BEN-GURION UNIVERSITY OF THE NEGEV

FACULTY OF ENGINEERING SCIENCES
DEPARTMENT OF INDUSTIRLA ENGINEERING AND MANAGMENT

Using Hellinger’s distance for quantifying the effects of spasticity following stroke on
voluntary motor control

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE M.Sc. DEGREE

By: Hadar Lackritz

SEPTEMBER 2019



BEN-GURION UNIVERSITY OF THE NEGEV

FACULTY OF ENGINEERING SCIENCES
DEPARTMENT OF INDUSTIRLA ENGINEERING AND MANAGMENT

Using Hellinger’s distance for quantifying the effects of spasticity following stroke on
voluntary motor control

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE M.Sc. DEGREE

By: Hadar Lackritz

Supervised by: Prof. Sigal Berman, Prof. Yisrael Parmet

Author:...... Hadar Lackritz....."" j .. >:‘ ... L Date: 25.09.2019........
Supervisor: Sigal Berman &.lw-_ﬂé!_vl Date: 25.09.2019........
Supervisor: Yisrael Parmet Cw39 Sye, Date: 25.09.20109........
Chairman of Graduate Studies Committee q? oo L‘w ........ Date: 22092019

SEPTEMBER 2019


anat
Stamp

anat
Stamp


Abstract

Spasticity is a common motor deficiency caused by stroke. It is characterized by a
velocity-dependent increase in the stretch-reflex. There are existing clinical measures
for ascertaining the presence of spasticity and for assessing motor deficits, however,
the relationship between voluntary movement disorders and spasticity is not fully
understood. This is due, in part, to the complexity and multidimensionality (space
and time) of both phenomena, and the variability inherent in motion. In a previous
work of our group, an innovative measure, based on spatio-temporal stochastic
modeling, was suggested for investigating this relationship. Motion deficits were
qguantified by the distance between spatio-temporal Gaussian mixture models,
constructed from motion trajectories of subjects with stroke and those of healthy
controls. This distance was assessed using the bidirectional Kullback-Leibler
divergence (BKLD). In the current work, we reinforce and add to the results and
conclusions drawn in the previous work, using nearly three times as many subjects.
We suggest a different distance measure: the Hellinger's distance (HD) measure and
compare it to the BKLD. We show that a larger Hellinger's distance between the
models is associated with a higher level of spasticity of the patient with stroke. HD
has advantageous over BKLD. It is a metric satisfies the triangle inequality, with values
bounded between 0 and 1. HD is symmetric, simple to interpret, is less susceptible to
ceiling effects, less computationally intensive, and is shown to be invariant,
consistent, asymptotically normal, and robust, compared to the BKLD and to other

distribution distance measures.

The analysis in the current work included 13 controls and 42 subjects with stroke
which performed reach-to-grasp movements toward 4 targets. Arm motion during
reaching was recorded using electromagnetic sensors. Elbow spasticity was quantified
using the tonic stretch-reflex threshold (TSRT), the velocity dependency of the
spasticity (slope), and the Modified Ashworth Scale (MAS) (a common spasticity
clinical measure). Upper limb motor function was quantified using the Fugl-Meyer
assessment (FMA). Results suggest that HD is strongly related to the TSRT, the slope,
their interaction, and the FMA, and has the best generalizability to the larger stroke

population comparing with the BKLD measure and the kinematic measures tested.



BKLD was related to the FMA, marginally related to the slope, and not related to the
TSRT measure. Thus, HD can be used as a robust, objective measure of the
relationship between spasticity and reaching kinematics. Results also show that the

TSRT is statistically superior to the MAS as a clinical spasticity measure.

Keywords: Hellinger's distance, Kullback-Liebler divergence, Stroke rehabilitation,

Spasticity, Gaussian mixture models.
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1. Introduction

1.1 Stroke

Stroke is currently the leading cause of long-term sensorimotor disability (Zhang et
al., 2002). A stroke occurs when a blood clot blocks an artery (a blood vessel that
carries blood from the heart to the body) or when a blood vessel (a tube through
which the blood moves through the body) breaks, interrupting blood flow to an area
of the brain. When either of these happen, brain cells begin to die and brain damage
occurs. The two major categories of stroke are ischemic stroke (lack of blood and
hence oxygen to an area of the brain) and hemorrhagic stroke (bleeding from a burst

or leaking blood vessel in the brain) (Gund et al., 2013).

