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Abstract 

Spasticity is a common motor deficiency caused by stroke. It is characterized by a 

velocity-dependent increase in the stretch-reflex. There are existing clinical measures 

for ascertaining the presence of spasticity and for assessing motor deficits, however, 

the relationship between voluntary movement disorders and spasticity is not fully 

understood. This is due, in part, to the complexity and multidimensionality (space 

and time) of both phenomena, and the variability inherent in motion. In a previous 

work of our group, an innovative measure, based on spatio-temporal stochastic 

modeling, was suggested for investigating this relationship. Motion deficits were 

quantified by the distance between spatio-temporal Gaussian mixture models, 

constructed from motion trajectories of subjects with stroke and those of healthy 

controls. This distance was assessed using the bidirectional Kullback-Leibler 

divergence (BKLD). In the current work, we reinforce and add to the results and 

conclusions drawn in the previous work, using nearly three times as many subjects. 

We suggest a different distance measure: the Hellinger's distance (HD) measure and 

compare it to the BKLD. We show that a larger Hellinger's distance between the 

models is associated with a higher level of spasticity of the patient with stroke. HD 

has advantageous over BKLD. It is a metric satisfies the triangle inequality, with values 

bounded between 0 and 1. HD is symmetric, simple to interpret, is less susceptible to 

ceiling effects, less computationally intensive, and is shown to be invariant, 

consistent, asymptotically normal, and robust, compared to the BKLD and to other 

distribution distance measures. 

The analysis in the current work included 13 controls and 42 subjects with stroke 

which performed reach-to-grasp movements toward 4 targets. Arm motion during 

reaching was recorded using electromagnetic sensors. Elbow spasticity was quantified 

using the tonic stretch-reflex threshold (TSRT), the velocity dependency of the 

spasticity (slope), and the Modified Ashworth Scale (MAS) (a common spasticity 

clinical measure). Upper limb motor function was quantified using the Fugl-Meyer 

assessment (FMA). Results suggest that HD is strongly related to the TSRT, the slope, 

their interaction, and the FMA, and has the best generalizability to the larger stroke 

population comparing with the BKLD measure and the kinematic measures tested. 



 
 

BKLD was related to the FMA, marginally related to the slope, and not related to the 

TSRT measure. Thus, HD can be used as a robust, objective measure of the 

relationship between spasticity and reaching kinematics. Results also show that the 

TSRT is statistically superior to the MAS as a clinical spasticity measure. 

 

Keywords: Hellinger's distance, Kullback-Liebler divergence, Stroke rehabilitation, 

Spasticity, Gaussian mixture models. 



v 
 

 

Acknowledgements 

Foremost, I would like to express my thanks to my advisors Prof. Sigal Berman and 

Prof. Yisrael Parmet. Sigal, one page will not suffice for all my appreciation and 

gratitude to you, so I will use this opportunity to summarize briefly and say that I 

could not ask for more. Thank you for your patience, willingness to give, always 

pushing forward and teach, always with a smile. Thank you for your availability and 

for investing your time in my success, our research success, our success. I don't take 

it for granted. Yisrael, thank you for the calm, for succeeding making me passionate 

about statistics, always making me laugh. Thanks for sharing your wisdom and 

experience with me, and providing advice. Thank you for being reachable even 

overseas, always making me feel comfortable contacting you. 

I would like to thank Dr. Silvi Frenkel-Toledo, Melanie C. Baniña, Dr. Nachum Dr. 

Soroker, Dr. John M. Solomon, Prof. Dario G. Liebermann, and Prof. Mindy F. Levin 

for giving professional advice and meaningful comments whenever asked.  

Finally, I would like to thank my family and friends, for providing encouragements at 

all times and for always knowing what the right word is. 

This research was supported by the Canada-Israel Health Research Program (MFL 

and DGL), a program that is jointly funded by the Canadian Institutes of Health 

Research, the Azrieli Foundation, the International Development Research Center 

(IDRC, grant number 108186-001), and the Israel Science Foundation (ISF, grant 

number 2392\15), and by the Helmsley Charitable Trust through the BGU 

Agricultural, Biological and Cognitive Robotics Center (HL and SB). 

  



vi 
 

 

Table of Contents 

  

1. Introduction ............................................................................................................... 10 

1.1 Stroke ................................................................................................................... 10 

1.2 ENHANCE project .................................................................................................. 11 

1.3 Motivation and objectives...................................................................................... 11 

1.4 Innovations ........................................................................................................... 12 

1.5 Work scope ........................................................................................................... 13 

1.6 Thesis structure ..................................................................................................... 14 

2. Literature review ........................................................................................................ 15 

2.1 Overview .............................................................................................................. 15 

2.2 Spasticity .............................................................................................................. 15 

2.2.1 Spasticity following stroke ............................................................................... 15 

2.2.2 Clinical spasticity measures ............................................................................. 16 

2.3 Using stochastic mixture models for motion modeling ............................................. 18 

2.4 Distribution distance measures .............................................................................. 20 

2.4.1 Distance measures for mixture models ............................................................. 20 

2.4.2 Hellinger's distance ......................................................................................... 22 

3 .Method ...................................................................................................................... 25 

3.1 Hypotheses ........................................................................................................... 25 

3.2 Subjects ................................................................................................................ 25 

3.3 Experimental Procedure ........................................................................................ 26 

3.4 Pre-processing ...................................................................................................... 28 

3.4.1 Data validation ............................................................................................... 28 

3.4.2 Movement Segmentation ................................................................................ 29 

3.4.3 Spatial and temporal scaling ............................................................................ 30 

3.4.4 Finding the coordinate frames ......................................................................... 30 

3.4.5 Finding joint angles ......................................................................................... 32 

3.5 Analysis ................................................................................................................ 33 

3.6 Statistical analysis ................................................................................................. 35 

4. Results ....................................................................................................................... 37 

4.1 Hellinger’s distance and Bidirectional Kullback-Liebler divergence ............................ 37 

4.2 Clinical measures ................................................................................................... 41 



vii 
 

 

4.2.1 Relationship with TSRT and FMA ...................................................................... 41 

4.2.2 Relationship with MAS and FMA ...................................................................... 42 

4.2.3 FMA distribution ............................................................................................. 44 

4.2.4 TSRT and MAS ................................................................................................ 45 

4.3 Movement time, final angle, average velocity, and velocity smoothness ................... 46 

5. Discussion and conclusions .......................................................................................... 48 

5.1 HD and BKLD ......................................................................................................... 48 

5.2 Functional ability, joint spasticity, and muscle resistance ......................................... 49 

5.3 Kinematic measures .............................................................................................. 51 

5.4 Using stochastic mixture models for modeling human motion ................................. 51 

5.5 Future work .......................................................................................................... 52 

References ..................................................................................................................... 53 

Appendix A - Lebesgue measure ...................................................................................... 59 

Appendix B - Principal component analysis (PCA) ............................................................. 60 

Appendix C - Un-controlled manifold (UCM) ..................................................................... 62 

Appendix D - Joint Angles definitions ............................................................................... 64 

 65 ............................................................................................................................. תקציר

 

 

  



viii 
 

 

List of Figures 

Figure 1 : Grades and descriptions of the Modified Ashworth scale. .................................. 17 

Figure 2 : The tonic stretch reflex threshold regression line............................................... 18 

Figure 3 : Experimental setup .......................................................................................... 27 

Figure 4 : Targets locations ............................................................................................. 28 

Figure 5 : Sensors positions. ............................................................................................ 28 

Figure 6 : Joint diagram ................................................................................................... 31 

Figure 7 : Joint angles example. ....................................................................................... 38 

Figure 8 : GMM example ................................................................................................. 39 

Figure 9 : HD and BKLD box-plots. .................................................................................... 40 

Figure 10 : Relationship of HD and BKLD with MAS ........................................................... 43 

Figure 11 : Relationship of HD and BKLD with FMA ........................................................... 44 

Figure 12 : Clinical spasticity measures graphs ................................................................. 46 

Figure 13 : Kinematic measures - box plots with line over means for (A) final elbow angle; (B) 

movement time; (C) elbow velocity; (D) the number of acceleration zero-crossings, per 

target for healthy control (red) and stroke (blue) groups.. ................................................. 47 

 

List of Tables 

Table 1 : Mean (SD) estimates of demographic and clinical data ........................................ 26 

Table 2 : Mean (SD) estimates of kinematic characteristics ............................................... 40 

Table 3 : Wald chi-square values (significance levels) for LMM: 

Measure~FMA+(Slope+TSRT+Target)^2+ (1|ID)................................................................ 41 

Table 4 : Wald chi-square values (significance levels) for LMM: 

Measure~FMA+(MAS+Target)^2+ (1|ID) .......................................................................... 42 

Table 5 : Wald chi-square values (significance levels) for LMM: 

Measure~(MAS+Target)^2+ (1|ID) ................................................................................... 43 

Table 6 : Log likelihood values for different distributions fitted to the FMA values ............. 45 

Table 7 : Beta parameters estimates (SD) for the FMA values ............................................ 45 

Table 8 : Joint angles definition ....................................................................................... 64 

  

file:///C:/Users/Administrator/Documents/מסלול%20מיתר/מחקר/תיזה/להגשה/thesis_Hadar_Lackritz_after.docx%23_Toc24552681
file:///C:/Users/Administrator/Documents/מסלול%20מיתר/מחקר/תיזה/להגשה/thesis_Hadar_Lackritz_after.docx%23_Toc24552682
file:///C:/Users/Administrator/Documents/מסלול%20מיתר/מחקר/תיזה/להגשה/thesis_Hadar_Lackritz_after.docx%23_Toc24552684
file:///C:/Users/Administrator/Documents/מסלול%20מיתר/מחקר/תיזה/להגשה/thesis_Hadar_Lackritz_after.docx%23_Toc24552686


ix 
 

 

List of abbreviations 

ANOVA Analysis Of Variance 
AS  Ashworth Scale 
BIC Bayesian Information Criteria 
BKLD Bidirectional Kullback-Leibler divergence 
CL Contralateral 
CNS Central Nervous System 
EM  Expectation-Maximization 
EMD Earth Mover distance 
FA Final elbow Angle 
FC Far Center 
FMA Fugl-Meyer assessment 
GMMs  Gaussian Mixture Models 
HD Hellinger's Distance 
IL Ipsilateral 
KLD Kullback-Leibler Divergence 
LL Log likelihood 
LMM Linear Mixed effect Model 
MAS Modified Ashworth Scale 
ML Maximum-Likelihood 
MT Movement Time 
MV Mean elbow Velocity 
NC Near Center 
REML Restricted Maximum Likelihood 
ST spatial threshold 
ST-GMM Spatio-Temporal Gaussian Mixture Models 
TCT Threshold Control Theory 
tDCS transcranial Direct Current Stimulation 
TSRT Tonic Stretch Reflex Threshold 
UL  Upper Limb 
VR Virtual Reality 
VS elbow Velocity Smoothness 



10 
 

 

  

1. Introduction 

1.1 Stroke 

Stroke is currently the leading cause of long-term sensorimotor disability (Zhang et 

al., 2002). A stroke occurs when a blood clot blocks an artery (a blood vessel that 

carries blood from the heart to the body) or when a blood vessel (a tube through 

which the blood moves through the body) breaks, interrupting blood flow to an area 

of the brain. When either of these happen, brain cells begin to die and brain damage 

occurs. The two major categories of stroke are ischemic stroke (lack of blood and 

hence oxygen to an area of the brain) and hemorrhagic stroke (bleeding from a burst 

or leaking blood vessel in the brain) (Gund et al., 2013). 

When brain cells die during a stroke, abilities controlled by that area of the brain are 

lost. Disrupted functionalities and motor deficits following stroke may include 

speech, basic movements, confusion, loss of memory, muscle weakness, or 

paralysis of the face, arm, or leg (usually just on one side - the opposite side of the 

brain injury side). All these factors contribute to a low overall quality of life.  

Motor disorders after stroke are treated by surgery, drugs, or rehabilitation therapy. 

However, stroke is currently the leading cause of long-term sensorimotor disability 

(Zhang et al., 2002). Motor deficits induced by stroke persist into the chronic stage in 

a large proportion of survivors (Langhorne et al., 2009). One of the most common 

motor disorders resulting from stroke is spasticity (Sommerfeld et al., 2004) (details 

regarding spasticity in 2.2 Spasticity). During the first year following the stroke, 20-

50% of the patients suffer from spasticity. Spasticity is a motor disorder 

characterized by a velocity-dependent increase in the tonic stretch reflexes (muscle 

tone) with exaggerated tendon jerks, resulting from hyper excitability of the stretch 

reflex (Lance, 1980). This work focuses on quantifying the effects of spasticity on 

motion kinematics during voluntary movement. 
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1.2 ENHANCE project 

This study is a part of the ENHANCE project (Levin et al., 2018). The ENHANCE project 

is an international collaboration project between Israel, India, and Canada. The 

project deals with enhancing brain plasticity for sensorimotor upper limb (UL) 

recovery in spastic hemiparesis of patients after stroke.  

