

BEN-GURION UNIVERSITY OF THE NEGEV
FACULTY OF ENGINEERING SCIENCES

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Planning Reach-to-Grasp Motion for a

Robotic Arm using Rapid-exploring

Random Trees

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE M.Sc DEGREE

By: Roi Reshef

JANUARY 2015

BEN-GURION UNIVERSITY OF THE NEGEV
FACULTY OF ENGINEERING SCIENCES

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Planning Reach-to-Grasp Motion for a

Robotic Arm using Rapid-exploring

Random Trees

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE M.Sc DEGREE

By: Roi Reshef

Supervised by: Sigal Berman

Author:………………………………….. Date:………………….

Supervisor:………………………………… Date:…………………..

Chairman of Graduate Studies Committee:…………………….. Date:……………

JANUARY 2015

ABSTRACT
The following research presents grasp-regions rapid-exploring random trees (GR-RRT)

algorithm, an innovative algorithm for automatic planning of reach-to-grasp motion. This

algorithm includes two phases: a-priori computation of grasp regions and path planning. The

grasp regions are regions of grasp poses (position and orientation) that are expected to lead to

successful grasps. The method is based on the minimum-volume bounding box (MVBB)

clustering algorithm, the Gaussian mixture model (GMM) and the use of graspability maps.

Path planning is based on the rapid-exploring random trees (RRT) algorithm augmented with

the use of the GMM for intermittently generating additional goal configuration. The method

maintains probabilistic completeness while ensuring collision-free path are planned towards

poses that afford successful grasps. Paths planned by the RRT algorithm are typically tortuous.

The triple smoothing heuristic was developed within this research, and integrated with the path

planning algorithm.

The performance of the algorithm was evaluated and compared using simulations to the

Inverse kinematics bi-directional RRT (IKBiRRT) algorithm. The IKBiRRT facilitates

planning towards manually defined pose regions, in which the poses are assumed to be

uniformly distributed. Two scenarios (apple-harvesting and home environment) were tested. In

the apple-harvesting scenario the apples require a single grasp-pose region, while in the home

environment scenario the objects (mug and frying pan) have a more complex shape and require

multiple grasp-pose regions. Evaluation is based on a comprehensive analysis of both

efficiency and quality. The algorithm was also implemented in hardware and tested in the home

environment scenario.

Both algorithms successfully found collision free paths in all tested cases. The GR-RRT

algorithm successfully planned paths to successful grasp poses in 82% of the trials. This was a

very large increase with respect to the IKBiRRT algorithm in grasp-success rate with only a

small increase in average planning time and path length. In the hardware implementation most

paths were successfully executed. In one case a collision occurred due to unmodeled wires.

Thus the advantages of the GR-RRT algorithm for reach-to-grasp path planning were validated.

For physical implementation path planning should be augmented with collision avoidance

during execution.

Index Terms – robotics, grasping, path planning, grasp planning, rapid-exploring random

trees, minimum volume bounding box, Gaussian mixture model, path smoothing.

IV

ACKNOWLEDGEMENTS

Foremost, I would like to express my gratitude to my supervisor,

Dr. Sigal Berman, for continuously supporting this work with fun

brainstorming and great ideas, for her motivational, enthusiastic and

professional guidance throughout the last two years. Furthermore, I

would like to thank Danny Eizicovits for fruitful collaboration and

for his patience. Finally, I wish to thank both Dr. Yisrael Parmet

and Michael Bendersky for assisting whenever needed and

providing a solid statistical consulting and support.

This research was partially supported by European Commission

in the 7th Framework Programme (CROPS GA no 246252).

V

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 10

 PROJECT BACKGROUND 10

 RESEARCH SCOPE AND OBJECTIVES 11

 RESEARCH CONTRIBUTIONS 12

 THESIS STRUCTURE 12

CHAPTER 2: BACKGROUND 13

 OVERVIEW 13

 ROBOTICS 13

2.2.1 Robotics in Agriculture 13

 THE PATH PLANNING PROBLEM 14

2.3.1 Path Planning for Robotic Arms 15

 PATH PLANNING ALGORITHMS 16

2.4.1 Complete Motion Planning 16

2.4.2 Sampling-Based Motion Planning 19

2.4.3 Rapid-exploring Random Tree Algorithm 21

 PATH SMOOTHING 23

 REACH-TO-GRASP PLANNING 24

2.6.1 Approaches for Reach-to-Grasp Planning 25

2.6.2 Graspability Maps 25

2.6.3 Workspace Goal Regions 27

 STATISTICAL INFERENCE 28

2.7.1 Multivariate Gaussian Mixture Model 29

2.7.2 Inferring the Number of GMM Components 29

 CLUSTER ANALYSIS 29

2.8.1 Minimum Volume Bounding Boxes 30

 KD TREE FOR NEAREST NEIGHBOR SEARCH 31

CHAPTER 3: REACH-TO-GRASP PLANNING FRAMEWORK 32

 OVERVIEW 32

 GRASP-REGIONS RRT 32

 ADDITIONAL NOTES 35

3.3.1 Transitioning to a Continuous 3D Workspace 35

3.3.2 Path Smoothing Memory Matrix 36

CHAPTER 4: TESTING GR-RRT 37

 OVERVIEW 37

 EXPERIMENTAL SETUP 37

VI

 SIMULATION ENVIRONMENT 37

 ANALYSIS 38

 STATISTICAL ANALYSIS 39

 RESULTS 40

 DISCUSSION 45

CHAPTER 5: VALIDATION IN HARDWARE 46

CHAPTER 6: SUMMARY AND CONCLUSION 49

REFERENCES 51

APPENDIX I – PLANNING CORE AND SMOOTHING METHOD 56

OVERVIEW 56

TRIPLE PATH SMOOTHING 56

PRELIMINARY EXPERIMENT: PLANNING ENGINE AND SMOOTHING 57

Simulation Environment 57

Hardware and Software 58

Implementation 58

Analysis 59

Statistical Analysis 61

Exploratory Analysis of Results 61

Statistical Analyses Results 64

DISCUSSION AND CONCLUSIONS 67

ADDITIONAL RESULTS 68

APPENDIX II - EXPERIMENT: SINGLE-GR SCHEME (SELECTIVE

APPLE HARVESTING) 72

GOALS 72

COMPUTATION INFRASTRUCTURE 73

SIMULATION ENVIRONMENT 73

ANALYSIS 75

STATISTICAL ANALYSIS 75

RESULTS 75

APPENDIX III – GRASPABILITY MAPS 79

VII

LIST OF TABLES
Table 1 - Logistic regression results for Grasp Success 41

Table 2 - Generalized linear regression results for Planning Time 42

Table 3- Mixed logistic regression results for IsLOSe 43

Table 4 - Success Rate by Algorithm 64

Table 5 - PIC by RRT Version, Smoothing Method 64

Table 6 - JAIC by RRT Version, Smoothing Method 64

Table 7 - Average Planning Time by RRT version 65

Table 8- Estimated marginal planning time of path smoothing for goal-biased RRT solutions

 66

Table 9- Estimated marginal planning time of path smoothing for goal-biased RRT solutions

 67

Table 10 - T-test results for Success Rate 68

Table 11 - ANOVA results for PIC 69

Table 12 - ANOVA results for JAIC 69

Table 13 - GLM for planning time 70

Table 14 - ANOVA results for Marginal Smoothing Planning Time (Goal-Biased RRT) 70

Table 15 - ANOVA results for Marginal Smoothing Planning Time (Bi-Directional RRT) 71

Table 16 – Denavit-Hartenberg convention of the manipulator used in simulation 74

Table 17 - Logistic regression results for Grasp Success 76

Table 18 - Generalized linear regression results for Planning Time 77

Table 19 - Generalized linear regression results for Path Length 78

LIST OF FIGURES
Figure 1 - A food serving robot at Hajime Robot restaurant 10

Figure 2 – Robotic arm picking an apple at the Tele-robotics lab at Ben Gurion University 11

Figure 3 - Voronoi diagram of a polygonal obstacle bounded free space, from (Latombe

1991). 17

Figure 4 - Different arcs in Voronoi diagrams, from (LaValle 2006). 17

Figure 5 - An example of a reduced visibility graph, from (Latombe 1991). 18

Figure 6 - an obstacle map (upper) and a cell decomposition map consisting of square

decomposition, from (Latombe 1991). 18

Figure 7 - Potential field example 19

Figure 8 - planning with PRM, (Spong, Hutchinson and Vidyasagar 2005). 20

Figure 9 - Iterative construction of an RRT tree, taken from (LaValle 1998) 20

Figure 10 - The expansion method of the RRT-algorithm, taken from (LaValle 2006) 21

Figure 11 - The incremental expansion of the RRT-algorithm, taken from (Kuffner and

LaValle 2000) 21

Figure 12 - Basic RRT Algorithm pseudo-code (Kuffner and LaValle 2000) 22

Figure 13 - bi-directional RRT algorithm pseudo-code 23

Figure 14 - Path smoothing based on divide and conquer approach. 24

Figure 15 – Force closure, based on friction and the relative direction of contacts. 26

Figure 16 – The SD measure. 26

Figure 17 - The transformations and coordinate frames involved in using WGR for planning.

 28

file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350734
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350735
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350770
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350770
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350771
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350772
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350773
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350773
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350774
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350775
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350776
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350777
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350778
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350778
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350779
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350780
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350781

VIII

Figure 18 - MVBB decomposition for Stanford’s bunny point-cloud 30

Figure 19 - An example of KD-Tree 31

Figure 34 – Multiple GR framework for reach-to-grasp planning 34

Figure 44 - Models of a mug and a pan used in our simulations as target objects 37

Figure 23 - The six different environments served as problems to be solved by the planner. 38

Figure 49 - WGRs location boundaries of mug (left) and pan (right), as used in the IKBiRRT

planning algorithm for sampling 40

Figure 50 – Partially visualized graspability maps of mug (up) and pan (down) 40

Figure 51 - Extracted TCP positions of successful grasps (green) for mug (upper figure) and

pan (lower figure), produced by GR-RRT 40

Figure 52 - GRs location boundaries of mug (upper figure) and pan (lower figure), produced

by GR-RRT 40

Figure 53 - Example of a bad grasp (up) and a successful grasp (down) of a mug found by

GR-RRT. 41

Figure 29 - Algorithm Planning Time boxplot chart by environment-id and target-object 42

Figure 55 - Illustration of Two solutions found by GR-RRT algorithm for the 5th

environment. 44

Figure 31 – Motoman UP6 Manipulator used for validation in hardware 46

Figure 57 – Illustration of reach-to-grasp of a mug with the UP6 manipulator 46

Figure 58 – Illustration of reach-to-grasp of a pan with the UP6 manipulator 47

Figure 59 - Wires near the gripper colliding with an obstacle 48

Figure 35 – Pseudo code for the triple smoothing method 57

Figure 21 - Low obstacles density maps (1-4). 58

Figure 22 - Medium obstacles density maps (5-8) 58

Figure 23 - High obstacles density maps (9-12) 58

Figure 24 - JAICe results grouped by Smoothing method, RRT Algorithm and Map Index 62

Figure 25 - Visualization of results in the configuration space (map 6) 63

Figure 26 - Visualization of results in the configuration space (map 10) 63

Figure 27 - Visualization of results in the configuration space (map 12) 63

Figure 28 - A "Bug trap" problem solved by a bi-directional RRT algorithm. 63

Figure 29 - Average Success rate by algorithm (bar chart). 64

Figure 30 - Average planning time by Algorithm, Level of Complexity 65

Figure 31 - Estimated Marginal Planning Time of path smoothing for goal-biased RRT

solutions, by path smoothing method 66

Figure 32 - Estimated Marginal Planning Time of path smoothing for bi-directional RRT

solutions 67

Figure 35 - Minimum volume bounding box for apple object 72

Figure 36 - Maximum volume bounded box inside apple object 72

Figure 37 - A tree object used in simulation 73

Figure 38 - An apple spherical model used in simulation 73

Figure 39 – The 6-DOF manipulator used in simulation. 74

Figure 40 – Illustration of the environment where the apple is simply reachable (location-id

#1) 74

Figure 41 – Illustration of the environment where the apple is moderately reachable (location-

id #4) 74

Figure 42 – Illustration of the environment where the apple is hardly reachable (location-id

#6) 74

Figure 46 – Visualization of the graspability map produced for the apple object 76

file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350785
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350786
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350787
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350788
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350790
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350790
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350791
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350792
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350792
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350793
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350793
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350794
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350794
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350796
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350796
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350798
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350799
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350800
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350802
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350803
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350804
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350805
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350806
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350807
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350808
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350809
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350810
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350811
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350812
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350812
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350813
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350813
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350814
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350815
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350816
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350817
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350818
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350819
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350819
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350820
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350820
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350821
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350821
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350822

IX

Figure 47 – Extracted TCP positions of successful grasps (green) for apple with GR

boundaries 76

Figure 48 – Visualization of the 6D GMM of an apple object. 76

Figure 59 – Graspability maps visualizations of all objects used in this work 79

LIST OF SYMBOLS AND
ABBREVIATIONS

BIC Bayesian Information Criterion

𝐵𝑤 Matrix of bounds for a workspace goal region

CD Collision Detection

𝐶𝑓𝑟𝑒𝑒 Free sub-space of 𝐶𝑠𝑝𝑎𝑐𝑒

𝐶𝑜𝑏𝑠 Obstacle collision sub-space of 𝐶𝑠𝑝𝑎𝑐𝑒

𝐶𝑠𝑝𝑎𝑐𝑒 Robot-arm’s configuration space

FC, FCA Force closure, Force closure angle

FK Forward Kinematics

𝐺(𝑉, 𝐸) Graph consisting a lists of vertices (V) and edges (E)

GMM Gaussian Mixture Model (statistical model)

IK Inverse Kinematics

JAIC Joint Angles Index of Curvature (City Block distance)

MVBB Minimum Volume Bounding Box

NDbc Normalized Distance (City Block)

NDe Normalized Distance (Euclidean)

PIC Path Index of Curvature (Euclidean distance)

PRM Probabilistic Road Map

𝑞 or Configuration Set of the robot-arm’s joint variables (configuration)

𝑞𝑖 𝑜𝑟 𝑞(𝑖) The configuration carrying the index i

𝑞[𝑖] The ith joint’s variable

𝑞𝑖𝑛𝑖𝑡 Initial configuration of the robot-arm

𝑞𝑔𝑜𝑎𝑙 Goal configuration of the robot-arm

RRT Rapid-exploring Random Tree

S Swath

SD Stability Distance

𝑇𝑖
𝑗
 Homogenous transformation of poses from the ith coordinate-

frame to the jth coordinate-frame

W or Workspace 2D/3D space where the robot-arm lies

WGR, 𝑤 Workspace Goal Region

𝜖 Step size constant

𝜏𝑖 ith RRT Tree data structure

𝜃, 𝜃∗ Volume minimization gain, its threshold (MVBB)

file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350823
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350823
file:///C:/Users/roire_000/Desktop/research%20temp/Final%20Thesis%20-%20Roi%20Reshef/Final%20Thesis%20-%20Roi%20Reshef%2003_01_15_SB.docx%23_Toc408350824

10

CHAPTER 1: INTRODUCTION

Robotic applications handle complex and tedious tasks that have previously been done by

humans. Today mobile robotic manipulators have become common in industry and in robotics

research laboratories. For such systems autonomous object manipulation still remains one of

the greatest challenges. In industrial robotics, robotic manipulation is often reduced to very

structured tasks, making it is possible to plan the robot’s entire motion beforehand. When the

motion cannot be completely defined prior to execution, efficient planning algorithms are

required for finding collision-free paths.

Robotic technology facilitates integration of robots in many everyday tasks. On-going

research and development broadens these capabilities increasing robotic systems autonomy and

robustness. Autonomous robotic systems with advanced object manipulation skills will have a

high impact on many areas of life. Accordingly the demand for such capabilities is high. For

example, service robotic applications are becoming extremely popular. There are many types

of service robots, such as entertainment robots (Takahashi and Mitsukura 2012), rehabilitation

robots (Prenzel, Feuser and Graser 2005), food serving robots (Jyh-Hwa and Su 2008)(Figure

1) and more. Advanced object manipulation capabilities are imperative for such systems.

Figure 1 - A food serving robot at Hajime Robot restaurant1

Agriculture is one of the fields in which there is a high demand for advanced manipulation

capabilities. Due to constant growth in world population, commercial agriculture is in demand

to raise production capacities. Due to its inherent difficulties agriculture has been relatively

slow to adapt to robotic technology. Yet improving productivity in agriculture through the use

1 Hajime Robot restaurant, Thailand. (http://hajimerobot.com/)

http://hajimerobot.com/

11

of robotics is diligently researched (Bulanon, et al. 2002) (Van Henten, et al. 2003). In selective

fruit harvesting (Figure 2), a robot must harvest the fruit without damaging either the fruit the

plant. This must be achieved albeit the lack of prior knowledge regarding the location of the

fruit of the obstacles about it. Such robotic systems must include sensors for identification of

obstacles and fruit, and be capable of planning a path towards poses in space from which the

fruit can be harvested, during run-time.

Figure 2 – Robotic arm picking an apple at the Tele-robotics lab at Ben Gurion University

Reach-to-grasp path planning is of high significance as grasping is the starting point of any

manipulation task (Saut and Sidobre 2012). However, it is also considered among the most

difficult tasks for robotic applications (Latash and Lestienne 2006). Grasp planning entails

finding where to place the end-effector’s fingers on the object in order to manipulate it. Reach-

to-grasp planning includes planning the motion of the manipulator towards the pose that

facilitates performing the required grasp.

This research deals with reach-to-grasp planning in unknown environments, where a model

of the object to-be grasped is known a priori. Such environments where partial information

regarding the environment is known are often referred to as semi-structured environments

(Kim and Chung 2013).

In the current thesis, path planning and grasp generation are combined to form a general

reach-to-grasp planning framework Grasp-Regions Rapid Exploring Random Trees (GR-RRT)

for robotic applications. Such a method should be efficient, i.e., it should terminate in a short

time appropriate for real applications; high quality, i.e., it should provide paths that are as short

as possible leading to a robust grasp of the object; and complete, i.e. it should guarantee finding

a feasible solution if such exists.

This research targeted selective apple harvesting required for implementation within the

Crops project, which targeted developing a robotic platform for selective harvesting of apples,

peppers, and grapes. The scope of this thesis was further extended to deal with more general

manipulation tasks, thus we tested algorithm applicability to general household objects (a mug

and a frying pan). Two experiments were designed and executed in simulation to demonstrate

12

the advantages and the algorithms developed in the current thesis. Finally the applicability of

the planned paths was verifying in hardware.

As one of the requirements from the solution is efficiency, the research included a study of

data structures and modification of planning techniques to achieve an efficient implementation.

The developed algorithms include several parameters that must be defined by the user and can

be optimized. The tuning of those parameters is beyond of the scope of the current thesis.

The main contribution of this thesis is GR-RRT, a novel algorithm for reach-to-grasp

planning that exploits graspability maps and randomized planning. The algorithm is suitable

for complex objects for which finding suitable grasp poses is not trivial. Two additional

contributions include:

 An improved path smoothing heuristic suitable for post processing paths (found by

the RRT path planning algorithm) was developed. The method is especially suitable

for complex environments.