When brain cells die during a stroke, abilities controlled by that area of the brain are
lost. Disrupted functionalities and motor deficits following stroke may include
speech, basic movements, confusion, loss of memory, muscle weakness, or
paralysis of the face, arm, or leg (usually just on one side - the opposite side of the

brain injury side). All these factors contribute to a low overall quality of life.

Motor disorders after stroke are treated by surgery, drugs, or rehabilitation therapy.
However, stroke is currently the leading cause of long-term sensorimotor disability
(Zhang et al., 2002). Motor deficits induced by stroke persist into the chronic stage in
a large proportion of survivors (Langhorne et al., 2009). One of the most common
motor disorders resulting from stroke is spasticity (Sommerfeld et al., 2004) (details
regarding spasticity in 2.2 Spasticity). During the first year following the stroke, 20-
50% of the patients suffer from spasticity. Spasticity is a motor disorder
characterized by a velocity-dependent increase in the tonic stretch reflexes (muscle
tone) with exaggerated tendon jerks, resulting from hyper excitability of the stretch
reflex (Lance, 1980). This work focuses on quantifying the effects of spasticity on

motion kinematics during voluntary movement.
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1.2 ENHANCE project

This study is a part of the ENHANCE project (Levin et al., 2018). The ENHANCE project
is an international collaboration project between Israel, India, and Canada. The
project deals with enhancing brain plasticity for sensorimotor upper limb (UL)

recovery in spastic hemiparesis of patients after stroke.

Enhance proposes a training program that combines current knowledge about brain
plasticity and motor control, and includes virtual reality (VR) combined with non-
invasive brain stimulation to enhance motor learning. The training incorporates
personalized transcranial direct current stimulation (tDCS), which is a form of
neurostimulation that uses constant, low current delivered to the brain area of
interest via electrodes on the scalp, to balance cortical hypo/hyperexcitability. In
addition, it involves personalized reaching training, based on the identification of the
individual's disorders in spatial threshold (ST). The training approach is guided by
identification of the elbow angular zone in which spasticity occurs (‘spasticity zone’)
and limiting reaching training to the zone in which active control is preserved (‘active

control zone’), in each participant.

The first goal of the ENHANCE project is testing the effectiveness of personalized
training programs to enhance UL motor, by increasing the range of regulation of STs
in the elbow during reaching. The second goal is determining the effects of tDCS
aimed to decrease spasticity and improve motor function of the arm. The third goal
of the project is determining the feasibility of implementing personalized training
programs in high and low-to-middle income countries. In order to test the treatment
outcomes, the reach-to-grasp task has been chosen for kinematic assessment. This
task has been chosen since it represents a functional reaching task which relies on

the coordination of UL and trunk segments.
1.3 Motivation and objectives

Current clinical spasticity measures and clinical motor deficits measures do not
capture the relationship between voluntary movement disorders and spasticity
(Malhotra et al., 2009; Gregson et al., 1999; Calota et al., 2008). One of the reasons

is that both phenomena are complex and consist of two (spatio and temporal)
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dimensions and variability. The use of stochastic models offers an important tool for

investigating this relationship.

