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ABSTRACT 

This research deals with the development of a biometric system based on hand motion. For 

this purpose, a system that identifies individuals based on the attributes of their hand motion 

while performing a signature gesture in free air was developed. The users of the system are 

free to choose the hand trajectory that serves as their signature. Hand trajectories are captured 

using a video camera, and spatial and temporal features of the hand trajectory are extracted. 

Users train the system by performing a plurality of their signatures, and the system identifies 

the user by comparing the distances of a test signature to all signature classes stored in the 

database. The distance metric from a sample to a user's class is learned by Neighborhood 

Components Analysis. An interactive enrollment algorithm using sequential clustering is 

proposed which allows the system to inform the user if a chosen signature is too variant or 

too similar to a signature stored by another user. Three validation tests were conducted to test 

the system's accuracy: All users using a single pre-defined gesture (independent), each user 

using a personal gesture (dependent) and copycat tests for examining robustness against 

forgery. The accuracy obtained for identifying a single user out of user cohorts of sizes 3 to 7  

was 91 to 77 percent and 98 to 92 percent for the independent and dependent systems, 

respectively. For three trials of attempted forgeries, correct rejection and correct acceptance 

rates of 81 and 94 percent were obtained. The proposed system can be integrated into a hand 

gesture recognition interface and used for security purposes, content adaptation, parental 

control, customization and more.  

 

Index Terms— Biometrics, Distance Metric Learning, Gesture Recognition, Clustering. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Biometric systems allow identification or verification of an individual based on physical or 

behavioral traits. Such systems are required in many settings mainly for security purposes but 

also for customization of interfaces and content. Although systems based on physical 

information are considered reliable, emerging systems that utilize the behavior of an 

individual offer increased intuitiveness and usability. These systems are based on traits such 

as voice, typing rhythm and motion. In many cases motion based systems allow the user to be 

identified from distance, and do not require any special devices. The recognition can be 

performed using a video camera, motion sensor or even a computer mouse.  

Identifying persons using behavioral data is a major challenge. Jain et al. [1] note that a 

user identification system must follow the four following rules: universality, distinctiveness, 

permanence and collectability. These rules are easy to handle with physical based systems, 

but challenging when it comes to behavioral based systems. Distinctiveness, for example, 

requires that the system will be able to distinguish between many different users. As in many 

other systems, increasing the number of users (or classes) usually results in a reduction in 

accuracy. 

Current human machine interaction (HMI) devices, e.g., mice, keyboards and remote 

controls are considered effective, but still many problems arise when using them. More 

advanced HMI are being developed for the purpose of better interactions between people and 

machines, giving the ability to use the computer without having to practice or study a new 

language, to an increasing number of people. Other catalyzers of the HMI industry are 

computer games, telerobotics, artificial intelligence methods and augmented reality devices.  

In contrast to a few decades ago, when system designers considered the machine first, 

nowadays designers and researches understand that a system must put the user at the center in 

order to make the interaction usable, universal, intuitive, efficient and satisfying. Gesture 

recognition systems are one of these user-centered HMI. A gesture is a form of 

communication between individuals and as such, it brings more intuitiveness than using a 

mouse of any other device common today.  
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1.2 Research Objectives and Contribution 

This research aims to combine the two worlds of user-centered HMI and user identification. 

Manually entering a password or pin code common today is not necessarily here to stay. 

Other methods of identification such as face identification or identification using gestures can 

be much more intuitive. A hand motion based identification system can be used, for example, 

in an operating system's welcome screen that has multiple users. This type of system can also 

be used for gesture recognition for TV systems such as the one proposed in [2], giving the 

ability to customize content, menus and features. Behavioral based systems have another 

advantage over several physical based ones: they don't keep true physical information on the 

user. Attributes of the movement are the only information kept inside the system. 

The main objective of this research is to develop a system that can identify a predefined 

number of individuals using a position sensor, based on the characteristics of a hand motion 

signature made by them. So far, not many attempts to identify persons using characteristics of 

movement were made. Another major objective of this research is to show that different 

individuals indeed perform gestures in a different manner. This research aims to allow the 

user to select the hand motion signature of his or her choice. 

There are two major innovations involved in this research. The first deals with the 

ability of the user to select his or her own signature without any constraint of a predefined 

shape. The second innovation is an interactive learning algorithm that provides online 

feedback during enrollment, and offers information on whether the selected signature is too 

similar to an already stored signature, or whether it is too noisy for the system to handle.  

It is presumed that individuals can be distinguished only by the characteristics of their 

hand gesture using a robust tracking and classification system. The main hypothesis of this 

research is that a hand motion signature that is perceived to be identical when performed by 

two individuals can be distinguished using the methods and equipment used in this research. 

In order to examine this hypothesis, two major experiments were made: An experiment 

in which participants performed 3 predefined shapes: X, O and 'line'; and an experiment 

whose participants selected the signature of their choice. The first experiment was conducted 

for testing the possibility of identifying users according to the characteristics of their hand 

movement. The second was conducted for the purpose of examining a system with practically 

no a priori data on the input. A short video demo of the system is available at: 

http://bit.ly/OmriMendels 

http://bit.ly/OmriMendels
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In addition to the academic interest of testing the above hypothesis, this system can also 

be adapted for commercial use. For that purpose, a patent (named "Real time user 

identification by hand motion signatures") was issued for the system and is currently pending. 

1.3 Research Scope and Limitations 

In this study the ability to identify a user out of a group of 3 to 7 users, was examined. The 

classification was based solely on features of the hand trajectory. No other movement or 

physical information was gathered. Experiments were made on independent participants and 

not on family members where gestures of siblings of the same gender and of a similar age 

may be more difficult to distinguish. A working system was developed and optimized based 

on the experiment's results, yet the final and working system was not put to an extensive field 

test. The enrollment system was not tested with the interactive recommendation system in a 

real-time scenario.  

1.4 Thesis Outline 

This thesis is arranged as follows: Chapter 2 provides a literature review on methods that 

were used, ideas that were considered and systems that are similar to the developed system. 

Chapter 3 describes a prototype system with a preliminary experiment to test it. Chapter 4 

describes the full methodology developed for this thesis. Chapter 5 describes the final 

experiments, chapter 6 describes the results of the experiments and a discussion, and the 

conclusion is provided in chapter 7. 

 

 



 

 

CHAPTER 2: BACKGROUND 

2.1 Overview 

This literature review describes the methods that were used during the research process. Most 

of the methods that are described in this chapter were used in the final system. Some of the 

methods and ideas were considered throughout the course of development, but are mentioned 

here since they were used during the process of understanding the problem and finding a 

proper solution to it. These also supply a preliminary understanding to topics such as human 

motion, geometry and machine learning. 

A survey of motor control studies is described here, even if none were eventually used for 

the identification system. Section 2.2 describes some relevant studies in the field of user 

identification. Sections 2.3 and 2.4 describe general subjects concerning this work such as 

biometrics, human machine interaction and gesture recognition. Section 2.5 generally 

describes movements – the way individuals perform movements and how these movements 

can be modeled and used for the purposes of this research. The additional sections discuss 

different machine learning, geometric and interpolation methods that are to be used in this 

research. 

2.2 Biometrics 

"A wide variety of systems requires reliable personal recognition schemas to either confirm 

or determine the identity of an individual requesting their services." [1] 

User identification systems are mainly based on biometrics – the field of statistics in 

biology. These systems mainly rely on one of two types of information: Physiological data 

that relates to information such as fingerprints, DNA and face recognition; and Behavioral 

data that relates to a behavior of an individual. Examples for behavioral feature recognition 

are gait recognition [3] where the opportunities, advances and challenges in gait recognition 

are described; voice recognition [4], Rabiner's famous speech recognition and Hidden-

Markov-Models work; and typing rhythm [5] where a keystroke based user authentication 

that is based on compact data is proposed. Additionally, a survey of solutions to identify theft 

using keystroke dynamics is proposed in [6]. User identification that is based on behavior is 
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often called "Behaviometrics" (e.g., in [7], where a model of user verification using 

kinematics is described). 

User identification systems must satisfy the following requirements: [1] 

 Universality: each user should have the characteristic 

 Distinctiveness: any two persons should be sufficiently different in terms of the 

characteristic 

 Permanence: the characteristic should be sufficiently invariant over a period of time 

 Collectability: the characteristic can be measured quantitatively. 

2.2.1 User identification systems 

There are two types of user identification system: verification systems and identification 

systems. 

 Verification – A one to one comparison of a captured biometric with a stored template 

to verify that the individual is who he claims to be.  

 Identification – A one-to-many comparison of the captured biometric against a 

biometric database in attempt to identify an unknown individual. 

As mentioned in [8], User identification requires two phases: enrollment (training) and 

recognition (the latter can be verification or identification). A block diagram of each step is 

shown in figure 1. In a verification task, an enrolled user claims an identity and the system 

verifies the authenticity of the claim based on her biometric feature. An identification system 

identifies an enrolled user based on her biometric characteristics without the user having to 

claim an identity. 

 

Figure 1 - Block diagram of enrollment and identification in user recognition  

[8] 

Biometric Recognition is similar to any pattern recognition system, since in both a 

feature extraction or selection is to be made, followed by a classification of the features to a 

certain class. Gesture recognition systems classify the features as gestures, while biometric 

recognition classifies the features as a certain individual activating the system. 
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2.2.2 User identification by movement traits 

The major problem with movement is the inability to perfectly replicate it. Fingerprints, for 

example, are almost constant and two samples will produce the same results with very little 

variance. Movement, on the other hand, has variance and in order to use movement to 

identify an individual, one has to statistically estimate a representing model of the movement 

that was made. Most identification systems nowadays rely on input with less variance (e.g., 

iris recognition or even voice recognition).  

One example of user identification using movement is gait recognition. In a research by 

[3], a method for biometric identification using gait (i.e. a particular way or manner of 

moving on foot) for security purposes is proposed. The general architecture of this system is 

similar to the one used in gesture recognition or other biometric recognition systems, as seen 

in figure 2. 

 

Figure 2 - gait recognition system architecture 

[3]  

The features used in this project are for example: contours, angles, projections, 

silhouettes. This research offers different paths for gait based identification, and does not 

describe a working system that actually identifies different persons. In their conclusion, 

Boulgouris [3] claim that the identification using gait is still an open research topic and 

current systems are not robust enough to accurately identify an individual out of many. A 

survey of gait recognition systems in [9] shows an average accuracy of 88 percent for 

identifying a person walking indoors. 

Another example of user identification using human kinematics is presented by [7]. 

Sriwarno offers a method to classify human behavior using movements. In this research, 

videos of subjects squatting were analyzed, and different types of squatting techniques were 

noticed. The author showed that since different participants used different squatting 

techniques, they can be identified by the way they perform the movement. Figure 3 shows the 

motion profiles of 3 different subjects. 
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Figure 3 - Movement models used for identification 

[7]  

There were many studies aiming to use the computer mouse as a motion based user 

identification device. A feasibility study made by Weiss et al. [10] asked users to click on 25 

different buttons and a system collected different events such as clicks and mouse 

movements. This served as a feature vector for a kNN classification algorithm. In [11], 

mouse movements for re-authentication of users were used. Mouse events such as moves, 

clicks and wheel spin were collected and a decision tree based classifier decided whether this 

behavior was anomaly or not. 

Several studies attempted to use hand motion traits for identification. A feasibility study 

for such a system appears in [15] in which users perform one of four pre-defined signature 

gestures. This system and the one developed by [16] use accelerometers for capturing the 

motion. No studies were found where the hand movement is captured by camera using 

computer vision algorithms. A relevant field of study that usually employs similar methods to 

the proposed system is the user verification by written signatures. These systems such as the 

one proposed in [17] utilize tablet screens. In this system spatial and temporal features are 

extracted and a dynamic time warping technique is applied for the classification of the 

signature. 

2.2.3 Motion based person identification by humans 

An interesting approach in artificial intelligence is to compare computerized methods to 

human ones. A few studies on the human capabilities of identifying people using motion 

were held. These researches rely on the fact that humans have a lifetime of experience 

watching other people move. Such extensive visual experience is thought to selectively 

enhance visual sensitivity to the human movement [12] . Different studies, such as the one 

made in [13] checked the connection between motion and emotions perception and 

interpretation. Subjects were shown point light depictions of themselves, their friends and 
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strangers. Results showed that sensitivity to one's own movement was the highest, and friends 

were also discriminated from strangers. In [14], a similar research was performed on gait 

movements. 7 individuals served as walking models and 41 markers were placed on their 

body. 18 observers tried to discriminate between the 7, in 3 different angles of view (frontal, 

half-profile and profile). Different parameters were normalized (size, frequency of walking, 

shape) and tests were made with normalization and without it. Performance saturated at 

approximately 90%. 

2.3 Human Machine Interaction 

Human Machine Interaction (HMI) / Human Computer Interaction (HCI) is defined by 

Baecker et al. as "a discipline concerned with the design, evaluation and implementation of 

interactive computing systems for human use and with the study of major phenomena 

surrounding them" [18]. These interactions include current input & output interfaces such as 

keyboards, mice, remote controls, printers and monitors.  

The work on developing HMI includes design and implementation of interactive systems, 

involving users and machines. This necessarily involves work that has traditionally developed 

separately in various disciplines, including computer science, psychology, design theory, 

social sciences, work domain analysis and creative design [19].  

Recently, a new field called IHCI or HCII (Intelligent Human Computer Interfaces) is 

emerging. This field combines HCI with other technologies such as artificial intelligence and 

augmented reality [19]. HCII focuses more on the user experience and its usability. Gesture 

recognition based HCI is one example of an intelligent human computer interface. 

2.3.1 Usability in human machine interfaces 

Usability is the capability in human functional terms to be used easily and effectively by the 

specified range of users, given specified training and user support, to fulfill a specified range 

of tasks, within the specified range of environmental scenarios [20].  

In spite of changes in the nature of computing, remnants of old thinking still remain. In 

former days, when the CPU was at the heart of a system, designers naturally talked of 

‘‘terminals” and ‘‘peripherals”. This was in this period that people began to use the term 

‘‘end user”. The unconscious symbolism is both a symptom and a cause; the ‘‘end” user at 

the ‘‘terminal” was often the last person to be considered in the design of the system. It is 
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important to develop a new view of computing systems, and to look at the user in a different 

light. Taking this view of computing, the centre of a system is the user. [21] 

2.3.2 Gesture based HMI 

The evolution of user interface (UI) witnessed the development from UIs based on keyboards 

to a GUI (graphical user interface) based on mice. New computerized features such as 

augmented and virtual reality require better interaction between the user and the machine. 

Moreover, an intuitive language of communication needs to be implemented in order to reach 

many more populations such as elderly persons. In current applications devices such as 

keyboards, mice, wands, joysticks and remote controls are still the most popular and 

dominant. However, they might be inconvenient and unnatural. 

The use of human movements, especially hand gestures, has become an important part of 

HCII in recent years, which serves as a motivating force for research in modeling, analyzing 

and recognition of hand gestures. Many techniques developed in HCII can be extended to 

other areas such as surveillance, robot control, teleconferencing, security [22], a survey of 

gesture recognition systems [23]; and medicine such as [23] where a gesture recognition 

system was developed as an HCI in an operating theater, allowing the surgeon to handle 

images without having to touch any device. 

2.4 Gesture Recognition Systems 

Gesture Recognition is a general name for devices that allow the user to interact using hand, 

fingers or body gestures. A gesture is defined as the use of motions of the limbs or body as a 

means of expression; a movement usually of the body or limbs that expresses or emphasizes 

an idea, sentiment, or attitude [26]. In the following paragraphs, a typical topology of gesture 

recognition systems will be described. 

