from simulation to the physical
robot and directly training the physical robot.

We find that the rtobot mns into  joint  posi-
tionfvelocity/torque  limit viclations, when the policy is
leamt in a simulation environment and then deployed to
the real robot. This can be attributed to the differences
in the simulation model’s dynamics and the real robot’s
dynamics. However, tuning the simulation model dynamics
parameters to match the real robot’s parameters is not a
feasible solution owing to the large number of possibilities.
GPS has been shown to be robust to changes in the robot's
dynamics within a certain range [27], but our findings
suggest that GPS is not robust enough to directly transfer
leaming from simulation to the real robot.

When GPS is uwsed to directly train the physical
robot, we again find that the robot runs into joint posi-
tionfve locity/torque limit violations during the training phase.
We have to reduce the robot’s workspace, by trial-and-error,
to avoid these violations. In this reduced workspace (Fig. [3).
we find that when the robot is trained to reach only static
target locations, the global policy performance can be slightly
improved by adding local controllers in regions with highest
test errors (in the middle of the working plane) (Fig. [5a
compared to Fig. [Sh). Previously, similar results were found
in a simulation environment [27].

When evaluating the global policy trained with static
targets on a moving test target, the robot generates highly
inefficient trajectories, sometimes resulting in halts due to
joint limit violations. To overcome this issue, we train the
global policy with moving targets. Neverthe ke ss, this solution
is not free of drawbacks. It successfully reduces the mean
error and results in more efficient and low-torque trajectories,
but also results in a high-variance {unreliable) global policy
with significantly larger worst-case errors. This issue can
be addressed by adding local controllers to the training
phase, improving the global policy performance (Fig. [Fd).
These finding also support previous findings in a simulation
environment [X7].

Our study contributes to the understanding of the chal-
lenges and applicability of GPS in a real-world context. We
use a physical Franka-Panda Emika robot in our evaluation.
The low-level controller of this robot has inbuilt safety stops
that halt the robot whenever it exceeds any joint or cantesian
positionfve locity/torque limits. It is not possible to override
these limits, since this is an important feature for human-safe
operation of the robot. This feature also prevents any damage
to the robot’s hardware. Thus there is a need to develop GPS
algorithms that will train local controllers and global policy
while obeying these limits.
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