In a previous work of our group, Davidowitz et al. (2019) have suggested using
Gaussian mixture models (GMM) and the bi-directional Kullback-Leibler Divergence
(BKLD) for quantifying the effects of spasticity on voluntary motor control. They have
shown that for elbow reaching motion, in a cohort of 16 subjects with stroke, motion
models of patients with higher MAS (more spasticity) were more distant (larger
BKLDs) from motion models of healthy individuals. This work aims at further
developing a more robust measure for quantifying the influence of spasticity on
motor performance during voluntary movement, based on motion kinematics. In the
current work we suggest a new stochastic distance measure for quantifying the
distance between the models: the Hellinger's distance (HD) measure. HD has
advantageous over the BKLD (further information in 2.4.2 Hellinger's distance),
which we demonstrate in this work. In addition, we show the relations of this
distance with spasticity quantified by the MAS, the tonic stretch reflex threshold
(TSRT), and the regression line slope which gives an indication regarding the velocity
dependency of the spasticity (Calota & Levin, 2009) (details regarding the clinical
measures in 2.2.2 Clinical spasticity measures). We compare the HD and the BKLD as

measures of the influence of spasticity on motor disorders.
1.4 Innovations

In order to quantify the influence of spasticity on motion kinematics with a robust
measure, we used the stochastic HD measure (details regarding HD in 2.4.2

Hellinger's distance), based on the method developed in a previous work of our
group (Davidowitz et al., 2019). The measure is based on spatio-temporal Gaussian
mixture models (ST-GMMs) (details regarding ST-GMMs in 2.3 Using stochastic
mixture models for motion modeling) constructed from motion trajectories. Using
stochastic models offers a comprehensive representation of data which facilitates
integrating multiple process dimensions along with variability, within a single
generalized model. These can be of importance when representing motion data for

examining motion quality, e.g., for monitoring rehabilitation progress.
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We show that HD can be a good biomarker of motion disruptions and can serve as
an objective, robust measure for the influence of spasticity on reaching movements.
When compared to other similarity measures and kinematic characteristics, e.g.
BKLD, HD has advantages which are shown in this work. We demonstrate that HD is
strongly related to the patient functional ability and joint spasticity, is more robust,

and has the best generalizability to the larger stroke population.

The TSRT is an objective, innovative, relatively new measure for quantifying
spasticity. In this research we demonstrate that the TSRT is statistically superior to
the most commonly used clinical spasticity measure - the MAS. We show that TSRT
has high resolution and entropy, and is independent of the Fugl-Meyer assessment
(FMA) for UL motor dysfunctions. This is while MAS is subjective, has low resolution
and entropy, and has multicollinearity effects with FMA when modeling kinematic

measures.

The study was summarized in a poster presented at the “Progress in Motor Control
XIlI” conference, Lackritz et al., Quantifying the effects of spasticity on reaching
movement patterns using stochastic spatiotemporal modeling, Holland, Amsterdam,
2019. This work was additionally presented in the “15th Karniel Computational
Motor Control Workshop”: Lackritz et al., Stochastic Spatiotemporal Modeling and
Spasticity, Beer Sheva, 2019, and at a Microsoft data science club talk, Herzelia,
September 2019. A journal publication is currently under development. In addition,
our developed measure will be one of the secondary outcome measures used in the
ENHANCE project for measuring treatment efficiency through decrease in upper limb

spasticity.

1.5 Work scope

Subject motion analyzed included 13 healthy control subjects that were recorded in
August 2016 and 42 subjects with stroke that were recorded from August 2016 to
January 2019, in Canada, India, and Israel. As part of this study, a complete kinematic
analysis of the ENHANCE project database was performed for all pre, post (2 weeks
post-intervention), and follow-up (1 month post-intervention) data. The analysis

included a construction of the method for calculating the joint centers of the wrist,
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elbow, and shoulder, based on the works by O'Brien et al. (1999) and Davidowitz et
al. (2019). Post and follow-up recordings were not statistically analyzed in the
current work. Elbow spasticity is analyzed in this work since it has a lot of motion
contribution in the reach-to-grasp motion task presented to the participants and the

joint for which there are reference spasticity clinical measures.