Recognizing gestures is a complex task which involves many aspects such as motion 

modeling, motion analysis, pattern recognition, machine learning, and even psycholinguistic 

studies. [24]. In such systems, the designer must think of proper gestures to be used that will 

be easy and ergonomic for the user, and that will be identifiable by the system. Stern et al. 

[25] constructed a framework for developing a gesture vocabulary that considers both the 

user side and the system side aspects of the problem. 
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In order to construct a gesture based HMI, one must develop different programs that will 

collect the data from the camera, extract information from the input and decide which gesture 

if any was performed. 

Figure 4 describes a typical gesture recognition system, with a gesture model, gesture 

analysis, gesture recognition and output functions. The following paragraphs will explain the 

analysis, feature extraction and the classification of gestures. 

 

Figure 4 - Typical dynamic gesture recognition system architecture 

The interpretation of gestures requires that dynamic and/or static configurations of the 

human hand, arm, and even other parts of the human body, be measurable by the machine. 

First attempts to solve this problem resulted in mechanical devices that directly measured 

hand and/or arm joint angles and spatial position. This group is best represented by the so-

called glove-based devices. The interface requires the user to wear a cumbersome device that 

hinders the ease and naturalness with which the user can interact with the computer 

controlled environment. Even though the use of such specific devices may be justified by a 

highly specialized application domain, (e.g., simulation of surgery in a virtual reality 

environment) the “everyday” user will certainly be deterred by such cumbersome interface 

tools. This has spawned active research toward more natural HMI techniques. 

Potentially, any awkwardness in using gloves and other devices can be overcome by 

using video-based noncontact interaction techniques. This approach suggests using a set of 

video cameras (or a single camera) and computer vision techniques to interpret gestures. The 

advantages of the vision-based interface have resulted in a burst of recent activity in this area. 

Other factors that may have contributed to this increased interest include the availability of 

fast computing that makes real-time vision processing feasible and recent advances in the 

necessary hardware, as well as the reduction of the price of these instruments.  

Research and development of gesture recognition systems started with a focus on the 

recognition of static hand gestures or postures. A variety of models, most of them taken from 

approaches in pattern recognition have been utilized for that purpose [24]. Many researches 

nowadays focus on dynamic hand gestures, which are captured by forming a trajectory of the 
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hand using segmentation of the hand and an algorithm for tracking the center of the hand's 

pattern.  

2.4.1 Gesture analysis 

The goal of gesture analysis is to estimate the parameters and features of the gesture model 

using measurements from the video images of a human operator. 

 

Figure 5 - Gesture analysis and recognition  

[24] 

As seen in figure 5, features are extracted from visual images. Model parameters are 

estimated and possibly predicted. Gestures are recognized in the recognition stage. 

Recognition may also influence the analysis stage by predicting the gesture model at the next 

time instance. 

2.4.2 Feature extraction 

Prior to classification, a phase called feature extraction is usually performed. Fukunaga [27] 

describes the feature extraction as a process of mapping the original measurements into more 

effective features. If the mapping is linear, the mapping function is well defined and our task 

is simple. Unfortunately, in most cases the features are not linear functions of the 

measurements and then the problem is to find a proper nonlinear mapping function of the 

given data. Since there is no general algorithm to generate nonlinear mapping function, the 

feature extraction becomes very much problem oriented. 
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These features must define the model in a meaningful and compact way. Meaningful 

features will make the classification stage much easier and can turn a problem from an 

infeasible one to a feasible one. 

2.4.3 Gesture classification 

Gesture recognition is the phase in which the data analyzed from the visual images of 

gestures is recognized as a specific gesture. The trajectory (in case of dynamic gestures) in 

the model parameter space (obtained in the analysis stage) is classified as a member of some 

meaningful subset of that parameter space. Features from the analysis stage are inserted into a 

feature vector, and this vector is compared to features of different gestures predetermined in 

the system. This stage is called classification. A classification algorithm compares the feature 

vector's data with data in different classes (each class represents a gesture).  

Depending on the system in question, all of the extraction and classification functions 

have varying success rates that are influenced by the input received. For example, a glove or 

sensor based system has more robustness than a vision based system, and a 3D vision system 

is inherently more robust and accurate than a 2D vision system, since hand segmentation can 

be done by depth and not only by other cues such as motion or color. 

2.5 Motor Control 

Motor control is one of the most amazing phenomena in nature. Moving a robot with the 

same amount of degrees-of-freedom as the human hand requires a descent amount of 

computational power and memory. Moreover, performing this action in an optimal way can 

be very difficult. How humans perform an action in a near optimal way is not fully known to 

scientists. Winter [28] claims that the scientific approach to biomechanics has been 

characterized by a fair amount of confusion, but many of them agree that this type of 

movement is indeed optimal. There are a few examples to this optimality: There are infinite 

ways to move the hand from one point to another, but the central nervous system (CNS) picks 

the shortest one; It is assumed that the CNS tries to minimize the jerk (change in acceleration) 

during a movement [29] and the torques used [30]. 

Kawato et al. [31] claim that in order to perform motor actions, the CNS must solve the 

following questions: 

1. The determination of a desired trajectory in the visual coordinates. 

2. The transformation of its coordinates to the body coordinates. 
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3. The generation of motor command. 

Feldman [32] distinguishes between different variables of the movement. The 

mechanical variables of the actions that the CNS cannot control are called state variables 

(SVs) (e.g., the gravity of earth). The variables that are controlled by the CNS are called 

control variables (CVs) (e.g., moving a muscle). In order to understand the nature of 

voluntary motor action, we must first understand which CVs are used by the CNS and which 

SVs are being taken into consideration while performing the movement [32]. 

2.5.1 Computational motor control (CMC) 

Computational motor control is the science of constructing motor control models using 

mathematical and computational techniques. These techniques involve control engineering 

methods such as adaptive control, computational methods such as artificial neural networks 

and geometrical approaches such as affine spaces [33] and geometric algebra [34]. The 

following paragraphs will describe different models of CMC. 

2.5.2 Minimum jerk method 

The Minimum Jerk Method was presented by [29] . The purpose of this research was to find a 

mathematical model describing a two axis movement. The basic idea behind it is that the 

CNS tries to perform an optimal movement, and a certain mathematical optimization model 

will probably act the same way. In order to achieve optimality, it was assumed that the CNS 

tries to minimize the jerk. The jerk is the 3
rd

 derivative of the trajectory.  

The mathematical model describing the movement is described in equation 1: 
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Equation 1 - the movement's proposed model [29] 

The optimization results in a fifth order polynomial in time both for x(t) and y(t). 

Assuming the movement to start and end with zero velocity and acceleration, the following 

expressions for hand trajectory are obtained:  
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Equation 2 - the two coordinates values as a function of t [29] 

where ft/t  , x0, y0 are the initial hand position coordinates at t=0 and xf, yf are the final 

hand position coordinates at t=tf.  

 

 

Figure 6 - Velocity and path profiles  

[29] 

Figure 6 shows the hand trajectory and velocity according to the model. Except for straight 

lines, curved lines were also examined and a mathematical model was developed. 

2.5.3 Minimum torque method 

Uno et al. [30] used the minimum jerk model to establish a new model. Since the minimum 

jerk model does not take any dynamics into consideration, they offered a new model that 

attempts to find an optimal trajectory with minimum torques. This is under the assumptions 

that the CNS prefers smooth muscle torques, and tries to minimize this value instead of 

changes in acceleration. The minimum torque model is defined as follows: 
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Equation 3 - the proposed minimum torque model [30]  

Where Zi is the motor command (torque) fed to the i-th actuator (muscle) out of n actuators. 

CT is the sum of square of the rate of change of torque integrated over the entire movement. 

This model is closely related to the minimum jerk model proposed by [29] mainly because 

acceleration is locally proportional to torque at zero speed. 

Since describing n actuators is extremely complicated, Uno et al. offered a robotic 

manipulator for the test instead of the real musculoskeletal system. 

The following functions enable us to calculate the actuated torque of the two joints (z1 and z2) 
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Equation 4 - the torque in joints z1 and z2 [30] 

Where Mi, Li, Si, and Ii represent the mass, length, distance from the center of mass to the 

joint and the rotary inertia of the link i around the joint, respectively. bi and zi represent the 

coefficients of viscosity and the actuated torque of the joint i. 

2.5.4 Affine and Equi-Affine geometrical spaces 

A recent study of geometry and invariance in motions show that the human brain uses a 

mixture of geometries when planning motion [33]. These geometries are the Euclidean 

geometry, the affine geometry and the Equi-Affine geometry, which is similar to the affine 

but have the constraint of preserving an object's area under linear homogenous 

transformations. The affine geometry is more suitable for modeling human movements since 

it is possible to deal with curves and points in an intrinsic way [35]. Together with the 

conclusions of [33] , it is reasonable to perform human analysis not only in the Euclidean 

geometrical space.  

2.5.5 Additional movement features 

Rhythmic movement such as walking, chewing or waving the hand, is treated differently than 

other discrete movements. Apparently, the motor control of such movements is different than 

the control of discrete movements. Schaal et al. [36] define the differences between a 

rhythmic movement and a discrete movement (e.g., grasping). Some differences can be seen 

in figure 7. 
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Figure 7 - Differences between rhythmic, discrete, rhythmic with a rest and discrete with a rest movements. 

[36] 

More features that define the human arm movement and can be used for analysis of this 

movement are velocity profiles, trajectories, time to completion (of a gesture or movement), 

maximum velocity, and acceleration. Some of these features are addressed in a work by 

Atkeson et al. [37]. 

Velocity and motion can also be modeled through Motor Algebra, as described in [34]. 

Since velocity of a rigid body is not a generalization of a point of mass velocity, a better 

representation needs to be developed. The geometric algebra model offers a formulation both 

for the dynamics and the kinematics of the human motion as a rigid body. 

Curvatures are also features that can be used. Curvatures and hand speed are described 

in [29]. Hand Speed T is defined as    22
yxT    . Trajectory curvature is defined as

 )) y(+ )x) / ( ( )xy- yx( ( =C 3 / 222   where  ̇ and  ̇ are the time derivatives of the x and y 

coordinates of the hand in the plane and  ̈ and  ̈ are the corresponding accelerations. 

2.6 Geometric Alignment 

For a reduction of unnecessary variability caused by the location, distance and angle of the 

user in front of the camera, it is advisable to align samples to the same initial state. Two 

methods for alignment will be described: Procrustes analysis [38], a straightforward method 

for alignment, and Active Shape Models [39], where a mean shape is calculated, and all 

samples are translated, scaled and rotated in order to minimize the total Euclidean distance 
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between the sample and the mean shape. The process is iterated until convergence of the 

mean shape, and gives more weight to stable points. 

2.6.1 Procrustes analysis 

Procrustes analysis or Procrustes superimposition is a method of removing the translation, 

scaling and rotation components of a shape in order to obtain a similar placement in size and 

location, which should be achieved prior to a comparison of shapes. Procrustes analysis is a 

straightforward method that aligns a shape to a mean shape uniformly. It is originally 

described in [38] but a more intuitive explanation will be given here. For translation, the 

values of each point's coordinates of the mean shape are subtracted from the point's 

coordinates values of the aligned shape: 

Given k shapes of two dimensions: ),(),...,,(),,( 2211 kk yxyxyx  , the mean shape is 
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x   :)y,x( . By applying )yy,xx()y,x( iiii  we get the new translated 

shape )yy,xx( ii  . 

Following translation, the scale component can be removed by scaling the object such 

that the root mean square distance from the shape (which is described as a n dimensional 

vector) to the translated origin is 1. Let si be the Euclidean distance from shape i to the 

translated origin (in this example shape i has 2 dimensions): 22 )()(
2

1
yyxxs iii  . By 

dividing the translated point by s, the scale component is equal to 1 and therefore removed. 

)s/)yy(,s/)xx(()y,x( iiii  . 

2.6.2 Active shape models 

Active Shape Models (ASM) are described in [39]. It allows translation, scaling and rotation 

and gives more weight to points that are stable throughout the training set of shapes. 

Let xi be a vector describing the n points of the i
th

 shape in the set:  

T

niniiii yxyxx ),,...,,( 1,1,0,0, 
 

Let ]x)[,s(M   be a rotation by q and scaling by s. Given two similar shapes, xi and xj, we can 

choose qj, sj and a translation (txj, yxj) mapping xi into jt]x)[,s(M  so as to minimize the 

weighted sum in equation 5: 
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Equation 5 - Minimization function for a two sample alignment [39] 

W is a diagonal matrix of weights for each point. These weights can be proportional to 

the tendency of the points to move inside the training set. Points that move the least will get a 

small weight in comparison with points that have a large distribution inside the training set. 

Weights can be calculated using equation 6 where VDki is the variance of Euclidean distances 

over the set of shapes: 
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Equation 6 - forming the weights for the minimization function [39] 

The algorithm for aligning the set until convergence: 

1. Rotate, scale and translate all shapes to the mean (or to the first shape in the set) 

2. Calculate a new mean shape 

3. Realign every shape to the mean shape 

4. Repeat 2-3 until convergence. 

A least-square approach (differentiating with respect to the variables ax, ay, tx, ty) leads to a 

set of 4 equations:  
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Equations 7 - the least square approach for minimizing the sum Ej [39] 

2.6.3 Justification for scaling shapes 

In human perception and motor control, it is assumed that individuals perceive gestures made 

in different sizes as the same gesture. This is based on the human motor control characteristic 
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of movement invariance [40] and the human brain use of affine and equi-affine geometries 

that allow stretching or scaling of movements [33]. Therefore a basic assumption is that the 

alignment of shapes, and particularly scaling, does not affect the system's identification 

capabilities. 

2.7 Interpolation 

Interpolation is the process of constructing a continuous curve that best fits a series of data 

points, similar to regression analysis. Three common interpolation techniques are: linear 

interpolation; splines; and cubic Hermite interpolation. One of the first non linear 

interpolation techniques was the polynomial interpolation. Nowadays polynomial 

interpolation is mostly of theoretical value. Faster and more accurate methods such as splines 

and Hermite splines were developed. These methods are piecewise polynomial, i.e. 

constructed of several polynomials that are connected to form one continuous curve. [41] 

2.7.1 Polynomial interpolation/regression 

The linear regression model is y = X + . A polynomial regression model could for example 

be: 

 A second order polynomial in one variable: y = 0 + 1x + 2x
2
 + . 

 A second order polynomial in two variables: y = 0+1x1+2x2+11x1
2
+22x2

2
 

+12x1x2 +. 

 Any order polynomial with any number of variables. 

2.7.2 Piecewise polynomial interpolation (splines) 

Piecewise polynomials are useful when a low-order polynomial provides a poor fit to the 

data, regardless of the order of the polynomial. This problem usually arises when the function 

behaves differently in different parts of the range of independent variable. A usual approach 

is to divide the range of x into segments and fit an appropriate curve in each segment. 

Spline functions offer a useful way to perform this type of piecewise polynomial fitting. 

The connections or borders between polynomials are called 'knots'. 

For example, a cubic spline [42]: 

h knots, t1< … <th, with continuous first and second derivatives: 
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Equation 8 - Cubic Spline [42] 

2.7.3 Piecewise cubic Hermite interpolation 

The piecewise cubic Hermite interpolation is a third degree spline that consists of two control 

points and two control tangents for each polynomial. Using the interval t=(0,1), the cubic 

hermite interpolation is defined as p(t) in equation 9: 

3 2 3 2 2 2 3 2

0 0 1 1
( ) (2 3 1) ( 2 ) ( 2 3 ) ( )p t t t p t t t m t t p t t m            

Equation 9 - A cubic Hermite polynomial 

Where p0 and p1 are the control points, and m0 and m1 are the control tangents. 