Enhance proposes a training program that combines current knowledge about brain 

plasticity and motor control, and includes virtual reality (VR) combined with non-

invasive brain stimulation to enhance motor learning. The training incorporates 

personalized transcranial direct current stimulation (tDCS), which is a form of 

neurostimulation that uses constant, low current delivered to the brain area of 

interest via electrodes on the scalp, to balance cortical hypo/hyperexcitability. In 

addition, it involves personalized reaching training, based on the identification of the 

individual's disorders in spatial threshold (ST). The training approach is guided by 

identification of the elbow angular zone in which spasticity occurs (‘spasticity zone’) 

and limiting reaching training to the zone in which active control is preserved (‘active 

control zone’), in each participant. 

The first goal of the ENHANCE project is testing the effectiveness of personalized 

training programs to enhance UL motor, by increasing the range of regulation of STs 

in the elbow during reaching. The second goal is determining the effects of tDCS 

aimed to decrease spasticity and improve motor function of the arm. The third goal 

of the project is determining the feasibility of implementing personalized training 

programs in high and low-to-middle income countries. In order to test the treatment 

outcomes, the reach-to-grasp task has been chosen for kinematic assessment. This 

task has been chosen since it represents a functional reaching task which relies on 

the coordination of UL and trunk segments. 

1.3 Motivation and objectives 

Current clinical spasticity measures and clinical motor deficits measures do not 

capture the relationship between voluntary movement disorders and spasticity 

(Malhotra et al., 2009; Gregson et al., 1999; Calota et al., 2008). One of the reasons 

is that both phenomena are complex and consist of two (spatio and temporal) 
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dimensions and variability. The use of stochastic models offers an important tool for 

investigating this relationship. 

In a previous work of our group, Davidowitz et al. (2019) have suggested using 

Gaussian mixture models (GMM) and the bi-directional Kullback-Leibler Divergence 

(BKLD) for quantifying the effects of spasticity on voluntary motor control. They have 

shown that for elbow reaching motion, in a cohort of 16 subjects with stroke, motion 

models of patients with higher MAS (more spasticity) were more distant (larger 

BKLDs) from motion models of healthy individuals. This work aims at further 

developing a more robust measure for quantifying the influence of spasticity on 

motor performance during voluntary movement, based on motion kinematics. In the 

current work we suggest a new stochastic distance measure for quantifying the 

distance between the models: the Hellinger's distance (HD) measure. HD has 

advantageous over the BKLD (further information in 2.4.2 Hellinger's distance), 

which we demonstrate in this work. In addition, we show the relations of this 

distance with spasticity quantified by the MAS, the tonic stretch reflex threshold 

(TSRT), and the regression line slope which gives an indication regarding the velocity 

dependency of the spasticity (Calota & Levin, 2009) (details regarding the clinical 

measures in 2.2.2 Clinical spasticity measures). We compare the HD and the BKLD as 

measures of the influence of spasticity on motor disorders. 

1.4 Innovations  

In order to quantify the influence of spasticity on motion kinematics with a robust 

measure, we used the stochastic HD measure (details regarding HD in 2.4.2 

Hellinger's distance), based on the method developed in a previous work of our 

group (Davidowitz et al., 2019). The measure is based on spatio-temporal Gaussian 

mixture models (ST-GMMs) (details regarding ST-GMMs in 2.3 Using stochastic 

mixture models for motion modeling) constructed from motion trajectories. Using 

stochastic models offers a comprehensive representation of data which facilitates 

integrating multiple process dimensions along with variability, within a single 

generalized model. These can be of importance when representing motion data for 

examining motion quality, e.g., for monitoring rehabilitation progress. 
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We show that HD can be a good biomarker of motion disruptions and can serve as 

an objective, robust measure for the influence of spasticity on reaching movements. 

When compared to other similarity measures and kinematic characteristics, e.g. 

BKLD, HD has advantages which are shown in this work. We demonstrate that HD is 

strongly related to the patient functional ability and joint spasticity, is more robust, 

and has the best generalizability to the larger stroke population. 

The TSRT is an objective, innovative, relatively new measure for quantifying 

spasticity. In this research we demonstrate that the TSRT is statistically superior to 

the most commonly used clinical spasticity measure - the MAS. We show that TSRT 

has high resolution and entropy, and is independent of the Fugl-Meyer assessment 

(FMA) for UL motor dysfunctions. This is while MAS is subjective, has low resolution 

and entropy, and has multicollinearity effects with FMA when modeling kinematic 

measures. 

The study was summarized in a poster presented at the “Progress in Motor Control 

XII” conference, Lackritz et al., Quantifying the effects of spasticity on reaching 

movement patterns using stochastic spatiotemporal modeling, Holland, Amsterdam, 

2019. This work was additionally presented in the “15th Karniel Computational 

Motor Control Workshop”: Lackritz et al., Stochastic Spatiotemporal Modeling and 

Spasticity, Beer Sheva, 2019, and at a Microsoft data science club talk, Herzelia, 

September 2019. A journal publication is currently under development. In addition, 

our developed measure will be one of the secondary outcome measures used in the 

ENHANCE project for measuring treatment efficiency through decrease in upper limb 

spasticity. 

1.5 Work scope 

Subject motion analyzed included 13 healthy control subjects that were recorded in 

August 2016 and 42 subjects with stroke that were recorded from August 2016 to 

January 2019, in Canada, India, and Israel. As part of this study, a complete kinematic 

analysis of the ENHANCE project database was performed for all pre, post (2 weeks 

post-intervention), and follow-up (1 month post-intervention) data. The analysis 

included a construction of the method for calculating the joint centers of the wrist, 
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elbow, and shoulder, based on the works by O'Brien et al. (1999) and Davidowitz et 

al. (2019). Post and follow-up recordings were not statistically analyzed in the 

current work. Elbow spasticity is analyzed in this work since it has a lot of motion 

contribution in the reach-to-grasp motion task presented to the participants and the 

joint for which there are reference spasticity clinical measures. 

1.6 Thesis structure 

The rest of this report is organized as follows: Chapter 2 presents a literature review. 

Reviewed topics include spasticity following stroke, clinical spasticity measures, 

motion modeling using stochastic mixture models, and GMMs in particular. In 

addition, the chapter presents HD measure, other similarity measures for GMMs, 

and a comparison between them. Chapter 3 describes the modeling method and the 

research hypotheses. The chapter includes the required pre-processing, the analysis 

of the raw data, and the calculation method of the different measures and models. 

Chapter 4 presents the results and the statistical analysis. Chapter 5 presents a 

discussion consider these results, the conclusions from this research, and suggested 

future work. 
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2. Literature review 

2.1 Overview 

The literature review includes concepts used in this study and scans measures, 

methods, algorithms, and previous researches related to stochastic motion 

modeling, similarity measures, and spasticity. Section 2.2 provides background on 

spasticity in patients with stroke. The section additionally reviews existing clinical 

measures for spasticity and their limitations. Chapter 2.3 describes the use of 

stochastic models for representing spatio-temporal motion data, especially spatio-

temporal Gaussian mixture models, and their use for examining motion quality. The 

concepts reviewed include previous work of our group, model definitions, and 

parameter estimation. Chapter 2.4 presents distance measures between 

distributions, suitable for multivariate mixture models. The chapter describes the 

main distance measure examined in the current work - the Hellinger's distance 

measure. 

2.2 Spasticity 

2.2.1 Spasticity following stroke 

Spasticity is a motor disorder characterized by a velocity-dependent increase in the 

tonic stretch reflex (tonic contraction of the muscles in response to a stretching 

force) with exaggerated tendon reflexes, resulting from the hyper excitability of the 

stretch reflex, as one component of the upper motor neuron syndrome (Lance, 

1980). It is one of the most common disorders caused by stroke. During the first year 

following the stroke 20-50% of the patients suffer from spasticity (Sommerfeld et al., 

2004). It leads to difficulty in daily activities and to reduced quality of life (Nichols-

Larsen et al., 2005). Spasticity is often medically treated with an injection of 

botulinum toxin A (botox) or the drug baclofen. 

Clinically, spasticity is assessed during passive rather than voluntary motion. The 

functional state of the motor system during voluntary motion is more complex than 

under passive conditions. Therefore, phenomena such as hypertonia displayed by a 

passive muscle following imposed stretch will not necessarily appear when the 
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muscle is stretched as part of a voluntary movement. Thus, the role of spasticity in 

the disruption of voluntary movement remains controversial (Fellows et al., 1994). 

According to Jobin and Levin (2000), spasticity may be characterized by the limitation 

of the central nervous system (CNS) to regulate the range of stretch-reflex 

thresholds in flexor and extensor muscles. They showed that for patients with stroke 

the ability to regulate muscle force throughout the physiological range (control zone) 

may be lost due to narrowing of the stretch-reflex regulation thresholds. Measuring 

spasticity can benefit physical therapy treatments and patients with stroke condition 

and rehabilitation evaluation. As the spasticity measure will be more accurate, the 

quality of the treatments, and the contribution to the rehabilitation of the patients, 

can be measured more accurately. Furthermore, treatments could be better adapted 

to the patients. The following sections will present existing measures for spasticity, 

and the use of two methods combining ST-GMM with ST-HD and ST-KLD for 

quantifying the effects of spasticity on motor control. 

2.2.2 Clinical spasticity measures 

The primary clinical measure used to measure spasticity is the Modified Ashworth 

Scale (MAS) (Bohannon & Smith, 1987). This is a discrete, subjective measure which 

grades the resistance felt during stretching of passive muscles on a 6-point ordinal 

scale (Charalambous, 2014). The MAS uses a 1+ scoring category, which was added 

to the original Ashworth scale (AS) to indicate resistance through less than half of 

the movement and therefore increasing its sensitivity with 6 instead of 5 levels, as 

shown in Figure 1 (Bohannon & Smith, 1987). 

One of the main problems of the MAS is that the resistance to passive movement 

and its range are complex variables that normally vary with the level of activity 

(voluntary and reflex). These variables may be influenced by many factors, e.g. 

temperature, only one of which could be spasticity. Another factor that influences 

the MAS score is the therapist's experience (Lee et al., 1989). The MAS assessment is 

subjective and therefore may be inconsistent and could affect the efficacy of the 

rehabilitation process (Puzi et al., 2017). 
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Figure 1 : Grades and descriptions of the Modified Ashworth scale. 

Another problem regarding using the MAS as a spasticity measure is that evidence 

suggests that the resistance to passive movement is only an effect of spasticity and is 

not an exclusive measure of it (Pandyan et al., 1999). The assessment of resistance 

to passive muscle stretch does not capture all aspects of spasticity, such as velocity 

dependent and its effects on motion quality. Furthermore, evidence suggests that 

the resistance to passive movement is not significantly influenced by reflex neural 

activity unless the velocity of the passive stretching is high, although the MAS does 

not check the movement at high velocity only (Pandyan et al., 1999). Another issue is 

that the MAS takes no account of the relation of abnormal tone with posture and 

associated reaction, both of which may be important for the measurement of tone 

and its impact on function (Gregson et al., 1999).  

The tonic stretch reflex threshold (TSRT) (Calota & Levin, 2009) is an objective, 

continuous, innovative, relatively new measure for quantifying spasticity. TSRT 

measurement and its relationship with spasticity are based on threshold control 

theory (TCT) of motor control (Feldman, 2015). According to the TCT, voluntary 

movement is generated by regulating the STs at which muscle activation begins. 

EMG emerges based on the interaction of the biomechanics of the system with the 

environment. The TSRT, i.e., the ST at zero velocity, is extrapolated based on 

regression from measurement of STs at different velocities. In addition to the TSRT, 

which is the regression line intercept, the regression line slope gives an indication 

regarding the velocity dependency of the spasticity (Figure 2). 
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There are some more common existing spasticity measures, with different 

limitations. For example, the disability rating scale, which is a self-reported scale 

filled by the patient that notes how difficult it is for him to handle his affected limb. 

This measure relies on the patient's report abilities that may be hindered due to the 

stroke (Francisco et al., 2005). Another example is the Hand-held dynamometer, 

which can be used to test only the calf-muscle spasticity (Boiteau et al., 1995), or the 

Wartenberg pendulum test which is used to test quadriceps muscle spasticity only 

(Nordmark & Andersson, 2002). Another method is the H-Reflex measure that 

assesses the response to electrical or mechanical stimulation. This technique is 

simple to perform and easy to use in neurology setting, yet it has low correlations 

with other clinical scales (Burridge et al., 2005). 