1.6 Thesis structure

The rest of this report is organized as follows: Chapter 2 presents a literature review.
Reviewed topics include spasticity following stroke, clinical spasticity measures,
motion modeling using stochastic mixture models, and GMMs in particular. In
addition, the chapter presents HD measure, other similarity measures for GMMs,
and a comparison between them. Chapter 3 describes the modeling method and the
research hypotheses. The chapter includes the required pre-processing, the analysis
of the raw data, and the calculation method of the different measures and models.
Chapter 4 presents the results and the statistical analysis. Chapter 5 presents a
discussion consider these results, the conclusions from this research, and suggested

future work.
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2. Literature review

2.1 Overview

The literature review includes concepts used in this study and scans measures,
methods, algorithms, and previous researches related to stochastic motion
modeling, similarity measures, and spasticity. Section 2.2 provides background on
spasticity in patients with stroke. The section additionally reviews existing clinical
measures for spasticity and their limitations. Chapter 2.3 describes the use of
stochastic models for representing spatio-temporal motion data, especially spatio-
temporal Gaussian mixture models, and their use for examining motion quality. The
concepts reviewed include previous work of our group, model definitions, and
parameter estimation. Chapter 2.4 presents distance measures between
distributions, suitable for multivariate mixture models. The chapter describes the
main distance measure examined in the current work - the Hellinger's distance

measure.
2.2 Spasticity

2.2.1 Spasticity following stroke

Spasticity is a motor disorder characterized by a velocity-dependent increase in the
tonic stretch reflex (tonic contraction of the muscles in response to a stretching
force) with exaggerated tendon reflexes, resulting from the hyper excitability of the
stretch reflex, as one component of the upper motor neuron syndrome (Lance,
1980). It is one of the most common disorders caused by stroke. During the first year
following the stroke 20-50% of the patients suffer from spasticity (Sommerfeld et al.,
2004). It leads to difficulty in daily activities and to reduced quality of life (Nichols-
Larsen et al., 2005). Spasticity is often medically treated with an injection of

botulinum toxin A (botox) or the drug baclofen.

Clinically, spasticity is assessed during passive rather than voluntary motion. The
functional state of the motor system during voluntary motion is more complex than
under passive conditions. Therefore, phenomena such as hypertonia displayed by a

passive muscle following imposed stretch will not necessarily appear when the
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muscle is stretched as part of a voluntary movement. Thus, the role of spasticity in

the disruption of voluntary movement remains controversial (Fellows et al., 1994).

According to Jobin and Levin (2000), spasticity may be characterized by the limitation
of the central nervous system (CNS) to regulate the range of stretch-reflex
thresholds in flexor and extensor muscles. They showed that for patients with stroke
the ability to regulate muscle force throughout the physiological range (control zone)
may be lost due to narrowing of the stretch-reflex regulation thresholds. Measuring
spasticity can benefit physical therapy treatments and patients with stroke condition
and rehabilitation evaluation. As the spasticity measure will be more accurate, the
quality of the treatments, and the contribution to the rehabilitation of the patients,
can be measured more accurately. Furthermore, treatments could be better adapted
to the patients. The following sections will present existing measures for spasticity,
and the use of two methods combining ST-GMM with ST-HD and ST-KLD for

guantifying the effects of spasticity on motor control.
2.2.2 Clinical spasticity measures

The primary clinical measure used to measure spasticity is the Modified Ashworth
Scale (MAS) (Bohannon & Smith, 1987). This is a discrete, subjective measure which
grades the resistance felt during stretching of passive muscles on a 6-point ordinal
scale (Charalambous, 2014). The MAS uses a 1+ scoring category, which was added
to the original Ashworth scale (AS) to indicate resistance through less than half of
the movement and therefore increasing its sensitivity with 6 instead of 5 levels, as

shown in Figure 1 (Bohannon & Smith, 1987).

One of the main problems of the MAS is that the resistance to passive movement
and its range are complex variables that normally vary with the level of activity
(voluntary and reflex). These variables may be influenced by many factors, e.g.
temperature, only one of which could be spasticity. Another factor that influences
the MAS score is the therapist's experience (Lee et al., 1989). The MAS assessment is
subjective and therefore may be inconsistent and could affect the efficacy of the

rehabilitation process (Puzi et al., 2017).
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Grade Description
i Mo increase in muscle tone
1 slight increase in muscle tone, manifested by a

catch and release or by minimal resistance at
the end range of motion when the affected
parts moved in flexion or extension

1+ Slight increase in muscle tone, manifested by a
catch, followed by minimal resistance
throughout the remainder (less than half) of
the range of motion

2 More marked increase in muscle tone through
most of the range of motion, but the affected
part is easily moved

3 Considerahle increase in muscle tone, passive
movernent is difficult
4 Affected part is rigid in flexion or extension

Figure 1 : Grades and descriptions of the Modified Ashworth scale.