By creating such polynomial for each two points, we get a piecewise polynomial that 

interpolates the data points.  

By integration, one could find arc lengths and place points with an equi-distance spacing. 

2.8 Pattern Recognition 

Statistical classification is the act of differentiating between different types of data. Input data 

is placed into groups based on quantitative information on one or more characteristics 

inherent in the data. Statistical classification is also called machine learning. Applications of 

these methods can be found in data mining, computer vision, gesture recognition [25], speech 

recognition [4] and biometric identification [43]. Pattern recognition is usually separated to 

supervised and unsupervised learning, whereas other methods such as semi-supervised 

learning or reinforcement learning also exist.  

2.8.1 Approaches to pattern recognition 

There are three main types of statistical classification algorithms: supervised classification, 

unsupervised classification and reinforcement learning. In supervised classification, the 

designer of the system gives the learning algorithm samples with an output. The classifier 

changes its parameters (e.g. weights) or entire model in order to fit the input vector to the 

result needed. When classifying a new sample, it is assumed that the new sample's features 

are similar to the training data's features and it will be classified to the most suitable class. 
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Unsupervised learning uses elements known from the data in order to group the data into 

clusters. 

2.8.2 Supervised Learning 

Supervised (or classification) uses a training data acquired during the initiation of the system 

together with the class information or label of each sample. New data that needs to be 

classified will be classified according to the classes constructed in the training phase. 

Training data includes input data and a desired output (i.e. the true classification of the each 

input sample). In this kind of classification, the designer of the system decides a priori on the 

different classes that will be used.  

A basic scheme for building a supervised classification model is offered in [44] and 

described in figure 8. 

 

Figure 8 - The process of supervised machine learning  

[44] 
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2.8.3 Unsupervised Classification 

In contrast to the supervised classification, unsupervised classification requires very few 

inputs into the classification processes. The computer selects natural groups of data based on 

their features. However, an unsupervised classification algorithm still requires user 

interaction. This occurs after the classification has been performed. In unsupervised 

classification, the user attempts to assign information classes (i.e. meaningful names or 

properties of classes) to the classes the system has created. In this process, several potential 

problems exist. The first is that some of the classes may be meaningless as they don't relate to 

any information class. In other instances, a single informational class may be split among two 

computer made classes [45]. Cluster analysis is a form of unsupervised classification, and 

will be described in the next sections. 

2.8.4 Pattern recognition methods 

In this section four different pattern recognition methods will be presented: Support Vector 

Machines (SVM), Hidden Markov Models (HMM) and k-Nearest-Neighbor. In the next 

section, cluster analysis will be described. 

Support Vector Machines 

Support Vector Machines (SVM) is a relatively new classification method [46]. In this 

method, features are non-linearly mapped to a very high dimension feature space. In this 

feature space a linear decision surface is constructed. Special properties of the decision 

surface ensure high generalization ability of the learning machine. Intuitively, a good 

separation is achieved by the hyper plane that has the largest distance to the nearest training 

data points of any class (so-called functional margin), since in general the larger the margin 

the lower the generalization error of the classifier. A special characteristic of SVM is that the 

solution to a classification problem is represented by the support vectors that determine the 

maximum margin hyper-plane. A basic illustration of the process can be seen in figure 9. 
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Figure 9 - An illustration of the SVM algorithm 

The work in [47] compare SVM with 12 classifiers on 21 data sets, where SVM yielded 

good performance but did not outperform the other methods on each dataset. Moreover, it 

tends to require long training time and when the input environment changes in time. In this 

case, the accuracy decreases because the weights are fixed, preventing it from adapting to the 

changing environment 

Applications of SVM 

An example of a work with SVM and 3D objects can be seen in [48]. In this work SVM is 

used to recognize 100 different 3D patterns over 7200 images. A SVM model was developed 

for that purpose and the achieved results are excellent (average error rates of 0.03%). In [49] 

a type of SVM called MEB-SVM is used for gesture (hand pose) recognition. Berman et al. 

[50] used SVM and PCA for action identification. The purpose of this research was to 

develop a new approach for teleoperations – performing medical procedures using 

telerobotics. Human motor actions were categorized using different classifiers in the context 

of the object they were being performed on. Two different SVM algorithms were used: a two 

class soft margin SVM with linear kernel, and a two class soft margin SVM with a Gaussian 

kernel. The SVM models performed better than two other classifiers (J48 decision tree and 1-

Nearest-Neighbor) in 5 out of 6 tasks tested.  

Hidden Markov Models 

Hidden Markov Models (HMM) is a common way for dynamic (or temporal) gesture 

recognition [51]. It is also used in speech recognition [4], and handwriting recognition. In this 

model, the system is represented as a markov process with unobserved states. Because of 

their stochastic properties (the states are considered hidden, with a probability to be in each 

state), the HMMs have the ability to model non-stationary signals or events. In hand 
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movements and gestures, the signal is represented by motion measurements of the part of the 

body that moves. Recognition in this method is performed by choosing the model with the 

highest probability after evaluating the probability value for all competing models. 

In order to define an HMM completely, the following elements are needed [52]:  

 The number of states of the model, N.  

 The number of observation symbols in the alphabet, M. If the observations are 

continuous then M is infinite.  

 A set of state transition probabilities }{
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Traditional HMM-based gesture recognition systems require a large number of 

parameters to be trained in order to give satisfying recognition results. An n state HMM 

requires n
2
 parameters to be trained for the transition probability matrix, which limits its 

usability in environments where training data is limited. 

K-Nearest-Neighbor (kNN) 

K-nearest-Neighbor is a common and simple machine learning algorithm. The main idea is to 

assign a class to a new sample by finding which class is dominant among its k neighbors, i.e. 

the class that is assigned to the largest set of the k closest neighbors. In this case, different 

distances (e.g., Euclidean) can be used as well. k is a parameter and selecting different ks can 

significantly change the result of the classification. A common way of selecting k is cross-

validation, where a few samples are kept for testing the accuracy of the learning phase. Since 

some samples are more significant than others, scaling the samples usually yields better 

results. One scaling option is to use evolutionary algorithms. [53] 
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2.9 Cluster Analysis 

Cluster analysis [54] divides data into groups (clusters) that are meaningful, useful, or both. If 

meaningful groups are the goal, then the clusters should capture the natural structure of the 

data. In some cases, however, cluster analysis is only a useful starting point for other 

purposes. Whether for understanding of utility, cluster analysis has long played an important 

role in a wide variety of fields: social sciences, biology, statistics, pattern recognition, 

information retrieval, machine learning and data mining. Main advantages of cluster analysis 

are: [55] 

 Supervised learning is costly 

 Features may change slowly in time. These changes can be tracked by a classifier 

running in an unsupervised mode and an improved performance can be achieved 

 Unsupervised methods can be used to find features that will then be useful for 

categorization 

 Clustering methods are valuable in early stages of investigation, and thereby gain 

some insight on the nature of the data. 

Cluster analysis can take place once all samples are collected, or sequentially update its 

model and parameters for each new sample that is gathered. The following sections include a 

description of the common k-means clustering algorithm, and an overview of sequential 

clustering methods. 

K-Means clustering 

K-means is an exclusive clustering algorithm (a certain data that belongs to one cluster 

cannot belong to another cluster). After deciding on the desirable number of classes, a 

random mean points are determined, and Voronoi regions are constructed – if 

computationally or theoretically. Samples that lie inside a certain Vonoroi region are 

classified to this region. On the next iteration, new mean points are determined according to 

the mean of the samples in each Voronoi region. A variance parameter J is calculated: 
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)( . Once J has converged, final Voronoi regions are determined and new 

test samples can be classified according to the location of mean points. [56] 
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The distance i
j

i cx 
)(  is a chosen distance between a point xi and the cluster center ci. 

The chosen distance can be Euclidean, Manhattan/Rectilinear, Mahalanobis (based on 

correlation) or any other valid distance measure. 

Sequential Clustering  

In cases where the final number of clusters is unknown, or the designer wishes to change the 

model with every new sample, sequential clustering techniques are useful. In these 

algorithms, samples are presented to the algorithm once or more, and the final solution is 

usually dependent of the order of presentation. These algorithms are mostly helpful in cases 

where the system is online (i.e. does not stop learning through time) and when the number of 

samples is large [57].  

BSAS is a basic sequential algorithmic scheme [57]. This simple scheme collects 

samples, and for each sample looks for the closest cluster. If the distance exceeds a threshold 

(), then a new cluster is formed, otherwise it adds the sample to the closest cluster. This 

method greatly depends on the presentation order of the samples. Another scheme that 

depends less on the order is TTSAS – Two-Threshold Sequential Algorithmic Scheme [57]. 

This scheme uses two thresholds: 1 and 2 (12). The first threshold,1 is used for 

determining whether a sample should join a cluster (i.e. when the distance between the 

sample to the closest cluster is smaller than1). The second threshold, 2, is the smallest 

distance between a sample and a cluster for creating a new cluster. All samples that their 

distance to the closest cluster lies between 1 and 2 are kept aside for the next iteration, 

where clusters might change and are more rigid. An example of the use of TTSAS (called 

TTSC in this study) is brought in [58] where sequential clustering is used for background 

reconstruction and subtraction in images. 

Since the TTSAS does not have a limit on the number of clusters, a merging procedure 

of clusters can be applied after clustering. This procedure iteratively merges clusters that are 

close to each other. One can also determine the number of final clusters by altering the 

threshold of distance according to which clusters are merged. 
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2.10 Distance Metric Learning and Dimensionality Reduction 

Prior to classification or clustering, one has to decide on the similarity/dissimilarity metric to 

be used. It is also possible to use a distance metric method that will find the metric by 

learning from samples. Moreover, the distance metric methods usually inherently include the 

possibility of dimensionality reduction since the new features are decreasing in their 

importance, and it is possible to select a sub set of the most important features. 

In this section different distance metrics and two methods for distance metric learning and 

dimensionality reduction are described: Point Distribution Model [39] and Neighborhood 

Components Analysis [59]. 

2.10.1 Distance/Similarity metrics 

Most classification algorithms will calculate a distance of a sample from different classes in 

the feature space (e.g. K-means, kNN). When talking about distance, one must decide which 

distance metric to use. The most common distance metric is the Euclidean distance. In this 

metric, the distance is the length of the straight line between two points. In a two-dimensional 

space it equals 
2

21
2

21 )()( yyxxD  . In cases where there is a constraint of moving in 

lines with right angles between them, we would use the Manhattan distance or Rectilinear 

distance, where 2121 yyxxD  . 

When using these distances for classification, we often wish to use statistical properties 

of the sets, in order to find the distance between a new sample and a certain set. If the 

statistical property in question is the covariance or correlation between two samples, we 

could use the Mahalanobis distance, where )()( 1
1

1    xxD T , x is the sample and 

 is the set's mean value. This distance reduces to the Euclidean distance if there is no 

variance or covariance in the set (=I). Other distances such as the Chebychev distance only 

use the dimension that has the biggest distance in it for evaluation [60]. 

2.10.2 Dimensionality reduction 

In order to avoid the 'curse of dimensionality' and since some features may be irrelevant and 

incorporate noise, it is desirable to reduce the number of features. Dimensionality reduction 

can be achieved by selecting a subset of features, or by extracting a new set of features from a 

the set of initial features that were measured. By finding a projection of the feature space to a 



37 

 

new space, it is possible to reduce the dimensionality of the problem. This reduction is 

desirable since the solution space of a problem grows exponentially with the number of 

features, and by reducing the number of features the classification process is simplified. 

Moreover, many features can incorporate noise or correlation with other features, and 

therefore avoiding the use of these features allows a more robust classification. There are 

both linear and non-linear dimensionality reduction methods. In this research, two linear 

methods that are used both for distance metric learning (see the next section) and 

dimensionality reduction: Principal Components Analysis (PCA) and Neighborhood 

Components Analysis (NCA) will be discussed and evaluated. Linear methods were selected 

since their simplicity is desirable when there is no a priori information regarding expected 

feature values and provide less of a computational load desirable for real time use. 

 

2.10.3 Distance metric learning 

Metric learning aims to learn an appropriate distance/similarity function for a given problem, 

such as a machine learning problem. Prior to constructing a classification or clustering 

problem, one has to decide on the similarity/dissimilarity metric to be used. Together with the 

distance metrics described in the previous section, it is possible to learn a distance metric. For 

example, Bar-Hillel et al. [61] proposes to learn a Mahalanobis distance using equivalence 

constraints, as a method of unsupervised learning. A projection matrix is usually used for 

transforming the feature space to fit the new metric. These transformation are usually linear 

(e.g., in Relevant Components Analysis [61] and Neighbourhood Components Analysis [59]) 

but could also be non-linear. Principal Components Analysis (PCA) to be described in the 

next section can also be used as a form of distance metric learning. 

Principal Components Analysis 

Each sample contains features that we are interested in. These features are grouped together 

in a vector called "feature vector". Since there is variance between two movements of the 

same type (e.g., the same person performing a "Hello" gesture twice, each time on a different 

day), we would like to use the features that explain the gesture the most.  

Principle Components Analysis (PCA) is a method that has two main objectives: 

reducing dimensionality and better interpretation of the data. Assuming that some of the 

variables contain more unexplained variation than explained variation, we would like to build 

a new model that will give the heaviest weight to the feature that best explains the model (in 
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terms of variance) and minimum weight to the feature that does not explain the model. This 

goal is achieved by transforming all explanatory variables to a new set of variables, called the 

principal components (PCs). These new variables are uncorrelated, and are ordered so that 

the first few retain most of the variation present in all of the original variables. 

Mathematically, the analysis is performed in the following way: 

From k original variables: x1, x2, ... , xk: 

 Produce k new variables: y1, y2, ... , yk: 

 y1 = a11x1 + a12x2 + ... + a1kxk = a1
T
x  

 y2 = a21x1 + a22x2 + ... + a2kxk = a2
T
x  

 ... 

 yk = ak1x1 + ak2x2 + ... + akkxk = ak
T
x  

Where ai
T
ai=1  i 

such that: 

yk's are uncorrelated (orthogonal) 

y1 explains as much as possible of original variance in data set 

y2 explains as much as possible of remaining variance 

yk explain as much as possible of the remaining variance etc. [62] 

 

 

Figure 10 - PCA with two dimensions  

[62] 

The model can be represented graphically, as showing in figure 10. After transforming 

the problem into a new one, one should choose the number of principal components that has 

sufficient variance used to explain the model. A common method is to choose the largest 
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eigenvalues of the covariance matrix (). The matching eigenvector of the i-th eigenvalue is 

the i-th row in the  matrix. The model involves optimization using Lagrange multipliers.  

Point Distribution Model 

The point distribution model (PDM) describes a certain shape by addressing its geometrical 

properties and the variance of a set of such shapes. In medical applications for example, the 

shape of organs can vary considerably between individuals and through time [39]. This model 

allows performance of pattern recognition on objects that are not rigid. The model receives a 

set of points over the shape (called landmarks) on each sample in a training set, and builds a 

new set of shapes that are the principal components of the training set, using Principal 

Components Analysis (PCA). 

Several methods were developed for preprocessing – preparing the sample set for the 

PDM phase. These methods include "Hand Crafted" Models, such as the one made by [63]. 