 

Figure 2 : The tonic stretch reflex threshold regression line. 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦=𝑆𝑙𝑜𝑝𝑒∗𝑎𝑛𝑔𝑙𝑒+𝑇𝑆𝑅𝑇. 

2.3 Using stochastic mixture models for motion modeling  

Using stochastic models rather than single moments, e.g., the sample mean, offers a 

comprehensive representation of data. The facilitate representation of multiple data 

moments, along multiple dimensions giving indications of underlining creation 

processes. These can be helpful when representing motion data, for examining 

motion quality. The additional representation detail comes with a considerable cost, 

both in the initial derivation from the data and in the subsequent interpretation of 

the results. 
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Stochastic Gaussian mixture models (GMM) can capture the behavior of many 

complex, multi-dimensional processes. They are a particularly attractive modeling 

option since there are readily available methods for estimation of GMM parameters. 

For example, expectation maximization algorithm (EM) (Dempster et al., 1977) for 

estimating the models weights, means, and covariances, or non-parametric Bayesian 

estimation (Rasmussen, 2000) for determining the number of Gaussians and making 

a selection between models. 

A GMM is a stochastic model assumes that all the data points are generated from a 

mixture of a finite number of Gaussian distributions with unknown parameters. A 

GMM is parameterized by two types of values - the mixture component weights and 

the component means and variances or covariances. For a GMM with K components, 

the K-th component has a mean of µ⃗ 𝑘 and covariance matrix of ∑k for 

the multivariate case. The mixture component weights are defined as ⱷk for 

component 𝑐𝑘, with the constraint that  ∑ ⱷ𝑖 = 1K
i=1   so that the total probability 

distribution normalizes to 1 (Dinov, 2008). 

GMM is computed by the weighted sum of K Gaussians probability densities, as 

given by the equation:  

𝑝(𝑥) = ∑ⱷ𝑖 ∙ 𝑔𝑖(𝑥|µ⃗ 𝑖, ∑𝑖)

𝐾

𝑖=1

 (2.1) 

where the multivariate Gaussian density 𝑔𝑖(𝑥|µ⃗ 𝑖, ∑𝑖) is defined by: 

𝑔𝑖(𝑥|µ⃗ 𝑖, ∑𝑖) =
1

(2𝜋)2/2√|∑𝑖|
∙ 𝑒𝑥𝑝⁡{−

1

2
(𝑥 − µ⃗ 𝑖)

𝑇∑𝑖
−1(𝑋 − µ⃗ 𝑖)} (2.2) 

𝜇𝑖 = {𝜇𝑡,i , 𝜇s,i},   ∑𝑖 = (
∑𝑡𝑡,𝑖 ∑𝑡𝑠,𝑖

∑𝑠𝑡,𝑖 ∑𝑠𝑡,𝑖
) (2.3) 

where 𝜇s,i, is the spatial expectation and 𝜇𝑡,i is the temporal expectation of the i-th 

component, and Σxx,i is the variance or covariance of the i-th component.  

One of the main advantages of using spatio-temporal Gaussian mixture models (ST-

GMM) is that hidden parameters are modeled without explicit assumptions and 

therefore the model can easily be applied to varied applications without requiring 
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additional assumptions. This, along with the unconstrained covariance structure of 

stochastic mixture models comparing to deterministic models, allows flexibility in 

the modeling of the covariance structure. In addition, ST-GMM can model 

probability distributions to any required level of accuracy with enough components 

(Hinton et al., 2012). 

For reach-to-grasp motion, ST-GMM models were constructed in a previous study of 

our group for the elbow joint (Davidowitz et al., 2019), and the distance between 

models of subjects with stroke and healthy controls was quantified using the 

Bidirectional Kullback-Leibler divergence (BKLD). This distance was related to the 

Modified Ashworth scale (MAS) spasticity measure, where patients with higher MAS 

had a higher BKLD value, indicating a GMM model and movement pattern that were 

more distant from those of controls. In the current study we examine BKLD distance 

measure for mixture models, and focus on the Hellinger's distance measure (HD) 

which has advantageous over the BKLD and other distribution distance measures. 

2.4 Distribution distance measures 

2.4.1 Distance measures for mixture models 

Common classical maximum-likelihood based goodness-of-fit measures, e.g. Chi-

squared test, cannot be used for comparing mixture models due to their multivariate 

nature. Furthermore, log likelihood based fit measures cannot be used directly since 

no closed form exists for the asymptotic distribution of the log-likelihood ratio 

statistic of mixture of two or more Gaussians. This can be used to produce 

confidence intervals for maximum-likelihood estimates or as a test statistic for 

performing the Likelihood-ratio test. Different methods have been developed for 

measuring distance between the GMM models, thus facilitating the use of this 

modeling technique for measuring various motion related phenomena (Jensen et al., 

2007; Kristan et al., 2011). Selecting the suitable method is important for attaining 

improved performance and since computation cost is typically non-negligible. 

One of the most commonly used methods for measuring similarity between GMMs is 

the Kullback-Leibler Divergence (KLD) (Kullback & Leibler, 1951; Jensen et al., 2007; 

Goldberger & Aronowitz, 2005). KLD is an information-based measure of disparity 
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among two probability distributions. It measures the dissimilarity between two 

probabilistic variables defined over the same set of outcomes (Polani, 2013). KLD can 

be expressed as the difference in the amount of additional information needed to 

reconstruct the probability distribution p with probability distribution q (Hyun et al., 

2019). Very often in probability and statistics the observed data or complex 

distributions are replaced with a simpler, approximating distribution. KLD measures 

how much information is lost when the approximation is chosen. In other words, it is 

the expectation of the log likelihood ratio between the probability distributions p 

and q, where the expectation is taken using the probability p (Altman, 1992). 

Specifically, the KLD of q from p, denoted DKL(p||q), is a measure of the information 

lost when q is used to approximate p. Typically p represents the "true" distribution of 

data, observations, or a precisely calculated theoretical distribution. The measure q 

typically represents a theory, model, description, or approximation of p. When p and 

q are continues variables, KLD is defined by: 

𝐷KL(p||q)=∫ 𝑝(𝑥)𝑙𝑜𝑔(
𝑝(𝑥)

𝑞(𝑥)
) ⅆ𝑥⁡

∞

−∞
 (2.4) 

KLD goodness of fit measure can be used as a similarity measure between 

distributions, so that the higher DKL(p||q) is, the less similar p and q are. KLD is 

always non negative with no upper bound, hence DKL(p||q)≥0, while DKL(p||q)=0 

indicating identical behavior of the two distributions. KLD is not a distance measure 

as it is not symmetric, not does it satisfy the triangle inequality. In order to overcome 

the asymmetry of the KLD, a symmetric variant can be applied: the Bidirectional-KLD, 

and thus, can be used as a distance measure: 

 BKLD (p||q)=⁡
𝐷𝐾𝐿(𝑝||𝑞)+𝐷𝐾𝐿(𝑞||𝑝)

2
 (2.5) 

Since the measure is based on log likelihood, KLD between GMMs cannot be 

computed analytically, it can be estimated using methods such as the variational 

approximation, Monte Carlo simulation, Gaussian approximation, or a lower-bound 

approximation. The variational approximation is relatively quick to compute, 

comparing with the Monte Carlo and Gaussian approximations for example. 

Therefore, when computation time is an issue, the variational approximation may be 

useful. When compared to other simple, closed-form approximations of the 
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similarity between GMMs, e.g. the lower-bound approximation and the Gaussian 

approximation, the variational approximation is the most accurate (Hershey & Peder, 

2007; Hershey, Olsen, & Rennie, 2007). 

2.4.2 Hellinger's distance  

The HD is used to quantify the distance and separability between two probability 

distributions on the same set of outcomes. To define the HD, let p and q denote two 

probability measures with respect to a third probability measure λ. The square of the 

HD between p and q is defined as the quantity: 

𝐻2(𝑝, 𝑞) =
1

2
∫(√

ⅆ𝑝

ⅆ𝜆
− √

ⅆ𝑞

ⅆ𝜆
⁡)2⁡ⅆ𝜆 (2.6) 

where multiplying by 1/2 ensures 0 ≤ H2(p, q) ≤ 1, , thus its values are simple to 

interpret (Lindsay, 1994). The HD between p and q does not change if λ is replaced 

with a different probability measure - it does not depend on the choice of the 

measure λ. Thus, the maximum distance 1 is achieved when p assigns probability 

zero to every set to which q assigns a positive probability, and vice versa (Cutler & 

Cordero-Brana, 1996). To define the HD in terms of elementary probability theory, 

take λ to be Lebesgue measure (Lebesgue, 1902). The Lebesgue measure is the 

standard way of assigning a measure to subsets of n-dimensional Euclidean space. It 

is used to define Lebesgue integration (Bartle & Bartle, 1995) (more details regarding 

Lebesgue measure in Appendix A - Lebesgue measure). When λ is Lebesgue 

measure, dp/dλ and dq/dλ are simply probability density functions. Denoting the 

densities as p and q, the squared HD can be expressed as a standard calculus 

integral:  

𝐻2(𝑝, 𝑞) =
1

2
∫(√𝑝(𝑥) − √𝑞(𝑥))2⁡ⅆ𝑥 = 1 −⁡∫√𝑝(𝑥)𝑞(𝑥)⁡ⅆ𝑥⁡ (2.7) 

where the second form can be obtained by expanding the square and using the fact 

that the integral of a probability density over its domain equals 1. 

Due to the multivariate nature of the GMM distribution, HD between GMMs cannot 

be computed analytically, thus, in order to compute a highly accurate estimate, in 

this research we examined the Unscented Hellinger’s distance between two GMM 
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distributions, as defined by Kristan et al. (2011). The unscented transform is a special 

case of a Gaussian quadrature, which, similarly to Monte Carlo integration, relies on 

evaluating integrals using carefully placed points, called sigma points, over the 

support of the integral. 

 𝐻2(𝑝, 𝑞) =
1

2
∫𝑔(𝑥)𝑝0(𝑥) ⅆ𝑥  (2.8) 

where 

𝑔(𝑥) =
(√𝑝(𝑥)−√𝑞(𝑥))

2

𝑝0(𝑥)
  and  𝑝0(𝑥) = ∑ 𝑤𝑖𝑔(𝑥|𝜇𝑖, ∑𝑖)

𝑛
𝑖=1  (2.9) 

𝑝0(𝑥) is a combination of the two density functions, 𝑤𝑖 is the weight of each of the 

Gaussian distributions that make up p and q, Thus n=k1+k2. By multiplying and 

dividing by 𝑝0(𝑥) the function does not change. This creates an expectation function 

of a nonlinear transduction within the integral. Approximation of the expectation is 

much easier and faster due to existing generic solutions by the unscented 

transformation (Kristan et al., 2011).  

Various alternatives to HD exist, for example, the Earth Mover distance (EMD), the 

L2-norm distance measure, and the KLD measure. For EMD distance, large 

computation overhead hinders its popularity. Furthermore, it is hard to set the 

required parameter of the basic distance in EMD. In addition, HD behaves more 

accurate and scalable than the EMD distance (Bishop, 2006; Ni et al., 2013). As for 

the L2-norm, it provides a bigger weight to farther points in the distributions and is 

thus susceptible to outliers (Ni et al., 2013). KLD outperforms EMD and L2-norm 

measures in terms of accuracy when measuring similarity between mixture models, 

especially when the number of components in the mixtures is higher than two 

(Jensen et al., 2007). 

The HD measure has advantageous over other similarity measures, e.g. KLD, 

maximum likelihood, L2-norm, or EMD (Cutler & Cordero-Brana, 1996). One of its 

advantages is that HD is a metric, therefore is symmetric and satisfies the triangle 

inequality, allowing faster data localization as well as speeded up data clustering and 

nearest neighbor search (Weller-Fahy et al., 2014; Jensen et al., 2007). HD is not 

computationally intensive comparing to the BKLD (Sengar et al., 2008) and is shown 
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to be invariant, consistent, asymptotically normal, and robust (Tamura & Boos, 1986; 

Lindsay, 1994; Simpson, 1987). In addition, HD gives little weight to counts that are 

improbable relative to the model. It does not give a large weight for the distributions 

tails and to outliers that can have a substantial impact on wrong experimental 

conclusions (Lindsay, 1994), in contrast to KLD and L2-norm for example, which are 

susceptible to outliers (Simpson, 1987).  
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3 .Method 

3.1 Hypotheses 

We define 2 research hypotheses: 

H1: Both the TSRT and the slope will be related to the movement disorders 

measures: the HD and the BKLD. We additionally hypothesize that HD will be a more 

robust measure than the BKLD for the effects of spasticity on motion deficits.  