Another problem regarding using the MAS as a spasticity measure is that evidence
suggests that the resistance to passive movement is only an effect of spasticity and is
not an exclusive measure of it (Pandyan et al., 1999). The assessment of resistance
to passive muscle stretch does not capture all aspects of spasticity, such as velocity
dependent and its effects on motion quality. Furthermore, evidence suggests that
the resistance to passive movement is not significantly influenced by reflex neural
activity unless the velocity of the passive stretching is high, although the MAS does
not check the movement at high velocity only (Pandyan et al., 1999). Another issue is
that the MAS takes no account of the relation of abnormal tone with posture and
associated reaction, both of which may be important for the measurement of tone

and its impact on function (Gregson et al., 1999).

The tonic stretch reflex threshold (TSRT) (Calota & Levin, 2009) is an objective,
continuous, innovative, relatively new measure for quantifying spasticity. TSRT
measurement and its relationship with spasticity are based on threshold control
theory (TCT) of motor control (Feldman, 2015). According to the TCT, voluntary
movement is generated by regulating the STs at which muscle activation begins.
EMG emerges based on the interaction of the biomechanics of the system with the
environment. The TSRT, i.e.,, the ST at zero velocity, is extrapolated based on
regression from measurement of STs at different velocities. In addition to the TSRT,
which is the regression line intercept, the regression line slope gives an indication

regarding the velocity dependency of the spasticity (Figure 2).
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There are some more common existing spasticity measures, with different
limitations. For example, the disability rating scale, which is a self-reported scale
filled by the patient that notes how difficult it is for him to handle his affected limb.
This measure relies on the patient's report abilities that may be hindered due to the
stroke (Francisco et al., 2005). Another example is the Hand-held dynamometer,
which can be used to test only the calf-muscle spasticity (Boiteau et al., 1995), or the
Wartenberg pendulum test which is used to test quadriceps muscle spasticity only
(Nordmark & Andersson, 2002). Another method is the H-Reflex measure that
assesses the response to electrical or mechanical stimulation. This technique is
simple to perform and easy to use in neurology setting, yet it has low correlations

with other clinical scales (Burridge et al., 2005).
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300 1
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Figure 2 : The tonic stretch reflex threshold regression line. velocity=Sloperangle+ 7SR7.

2.3 Using stochastic mixture models for motion modeling

Using stochastic models rather than single moments, e.g., the sample mean, offers a
comprehensive representation of data. The facilitate representation of multiple data
moments, along multiple dimensions giving indications of underlining creation
processes. These can be helpful when representing motion data, for examining
motion quality. The additional representation detail comes with a considerable cost,
both in the initial derivation from the data and in the subsequent interpretation of

the results.



19

Stochastic Gaussian mixture models (GMM) can capture the behavior of many
complex, multi-dimensional processes. They are a particularly attractive modeling
option since there are readily available methods for estimation of GMM parameters.
For example, expectation maximization algorithm (EM) (Dempster et al., 1977) for
estimating the models weights, means, and covariances, or non-parametric Bayesian
estimation (Rasmussen, 2000) for determining the number of Gaussians and making

a selection between models.

A GMM is a stochastic model assumes that all the data points are generated from a
mixture of a finite number of Gaussian distributions with unknown parameters. A
GMM is parameterized by two types of values - the mixture component weights and
the component means and variances or covariances. For a GMM with K components,
the K-th component has a mean of [,and covariance matrix of Skfor
the multivariate case. The mixture component weights are defined as ok for
component ¢, with the constraint that Y%, ©; = 1 so that the total probability

distribution normalizes to 1 (Dinov, 2008).