In this method, the pattern is first approximated and refined by changing different parts of the 

model, one at a time. Active Contour Models made in [64] use spline curves modeled to the 

original shape. The deformation of the object used for constructing the new set is done by 

changing the location of control points, which are the parameters of the spline curves. 

Active Shape Models allow a simple and effective scheme for aligning the training set, 

and applying a PDM on it. 

The statistical properties and assumptions in the PDM method 

Every landmark has its variance inside the training set. We would like to model this variance, 

and to build a set of shapes that are similar to the training set but has less dimensions. This is 

the essence of the Point Distribution Model technique. Instead of using a big training set, we 

could use the Principal Components Analysis technique and to pull out most of the variance 

in the training set with less samples. In figure 11, Cootes et al. [39] bring an example of the 

alignment phase and the PDM phase. 
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Figure 11 - Landmark distribution on an electrical resistor 

[39] 

This is the shape of an electrical resistor, after finding the landmarks. The cloud around 

each landmark is its distribution in the training set. It is obvious that some of the landmarks 

are more distributed than others. Since the points on each shape belong to a rigid object, it is 

clear is that there is a partial correlation between points in each sample, and the location of 

one point affects the location of another. In a Euclidean space, we can treat this distribution 

as an ellipsoid. Each sample can pull the distribution in its direction, but the final shape of the 

distribution will be an ellipsoid. This is a statistical assumption important for the next parts of 

performing the statistical analysis. Another assumption used is the linearity of the coefficients 

in the principal components analysis [65]. If every principal component is not a linear 

combination of the initial landmarks, we could use other methods such as non-linear PCA 

[66]. 

Classification using PDM 

Once principal shapes (components) are found, an identification of a new sample can be done 

in several different ways. Normally we would use the b vector, the deformable object's set of 

parameters [67] as a feature vector, and then use a common classification method in order to 

classify a new sample according to this feature vector. Like any other sample in the training 

set, the new sample might need an alignment phase. Therefore an alignment of the sample to 

the mean shape of each class is performed prior to classification. 

PDM based pattern recognition systems use in many cases the Mahalanobis distance 

metric [68], where hand gesture classification was made; kNN algorithm such as in [69] 

where a new segmentation method using optimal features is proposed; multi-layer perceptron 

in [66] or different common classification methods, such as discriminant analysis where [70] 

proposes a method of image search using Active Shape Models and Gray Level Information. 
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Neighborhood Components Analysis 

Neighborhood components analysis [59] is a distance learning method based on the nearest 

neighbor classifier. It linearly projects the feature space in a way that optimizes a stochastic 

nearest neighbor criterion using leave-one-out. In other words, NCA looks for a projection 

where the nearest neighbor rule performs well. The Mahalanobis distance between samples x1 

and x2 appears in equation 10. 
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Equation 10 - A Mahalanobis distance with a symmetric matrix A 

 

By finding an optimal projection A, we maximize the probability of a sample to be 

classified to its true class. The probability for sample i to belong to the same class as sample j 

is calculated using a softmax activation function over the Euclidean distance, as demonstrated 

in equation 11. 
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Equation 11 - A softmax probability of sample i to be classified to the same class of sample j 

The probability of sample i to be correctly classified is given in equation 12, where Ci is the 

ith class. 
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Equation 12 - The probability of a sample i to be correctly classified 

The objective function in equation 13 is the sum of the probabilities in equation 12 for all 

training samples. 


i

i
pAf )(  

Equation 13 - the NCA objective function 

Maximization of the objective function would result in an optimal projection of the feature 

space. The gradient rule can be seen in equation 14. Note that )xx(x kii k  . 
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Equation 14 - the gradient of the objective function of NCA 

The probability function f(A) is not convex, resulting in a possible sub-optimal 

projection. Due to this fact, the time complexity of finding a proper solution could be non-

polynomial and hence limits the practicality of the signature system that is trained online by 

the users. In such a scenario, the optimization process cannot last more than a few seconds 

and is therefore impractical for online interactive systems. For offline systems, however, one 

can use different optimization techniques for obtaining an optimal projection matrix using 

NCA. It is also possible to compute different solutions using NCA and compare them using a 

set of calibration samples.  

A modification of NCA, the regularized NCA, requires additional a priori data but on 

average yields better results. An application of the regularized objective function is described 

in a work by Singh-Miller et al. [11], where NCA was used as a dimensionality reduction 

method in a speech recognition system. The regularized version of NCA was further studied 

in by Yang et al. [12], where it was found to be more robust than the ordinary NCA and less 

prone to over-fitting. This correction is recommended since the assignments of pij decay 

rapidly with distance. With the magnitude of A growing, the number of neighbors (k) for the 

k-nearest-neighbor optimization may be too small. In the regularized form,   is a constant 

chosen empirically. The regularized function is shown in (7). Aj,k indicates the element at the 

j
th

 row and k
th

 column of matrix A. 
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Equation 15 - The regularized version of NCA 

By restricting A to be a non-square matrix of size dXD
 
where d is the desired 

dimensionality and D is the current dimensionality of the feature space we obtain a linear 

dimensionality reduction of the feature space. This is desirable since the ratio between the 

number of features and the number of training samples for each user, is extremely high. 
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CHAPTER 3: PROTOTYPE SYSTEM 

3.1 Overview 

The methodology of this research involved the development of a working system for user 

identification, and several new methods that support the system. A prototype system was first 

created in which three users performed a predefined signature. This system used the 

geometric characteristics of the predefined signature for better distinctiveness between users. 

In the final stage, a system capable of gathering any signature was created.  

A prototype of the system includes a Point Distribution Model (PDM) for the each 

user's training set which was used for enrollment, and a Mahalanobis distance based 

classification used for identification. Prior to applying PDM, the user's signature is recorded 

and features extracted. The system allows enrollment – a construction of a training set 

gathered by a position sensor, and identification – recognizing a new shape, by comparing it 

to the classes of previously enrolled users. 

3.2 Prototype System Method 

The prototype system was designed to identify a user performing a predefined signature- the 

'X' shape. The X samples that were recorded were divided into 5 segments, and each segment 

was fitted using piecewise cubic Hermite interpolation polynomial (PCHIP) with equidistant 

points. The points' coordinates along the new curve were used as features. Following the 

curve fitting, samples were aligned using Active Shape Models and a Point Distribution 

Model was constructed for each user. Finally, Mahalanobis distance was used to classify test 

samples (see figure 12 for a flowchart of the system). The left hand side of figure 12 

describes the enrollment procedure, and the right hand side describes the user identification 

procedure. 
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Figure 12 - A general flowchart for the enrollment and identification parts.  

Left- Training (Enrollment), Right- Classification (Identification) 
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3.2.1 System training (Enrollment) 

Active Shape Models 

Active shape models (ASM) [39] is a common method used in pattern recognition. This 

method is suitable for this research since it does not assume a rigidness of the pattern. Hand 

gesture trajectories have a large within-subjects variance, and the alignment (preprocessing) 

phase of this method allows reducing this variance and performing pattern recognition on the 

aligned sample set. 

Preparation of the trajectories for the ASM method 

In order to use the ASM method, the trajectory needs to have certain "landmarks" on it. These 

landmarks are points that represent the location of specific points on the pattern created by 

the trajectory. ASM aligns the shape according to each landmark, and therefore the 

landmarks should be placed accurately and in important spots on the pattern. In the analysis 

of the "X" signature, it has been decided to place landmarks throughout the entire trajectory, 

and focus on the curves at the corners of the shape. Since we wish to compare two 

trajectories, we must obtain the same number of landmarks on each trajectory, regardless of 

its initial number of frames captured. Therefore landmarks were distributed evenly into the 5 

segments shown in figure 13C. 

 

Figure 13 – Division into segments in the prototype system  

A: the input trajectory; B: the boundary for finding the corners; C: a synthetic gesture with 5 interpoated 

segments 

Segments selection is the following: Place a segment around each corner inside the X 

trajectory (the upper right and lower right corners of the trajectory in figure 13C); Then place 

a segment between the two segments constructed around each corner; Place a segment 

starting from the beginning of the trajectory; and finally place a segment that starts from the 

last point on the trajectory. 
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Finding the Corners 

In order to divide the gesture into segments, the initial corners landmarks needs to be found. 

A preliminary step is to rotate all trajectories to fit to the direction illustrated in figure 13, 

since the "X" gesture can be performed in 8 different ways (e.g., starting from the top left, 

then bottom right, then bottom left and then top right).  

For finding the corners, a boundary between the left hand side of the gesture and the 

right hand side of the gesture was formed (see figure 13B). The boundary was placed 

according to the following rule shown in equation 16: 

2

)(5.0 mi nmax xxx
XBorder


  

Equation 16 - Placing the border in the middle of the X trajectory 

The points with a maximum y value and minimum y value on the right side of the border are 

the top right corner and bottom right corner, respectively. The points with a maximum y 

value and minimum y value on the left side of the border are the top left corner and bottom 

left corner, respectively. 

Interpolation 

After finding the corners, a segment is constructed around each of the right hand side corners 

(segments 2 and 4 in figure 13C). k points from each side of the corner are selected and the 

2k+1 points are considered the segment around that corner. The following 3 segments 

(segments 1, 3, and 5 in figure 13C) are the remaining parts that do not belong to a corner's 

segment. 

On each segment, a piecewise cubic Hermite interpolation polynomial is fitted, and 

points are placed on it with equal distances between each point. The interpolation is done 

using the 'pchip' and 'interparc' methods in Matlab. 'Pchip' creates the polynomial and 

'interparc' uses an ODE solver to integrate the distance along the curve itself and this way to 

uniformly distribute points along the curve. 

Validation of the result 

The input trajectory and the output of the interpolation phase are shown on the screen, for 

user validation. If the gesture was not performed as needed, or the interpolation was 

inaccurate, the user can dispose of this sample and enter a new one. This is done by the user 

screen showing in figure 15. When using a vision based tracker, the output might contain 

points that do not belong to a trajectory due to a false classification of a moving part or a skin 
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colored pixel (e.g. the tracker jumps to another person or to the face of the user). In that case 

the shape of the trajectory that is received is completely different, but this can be fixed since 

the Euclidean distance to these points is relatively larger than the distance between points on 

the trajectory. For that purpose, the screen showing in figure 15 also allows the user to decide 

if to remove any points, by changing a threshold for distance between points. If a point is 

more distant than Distancek  from its adjacent points, it will be removed and the two 

adjacent points will be connected to each other. The slider on the bottom of the screen 

changes the values of the parameter k. 

Alignment 

Once samples are interpolated and contain a constant number of points it is possible to find a 

mean point for each point set and therefore a mean shape, built from all mean points. As a 

preprocessing phase, we wish to align the training set in order to minimize any unwanted 

variance within the set that is caused by difference in translation, rotation and scaling of the 

samples, prior to applying a PDM. The alignment phase is iterative, where each shape is 

aligned to the mean shape. The next step is to calculate a new mean shape, and re-align all 

shapes again until convergence. 

Point Distribution Model 

After aligning the set of shapes, a representative vector consists of points, 

)y,x, . . . ,y,x,y,x(x 6 06 02211


 is created for each shape and a matrix ),...,,(
21 N

xxxX


  is 

built for the N samples of the user. The mean of X, 
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are also calculated for the use of the PCA. Following this 

calculation, the eigenvector matrix P and the eigenvalues  are found using a Principal 

Components Analysis on the covariance matrix S. After retrieving theses values, the number 

of principal components representing 98% of the variance was chosen. Since different users 

require different number of principal components in order to fulfill this constraint, the 

maximum number of PCs needed for all users to represent 98% of the variance was taken for 

all users, i.e. 10 PCs. 
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According to [70], shape parameters can be assigned using the b matrix, where 

)( XXPb TT  , columns in P represent eigenvectors of S sorted by importance, X
T
 is the 

matrix of shapes, and each column in X  is the average over rows of X (columns in X  are 

equal, since we wish to find xxi  for each i) 

See equation 17 for an example calculation of the shape matrix b. 
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Equation 17 – an example calculation of the shape parameters, b 

ja - the coefficient of the first x coordinate of the first landmark. j is the principal component. 

jb - the coefficient of the first y coordinate of the first landmark. 

ijx - the x value of the j-th point's i-th sample. 

1jx - the mean of all samples of 1ix  where j=1...n 

The equation )( XXPb TT   multiplies the coefficient vector (a,b,c,d in the example) 

with )( xxx  . The result is one mode of variation, a linear combination of the deviation (

x ) of each point. The b value is mainly used for classification, but PDM also allows us to 

generate new shapes with the properties of the training set. Construction of the principal 

component shape is done by PbXPDM  . By using 
iinew PkxX  . By changing k- 

the number of standard deviations, and i, the index of each eigenvector, we can generate an 

unlimited number of new shapes. 
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3.2.2 Classification 

In order to recognize which user performed the gesture, there is a need to compare the new 

signature to each class. Then, a value for each class is determined and the new sample is 

classified to the class which is most likely to include that signature. Prior to this comparison, 

the sample passes a pre-processing phase of finding the corners, interpolation and alignment 

described in section 3.2.1. A threshold test is conducted in order to allow user verification. 

The classification algorithm is the following: 

Procedure user = Classify() 

Begin 

For each user class j: 

Align the test sample to the mean shape of class j. 

Calculate )( jnew
T

jj xxPb   

Find the covariance matrix of bj, bj  

Calculate the Mahalanobis distance T
bj bbbbD )()( 1    

If }{min k
k

j DD   and NijiThreshol dDD ji  ,, , assign the sample to class j. 

End 

3.2.3 Graphical User Interface (GUI) 

The system's graphical user interface was developed in Matlab. It has two main windows: the 

entrance window, which allows the user to select the Enrollment part where one can add 

samples to a training set, and the identification window where a user can classify a new 

gesture to one of the user classes in the database. The GUI can be seen in figure 14. The 

second window is the validation window seen in figure 15, where a user can validate that a 

gesture was collected correctly by the system. 
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Figure 14 - the system's graphical user interface 

The system allowes both identification of sample sets and adding samples to the training set. 

 

Figure 15 - The validation window 

Allows the user to see the input gesture, the interpolated gesture and decide on the number of distance-between-

points standard variation, for removing unwanted points. 

3.2.4 Prototype Sample Collection Program 

 

Figure 16 - The sample collection application GUI 

An Application for automatically recording hand signatures was developed for the use of this 

research. The program was built in C++ and MFC (See figure 16 for the graphical user 

interface). The application automatically samples different gestures and saves them on file. 

File names contain all information needed from the sample: the subject number, session 
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number, distance, camera type, light and the type of gesture recorded. The program has a 

training option that lets users practice their gesture without having it recorded.  

3.3 Preliminary Experiment 

The tracking in the prototype system was made using a Polhemus 3Space FastTrak position 

sensor that plots 3D locations of the hand. The outputs of this sensor were collected and 

entered as text files to the system. Using the position sensor, 25 'X' gestures were collected 

from 3 users: ages 24, 27, 38; two left handed and one right handed; two males and one 

female. 20 gestures were used for a training set, and the rest for a validation set. Since some 

of the gestures were performed incorrectly, the validation set eventually was smaller, and 

contained 7 gestures: 2 of user 1, 2 of user 2 and 3 of user 3. These samples were kept aside 

for accuracy testing.  

3.4 Results for the Preliminary Experiment 

Table 1 shows results for the 7 test samples classification, using the current methods. 