 A thorough measure set for evaluation and comparison of different reach-to-grasp

planning algorithms was formulated and used throughout the research. The measures

quantify both performance efficiency and attained quality.

This thesis is organized as follows: Chapter 2 contains a literature review presenting the

required mathematical background regarding robotic manipulators, path planning algorithms,

path smoothing algorithms, grasp planning, and statistical inference and clustering techniques.

Chapter 3 Presents the GR-RRT algorithm. Chapter 4 describes the main experiment conducted

to evaluate the GR-RRT algorithm within the home environment and presents the result

analysis. Chapter 5 presents the hardware implementation. Chapter 6 summarizes the work and

presents the research conclusions. The development and testing of the core RRT planning

engine and the path smoothing heuristic are detailed in Appendix I. An experiment testing GR-

RRT for apple harvesting is detailed in Appendix II.

13

CHAPTER 2: BACKGROUND

This chapter reviews the fundamentals of robotics path planning, grasp planning, and the

different concepts and methods that were used throughout this project. The issues discussed in

this chapter are arranged as follows: Section 2.2 provides a background on robotics in general

and in the domain of fruit harvesting. In Section 2.3 we formulate the problem of path planning.

Following that, in Section 2.4 we describe various theoretical techniques for path planning such

as polygonal-obstacle-region roadmaps, cell decomposition and potential fields. The concept

of sampling-based motion planning is explained and the Rapid-exploring Random Trees (RRT)

algorithm is discussed in detail. Section 2.5 includes a short introduction to path smoothing

which is an important post-processing step for sampling-based planners. In Section 2.6 we

review some approaches for reach-to-grasp planning, describe the concept of graspability

maps, and introduce the workspace goal regions planning concept. Sections 2.7 and 2.8 present

the fundamentals of statistical inference and clustering methods used in this work, e.g.

Gaussian mixture models (GMM) and minimum volume bounding boxes (MVBB). Finally,

the KD-Tree data-structure is explained in Section 2.9.

Robotics deals with the design, construction, applications and operation of robots. It is a

field of modern technology that extends traditional engineering boundaries. One definition for

a robot is a “mechanical, computer controlled, device equipped with actuators and sensors”

(Latombe 1991). Thus, understanding the complexity of robots and their applications requires

knowledge of electrical engineering, mechanical engineering, systems and industrial

engineering, computer science, economics, and mathematics (Spong, Hutchinson and

Vidyasagar 2005). Diverse knowledge of these fields of study is being used to design and

manufacture automated machines that replace humans, in performing hazardous or exigent

tasks, such as manufacturing, helping the elderly, housekeeping, and more.

The complexity of successful harvesting a crop greatly depends on the type of crop involved.

For field crops, like corn and wheat, there are relatively few challenges. A single farmer can

harvest a wide area quickly by riding over it in a combine, using GPS technology for steering.

Several farm equipment makers have been developing technology that aims to allow tractors

to operate without a farmer behind the wheel. For other crops, the challenge is typically harder.

Workers often must pick the fruits by hand gently in order to avoid bruising them. Thus, the

amount of personnel involved in harvesting such crops is dramatically higher. The increasing

cost of labor, the shortage of skilled staff, and the shortage in seasonal workers compel the

industry to find methods for reducing direct costs while increasing the productivity of already

existing labor resources. One solution to these issues is robotic technology. Robotic systems

have started to penetrate the agricultural industry. For example, in the middle of the 90s, the

Douglas Bomford Trust and the Biotechnology and Biological Sciences Research Council

(BBSRC) funded a project for the design of an autonomous vehicle for selective agrochemical

14

operations (Hague, Marchant and Tillett 1997). In 2009, the Harvest Automation Company2

offered a robot designed to move potted plants on nurseries. In 2010, researches of the Japanese

Agricultural Machinery’s Bio-oriented Technology Research Advancement Institution created

an award-winning strawberry picking robot that can also sense their ripeness (Hicks 2012).

Due to the complexity of building safe and reliable robots for agricultural work, the

agricultural domain has been relatively slow to adapt to robotic technology. The design of

robotic systems for agriculture is harder than it is for traditional manufacturing, due to the

unstructured environment and the sensitivity of objects in it. Harvesting robots need to operate

in unfamiliar environments that are often cluttered with obstacles. They must guarantee a

successful and selective harvest of specific fruits, where the fruit may be hidden behind

obstacles and/or hard to reach. The systems must guarantee no damage is done to the fruit or

to its plant. Finally, reachability is typically limited. These limitations place high flexibility,

perception, and computation demands on the robotic systems and the task of developing

economic robotic harvesters is still unresolved.

The path planning problem has relevance in areas such as robotics, computer graphics,

simulations, geographic information systems (GIS), and more. It is considered among the

difficult problems in robotics, where: "The description of this problem is deceptively simple,

yet the path planning problem is among the most difficult problems in computer science"

(Latombe 1991).

The basic path planning problem can be formulated as follows: Given a solid object in two

or three dimensional space (2D or 3D) of known size and shape, its initial and target position

and orientation, and a set of obstacles whose shapes, positions, and orientations in space are

fully described, the task is to find a continuous path for the object from the initial position to

the target position while avoiding collisions with obstacles along the way (Lumelsky and

Stepanov 1987). Algorithm evaluation, in most applications, is done according to the quality

of its returned solution(s). For example, a planning algorithm can compute a solution according

to a cost function, e.g., returning a solution that minimizes the path's length, the time required

to execute it, or the minimal distance to obstacles.

Planning collision-free paths is known to be a P-Space hard problem (Reif 1979), even in

its simplest case. The original approach developed for solving path planning problems was the

complete planning approach, which guaranteed finding a solution whenever one exists, or

correctly reporting failure otherwise (LaValle, Planning Algorithms 2006). Complete path

planning algorithms tend to suffer from poor performance when run-time planning is required,

due to the vast computations they involve, and are vulnerable to high-dimensional search

spaces. For run-time applications, a different approach towards planning has been developed,

known as Sampling-Based motion planning (LaValle, Planning Algorithms 2006). These

2 http://en.wikipedia.org/wiki/Harvest_Automation

http://en.wikipedia.org/wiki/Harvest_Automation

15

algorithms trade completeness for a probabilistic completeness, i.e., the probability that the

planner fails to find a path, if one exists, asymptotically approaches zero with the number of

iterations growing to infinity. As a result, they impose lower computational complexity.

One of the ultimate goals in robotics is to create autonomous robots (Latombe 1991). Such

robots should accept high-level descriptions of tasks and execute them without further human

intervention. Developing the technologies necessary for such robots raises many important

problems. Among them, and the central theme of this thesis, is path planning, which is also

known as motion planning in the context of robotics. It can be simply defined as “how can a

robot decide what motion to perform in order to achieve a desired manipulation of physical

objects” (Latombe 1991).

In order to dive deeper into the world of robotic path-planning algorithms, several common

concepts and definitions must be introduced. First, we define the Workspace (or world), marked

as 𝑊, which is the space explicitly describing the geometry of the robot, the obstacles, and the

object(s) of interest. Such spaces are either 2D, in which 𝑊 = 𝑅2 or 3D, in which 𝑊 =
𝑅3 (LaValle, Planning Algorithms 2006).

The basic goal of robotic path planning is to plan a collision-free path for a robot, connecting

an initial pose (position and orientation) of the arm to a goal pose. To this end, a complete

specification of the robot's full geometry must be provided. The primary way of specifying the

state of a robotic arm (a configuration) is based on its joint-variables. The Configuration Space,

often marked as 𝐶𝑠𝑝𝑎𝑐𝑒 (or just 𝐶), represents the set of all possible robot configurations, given

its kinematics (𝑞 ∈ 𝐶). The advantages of the configuration space representation are that a state

of a robot which is a complex geometric shape, is mapped to a single point in 𝐶 (which has a

number of dimensions equal to the number of degrees of freedom of the robotic system), and

that it makes the motion constraints of the robot more explicit (Latombe 1991) (Bruno and

Oussama 2008).

In order to deal with obstacles in path planning, we define a subset of 𝐶 containing

configurations that represent collisions with obstacles as 𝐶𝑜𝑏𝑠 ⊂ 𝐶. Accordingly, the set of

configurations that avoid collisions with obstacles is 𝐶𝑓𝑟𝑒𝑒 = 𝐶 \ 𝐶𝑜𝑏𝑠, and is called the free

space (Bruno and Oussama 2008). Given an initial configuration 𝑞𝑖𝑛𝑖𝑡 and a goal

configuration 𝑞𝑔𝑜𝑎𝑙, the basic motion planning problem is defined as generating a free path

between the two configurations, if they belong to the same connected component of 𝐶𝑓𝑟𝑒𝑒 , and

to report failure otherwise. Note that as we are planning for a rigid-body robot arm, all of its

components must not collide with obstacles.

The classical approach to planning collision-free paths requires mapping the obstacles from

the workspace into the configuration space in order to take them into account in the planning.

The problem of transforming a presentation of the tool or the end-effector pose from 𝑊

(workspace) into 𝐶 (configuration space) is called Forward Kinematics (or FK), while the

reverse problem is called Inverse Kinematics (or IK).

16

In this section we present a survey of path planning algorithm. The workspace is continuous,

making the set of possible configurations for the arm theoretically infinite. To overcome

computation issues, complete motion planning approaches are based on a discretization of the

original model.

In complete motion planning algorithms, a discrete representation is built based on the input

model, in a way that the original problem is exactly represented. Virtually any of the algorithms

in this subsection involve a construction of a roadmap in order to solve the path planning query.

The idea behind the roadmap approach consists of capturing the connectivity of 𝐶𝑓𝑟𝑒𝑒 in a

network of one-dimensional curves.

Let 𝐺(𝑉, 𝐸) be a topological graph, i.e., every vertex 𝑣 ∈ 𝑉 in 𝐺 corresponds to a point in a

subset 𝑋 ∈ ℝ𝑛 (representing a part of the workspace), every edge 𝑒 ∈ 𝐸 corresponds to a

continuous function 𝜏 ∶ [0,1] → 𝑋, the image of 𝜏 connects the points in X that correspond to

the endpoints (vertices) of the edge, and the images of different edge functions are not allowed

to intersect, except at vertices. Furthermore, let 𝑆 ∈ 𝐶𝑓𝑟𝑒𝑒 be the swath, which is the set of all

points in 𝐶𝑓𝑟𝑒𝑒 reached by 𝐺. 𝑆 can be expressed as:

 𝑆 = ⋃ 𝑒([0,1])
 𝑒∈𝐸

 (1)

A graph that holds these curves is called a roadmap if it satisfies the following conditions

(LaValle 2006):

 Accessibility: From any 𝑞 ∈ 𝐶𝑓𝑟𝑒𝑒 , it is simple and efficient to compute a path 𝜏 ∶

 [0,1] → 𝐶𝑓𝑟𝑒𝑒 such that 𝜏(0) = 𝑞 and 𝜏(1) = 𝑠 ∈ 𝑆 (in which 𝑠 may be any point in 𝑆).

Thus, it is always possible to connect some 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙 to some 𝑠1 and 𝑠2,

respectively, in 𝑆.

 Connectivity-preserving: If a path exists such that 𝜏 ∶ [0,1] → 𝐶𝑓𝑟𝑒𝑒, 𝜏(0) = 𝑞𝑖𝑛𝑖𝑡

and 𝜏(1) = 𝑞𝑔𝑜𝑎𝑙, then there is also a path 𝜏 ∶ [0,1] → 𝐶𝑓𝑟𝑒𝑒 such that 𝜏 (0) = 𝑠1

and 𝜏 (1) = 𝑠2 (from the previous condition). Thus, solutions are not missed because

𝐺 fails to capture the connectivity of 𝐶𝑓𝑟𝑒𝑒 .

Once a roadmap 𝑅 has been constructed, the path planning problem is reduced to connecting

the initial and goal configurations to points in 𝑅 and then performing a discrete graph search

on 𝑅. The constructed path, if it exists, is the concatenation of three sub-paths: a sub-path

connecting the initial configuration to the roadmap, a sub-path contained in the roadmap, and

a sub-path connecting the roadmap to the goal configuration.

Various methods, which are based on the general idea of roadmaps, have been proposed and

developed throughout the years, all compute different types of roadmaps, e.g., visibility graph,

and Voronoi diagrams (LaValle 2006), (Latombe 1991). Each application operates at a

different environment and has its own parameters to optimize, assumptions, and targets.

Therefore, a different logic is applied while constructing the roadmaps.

17

The maximum-clearance roadmap and the shortest-path roadmap algorithms are similar in

their methodology and both apply to 2D configuration spaces assuming a polygonal

obstacle region, although they meet different goals. The Maximum-Clearance Roadmap, also

known as retraction method (Latombe 1991), is an algorithm that tries to draw a path as far as

possible from 𝐶𝑜𝑏𝑠. The paths resulting from using this algorithm are sometimes preferred by

mobile robotics designers, since it is often difficult to measure and control the position of a

mobile robot precisely. The retraction method is based on the roadmap called the Voronoi

diagram of 𝐶𝑓𝑟𝑒𝑒 . This diagram consists of a finite collection of straight and parabolic curve

segments, known as arcs. A straight arc is a set of configurations that are closest to a pair of

edges or a pair of vertices (Figure 2). A parabolic arc is a set of configurations that are closest

to a pair of an edge and a vertex. An example of the 3 types of pairs is presented in Figure 4.

Thus, the Voronoi diagram of 𝐶𝑓𝑟𝑒𝑒 is the roadmap of segments whose minimal distance to the

boundary of 𝐶𝑜𝑏𝑠 is achieved with more than one point of those boundaries. Figure 3 shows the

roadmap constructed of a 𝐶𝑓𝑟𝑒𝑒 bounded by a polygonal region.

The Shortest-Path Roadmap, also known as the reduced visibility graph method (Latombe

1991), is one of the earliest path planning methods. The visibility graph is the graph 𝐺 whose

nodes are the initial and goal configurations 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙, and all of 𝐶𝑜𝑏𝑠 vertices. The edges

of 𝐺 are all the straight line segments connecting two nodes that do not intersect the interior of

the 𝐶𝑜𝑏𝑠 region. Although, in order to find the shortest path the graph 𝐺 may contain the line

segments connecting only the convex corners of the obstacles, thus it is reduced to what known

as the reduced visibility graph (Latombe 1991). This means that the robot is allowed to touch

or to “scrape” the obstacles, but it is not allowed to penetrate them. To actually use the

computed paths as solutions to a path planning problem, they need to be slightly adjusted so

Figure 3 - Voronoi diagram of a polygonal obstacle

bounded free space, from (Latombe 1991).

Figure 4 - Different arcs in Voronoi diagrams, from (LaValle 2006).

18

that they come very close to 𝐶𝑜𝑏𝑠 but do not make contact (LaValle 2006). Figure 5 shows an

example of such a graph and the resulting path.

Cell Decomposition planning algorithms consist of decomposing the robot's free region into

smaller, non-overlapping regions. These regions are called cells, and their union is

exactly 𝐶𝑓𝑟𝑒𝑒 . Various decomposition approaches such as vertical cell decomposition (Chazelle

1987) and triangulation (LaValle 2006) based decomposition have been suggested (Figure 6).

All cell decomposition algorithms must satisfy three properties (LaValle 2006):

 Computing a path from one point to another inside of a cell must be easy. For

example, if every cell is convex, then any pair of points in a cell can be connected

by a line segment.

 Adjacency information for the cells can be easily

extracted to build the roadmap graph. This

roadmap graph is called the connectivity graph,

its nodes are the cells extracted from the free

space and connected by a link in a way that two

nodes are connected if and only if the two

corresponding cells are adjacent.

 For a given 𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙 , it should be efficient

to determine which cells contain them.

After the decomposition, the second step of this method

is to construct a roadmap (or connectivity graph). For each

cell 𝐶𝑖 we denote an arbitrary sample point 𝑞𝑖 such

that 𝑞𝑖 ∈ 𝐶𝑖. We then join the sample point of every cell

𝐶𝑖 to the sample point of every cell 𝐶𝑖 adjacent to 𝐶𝑖. Once

the roadmap is obtained, it is straightforward to solve the

motion planning query.

Let 𝐶0 and 𝐶𝑘 denote the cells that contain 𝑞𝑖𝑛𝑖𝑡
and 𝑞𝑔𝑜𝑎𝑙 respectively, the problem can formulated as the

search for a path that connects the sample point of 𝐶0 to the

Figure 5 - An example of a reduced visibility graph, from (Latombe 1991).

Figure 6 - an obstacle map

(upper) and a cell

decomposition map consisting

of square decomposition, from

(Latombe 1991).

19

sample point of 𝐶𝑘, in the roadmap graph 𝐺. Let 𝑞0, … , 𝑞𝑘 denote the sample points along the

path in 𝐺. Then the solution path 𝜏 ∶ [0,1] → 𝐶𝑓𝑟𝑒𝑒 is formed by setting 𝜏(0) = 𝑞𝑖𝑛𝑖𝑡

and 𝜏(1) = 𝑞𝑔𝑜𝑎𝑙, and visiting each of the points in the sequence from 𝑞0 to 𝑞𝑘 .

The Potential Field approach (Khatib 1986) doesn't aim to capture the connectivity of the

robot's free space into a reduced graph as previous methods do. Inspired by obstacle avoidance

techniques, it treats the robot as a particle under the influence of an artificial potential field 𝑈.

This potential function is typically defined over the free space as the sum of an attractive

potential stems by the goal configuration, pulling the robot towards it, and a repulsive potential

stems by obstacles, pushing the robot away from the obstacle region.

In this method planning is performed iteratively. While constructing the path, the potential

function induces the artificial

force 𝐹⃗(𝑞) = −∇⃗⃗⃗𝑈(𝑞), pointing locally

to the maximum of 𝑈. Once 𝑈 is defined,

a path can be computed by starting from

𝑞𝑖𝑛𝑖𝑡 and proceeding using gradient

descent. This method is highly prone to

presence of local minima.

The reviewed approaches relax the

completeness requirement to a weaker

requirement, i.e., the ability to return a

valid solution, if one exists and the

resolution parameter of the algorithm is

set to be fine enough (also known as

resolution completeness). The algorithms

provide the best accuracy with respect to

their resolution parameter, yet, they all

require an explicit representation of the

obstacles in the configuration space. This

requirement may result in an excessive

computation making them often

"unsuitable for practical applications"

(Karaman and Frazzoli 2011).

 Sampling-based motion planning

refers to algorithms use collision detection modules to sample the configuration space and

conduct discrete searches that utilize these samples. In this case, completeness is sacrificed,

but it is often replaced with a weaker notion of probabilistic completeness. Whilst

completeness guarantees are weaker, the efficiency and ease of implementation of these

methods have made them suitable for a wide variety of applications, robotics in particular.

The probabilistic road-map (PRM) is one of the first sampling-based motion planners

(Kavraki, et al. 1996). This approach utilizes random sampling of the configuration space to

Figure 7 - Potential field example
(a) 2D map of obstacles. (b) The potential

field caused by initial and goal points. (c) The

potential field caused by obstacle (d) The

combined potential field of both obstacle and

initial and goal points (e) The resulted path

(f) The gradients map. (Latombe 1991)

20

approximate a roadmap of the free configuration space in a computationally efficient way.