H2: The TSRT will be statistically superior to the MAS as a clinical spasticity measure. 

3.2 Subjects  

42 participants with stroke (28 males, age 53.3 [10.5 SD] years, 21 left-hemiparesis), 

medically stable in the sub-acute phase (3 weeks to 6 month post-stroke) and 13 

healthy controls of similar age (9 males, 60.5 [8.7 SD] years) participated in the 

experiment (Table 1). Participants with stroke sustained a first ever stroke in the 

midcerebral artery territory, confirmed by medical resonance imaging/computed 

tomography, had arm paresis (Chedoke-McMaster Stroke Assessment 2-6/7) 

(Gowland et al., 1993), were able to perform voluntary elbow extension/flexion 

movement of at least 30◦ per direction, had elbow flexor/extensor spasticity, and 

were able to provide informed consent. Individuals were excluded if they had 

additional neurological, neuromuscular or orthopedic problems, pain, difficulty 

comprehending instructions, or if they were under antispasticity medication. 

Participants signed informed consent forms approved by institutional review boards 

of Loewenstein Rehabilitation Hospital, Raanana, Israel; Center for Interdisciplinary 

Research in Rehabilitation, Montreal, Canada; and Kasturba Hospital, Manipal, India. 

UL impairment was assessed with the Fugl-Meyer assessment (FMA) (Fugl-Meyer et 

al., 1975). The FMA is a 66 point scale for performance-based sensorimotor 

assessment of UL motor function in patients with stroke. FMA scores between 0 and 

30, 31 and 50, and 51 and 66, represent severe, moderate, and mild motor 

impairment, respectively (Duncan et al., 1994). Clinical spasticity was assessed with 

the MAS and the TSRT. For the patients with stroke the FMA values ranges from 14 
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to 57, elbow flexor and extensor MAS were in range of [0, 2], and TSRT values were 

in rage of [54,162] degrees. 

Table 1 : Mean (SD) estimates of demographic and clinical data 

Group Age 
Participants 

(Male) 
TSRT Slope 

FMA 
(/66) 

Days since 
stroke 

Stroke 
53.3 

(10.5) 
42 (28) 

101.4 
(22.8) 

-31.2 
(58.4) 

33.2 
(12.2) 

62.7 (37.0) 

Control 60.5 (8.7) 13 (9) - - - - 

Abbreviations: TSRT- Tonic stretch reflex threshold; FMA- Fugl-Meyer Assessment. 

3.3 Experimental Procedure 

The recordings took place in three different centers in Israel, Canada, and India. 

Participants performed reach-to-grasp motion toward a hollow cone (6-cm diameter 

base) placed on a table at 4 target locations which require coordination of UL 

segments (Levin et al., 2018; Davidowitz et al., 2019). The target locations were at 

two-third arm’s length (near-center) and at one arm’s length (far-center) in the 

midsagittal plane and ∼30 cm to the right/left (depending on hemiparetic side: 

contralateral/ipsilateral) (Figure 4).  Arm length was measured with the elbow 

extended from the medial axillary border to the distal wrist crease. Arm motion was 

recorded by a wireless electromagnetic tracking system G4 (Polhemus, Colchester, 

VT) with 5 sensors, each measuring 6 degrees of freedom with respect to a base 

calibration frame and is tracked at 120Hz. Sensors were placed on the midsternum, 

midpoint of the acromial superior-lateral border, midpoint of the ventrolateral arm, 

dorsal forearm (1/3 forearm length proximal to ulnar head), and the index 

metacarpophalangeal joint (Figure 5). All experiment recordings were saved to 

Microsoft ExcelTM files using MatlabTM. 

Participants sat on an armless, wooden chair, in front of a table, with feet supported 

but unrestricted trunk movement (Figure 3). Initial arm posture was set with 30◦ 

elbow flexion by placement of the third fingertip on an ipsilateral seat height support 

(Figure 3). The experiment began with recording session of calibration movements 

which included seven movement types: elbow extension, elbow supination, wrist 

extension, wrist adduction, shoulder adduction, shoulder extension, and shoulder 

rotation. Moreover, a static calibration was performed for the chair. The target 
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locations suitable for the participants were determined and marked by colored tape. 

The sensors were attached to the participants. Before motion was recorded, 

participants practiced reaching each target twice (a total of 8 reaching movements). 

During the recording participants performed 2 sets of 40 semi-randomized reach-to-

grasp movements (10 trials toward each of the 4 targets, for 2 sets, total 80 trials) 

balanced in blocks across targets (so even when not all trials were completed, e.g. 

due to fatigue, a balanced number of trails per target was maintained). Each trial 

consisted of a series of movements starting from the initial position: reaching to 

grasp the cone "as fast and as precisely as possible"; holding the cone for 2 s; lifting 

the cone toward the chin; returning it to the target position on the table, and finally 

returning the hand to the initial position (Figure 3-right). Only the first segment of 

the sequence, reaching to grasp the cone, was analyzed. The full sequence was 

conducted to maintain a functional reaching task. Participants rested between trials 

and blocks as needed. Events during trials were logged, e.g. when the participant 

didn’t succeed in grasping the cone, collided with the table, or dropped the cone 

during the movement. 

 

Figure 3 : Experimental setup. Left: participant grasping a target cone (near-center target). Right: 

participant with the arm in the initial position and the elbow slightly bent. 
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Figure 4 : Targets locations. 4 targets on the table in front of the participant. The far targets 

(contralateral, far-center, and ipsilateral) were at arm’s length, and the near target (near-center) was 

at two-third the arm’s length. The center targets were in the midsagittal plane. Contralateral and 

ipsilateral targets for right-hand hemiparetic participants were 30 cm along the horizontal axis to the 

left (contralateral) and right (ipsilateral) of the center targets, respectively (Davidowitz et al., 2019). 

 

 

Figure 5 : Sensors positions. Movement was recorded using 5 sensors, each measuring 6 degrees of 

freedom with respect to a base calibration frame and is tracked at 120Hz. Sensors were placed on the 

midsternum, midpoint of the acromial superior-lateral border, midpoint of the ventrolateral arm, 

dorsal forearm (1/3 forearm length proximal to ulnar head), and the index metacarpophalangeal joint. 

 

3.4 Pre-processing 

3.4.1 Data validation 

Due to the fact that the data are collected by three international centers, creating 

uniformity in the process was difficult. This difficulty led to errors and 

inconsistencies, which added a lot of work to the analyzing process of the data. The 

main causes of the data errors were sensor hubs that fail to communicate the data 
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to the computer, reverse connection of some of the sensors which caused disruption 

of the axes systems' directions, and switching the locations of the contralateral and 

ipsilateral targets. These problems created a regression at the analysis of the data. In 

order to reveal these errors and find the failed recordings, we had to analyze the 

data and the graphs of the movements. Data reparation was performed manually, 

tests were performed using MatlabTM code and by analysis of graphs of sensor 

outputs.  

Sensor measurements with the value “0” indicated a faulty measurement and files 

with more than 10% faulty measurements were considered damaged and removed 

from further analysis. In addition, recorded movements were determined as 

erroneous in several cases: the experimenter noted during task execution that the 

subject did not wait after grasping the cone, the target was misplaced, or the 

experimenter determined that the subject did not perform the task well (hand 

collided with the table, task not completed, motion started prior to the cue).  

3.4.2 Movement Segmentation 

Segmentation was performed semi-autonomously as part of this work. The motion 

segmentation was conducted in order to identify the reach-to-grasp segment for 

each of the recorded movements of each subject. The automatic procedure was 

developed for the initial segmentation, and the segmentation results were all 

manually screened. Movement trajectories were filtered using a Butterworth filter 

with 6 Hz cutoff frequency. Tangential velocity was computed by differentiating 

position samples and averaging linear velocity components, and angular velocity was 

similarly computed for angular components. Motion onset and offset were defined 

as the times at which the wrist (forward arm sensor) tangential velocity exceeded 

and remained above, or decreased and remained below threshold of 10% peak wrist 

tangential velocity. The threshold for the movement was iteratively increase by 1% 

in case a hand closure was not identified. Subjects typically performed two sub-

movements; they raised their arm and then reached forward toward the target. The 

sub-movement interchange point was determined between movement onset and 

offset, when the elbow (upper arm sensor) tangential velocity reached a local 

minimum. 
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3.4.3 Spatial and temporal scaling 

Spatial and temporal dimensions of movement trajectories differ in magnitude. 

Using different value ranges in stochastic modeling would result in a construction of 

a biased model, where the dimension with larger values would have a larger weight 

(Bishop, 2006). To avoid this, joint angles were linearly scaled to the range of [-1, 1], 

similar to the average task duration: 

𝑥𝑖,𝑛𝑒𝑤 = 2 ∗⁡
𝑥𝑖−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
⁡ − 1 (3.1) 

where x is the original joint angle trajectory vector, 𝑥𝑖  is a point along the trajectory, 

and 𝑥𝑖,𝑛𝑒𝑤 is the transformed point. To create a model per participant and target, 

trajectory lengths were scaled to a uniform length for all the trials of each target per 

participant. A function representing each movement was approximated using 

general regression neural networks (Specht, 1991). To equalize the number of 

samples for each trial per target, the function was resampled at a constant rate 

determined for each participant and target, based on the average trial length 

originally sampled at 120 Hz.  

3.4.4 Finding the coordinate frames 

The purpose of computing the joint centers and the directions of the wrist, elbow, 

and shoulder is computing the true joint angles of the motion trajectory. The 

algorithm implemented for finding the joint centers is based on the work by O'Brien 

et al. (1999). In this method, the human arm is modeled as an articulated hierarchy 

of bodies connected by joints. 

A joint center positioned between body 𝑖 and its parent body, can be defined by 

vectors originated from the origins 𝑐𝑖 and 𝑙𝑖 respectively (Figure 6). A point 𝑥𝑖 in the 𝑖-

th coordinate system can be expressed in the 𝑗-th coordinate system. The 

transformation from the i-th body’s coordinate system to the coordinate system of 

the j-th body consists of a rotational component and a translational component. The 

transformation can be done using the following equation: 

𝑗→𝑖ⅆ+𝑖𝑥𝑗→𝑖𝑅=𝑗𝑥 (3.2) 
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where R is a multiplicative, invertible, 3X3 matrix component and d is a length 3 

vector component. 𝑅𝑖→𝑗 in this expression is referred as the rotational component of 

the transformation and ⅆ𝑖→𝑗 in this expression is referred as the translational 

component of the transformation.  

The usage of the articulated hierarchy model of the arm, allows describing the same 

transformations by the following equation, using vectors at time frame k (out of n 

discrete time frames of motion): 

𝑖𝑙)+𝑖𝑐−𝑖𝑥()𝑖(𝑃→𝑖𝑘𝑅=)𝑖(𝑃𝑥 (3.3) 

where P(i) is the parent body of body 𝑖. By comparing these two equations and 

changing to a matrix form, the following equation can be obtained: 

)𝑖(𝑃→𝑖𝑘ⅆ= ⁡(𝑐𝑖
𝑙𝑖
))𝑖(𝑃→𝑖𝑘𝑄 (3.4) 

 

 

Figure 6 : Joint diagram. The location of the joint i is between bodies i and j. The location of the joint is 

defined by a vector 𝑐𝑖, relative to the coordinate system of body i, and a second vector 𝑙𝑖, in the 

coordinate system of body j. 

In the current work, we used the described algorithm in order to compute the 

elbow, wrist, and shoulder centers for each participant. The sensors on each 

participant's arm, below and above each joint center, were used as the vectors 

origins (𝑐𝑖 and 𝑙𝑖 respectively). The output of the algorithm is two vectors per joint 

center per participant: 𝑐𝑖 is the vector between joint 𝑖 center and the sensor below it 

(origin of 𝑐𝑖) and 𝑙𝑖 is the vector between joint 𝑖 center and the sensor above it (origin 

of 𝑐𝑗) (Figure 6). Using these vectors, each point determined in the sensor coordinate 

system can be represented in the corresponding joint center coordinate system. 
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Motion data from all n time frames was used in order to calculate 𝑐𝑖 and 𝑙𝑖. In 

addition, the calculation required a numerical solution obtained from a least squares 

solution using singular value decomposition, as described in O'Brien et al. (1999) and 

Press et al. (2007). After obtaining the vectors 𝑐𝑖 and 𝑙𝑖 for each joint, the joint 

centers can be computed by using the sensors Cartesian positions at each time step 

with the relative vectors. Having the location of each sensor and a vector from the 

sensor to the joint center, the center location can be obtained in relation to a global 

coordinate system. The algorithm was implemented using MatlabTM. 