Test # User Output 

Mahalanobis Distance 
Difference 

in distance 

between 

best and 

2
nd

 best 

Ratio 

between best 

and 2
nd

 best 
D1 D2 D3 

1 1 1 19.95 69.76 74.09 00.41 4.97 

2 1 1 19.00 916.94 55.37 16.11 4.39 

3 2 2 31.43 9.79 90.73 05.09 4.46 

4 2 2 37.97 9.69 96.07 39.16 4.15 

5 3 3 149.99 996.90 10.65 00.15 4.10 

6 3 3 01.30 130.65 10.10 69.00 4.19 

7 3 3 143.93 130.61 10.09 71.55 4.10 
Table 1 - The 7 test samples and their distances from each set.  

The difference in distance column shows the difference in the distance between the best fit and the 2nd best fit. 

The ratio distance shows the ratio between the best fit class and the 2nd best. These values can be used for a 

threshold for non-classified. 

Table 1 shows that all 7 samples (100%) were classified correctly. We can also see that 

the difference between the best match and the 2nd best match is relatively large. Therefore it 

is possible to decide on a threshold for the difference in the distance. For example, if the 

difference in distance would have been less than 10, the gesture would have been non-



52 

 

classified. It is also possible to use a threshold on the ratio between the first and second best. 

Here, we would use a rule that if the ratio is bigger than 0.75, for example, the gesture would 

be classified as non-classified. 

Figure 17 shows the training sets of the 3 users after applying PDM with 10 principal 

components. Figure 18 shows the 10 principal components of user 2. 

 

 

 

Figure 17 - 10 PCs and their mean for 3 users 

 

 

Figure 18 - the 10 PCs of user 2  

(top left - PC 1, top right – Pc 5, bottom right – PC 10) 
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3.5 Discussion 

The prototype system and the preliminary experiment reflect the ability to differentiate 

between a small number of users performing the same motion signature. It can be seen in 

figure 17 that although all participants were asked to perform the same shape, and they all 

performed it with similar geometric characteristics (i.e. started from the same point and had 

the same location for the connecting line between the diagonals of the X), the trajectories are 

different. 

Since the shape was known to the system, an extraction of landmarks was performed 

accordingly, by finding the corners of the X and placing a segment around each corner and on 

the straight lines of the shape. This knowledge allows the user to have greater accuracy rates, 

but also limits the possibility of identifying an unknown signature. The challenge of the final 

system is to keep similar identification rates even when the shape is unknown to the system 

once a user starts to enroll. 
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CHAPTER 4: METHOD 

4.1 Overview of the Method 

The biometric user identification system is comprised of an enrollment/training stage and an 

identification (run-time) stage where a user defines a signature gesture and enrolls to the 

system. In the run-time (i.e. identification) stage the user performs the signature when 

prompted by the system and the system returns the identity of the user. An enrollment system 

was developed which allows each user to select his or her own signature. This system 

interactively ensures that the user's signature is consistent and that it is not similar to the 

signatures of other users already enrolled in the system.  

A flow chart of the user identification system is presented in figure 19. The left hand 

side describes an enrollment stage, and the right hand side describes the classification stage. 

The initial data collection operation involves hand tracking, trajectory extraction and 

alignment (performed for every recorded signature). 

For user identification the system collects data from a 3D sensor and extracts the 3D 

location of the user’s hand for every frame. The resultant trajectory is the input to the user 

identification system. After the signature is performed by the user, features are extracted from 

the captured trajectory, and the extracted features are compared to features in a database of 

enrolled users. A distance threshold is used for user authentication. The signature is pre-

defined by the user during the enrollment phase, allowing personalization for better 

intuitiveness and comfort.  

During enrollment, for each sample, the system builds a fitted curve that is based on the 

initial trajectory. Following fitting, the system aligns all signatures to a common ground, 

since the signature can be performed in different locations in front of the camera. Features 

collected are the x and y coordinates of points along the curve, and additional velocity and 

curvature values for segments along the trajectory. An online learning method that uses 

sequential clustering finds different forms of the user's signature for better classification and 

for interactive training – the system can advise the user whether his/her signatures are too 

noisy, or whether there is a similarity to a signature stored by a different user. Two methods 

were evaluated for dimensionality reduction and for learning a distance metric: 

Neighborhood Components Analysis [59] and Point Distribution Model [39]. 
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Figure 19 - Illustration of the final system. 

 Data collection (top): The hand is tracked 

and a trajectory is preprocessed (a) and 

aligned (b).  

 Enrollment sample (left): The sample is 

clustered (c) to find different forms of 

movement in each of the user's 

signatures. Each cluster is aligned (d) and 

a distance metric learning phase (e) takes 

place using samples from all users.  

 Test sample for classification (right): The 

sample is first aligned to the clusters of 

all users (f), the distance to every cluster 

is calculated (g) and if the distance does 

not exceed a threshold (h), the sample is 

classified as belonging to the user with 

the closest cluster. Otherwise, it is not 

classified. 

 

4.2 Data Collection – Trajectory Preprocessing and Alignment 

The features of a trajectory are points (x and y coordinates) along the fitted curve, and 

average velocity and curvature values of fixed length segments of the initial trajectory. These 

features reflect both spatial information such as the signature's shape, and temporal 

information such as velocity, since the shape itself might not be sufficient for user 

verification. Preprocessing of the signature trajectory is necessary for providing a consistent 

representation, and therefore each trajectory is re-sampled uniformly with equidistant spacing 

using a cubic Hermite interpolation for ensuring a constant number of features per signature. 

Prior to re-sampling, the hand trajectory is segmented based on the distance of each point 

from the start and end points, and initial and final movement segments are disregarded as 

they were found to be too noisy. A diameter d of the bounding circle of the entire trajectory is 

determined, and points lying within a distance of 0.1d from the first or last points of the 

trajectory are erased. See figure 20 for an illustration of the deletion process.  
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For additional reduction of variability caused by the location and distance of the user in 

front of the camera, all samples were translated and scaled to the mean shape using 

Procrustes analysis [38], which is a straightforward alignment method. Another alignment 

method tested is Active Shape Models (ASM) [39], where a mean shape is calculated, and all 

samples are translated, scaled and rotated in order to minimize the total Euclidean distance 

between the sample and the mean shape. The process is iterated until convergence of the 

mean shape, and gives more weight to stable points. 

 

Figure 20 - An illustration of the noise deletion process.  

Points within the red circles are to be removed. 

4.2.1 Division into segments 

When recording a trajectory, we assume that the frame rate is constant and therefore we could 

use the distance between points as a velocity feature. The existence of many points on a short 

arc length reflects slow movement, and vice versa. By dividing the initial trajectory to 

segments prior to interpolation, we could obtain both the shape of the trajectory, and the 

velocity values on each segment. See figure 21 for the motivation of dividing into segments. 
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(a)

(b) (c)
 

Figure 21 – Illustration of the difference between fitting an entire trajectory and fitting segments of the 

trajectory. 

(a) the points on the initial trajectory. (b) a fitted curve with 6 equidistant points for the entire trajectory. (c) a 

fitted curve with 6 points for two segments of the trajectory, that best represent the location of the points on the 

initial trajectory. Double circles represent start and end of segments. 

The division into segments is based on points of interest, i.e. points with high curvature 

values. In this method, points are declared as 'knots' between segments, and segments are 

built around these points. Points of interest are found by calculating the curvature value of 

each point and comparing the value to a curvature threshold. Around each point of interest a 

segment is placed and referred to as 'critical segment'. Additional segments are placed 

between critical segments already placed for points of interest. If k points are found as points 

of interest, then a maximum of 2k+1 segments are placed. See figure 22 for an illustration. 

 

Figure 22 - Illustration of the division into segments based on points of interest. 

(a) curvature values are found for each point on the trajectory. (b) points with curvature values higher than a 

threshold are used as points of interest. (c) segments are constructed around points of interest, between 

previously defined segments and between the start point to the first segment and the last point to the last 

segment. 

 

Curvature values are found using the method described in [73] and in equation 18. For 

each point with an angle of curvature that is higher than a threshold, a segment is created. 

The number of points higher than a threshold is defined as k. A constant number of points, n, 

of the entire trajectory, is distributed between the different segments using the following 

algorithm: 
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a) Find L, the total length of the trajectory. Each segment around a critical point will be 

of length L/k. 

b) Place segments around critical points, and segments between critical segments. In 

case of two segments overlapping, find the middle point between segment centers as 

the new border between segments. Let N be the final number of segments. 

c) Find the percentage mi of points of segment i in the initial trajectory, out of the total 

number of trajectory points. 

d) Calculate Fi the expected number of points on segment i of the fitted trajectory: 

)2( knmF ii  . 2k additional points are added to handle points on segment 

borders. 

e) Each segment i receives i
F 
   Points. The remaining points (  




N

i

iFn
1

) are 

distributed iteratively to segments according to   iiNi FF 1min  until all n 

points have been distributed. 

f) In case of too many (according to an empirically set threshold) segments are 

identified, e.g. in case of many curved sections, the system iteratively attempts to 

construct the fitted curve with k=k-1 points of interest (combining the smallest 

segment with the smaller adjacent segment). 

g) Erase duplicate points at the 'knots' between segments. 

  2/322 )'()'(

''''''

yx

xyyx
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Equation 18 – Calculations of curvature values.  

1
st
 and 2

nd
 derivatives of the x and y coordinates are found using linear and spline interpolations 

 

4.3 Dimensionality reduction 

In order to avoid the 'curse of dimensionality' and since some features may be irrelevant and 

incorporate noise, it is desirable to reduce the number of features. As no information is a 

priori available regarding the signatures that will be selected by the users or the differences 

between users, a distance metric learning method is needed that will be robust for all 

signatures. Another limitation is that the number of training samples should be kept small to 
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make the system practical. For dimensionality reduction, two methods were tested: Point 

Distribution Model (PDM) [39], an unsupervised method based on principle component 

analysis (PCA), and Neighborhood components Analysis (NCA), [59] , a supervised method. 

Linear methods were selected since their simplicity is desirable when there is no a priori 

information regarding expected feature values.  

PDM is unsupervised and straightforward while NCA is supervised and based on the k-

nearest-neighbors classifier that was found useful in similar systems such as in [9], where the 

k-nearest-neighbors classifier and leave-one-out cross validation, both incorporated in NCA, 

are used for gait recognition. 

Point Distribution Model (PDM) 

Point Distribution Model is an unsupervised method in which a model is built independently 

for each user. Using equation 19, a shape vector bj is calculated for each sample j of the 

user’s signature based on the eigenvectors found by the PCA analysis. Let fj be the feature 

vector of sample j. the matrix P represents eigenvectors of the covariance matrix of the user's 

samples and f is the vector of average values for each feature across samples of the user. 

)( xxPb
j

T

j
  

Equation 19 - Finding the shape vector in PDM 

[70]  

The number of PCs (i.e. the number of columns to be used in matrix P) chosen is defined a 

priory and is constant for all users. The shape matrix b can be used for calculating a 

Mahalanobis distance
 

T
newbnewj bbbbD )()(   where b  is the mean shape of the 

signature to which the sample is compared, and b  is the covariance matrix of b. 

Neighborhood Components Analysis (NCA) 

Neighborhood Components Analysis is a Mahalanobis distance learning method. The 

ordinary and regularized Neighborhood Components Analysis is described in chapter 2.  

The method doesn't require any prior knowledge (e.g., a Gaussian distribution) about the 

training data, and has the advantage of robustness to errors caused by different inputs (e.g., 

no matrix inversion is needed). For the distance metric learning, a regularized NCA [72] was 

applied. 
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4.4 Enrollment / System training 

Training samples are gathered sequentially in an interactive enrollment phase. Each user 

records a small number of samples when enrolling to the system. The system lets the user 

record each sample for a constant duration. The system also shows the fitted signature in a 

graphical user interface (GUI) and allows the user to remove a sample in case of an error. The 

samples are clustered using a sequential clustering algorithm described subsequently. The 

first set of samples taken in the interactive enrollment is used for distance metric learning 

using NCA, and additional samples are used for a further optimization of the system. The 

additional samples are used as a calibration set both for threshold determination and for 

finding an accurate feature space projection using NCA, and not used for clustering. 

In order to avoid suboptimal results of NCA, the projection matrix is recalculated until a 

proper solution is found. For a predefined number of iterations, the NCA yields a projection 

matrix and the accuracy is measured. If the accuracy of evaluating the calibration samples is 

satisfactory, e.g., above 98 percent, the projection matrix is kept for future classification. If 

not, another iteration of NCA takes place and the accuracy is compared to previous iterations. 

The best projection, or the first projection that is above a desired accuracy, is selected for 

future classification.  

The system selects a threshold for each user instead of using a predefined threshold. The 

threshold chosen is determined by comparing each calibration sample to the user's training set 

and measuring the distance from the sample to the user. The threshold is set as the maximum 

distance. This threshold can be used for user validation, i.e., samples with a distance larger 

than a threshold will not be classified to that user. 

On line Interactive Enrollment 

Within a user's training set, there could be more than one form of movement, i.e., the user 

might perform his/her signature in more than one way due to fatigue or different variables 

derived from motor control. In order to make sure the user's sample is classified correctly, the 

on line interactive enrollment employs a two-threshold sequential clustering [57] method. 

The first threshold (1) is used for accepting a sample to an existing cluster. The 2
nd

 threshold 

(2) is used for rejecting a sample from an existing cluster and 1<2. Samples between 1 

and 2 are kept aside for future decision. 

The sequential clustering method performs the following functions: 

1. Interacts with the user. 
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2. Divide the samples into clusters, in case the user performs the signature in different forms 

3. Outlier detection 

In the clustering algorithm a sample can be assigned to one of the following: (a) an 

existing cluster, (b) a new cluster, and (c) a temporary storage location. Samples in a 

temporary storage are retained until all the samples have been processed, at which point they 

are introduced again into the clustering algorithm. At this point all existing clusters are more 

stable since clusters are composed of more samples. A flow chart of the algorithm is 

presented in appendix IV. By checking if any sample was clustered in the previous iteration, 

we assure the convergence of the process in which all samples will eventually be clustered. 

i.e., if no sample was clustered in iteration q, in iteration q+1 a stored sample will be 

clustered to a new cluster. After all samples were introduced to the procedure and the storage 

is empty, the process ends. A pseudo code for the algorithm is given below: 

Procedure [C] = InteractiveEnrollment() 

Begin 

While not all samples were clustered 

For each sample j 

If this is the first iteration Then 

Collect Sample xj 

Else 

Use a sample xj already collected in a previous iteration 

If xj is the 1
st
 sample AND xj was yet to be clustered AND no change took place at the last 

iteration Then 

Form a new cluster c1 and add xj to c1 

Else If the sample was yet to be clustered Then 

For each cluster Cc  //where C is the cluster set of all enrolled users 

Align xj to the mean shape of c 

Calculate the distance between x and the mean of c 

Find d=Min(distance(xj,ci,k)) //the minimum distance between xj and c, where c is cluster i 

of user k. 

If d<1 AND the winner cluster belongs to the enrolling user Then 

Add x to the winner cluster 

If d<1 AND the winner cluster belongs to a different user Then 

Advise the user to select a different signature 

If d>2Then 

Form a new cluster ck+1 

Add xj to ck+1where k is the current number of clusters 

If 1<d<2Then 

Store xj in storage 

Merge() // Merge clusters that are closer than 3  

End 
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A limit on the number of clusters per user is added (3), since too many clusters may 

indicate a high variability in the user's motion. In case of a small number of training samples, 

even small clusters (i.e. containing one or two samples) are kept and used for classification. 