PRM is divided into two phases: a learning phase and a query phase. In the learning phase, a

PRM is constructed and stored as a roadmap graph (i.e., a graph whose nodes correspond to

collision-free configurations and whose edges correspond to feasible paths between these

configurations). Constructing a PRM is a conceptually straightforward process. First, a set of

random configurations is generated to serve as the nodes in the network. Then, a simple, local

path planner is used to generate paths that connect pairs of configurations. In the query phase,

𝑞𝑖𝑛𝑖𝑡 and 𝑞𝑔𝑜𝑎𝑙 are connected to two nodes of the roadmap; the roadmap is then searched for a

path joining these two nodes.

One difficulty using roadmap approaches is identifying narrow passages. A uniform random

sampling of 𝐶𝑓𝑟𝑒𝑒 produces in any particular region (within 𝐶𝑓𝑟𝑒𝑒) a number of samples that is

proportional to its volume (Spong, Hutchinson and Vidyasagar 2005). Thus, using this

approach, it is unlikely to place samples in narrow passages of 𝐶𝑓𝑟𝑒𝑒 , which are often required

to reach a solution. Several proposals have been suggested, such as the bridge test (Hsu, et al.

2003), which boosts sampling density inside narrow passages it detects

by simple tests of local geometry and the enhancement phase (Spong,

Hutchinson and Vidyasagar 2005), a post-processing phase that involve

the connection of major disconnected components constructed by PRM

using an additional local-minima-escaping planner.

The rapid exploring random trees (RRT) algorithm also belongs to

the family of the randomized planning algorithms, but it operates in a

different fashion. The idea behind RRT is to incrementally construct a

search tree that gradually improves the resolution but does not need to

explicitly set any resolution parameters (LaValle 2006). The

construction is done by randomly sampling the search space and

heuristically trying to connect new samples with the existing tree. Some

key advantages of RRT are its heavily biased expansion toward

unexplored portions of the state space, the fact that the tree constructed

always remains a single connected component, and its probabilistically

complete guarantee. Since RRT-based algorithms are probabilistically

complete, the coverage of the configuration space gets arbitrarily close

to any point in 𝐶𝑓𝑟𝑒𝑒 with increasing numbers of iterations (Harada,

Yoshida and Yokoi 2010). RRT is widely used due to its simplicity

and efficiency as well as the possibility of involving differential

constraints and many degrees of freedom (Harada, Yoshida and

Yokoi 2010).

Figure 8 - planning with PRM, (Spong, Hutchinson and Vidyasagar 2005).

Figure 9 - Iterative

construction of an RRT

tree, taken from

(LaValle 1998)

21

 RRT randomized data structure was first introduced in order to densely cover and reach as

close as possible to every configuration in the search space (LaValle 1998). In contrast to

previous approaches, it is not based on an exhausting attempts trying to connect pairs of

configurations (or states). An RRT is a topological graph 𝐺(𝑉, 𝐸). The basic tree expansion

algorithm that doesn’t account for obstacles is explained as follows (LaValle, Planning

Algorithms 2006): initially, a vertex is defined at 𝑞𝑖𝑛𝑖𝑡. For each of the iterations in a pre-

defined number of iterations, the tree is iteratively grown by randomly sampling a new point

in the search space 𝑞𝑟𝑎𝑛𝑑 and connecting 𝑞𝑟𝑎𝑛𝑑 to its nearest point in the swath 𝑞𝑛𝑒𝑎𝑟 ∈ 𝑆. The

connection is made along the shortest possible path. In every iteration 𝑞𝑟𝑎𝑛𝑑 becomes a vertex

in 𝐺. However, if 𝑞𝑛 lies in the interior of an edge (rather than on one of its endpoints), then

the existing edge is split so that 𝑞𝑛 becomes a new vertex and an edge is made from 𝑞𝑛 to 𝑞𝑟𝑎𝑛𝑑,

as shown in Figure 10. Thus in each iteration, the total number of edges may increase by one

or two.

In fact, 𝑞𝑟𝑎𝑛𝑑 is not always directly connected to 𝑆. In case the distance from 𝑞𝑟𝑎𝑛𝑑 to 𝑞𝑛𝑒𝑎𝑟

is smaller than some fixed incremental distance , the actual sampled point is connected. But

in case the distance is bigger than 𝜖, a linear motion is made from 𝑞𝑛𝑒𝑎𝑟 toward 𝑞𝑟𝑎𝑛𝑑 t with

some fixed incremental distance, 𝜖 (Figure 11).

An obstacle avoidance module must be integrated in order to account for obstacles. A key

advantage of the RRT sampling based algorithm is that it requires no translation of obstacles

into the search space (𝐶𝑠𝑝𝑎𝑐𝑒). Instead, for every configuration considered in the search space,

the collision detection module calculates the corresponding points along the arm in the

workspace using FK only.

𝑞𝑛𝑒𝑎𝑟

𝑞𝑖𝑛𝑖𝑡 𝑞𝑟𝑎𝑛𝑑

Figure 10 - The expansion method of the RRT-

algorithm, taken from (LaValle 2006)

Figure 11 - The incremental expansion of the RRT-

algorithm, taken from (Kuffner and LaValle 2000)

22

Figure 12 presents a pseudo-code of the basic form of the RRT algorithm for path planning.

NEW_CONFIG sets 𝑞𝑛𝑒𝑤 to be one of the following values:

 The new sampled point (when contained in 𝐶𝑓𝑟𝑒𝑒 and the distance from 𝑞𝑛𝑒𝑎𝑟 is smaller

than 𝜖).

 A new point representing a partial progress toward the sample point (whenever the

distance from 𝑞𝑛𝑒𝑎𝑟 to it is bigger than 𝜖).

 A false value (when no progress of size 𝜖 can be made due to a collision with an

obstacle).

There are several ways to use RRTs in a planning algorithm. One approach is to bias 𝑞𝑟𝑎𝑛𝑑

so that 𝑞𝑔𝑜𝑎𝑙 is frequently chosen according to a constant rate (LaValle 1998), which will be

further referred to as the goal-biased RRT.

Another approach is to develop a bidirectional search by growing two trees, one from 𝑞𝑖𝑛𝑖𝑡
and one from 𝑞𝑔𝑜𝑎𝑙 (Kuffner and LaValle 2000), which is termed bi-directional RRT (also

known as RRT-Connect). Using the connect heuristic the two trees are biased to connect to

each another, creating a continuous path starting from 𝑞𝑖𝑛𝑖𝑡 and ending at 𝑞𝑔𝑜𝑎𝑙.

The connect heuristic involves an additional effort while iterating, to expand each one of the

trees. It consists of using the last 𝑞𝑛𝑒𝑤 of one tree as a substitute for 𝑞𝑟𝑎𝑛𝑑 in extending the

other tree. This causes the expansion of each tree to be biased towards the other tree. This effort

consumes roughly half of the time, while the other half is spent expanding each tree in the usual

way. A pseudo code is presented in Figure 13.

𝑩𝑼𝑰𝑳𝑫_𝑹𝑹𝑻(𝒒𝒊𝒏𝒊𝒕)
 1. 𝜏. 𝑖𝑛𝑖𝑡(𝑞𝑖𝑛𝑖𝑡);
 2. 𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝐾 𝑑𝑜
 3. 𝑞𝑟𝑎𝑛𝑑 ← 𝑅𝐴𝑁𝐷𝑂𝑀_𝐶𝑂𝑁𝐹𝐼𝐺();
 4. 𝐸𝑋𝑇𝐸𝑁𝐷(𝜏, 𝑞𝑟𝑎𝑛𝑑)
 5. 𝑅𝑒𝑡𝑢𝑟𝑛 𝜏

𝑬𝑿𝑻𝑬𝑵𝑫(𝝉, 𝒒)
 1. 𝑞𝑛𝑒𝑎𝑟 ← 𝑁𝐸𝐴𝑅𝐸𝑆𝑇_𝑁𝐸𝐼𝐺𝐻𝐵𝑂𝑅(𝑞, 𝜏);
 2. 𝑖𝑓 𝑁𝐸𝑊_𝐶𝑂𝑁𝐹𝐼𝐺(𝑞, 𝑞𝑛𝑒𝑎𝑟 , 𝑞𝑛𝑒𝑤) 𝑡ℎ𝑒𝑛

 2.1. 𝜏. 𝑎𝑑𝑑_𝑣𝑒𝑟𝑡𝑒𝑥(𝑞𝑛𝑒𝑤) ;
 2.2. 𝜏. 𝑎𝑑𝑑_𝑒𝑑𝑔𝑒(𝑞𝑛𝑒𝑎𝑟, 𝑞𝑛𝑒𝑤) ;
 2.3. 𝑖𝑓 𝑞𝑛𝑒𝑤 = 𝑞 𝑡ℎ𝑒𝑛
 2.4. 𝑅𝑒𝑡𝑢𝑟𝑛 Reached;
 2.5. 𝑒𝑙𝑠𝑒

 3. 𝑅𝑒𝑡𝑢𝑟𝑛 Advanced;
 4. 𝑅𝑒𝑡𝑢𝑟𝑛 Trapped;

Figure 12 - Basic RRT Algorithm pseudo-code (Kuffner and LaValle 2000)

23

Note that the trees swap after each iteration of the RRT_CONNECT_PLANNER, until the

latter returns a successful result. Using this heuristic running times improve often by factor of

three or four (Kuffner and LaValle 2000).

Due to their randomized nature, sampling-based motion planning algorithms, and RRT in

particular, give up the requirement for path length optimality in order to obtain a feasible

solution efficiently. As a result, a key drawback of RRT’s results is that they are of low quality,

i.e., they tend to be ragged and tortuous and often contain a lot of unnecessary motions beyond

those actually required to connect the initial and goal configuration (Carpin and Pillonetto

2005). These are undesired properties for robotic motion planning.

To address this shortcoming, researchers often suggest combining RRT with path smoothing

(often called path shortening) techniques, for example, using path modifications through nodes

shifting and relocating (Waringo and Henrich 2006), omitting unnecessary nodes (Abbadi and

Matousek 2012), or using different planning approaches throughout the path construction phase

as in (Khanmohammadi, Mahdizadeh and VakilBaghnlisheh 2008). Any change in the path

already generated involves checking the feasibility of new configurations against the

workspace.

Finding an optimal solution using node elimination approach is often not applicable, as an

exhaustive search for the subset of nodes (from the N nodes of the original path) whose length

is minimal involves checking 𝑂(2𝑁) modified versions of the original path. Each path-

feasibility evaluation requires several calls to the collision detection module. To overcome

these issues a simple smoothing technique based on an iterative divide and conquer concept,

similar to a binary search, was proposed (Carpin and Pillonetto 2005). Using this approach,

𝑹𝑹𝑻_𝑪𝑶𝑵𝑵𝑬𝑪𝑻_𝑷𝑳𝑨𝑵𝑵𝑬𝑹(𝒒𝒊𝒏𝒊𝒕, 𝒒𝒈𝒐𝒂𝒍)

 1. 𝜏𝑎. 𝑖𝑛𝑖𝑡(𝑞𝑖𝑛𝑖𝑡); 𝜏𝑏. 𝑖𝑛𝑖𝑡(𝑞𝑔𝑜𝑎𝑙);

 2. 𝑓𝑜𝑟 𝑘 = 1 𝑡𝑜 𝐾 𝑑𝑜
 2.1. 𝑞𝑟𝑎𝑛𝑑 ← 𝑅𝐴𝑁𝐷𝑂𝑀_𝐶𝑂𝑁𝐹𝐼𝐺();
 2.2. 𝑖𝑓 𝑛𝑜𝑡 (𝐸𝑋𝑇𝐸𝑁𝐷(𝜏𝑎 , 𝑞𝑟𝑎𝑛𝑑) = 𝑇𝑟𝑎𝑝𝑝𝑒𝑑) 𝑡ℎ𝑒𝑛

 2.2.1. 𝑖𝑓 (𝐶𝑂𝑁𝑁𝐸𝐶𝑇(𝜏𝑏, 𝑞𝑛𝑒𝑤) = 𝑅𝑒𝑎𝑐ℎ𝑒𝑑) 𝑡ℎ𝑒𝑛
 2.1.1.1. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝐴𝑇𝐻(𝜏𝑎, 𝜏𝑏);

 2.2.2. 𝑆𝑊𝐴𝑃(𝜏𝑎 , 𝜏𝑏);
 3. 𝑅𝑒𝑡𝑢𝑟𝑛 Failure;

𝑪𝑶𝑵𝑵𝑬𝑪𝑻(𝝉, 𝒒)
 1. 𝑟𝑒𝑝𝑒𝑎𝑡
 1.1. 𝑆 ← 𝐸𝑋𝑇𝐸𝑁𝐷(𝜏, 𝑞)

 2. 𝑢𝑛𝑡𝑖𝑙 𝑛𝑜𝑡 (𝑆 = 𝐴dvanced)
 3. 𝑅𝑒𝑡𝑢𝑟𝑛 S;

Figure 13 - bi-directional RRT algorithm pseudo-code

24

nodes along the path are removed if the direct path between their predecessor and successor is

feasible. A pseudo code is presented in Figure 14. This procedure is repeatedly called until the

resulting path is fully smoothed, according to the environment limitations.

Object manipulation is considered a major component in human daily tasks. It is becoming

clear that to allow robots to carry out accurate and intelligent tasks, their augmentation with

the ability to handle all sorts of objects autonomously is of great importance. Although mobile

manipulators are now common in robotics research labs, manipulation planning for objects of

complex shapes is still considered a challenging task, as it requires the control and coordination

of both arms and hands (Furui and Nilanjan 2008).

Reach-to-grasp is the task of moving the arm all the way toward a plausible grasp of the

object to be manipulated. It is one of the most important sub-tasks required for manipulation,

as it is the starting point of any object manipulation task. For robotic arms, reach-to-grasp

planning incorporates several subtasks, such as: grasp-planning (i.e. searching for a feasible

and plausible grasping pose), where it is essential to guarantee that the grasping configuration

synthesized is accessible to the robot, it must not lead to collision (neither self-collision nor

against the environment), and it must be stable according to a chosen relevant stability criterion

(Saut and Sidobre 2012); solving the IK problem; and finally, finding a collision-free path.

Moreover, planning must not just achieve a solution, but also be performed in reasonable time.

𝑺𝑴𝑶𝑶𝑻𝑯(𝑽, 𝒇𝒊𝒓𝒔𝒕, 𝒍𝒂𝒔𝒕, 𝑺)
 1. 𝑖𝑓 (𝑓𝑖𝑟𝑠𝑡 = 𝑙𝑎𝑠𝑡) 𝑡ℎ𝑒𝑛
 1.1. 𝑆. 𝑝𝑢𝑠ℎ𝑏𝑎𝑐𝑘(𝑉[𝑓𝑖𝑟𝑠𝑡])
 2. 𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑓𝑖𝑟𝑠𝑡 = 𝑙𝑎𝑠𝑡 − 1) 𝑡ℎ𝑒𝑛

 2.1. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑓𝑖𝑟𝑠𝑡])
 2.2. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑙𝑎𝑠𝑡])

 3. 𝑒𝑙𝑠𝑒 𝑖𝑓
𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑉[𝑓𝑖𝑟𝑠𝑡]

𝑎𝑛𝑑 𝑉[𝑙𝑎𝑠𝑡] 𝑙𝑖𝑒𝑠 𝑒𝑛𝑡𝑖𝑟𝑒𝑙𝑦 𝑖𝑛 𝐶𝑓𝑟𝑒𝑒
 𝑡ℎ𝑒𝑛

 3.1. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑓𝑖𝑟𝑠𝑡])
 3.2. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑙𝑎𝑠𝑡])
 4. 𝑒𝑙𝑠𝑒
 4.1. 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, 𝑓𝑖𝑟𝑠𝑡, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2, 𝑆)

 4.2. 𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2, 𝑙𝑎𝑠𝑡, 𝑆)

Figure 14 - Path smoothing based on divide and conquer approach.

V is the input vector of vertices to smooth, S is a placeholder for the

output (smoothed path vertices) vector, first and last parameters

should be called with the extreme indices of the input vector V

25

Several approaches have been suggested for reach-to-grasp planning. They mostly differ by

the grasp-planning mechanism, i.e., how they approach the grasp generation subtask, and how

they integrate grasps into the path planning process.

The classical approach for reach-to-grasp planning is to decouple the problem into two

subtasks: grasp-planning and path-planning. The synthesis, evaluation, and specification of a

set of desired end-effector goal poses, is often done beforehand. During run-time the planner

integrates the set of desired end-effector poses into path planning (Weghe, Ferguson and

Srinivasa 2007). The search is conducted in the robot’s configuration space, and it is biased

toward the desired end-effector goal poses, specified in the workspace.

To formulate sets or regions of desirable workspace end-effector goal poses, different grasp

generation and approximation methods exist. In Miller et al (2003), objects are decomposed

into their constituting elements, which are then approximated using different shape primitives

(spheres, cylinders, cones and boxes). Grasps are generated based on these primitives and

evaluated using a force closure (FC) measure. Another shape approximation was suggested

using decomposition of objects based on a minimum-volume bounding box (MVBB) algorithm

(Huebner, Ruthotto and Kragic 2008).

 A different approach suggested by (Vahrenkamp, Asfour and Dillmann 2012), doesn’t

require any preprocessing of the object, in the sense that the only information it uses is the

robot’s configurations, and the object’s location and spatial structure. The Grasp-RRT

algorithm presented in their work is conducted during run-time, where it generates grasping-

hypotheses, evaluates and selects feasible grasps, solves the IK problem, and searches for

collision-free paths.

Methods that minimize the search during run-time using pre-computed desired goal poses,

are prone to grasp evaluation inaccuracies due to their shape-approximation based grasp

generation. In addition some require the human to explicitly specify goal regions or shape

primitive of the different object elements. Although Grasp-RRT overcomes these issues, it

incurs additional run-time computation. In our work, it is assumed that both run-time planning

time and grasp success are of high importance.

A different approach for grasp generation was suggested (Roa, et al. 2011) based on a

evaluation of poses that lead to high-quality grasps. In semi-structured environments, where

the information regarding the model (shape and size) of object is available, such information

is useful for speeding up the run-time planning.

A robust grasp must bring the object to standstill with respect to the gripper, under all forces

and torques expected during its manipulation. Force closure (FC) grasps, which are based on

the geometric condition of the closure property, have been extensively studied and used in the

context of robotics (Zhu and Ding 2004) (Miao, Wenyu and Xiaoping 2010). In the case of soft

contact gripper fingers, force closure of 3D objects can be achieved using two contact points,

and can be measured by force closure angle (FCA) (Figure 15) (Eizicovits and Berman 2014):

26

Figure 15 – Force closure, based on friction and the relative direction of contacts.

𝑝𝑖 and 𝑝𝑗 are the two contacts, 𝑝𝑖𝑗 is the line of sight between them, 𝑛𝑖 and 𝑛𝑗 are the

normal vectors and 𝜃𝑖 and 𝜃𝑗 are the contact angles (the angle between the normal and 𝑝𝑖𝑗) of

𝑝𝑖 and 𝑝𝑗, respectively. 𝜗 is the friction angle calculated from the static friction coefficient.

(Eizicovits and Berman 2014).

Stability distance (SD) is an additional measure for evaluating grasp stability (Karmon,

Flash and Edelman 1996). It is calculated as the Euclidean distance between the center of mass

and the straight line that connects the two contact points imposed by the gripper fingers (Figure

16), normalized by the fingers width.

Figure 16 – The SD measure.