In order to calculate the joints centers vectors according to the specified method, we 

used calibration files recorded for each participant at the beginning of the 

experiment – one for each degree of freedom. The calibration files contain the 

position (x, y, z) and the angle (x, y, z) of each of the 5 sensors at each time step 

during the movement. The sensors' locations were sampled using repeated local 

movements of each degree of freedom. For each joint, the center was computed 

twice, once using the vector 𝑙𝑖 and once using the vector 𝑐𝑖. Center total error was 

defined as the total Euclidean distance between the two center position vectors.  

Performing the distal arm movement around the elbow (supination), the forearm 

sensor moves only slightly compared to the elbow center. Hence, most of the data 

for the elbow joint center algorithm comes from the extension movement. Since 

most of the movement is around one axis, the output of the algorithm is an axis on 

which the center lies and not an exact point. This fact caused a large error in this 

center's estimation. Due to this error, the elbow center was calculated by obtaining 

the location that remains at the same distance from the shoulder center and the 

wrist center at all time steps. This location was calculated using optimization 

algorithm. 

3.4.5 Finding joint angles  

Arm kinematics in the form of angles of joints rotations were reconstructed from the 

sensor data and from the joint centers. In order to properly define joint rotations, a 

homogenous transformation matrix 𝑇0𝑀𝑖 was built for each sensor 𝑀𝑖 to transform 

the global task coordinate system to the sensor coordinate system: 
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𝑇0
𝑀𝑖= (

𝑋𝑀𝑖

𝑅𝑧𝑦𝑥(𝑂𝑥𝑀𝑖, 𝑂𝑦𝑀𝑖 , 𝑂𝑧𝑀𝑖) 𝑌𝑀𝑖

𝑍𝑀𝑖

0 0 0 1

) (3.5) 

where 𝑅zyx(𝑂𝑥𝑀𝑖,𝑂𝑦𝑀𝑖,𝑂𝑧𝑀𝑖) is the rotation component of the matrix, based on Tait-

Bryan angles convention (2006) (Diebel, 2006) and with accordance to the sensor 

specifications: 

𝑅𝑧𝑦𝑥(𝑎,𝑒,𝑟)=

(

cos(a)cos(e) cos(a)sin(e)sin(r) − sin(a)cos(r) cos(a)sin(e)cos(r) + sin(a)sin(r)

sin(a)cos(e) cos(a)cos(r) + sin(a)sin(e)sin(r) sin(a)sin(e)cos(r) − cos(a)sin(r)
−sin(e) cos(e)sin(r) cos(e)cos(r)

) 
(3.6) 

where a is azimuth, e is elevation, and r is roll. 

In order to validate the joint trajectories, we recorded and filmed movements of 1 

control participant. The participant conducted all calibration movements and 10 

reach-to-grasp movements toward the 4 targets. Using the calibration files, joint 

centers were computed. The joint angles were calculated per time step. The angles 

were then represented by a graph of joint angle against time in seconds from the 

beginning of the movement. The graphs were compared to the films manually.  

7 angles (shoulder extension, shoulder adduction, shoulder rotation, elbow 

extension, elbow supination, wrist extension, and wrist adduction) were computed 

for the ENHANCE project, yet only the elbow extension angle was used and analyzed 

in this project. Joint angles definition can be found in Appendix D - Joint Angles 

definitions. 

3.5 Analysis 

Trials were discarded in case of a recording error or task failure. Sensor data were 

filtered using a standard 2-way (zero lag), low-pass, third-order Butterworth filter 

with a 6-Hz cutoff. The first movement segment’s onset and offset were defined as 

the times at which the forearm tangential velocity exceeded and remained above, or 

decreased and remained below 10% of peak forearm tangential velocity for 0.1 s. 

Tangential velocity was computed by differentiating position samples. The joints' 

centers were calculated for each subject and joints' angles were calculated per trial. 



34 
 

 

The GMMs were computed per subject for each target. Each of the 4 models per 

subject included spatial dimension (angle) and temporal dimension (time). The 

parameters for each model were initialized using K-means algorithm and estimated 

using EM algorithm. The best fitted model was chosen according to the "knee 

method" (Zhao et al., 2008) – GMMs were computed for different values of K 

(number of GMM components) varying from 2 to 25 Gaussians, for each K the 

model's BIC score was calculated. The curve of the BIC scores according to K was 

plotted, and the location of the bend (knee), where the BIC score ceases to improve 

significantly, was chosen. The BIC estimations were calculated according to 7 

repetitions for each k.  

HDs (calculated using the unscented transform) and BKLDs (calculated using the 

variational approximation) were computed between GMMs of different subjects per 

target. Within-control group values were computed for all controls (for each control 

subject versus all other control subjects), and between-group values were computed 

between patients with stroke and control subjects. BKLD is a unitless measure, 

therefore within-control group BKLDs were used as normative comparators. The final 

HD and BKLD scores for each participant (for both within and between 

computations) were determined as the minimal HD and minimal BKLD score using 

the nearest-neighbor methodology (Komaty et al., 2013). The between-group values 

were used in order to assess movement similarity between subjects with stroke and 

control subjects, and the within-group values were used in order to examine the 

similarity of the movement patterns of healthy subjects. 

Additionally to the HD and BKLD values, kinematic measures were calculated for the 

reach-to-grasp movements. The measures included final elbow angle, movement 

time, average elbow velocity, and elbow velocity smoothness. Each measure was 

calculated per each trial and the mean was calculated for each subject per target. 

Average elbow final angle was calculated using circular mean calculation of the 

movements. Velocity was computed by differentiating joint angles at each time step. 

Subjects typically performed two sub-movements; they raised their arm and then 

reached forward toward the target. Therefore, the velocity was computed by 

averaging only samples that have passed the threshold of 0.1 of the maximum 
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sample value - ignoring the pauses. Mean movement time was calculated as the 

difference between movement offset and onset (from start to end of reach). For 

assessing discontinuities in the motion trajectory, elbow velocity smoothness was 

calculated by the number of acceleration zero-crossings. All of these measures were 

calculated for both stroke and control groups. 

3.6 Statistical analysis 

Statistical analysis was performed using R Studio IDE for R (version 3.4.2). Analysis 

was performed using Linear Mixed Models (LMMs) with restricted maximum 

likelihood (REML) criterion for convergence (Satterthwaite, 1946). REML is a 

particular form of maximum likelihood (ML) estimation that does not base estimates 

on a ML fit of all the information, but instead uses a likelihood function calculated 

from a transformed set of data (Cheung, 2013). All LMMs included subjects as 

random effect intercept. The LMM equation is as follows:  

𝑦𝑖,𝑗 = 𝛽𝑋𝑖,𝑗 + 𝛼𝑗 + 𝜀𝑖,𝑗 (3.7) 

where 𝑦𝑖,𝑗 is the outcome value of measurement i, for participant j. 𝛽 is the fixed 

effects vector, 𝑋𝑖,𝑗 is the explanatory variable vector, 𝛼𝑗~𝑁(0, 𝜎𝛼
2)  is the random 

effect of participant j, and 𝜀𝑖,𝑗~𝑁(0, 𝜎𝜖
2) is the random error. 

LMMs are an extension of simple linear models in order to allow both fixed and 

random effects. The LMM model is suitable for data sampled from normal 

distributions (Cnaan et al., 1997). LMM can be thought of as a trade-off between 

aggregating all the data coming from each subject and analyzing data from one unit 

at a time. The individual regressions have many estimates and lots of data, but are 

noisy. The aggregate is less noisy, but may lose important differences by averaging 

all samples within each subject. In our model the subject's values were treated as 

the sum of fixed and random effects. 

LMM yields asymptotically efficient estimators - that is, tend toward being optimal 

(minimal variance) as the sample size increases for both balanced and unbalanced 

research designs. In contrast, analysis of variance (ANOVA) produces an optimal 

estimator only for balanced designs, and is not exact as the REML of the LMMs. In 

LMM, maximum likelihood and REML methods are used for estimating model 
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parameters. REML produces variance component estimators with a smaller bias than 

maximum likelihood and is, thus, more similar to the traditional ANOVA analysis. 

In order to determine differences between within-control group and between-

groups HD and BKLD values, we used two LMMs. Each LMM included HD or BKLD 

type (within-control group, between-group), target (near center, far center, 

contralateral, ipsilateral), and their interaction as factors. LMMs were computed for 

final elbow angle, mean movement time, average movement velocity, and velocity 

smoothness as independent variables as well. The models included group (control, 

stroke), target location, and their interaction as factors. Separate LMMs were used 

for each group in case of a significant interaction between groups. In addition, in 

order to examine the influence of elbow spasticity measured by TSRT, the regression 

slope, and MAS, with the upper limb impairment level measured by FMA, on 

kinematic characteristics (HD, BKLD, final elbow angle, mean movement time, 

average movement velocity, and velocity smoothness), LMMs were computed. In all 

analyses, target location and its interactions with the clinical measure (TSRT, slope, 

MAS, FMA) were defined as factors. Furthermore, in order to examine the influence 

of elbow spasticity measured by MAS separately from FMA, LMM including MAS, 

target location, and its interaction was used for each measure. 

Conditional R2 (𝑅𝑐
2) and marginal R2 (𝑅𝑚

2 ) values were evaluated for all models 

(Nakagawa & Schielzeth, 2013). The 𝑅𝑐
2 represents the variance explained by both 

fixed and random factors, and thus indicates how the model fits the participant 

group. The 𝑅𝑚
2  represents the variance explained by fixed factors only, and thus 

indicates how the model fits the general population of people affected by stroke. 

Target location was used as an explanatory variable in the models due to the fact 

that different target locations made the participants move using different elbow 

angle zones. The various angles affected the movements and were therefore 

expected to affect the measures as well. The FMA was used as an explanatory 

variable in the models because upper limb motor function is likely to affect the 

movement patterns and therefore the measures. However, the measure is general 

and does not measure spasticity, thus clinical spasticity measures were also included 

in the models in order to explain the measures values.  
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4. Results 

Healthy controls completed 98% of trials, whereas participants with stroke 

completed 79% (22% SD) of trials. For controls, 6% of all completed trials were 

discarded (0.7% task failure), and for participants with stroke 22% (16% task failure). 

Control group made smoother and faster movements than the stroke group, with 

smaller variance between movements (Figure 7). GMMs were constructed based on 

the movement patterns, thus the amount of components of the GMMs, in addition 

to the width of each Gaussian component, reflected the variability of the 

movements of each subject (Figure 8). Therefore, control group had less Gaussian 

components comparing to subjects with stroke (5.77 ± 0.90 for control, 11.04 ± 1.31 

for stroke; 2 = 601.89, P<.001), with difference between targets (2 = 19.62, 

P<.001). The amount of Gaussians in the models of patients with stroke while 

reaching to the near center target was more similar to that of the control subjects 

(estimated difference of 4.4 components), comparing to the amount while reaching 

to the far targets (estimated component differences: far center: 5.82, P<.01; 

contralateral: 5.29, P<.05, ipsilateral: 5.94, P<.01). Within and between-group HDs 

and BKLDs, movement times, final angles, average elbow velocities, and velocity 

smoothness are listed in Table 2. 

4.1 Hellinger’s distance and Bidirectional Kullback-Liebler divergence  

Between-group HD and BKLD values were an order of magnitude higher than within-

control group values (HD: 2 = 17.96, P<.001, R2
m =0.13, R2

c =0.88; BKLD: 2 = 5.40, 

P<.05, R2
m =0.07, R2

c =0.86) (Figure 9). There were no significant interaction effects 

of HD type and target location on the HD values. There was no main effet of target 

location. Within-group BKLD values did not change significantly between targets 

while for the between-group BKLDs there were significant differences between 

targets (2 = 50.97, P<.001). Participants with stroke had lower BKLD values (e.g., 

were more similar to controls) for reaches to the near center target than for all other 

targets (P<.001 for each of the 3 far targets) (Figure 9). 
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Figure 7 : Joint angles example. Elbow extension angle examples for 1 control participant (left) and 1 participant 

with stroke (right) for reaches toward each target. 
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Figure 8 : GMM example. Elbow extension angles (scaled to [−1, 1]) Gaussian mixture models examples for 1 control 

participant (left) and 1 participant with stroke (right) for reaches toward each target (time scaled to the average 

movement time). 
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Figure 9 : HD and BKLD box-plots. Box plots of Hellinger’s distance values (left) and BKLD values (right) 

for elbow extension for reaches to each of the 4 targets in control participants (red) and participants 

with stroke (blue). The large range of the BKLD values, , along with the low variance within the control 

group, cuased the control boxplots in the BKLD graph to be barely visible. Abbreviations: BKLD, 

bidirectional Kullback-Liebler divergence; NC, near-center; FC, far-center; CL, contralateral; IL, 

ipsilateral. 