GMM is computed by the weighted sum of K Gaussians probability densities, as
given by the equation:

K

p(x) = Z ©; - g; (x|, X0 (2.1)

i=1

where the multivariate Gaussian density g; (x|l;, Y;;) is defined by:

1 S
9i (x|, %) = - exp {_E(x -7 (X —Tu)} (2.2)

1
(2m)?/2 /13|

tt,i Zts,i)

He= {.Ut,i ' ,Us,i}, Zi N <Zsti Zsti (2.3)

where us;, is the spatial expectation and u¢; is the temporal expectation of the i-th

component, and 2 is the variance or covariance of the j-th component.

One of the main advantages of using spatio-temporal Gaussian mixture models (ST-
GMM) is that hidden parameters are modeled without explicit assumptions and

therefore the model can easily be applied to varied applications without requiring
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additional assumptions. This, along with the unconstrained covariance structure of
stochastic mixture models comparing to deterministic models, allows flexibility in
the modeling of the covariance structure. In addition, ST-GMM can model
probability distributions to any required level of accuracy with enough components

(Hinton et al., 2012).

For reach-to-grasp motion, ST-GMM models were constructed in a previous study of
our group for the elbow joint (Davidowitz et al., 2019), and the distance between
models of subjects with stroke and healthy controls was quantified using the
Bidirectional Kullback-Leibler divergence (BKLD). This distance was related to the
Modified Ashworth scale (MAS) spasticity measure, where patients with higher MAS
had a higher BKLD value, indicating a GMM model and movement pattern that were
more distant from those of controls. In the current study we examine BKLD distance
measure for mixture models, and focus on the Hellinger's distance measure (HD)

which has advantageous over the BKLD and other distribution distance measures.
2.4 Distribution distance measures

2.4.1 Distance measures for mixture models

Common classical maximum-likelihood based goodness-of-fit measures, e.g. Chi-
squared test, cannot be used for comparing mixture models due to their multivariate
nature. Furthermore, log likelihood based fit measures cannot be used directly since
no closed form exists for the asymptotic distribution of the log-likelihood ratio
statistic of mixture of two or more Gaussians. This can be used to produce
confidence intervals for maximum-likelihood estimates or as a test statistic for
performing the Likelihood-ratio test. Different methods have been developed for
measuring distance between the GMM models, thus facilitating the use of this
modeling technique for measuring various motion related phenomena (Jensen et al.,
2007; Kristan et al., 2011). Selecting the suitable method is important for attaining

improved performance and since computation cost is typically non-negligible.

One of the most commonly used methods for measuring similarity between GMMs is
the Kullback-Leibler Divergence (KLD) (Kullback & Leibler, 1951; Jensen et al., 2007;

Goldberger & Aronowitz, 2005). KLD is an information-based measure of disparity
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among two probability distributions. It measures the dissimilarity between two
probabilistic variables defined over the same set of outcomes (Polani, 2013). KLD can
be expressed as the difference in the amount of additional information needed to
reconstruct the probability distribution p with probability distribution g (Hyun et al.,
2019). Very often in probability and statistics the observed data or complex
distributions are replaced with a simpler, approximating distribution. KLD measures
how much information is lost when the approximation is chosen. In other words, it is
the expectation of the log likelihood ratio between the probability distributions p

and g, where the expectation is taken using the probability p (Altman, 1992).

Specifically, the KLD of g from p, denoted Dk (p//q), is a measure of the information
lost when g is used to approximate p. Typically p represents the "true" distribution of
data, observations, or a precisely calculated theoretical distribution. The measure g
typically represents a theory, model, description, or approximation of p. When p and

g are continues variables, KLD is defined by:
Dulp! la)=J ", p()log ) dx 2.4)

KLD goodness of fit measure can be used as a similarity measure between
distributions, so that the higher Dxi(p//q) is, the less similar p and g are. KLD is
always non negative with no upper bound, hence Dx(p//q)20, while Dkx(p/[q)=0
indicating identical behavior of the two distributions. KLD is not a distance measure
as it is not symmetric, not does it satisfy the triangle inequality. In order to overcome
the asymmetry of the KLD, a symmetric variant can be applied: the Bidirectional-KLD,

and thus, can be used as a distance measure:

D D

Since the measure is based on log likelihood, KLD between GMMs cannot be
computed analytically, it can be estimated using methods such as the variational
approximation, Monte Carlo simulation, Gaussian approximation, or a lower-bound
approximation. The variational approximation is relatively quick to compute,
comparing with the Monte Carlo and Gaussian approximations for example.
Therefore, when computation time is an issue, the variational approximation may be

useful. When compared to other simple, closed-form approximations of the



22

similarity between GMMs, e.g. the lower-bound approximation and the Gaussian
approximation, the variational approximation is the most accurate (Hershey & Peder,

2007; Hershey, Olsen, & Rennie, 2007).
2.4.2 Hellinger's distance

The HD is used to quantify the distance and separability between two probability
distributions on the same set of outcomes. To define the HD, let p and g denote two
probability measures with respect to a third probability measure A. The square of the

HD between p and q is defined as the quantity:

_1( |dp _ |dq 2.6
Hz(p,q)—zf(\/; \/;)Zdﬂ (2.6)

where multiplying by 1/2 ensures 0 < H?(p, g) < 1, , thus its values are simple to
interpret (Lindsay, 1994). The HD between p and g does not change if A is replaced
with a different probability measure - it does not depend on the choice of the
measure A. Thus, the maximum distance 1 is achieved when p assigns probability
zero to every set to which g assigns a positive probability, and vice versa (Cutler &
Cordero-Brana, 1996). To define the HD in terms of elementary probability theory,
take A to be Lebesgue measure (Lebesgue, 1902). The Lebesgue measure is the
standard way of assigning a measure to subsets of n-dimensional Euclidean space. It
is used to define Lebesgue integration (Bartle & Bartle, 1995) (more details regarding
Lebesgue measure in Appendix A - Lebesgue measure). When A is Lebesgue
measure, dp/dA and dg/dA are simply probability density functions. Denoting the
densities as p and g, the squared HD can be expressed as a standard calculus

integral:

1
H*(p,q) = Ef(\/p(x) —Va@)?dx=1- f\/p(x)q(x) dx (2.7)

where the second form can be obtained by expanding the square and using the fact

that the integral of a probability density over its domain equals 1.

Due to the multivariate nature of the GMM distribution, HD between GMMs cannot
be computed analytically, thus, in order to compute a highly accurate estimate, in

this research we examined the Unscented Hellinger’s distance between two GMM
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distributions, as defined by Kristan et al. (2011). The unscented transform is a special
case of a Gaussian quadrature, which, similarly to Monte Carlo integration, relies on
evaluating integrals using carefully placed points, called sigma points, over the

support of the integral.

1
H(,9) = 5 f 9(Po(x) dx (2.8)
where
g0 = W) ) = T weg el 50 (2.9)

po(x)

Po(x) is a combination of the two density functions, w; is the weight of each of the
Gaussian distributions that make up p and g, Thus n=ki1+k2. By multiplying and
dividing by p,(x) the function does not change. This creates an expectation function
of a nonlinear transduction within the integral. Approximation of the expectation is
much easier and faster due to existing generic solutions by the unscented

transformation (Kristan et al., 2011).

Various alternatives to HD exist, for example, the Earth Mover distance (EMD), the
L2-norm distance measure, and the KLD measure. For EMD distance, large
computation overhead hinders its popularity. Furthermore, it is hard to set the
required parameter of the basic distance in EMD. In addition, HD behaves more
accurate and scalable than the EMD distance (Bishop, 2006; Ni et al., 2013). As for
the L2-norm, it provides a bigger weight to farther points in the distributions and is
thus susceptible to outliers (Ni et al., 2013). KLD outperforms EMD and L2-norm
measures in terms of accuracy when measuring similarity between mixture models,
especially when the number of components in the mixtures is higher than two

(Jensen et al., 2007).