𝑝𝑖 and 𝑝𝑗 are the two contacts, 𝑐𝑚 is the object’s center of

mass, 𝑤 is the fingers width and SD is the stability distance.

(Eizicovits and Berman 2014)

The graspability map is a map that represents, for a particular object and gripper, the quality

grades of grasp from each pose about the object. For examples the quality grade can be a

weighted average of variants of FCA and SD measures. The graspability map can be

constructed from a 3D point cloud representation of an object that can be derived from standard

depth sensors. The construction is done starting with a scan of the object’s surface for contact

points, following the calculation of wrist poses required for the grasp (Eizicovits and Berman

2014).

27

Originally, RRT requires a single and pre-defined goal configuration. In cases where the

task allows a continuous set of goal poses for the gripper, a matching set of goal configurations

exists in the configuration space and should be used for the planning. However, the translation

of such set of end-effector poses into the arm’s configuration space using IK can be infeasible

for run-time applications (Bertram, et al. 2006). In such cases, restricting a randomized planner

to a partial finite set of goal configuration by applying IK in advance to planning (Hirano,

Kitahama and Yoshizawa 2005) is also undesired, as it revokes the probabilistic completeness

guarantee.

Workspace Goal Regions (WGRs) is an alternative concept presented by (Berenson, et al.

May, 2009), which allows the specification of continuous regions in the 6D workspace of the

end-effector poses as goals for the path-planner. This way, it avoids the translation of regions

from the workspace to the configuration space and maintains probabilistic completeness

throughout planning.

A single WGR is defined as a 6D volume in workspace, where it specifies continuous ranges

in the TCP location and orientation dimensions, which, according to task specifications,

express the desirable end-effector goal poses. The assumption is that it is relatively easier and

more intuitive to formulate the regions of all desired end-effector goal poses in the workspace

(in the object’s coordinate-frame) rather than in the arm’s configuration space. That way, the

planner probabilistically allows all plausible goal configurations and thus preserves

probabilistic completeness. The WGR formulation occurs prior to actual path planning, and

therefore it doesn’t take into account pose feasibility in terms of collisions with the

environment.

Let be 𝑤 a single WGR, it is specified by its boundaries matrix 𝐵𝑤 (2) and its reference

transform in world coordinates 𝑇𝑤
0, where 𝑇𝑖

𝑗
 indicates the homogenous transformation of poses

from the ith coordinate-frame to the jth coordinate-frame (3)

 𝐵𝑤 =

[

𝑥𝑚𝑖𝑛 𝑥𝑚𝑎𝑥

𝑦𝑚𝑖𝑛 𝑦𝑚𝑎𝑥
𝑧𝑚𝑖𝑛 𝑧𝑚𝑎𝑥

𝜓𝑚𝑖𝑛 𝜓𝑚𝑎𝑥

𝜃𝑚𝑖𝑛 𝜃𝑚𝑎𝑥

𝜙𝑚𝑖𝑛 𝜙𝑚𝑎𝑥]

 (2)

 𝑇𝑖
𝑗
= [𝑅𝑖

𝑗
𝑡𝑖
𝑗

0 1
] (3)

The IKBiRRT planner, an extension of RRT, was also presented in (Berenson, et al. May,

2009). Simultaneously to the expansion of RRT tree, the IKBiRRT samples goal poses from

within WGRs, projects them onto world-coordinate-frame, validates feasibility against the

environment and translates valid goal poses into goal configuration using IK. As a result, the

number of roots in the goal tree of the bi-directional RRT is constantly growing, allowing

additional feasible goal configurations for the path.

In the presence of multiple WGRs, sampling the WGR to be used, w, is done randomly w.r.t

WGRs volumes. Grasp pose parameters (position coordinates and orientation angles) are then

28

sampled uniformly in 𝐵𝑤 to form 𝑑𝑠𝑎𝑚𝑝𝑙𝑒 . Using Euler convention 𝑑𝑠𝑎𝑚𝑝𝑙𝑒 is translated into

the homogenous transformation matrix 𝑇𝑠𝑎𝑚𝑝𝑙𝑒
𝑤 and then into world coordinate frame 𝑇𝑠𝑎𝑚𝑝𝑙𝑒

0 :

 𝑇𝑠𝑎𝑚𝑝𝑙𝑒
0 = 𝑇𝑤

0 ∙ 𝑇𝑠𝑎𝑚𝑝𝑙𝑒
𝑤 ∙ 𝑇𝑒

𝑤 (4)

Figure 17 depicts the coordinate frames and transformation involved. The transformation

𝑇𝑒
𝑤 is used in cases where and offset exists between the last arm’s joint and the TCP. Once

validated for feasibility, 𝑇𝑠𝑎𝑚𝑝𝑙𝑒
0 is translated into the arm’s configuration space, using IK, to

serve as an additional root in the RRT goal tree.

Figure 17 - The transformations and coordinate frames involved in using WGR for planning.

𝑒 is the end-effector offset (TCP to last joint), 𝑠 is the coordinate frame of the last joint in a

sample configuration. Taken from (Berenson, et al. May, 2009)

As an extension of the bi-directional RRT algorithm, IKBiRRT has proven efficiency and

robustness at high dimensional workspaces (Bertram, et al. 2006). Yet, the uniform sampling

method assumes all poses within WGRs are of equal quality. In some domains, in particular

object grasping, different poses offer different grasp qualities, motivating the use of a more

complex sampling scheme.

Statistical inference is the process of drawing conclusions from data that are subject to

random variation. Whereas descriptive statistics describe a sample, inferential statistics infer

predictions about a population of interest via some form of sampling. Any statistical inference

requires some assumptions. A statistical model is a set of assumptions concerning the

generation of both the sample data and the population itself (Bartoszyński and Niewiadomska-

Bugaj 2008).

In fully parametric statistical inference, the probability distributions describing the data-

generation process are assumed to be known and to involve a finite set of unknown parameters.

Thus, the aim of such inference is to estimate the value of those parameters with respect to the

29

sample data. Once the distribution parameters are estimated, it can be used to represent the

data-generation process. For example, new samples can be drawn from the distribution with

the estimated parameters, in order to imitate a behavior of interest.

The multivariate Gaussian distribution is a generalization of the one-dimensional Gaussian

distribution to higher dimensions (Izenman 2008). A k-dimensional multivariate Gaussian

density function is:

 𝑔(𝒙) =
1

√(2𝜋)𝑘|𝚺|
𝑒𝑥𝑝(

 (𝒙 − 𝝁)𝑇 𝚺−1(𝒙 − 𝝁)

2
) (5)

Where 𝝁 is a k-dimensional vector of the expectation values in all dimensions, x is a n × k

matrix of the observations, and 𝚺 is the k × k covariance matrix.

A Gaussian Mixture Model (GMM) is a parametric model with a probability density

function represented as a weighted sum of Gaussian component densities. It assumes all

observations have been drawn from a mixture of a finite number of multivariate Gaussian

distributions with latent parameters according to the following density function:

 𝑝(𝒙) = ∑𝑤𝑖 ∙ 𝑔(𝒙|𝝁𝒊, 𝚺𝐢

𝑀

𝑖=1

) (6)

Where x is a n × k matrix of the observations, 𝑤𝑖 is the weight (prior probability) of the ith

component, and 𝑔(𝒙|𝝁𝒊, 𝚺𝐢) is the probability of the observations in x according to the

multivariate Gaussian density function of the ith component.

 Inferring GMM parameters from the dataset can be done using the Expectation-

Maximization (EM) algorithm (Dampster, Laird and Rubin 1977), which trains the model with

the goal of maximizing the likelihood of the data.

In its basic form, it is essential to provide the EM algorithm with the number of components

(Gaussians) in the mixture. When there is imperfect knowledge concerning the number of

components, literature suggests using GMM-BIC (Andrews and Lu 2001), an integration of

the Bayesian Information Criterion (BIC) penalty criterion into GMM, to infer the optimal

number of components based on the likelihood function of the fitted model.

Cluster analysis is the process of grouping subsets of data into groups (clusters) so that all

data within a cluster have high similarity in comparison to one another, but are dissimilar to

data in other clusters. Clustering analysis has been studied both as a branch of statistics and as

a type of unsupervised learning in the field of machine learning, as it does not rely on labeled

observations.

30

Clustering can be achieved by various algorithms that differ in their notion of what

constitutes a cluster and how to efficiently learn them. Traditional centroid-based clustering

algorithms, among them are the popular k-means (Lloyd 1982) and its variations, are based on

distance functions and aim to discover clusters that include groups with small distances among

the cluster members, grouped around some points in space.

Often, a different form of clusters is required, such as box decomposition. In their work,

(Geidenstam, et al. 2009) suggests enveloping 3D data points into box shapes by a fit-and-split

algorithm that is based on an efficient Minimum Volume Bounding Box (MVBB) algorithm.

An example is presented in Figure 18 based on data from Standford’s bunny point cloud3.

The clustering procedure is as follows:

 The data is first being projected onto 2D planes

 Planar split candidates are explored and evaluated for splitting each set of points into

two subsets using 2D convex hulls, and the best candidate is chosen, heuristically.

 When the split according to the chosen candidate does not satisfy the termination

condition, the dataset is divided into two, and the same procedure goes on for each subset

recursively.

3 http://www.mrbluesummers.com/3562/downloads/stanford-bunny-model

Figure 18 - MVBB decomposition for Stanford’s bunny point-cloud

31

The termination condition is based on a threshold of the total volume minimization gain

from each split according to:

 𝜃∗ =
𝑉(𝐶1) + 𝑉(𝐶2) + 𝑉(𝐴\𝑃)

𝑉(𝑃) + 𝑉(𝐴\𝑃)
 (7)

Where 𝑉 is a volume function, 𝐴 is the complete set of boxes in the current hierarchy, 𝑃 is

the current box, and 𝐶1, 𝐶2 are the two child boxes that can be produced by the split, and 𝜃∗ is

the total volume minimization gained by splitting according to the best split at the current

hierarchy (Huebner, Ruthotto and Kragic 2008).

Although clustering with box shape primitives is not appropriate as a clustering technique

for any data in general, it fits well in our work, as will be described later.

The nearest neighbor search is an optimization problem for finding the closest point to a

given point from a dataset of candidates, where closeness can be expressed by various types of

distance metrics. This problem is common across different fields of application, e.g., pattern

recognition, databases, and spell checking. Various approaches have been developed to address

this problem, such as locality sensitive hashing (Rajaraman and Ullman 2010) and space

partitioning techniques (de Berg, et al. 1997).

KD-Tree is a space partitioning technique and a powerful data structure that is based on a

recursive subdivision of a set of points based on alternating axis-aligned hyperplanes

(Atramentov and LaValle 2002). This technique was applied to path planning problems in high

dimensions with a great success, providing significant improvements in running times.

The data structure construction is done by recursively splitting datasets of points into two,

according to a pivot point (often the median in the relevant axis). Each of the two child dataset

is divided further, according to next dimension. In every step, the splitting hyperplane is

perpendicular to the corresponding axis and passes through the pivot point (Figure 19). When

the number of the data points in a dataset falls below a given threshold 𝑁𝑚𝑎𝑥, a “leaf node”

associated with this dataset, which stores a list of coordinates for all the points in the dataset.

Once the tree construction is done, a nearest neighbor search is done by depth-first search to

eliminate non-relevant points in the dataset and minimize the number of candidate points for

the actual distance calculation.

Figure 19 - An example of KD-Tree

(a) How the space is subdivided, (b) the corresponding

tree. From (Yershova and LaValle 2007)

32

CHAPTER 3: REACH-TO-GRASP

PLANNING FRAMEWORK

The current chapter details the GR-RRT methodology based on graspability map (see

Section 2.6.2) and the workspace goal region (see Sub-Section 2.6.3). In our work, we bridge

and extend some of the methods reviewed in chapter 2 to achieve the following advantages:

• Accurate and automatic representation of graspability knowledge from specific

gripper-object simulation.

• Fast run-time search that integrates both path planning and grasp generation, with

preliminary preprocessing efficiently used by the bi-directional RRT engine.

• Consistency with RRT’s probabilistic completeness in path planning and grasp

generation.

The chapter is organized as follows: Section 3.2 exhibits our novel framework for reach-to-

grasp planning, and is generally divided into two sub-sections, where both simple and complex

objects are handled. Next, Section 3.3 discusses general modifications to the planner that were

required for better and more accurate representation of the continuous 3D workspace, and for

better efficiency.

The Grasp Regions Rapid-exploring Random Trees (GR-RRT) is an extension of the

IKBiRRT algorithm (see Sub-Section 2.6.3). As such, it exploits the concept of workspace goal

regions to plan paths for robotic arms that are biased towards goal regions in the workspace,

which are defined based on the task specifications. GR-RRT incorporates statistical inference

and clustering techniques to allow automatic specification, based on a-priori knowledge, of

such regions, which are ultimately been used to generate better grasp candidates.

The GR-RRT algorithm incorporates two phases (Figure 20): the grasp region (GR)

specification phase, which is done a-priori, and a run-time path planning phase.

In the GRs specification phase, the characteristics of the object and gripper are used to

form a graspability map. To facilitate the definition of the GR, the wrist poses are translated to

tool center point (TCP) poses, similar to the 𝑇𝑒
𝑤 transformation from Section 02.6 (Figure 17).

According to their corresponding grasp-quality grade, poses with grade lower than a task-

specified threshold are filtered out of the database, as the desired behavior is of the successful

grasps (i.e. those who hold high grasp-quality grade) only.

For a simple and symmetrical object, it is safe to assume that the dataset of all the remaining

successful grasp candidates is gathered in a single cluster, thus a single GR will provide good

33

results (Reshef, Eizicovits and Berman 2014). However, for a more complex object, the spatial

behavior of successful grasps tends to change with respect to the different elements that

constitute it. Following this, a rotation-translation decoupling is adopted from (Bazin, et al.

2010) so that a 3D box-based clustering procedure is applied to the data in the subspace of TCP

location only. Clustering is done using a hierarchical minimum-volume-bounding-box

(MVBB) decomposition from (Geidenstam, et al. 2009), originally used for shape

approximation of complex objects (Section 2.8).

The result of the last step is an automatic decomposition of regions of successful grasps in

the 3D subspace of the TCP locations, relative to the object, using boxes that tightly bound all

the successful grasps in the original set. It is straightforward to use these boxes as the

boundaries of WGRs in a multiple-regions scheme. However, with using this technique a

tradeoff arises: setting a too high value for the threshold 𝜃∗ (the total volume minimization gain

from each split, used for recursion termination) in the hierarchical MVBB algorithm tends to

produce a high number of small boxes and therefore over fit the data, ignoring sub-regions of

possibly successful grasps. Setting the value too low tends to produce a low number of bigger

boxes that often capture different behaviors of the data (“distant” groups of poses), prone to

harming the ability of virtually drawing successful grasps. Finally, 𝜃∗ values were selected

based on an empirical study and visualization of the results.

To facilitate the full definition of the GRs, a within-cluster 6D spatial distribution is inferred

using a Gaussian Mixture Model (GMM), so that later it can be used to generate grasp

candidates. The underlying assumption in choosing a mixture of Gaussian components is that

there exist a finite number of ultimate grasps, and symmetrical deviations from these grasps (in

TCP location or orientation dimensions) will result in equal decrease in grasp-quality grades,

with respect to correlations between the dimensions, that are accounted by GMM. To enable

an automatic inference procedure, we have implemented GMM-BIC (see Sub-Section 2.7.2),

so that the best GMM model is automatically selected in statistical fashion, through penalizing

model complexity and accounting for the likelihood of the dataset given the model. The 6D

GMM distribution in each cluster is bounded by its bounding-box boundaries, according to the

minimum and maximum observed values of each dimension in the subset of grasp points that

were assigned to it (a 6D axis-aligned bounding box).

In the planning phase, the GR-RRT algorithm exploits both sensory- processed information

of the environment (i.e. the existence of objects, their positions and orientations) and the GRs

specified in the previous phase. This information allows planning paths that are biased towards

successful grasp-poses.

In a single-GR scheme (i.e. for simple and symmetrical objects), GR-RRT uses the GMM

model to sample new poses from the GR (compared to the uniform sampling of IKBiRRT) to

generate successful grasp candidates. Similarly to IKBiRRT, new grasps are sampled with a

constant rate 𝑝𝑠𝑎𝑚𝑝𝑙𝑒 and translated into the configuration space using IK to serve as additional

roots for the RRT goal tree, i.e. as candidates for the end of the reach-to-grasp path.

For complex objects multiple GR are required. In such cases, in each iteration of GR-RRT

that involves grasp generation, begins with selecting the GR to be used out of the set of

available GRs. Selection is made using weighted sampling of GRs, where each GR is weighted

proportionally to the sum of the absolute differences between GR-bounds from 𝐵𝑤 (2) across

all 6 dimensions. This is done rather than according to GR volumes (a multiplication of the

34

absolute differences), since a GR might encompass a difference of 0 in one or more dimensions

(Berenson, et al. May, 2009), equating its 6-dimensional volume to zero, so it is totally ignored.

Graspability map
construction

Hierarchical MVBB clustering
and orientation range

determination

GMM
inference

GMM
inference

GMM
inference

...

...

Intermittent sampling
of a GR and a goal

pose candidate

Goal pose projection
to workspace

Bi-directional
RRT engine

IK and collision
detecion

Additional goal
configuration

Configuration
is infeasible

Configuration is feasible

Object &
gripper

characteristics

Environment
sensory

perception

WGR1 WGR2 WGRk

GR1 GR2 GRk...

Figure 20 – Multiple GR framework for reach-to-grasp planning

35

When accounting for a discrete 2D workspace, collision checking for any point on the

robotic arm requires a computation of 𝑂(1), i.e., by checking the relevant cell in a binary matrix

of obstacle spatial representation in workspace with respect to their discrete coordinate values.

It may be argued that a high-resolution 3D discrete representation of the workspace can

approximate real environments. However, a high-resolution discrete representation

necessitates an extremely big 3D matrix that often cannot be handled by standard computation

infrastructure, while still failing to provide the required accuracy for sensitive applications.

Therefore, an accurate robotic application must handle a continuous 3D workspace that

naturally corresponds to the environment it operates in (Alton and Mitchell 2006).

The transition from 2D to 3D only involves a bigger workspace representation that can

ultimately be handled (up to some level of resolution) by sparse-matrix representations

(Gilbert, Moler and Schreiber 1991) or by up-scaling the computation infrastructure used for

planning. But, the transition to a continuous space, for ensuring high accuracy, dictates the use

of a totally different environment representation.

We address this issue by using a point cloud representation (Rusu and Cousins 2011), where

every physical object in the environment contributes to the “cloud” a set of points (represented

by continuous XYZ coordinate values) that together describe its surface. This is in fact a sparse

representation of obstacles in the environment, based on a discretization of their surfaces that

generates a subset of the points that constitute them. It can be easily generated using standard

depth sensors (see Figure 18), and ultimately be controlled by a resolution parameter.

Consequently, the collision checking module must be adapted. To verify pose feasibility for

the robotic arm, it is now required to calculate its Euclidean distance to the point-cloud of

obstacles. Similarly to using a discrete workspace, a pose is considered feasible when a discrete

set of points along the robotic skeleton lies entirely in the obstacles-free sub-space of the

workspace. In a continuous workspace, points along the robotic skeleton are checked for their

nearest neighbors in the point-cloud. A minimum distance threshold 𝑑𝑚𝑖𝑛 is set, and a pose is

considered valid once distances to all nearest neighbors are above this threshold.