 

Table 2 : Mean (SD) estimates of kinematic characteristics 

 Stroke Control 

Measure\ 
Target 

NC FC CL IL NC FC CL IL 

HD 
0.74 

(0.17) 
0.75 

(0.13) 
0.76 

(0.14) 
0.76 

(0.14) 
0.39 

(0.11) 
0.42 

(0.11) 
0.44 

(0.13) 
0.42 

(0.14) 

BKLD 
18.40 

(16.55) 
27.68 

(27.60) 
33.19 

(33.07) 
32.74 

(32.28) 
1.42 

(0.78) 
1.78 

(1.10) 
1.75 

(1.11) 
2.34 

(3.60) 

FA 
89.34 

(11.86) 
98.07 

(14.59) 
96.48 

(15.16) 
99.98 

(13.72) 
80.95 
(8.63) 

101.58 
(12.07) 

98.41 
(12.48) 

100.11 
(10.64) 

MT 
1.64 

(0.51) 
1.71 

(0.56) 
1.80 

(0.59) 
1.67 

(0.57) 
0.65 

(0.15) 
0.68 

(0.15) 
0.70 

(0.16) 
0.67 

(0.17) 

MV 
89.37 

(40.46) 
85.99 

(36.48) 
86.81 

(36.26) 
80.66 

(34.35) 
244.29 
(50.44) 

224.85 
(36.12) 

22613 
(41.11) 

218.84 
(50.82) 

VS 
7.36 

(3.36) 
7.88 

(3.83) 
8.34 

(3.94) 
7.41 

(3.62) 
1.83 

(0.97) 
1.79 

(1.12) 
1.82 

(0.97) 
1.83 

(1.15) 

Abbreviations: NC- Near center; FC- Far center; CL- Contralateral; IL- Ipsilateral; HD- 
Hellinger's distance; BKLD- Bidirectional Kullback-Leibler divergence; FA- Elbow extension 

final angle; MT- Movement time; MV- Mean velocity; VS- Velocity smoothness. 
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4.2 Clinical measures 

4.2.1 Relationship with TSRT and FMA 

HD values were strongly related to the clinical measures and had the highest value of 

R2
m comparing to all other measures (R2

m = 0.55, R2
c = 0.89) (Table 3). The HD values 

were related to FMA (2 = 46.07, P<.001) (Figure 11), to the TSRT (2 = 8.51, P<.01) 

and to the interaction of TSRT and slope (2 = 8.13, P<.01). BKLD values were 

marginally related to the slope values (2 = 3.35, P=0.07) and were associated with 

FMA (2 = 17.23, P<.001) (Figure 11). They were also associated with target location 

(2 = 51.04, P<.001) but not with its interactions. In addition, all kinematic measures 

(final elbow angle, mean movement time, average velocity, velocity smoothness) 

had significant main effect of FMA as explanatory variable as well (P<.01), and of 

target location (P<.001). Each of mean movement times, average velocity, and 

velocity smoothness, had significant effect of one of the measures TSRT or slope 

(mean time: slope: 2=3.22, P<.1 ; average velocity: TSRT: 2=10.79, P<.01 ; velocity 

smoothness: slope: 2=4.24, P<.05). Final elbow angles were not related to the TSRT 

or to the slope. The interactions with target location were not significant for any of 

the measures. All relations with FMA, TSRT, slope, target location, and the 

interactions are listed in Table 3. 

Table 3 : Wald chi-square values (significance levels) for LMM: Measure~FMA+(Slope+TSRT+Target)^2+ (1|ID) 

Measure FMA Target Slope TSRT Slope*TSRT R2
m|R2

c 

HD 46.07 (***) 4.55 (-) 0.23 (-) 8.51 (**) 8.13 (**) 0.55|0.89 

BKLD 17.24 (***) 51.04 (***) 3.35 (.) 0.50 (-) 1.97 (-) 0.37|0.87 

FA 9.53 (**) 101.24 (***) 0.30 (-) 0.07 (-) 1.29 (-) 0.26|0.88 

MT 13.05 (***) 31.10 (***) 3.22 (.) 1.73 (-) 1.66 (-) 0.34|0.96 

MV 11.44 (***) 27.60 (***) 0.03 (-) 10.79 (**) 1.82 (-) 0.35|0.96 

VS 9.32 (**) 36.67 (***) 4.24 (*) 0.75 (-) 1.28 (-) 0.30|0.95 

The age, days since stroke, country, gender, and the interactions with target were not 
significant for any of the measures. Abbreviations: HD- Hellinger’s distance measure; 
BKLD- Bidirectional Kullback-Leibler divergence; FA- elbow extension final angle; MT- 

movement time; MV- mean velocity; VS- velocity smoothness; FMA- Fugl-Meyer 
Assessment; TSRT- Tonic stretch reflex threshold; Significance levels: . P<.1; * P<.05 ** 

P<.01 *** P<.001  
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4.2.2 Relationship with MAS and FMA 

When examining a model containing both FMA and MAS values as explanatory 

variables, all measures (HD, BKLD, mean movement time, final elbow angle, average 

movement velocity, velocity smoothness) had strong relationships with FMA (P<.01 

each) and no relationship with MAS or with the interaction with target location. HD 

had the highest R2
m of all models (R2

m=0.42, R2
c=0.88). All relations with FMA, MAS, 

target location, and its interactions are listed in Table 4. 

When examining the models without FMA effect, MAS had marginally significant 

main effect (P<.1) for HD, BKLD, final elbow angle, and movement time. Mean 

movement time and velocity smoothness only had target location main effects. None 

of the models had a significant effect of the interaction of MAS with target location. 

All relations with MAS, target location, and its interactions are listed in Table 5. 

Relationship of HD and BKLD with MAS are presented in Figure 10.  Relationship of 

HD and BKLD with FMA are presented in Figure 11. We can see in Figure 10 that the 

relation of HD and BKLD with MAS is not consistent, as patients with MAS=2 had 

smaller HD or BKLD values compared to those with MAS=1+. 

Table 4 : Wald chi-square values (significance levels) for LMM: Measure~FMA+(MAS+Target)^2+ (1|ID) 

Measure FMA Target MAS MAS*Target R2
m|R2

c 

HD 23.53 (***) 4.34 (-) 2.76 (-) 5.54 (-) 0.42|0.88 

BKLD 12.53 (***) 52.53 (***) 3.67 (-) 12.75 (-) 0.34|0.87 

FA 7.47 (**) 101.67 (***) 0.86 (-) 6.71 (-) 0.25|0.88 

MT 8.79 (**) 31.80 (***) 3.84 (-) 10.85 (-) 0.29|0.95 

MV 8.49 (**) 27.79 (***) 1.54 (-) 8.09 (-) 0.19|0.96 

VS 7.41 (**) 37.33 (***) 3.11 (-) 9.49 (-) 0.24|0.95 

The age, days since stroke, country, gender, and the interactions with target location 
were not significant for any of the measures. The interaction between FMA and target 

was not significant as well. Abbreviations: HD- Hellinger’s distance measure; BKLD- 
Bidirectional Kullback-Leibler divergence; FA- elbow extension final angle; MT- movement 
time; MV- mean velocity; VS- velocity smoothness; FMA- Fugl-Meyer Assessment; TSRT- 

Tonic stretch reflex threshold; Significance levels: . P<.1; * P<.05 ** P<.01 *** P<.001  
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Table 5 : Wald chi-square values (significance levels) for LMM: Measure~(MAS+Target)^2+ (1|ID) 

Measure Target MAS MAS*Target R2
m|R2

c 

HD 4.34 (-) 7.56 (.) 5.54 (-) 0.15|0.90 

BKLD 52.53 (***) 7.15 (.) 12.75 (-) 0.17|0.87 

FA 52.53 (***) 7.15 (.) 12.75 (-) 0.17|0.87 

MT 31.80 (***) 7.05 (.) 10.85 (-) 0.15|0.94 

MV 27.79 (***) 0.88 (-) 8.08 (-) 0.03|0.95 

VS 37.33 (***) 4.99 (-) 9.49 (-) 0.11|0.95 

Abbreviations: HD- Hellinger’s distance measure; BKLD- Bidirectional Kullback-Leibler 
divergence; FA- elbow extension final angle; MT- movement time; MV- mean velocity; VS- 
velocity smoothness; MAS– Modified Ashworth Scale; TSRT- Tonic stretch reflex threshold; 

Significance levels: . P<.1; * P<.05 ** P<.01 *** P<.001 

Figure 10 : Relationship of HD and BKLD with MAS. Box plots of Hellinger's distance values (left) and 

Bidirectional Kullback-Leibler divergence values (right) for elbow extension related to Modified 

Ashworth scale (MAS) scores for reaches to each target in participants with stroke. 
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Figure 11 : Relationship of HD and BKLD with FMA. Box plots of Hellinger's distance values (left) and 

Bidirectional Kullback-Leibler divergence values (right) for elbow extension related to Fugl-Meyer 

assessment (FMA) scores for reaches to each target in participants with stroke. FMA scores between 0 

and 30, 31 and 50, and 51 and 66, represent severe, moderate, and mild motor impairment, 

respectively. 

 

4.2.3 FMA distribution 

In a previous research of our group (Davidowitz et al., 2019) the relationship of BKLD 

and the kinematic measures with MAS and FMA was tested. FMA had no significant 

effect when explaining the BKLD values. In order to understand the reason for the 

lack of importance of FMA values in the models of the previous study considering 

our results, we conducted goodness-of-fit tests. The aim of the tests was to examine 

which distribution best fits the FMA values of the current study (42 values) and of 

the previous one (16 values). Normal, gamma, and beta distributions were 

examined. Results showed that beta distribution best suites the FMA values in ours 

and in the previous researches based on the log likelihood values (Table 6). We 

conducted a Kolmogorov-Smirnov test (Massey Jr, 1951) which confirmed the 

hypothesis - the values came from the beta distribution with the estimated 

parameters (KS statistic=0.10), and accordingly the current study's standard 

deviation (SD) was larger than the SD of the previous one. Results presented in Table 

7. We conducted a Levene test (Levene, 1961) for testing equality of the variances of 
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the two studies and found that the variances are indeed not equal (P<0.05). We then 

conducted a Welch test (Welch, 1947) for testing the equality of the means (under 

the assumption of un-equal variances) and found that the means are marginally not 

equal (P=0.05). 

Table 6 : Log likelihood values for different distributions fitted to the FMA values 

Study Beta Normal Gamma 

Previous 38.42 36.67 37.96 

Current 52.17 44.92 45.92 
 

Table 7 : Beta parameters estimates (SD) for the FMA values  

Study shape1 shape2 Mean SD 

Previous 6.99 (1.22) 5.68 (0.98) 36.41 8.85 

Current 3.37 (0.36) 3.31 (0.35) 33.30 11.43 

Mean and standard deviation (SD) of the distributions were calculated by: 𝜇 =
1

1+
𝑠ℎ𝑎𝑝𝑒2

𝑠ℎ𝑎𝑝𝑒1

=

𝑠ℎ𝑎𝑝𝑒⁡1

𝑠ℎ𝑎𝑝𝑒⁡1+𝑠ℎ𝑎𝑝𝑒2
⁡ ; ⁡𝑉𝑎𝑟(𝑋) =

𝑠ℎ𝑎𝑝𝑒1𝑠ℎ𝑎𝑝𝑒2

(𝑠ℎ𝑎𝑝𝑒1+𝑠ℎ𝑎𝑝𝑒2)2(𝑠ℎ𝑎𝑝𝑒1+𝑠ℎ𝑎𝑝𝑒2+1)
  (Johnson et al., 1995) 

 

4.2.4 TSRT and MAS  

As can be seen in Figure 12, the majority of participants (28 out of 42) were classifies 

as MAS=1+. It is also shown that the TSRT values are scattered. Shannon entropy 

(Shannon, 1948) was calculated for each of the measures. Shannon entropy 

represents the average rate at which information is produced by a stochastic source 

of data, and is calculated by: S = ⁡−∑ Pilog4Pii . The log was calculated with 4 as the 

log base in order to get 0 ≤ S ≤ 1 while there are 4 values of MAS. S=1 means no 

information at all (uniform distribution, all probabilities are the same), so that every 

sample gets its own value. S=0 means full information, so that the values are 

expected and all the samples can get the same value. For the continuous TSRT 

measure, the values were divided into 4 equal-length groups from the minimum to 

the maximum values. The results were 𝑆𝑀𝐴𝑆 = 0.59⁡;⁡⁡𝑆𝑇𝑆𝑅𝑇 = 0.97⁡. 
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4.3 Movement time, final angle, average velocity, and velocity 

smoothness  

Final elbow extension angle (Figure 13A) was greater in controls than patients with 

stroke for all targets but the near center target (2 = 4.51, P<.05). Elbow extension in 

both groups was affected by target location (stroke: 2=103.59, P<.001; controls: 

2=209.06, P<.001). Controls used less elbow extension for the near center 

compared with all far targets (P<.001 for each target) with no difference between 

the far targets. Similarly, participants with stroke used less elbow extension for the 

near center compared with all other targets (P<.001 for each target), whereas the 

other elbow ranges were not modified by target location. 