When the number of training samples is high, it is possible to remove clusters smaller than a 

threshold which have a high probability of being outliers, and by that to remove unwanted 

variability in the training set. 

The traditional motivation to use online clustering algorithms is to handle a large 

amount of data sequentially instead of in one pool. The large amount of data assures near-

optimal learning. In this case, the small amount of samples reflects in suboptimal clustering. 

In order to overcome this weakness, a merging procedure takes place once the user finished 

enrolling. In this phase, clusters that have a distance smaller than a threshold3 are merged 

into one cluster. In this stage there is also a limit on the maximum number of clusters per 

user. 

4.5 Run-time / Identification 

In order to classify a sample, it is first aligned to each cluster, and the distance to the cluster 

is calculated. A distance threshold is used for user verification. If the distance does not 

exceed a threshold, the sample is classified to the closest class/cluster, otherwise it is 

unclassified. The classification algorithm is given below: 

Procedure [result] = Classify() 

Begin 

For each user i  

For each cluster j 

Align the test sample to the mean shape of cluster j 

Calculate the Mahalanobis distance: 
T

jbjj bbbbD
j

)()(  where T
jnew

T
j FFPb )(   //for PDM and: 

T
jn e w

TT
jn e wj xxAAxxD )()(   

// for NCA. 

D = min(Dj) 

If D > Threshold Then classify the sample as "not found".  

Else return the closest user's ID.  

End 
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CHAPTER 5: EXPERIMENTS 

5.1 Subjects and Experimental Procedure 

Three different experiments were conducted. In all experiments, subjects were industrial 

engineering students in Ben-Gurion University of the Negev. A different pool of subjects was 

used for each experiment. The experimental protocols were approved by the Ben-Gurion 

human subjects research committee. In the first experiment an independent signature system 

was tested in which all subjects performed the same signature gesture. The experiment was 

repeated three times, each time using a different signature shape. The shapes were a circle, a 

line and an X. In the second experiment a dependent system was tested in which each subject 

picked his/her own signature. In the third experiment, 6 out of the 23 subjects of the 2
nd

 

experiment were asked to imitate another participant's signature, in order to test how robust 

the system is to forgeries. 

In all experiments, subjects sat 1.5 meters away from a 3D camera. A recording system 

recorded each signature for 7 seconds. Prior to recording, there was a countdown of 3 

seconds. The subjects were recorded using the PrimeSense 3D camera and hand tracker. The 

camera captures both RGB and depth data using structured light and the tracker provides 3 

coordinates of the hand's location. In our experiment all the subjects choose to perform 

planner signatures in the frontal plane although no such limitations were imposed. Thus in the 

current research the frontal plane coordinates (x, y) were used for signature representation 

and the depth coordinate (z) was disregarded. The subjects were recorded in two different 

weeks, in order to see the shape difference and system accuracy due to the users' ability to 

replicate their signatures over time. Since the system's accuracy is influenced by the number 

of users (i.e. the probability of identifying one user out of N), users were divided into groups 

of varying sizes, in order to test the effect of group size. The total number of samples 

collected in each experiment is shown in table 2. 
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Experiment I 18 18 4 6 0 

Experiment II 17 20 5 10 0 

Experiment III 6 20 5 5 15  
Table 2 - The total number of samples for each experiment  

Experiment 1: The following shapes: x , ○ , →. Experiment II: Signatures. Experiment III: Signatures and 

imitating another user's signature. 

5.2 Experiment I: Independent System (Predefined Signatures) 

Sample signatures were collected from 18 subjects, age 25±1; 14 females, 4 males; 17 right 

handed, 1 left handed. Subjects recorded a total of 28 samples each of shapes X, O and 'line' 

(i.e. where subjects were asked to perform a horizontal line to the right and back to the left). 

Subjects were instructed to draw the shape in the air, without demonstration from the 

experimenter in order to avoid imitation. The samples were collected in two sessions: 22 and 

6 samples in the first and second sessions, respectively. 

Eighteen of the samples of the first session were batched as a training set, and the 

additional 4 were set aside and used for calibration. Samples were reviewed and deleted in 

case of tracking error or a severe human error in performing the requested shape. Samples 

from the training set that were deleted were replaced by one out of the 4 calibration samples. 

After evaluating the samples, all users had at least 18 samples for a training set and 1 

calibration sample.  

The performance of the system was measured as the accuracy in identifying the user 

performing a shape. This experiment had two main objectives: (a) to analyze the capability 

(accuracy) of identifying a user based on the motion characteristics of a given signature, and 

(b) to study the effect of shape complexity on user identification. For free hand gesturing X is 

considered complex to perform, the circle is simpler and the line is the simplest. It was 

hypothesized that it is more difficult to correctly identify a user as the number of different 

users performing the same gesture is increased. To study the effect of such a “scale up”, tests 

were made for different user cohort sizes, starting from size 3 and increasing incrementally 

up to size 7 (referred to subsequently as “group size”). This was repeated using each of the 
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shapes independently. Thus, for five group sizes and three shapes a total of a 15 tests were 

made, where in each test, the accuracy based on a sample of 18 groups was evaluated. 

5.3 Experiment II: Dependent System (User Defined Signature) 

In this experiment, 23 different subjects: age 26±1.5; 13 females, 10 males; 17 right handed, 

6 left handed recorded their own signatures. The subjects were asked to think of a signature 

that is simple to replicate but difficult to imitate. On the first session, subjects recorded 20 

samples as a training set and 5 samples as a calibration set. On a second session a week later, 

subjects were recorded again performing their selected signature for 10 times. These samples 

were used as test samples.  

5.4 Experiment III: Forgery 

Six subjects out of the 23 of experiment 2: age 29±2.4; 3 females, 3 males; 4 right handed, 2 

left handed were used to try to imitate (forge) the signatures of other subjects. Each of the 6 

performed 3 repetitions of 5 signatures of other subjects, resulting in 90 fake signatures 

overall. Prior to imitation, the subjects (imitators) observed each of the five users they were 

to imitate, logging into the system using his/her signature for 5 times. For each participant 

enrolling to the system, the other 5 subjects sat in the room and watched him perform his 

signature in front of the camera. Following the user's enrollment, the 5 imitators performed 

his signature one after the other. 

5.5 Parameter Selection and System Evaluation 

Samples taken in the experiment were used for: a. the training of each user's model; b. for 

finding the best system parameters and c. for evaluating the system's accuracy. For the 

training of each user's model, the number of dimensions was reduced to 7 in both methods. 

Second session test samples of 10 users out of the 23 in experiment II (signature experiment) 

were used for finding the parameters of the regularized NCA (), the thresholds for the 

sequential clustering algorithm () and for determining the alignment strategy (i.e. 

Procrustes analysis or ASM alignment). The second session test samples of the additional 13 

users were used for the evaluation of the system. Therefore, for the system evaluation, 

samples from 13 users were used for evaluating a system with the clustering ability (i.e. 
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interactive enrollment) and regularized NCA based system. 23 users were used for testing 

non-regularized NCA and PDM.  

In order to test the system's accuracy, subjects were divided into 18 groups of 3 up to 7 

users, and the system's identification accuracy based on the 2
nd

 session test samples was 

measured. For each group size, users were randomly assigned to a group, in a procedure 

similar to bootstrapping. Using this procedure, a larger number of groups at each size could 

be tested, each time with a randomly selected group of users. For example, 23 users were 

randomly divided into 7 groups of size 3, and 2 users were not assigned to any group. The 

accuracy of each system with 3 users was measured. Following that, the users were randomly 

reassigned into groups of 3, and the accuracy was measured again. For each group size, we 

obtained a sample of 18 groups. 

Regularized NCA and online learning required optimization that was performed using 

samples of 10 users. The 13 additional users were divided only into groups of 3 or 4 since the 

probability of having two similar systems of bigger groups is high (i.e. having two systems 

with the same enrolled users). 

In experiment III, thresholds for distances were introduced. The accuracy measures 

showing in experiment I and II do not use these thresholds, i.e. there is no class of "Not 

Found". 
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CHAPTER 6: RESULTS AND DISCUSSION 

6.1 Experiment I: Independent System (Predefined Signatures) 

The system's accuracies for the different shapes and different group sizes are shown in figure 

23. For every group size, the O shape has the highest identification rates. As expected, the 

'line' shape is the least classifiable. The differences between shapes were tested using a 

repeated measures ANOVA test and are significant (p-value=0)
.
 

We assume that the 'line' shape is too simple for classification, and the 'X' shape is too 

complex for repeatedly performing identical shapes. The 'O' shape is the tradeoff between the 

simplicity of performance and repeatability. In figure 24, three different 'X' shapes, circles 

and 'line' shapes are shown. The shape itself is in many cases different than the shape the 

participant was asked to perform, as can be seen for the 'line' shape, which is in most cases 

not straight. The correct identification accuracy of a single user among many users decreases 

at a rate of approximately 0.03 for each additional user (based on linear regression as shown 

in figure 23). Even though the ‘O’ signature provided the best result, its best accuracy was 

only 90 percent. As can be seen in the next experiment, the use of more complicated 

signatures increased the accuracy significantly. 

 

Figure 23 - Accuracy results using regularized NCA for different group sizes and different shapes. 
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Figure 24 – Various Xs, circles and lines performed by 

participants 

Top row: 'X' shapes performed by three users. These 

shapes were found to be complex, in a way that 

prevented the repeatability of performing it. i.e. on the 

second session, subjects forgot the exact X form that 

they performed on the first session. 

Middle row: 'line' shapes performed by three users. 

Even though participants were asked to perform a 

straight line, most users performed curved segments. 

There is a higher variation between samples in the 

'line' shape than in the 'O' shape. 

Bottom row: O shapes performed by three users.  

The shapes have different start points and different 

curvature values along the trajectory, which allow the 

differentiation between users.  

6.2 Experiment II: Dependent System (User Defined Signature) 

In this experiment users selected their own signature and the identification accuracy for user 

groups with different sizes was determined. Some signatures chosen by subjects are shown in 

figure 25. As can be seen in figure 26 and table 3, the identification accuracy of all group 

sizes was above 92 percent using the NCA method. The differences between accuracies in the 

different group sizes are significant (Kruskal Wallis test p-value=0.01). Two additional tests 

with regularized NCA and interactive enrollment (NCA reg + Cluster) achieved better 

accuracies. In order to examine the regularized NCA and the interactive enrollment options 

which require prior optimization, an evaluation of the accuracy was done using the 13 users 

whose samples were not used for optimization. These 13 users were only divided into groups 

of 3 and 4.   

 

Figure 25 - Examples of signatures chosen by different participants. 
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Figure 26 - The accuracy using different distance metric learning methods 

  3 Users 4 Users 5 Users 6 Users 7 Users 

NCA regularized 98.0% 98.1% N/A N/A N/A 

NCA regularized + Clustering 96.1% 96.0% N/A N/A N/A 

NCA 96.7% 92.9% 92.6% 94.0% 92.3% 

PDM 96.2% 89.7% 91.5% 86.4% 85.3% 
Table 3 - Accuracy of the system 

For PDM and NCA – accuracy results of 18 groups with 3-7 users enrolled. For regularized NCA and 

regularized NCA with online learning (clustering), accuracy results for 18 groups of size 3 and 4. Note that 

these results were calculated without a threshold on the distance, used for user verification.  

When analyzing groups with accuracies lower than 80 percent, we found that one 

specific user was enrolled to all of these groups. The training set, calibration set and test set 

of this user are presented in figure 27. This exemplifies a user without signature repeatability 

over time. In a second session (2
nd

 week set) the user performed the signature differently (see 

the additional curve to the signature in the right part of figure 27). This changed the geometry 

of the signature and resulted in poor recognition rates for the groups to which the user 

belonged.  

 

Figure 27 – Differences in the signatures throughout sessions 

Training set (left), calibration set (center) recorded on the first week and test set (right) recorded a week later of 

user 8.  
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Another test compared the accuracy based on samples of the first week compared with 

the accuracy of samples recorded on the second week. Since in NCA we take advantage of 

the first set (i.e. the calibration set) to find an accurate projection of features, we cannot use 

NCA for this comparison. Instead, we used the PDM method that does not use the calibration 

set for optimization.  

The accuracy of the system with 10 users out of the 13 that were not used for model 

selection was measured using PDM for the 1
st
 week set's samples and for the 2

nd
 week set's 

samples. It was found that the accuracy of identifying one user out of 10 is 99 percent using 

the 1
st
 week set and 81 percent using the 2

nd
 week set, as seen in Table 4. When reducing the 

number of enrolled users from 10 to 5, the accuracies of both sets increase and reach 100 

percent in the 1
st
 week set and 91.5 percent in the 2

nd
 week set. The main reason for this 

difference is the subjects' difficulty to replicate their signatures. The signature trajectories for 

some users show big differences between the first week and in the second week. 

 

 First week Second week 

Average accuracy 99% 81% 

Half width 0.02 0.22 
Table 4 - Accuracy in the 1st week and the 2nd week 

Differences in accuracy when evaluating 1st week samples vs. 2nd week samples in a system with 10 users 

enrolled. Half width is accuracyt 9,975.0 . 

6.3 Experiment III: Forgery 

Table 5 describes the results for the entire set of 6 users of experiment III. Note that in Table 

4, the results are given for different thresholds. Details of the various thresholds used are 

described below.  

A threshold is a nearness criterion of the distance between the test sample and the 

training data. Different automatic threshold options were checked (see Table 5) in order to 

capture the ability to forge a motion signature. The threshold is not fixed and calculated 

automatically based on each user’s calibration set. The threshold options tested include: the 

distance of the furthest sample out of the 5 calibration samples, which were recorded 

immediately after training; the 2
nd

 most distant sample; the distance to the furthest 

sample*1.1; the distance to the furthest sample*1.5; the distance to the furthest sample*2 (i.e. 

twice the distance to the furthest sample). 
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 All users (6) 2 stable users 

Threshold FAR FRR FAR FRR 

     

2
nd

 furthest sample 3% 77% 3% 40% 

Furthest sample 7% 60% 3% 20% 

Furthest +10% 8% 60% 3% 20% 

Furthest +50% 13% 47% 10% 10% 

Furthest +100% 23% 33% 27% 10% 
Table 5 - Forgery experiment results. 

Forgery experiment results for different thresholds using the regularized NCA. False Acceptance Rate (FAR): 

the probability of a forged sample to be accepted. False Rejection Rate (FRR): the probability for a genuine 

sample to be rejected. All users: All 6 users whose signatures were imitated. 2 stable users: 2 users out of the 6 

who were able to repeat their signature accurately in the 2
nd

 session.  

The probability of successfully forging a user's signature (i.e. FAR - false acceptance 

rate) is for most threshold rules below 10 percent. A problem arises with the false rejection 

rate (FRR). Since the samples that were used for this calculation were captured a week after 

training, there was a difference between the training set and the test samples. We thus, looked 

at the two most stable users, i.e. these two users (out of the 6) who had good repeatability of 

their motion signature as reflected by the smallest distances for the 2
nd

 session's samples). 