The simplest approach to continuous-workspace collision checking involves O(np) distance

calculations for each point in the skeleton of the robot, where np is the number of points in the

point-cloud. Needless to say, using this naïve approach makes planning with RRT extremely

inefficient. Following that, a KD-Tree data structure (Section 2.9) is used to store all points

that belong to the environment point cloud. Using this data structure, the complexity for single

nearest neighbor query is O(log np), resulting in an extreme improvement of collision detection

runtimes.

36

In the smoothing technique, as well as in the classical technique, an iterative divide and

conquer approach is applied to subsets of a path’s set of vertices. Using this approach, same

pairs of vertices might be validated more than once for a collision-free path between them.

Collision-free validation is the most computation consuming part of this module. This issue

induces an excessive use of computational resources, and can be avoided by storing a “memory

matrix” holding either a null value for a pair that hasn’t been checked yet, 0 for of vertices with

no feasible straight path between them, and 1 for a pair of vertices with a feasible collision-free

path between them. This modification is implemented further in this work as part of the triple

smoothing method.

37

CHAPTER 4: TESTING GR-RRT

We have conducted an experiment to evaluate The GR-RRT planning algorithm. The GR-RRT

is compared to the IKBiRRT planner with a multiple WGRs scheme, based on the external

shape of the objects (point cloud). A home environment scenario, based on real-life problems

that can be solved by robotic applications, was simulated. This environment contained two

target-objects: a mug and a frying pan, both require a multi-GR sampling scheme. Additionally,

selective apple harvesting environment was also simulated. The target-objects in this

environment were apples, which mandated a simple single-GR sampling scheme. The selective

apple harvesting experiment is detailed in Appendix II. The home environment scenario

experiment is detailed in the current chapter. Section 4.2 and Section 4.3 introduce the

experimental setup and the simulation environment that were set for the experiment,

respectively. Next, the metrics and the statistical analyses that were used are detailed in

Section 4.4 and Section 4.5. Following that, Section 4.6 brings the experiment results, which

are further discussed and concluded in Section 4.7.

The simulations were conducted using a PC equipped with an Intel i7-3770K 3.5 GHz

processor (CPU) and 32GB installed memory (RAM), running on Windows 8.1 (64-bit). The

development and execution of the experiment was done using MATLAB (Version 2011a,

Mathworks, USA) and analysis was done using IBM SPSS Statistics (Version 19, IBM, USA).

The MATLAB Parallel computing toolbox was used to reduce the computational time of

the preliminary learning procedure. The MATLAB Robotic toolbox was used for a

visualization of the robotic arm model, with modifications.

A 3D virtual environment was constructed based on a physical setup. It comprised a virtual

model of our six degrees-of-freedom (DOF) manipulator (UP6, MOTOMAN, Japan), a table

and several wooden cubes as obstacles, and 2 objects: a mug and a frying pan (Figure 21). Both

object are composed of several asymmetrical elements, and therefor constitute complex objects

to grasp. A total of 6 different compositions were created using the above elements, assuring

diverse reachability of the objects (Figure 22). Point cloud representations of the environment

were created, as well as for the two objects used as targets. In both algorithms implemented, a

point cloud of the environment was used for collision detection, using KD-tree (see Sub-

Section 2.9) based collision detection module.

 Figure 21 - Models of a mug and a pan used in our simulations as target objects

38

Figure 22 - The six different environments served as problems to be solved by the planner.

In each composition, both mug and pan objects were located in the same position and

orientation

For both algorithms (IKBiRRT, GR-RRT), a preliminary phase execution was required in

order to construct the sampling scheme used for planning. In GR-RRT, the GRs-scheme was

generated following the construction of the object’s graspability map and based on the data

stored in it. In IKBiRRT, the MVBB algorithm was applied to the object’s point cloud to

formulate WGRs that ultimately bound the object’s shape. Both schemes were constructed and

once per object.

Planning with both algorithms was executed 100 times per 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 ×
𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 × 𝑜𝑏𝑗𝑒𝑐𝑡 combination. Each resulting path was smoothed by an

implementation of a triple path smoothing (see Appendix I).

Algorithm performance was evaluated and compared in terms of computation time, path

quality, and final grasp quality. Path quality was quantified by the final path length in the

configuration space, using two normalized distance measures: Euclidean (𝑁𝐷𝑒) and City-Block

(𝑁𝐷𝑐𝑏):

(1) (2) (3)

(4) (5) (6)

39

 𝑁𝐷𝑒 =
∑ √∑ (𝑥𝑖,𝑗 − 𝑥𝑖−1,𝑗)

2𝐽
𝑗=1

𝑉
𝑖=2

√∑ (𝑥1,𝑗 − 𝑥𝑉,𝑗)
𝐽
𝑗=1

2
− 1 (8)

 𝑁𝐷𝑐𝑏 =
∑ ∑ |𝑥𝑖,𝑗 − 𝑥𝑖−1,𝑗|

𝐽
𝑗=1

𝑉
𝑖=2

∑ |𝑥1,𝑗 − 𝑥𝑉,𝑗|
𝐽
𝑗=1

− 1 (9)

Where 𝑥𝑖,𝑗 (deg.) is the ith vertex's position in the jth dimension of the configuration space,

V is the total number of vertices in the path, and 𝐽 is the total number of joints in the arm.

𝑁𝐷𝑒 and 𝑁𝐷𝑐𝑏 are based on the Euclidean distance and the city-block distance, respectively.

Both measures express the efforts for executing a path, i.e., the total distance of the path,

relative to a (not necessarily feasible) lower bound path distance, i.e., the line-of-sight from the

initial vertex to the final vertex, which is reflected in the denominator. Additionally, they

contain a subtraction of 1 for simpler statistical analysis, which makes them range from 0 (the

path is the actual line-of-sight from initial vertex to final vertex) to infinity (the path is highly

convoluted, where the value express the additional length with respect to the lower bound

distance). The two distance measures (Euclidean, city-block) are used for a thorough analysis

of paths, where Euclidean distance better correlates with path length, and city-block distance

represents the sum of the total distance travelled in all joints, which implies the effort required

in terms of joints actuation.

Grasp quality was compared based on success, i.e., binary representation (if the path ended

with a grasp of quality of 0.7 or above, success was determined as one, zero otherwise). The

threshold value of 0.7 was used based on preliminary experiments with hardware and physical

objects.

All analyses were conducted with the following predictors: algorithm, object, and their

interactions, as the goal was to compare the performance of the two algorithms in terms of

different objects. Environment-id was used as a random effect in the following mixed models

to remove the influence of the different environment settings.

Computation time was analyzed using a generalized linear mixed model with a gamma link-

function. A gamma link function was used as values were non-negative and strongly skewed

to the right. Grasp success was analyzed using a mixed logistic regression model.

The fact that both algorithms produced considerable amount of paths that were the line-of-

sight to the target pose (both 𝑁𝐷𝑒 and 𝑁𝐷𝑐𝑏 equal 0) required that the analysis of path quality

measures will be broken into two. At first, we created the binary variable 𝐼𝑠𝐿𝑂𝑆𝑒 to compare

the rate of line-of-sight paths, so 𝐼𝑠𝐿𝑂𝑆𝑒 = 1 when the Euclidean distance is the same as the

line-of-sight (i.e. 𝑁𝐷𝑒 = 0), and 𝐼𝑠𝐿𝑂𝑆𝑒 = 0 otherwise. We analyzed 𝐼𝑠𝐿𝑂𝑆𝑒 using a mixed

logistic regression model. Following, we removed all line-of-sight paths and analyzed both

𝑁𝐷𝑒 and 𝑁𝐷𝑐𝑏 of the remaining subset of paths using a generalized linear mixed model with a

gamma link-function, due to non-negative and right-skewed values.

40

The a-priori learning of IKBiRRT’s WGRs scheme was based on the mug and pan point-

clouds and resulted in 6 and 5 WGRs respectively. 3D TCP location boundaries relative to

objects, are visualized in Figure 23.

Learning of GR-RRT’s GRs scheme was based on each object’s graspability map (partially

visualized in Figure 24. For a full visualization of all graspability maps generated please refer

to Appendix II). The sets of successful grasps for mug and pan objects held 6,619 and 24,652

gripper poses (Figure 25), MVBB clustering resulted in 13 and 35 GRs (Figure 26) and GMM

inference resulted in numbers of components in the ranges of 6-71 and 2-99, respectively.

Both algorithms had a path-planning success of 100% with the applied planning limitation of

20,000 iterations of RRT engine per execution.

Figure 23 - WGRs location boundaries of mug (left) and pan (right),

as used in the IKBiRRT planning algorithm for sampling

Figure 24 – Partially

visualized graspability maps

of mug (up) and pan (down)

Figure 25 - Extracted TCP

positions of successful grasps

(green) for mug (upper figure) and

pan (lower figure), produced by

GR-RRT

Figure 26 - GRs location

boundaries of mug (upper

figure) and pan (lower

figure), produced by GR-RRT

41

For grasp success, the target-object id and interactions between

target-object and algorithm were found to be non-significant and

thus were removed from the model. The final model included only

algorithm as a fixed effect and environment-id as a random effect

(Table 1). While results for IKBiRRT showed an average odds

ratio of 0.006, which reflects a grasp success rate of ~0.6%, GR-

RRT was found to increase odds ratio by 983% on average,

providing an average grasp success rate of 85.5% (142 times

greater). Final grasps were also visualized for validation by human

eye. It can be generally seen (Figure 27) that grasps of high grade

are in fact successful grasps of the object that are close to the ones

often picked by humans, compared to grasps with low grade.

 Table 1 - Logistic regression results for Grasp Success

For planning time, the only significant factor was the interaction {𝑂𝑏𝑗𝑒𝑐𝑡 = 𝑃𝑎𝑛 ×
 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝐺𝑅 − 𝑅𝑅𝑇}, this means that a significant increase in planning time using GR-

RRT was found only in the case of planning towards a grasp of the pan (Table 2). In this case,

the average increase in planning time using GR-RRT is of 13.4% compared to the IKBiRRT

planning towards a grasp of the mug.

Figure 28 shows a box-plot chart of planning times distribution across all 6 environment

compositions.

Grasp Success

Fixed

Effects

Coef

(Standard

Error)

95% Confidence Interval for

Odds ratio

Lower

Bound

Odds

Ratio

Upper

Bound

Intercept
-5.116

(0.416)***
[0.003] [0.006] [0.014]

Algorithm

= GR-RRT

6.890

(0.418)***
433.3% 982.7% 2228.7%

*** p<0.001 ** p<0.01 * p<0.05

Figure 27 - Example of a

bad grasp (up) and a

successful grasp (down)

of a mug found by GR-

RRT.

42

Figure 28 - Algorithm Planning Time boxplot chart by environment-id and target-object

Table 2 - Generalized linear regression results for Planning Time

For path quality, 45.5% of the paths generated had 𝐼𝑠𝐿𝑂𝑆𝑒 = 1, i.e. the path was the actual

line-of-sight paths to the target configuration, where all paths in environments #1 (with no

obstacles) and #3 (with the handle of the mug/pan towards the cube obstacle) were

with 𝐼𝑠𝐿𝑂𝑆𝑒 = 1. In the analysis of 𝐼𝑠𝐿𝑂𝑆𝑒, the only significant factor was the

interaction {𝑂𝑏𝑗𝑒𝑐𝑡 = 𝑃𝑎𝑛 × 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 = 𝐺𝑅 − 𝑅𝑅𝑇}, which means that a significant

increase in the odds ratio of line-of-sight paths is obtained for the pan when planning with GR-

RRT (Table 3).

Planning Time

Fixed Effects
Coef. (Standard

Error)

95% Confidence Interval for

Planning-Time Ratio

Lower

Bound
exp(Coef.) Upper Bound

Intercept [sec.] 0.445 (0.025)*** [1.484] [1.560] [1.640]

Algorithm = GR-

RRT
-0.012 (0.029) 93.3% 98.9% 104.7%

Object = Pan 0.011 (0.029) 95.4% 101.1% 107%

[Algorithm = GR-

RRT] *

[Object=Pan]

0.126 (0.041)** 104.6% 113.4% 123.1%

*** p<0.001 ** p<0.01 * p<0.05

43

Table 3- Mixed logistic regression results for IsLOSe

In the analyses of both 𝑁𝐷𝑒 and 𝑁𝐷𝑐𝑏 on the subset of the remaining 54.5% curved paths,

none of the predictors were found significant. Average values (for all paths generated) for both

𝑁𝐷𝑒 and 𝑁𝐷𝑐𝑏 were approximately 0.66, means that the average path is 66% longer than the

lower bound “line of sight”. The effect of path quality measures is illustrated in Figure 29.

Line-Of-Sight Rate (IsLOSe)

Fixed Effects

Coef.

(Standard

Error)

95% Confidence Interval for Odds ratio

Lower

Bound
exp(Coef.) Upper Bound

Intercept [O.R.]
2.758

(0.271)***
[9.260] [15.761] [26.826]

Algorithm = GR-

RRT
-0.144 (0.269) 51.1% 86.6% 146.6%

Object = Pan -0.326 (0.270) 42.5% 72.2% 122.5%

[Algorithm = GR-

RRT] *

[Object=Pan]

1.786

(0.390)***
277.8% 596.7% 1281.6%

*** p<0.001 ** p<0.01 * p<0.05

44

Figure 29 - Illustration of Two solutions found by GR-RRT algorithm for the 5th environment.

In each figure, the configuration space is presented on the left (two 3D sub-figures), and the

manipulator’s movement (in workspace) is illustrated on the right. The upper figure shows a

solution of 𝑁𝐷𝑒=2.77, 𝑁𝐷𝑐𝑏=2.38. The lower figure shows a solution of 𝑁𝐷𝑒=0.04, 𝑁𝐷𝑐𝑏=0.02.

45

Results suggested that comparing to IKBiRRT GR-RRT achieves a drastic improvement in

grasp success without any decrease in path finding success and with only a small increase in

computation time and path length for difficult-to-reach targets. According to the results, the

drastic improvement in grasp success is achieved with only a small increase in computation

time and no increase in path length (in cases when GR-RRT planned toward the pan object, a

decrease in path length was spotted).

Both algorithms use the same bi-directional RRT engine, so differences, tem only from the

different sampling schemes and the data they are based on. Therefore, the underlying premise

of both experiments (and of GR-RRT in general) is that improvement in the quality and

accuracy of planning can be gained by:

a. Augmenting the planner with a-priori knowledge regarding grasps.

b. Exploiting the knowledge by integrating it into a randomized planner to bias its random

sampling toward the goal (successful grasps).

GR-RRT is augmented with the data stored in a graspability map that is derived a-priori

from simulations (and therefore does not affect run-time planning times). It exploits the set of

high quality grasps from within the map to infer its distribution in a statistical fashion, so it can

be imitated in sampling of gripper goal poses for planning. Assuming the (general shape of the)

object to be grasped is known in advance, it has been shown that GR-RRT indeed gains such

improvements, and despite the additional overhead, it maintains RRT’s short planning times.

If the manipulator is required to handle a variety of objects of different sizes and shapes

relatively-similar objects may be grouped to reduce preliminary learning times.

The GR-RRT has several parameters that require tuning. In the current work their values

were selected empirically. Parameter optimization, can further improve accuracy, planning

times, and suitability to exceptional objects and/or scenarios. The parameters for tuning are:

parameters deduced by resolution of objects in environment, e.g. RRT’s increment size 𝜖 (Sub-

section 2.4.3), collision-detection’s threshold value 𝑑𝑚𝑖𝑛 (Sub-sections 2.4.3, 3.3.1), both trade

accuracy in detecting collision for planning-times; KD-tree parameter 𝑁𝑚𝑎𝑥 (Sub-section 2.9)

and GR-RRT’s rate of grasp-pose sampling 𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (Section 3.2), both affect planning query’s

latency; and hierarchical MVBB’s termination condition threshold 𝜃∗ (Sub-section 2.8.1,

Section 3.2) that affects grasp generation accuracy.

46

CHAPTER 5: VALIDATION IN HARDWARE

Hardware validation was conducted based on a 6 DOF manipulator (UP6, MOTOMAN,

Japan) in the Tele-robotics lab, the Department of Industrial Engineering and Management,

Ben Gurion University of the Negev (Figure 30). For execution of results, we have used

MOTOCOM32 drivers to connect our Matlab implementation of GR-RRT to the robot’s

control-unit.

Figure 30 – Motoman UP6 Manipulator used for validation in hardware

The lab environment were arranged to match the simulation settings of environments #3 and

#4 (Section 4.2). In accordance with the simulation, two target-objects were used: a frying pan

and a mug. The following figures (Figure 31, Figure 32) illustrate two reach-to-grasp paths

generated by GR-RRT, where the robot successfully executed a pick-an-place task based on

the planned paths.

(

a)
(

b)

(

c) Figure 31 – Illustration of reach-to-grasp of a mug with the UP6 manipulator

(a) initial position, (b) offset pose relative to the final grasp, (c) final grasp.

47

Since the workspace point cloud included the obstacles in the workspace alone (without the

object itself), the generated paths often ended with one of the gripper’s fingers colliding the

object. To tackle this, goal-pose generation of GR-RRT was modified so that poses generated

included an offset of twice the length of gripper’s fingers in a direction normal to the grasp

(Figure 31(b); Figure 32(c)), to allow a final approach motion of the gripper directly towards

the original grasp pose (Figure 31(c); Figure 32(d)). Another solution would be to integrate the

target-object’s point-cloud into planning, with a lower customized threshold 𝑑𝑚𝑖𝑛
(𝑜𝑏𝑗𝑒𝑐𝑡)

 for

collision detection between the gripper and the object to allow final grasps. Although the latter

constitutes a better solution in terms of completeness in planning, an additional overhead is

expected, following the subtle (restrictive) freedom of motion in the actual grasping motion.

Finally, the actual UP6 arm consisted elements that weren’t modeled, so in some paths

generated, small elements near the end effector (such as wires) that broke the symmetrical

shape of the arm collided with the obstacles (Figure 33). A comprehensive implementation for

this specific hardware should take into account all constituting elements of the arm and make

sure the collision detection threshold 𝑑𝑚𝑖𝑛 (sub-sections 2.4.3, 3.3.1) is set high enough to

prevent undesired collisions with obstacles in the environment. Alternatively collision

avoidance during motion should be integrated.

(

a) (

b)

(

c)

(

d) Figure 32 – Illustration of reach-to-grasp of a pan with the UP6 manipulator

(a-b) initial position, (c) the offset pose relative to the final grasp, (d) final

grasp.

48

Figure 33 - Wires near the gripper

colliding with an obstacle

49

CHAPTER 6: SUMMARY AND

CONCLUSION

This current research developed an algorithm for robotic reach-to-grasp motion. The

algorithm was initially developed for apple harvesting and later extended to deal with arbitrary

objects. The main contributions of this thesis are:

1. An improved path smoothing method that achieves a decrease in planning time over

heuristics found in literature. The use of a “memory matrix” for further improvement of

efficiency by avoiding repetitive computations was additionally suggested.