Participants with stroke had longer movement times (Figure 13B) than controls for 

all targets (2=38.48, P<.001), with no differences between targets and with no 

interactions between targets and groups.  

Average elbow velocity (Figure 13C) was higher in controls than stroke for all targets 

(2=415.44, P<.001). Controls reached the near center target with the highest 

average velocity (far center: P<.01; contralateral: P<.01; ipsilateral: P<.001) with no 

difference between the 3 far targets. Participants with stroke reached at different 

speeds to different targets (2=28.00, P<.001). The average velocity of patients with 

stroke for movement to the near center target was higher than to the ipsilateral 

target (P<.001) and marginally higher than that to the far center target (P=.05). The 

Figure 12 : Clinical spasticity measures graphs. Left panel: Histogram of the Modified 

Ashworth Scale (MAS) values (total of 42 participants). Right panel: Scatter plot of the 

Tonic Stretch reflex (TSRT) values of the participants against the sampling index. 
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average velocity of patients with stroke toward the ipsilateral target was the lowest 

(near center: P<.001; far center: P<.01; contralateral: P<.001). 

Velocity smoothness (Figure 13D) was higher (lower number of acceleration zero-

crossings) in controls than participants with stroke for all targets (2=63.48, P<.001). 

Reaches in controls had similar smoothness to all targets, whereas it differed 

according to target location in participants with stroke (2=37.18, P<.001). Average 

velocity smoothness for the near center target was similar to that toward the 

ipsilateral but lower than that for the far center target (P<.01) and the contralateral 

target (P<.001). 

 

Figure 13 : Kinematic measures - box plots with line over means for (A) final elbow angle; (B) 

movement time; (C) elbow velocity; (D) the number of acceleration zero-crossings, per target for 

healthy control (red) and stroke (blue) groups. Abbreviations: NC, near-center; FC, far-center; CL, 

contralateral; IL, ipsilateral. 

  

B 
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5. Discussion and conclusions 

5.1 HD and BKLD 

It has been shown that BKLD can be a useful tool for characterizing movement 

disorders (Davidowitz et al., 2019). In the current work, when examining BKLD, the 

results were in line with the previous finding. The BKLD values between the stroke 

and control groups were an order of magnitude higher than the values within the 

control group. Moreover, this work's results indicate that HD between participants 

with stroke and controls was an order of magnitude higher than the HD between 

healthy controls, as well. This suggests that HD may also be a good biomarker of the 

disruption in movement patterns in people with stroke. Furthermore, compared with 

the BKLD, HD has higher generalization to the population of people affected by 

stroke (R2
m) and higher fit to the examined group (R2

c).  

In addition, our results show that the BKLD values for the reach-to-grasp movements 

of the patients with stroke to the near center target were lower than for the far 

targets. The results show that those movements were more similar to those of  the 

control subjects comparing to the movements to the far targets. It is likely that the 

far targets required motion beyond the patient’s TSRT angle into the spasticity zone, 

resulting in greater differences from healthy motion patterns expressed as greater 

BKLD values. HD values were not influenced by target location. This is likely because 

of the way each measure is calculated - HD using a first norm with value range of 0 

to 1, and BKLD using a second norm with no upper bound. This allows BKLD values to 

differentiate the movement characteristic within and outside the patient's control 

zone. On the other hand, this makes BKLD values influenced by every sample 

including noises and outliers, and gives a larger weight to the tails of the distribution, 

especially in short movements. The first norm and the range of 0 to 1 also makes HD 

values easier to interpret, and less susceptible to outliers. This work shows that HD is 

a better biomarker of the general disruption in movement patterns in people with 

stroke than BKLD. However, BKLD is a better biomarker when examining the 

differences between the control and the spasticity zones. 



49 
 

 

Furthermore, HD was strongly related to the TSRT measure of spasticity, and to the 

interaction of TSRT and the slope, while BKLD was only marginally related to the 

slope, with no relation to the TSRT. The generalization of the models which 

explained the BKLD and the kinematic measures (mean movement time, average 

velocity, elbow final angle, and velocity smoothness) using the spasticity measures, 

was not very high (R2
m values were below 0.37). In contrast, patient functional ability 

(FMA) and joint spasticity (TSRT and slope) strongly explained HD values for the 

examined group (R2
c=0.90) and had the best generalizability to the larger stroke 

population (R2
m=0.55). This shows that HD can serve as a robust, objective measure 

of the influence of spasticity on motor kinematics during voluntary movement. We 

demonstrated that HD has advantages over BKLD, and showed that HD is a better 

measure for quantifying the relationship between spasticity and movement 

disorders than BKLD. 

5.2 Functional ability, joint spasticity, and muscle resistance 

Generally, current clinical spasticity indexes measure biomechanical variables (e.g., 

resistance to passive muscle stretch) that are effects rather than causes of spasticity 

(Malhotra et al., 2009). This, together with the multidimensionality of both spasticity 

and motion, may explain why determination of the relationship between spasticity 

and movement disorders has, thus far, been elusive.  

Our results show that MAS, the most commonly used clinical spasticity measure, did 

not explain the kinematic measures and our motion deficits measures when tested 

with the patient functional ability index (FMA). When tested without FMA, the elbow 

flexor passive muscle resistance (MAS) was marginally related to the HD, BKLD, final 

elbow angle, and mean movement time. Furthermore, the models generalization 

was very low (R2
m<0.17). In contrast, spasticity quantified by TSRT and the slope was 

related to the movement disorders characterized by HD, BKLD, and the kinematics 

measures (mean movement time, average velocity, and velocity smoothness). This 

suggests that spasticity quantified by the TSRT and the slope has much better 

capability to explain the movement patterns of patients with stroke. 
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In order to examine the differences between the results of the two spasticity clinical 

measures, Shannon entropy was calculated. Results show that the MAS entropy was 

much lower than the entropy of the TSRT (MAS: 0.57; TSRT: 0.97). These results 

indicate that the MAS values are centered, and thus most of the patients get the 

same MAS score, and the measure cannot explain different levels of spasticity, 

comparing to the TSRT. As an explanatory variable, it is preferred that the entropy 

would be high, thus the distribution is not centered to one value and each patient 

can get a suitable value for his spasticity level.  

Our results also show that FMA was necessary in order to explain all measures. This 

may be due to the fact that the total motor function of the upper limb is likely to 

impact the elbow reaching movements. However, the FMA index measures 

individual and combined joint movements and does not focuses specifically on the 

elbow or a specific reaching task. Thus, the TSRT measure was significantly necessary 

in the models in order to explain the relationship between spasticity and reaching 

kinematics, and is independent of FMA. In contrast, all the models that included MAS 

in addition to the patient functional ability index as explanatory variables had no 

effect of MAS on the measures. This suggests that MAS, as a spasticity measure, 

does not have additional information to the patient upper limb functional ability in 

order to explain the voluntary movement disorders. FMA has more information than 

the MAS and it reflects more of the differences between subjects. 

This work shows that the subjective MAS measure has low resolution and entropy, 

low capability of explaining different levels of spasticity, and has multicollinearity 

effects with FMA when modeling kinematic characteristics, whereas the TSRT is 

independent of the FMA. In addition, MAS only measures the resistance to a passive 

muscle stretch and not spasticity exclusively. We showed that TSRT is statistically 

superior to MAS as a clinical spasticity measure. 

It is also shown that in this study FMA was necessary in order to explain all of the 

measures, whereas in the previous research of our group (Davidowitz et al., 2019) it 

was not related to the BKLD measure. This is probably due to the lower variance of 

the FMA distribution in the previous research compared to the variance in this 

research. As shown in this work - the FMA values in both researches came from the 
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beta distribution which has both upper and lower bounds, with SD of 11.43 in the 

current work (42 participants) and SD of 8.85 in the previous one (16 participants), 

thus making the FMA values less meaningful. In addition, most of the previous 

study's participants had low FMA scores (severe impairment) limiting the 

explanatory capability of the FMA measure. Our results suggest that the general 

upper limb motor function in patients with stroke affects the motor impairments of 

the elbow during voluntary reaching movements.  

5.3 Kinematic measures 

All kinematic measures (final elbow angle, mean movement time, average velocity, 

and velocity smoothness) differed significantly between groups (control subjects and 

patient with stroke). Generally, results were in line with the results of the previous 

study of our group which tested a smaller amount of participants (Davidowitz et al., 

2019).  

Final angles differed between targets and there was a significant interaction 

between target and group. When analyzing each group separately, the elbow 

extension final angle for the near center target was lower than the final angles used 

for all 3 far targets, which were similar to each other. This finding is in line with the 

significantly lower BKLD values and lower amount of GMM components, for the near 

center target compared to the far targets. This shows that the motion to the near 

center target is within the participants control zone, and therefore is more similar to 

that of the control group.  

While final angles were affected by target location, movement times were not 

influenced by the target. The lack of effect of target on movement time is in line with 

the well-known concept of isochrony, i.e., the subjects moved within a similar time 

frame to all targets (Viviani & Flash, 1995). 

5.4 Using stochastic mixture models for modeling human motion 

In this work, the amount of GMM components differed significantly between models 

of controls and of patients with stroke. In addition, patients with stroke had lower 

amount of Gaussian components when modeling reaching toward the near center 

target, where the movement is more similar to that of controls. Spasticity effects 
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both temporal and spatial axes, and the model reflects the combination of these two 

dimensions. However, the differences between the models may also be effected by 

the influence of motion time on smoothness. Subjects with stroke had significantly 

longer movements, and longer movements tend to be less smooth.  It is difficult to 

isolate the influence of the movement time from the influence of the motor 

disorders.  

In the present work we reinforce the conclusions drawn in the previous work of our 

group (Davidowitz et al., 2019), and show that stochastic mixture models, e.g. 

GMMs, which can incorporate time, space, and variability within a single 

representation, facilitating integration of specific joint variability as part of the task-

specific motion model. Thus, representing an advantage over methods using global 

variability measures, such as Principal Component Analysis (PCA) (details regarding 

PCA in Appendix B - Principal component analysis (PCA)) (Pearson, 1901) or 

Uncontrolled Manifold (UCM) (details regarding UCM in Appendix C - Un-controlled 

manifold (UCM)) (Scholz & Schöner, 1999). They are therefore suitable for modeling 

human motion. This modeling method permits the identification of key joint motion 

deficits, such as limitations in elbow extension caused by elbow flexor spasticity in 

patients with post-stroke hemiparesis and can be used to model any movement 

without imposing excessive constraints on initial and final arm or joint 

configurations. 

5.5 Future work 

Elbow spasticity is the only joint analyzed, whereas patients with stroke can also 

have spasticity in the shoulder girdle, wrist or finger flexors. It is possible that 

spasticity in muscles spanning adjacent joints may have affected the elbow reaching 

movement. Shoulder and wrist joint centers, angles, and GMMs were calculated, and 

it is possible to answer this question in future studies. In addition, post and follow-up 

recordings were not statistically analyzed in the current work. In order to answer 

ENHANCE research questions it is necessary to analyze this data and examine the 

differences between the results of pre, post, and follow-up of the ENHANCE training. 
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Appendix A - Lebesgue measure  

The Lebesgue measure (Lebesgue, 1902) is the standard way of assigning a measure 

to subsets of n-dimensional Euclidean space. For n=1, 2, or 3, it coincides with the 

standard measure of length, area, or volume.  It is used throughout real analysis, in 

particular to define Lebesgue integration. 

Given a subset ⊂ ℝ , with the length of interval I=[a,b] given by 𝑙(𝐼) = 𝑏 − 𝑎, the 

Lebesgue λ (E) is defined as 

𝜆(𝐸) = inf{∑ 𝑙(𝐼𝑘

∞

𝑘=1

) : (𝐼𝑘)𝑘⊂𝐍⁡𝑖𝑠⁡𝑎⁡𝑠𝑒𝑞𝑢𝑎𝑛𝑐𝑒⁡𝑜𝑓⁡𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠⁡𝑤𝑖𝑡ℎ⁡𝑜𝑝𝑒𝑛⁡𝑏𝑜𝑢𝑛ⅆ𝑟𝑖𝑒𝑠⁡𝑤𝑖𝑡ℎ 

𝐸 ⊂ ⋃𝐼𝑘

∞

𝑘=1

⁡} 

(A.1) 

The Lebesgue measure is defined on the Lebesgue σ-algebra, which is the collection 

of all sets E which satisfy that for every𝐴 ⊂ ℝ,  𝜆(𝐴) = 𝜆(𝐴 ∩ 𝐸) + 𝜆(𝐴 ∩ 𝐸𝑐
).  
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Appendix B - Principal component analysis (PCA) 

Principal Component Analysis (PCA) is a statistical method for data analysis (Pearson, 

1901). PCA aims to compress the size of a data set and evaluate it in terms of the 

main components that capture the essential data patterns of the data set. To 

achieve this goal, PCA computes a new set of latent variables called Principal 

Components (PC) (Wold, Esbensen, & Geladi, 1987). PCA is the simplest and most 

popular method to perform dimensionality reduction (DR) effectively- the process of 

reducing the number of random variables. Using PCA, the original space is reduced 

(with data loss, but hopefully retaining the most important variance) to the new 

space. 