From column 5 of Table 5 we see that the FRR value is lower for all threshold rules. We 

cannot expect this kind of stability over time from a novice user, but as the user gains 

experience with the system, we assume the FRR will decrease. In any case, there is an 

obvious tradeoff between the user's ability to be correctly identified, and the probability of a 

forgery. For different applications of the system, a different threshold rule can be used. When 

observing a system allowing 3 attempts to log in, and by looking at the two stable users with 

the furthest sample threshold as an example, we see that the probability for correct 

identification in one of three attempts is 99.2 percent, while for an intruder the FAR 

probability is 9 percent. For 3 attempts using all 6 users, we receive FRR and FAR rates of 6 

percent and 19 percent, respectively. Another illustration of the difference between stable 

users and all users is given in figure 28, where a Receiver Operator Characteristic (ROC) 

curve is shown. A perfect ratio between True Positive (TP) and False Positive (FP) would 

yield a point at the top left corner of the graph (i.e., TP=1, FP=0). We can see that for 2 stable 

users, this TP/FP ratio for any given threshold is better than the ratio of 6 users. 
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Figure 28 - ROC curves for 6 users (full line) and 2 stable users (dashed line) 

6.4 Additional Results 

6.4.1 Alignment 

For aligning the shapes, several methods were tested: a. Procrustes analysis consisting of 

translation and scaling; b. translation only and c. Active Shape Models alignment consisting 

of translation, scaling and rotation of samples. Another strategy was to first divide the 

trajectory into 3 segments, and align each segment independently of other segments. Figure 

29 shows an example of different alignment strategies. 

Procrustes analysis in 29(d) was found to be the best strategy. Even though the 

alignment in 29(e) appears to be very compact, the division into segments also reduces the 

distance from samples other than the ones performed by the user since the test sample is also 

divided into segments, and each segment is compared to its counterpart in the model. 

Therefore the error rate increases. The signature changes its shape in 29(f) since the 

Procrustes analysis subtracts the mean shape from each sample, and therefore brings all 

segments to the same location.  

Accuracy values for different alignment strategies can be seen in table 6 and figure 30. 

The division into segments did not yield better results when combined with both Procrustes 

and ASM. The best strategy was found to be Procrustes analysis, with scaling and translation 

to the mean shape. This strategy also had the least amount of outlier clusters. The comparison 

was performed with the regularized NCA classifier on the data of experiment II of user 

defined signatures.  
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Figure 29 - Different alignment strategies. 

Training set before alignment; (b) Translation only; (c) Active shape models alignment; (d) Procrustes analysis 

(Translation and scaling); (e) ASM alignment performed on 3 segments of the trajectory; (f) Procrustes analysis 

performed on 3 segments of the trajectory. 

 
Figure 30 - Accuracy for different alignment methods 

 3 Users 4 Users 

Procrustes 98% 98% 

ASM 97% 95% 

Translation 96% 95% 

Procrustes + Segments 92% 91% 

ASM + Segments 85% 81% 
Table 6 - Accuracy for different alignment methods. 

The accuracy of the system using different alignment strategies for groups of 3 users and groups of 4 users. 

Procrustes: Scaling and translation; ASM: Active shape models alignment (scaling, rotation, translation); 

Translation: translation only; Procrustes + Segments: Scaling and translation for 3 segments; ASM + Segments: 

ASM alignment for 3 segments. 

6.4.2 Online learning / Clustering 

The interactive enrollment phase was not a part of the above experiments, and therefore, 

users did not stop their enrollment nor picked a different signature due to the warnings of the 

80%
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system. Here we emulate the enrollment process on the samples used in the experiment and 

use these results to help explain the experimental accuracies obtained. As can be seen in 

Table 3: NCA reg+cluster option (regularized NCA + online learning), the clustering of 

samples obtained by the interactive enrollment phase does not improve the accuracy of the 

system. Even though results have not been improved, we found that the warnings during 

enrollment were given mostly to users belonging to groups with low accuracy results. For 

every group with recognition rate of less than 80 percent, warnings of both similarity and 

variance were given to at least one user. Moreover, all groups whose users did not get any 

warning eventually were identified with a 100 percent success. Even though, in some cases 

warnings were given even if the system eventually identified all testing samples (100 percent 

accuracy), resulting in a false alarm. Out of 18 groups of size 3, at least one user in 22 percent 

of the groups received a false warning during training (i.e. a warning even when the system's 

accuracy was 100 percent). Out of the 18 groups of size 4, at least one user of 17 percent of 

the groups received a false warning.  

An important outcome of the enrollment process is to find different forms of movement 

and outliers in the training set. Figure 31 shows two users whose training samples were 

clustered to more than one cluster. The top user's samples were clustered to 4 clusters 

representing different forms of movement. The bottom user's training set was clustered to one 

primary cluster and 3 additional clusters that reflect outliers in the training set. 

 
Figure 31 - Clustering of training samples.  

Top: Four different forms of movement in the user's training set found by clustering.  

Bottom: three outlier samples that do not belong to the primary cluster were found during clustering. 
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6.4.3 Division into segments 

Table 7 show the accuracy of the system with divided segments. The results are good but this 

technique did not outperform the identification based on the entire trajectory. The main 

advantage of using high curvature points is the use of additional geometrical information 

from the trajectory. Curved areas are more complex and therefore it is assumed that more 

difference between individuals will be found there. The disadvantage is that the variance 

within an individual's training set can cause different points to be selected for different 

samples of the same signature. In that case, noise is incorporated into the training set since 

point locations along the trajectory are changed significantly. Figure 32 show the distribution 

of points for curvature based segments and equi-distant spacing. 

 
Figure 32 – Distribution of points for the curvature based method and equi-distant spacing. 

 

 3 Users 4 Users 

Mean 96.2% 96.3% 

S.D. 4.7% 5.2% 

Table 7 - Accuracy for trajectories divided into segments 

6.5 Statistical Analysis 

Three statistical tests were performed for the results analysis: 

1. Linear regression for the difference in group size in experiment 1 of predefined 

signatures. 

2. Anova Repeated measures for the difference between different shapes in experiment 1 

of predefined signatures. 

3. Kruskal Wallis test for the difference between group sizes in experiment 2 of user 

defined signatures. 
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6.5.1 Linear regression – experiment 1 – predefined signatures 

This test evaluates the reduction in accuracy as a function of the group size. 

Hypothesis: 

H0: There is no difference between groups of varying sizes 

H1: Otherwise 

Statistical results: 

 For the 'O' shape, the linear regression function was found to be y=-3.4x+92.2 

 For the 'X' shape, the linear regression function was found to be y=-3.7x+88.9 

 For the 'line' shape, the linear regression function was found to be y=-4.6x+84.8 

The corresponding r
2
 values are: {0.901, 0.871, 0.972} respectively.  

The slope in each function is the decay in accuracy for increasing the group size. Since the 

slope is different from 0 and the r
2
 values are all above 0.85, we can say that there is a 

difference between systems of different sizes. The intercept is the theoretical accuracy for a 

group with 0 users and irrelevant in this case. See figure 23 for the average accuracy values 

for each group size and the linear regression trend line. The test was conducted in Microsoft 

Excel 2010. 

 

6.5.2 ANOVA Repeated Measures – experiment 1 – predefined signatures 

This test evaluates the difference in accuracy for different shapes. Since subjects performed 

the three shapes sequentially, we tested the hypothesis using a general linear model – the 

Anova repeated measures. 

Hypothesis: 

H0: The accuracy is different for each shape 

H1: Otherwise 

Statistical results: 

See appendix B for the output. Sphericity was found in a significance of 0.19, and therefore a 

correction of the degrees of freedom was needed. Two corrections were checked: 

Greenhouse-Geisser, Huynh-Feldt. An additional test with sphericity assumed was also 

examined. Under all tests, the p-value for the difference between shapes was .00. 

The test was conducted in PASW statistics (SPSS) 17. 
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6.5.3 Kruskal-Wallis test – experiment 2 – user defined signatures 

This test is a non-parametric test for the difference between 3 or more populations. We 

cannot assume that the accuracy has a Gaussian distribution, so we used this non-parametric 

test.  

Hypothesis: 

H0: There is a difference between groups of sizes 3 to 7 in experiment 2 

H1: Otherwise 

Statistical results: 

The difference between groups was found to be significant with p-value of 0.014. 

See table 8 for a detailed output and figure 32 for a box plot of the data. The test was 

conducted in Matlab R2009b. 

 

Source SS df MS Chi-sq Prob>Chi-sq 

Columns 14338.2 4 3584.55 12.48 0.0141 

Error 122327.3 115 1063.72   

Total 136665.5 119    
Table 8 - Kruskal Wallis test output 

 

 

Figure 33 - Box plot for the accuracy of different group sizes 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

The main hypothesis of this research is that individuals can be distinguished by the attributes 

of their motion. This hypothesis is validated by a system designed to identify individuals by 

their hand motion in the form of a free space written signature. It was found that the system is 

able to identify a user out of many. However, the accuracy relies on the repeatability of the 

user’s hand motion signature. 

In a test of an independent system (i.e. all users use the same signature) it was found 

that for a relatively simple hand gesture (an ‘O’ shape), the system can identify a user out of a 

group of 3 users with 90 percent success. However, for a dependent system (each user has a 

different signature) where more complicated signatures were used, the accuracy significantly 

increased to over 98 percent for 3 user groups. 

In addition, tests for copycat users (forgeries) were made. For users with high 

repeatability, one can see that both the false rejection rate and false acceptance rate give good 

results with 91 percent probability for an intruder not being able to log in and 99 percent for a 

user being able to authenticate in one out of three trials. Users without proper signature 

repeatability (large motion variability) were more susceptible to forgeries. It is thus suggested 

that such users undergo training to develop more consistent free space signature motions. 

This is similar to the phenomena of script variations on paper.  

Another development of this research is an interactive signature enrollment procedure, 

which allows users to select signatures of their choice, for better intuitiveness and comfort. 

This system interactively ensures that the user's signature is consistent and not similar to the 

signatures of other users already enrolled in the system. Development of an online real-time 

enrollment system provided a significant challenge as it required continuous shape 

realignments, dynamic reconfiguration of the recognition system by automated sequential 

clustering of the signature classes, and the projection of unknown trajectory configurations 

into lower dimensional space. This is in contrast to most gesture recognition system, in which 

the system is designed with a priori knowledge of a fixed number of known signature 

gestures. The proposed gesture signature system can complement vision-based hand gesture 

recognition systems for content adaptation, customization, parental control and security. 

An interesting future research direction would be to develop a dynamic adaptive 

system, in which users with a lack of experience can improve their performance over time. 
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Another topic of interest is the evaluation of a system with similar users such as family 

members or even twins. Moreover, a generalization of this work to entire body motion is an 

interesting topic, which fits with many studies and applications that attempt to identify an 

individual by gait, or understand more about the physical or psychological condition of 

individuals through automatic motion analysis. 
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APPENDIX I: SYSTEM ARCHITECTURE 

Click on the icon to extract a zip file with HTML based help files that contain information 

and source code. After extraction, open UserIdentification/doc/FinalSystem/index.html 

For the system activation, refer to UserIdentification/start.m. Note that the PrimeSense 

camera has to be installed for the identification system to function. 

 

 

The system was developed in Matlab version 2009b using object oriented principles. 

The system has four classes, and additional external functions. The functions are: System, 

User, Cluster and Sample. A class diagram is shown in figure 34, and a full description of the 

code is shown in the attached zip file to this appendix. The System class controls the inter-

users variables such as the NCA matrix and the user list. Each user in the user list of class 

System is an instance of User. Each user has its training and calibration samples that were 

recorded during enrollment. All samples that were used for identification are kept in a Test 

Set array of samples. The class Cluster inherits User since it has very similar characteristics: 

an array of training samples, and representative feature values (mean shape, velocity and 

curvature values). The class Sample is used for storing information of samples: the initial 

trajectory; the fitted trajectory; an aligned version to the cluster the sample is currently 

assigned to; and velocity and curvature values. All operations on the trajectory are functions 

in the Sample class. In addition to these classes, additional static functions were used for 

interpolation, optimization, plotting and additional operations that are being used during the 

activation of the system. 
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Figure 34 - A class diagram (simplified) of the system. 

Refer to the appendix 1 for a full description of the classes, properties and methods. 

 

Class description 

Class User 

Description 

Keeps information of a user enrolled to the system. 

Properties 

Variable name Description 

Aligned  
A boolean variable for determining if the samples of this user 

were already aligned. 

AlignedMeanTrainingShape  The mean shape after alignment 

AvgCurvature  
An average of the curvature across different segments on the 

trajectory 

AvgVelocity  
An average of the velocity across different segments on the 

trajectory. 
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Clusters  An array of type Cluster containing the clusters of the user 

Fake1  5 Fake samples done by a different user  

Fake2  5 Fake samples done by a different user 

Fake3  5 Fake samples done by a different user 

Fake4  5 Fake samples done by a different user 

Fake5  5 Fake samples done by a different user 

ID  the user's ID 

MeanTrainingShape  the mean shape before alignment 

NumberOfClusters  The number of clusters that belong to this user 

PDM  
A struct containing the matrices needed for the PDM analysis 

(b matrix, X Covariance matrix etc.) 

Threshold  
The distance for which samples are no longer declared as 

belonging to this user. 

testingSamples1  
Reference set of 5 samples, used for optimization and 

threshold determination 

testingSamples2  
The test samples that were taken a week later, used for 

evaluation of the accuracy 

trainingSamples  an array of Samples - the training set 

Methods 

Type Function name Description 

 AddSample Adds a new sample to the set, or creates a set if the set is 

 AddSet  
type: 1: training, 2: testing1, 3:testing2. 4: fake1, 

5:fake2. 

static AlignOneSampletoMean  This function aligns the test sample to the database, in 

static Alignment  
This function aligns Training Set shapes to the Mean 

shape. 

static CalcPDM  Function creates Point Distribution Model Set. 

 CopyConstructor  Copies the contents of u into a new user u2 

 CreateSampleSet  
returns a 3D trajectory set of either the initial or fitted 

trajectory of this user. 

static ProcAlign  
Procrustes analysis - Scales and translates a sample to 

the mean 

 TTSAS  Performs sequential clustering of the samples. 

 ThreeDistances  

Returns distances from a test sample to three samples of 

a user: the closest to the sample, the furthest to the 

sample and the mean shape. 

 align2User  Align one sample to the mean of the user 

 alignBySegment  
same as above, aligns parts of the sample and not the 

entire sample 

 alignTestSets  
Aligns the test sets (1 and 2) to the mean shape of the 

training 

 alignUser  
aligns all samples to each other and calculates a mean 

shape accordingly 

 calculateTrMean  Calculates the mean of the training set. 

 compare2User  Returns the distance from a sample to the mean shape of 
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the 

 completeSet  
Makes sure the user has 20 training samples by taking 

the missing samples from test1 

 copySamples  
copies samples from one user to another (similar to copy 

constructor) 

 deleteSample  Delete sample i from sets 1,2,3 = training, test1,test2 

 fitSet  Creates a fitted set for the user's samples 

 getAlignedSamples  
Returns X Y and Z coordinates of the sample set. should 

be 

 getSamples  
returns X Y and Z coordinates of the sample set. should 

be activated only after fitting. 

 mergeClusters  Summary of this function goes here 

 plotClusters  Plots samples as part of clusters, should be done after 

 plotFakeSet  Plots only the fake samples 

 plotTestSet  Plots only the test sets (1 and 2) 

 plotUser  
Plots the user's training set. samples in colors and mean 

in 

 plotUserBeforeAlign  Plots training set before alignment 

 setPDM  
Calculate the PDM variables, calls CalcPDM - the static 

function 

 startOfflineClustering  Offline clustering of training samples 

 startSeqClustering  
Sequential clustering of training samples. This function 

is same 

 

Class Experiment (System) 

Description 

Experiment Holds information for multiple users, and contains all variables and function that 

do not belong to a certain user. It is called "Experiment" because it was used to evaluate the 

program, but could also be called "System" for the finalized version, holding user 

information and inter-user information such as the NCA matrix. 