2. A novel framework for reach-to-grasp planning, GR-RRT was developed. It achieves

a dramatic improvement in grasps quality over previous methods. It also maintains

probability completeness guarantee of both path planning and grasp generation by

exploiting bi-directional RRT and graspability maps characteristics. Its implementation

included additional techniques to improve performance, among them a state-of-the-art

collision detection technique based on KD-Tree data structure and the developed path

smoothing method, to complement planning by the randomized RRT planner.

The developed method included the integration of grasp synthesis into the planning through

a preliminary phase dedicated for learning the spatial distribution of the subset of gripper poses

that represent successful grasps of objects. To achieve this, statistical inference and machine

learning techniques such as GMM and hierarchical MVBB clustering were used. To

complement reach-to-grasp planning, the GR-RRT planning algorithm was proposed.

Results of GR-RRT evaluation suggest that GR-RRT provides a drastic improvement in

grasp success in all scenarios with respect to the IKBiRRT algorithm, with small increase in

computation time and path length in some scenarios. In addition GR-RRT automates the

procedure of defining grasp regions. GR-RRT is suitable for both simple and complex objects

and is especially suitable for scenarios in which determining grasp poses is not trivial.

Several issues were identified throughout the research and designated for future research:

 Using all graspability data for inference including un-successful grasps data,

which is currently filtered out before the inference of grasps spatial distribution.

Success in doing so can be of great influence on the accuracy of sampled grasps for

planning (run-time phase).

 Object reaching strategy. Validation of the experiment in hardware showed that

the planning algorithm must account for gripper-object collisions, in addition to

gripper-environment collisions. We implemented a “final approach” strategy by

offsetting the goal pose of the gripper and creating an additional linear motion toward

the object to be executed last (Chapter 5), although better approaches may be

developed to address this issue.

 Adjusting GR-RRT for more-DOF manipulators. Currently, the method is

suitable for six (or less) DOF manipulators, as it relies on the fact that IK has a finite

number of solutions. It is possible to adjust the method to handle redundant

manipulators as well, e.g., with an approach similar to the one demonstrated in

50

(Bertram, et al. 2006). Degradation in performance is expected (based on single tree

expansion).

 Fine-tuning model parameters was out of the scope of this research. Such tuning

is expected to improve obtained results.

 Further improvements to RRT’s efficiency and planning quality – several

improvements to RRT planning engine were developed in the last years, e.g.,

parallelizing RRT by utilizing multi-core CPUs (Ichnowski and Alterovitz 2012) or

GPUs (Bialkowski, Karaman and Frazzoli 2011), or trading planning time for better

results (Salzman and Halperin 2013). The latter may be modified to minimize a cost

function that accounts for grasp quality, in addition to path length.

51

REFERENCES

Abbadi, A., and R. Matousek. 2012. "RRTs Review and Statistical Analysis." International

journal of mathematics and computer in simulation.

Alton, K., and I. M. Mitchell. 2006. "Optimal path planning under defferent norms in

continuous state spaces." Proceedings 2006 IEEE International Conference on

Robotics and Automation. Orlando, FL: IEEE. 866-872.

Andrews, D. W. K., and B. Lu. 2001. "Andrews and B. Lu, "Consistent model and moment

selection procedures for GMM estimation with application to dynam." Journal of

Econometrics 123-164.

Archambault, P., P. Pigeon, A. G. Feldman, and M. F. Levin. 1999. "Recruitment and

sequencing of different degrees of freedom during pointing movements involving the

trunk in healthy and hemiparetic individuals." Experimental Brain Research 55-67.

Atramentov, A., and S. M. LaValle. 2002. "Efficient Nearest Neighbor Searching for Motion

Planning." International Conference on Robotics & Automation. Washington, DC:

IEEE. 632-637.

Bac, C. W., T. Roorda, R. Reshef, S. Berman, J. Hemming, and E. J. Van Henten. 2014.

"Analysis of a motion planning problem for fruit harvesting in a dense obstacle

environment." Submitted for publication.

Bartoszyński, R., and M Niewiadomska-Bugaj. 2008. Probability and Statistical Inference.

New Jersey: Wiley.

Bazin, J. C., C. Demonceaux, P. Vassuer, and I. S. Kweon. 2010. "Motion estimation by

decoupling rotation and translation in catadioptric vision." Computer Vision and Image

Understanding 114 (2): 254-273.

Berenson, D., S. Srinivasa, D. Ferguson, A. C. Romea, and J. Kuffner. May, 2009.

"Manipulation Planning with Workspace Goal Regions."

Bertram, D., J. Kuffner, R. Dillmann, and T. Asfour. 2006. "An Integrated Approach to Inverse

Kinematics and Path Planning for Redundant Manipulators." Proc. IEEE International

Conference on Robotics and Automation (ICRA). 1874-1879.

Bialkowski, J., S. Karaman, and E. Frazzoli. 2011. "Massively parallelizing the RRT and

RRT*." IEEE/RSJ Internation Conference on Intelligent Robots and Systems (IROS).

San Francisco: IEEE. 3513-3518.

Bruno, S., and K. Oussama. 2008. Handbook of Robotics. Berlin: Springer.

Bulanon, D. M., T. Kataoka, Y. Ota, and T. Hiroma. 2002. "Automation and Emerging

Technologies: A Segmentation Algorithm for the Automatic Recognition of Fuji

Apples at Harvest." Biosystems Engineering 405-412.

52

Carpin, S., and G. Pillonetto. 2005. "Motion Planning Using Adaptive Random Walks." IEEE

Transactions on Robotics 129-136.

Chazelle, B. 1987. "Approximation and decomposition of shapes." Algorithmic and Geometric

Aspects of Robotics 145-185.

Dampster, A. P., N. M. Laird, and D. B. Rubin. 1977. "Maximum Likelihood from Incomplete

Data via the EM Algorithm." Journal of the Royal Statistical Society 1-38.

de Berg, M., M. van Kreveld, M. Overmars, and O. Schwarzkopf. 1997. Computational

Geometry: Algorithms and Applications. Berlin: Springer.

Eizicovits, D., and S. Berman. 2014. "Efficient sensory-grounded grasp pose quality mapping

for gripper design and online grasp planning." Robotics and Autonomous Systems 62

(8): 1208–1219.

Furui, W., and S. Nilanjan. 2008. "Supervisory Controller Design for a Robot-Assisted Reach-

to-Grasp Rehabilitation task." 30th Annual International IEEE EMBS Conference.

Vancouver: IEEE. 4258-4261.

Geidenstam, S., D. Huebner, D. Banksell, and D. Kragic. 2009. "Learning of 2D Grasping

Strategies from Box-Based 3D Object Approximations." Proceedings of Robotics:

Science and Systems.

Gilbert, J. R., C. Moler, and R. Schreiber. 1991. "Sparse matrices in Matlab: Design and

implementation." SIAM Journal on Matrix Analysis and Applications.

Hague, T., J. A. Marchant, and N. D. Tillett. 1997. "Autonomous Robot Navigation for

Precision Horticulture." Proc. IEEE International Conference Robotics and

Autionmation. Albuquerque, New Mexico: IEEE. 1880-1885.

Harada, K., E. Yoshida, and K. Yokoi. 2010. Motion Planning for Humanoid Robots. London:

Springer.

Hicks, J. 2012. Intelligent Sensing Agriculture Robots To Harvest Crops. August 06.

http://www.forbes.com/sites/jenniferhicks/2012/08/06/intelligent-sensing-agriculture-

robots-to-harvest-crops/.

Hirano, Y., K. Kitahama, and S. Yoshizawa. 2005. "Image-based Object Recognition and

Dexterous Hand/Arm Motion Planning Using RRTs for Grasping in Cluttered Scene."

IEEE/RSJ International Conference on Intelligent Robots and Systems 2041-2046.

Hsu, d., T. Jiang, J. Reif, and Z. Sun. 2003. "The bridge test for sampling narrow passages with

probabilistic roadmap planners." IEEE international conference on robotics and

automation (ICRA).

Huebner, K., S. Ruthotto, and D. Kragic. 2008. "Minimum Volume Bounding Box

Decomposition for Shape Approximation in Robot Grasping." IEEE International

Conference on Robotics and Automation 1628-1633.

53

Ichnowski, J., and R. Alterovitz. 2012. "Parallel sampling-based motion planning with

superlinear speedup." IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). Vilamoura: IEEE. 1206-1212.

Izenman, A. J. 2008. Modern Multivariate Statistical Techniques. New York: Springer.

Jyh-Hwa, T., and K. L. Su. 2008. "The development of the restaurant service mobile robot with

a Laser positioning system." 27th Chinese Control Conference. Kunming: IEEE. 662-

666.

Karaman, S., and E. Frazzoli. 2011. "Sampling-based algorithms for optimal motion planning."

The International Journal of Robotics Research (IJRR) 846-894.

Karmon, I., T. Flash, and S. Edelman. 1996. "Learning to grasp using visual information."

IEEE International Conference on Robotics and Automation. Minneapolis, MN: IEEE.

2470-2476.

Kavraki, L. E., P. Svestka, J. C. Latombe, and M. H. Overmars. 1996. "Probabilistic roadmaps

for path planning in high-dimensional configuration spaces." IEEE Transactions on

Robotics and Automation 566-580.

Khanmohammadi, S., A. Mahdizadeh, and M. T. VakilBaghnlisheh. 2008. "A new technique

for optimizing and smoothing randomized paths." IEEE International Joint Conference

on Neural Networks 1704-1708.

Khatib, O. 1986. "Real Time Obstacle Avoidance for Manipulators and Mobile Robots."

International Journal of Robotics Research (IJRR) 90-98.

Kim, J., and W. Chung. 2013. "Range Sensor-Based Localization of Mobile Robots in Semi-

Structured Environments." 10th International Conference on Ubiquitous Robots and

Ambient Intelligence (URAI). Jeju: IEEE. 219-221.

Kuffner, J., and S. LaValle. 2000. "RRT-Connect: An Efficient Approach to Single-Query Path

Planning." IEEE international conference on robotics and automation (ICRA). 995-

1001.

Latash, M. L., and F. Lestienne. 2006. Motor Control and Learning. New York: Springer US.

Latombe, J. C. 1991. Robot Motion Planning. Botons: Kluwer Academic Publishers.

LaValle. 2006. Planning Algorithms. Cambridge: Cambridge University Press.

—. 1998. "Rapidly-exploring random tree: A new tool for path planning." Computer Science

Dept., Iowa State University. Oct. http://janowiec.cs.iastate.edu/papers/rrt.ps.

Lloyd, S. 1982. "Least squares quantization in PCM." IEEE Transactions on Information

Theory 28: 129-137.

Lumelsky, V. J., and A. Stepanov. 1987. "Path-Planning Strategies for a Point Mobile

Automaton Moving Amidst Unknown Obstacles of Arbitrary Shape." Algorithmmica

403-430.

54

Miao, L., Y. Wenyu, and Z. Xiaoping. 2010. "Projection on Convex Set and Its Application in

Testing Force Closure Properties of Robotic Grasping." Third International Conference

of Intelligent Robotics and Applications (ICIRA). Shanghai, China: Springer. 240-251.

Miller, A. T., S. Knoop, H. I. Christensen, and P. K. Allen. 2003. "Automatic Grasp Planning

Using Shape Primitives." Proc. IEEE Int. Conf. Robotics and Automation (ICRA).

1824-1829.

Prenzel, O., J. Feuser, and A. Graser. 2005. "Rehabilitation Robot in Intelligent Home

Environment - Software Architecture and Implementation of a Distributed System." 9th

International Conference on Rehabilitation Robotics (ICORR). IEEE. 530-535.

Rajaraman, A., and J. Ullman. 2010. Mining of Massive Datasets. Cambridge: Cambridge

University Press.

Reif, J. H. 1979. "Complexity of the mover’s problem and generalizations." Proc. IEEE 20th

Annual Symp. Foundations of Computer Science (SFCS 1979). Washington, DC. 421-

427.

Reshef, R., D. Eizicovits, and S. Berman. 2014. "Path Planning of Grasp-Aimed Robotic Tasks

using Rapid-exploring Random Trees." Robotics and associated High-technologies and

Equipment for Agriculture and forestry (RHEA). Madrid: RHEA.

Roa, M. A., K Herkorn, F. Zacharias, C. Borst, and G. Hirzinger. 2011. "Graspability Map: A

Tool for Evaluating Grasp Capabilities." IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). San Francisco, CA: IEEE. 1768-1774.

Rodriguez, S., T. Xinyu, L. Jyh-Ming, and N. M. Amato. 2006. "An Obstacle-Based Rapidly-

Exploring Random Tree." Proceeding of the 2006 IEEE International Conference on

Robotics and Automation. Orlando, FL: IEEE. 895-900.

Rusu, R.B., and S. Cousins. 2011. "3D is here: Point Cloud Library (PCL)." IEEE International

Conference on Robotics and Automation (ICRA). Shanghai: IEEE. 1-4.

Salzman, O., and D. Halperin. 2013. "Asymptotically near-optimal RRT for fast, high-quality,

motion planning." arXiv.

Saut, J. P., and D. Sidobre. 2012. "Efficient models for grasp planning with a multi-fingered

hand." Robotics and Autonomous Systems 347-357.

Spong, M. W., S. Hutchinson, and M. Vidyasagar. 2005. Robot Modeling and Control. New

York: John Wiley & Sons, Inc.

Takahashi, K., and Y. Mitsukura. 2012. "An Entertainment Robot Based on Head Pose

Estimation and Facial Expression Recognition." Proceedings of SICE Annual

Conference (SICE). Akita: IEEE. 2057-2061.

Urmson, C., and R. Simmons. 2003. "Approaches for heuristically biasing RRT growth."

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE.

1178-1183.

55

Vahrenkamp, N., T. Asfour, and R. Dillmann. 2012. "Simultaneous Grasp and Motion

Planning: Humanoid Robot ARMAR-III." IEEE Robotics & Automation Magazine 19

(2): 43-57.

Van Henten, E. J., B. A. J. Van Tuijl, J. Hemming, J. G. Kornet, J. Bontsema, and E. A. Van

Os. 2003. "Field Test of an Autonomous Cucumber Picking Robot." Biosystems

Engineering 305-313.

Waringo, M., and D. Henrich. 2006. "Efficient Smoothing of Piecewise Linear Paths with

Minimal Deviation." IEEE/RSJ International Conference on Intelligent Robots and

Systems. 3867-3872.

Weghe, M. V., D. Ferguson, and S. S. Srinivasa. 2007. "Randomized Path Planning for

Redundant Manipulators without Inverse Kinematics." 7th IEEE-RAS International

Conference on Humanoid Robots. Pittsburgh, PA. 477-482.

Yershova, A., and S. M. LaValle. 2007. "Improving Motion-Planning Algorithms by Efficient

Nearest-Neighbor Searching." IEEE Transactions on Robotics 151-157.

Zhu, X., and H. Ding. 2004. "Planning foce-closure grasps on 3D objects." Proc. IEEE Int.

Conf. Robotics and Automation. IEEE. 1258-1263.

APPENDIX I – PLANNING CORE AND

SMOOTHING METHOD

It was previously suggested that the performance of the goal-biased RRT and the Bi-

directional RRT differ generally for some applications. Thus, this chapter is dedicated to

evaluation of the performance of the two RRT variations introduced in Section 2.4, to a

modification to the path smoothing algorithm (see Section 2.5), and to a preliminary

experiment we conducted to evaluate two RRT planning alternative versions and the two path

smoothing methods.

A classical path smoothing heuristic based on divide-and-conquer technique was presented

in the previous chapter. A manual inspection of a variety of smoothed solutions by an

implementation of this method (combined with RRT) discovers unpleasing results in terms of

final path length, relative to the best solution can be found by a human eye.

In this section we introduce the triple smoothing, a modified version of the classical path

smoothing, which is based on the same technique but is less-indulgent. The tradeoff between

low computation time and promising a proximity to the optimal solution requires checking a

subset of proposed solutions out of all the possible solutions, and pick the best out of this subset.

We suggest "investing" an additional runtime to check on a wider subset of solutions, in the

following way: if the subset of nodes 𝑉 contains up to 𝑘 (a predetermined constant value)

nodes, check not only the two subsets that result from splitting V into two halves, but also the

two subsets that result from shifting the split one node to the right, and also the two subsets

that result from shifting the split one node to the left, in 𝑉. The pseudo-code for the modified

version is presented in Figure 34.

Figure 34 – Pseudo code for the triple smoothing method

We constructed an experiment to evaluate two variations of the RRT algorithm: a goal-

biased version and bi-directional expanding version. We have combined those two versions

each with two path smoothing algorithms, one at a time: the classical path smoothing method

taken from (Carpin and Pillonetto 2005), and our triple path smoothing method from the

previous sub-chapter.

The test involved designing obstacles maps, and executing each of the algorithms trying to

solve them, i.e. provide feasible paths according to maps specifications. The manipulator used

was a rigid 2D robotic arm with 3 links and 3 degrees of freedom. Constant initial configuration

and goal configuration were chosen for each map, such that a feasible path that connected the

two existed.

Maps created consisted of 4 different variations for each level of complexity – Low (Figure

35), Medium (Figure 36), and High (Figure 37), a total of 12 maps. These maps were

implemented as 1000x1000 matrices of bits, indicating 0 where a free pixel lies in space and 1

𝑻𝑹𝑰𝑷𝑳𝑬_𝑺𝑴𝑶𝑶𝑻𝑯(𝑽, 𝒇𝒊𝒓𝒔𝒕, 𝒍𝒂𝒔𝒕, 𝑺)
 1. 𝑖𝑓 (𝑓𝑖𝑟𝑠𝑡 = 𝑙𝑎𝑠𝑡) 𝑡ℎ𝑒𝑛
 1.1. 𝑆. 𝑝𝑢𝑠ℎ𝑏𝑎𝑐𝑘(𝑉[𝑓𝑖𝑟𝑠𝑡])
 2. 𝑒𝑙𝑠𝑒 𝑖𝑓 (𝑓𝑖𝑟𝑠𝑡 = 𝑙𝑎𝑠𝑡 − 1) 𝑡ℎ𝑒𝑛

 2.1. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑓𝑖𝑟𝑠𝑡])
 2.2. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑙𝑎𝑠𝑡])

 3. 𝑒𝑙𝑠𝑒 𝑖𝑓
𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑛𝑔 𝑉[𝑓𝑖𝑟𝑠𝑡]

𝑎𝑛𝑑 𝑉[𝑙𝑎𝑠𝑡] 𝑙𝑖𝑒𝑠 𝑒𝑛𝑡𝑖𝑟𝑒𝑙𝑦 𝑖𝑛 𝐶𝑓𝑟𝑒𝑒
 𝑡ℎ𝑒𝑛

 3.1. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑓𝑖𝑟𝑠𝑡])
 3.2. 𝑆. 𝑝𝑢𝑐ℎ𝑏𝑎𝑐𝑘(𝑉[𝑙𝑎𝑠𝑡])
 4. 𝑒𝑙𝑠𝑒
 4.1. 𝑇𝑅𝐼𝑃𝐿𝐸_𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, 𝑓𝑖𝑟𝑠𝑡, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2, 𝑆𝑀𝑖𝑑𝑑𝑙𝑒)

 4.2. 𝑇𝑅𝐼𝑃𝐿𝐸_𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2, 𝑙𝑎𝑠𝑡, 𝑆𝑀𝑖𝑑𝑑𝑙𝑒)
 4.3. 𝑖𝑓 (|𝑉| < 𝑘) 𝑡ℎ𝑒𝑛

 4.3.1. 𝑇𝑅𝐼𝑃𝐿𝐸_𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, 𝑓𝑖𝑟𝑠𝑡, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2 − 𝟏, 𝑺𝑺𝒉𝒊𝒇𝒕𝑳𝒆𝒇𝒕)

 4.3.2. 𝑇𝑅𝐼𝑃𝐿𝐸_𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2 − 𝟏, 𝑙𝑎𝑠𝑡, 𝑺𝑺𝒉𝒊𝒇𝒕𝑳𝒆𝒇𝒕)

 4.3.3. 𝑇𝑅𝐼𝑃𝐿𝐸_𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, 𝑓𝑖𝑟𝑠𝑡, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2 + 𝟏, 𝑺𝑺𝒉𝒊𝒇𝒕𝑹𝒊𝒈𝒉𝒕)

 4.3.4. 𝑇𝑅𝐼𝑃𝐿𝐸_𝑆𝑀𝑂𝑂𝑇𝐻(𝑉, (𝑓𝑖𝑟𝑠𝑡 + 𝑙𝑎𝑠𝑡)/2 + 𝟏, 𝑙𝑎𝑠𝑡, 𝑺𝑺𝒉𝒊𝒇𝒕𝑹𝒊𝒈𝒉𝒕)

 4.3.5. 𝑆 ← 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑒𝑡 𝑓𝑟𝑜𝑚 {𝑺𝑴𝒊𝒅𝒅𝒍𝒆, 𝑺𝑺𝒉𝒊𝒇𝒕𝑳𝒆𝒇𝒕, 𝑺𝑺𝒉𝒊𝒇𝒕𝑹𝒊𝒈𝒉𝒕}

𝑤ℎ𝑜𝑠𝑒 𝑠𝑖𝑧𝑒 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡

 4.4. 𝑒𝑙𝑠𝑒

 4.4.1. 𝑆 ← 𝑺𝑴𝒊𝒅𝒅𝒍𝒆

where a pixel is part of an obstacle. Obstacles shapes were chosen to be rectangular, and

complexity levels were defined by the density of the obstacles in the map.