The PCs are a linear combination of the original variables, hence making PCA a linear 

DR method. The new variables are orthogonal to each other so they can span a 

projected latent space. DR with PCA achieves the best mean-square error compared 

to other linear DR methods (Bro & Smilde, 2014). 

The transformation that is done to convert a set of observations of possibly 

correlated variables into a set of values of linearly uncorrelated variables, the PC, is 

defined in such a way that the first principal component is required to have the 

largest amount of variance and each succeeding component in turn has the highest 

variance possible under the constraint that it is orthogonal to the preceding 

components. Larger amount of variance implies that the component contains more 

information compared to other components. The components are computed in this 

manner, until the PC contains most of the information of the data, as defined by an 

empirical demand - a set proportion of the data variability (a threshold). There are a 

few more methods to determine when to stop adding components – according to 

the predicted residual sum of squares or to a plot of the size of the eigenvalues. 

Another standard tradition is to keep only the components whose eigenvalue is 

larger than the average of the eigenvalues (Abdi & Williams, 2010). 

Let the matrix X be defined as a column matrix X = {𝑥1,⁡𝑥2 , ... ,⁡𝑥𝑑}, where d is the 

original space dimensionality and 𝑥𝑖  denotes a set of observations of the variable 𝑖 in 

the original data space. First, the columns of X are centered by subtracting the 
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means- 𝑥̅𝑖 , from each column 𝑖 for each 𝑖 = {1,…,d}. Now let 𝑋̅ be the centered 

matrix. 

After that, covariance matrix of the data is calculated by: 

𝐶 = 𝐸(𝑋̅𝑋̅𝑇) (B.1) 

The matrix of eigenvalues 𝜆𝑗, and corresponding eigenvectors 𝑤𝑗 are calculated as 

follows: 𝐶𝑤𝑗 = 𝜆𝑗𝑤𝑗  . The value 𝜆𝑗 denotes the importance of component 𝑗, and 𝑤𝑗 

denotes a weight vector. The eigenvalues 𝜆𝑗 are sorted in descending order- from 

the most important component to the least. Matrix W composed of the columns 𝑤𝑗 , 

where the columns are ordered corresponding to the order of the eigenvalues. This 

matrix can be used to project the original features into the latent space encoded by 

the latent variables as follows: 

𝑌 = 𝑊 ∙ 𝑋 (B.2) 

Where Y contains the new latent variables 𝜀𝑗 , 𝑗= {1,…,d}. The principal components 

are the set of 𝜀𝑗 , 𝑗= {1,…,p} where ⁡∑ 𝜆𝑗
p
j=1 > 𝑇1.  

T1 is set to be the threshold for data variability explanation. If T1=100% than all 

components will be selected and dimensionality will not be reduced. The number of 

principal components is less than or equal to the smaller of the number of original 

variables or the number of observations, the new space contains equal or less 

dimensions of the original dataset space.  

PCA is simple to apply; takes polynomial computation time and the linear 

transformation applied allow re-projecting the data to the original space. PCA 

applied on motion data shows inconsistencies in the latent spaces created when 

different coordinate systems are used (Calinon, Guenter, & Billard, 2007).  
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Appendix C - Un-controlled manifold (UCM) 

The Uncontrolled Manifold (UCM) is a motor coordination theory. The theory 

suggests a hypothesis about the human central nervous system and how it achieves 

motor coordination. UCM theory does not eliminate the redundant degrees of 

freedom which exist in motion, but instead it uses all of them to ensure flexible and 

stable performance of motor tasks. The central nervous system makes use of this 

abundance from the redundant systems instead of restricting them like other 

hypothesized. The concept can be described using synergies (Scholz & Schöner, 

1999). 

Any ordinary human activity requires cooperation among many structurally diverse 

elements. One hypothesis claims that in such complex living systems the elements 

are organized into synergies (also known as coordinative structures) defined as 

functional groupings of structural elements (e.g. neurons, muscles, joints) that are 

temporarily constrained to act as a single coherent unit (Kelso, 2008). 

Synergies relates to two types of variables – elemental variables and performance 

variables. Elemental variables are the smallest sensible variables that can be used to 

describe the system mechanics. On the other hand, performance variables refer to 

important variables produced by the system as a whole, some might be goal or 

target related. According to the UCM hypothesis, the controller (the human brain) 

acts in the space of elemental variables (for example-the 7 major rotations shared by 

the shoulder, elbow, and wrist joints), and selects in that space sets of values 

corresponding to a required value of a performance variable. This is the 

Uncontrolled Manifold- Little to no control over these elements is required since 

they do not affect the performance variables. 

The UCM subspace is orthogonal to the subspace consisting of all the variables which 

affect the performance variables. Most of the variability among the elemental 

variables is limited to the UCM, which allows flexibility in the performance. The UCM 

hypothesis suggests that variability can be “bad”- affecting an important 

performance variable and causing larger errors, or “good”- variability within the 

UCM which is maintaining a successful outcome with more motion flexibility (Latash 
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& Anson, 2006). In order to accept the UCM hypothesis, the “Good” variability in the 

UCM (referred to as VGOOD) needs to be greater than the variability orthogonal to it 

(referred to as VBAD).  If 𝑉𝐺𝑂𝑂𝐷 ≥ 𝑉𝐵𝐴𝐷 it can be concluded that a synergy exists, 

stabilizing a performance variable for which the UCM was computed. In contrast, in a 

case where VBAD ≫ VGOOD⁡ , the variability indicates that abundance in DOF’s was 

used for achieving performance variable goal. The UCM is not a linear subspace and 

therefore the UCM analysis for joint configurations requires derivation of the 

Jacobian which will be used for linear estimation of the UCM. Using regression for 

estimating the Jacobian is preferable over analytical approach (de Freitas & Schol, 

2010). UCM analysis can also be applied in order to achieve effects of DR methods.  

UCM requires the analysis of the Jacobian matrix, which is not always possible to 

define and depends on the data. If possible, the UCM method result can be stronger 

than the PCA since it allows more complex tasks and flexibility in the movement 

instead of simply disregarding the redundant degrees of freedom as in the PCA 

algorithm.  
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Appendix D - Joint Angles definitions 

Joint angles were defined according to Table 8 : Joint angles definition. All the seven 

angles detailed below were computed for the ENHANCE project, yet only the elbow 

extension angle was analyzed in this project. 

Table 8 : Joint angles definition 

Name Explanation Units 

Shoulder 

Extension 

Angle between upper arm marker XM3 and sternum marker XM5 in M5 XZ 

plane. Fix to 0 when arm pointing down alongside body XM3 and XM5 

orthogonal. 

Deg 

Shoulder 

Adduction 

Angle between upper arm marker XM3 and sternum marker -ZM5 in M5 ZY 

plane. Fix to 0 when arm pointing down alongside body XM3 and -ZM5 

orthogonal. 

Deg 

Shoulder 

Rotation 

Angle around the shoulder elbow vector XS. 0 according to rest position, 

positive direction external. 
Deg 

Elbow 

Extension 

Angle between upper arm marker XM3 and lower arm marker XM2. 180 deg- 

Full arm extension. 
Deg 

Elbow 

Supination 

Angle around wrist elbow vector XE. 0 is according to rest position. Positive 

direction external. 
Deg 

Wrist 

adduction 

Rotation around ZM2 (right hand rule), Angle between XM1 and XM2. 0 when 

XM1 and XM2 are parallel. 
Deg 

Wrist 

Extension 
Angle between ZM2 and ZM1. Deg 

Plane angle 
Angle between normal to arm plane and vertical body direction set by torso 

marker. 90 When arm plane normal pointing upwards in body direction. 
Deg 



 
 

 

 תקציר

 תבעלייה תלוי נתמאופיי תופעהשבץ מוחי. הה הנובעת מכיחהפרעה מוטורית ש נהספסטיות הי

 פגיעותשל ספסטיות ולהערכת  קיוםמדדים קליניים לבדיקת  קיימים. המתיחה מהירות ברפלקס

לחלוטין.  ברורספסטיות אינו לבין  רצוניתפרעות בתנועה ה, עם זאת, הקשר בין הותמוטורי

המובנית הקיימת השונות של הפגישה ובגלל ממדיות )מרחב וזמן( -המורכבות, הרב חלקית בגלל

תנועה של כסטי סטו מידולחדשני, המבוסס על  מדד. בעבודה קודמת של קבוצתנו הוצע בתנועה

 המרחק בין מודלי באמצעות כומתובתנועה  הפרעותה זה.הקשר ה לבחינת מרחב,בזמן וב

לבין המודלים של שבץ  לאחרמסלולי תנועה של נבדקים על פי , שנבנו יאניםגאוסהתערובת ה

בגרסתו הסימטרית.  לייבלר-קאלבקשונות  מדד מרחק זה הוערך באמצעות .יםבקרה בריאנבדקי 

עבודה הקודמת, תוך מה נבעוקים ומוסיפים לתוצאות והמסקנות שבעבודה הנוכחית אנו מחז

 המרחק של הלינגר דדאנו מציעים מדד מרחק שונה: מנבדקים. כמעט פי שלושה בשימוש 

 המודליםמרחק גדול יותר בין במדד הלינגר כי . אנו מראים לייבלר-קאלבקשונות משווים אותו לו

יש יתרונות על פני  מרחק הלינגר. לחולהרמה גבוהה יותר של ספסטיות של הקשור ב של התנועה 

. 1-ל 0בין  תחומיםערכים  בעלו משולשהאי שוויון  המדד מקיים את. לייבלר-קאלבקשונות 

, פחות דגימות חריגותסימטרי, פשוט לפרשנות, פחות חשוף להשפעות  המרחק של הלינגר

מדד , בהשוואה לחסיןו ת, נורמלי אסימפטוטייציב ,אינווריאנטיכידוע ו תאינטנסיבי חישובי

 אחרים.בין התפלגויות   מדדי מרחקלייבלר ול -קלאבק

שבץ אשר ביצעו  לאחרנבדקים  42-ו נבדקים בריאים 13כלל שבוצע בעבודה הנוכחית הניתוח 

באמצעות חיישנים  והוקלט הושטהת הזרוע בזמן הו. תנועמטרות 4לעבר  הושטה לאחיזהתנועות 

שיפוע , המתיחה במנוחהרפלקס  סףמדד מתה באמצעות ואלקטרומגנטיים. ספסטיות המרפק כ

סולם ) מותאםהסולם אשוורת' מדד מהירות של הספסטיות ובתלות קו הרגרסיה המייצג את ה

ת באמצעות מכו ותהעליונ ייםהמוטורי של הגפ תפקוד. ה(אשר הינו מדד מקובל לספסטיות

סף רפלקס המרחק של הלינגר מתקשר באופן חזק למדד . התוצאות מראות כי מאייר-פוגלהערכת 

 מדד התפקוד המוטורי של הגפיים העליונות,, לאינטראקציה שלהם ולשיפוע, להמתיחה במנוחה

 שונותבהשוואה למדד  ,כלליתכללה הטובה ביותר לאוכלוסיית השבץ ההה כי הוא בעל יכולתו

התקשר למדד התפקוד  לייבלר-קאלבקמדד שונות מדדים הקינמטיים שנבדקו. לו לייבלר-קאלבק

המתיחה במנוחה. סף רפלקס  המוטורי, התקשר גבולית לשיפוע קו הרגרסיה וללא קשר למדד

תנועות לשל ספסטיות קשר ואובייקטיבי ל חסיןיכול לשמש מדד  המרחק של הלינגרלפיכך, 

עדיף סטטיסטית על  המתיחה במנוחהסף רפלקס מדד תוצאות הראו גם כי ה הושטה לאחיזה.ה

 ספסטיות קליני. מדדכ מותאםהסולם אשוורת' 

 

, שיקום לאחר שבץ, ספסטיות, לייבלר-קאלבק שונותמילות מפתח: מדד המרחק של הלינגר, 

 .גאוסיאנים תערובת מודל
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