Properties 

Accuracy 
The value of the accuracy from 0 to 1 for the users enrolled to the 

system. 

Clustered  
A binary value. 1: the users in this experiment were clustered, 0: 

otherwise. 

Confusion  

an array of mX2 where m is the total number of test samples that 

exist for all users enrolled. In column 1 there is the user that 

performed the sample, in column 2 there is the classification 

result. 

Distances  
For each test sample of all users, what are the distances based on 

the current method (NCA, PCA) from the sample to each user.  
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NCAMatrix  the projection matrix found by NCA 

ShapeType  
In case of a shape experiment, which shape (X,O or ->) is 

currently evaluated in the present experiment. 

Users  
An array of type User holding the users enrolled to this 

experiment/system. 

number  
the serial number of the experiment, in case multiple experiments 

take place. 

Methods 

     AddUser   Adds a User to the User array of Experiment. 

   AlignUsers  
Aligns all users in the experiment, by calling the alignUser 

function of class User for each user enrolled. 

   Calc3Distances  Calculate distances between training sets and testing samples 

   CalcDistance  Calculate distances between training sets and testing samples 

   CalcFakes  Calculates distances from all fake samples to the user 

   CalcThresholds  
finds the optimal threshold for each user, based on 5 calibration 

samples 

   CheckSample  
Calculate distances between one sample to each user's training 

set 

   CreateClusters  

Creates clusters for users, and sends clusters of previously 

enrolled user to the user currently enrolling, for all-cluster 

comparison 

   InitializePDM  

Deletes all information stored for the experiment: PDM, 

Aligned, mean shape and aligned mean shape, prior to a new 

calculation. 

   NCA  Creates an NCA projection matrix for all users enrolled. 

   RecordSample  opens a GRS tracker capture window, then creates the track 

   completeSets  
Calls the completeSet function of User: makes sure that each 

user has exactly 20 samples in the training set. 

   createTrainSet  Puts all users in the same matrix 

   deleteUser  
Deletes a user based on the results of the online clustering. 

currently not active 

Static    minimize  A continuous differentiable multivariate function. 

Static    ncaExp  NCA Performs NCA on the specified dataset 

Static    nca_lin_grad  Computes NCA gradient on the specified dataset 

 notify  Notify listeners of event. 

 optimizeNCA  
Runs NCA 5 times or until a proper accuracy was achieved for 

the reference samples. 

 plotAllUsers  Creates a subplot of all users enrolled for comparison 

 reFitEverything  
Calls reFitUsers for all sets available - training, reference (test 

1), test (test 2) and fake samples 

 reFitUsers  
Creates a new fit based on new parameters for all samples of a 

given set (in AdditionalSets). 
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Class Cluster 

Description 

This class keeps samples of a certain user that are close to each other. Inherits User 

Properties 

ClusterNum The serial number of a cluster 

UserID Serial number of the user holding this cluster 

ClosestCluster Which cluster of UserID is closest to this cluster. 

Methods (all non-static) 

AddSample Adds a new sample to the set, or creates a set 

if the set is empty 

calculateTrMean 

 

Calculates the mean shape by calling the 

super function calcultateTrMean from class 

User 

MergeClusters 

 

Adds the samples in two clusters together 

into one array and aligns them together. 

returns the new cluster 

compare2Cluster 

 

Calculates the Euclidean distance between 

this cluster to a test sample 

Class Sample 

Description 

Contains all information needed from a user sample 

Properties 

Class Which user it belongs to   

Cluster Which cluster holds this sample 

FileName the txt file from which the sample was taken from. 

Number Sample ID 

PCs The PCs of this sample (previous variables*EigenVectors) for each cluster 

RotationRatio  The amount for which the sample was rotated from the initial trajectory 

ScalingRatio  The amount for which the sample was scaled from the initial trajectory 

TotalLength  The trajectory total length 

Xaligned  the fitted trajectory X coordinates, currently aligned to a certain user/cluster. 

Xcoor  X coordinates of the initial trajectory 

Xfit  X coordinates after curve fitting. 

Yaligned  the fitted trajectory Y coordinates, currently aligned to a certain user/cluster. 

Ycoor  Y coordinates of the initial trajectory 

Yfit  Y coordinates after curve fitting. 

Zaligned  the fitted trajectory Z coordinates, currently aligned to a certain user/cluster. 
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Zcoor  Z coordinates of the initial trajectory 

Zfit  Z coordinates after curve fitting. 

Zmean  mean value for Z, used for absolute scaling 

b  Shape parameters: b=P'(X-Xavg) for each cluster 

curvature  the curvature values of different segments across the trajectory 

velocity  the velocity values of different segments across the trajectory 

Methods 

Static  GetTrajectoryCurvature  Calculate the curvature of each point 

Static calcCurvature  
for each segment of the fitted trajectory, calculates the 

average curvature 

Static calcVelocity  
for each segment of the fitted trajectory, calculates the 

average velocity 

Static cleanTrajectory  

This function removes points from the original trajectory. 

If points are grouped at the beginning or the end of the 

trajectory, and if they are too close to one another (~0), 

this function removes them. 

Static findRadius  
returns the radius of the bounding circle using Euclidean 

distance 

 fit  
Calls the fitting function with the above parameters, and 

adds the trajectory to the sample's variables. 

 getAlignedSample  Returns the sample after it has been aligned. 

 getFittedSample  

Returns a 1X3n vector of the fitted sample of the 

trajectory, where n is the number of points along the fitted 

trajectory. 

Static groupClosePoints  

This function checks Euclidean distances between points. 

if the distance is at the bottom 10% (after reducing 

distances < 0.005), the point is removed 

Static interparc  
interpolate points along a curve in 2 or more dimensions, 

while keeping equi-distant spacing between points 

Static newSegments  

This function creates a fitted trajectory with n segments, 

each segment has the ratio of points that exist on the same 

segment on the initial trajectory. 

Static newSegmentsCurv  

This function creates a fitted trajectory with a number of 

segments based on the number of points with curvature > 

threshold. 

 plotSample  Plots the sample to the screen 
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Additional functions that were used and were not a part of a class 

Capture1File Takes a txt file from a predefined folder, and transforms the 

trajectory in the txt to an instance of Sample 

CaptureFilesLab Transform multiple txt files into Sample instances. Was used with 

the experiment data 

evalAccuracy Calculates the accuracy of the system in E (Experiment class 

instance) params are the parameters decided by the optimizing 

function (e.g. Simulated Annealing) 

Optimize Call a simulated annealing function with different inputs 

PlotSet Plots a set of trajectories to the screen, giving each trajectory a 

different color 

runPS Calls the capture program and the batch utility (for the creation of a 

trajectory file) 

Start A simplified tutorial explaining the different methods that were 

used. 

UpdateParameters Changes a structure of parameters that is being passed to all 

functions in the system. 
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APPENDIX II – LIST OF PARAMETERS 

Fitting and Cleaning 

NoOfPoints=300:  The final number of points on each fitted curve 

NoOfSegments=1:  How many segments should the curve be separated to 

DivideOrNot=0: 1 if the curve should be divided to segments, 0 if not. 

StartAtSample = 1:  if the first samples are to be neglected 

FitType=2:  1= equal length segments, 2 = curvature based segments 

Aspect = 0.1: the percentage of the final length that is to be neglected, in start and end 

points. 

CurveType=2:  1= Hermite 2=Spline, 3 Linear 

FitZ=0:  Whether to use Z coordinates too, or just 2D. 1 = Don't use Z, 2 = use 3D curves. 

GroupOrNot =1:  1: group close points, 0: don't group. 

TemporalSegments = 5: How many segments should the curve be separated for velocity and 

curvature calculation 

CurvType = 1: 1: point based, 2: splines based 

  

Alignment 

ScaleOrNot=1:  1 = scaling, 0=no scaling 

RotateOrNot=0:  1 = rotate, 0= no rotation 

AlignmentSegments = 3: The number of segments to be aligned separately. 

AlignBySegments=0: 0 - normal, 1- by segments 

ScaleOrNot1smp=1:  same as previous, hold for aligning one sample to the mean of a 

cluster/class 

RotateOrNot1smp=0:  same as previous, hold for aligning one sample to the mean of a 

cluster/class 

  

PDM and Classification 

CovOrCor=1: 1 = Covariance matrix PCA, 2 = Correlation matrix PCA 

NoOfPCs=7:  The final number of PCs (if not using clusters) 

Classifier=2;  %1: Mahalanobis PDM, 2: Mahalanobis NCA  

lambda=0.9435:  the regularization parameter of NCA 

  

Clustering: 

ClusterOrNot=0:  0 if no clustering should take place. 

theta1=3087: The maximum distance for creating a new cluster 

theta2=3373: If the distance to the closest cluster is below theta2 and above theta1, it is kept 

aside and not clustered. All samples kept aside will be clustered after all samples have been 

introduced to the system.  

MaxClusters1=15: the maximum number of clusters a user can have before merging 

MaxClusters2=10: the maximum number of clusters a user can have after merging 

Closeness =3241: The minimum distance for merging two clusters. 

DistanceType =1: Distance between a sample and a cluster. 
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DeleteOrJoin=2: 1 if a small cluster should be deleted, 2 if should be joined to the closest 

cluster 

  

Forgery 

A distance from a samples to a set is calculated by a*Min+b*Mean+c*Max Where max and 

min are the closest and furthest samples in the set from the testing sample. 

MeanWeight = 1: The weight given to the mean shape 

MinWeight = 0: The weight given to the closest shape 

MaxWeight = 0: The weight given to the furthest shape 

AcceptanceRatio = 1: whether to accept 4 out of the 5 testing samples, or all of them (1) 

Experiment: 

CheckedSet=2: which set to check. 1-only first set, 2- second set, 3-Fake 

UseThreshold=0: Whether to check if a smallest distance < threshold 
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APPENDIX III: STATISTICAL TESTS OUTPUT 

Anova Repeated measures SPSS output 

Within-Subjects Factors 

Measure:MEASURE_1 

Shape Dependent Variable 

1 X 

2 O 

3 line 

 

Multivariate Tests
c
 

Effect Value F Hypothesis df Error df Sig. 

Shape Pillai's Trace .258 14.580
a
 2.000 84.000 .000 

Wilks' Lambda .742 14.580
a
 2.000 84.000 .000 

Hotelling's Trace .347 14.580
a
 2.000 84.000 .000 

Roy's Largest Root .347 14.580
a
 2.000 84.000 .000 

Shape * Num Pillai's Trace .031 .334 8.000 170.000 .952 

Wilks' Lambda .969 .330
a
 8.000 168.000 .954 

Hotelling's Trace .031 .327 8.000 166.000 .955 

Roy's Largest Root .023 .484
b
 4.000 85.000 .748 

a. Exact statistic 

b. The statistic is an upper bound on F that yields a lower bound on the significance level. 

c. Design: Intercept + Num  
Within Subjects Design: Shape 

 

Mauchly's Test of Sphericity
b
 

Measure:MEASURE_1 

Within Subjects 
Effect Mauchly's W 

Approx. Chi-
Square df Sig. 

Epsilon
a
 

Greenhouse-Geisser Huynh-Feldt 
Lower-
bound 

Shape .910 7.893 2 .019 .918 .981 .500 

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix. 

a. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are 
displayed in the Tests of Within-Subjects Effects table. 

b. Design: Intercept + Num  
 Within Subjects Design: Shape 
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Tests of Within-Subjects Effects 

Source Type III Sum of Squares df Mean Square F Sig. 

Shape Sphericity Assumed .540 2 .270 14.111 .000 

Greenhouse-Geisser .540 1.835 .294 14.111 .000 

Huynh-Feldt .540 1.962 .275 14.111 .000 

Lower-bound .540 1.000 .540 14.111 .000 

Shape * Num Sphericity Assumed .047 8 .006 .308 .962 

Greenhouse-Geisser .047 7.342 .006 .308 .954 

Huynh-Feldt .047 7.849 .006 .308 .961 

Lower-bound .047 4.000 .012 .308 .872 

Error(Shape) Sphericity Assumed 3.250 170 .019   

Greenhouse-Geisser 3.250 156.008 .021   

Huynh-Feldt 3.250 166.787 .019   

Lower-bound 3.250 85.000 .038   

 

 
Tests of Within-Subjects Contrasts 

Measure:MEASURE_1 

Source Shape Type III Sum of Squares df Mean Square F Sig. 

Shape Linear .208 1 .208 8.538 .004 

Quadratic .331 1 .331 23.951 .000 

Shape * Num Linear .021 4 .005 .215 .929 

Quadratic .026 4 .007 .472 .756 

Error(Shape) Linear 2.075 85 .024   

Quadratic 1.175 85 .014   

 

 
Tests of Between-Subjects Effects 

Measure:MEASURE_1 
Transformed Variable:Average 

Source 
Type III Sum of 

Squares Df Mean Square F Sig. 

Intercept 159.816 1 159.816 7433.320 .000 

Num .856 4 .214 9.953 .000 

Error 1.827 85 .021   
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APPENDIX IV – A FLOWCHART FOR INTERACTIVE 

ENROLLMENT 
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Figure 35 - A flowchart of the interactive enrollment method. 

  



 

 

 תקציר

חקר זה עוסק בזיהוי ביומטרי באמצעות מאפייני תנועת יד. לצורך הזיהוי פותחה מ

מערכת הקולטת תנועת יד, ומזהה את משתמש המבצע חתימת תנועה מול 

המצלמה. המערכת מאפשרת למשתמשים לבחור חתימת תנועה כרצונם, ובכך 

ם משפרת את האינטואיטיביות והנוחות בשימוש. מתוך מסלולי היד הנקלטי

במערכת נלקחים מאפיינים מרחביים וזמניים. המשתמשים מאמנים את המערכת 

על ידי הקלטת מספר חתימות תנועה, והמערכת מזהה חתימת תנועה חדשה 

באמצעות השוואת המרחק מהחתימה החדשה לכל אחד מהמשתמשים הרשומים 

במערכת. מדד המרחק בין חתימה חדשה לבין המשתמשים הרשומים נלמד 

. בנוסף, מוצעת שיטה לרישום Neighborhood Components Analysisות באמצע

אינטראקטיבי למערכת באמצעות אישכול. שיטה זו מודיעה למשתמש כאשר יש 

שוני גדול מדי בין דגימות במהלך האימון או כאשר החתימה הנבחרת דומה מדי 

ו שלושה לחתימה של משתמש רשום אחר. על מנת לבדוק את ביצועי המערכת בוצע

תלוי(, כל משתמש מבצע -ניסויים: כל משתמש מבצע מחוות יד קבועה מראש )בלתי

חתימה אישית )תלוי(, ובדיקת היכולת של המערכת לזהות התחזות. עבור זיהוי 

תלויה אחוז -משתמשים, למערכת הבלתי 7עד  3משתמש אחד מתוך קבוצה של 

. עבור 19עד  19וז דיוק של בהתאמה. למערכת התלויה אח 77-ל 19דיוק של בין 

 19ו  99שלושה ניסיונות כניסה, אחוז הדחיה הנכונה ואחוז הקבלה הנכונה הם 

בהתאמה. המערכת המוצעת יכולה להשתלב בתוך ממשק זיהוי מחוות ידיים 

 ולשמש למטרות אבטחה, התאמת תוכן, בקרה הורית ועוד.

 ות ידיים, אשכול.מילות מפתח: ביומטריקה, למידת מדד מרחק, זיהוי מחו
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