We have used a PC machine equipped with an Intel i7-3770K 3.5 GHz processor (CPU) and

16GB installed memory (RAM), running on Windows 8 (64-bit). The development and

execution of the experiment was done using MATLAB (Version 2011a, Mathworks, USA) and

analysis was done using IBM SPSS Statistics (Version 19, IBM, USA).

The code included a main function which received a map implementation (matrix of bits) as

input and called the other modules, e.g. Extend, Connect, Path-Smoothing, and more.

(1) (2) (3) (4)

Figure 35 - Low obstacles density maps (1-4).

Solid black lines indicate the robot at its initial configuration,

dashed red lines indicate the robot at its goal configuration.

(5) (6) (7) (8)

Figure 36 - Medium obstacles density maps (5-8)

Solid black lines indicate the robot at its initial configuration,

dashed red lines indicate the robot at its goal configuration.

Figure 37 - High obstacles density maps (9-12)

Solid black lines indicate the robot at its initial configuration,

dashed red lines indicate the robot at its goal configuration.

(9) (11)(10) (12)

The two versions of the RRT algorithm required setting a resolution parameter 𝜖 for the step

size in each expansion of the tree. The tradeoff here is between low resolution value (higher 𝜖),

which will result in shorter computation time but can provide an incorrect solution where the

middle of a robot link is colliding with an obstacle, and high resolution value (lower 𝜖), which

will more likely to guarantee a truly collision-free path, but will lead to higher computation

time. Preliminary runs were executed in order to determine an appropriate value for this

parameter. A value of 𝜖 = 10 successfully produced collision-free solutions on a 1000x1000

pixel maps, and was high enough to provide short computation time solutions.

The goal-biased version required setting another parameter: the K parameter, defined as the

rate of biasing the tree towards the target (so that the tree is biased towards target configuration

with the probability of K). By manually exploring several values for K, and in accordance to

literature (Urmson and Simmons 2003), we set it to be 10%.

Finally, a total of 4 possible combinations existed (two RRT versions and two path

smoothing methods). For each combination, we ran the simulation 10 times per each one of

our 12 pre-generated environment maps. This resulted in a total of 480 independent

observations.

The analysis was based on 7 measures divided into two categories: computation (efficiency)

and quality. The computation category included all the measures related to the memory

consumption, computation time, and computational burden, and the quality category included

measures related to the quality of the solution found, such as its length and the angles the joints

must travel to execute it. All measures were averaged per each level of density of the obstacles.

We focused on both computational time and path quality because together they both affect the

total path execution time, i.e., the time passes from the moment the problem has been full

specified until the arm’s motion is completed. The tradeoff between low computation time and

the quality of the resulted path shows the complexity of defining the best version of the

algorithm and tuning its parameters.

Computation measures are as follows:

 Success Rate – The proportion of successful planning runs:

 𝑆𝑈𝐶𝐶𝐸𝑆_𝑅𝐴𝑇𝐸 =
∑ 𝑆j

𝑁
𝑗=0

𝑁
 (10)

Where 𝑆j = 1 when the jth run terminated successfully (i.e. with a valid path) and 𝑆j = 0

otherwise, N is the total number of trials.

 Planning Time (PT)4 –The average time recorded from beginning of the planning

computation of a run until a solution is found:

 𝑃𝑇 =
∑ 𝑡𝑗

𝑁
𝑗=0

𝑁
 (11)

Where 𝑡j is the planning time for run 𝑗, N is the total number of trials.

 Nodes45 – The average number of nodes in the final RRT tree.

 Iterations45 - The average number of iterations performed per run.

 CDs45 – The average number of collision detection calls (the most resource-consuming

function) per run.

Path quality measures are as follows:

 Path’s Index of Curvature (𝑷𝑰𝑪)46 – The Index of Curvature is used to estimate path

straightness. It is a normalized measure of the line-of-sight of the path by its length, thus

ranging in (0,1]. 𝑃𝐼𝐶 is an index of path curvature in the arm’s configuration space using

Euclidean distance measure. A highly convoluted path in the configuration space

provides a low value (ineffective in terms of total path length and/or syncing the joints

movements) and the line-of-sight itself provides value of 1. 𝑃𝐼𝐶 can be formulated as:

 𝑃𝐼𝐶 =
∑ (𝑥1,𝑗 − 𝑥𝑉,𝑗)

2𝐽
𝑗=1

∑ √∑ (𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗)
2𝐽

𝑗=0
𝑉
𝑖=2

 (12)

Where: 𝑥𝑖,𝑗 (deg.) is the ith vertex’s position in the jth dimension of the configuration

space, V is the total number of vertices in the path, and J is the total number of joints

(dimensions of the configurations space).

 Joint-Angles Index of Curvature (𝑱𝑨𝑰𝑪)46 – 𝐽𝐴𝐼𝐶 is an index of path curvature in the

arm’s configuration space using city-block distance measure. It represents the sum the

total length travelled (in degrees) in all of the robot’s joints. 𝐽𝐴𝐼𝐶 can be formulated as:

 𝐽𝐴𝐼𝐶 =
∑ |𝑥1,𝑗 − 𝑥𝑉,𝑗|

𝐽
𝑗=1

∑ ∑ |𝑥𝑖−1,𝑗 − 𝑥𝑖,𝑗|
𝐽
𝑗=0

𝑉
𝑖=2

 (13)

Where: 𝑥𝑖,𝑗 (deg.) is the ith vertex’s position in the jth dimension of the configuration

space, V is the total number of vertices in the path, and J is the total number of joints

(dimensions of the configurations space).

4 Calculation is based on successful trials only
5 Based on (Rodriguez, et al. 2006)
6 Based on (Archambault, et al. 1999)

According to measures from the last section, the analyses goal was to compare the

performance of the two RRT variations and the two smoothing methods. We analyzed usability,

paths quality and computation time.

Differences in success rates of the RRT versions were analyzed using a t-test for

proportions with success rate as the dependent factor and the planning algorithm (e.g. goal-

biased RRT and bi-directional RRT) as independent factor, to determine an algorithm's level

of usability. An algorithm with a low success rate is not applicable as it is suspected to lack the

ability to deal with some of the different problem-environments.

Path quality measures (𝑃𝐼𝐶 and 𝐽𝐴𝐼𝐶) were analyzed using two analyses of variance

(ANOVA) models with the quality measure as the dependent factor, map’s levels of density

(1-3), planning algorithm (e.g. goal-biased RRT and bi-directional RRT) and path smoothing

method (e.g. classical smoothing and triple smoothing) as independent factors. Unsuccessful

runs were dropped out, as path quality can only be computed for successful runs.

Path planning computation time was analyzed using generalized linear regression (GLM)

model with gamma link function due to dependent factor’s (planning time) non-negative values

and right-tail. Independent factors were map’s levels of density (1-3) and planning algorithm

(e.g. goal-biased RRT and bi-directional RRT). Unsuccessful runs were ignored in this test.

Path smoothing marginal time was analyzed conducting 2 analyses of covariance

(ANCOVA) with planning time as the dependent factor, map’s levels of density (1-3) and path

smoothing method (e.g. classical smoothing and triple smoothing) as independent factors,

collision detection (CD) calls count (RRT only) as a covariant. CD count is a factor of great

influence on path planning time of the RRT algorithms. The experiment's results dataset was

divided into 2 dataset, one per each RRT algorithm version, and the analyses were conducted

on each one of them separately. This split was done so the model could evaluate the covariate's

value differently for each RRT algorithm version, based on the difference of using CD calls

between the two RRT algorithm versions. Unsuccessful runs were ignored in this test.

First, we visualized and explored the experiment’s results. By analyzing the behavior of the

different measures under all the different conditions, we have discovered that map 6 is

dissimilar to other maps when it comes to comparing the behavior of the two RRT versions.

As it can be seen in Figure 38, while exploring JAIC measure () we found that both goal-

biased and bi-directional versions behave similarly in all the levels of obstacle density in the

maps except in Map 6. In map 6, the bi-directional RRT produced paths of higher quality

(shorter paths in the configuration space).

Following that, we ran another simulation of the two RRT algorithms, with 20 repetitions

with map 6 (twice as much as we ran in the primary simulation). Figure 39 shows a

visualization of the results in the configuration space where an approximation of infeasible

(collision) configurations are visualized in grey near the goal configuration only. The red

paths are the ones that resulted by running the goal-biased RRT while the blue paths are the

ones that resulted by running the bi-directional RRT.

Figure 40 and Figure 41 show a visualization of the results of maps 10 and 12 from the

original simulation. While the majority of the results of both algorithms behave more or less

the same in the control group (i.e. map 10 and map 12), the results of the two RRT versions in

the 6th are generally clustered into two groups by the algorithm version.

Tr

iple

Class

ical

Figure 38 - JAICe results grouped by Smoothing method, RRT Algorithm and Map Index

A feasible explanation to this behavior is

discussed in (LaValle 2006) where a "bug trap"

obstacle environment is shown. Abstract version

(2D) of such environments is presented in Figure

42. Map #6 is suspected to contain a narrow

passage in the configuration space that causes this

problem to be much easier to solve by a bi-

directional tree exploration heuristic than by the

goal-biased exploration. This particular

environment constitutes an exceptional case

which is out of the scope of this research. It therefore was left out of it and was removed from

our analysis dataset.

Figure 39 - Visualization of

results in the configuration

space (map 6)

Figure 40 - Visualization of

results in the configuration

space (map 10)

Figure 41 - Visualization of

results in the configuration

space (map 12)

Figure 42 - A "Bug trap" problem solved

by a bi-directional RRT algorithm.

 Success rate analysis shows a significant

difference among the two RRT versions

(𝑃𝑣𝑎𝑙𝑢𝑒<0.01). The bi-directional RRT version

produced a higher rate of successful results (100%)

than the goal-biased RRT version (93%). Figure 43

and Table 1 present the success rate of the two RRT

versions. Appendix II shows the results of the t-test

for equality of the success rates. We found those

results of great significance, as we desire in an

algorithm that is able to perfectly cope with all

environments and result in a feasible path, assuming

such exists.

Table 4 - Success Rate by Algorithm

Path quality was measured using two measures: Path’s Index of Curvature (𝑃𝐼𝐶) and Joint-

Angles Index of Curvature (𝐽𝐴𝐼𝐶), both produced similar results. RRT version and smoothing

method did not significantly affect neither one of the path quality measures.

Group Statistics

 Algorithm N Mean Std. Deviation

Success

Rate [%]

Goal-Biased 220 .93 .253

Bi-Directional 220 1.00 .000

JAIC – Descriptive Statistics

Combination Level Mean
Std.

Deviation

Goal Biased

RRT +

Classical

Smoothing

1 .682 .158

2 .578 .213

3 .716 .277

Total .666 .207

Goal Biased

RRT + Triple

Smoothing

1 .741 .166

2 .591 .211

3 .744 .292

Total .702 .219

Bi-

Directional

RRT +

Classical

Smoothing

1 .702 .152

2 .670 .252

3 .663 .248

Total .682 .158

Bi-

Directional

RRT + Triple

Smoothing

1 .579 .213

2 .716 .277

3 .666 .207

Total .742 .166

PIC – Descriptive Statistics

Combination Level Mean
Std.

Deviation

Goal Biased

RRT +

Classical

Smoothing

1 .610 .145

2 .511 .180

3 .631 .214

Total .591 .171

Goal Biased

RRT + Triple

Smoothing

1 .660 .155

2 .526 .184

3 .650 .235

Total .620 .185

Bi-

Directional

RRT +

Classical

Smoothing

1 .636 .147

2 .602 .227

3 .591 .201

Total .61 .172

Bi-

Directional

RRT + Triple

Smoothing

1 .704 .149

2 .532 .143

3 .614 .225

Total .624 .176

Figure 43 - Average Success

rate by algorithm (bar chart).

Error bar of 95% confidence

level are layered on top of the

bars

Goal biased Bi-directional

Table 5 - PIC by RRT

Version, Smoothing Method

Table 6 - JAIC by RRT

Version, Smoothing Method

 Table 5 and Table 6 show the performance

of the different RRT versions and smoothing

methods combinations in terms

of 𝑃𝐼𝐶 and 𝐽𝐴𝐼𝐶, respectivly. Appendix I

shows the results of the ANOVA for

𝑃𝐼𝐶 and 𝐽𝐴𝐼𝐶.

In the Path planning computation time

analysis, the bi-directional RRT was found

significantly less time consuming than the

goal biased RRT, among all levels of

obstacles density (𝑃𝑣𝑎𝑙𝑢𝑒 < 0.001). There

was also a significant interaction between

Algorithm*Level (𝑃𝑣𝑎𝑙𝑢𝑒 < 0.001), this

means that the algorithm factor affects the

planning time measure differently on

different levels of obstacles density. In the lowest level of obstacles density, the mean planning

time the goal-biased RRT is about 4.4 times longer/shorter than the mean planning time of the

bi-directional RRT. This rate increases with the level of maps complexity, and reaches over 20

in the highest level tested.

Figure 44 and Table 7 present the effects of the different RRT algorithm versions on

planning times. Error bar of 95% confidence level are layered on top of the bars. Appendix I

presents the results of the GLM for planning time by RRT version.

Table 7 - Average Planning Time by RRT version

Planning Time [sec.]

Level of

complexity
Algorithm Mean N

Std.

Deviation

1 (Low)

Goal-Biased 2.359 80 2.221

Bi-

Directional
0.535 80 0.384

2 (Medium)

Goal-Biased 14.482 60 14.779

Bi-

Directional
1.116 60 0.644

3 (High)

Goal-Biased 32.879 65 28.423

Bi-

Directional
1.317 80 0.830

Figure 44 - Average planning time by

Algorithm, Level of Complexity

Analysis of path smoothing

computation time for the goal-biased

RRT version showed no significant

difference for path smoothing marginal

planning times (PT) between the two path

smoothing methods.

 Figure 45 and Table 8 present the effects

of the different smoothing methods on

planning times. Error bar of 95% confidence

level are layered on top of the lines.

Appendix I presents the results of the

ANCOVA for planning times by path

smoothing methods.

 Table 8 - Estimated marginal planning time of path smoothing for goal-biased RRT solutions

(Estimated Marginal) Planning Time [sec.]

Smoothin

g
Level Mean

Std.

Error

95% Confidence Interval

Lower

Bound
Upper Bound

Classical

1 17.366 0.521 16.338 18.394

2 14.032 0.560 12.927 15.136

3 14.475 0.656 13.181 15.769

Triple

1 17.231 0.519 16.206 18.255

2 14.098 0.560 12.993 15.202

3 15.224 0.534 14.170 16.277

Figure 45 - Estimated Marginal Planning

Time of path smoothing for goal-biased

RRT solutions, by path smoothing method

 Analysis of path smoothing computation time

for the bi-directional RRT version showed a

significant difference for Path Smoothing Marginal

PT between the two path smoothing methods in all

levels (𝑃𝑣𝑎𝑙𝑢𝑒 < 0.001), based on the Bi-

Directional RRT version results dataset. The

interaction 𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 ∗ 𝐿𝑒𝑣𝑒𝑙 wasn’t

significant, therefore we conclude that the

difference exists in all levels equally. The effects of

the different smoothing methods on planning times

are shown in Figure 45 and Table 9. Appendix I

presents the results of the ANCOVA for planning

times by path smoothing methods.

 Table 9 - Estimated marginal planning time of path smoothing for bi-directional RRT

solutions

The purpose of the simulation was to evaluate the alternatives for RRT path planning

versions and path smoothing methods. Results show a clear and meaningful distinction between

the two RRT versions in both success rate and planning time measures. The bi-directional RRT

has a 100% success rate in all levels of obstacles density, as well as with a reduction in

average planning time ranging from 77% (in the lower level of obstacles density) to 96% (in

the higher level of obstacles density). However, path quality did not significantly differ

between the two methods.

Literature suggests that the bi-directional version is more robust and capable of handling

"bug traps" and similar problems that the single-tree goal-biased is having hard times handling

with. We suspected map 6 was such a problem and therefore removed it from the statistical

analysis, not to bias result due to a special case. Still, this case brings an additional support for

the results of the statistical analysis we conducted, which show that the bi-directional RRT

version achieves a superior performance over its opponent.

In the analysis of the two path smoothing methods, results show a high significance for the

difference between the two smoothing methods (𝑃𝑣𝑎𝑙𝑢𝑒<0.001). Although the triple smoothing

method examines a wider set of solutions in each iteration, it requires lower planning time on

(Estimated Marginal) Planning Time [sec.]

Smoothing Level Mean
Std.

Error

95% Confidence Interval

Lower

Bound

Upper

Bound

Classical

1 1.001 0.016 0.970 1.031

2 0.980 0.017 0.946 1.013

3 1.021 0.015 0.991 1.051

Triple

1 0.963 0.015 0.933 0.993

2 0.948 0.017 0.914 0.982

3 0.950 0.015 0.920 0.981

Figure 46 - Estimated Marginal

Planning Time of path smoothing for bi-

directional RRT solutions

average when applied to a solution generated by the bi-directional RRT algorithm (its average

planning times are 3%-7% lower than the classical smoothing method). We assume that by

examining a wider set of solutions in every iteration, the convergence towards the final result

happens with less iterations, and is therefore faster. However, the same effect wasn’t found in

the solutions generated by the goal-biased version. In addition path quality did not differ

between the methods.

Given that the bi-directional RRT was previously found to be superior to the goal-biased

RRT, the triple smoothing method also turns out to be preferred over the classical path

smoothing method, due to the reduction in average planning time when combined with the bi-

directional RRT. Although planning time reduction caused by the Triple Smoothing method

seems to be negligible when considering total planning time (average of 0.05 seconds), we

expect it to increase when executing path smoothing on paths generated in a higher dimension

C-Space due to a significant increase in the original number of nodes per solution.

In conclusion, the best alternative to the presented application of triple-linked robot arm is

the combination of bi-directional RRT path generating algorithm and the triple smoothing

method. The latter is also integrated into a planning algorithm for harvest of peppers (Bac, et

al. 2014) in a joint work with researchers from Wageningen University and Research Centre,

Holland.

The following tables present additional results of the statistical analysis in the preliminary

experiment. Analyzed measures include: success rate (Table 10), path length measures (Table

11, Table 12), planning time (Table 13), and path-smoothing marginal planning time (Table

14,Table 15).

Table 10 - T-test results for Success Rate

Success Rate

Levene's Test for

Equality of Variances

t-test for Equality of

Means

95% Confidence

Interval of the

Difference

 F t

Mean

Difference

(Std. Error)

Lowe

r
Upper

Equal variances

assumed

74.618

-4.003

-0.068

(0.017)***
-.102 -.035

Equal variances

not assumed
 -4.003

-0.068

(0.017)***
-.102 -.035

*** p<0.001 ** p<0.01 * p<0.05

Table 11 - ANOVA results for PIC

 Table 12 - ANOVA results for JAIC

PIC (Tests of Between-Subjects Effects)

Type III

Sum of

Squares

Df
Mean

Square
F

Corrected Model 1.241 11 .113 2.427

Intercept 151.590 1 151.590 3262.772***

Level 0.830 2 .415 8.928***

Algorithm 0.048 1 .048 1.029

Smoothing 0.055 1 .055 1.178

Level * Algorithm 0.092 2 .046 .992

Level * Smoothing 0.132 2 .066 1.424

Algorithm * Smoothing 0.026 1 .026 .561

Level * Algorithm *

Smoothing

0.046 2 .023 .496

Error 19.188 413 .046

Total 177.576 425

Corrected Total 20.429 424

JAIC (Tests of Between-Subjects Effects)

Type III

Sum of

Squares

Df
Mean

Square
F

Corrected Model 1.487 11 0.135 2.209

Intercept 191.426 1 191.426 3127.769***

Level 0.962 2 0.481 7.860***

Algorithm 0.048 1 0.048 0.779

Smoothing 0.115 1 0.115 1.882

Level * Algorithm 0.082 2 0.041 0.671

Level * Smoothing 0.185 2 0.093 1.513

Algorithm * Smoothing 0.021 1 0.021 0.348

Level * Algorithm *

Smoothing

0.046 2 0.023 0.377

Error 25.276 413 0.061

Total 225.170 425

Corrected Total 26.763 424

*** p<0.001 ** p<0.01 * p<0.05

*** p<0.001 ** p<0.01 * p<0.05

Table 13 - GLM for planning time

Table 14 - ANOVA results for Marginal Smoothing Planning Time (Goal-Biased RRT)

Total Planning Time

Fixed Effects

Coef.

(Standard

Error)

95% Confidence Interval

for Planning-Time Ratio

Lower

Bound

Upper

Bound

Intercept [sec.]
0.858

(0.095)***
0.672 1.045

Level = 2
1.815

(0.145)***
1.530 2.100

Level = 3
2.634

(0.142)***
2.356 2.913

Algorithm = Bi-Directional
-1.483

(0.134)***
-1.747 -1.219

[Level = 2] * [Algorithm =

GR-RRT]

-1.734

(0.195)***
-2.118 -1.351

[Level = 3] * [Algorithm =

GR-RRT]

-1.080

(0.205)***
-1.483 -0.677

Marginal Smoothing Planning Time (Goal-Biased RRT)

Type III

Sum of

Squares

Df
Mean

Square
F

Corrected Model 96627.686 6 16104.614 1712.192***

Intercept 1123.362 1 1123.362 119.432***

CDs (covariate) 58918.608 1 58918.608 6264.043***

Smoothing 2.527 1 2.527 0.269

Level 319.492 2 159.746 16.984***

Smoothing * Level 7.010 2 3.505 0.373

Error 1862.357 198 9.406

Total 148280.092 205

Corrected Total 98490.043 204

*** p<0.001 ** p<0.01 * p<0.05

*** p<0.001 ** p<0.01 * p<0.05

Table 15 - ANOVA results for Marginal Smoothing Planning Time (Bi-Directional RRT)

Marginal Smoothing Planning Time (Bi-Directional RRT)

Type III

Sum of

Squares

Df
Mean

Square
F

Corrected Model 114.758 6 19.126 2185.143***

Intercept 0.001 1 0.001 0.061

CDs (covariate) 87.491 1 87.491 9995.596***

Smoothing 0.116 1 0.116 13.211***

Level 0.018 2 0.009 1.004

Smoothing * Level 0.016 2 0.008 0.922

Error 1.864 213 0.009

Total 327.177 220

Corrected Total 116.623 219

*** p<0.001 ** p<0.01 * p<0.05

APPENDIX II - EXPERIMENT: SINGLE-GR

SCHEME (SELECTIVE APPLE

HARVESTING)

This experiment was designed to evaluate the performance of GR-RRT framework for

planning toward simple objects which require a single GR scheme. A simulated environment

that resembles a selective harvest of apples was created and used for the experiment. The

performance of GR-RRT was compared to the IKBiRRT algorithm. As GR-RRT uses a prior

knowledge of object graspability for planning, IKBiRRT variations are augmented only with

the object’s structural data, i.e. its shape and size. To facilitate planning toward a grasp of the

object while exploiting its structural data alone, two variations of IKBiRRT were used, each

incorporated a different automatically-generated WGR:

 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔– Based on a WGR whose XYZ dimensions bounds were defined

by the box that bounds the apple's surface (Figure 47).

 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑒𝑑– Based on a WGR whose XYZ boundaries were defined by the

box bounded by the apple's surface (Figure 48).

In both cases the ranges of the orientation angles were [0,2𝜋].

Figure 47 - Minimum volume

bounding box for apple object
Figure 48 - Maximum volume

bounded box inside apple object

We have used a PC machine equipped with an Intel i7-3770K 3.5 GHz processor (CPU) and

32GB installed memory (RAM), running on Windows 8.1 (64-bit). The development and

execution of the experiment was done using MATLAB (Version 2011a, Mathworks, USA) and

analysis was done using IBM SPSS Statistics (Version 19, IBM, USA).

A virtual environment of size 300x300x200 was created for the experiment. It was populated

with four instances of artificial trees of size 88x108x180 each (Figure 49), at fixed positions.

The manipulator was modelled as a 6-DOF robotic arm (Figure 51) and was positioned in a

fixed initial position. Its Denavit-Hartenberg (DH) convention is detailed in Table 16. The

apple target-object was modelled as a sphere with radius of size 4 (Figure 50), and was

positioned in six different positions which defined 3 levels of reachability: simple (Figure 52),

moderate (Figure 53) and difficult to reach (Figure 54). In each scenario, 100 paths were

planned from the initial position towards the apple using each of the three algorithms, and the

triple smoothing method (see Appendix I) was applied to each.

Figure 49 - A tree object used

in simulation
Figure 50 - An apple spherical

model used in simulation

Table 16 – Denavit-Hartenberg convention

of the manipulator used in simulation

Link 𝒂𝒊 α di 𝜽𝒊

1 0 −𝜋/2 50 𝜽𝟏

2 60 0 0 𝜽𝟐

3 60 −𝜋/2 0 𝜽𝟑 − 𝜋/2

4 0 𝜋/2 0 𝜽𝟒

5 0 −𝜋/2 0 𝜽𝟓

6 0 0 50 𝜽𝟔

Figure 52 – Illustration of the

environment where the apple is simply

reachable (location-id #1)

Figure 53 – Illustration of the

environment where the apple is

moderately reachable (location-id #4)

Figure 54 – Illustration of

the environment where the

apple is hardly reachable

(location-id #6)

Figure 51 – The 6-DOF manipulator used in

simulation.

Algorithm performance was compared in terms of computation time and planning quality.

The latter was quantified based on 3 measures: path success, i.e. if a path was found before

the algorithm terminated then path success was determined as one (zero otherwise), path

length of the planned path in the configuration space, and grasp success, i.e., if the path ended

with a grasp-pose for which grasp quality was above 0.7 grasp success was determined as one

(zero otherwise).

Path success analysis didn’t require any statistical model due to identical results among all

variations. Computation time and path length were analyzed using a generalized linear mixed

model with a gamma link-function. A gamma link function was used as the distribution of both

measures contained a long right-tail and non-negative values. The initial model included two

predictors: reachability level (simple, moderate, difficult to reach), and algorithm (GR-

RRT, 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 , and 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔), and Object-location-id as a random

effect. Grasp success was analyzed using a logistic regression mixed model with two

predictors: reachability level (simple, moderate, difficult to reach), and algorithm (GR-

RRT, 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 , and 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔), and Object-location-id as a random

effect.

In the a-priori learning of GR-RRT, a graspability map was constructed for the apple object

(Figure 55). Based on this map, TCP positions were extracted. Grasps were filtered with a

threshold of 0.7 grasp-quality, so the set of successful grasps included a total of 8504 gripper

poses (out of 33,240), which were bounded by a single axes-aligned minimum-volume box

(Figure 56). GMM inference produced 5 Gaussian components (Figure 57).

All three algorithms had a path-planning success of 100% with the applied planning

limitation of maximum 50,000 iterations per execution.

For grasp success, apple’s location-id (random effect), reachability, and the interactions

between the predictors, were found non-significant and thus they were removed from the

model. The final model included only algorithm (Table 17). Using GR-RRT, grasp success

odds are 90 times higher (7.957) than when using 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑒𝑑 and 500 times higher than

when using 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 .

Table 17 - Logistic regression results for Grasp Success

Grasp Success

Fixed Effects

Coef

(Standard

Error)

95% Confidence Interval for Odds ratio

Lower

Bound

Odds

Ratio
Upper Bound

Intercept
2.074

(0.130)***
[6.170] [7.957] [10.256]

Algorithm=

 𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒆𝒅

-4.539

(0.200)***
0.7% 1.1% 1.6%

Algorithm=

𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒊𝒏𝒈
-6.258

(0.360)***
0.1% 0.2% 0.4%

Figure 55 – Visualization of the graspability map

produced for the apple object
Figure 56 – Extracted TCP

positions of successful grasps

(green) for apple with GR

boundaries

Figure 57 – Visualization of the 6D GMM of an apple object.

The figure is divided into TCP position coordinates (left) and TCP orientation angles

(right). Successful grasps are marked in green and bad grasps are marked in red.

Ellipsoids represent 95% confidence intervals for the 5 Gaussian components of the

GMM.

*** p<0.001 ** p<0.01 * p<0.05

For computation time, the apple’s location-id (random effect), and the interactions were

found non-significant and thus were removed from the model. The final model included the

reachability level and algorithm. Results indicated that there is no significant difference

between GR-RRT and 𝐼𝐾𝐵𝑖𝑅𝑅𝑇|𝐵𝑜𝑢𝑛𝑑𝑒𝑑 . Yet, IKBiRRT|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔 produced 18% lower than

GR-RRT (Table 18).

Table 18 - Generalized linear regression results for Planning Time

For path length, the apple’s location-id (random effect) was found to be non-significant and

was thus removed from the model. Algorithm was also found to be non-significant but as

interactions were significant it was retained in the model. Results (Table 19) indicated that that

the algorithms significantly differ only for difficult-to-reach targets. For this reachability level,

on average IKBiRRT|𝐵𝑜𝑢𝑛𝑑𝑒𝑑 produces a path that is 20% shorter and IKBiRRT|𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔

produces a path that is 16% shorter than GR-RRT.

Planning Time

Fixed Effects

Coef.

(Standard

Error)

95% Confidence Interval for Planning-Time Ratio

Lower

Bound
exp(Coef.) Upper Bound

Intercept [sec.]

3.264

(0.239)*

**

[16.36] [26.154] [41.84]

Level=1

-2.862

(0.335)*

**

2.95% 5.72% 11.02%

Level=2

-2.093

(0.335)*

**

6.38% 12.33% 23.78%

Algorithm=

 𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒆𝒅

-0.082

(0.058)
82.12% 92.13% 103.25%

Algorithm=

𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒊𝒏𝒈

-0.202

(0.058)*

**

72.83% 81.71% 91.58%

*** p<0.001 ** p<0.01 * p<0.05

Table 19 - Generalized linear regression results for Path Length

Path Length [∆deg.]

Fixed Effects

Coef.

(Standard

Error)

95% Confidence Interval for Planning-Time

Ratio

Lower Bound exp(Coef.) Upper Bound

Intercept
4.943

(0.217)***
[74.19] [140.19] [214.65]

Level=2
0.737

(0.307)*
114.45% 208.96% 381.90%

Level=3
1.218

(0.307)***
184.96% 338.04% 617.16%

Algorithm=

𝐈𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒆𝒅

0.040

(0.048)
97.74% 104.08% 114.23%

Algorithm=

𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒊𝒏𝒈

0.006

(0.048)
91.67% 100.60% 110.52%

[Level=2] ∙
[Algorithm=

 𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒆𝒅]

-0.039

(0.067)
84.28% 96.18% 109.86%

[Level=2] ∙
[Algorithm=

𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒊𝒏𝒈]

-0.014

(0.067)
86.42% 98.61% 112.52%

[Level=3] ∙
[Algorithm=

𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒆𝒅]

-0.223

(0.067)**
70.18% 80.01% 91.39%

[Level=3] ∙
[Algorithm=

𝑰𝑲𝑩𝒊𝑹𝑹𝑻|𝑩𝒐𝒖𝒏𝒅𝒊𝒏𝒈]

-0.179

(0.067)**
73.27% 83.61% 95.50%

*** p<0.001 ** p<0.01 * p<0.05

APPENDIX III – GRASPABILITY MAPS

The following figure (Figure 58) illustrates graspability maps for apple (symmetrical

sphere), mug and pan objects, which store data regarding grasps generated in simulation,

including their matching grasp quality measure.

Figure 58 – Graspability maps visualizations of all objects used in this work

(a) apple, (b-c) mug, (d-e) pan

(a)

(c) (b)

-10
-5

0
5

10

-10

-5

0

5

10
-5

0

5

Y

X

Z

(d)

-10
-5

0

5

10

-10

-5

0

5

10

-5

0

5

XY

Z

(e)

 תקציר

 Grasp-Regions Rapid-exploring Random Trees זה מציג את אלגוריתםמחקר

(GR-RRT) , אחיזה)-עד-חדשני לתכנון אוטומטי של משימות הגעהשהינו אלגוריתםreach-

to-grasp .בו מחשבים מורכב משני שלבים: שלב הכנה הזאלגוריתם (עבור יישומים רובוטיים

מכילים מיקומי תפסנית)כיוון ומיקום(אחיזות ה. אזורי מסלולושלב תכנון את אזורי האחיזה

שלב זה מתבסס אישכול בעזרת אלגוריתם תיבות חוסמות וצלחת. הצפויים להוביל לאחיזה מ

(ולמידה סטטיסטית של אזורים minimum volume bounding boxesבעל נפח מינימאלי)

 multivariateבעלי אחיזות איכותיות בעזרת מודל תערובת התפלגויות גאוסיאנית רב ממדיות

Gaussian mixture model (multivariate GMM) תכנון המסלול. ל השימוש במפות אחיזהוע

אשר משתמשת במודל הסטטיסטי RRT-גרסה מותאמת של אלגוריתם הבעזרת נעשה

ובד בבד מטה את המסלול מיקומים מהם צפויה הצלחה באחיזה מהשלב הקודם בכדי לייצר

 probabilityאלו, תוך שמירה על תכונת השלמות ההסתברותית) מיקומיםהמתוכנן אל

completenessשל אלגוריתם ה)-RRT(בנוסף, פותחה שיטת ההחלקה המשולשת .triple

smoothing בכדי להשלים את תכנון המסלול ע"י)RRT .

, המבוססת על תכנון IKBiRRTלביצועי שיטת ושוו הו ואלגוריתם זה נבחנההביצועים של

תברות לאחיזות המוצלחות אל עבר אזורי אחיזה שהוגדרו באופן ידני ובהם ההס RRTבעזרת

בעזרת סימולציה של שני תרחישים)קטיף תפוחים התבצעההבחינה מפולגת באופן אחיד.

. בתרחיש קטיף התפוחים לתפוח יש אזור אחיזה בודד ובתרחיש הסביבה (וסביבה ביתית

הערכת הביתית לחפצים)כוס ומחבת(יש מבנה מורכב יותר והם דורשים מספר אזורי אחיזה.

ואיכות. יעילותט הערכת לגוריתמים מבוססת על אנליזה מקיפה של התוצאות, ובפרהא

 .חומרה)זרוע רובוטית(בעזרתהאלגוריתם יושם

-GRשני האלגוריתמים שנבחנו מצאו בהצלחה מסלולים בכל המקרים שנבחנו. אלגוריתם

RRT מהמקרים. 28%-תכנון מסלולים אל עבר מיקומים תפסנית המבטיחים אחיזה מוצלחת ב

 IKBiRRTאחוז זה היה טוב משמעותית ביחס לאחיזות המוצלחות שנמצאו על ידי אלגוריתם

עם רק מעט מאוד עליה בזמן החישוב ובאורך המסלולים שחושבו. ביישום בחמרה רוב

התנגשות בגלל חוטים שלא מודלו. בהתאם הייתהד המסלולים בוצעו בהצלחה. במקרה אח

עבור תכנון מסלול לצורך אחיזה הודגמו. עבור יישום בחמרה יש GR-RRTיתרונות שיטת

 מנעות ממכשולים בזמן הריצה לתכנון המסלול. ילהוסיף ה

, תיבות םחקירה אקראייעצי , תכנון מסלול, תכנון אחיזה, ה, אחיזהרובוטיק – מילות מפתח
 החלקת מסלול, תאניתערובת גאוסיחוסמות מינימאליות, מודל

 גוריון בנגב-אוניברסיטת בן
 הפקולטה למדעי ההנדסה
 המחלקה להנדסת תעשייה וניהול

אחיזה עבור זרוע רובוטית -עד-תכנון תנועות הגעה
 RRTבעזרת

 בהנדסהחיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר

 רועי רשף מאת:

 ד"ר סיגל ברמן מנחה/ים:

 חתימת המחבר........................ תאריך.....................

 תאריך....................אישור המנחה/ים.........................

 תאריך....................

 ..אישור יו"ר ועדת תואר שני מחלקתית......................... תאריך...................

 גוריון בנגב-אוניברסיטת בן
 הפקולטה למדעי ההנדסה
 המחלקה להנדסת תעשייה וניהול

אחיזה עבור זרוע רובוטית -עד-תכנון תנועות הגעה
 RRTבעזרת

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 מאת: רועי רשף

 1045 ינואר אלול תשע"ד

	תוכן עניינים
	תקציר באנגלית
	תקציר בעברית
	ביבליוגרפיה
	נספחים