The HD measure has advantageous over other similarity measures, e.g. KLD,
maximum likelihood, L2-norm, or EMD (Cutler & Cordero-Brana, 1996). One of its
advantages is that HD is a metric, therefore is symmetric and satisfies the triangle
inequality, allowing faster data localization as well as speeded up data clustering and
nearest neighbor search (Weller-Fahy et al., 2014; Jensen et al.,, 2007). HD is not

computationally intensive comparing to the BKLD (Sengar et al., 2008) and is shown
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to be invariant, consistent, asymptotically normal, and robust (Tamura & Boos, 1986;
Lindsay, 1994; Simpson, 1987). In addition, HD gives little weight to counts that are
improbable relative to the model. It does not give a large weight for the distributions
tails and to outliers that can have a substantial impact on wrong experimental
conclusions (Lindsay, 1994), in contrast to KLD and L2-norm for example, which are

susceptible to outliers (Simpson, 1987).
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3 .Method

3.1 Hypotheses

We define 2 research hypotheses:

H1: Both the TSRT and the slope will be related to the movement disorders
measures: the HD and the BKLD. We additionally hypothesize that HD will be a more

robust measure than the BKLD for the effects of spasticity on motion deficits.

H2: The TSRT will be statistically superior to the MAS as a clinical spasticity measure.
3.2 Subjects

42 participants with stroke (28 males, age 53.3 [10.5 SD] years, 21 left-hemiparesis),
medically stable in the sub-acute phase (3 weeks to 6 month post-stroke) and 13
healthy controls of similar age (9 males, 60.5 [8.7 SD] years) participated in the
experiment (Table 1). Participants with stroke sustained a first ever stroke in the
midcerebral artery territory, confirmed by medical resonance imaging/computed
tomography, had arm paresis (Chedoke-McMaster Stroke Assessment 2-6/7)
(Gowland et al.,, 1993), were able to perform voluntary elbow extension/flexion
movement of at least 30° per direction, had elbow flexor/extensor spasticity, and
were able to provide informed consent. Individuals were excluded if they had
additional neurological, neuromuscular or orthopedic problems, pain, difficulty
comprehending instructions, or if they were under antispasticity medication.
Participants signed informed consent forms approved by institutional review boards
of Loewenstein Rehabilitation Hospital, Raanana, Israel; Center for Interdisciplinary

Research in Rehabilitation, Montreal, Canada; and Kasturba Hospital, Manipal, India.

UL impairment was assessed with the Fugl-Meyer assessment (FMA) (Fugl-Meyer et
al., 1975). The FMA is a 66 point scale for performance-based sensorimotor
assessment of UL motor function in patients with stroke. FMA scores between 0 and
30, 31 and 50, and 51 and 66, represent severe, moderate, and mild motor
impairment, respectively (Duncan et al., 1994). Clinical spasticity was assessed with

the MAS and the TSRT. For the patients with stroke the FMA values ranges from 14
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to 57, elbow flexor and extensor MAS were in range of [0, 2], and TSRT values were

in rage of [54,162] degrees.

Table 1 : Mean (SD) estimates of demographic and clinical data

Participants FMA Days since
Group Age (Male) TSRT Slope (/66) stroke
53.3 101.4 -31.2 33.2
Stroke (10.5) 42 (28) (22.8) (58.4) (12.2) 62.7 (37.0)
Control | 60.5(8.7) 13 (9) - - - -

Abbreviations: TSRT- Tonic stretch reflex threshold; FMA- Fugl-Meyer Assessment.
3.3 Experimental Procedure

The recordings took place in three different centers in Israel, Canada, and India.
Participants performed reach-to-grasp motion toward a hollow cone (6-cm diameter
base) placed on a table at 4 target locations which require coordination of UL
segments (Levin et al., 2018; Davidowitz et al., 2019). The target locations were at
two-third arm’s length (near-center) and at one arm’s length (far-center) in the
midsagittal plane and ~30 cm to the right/left (depending on hemiparetic side:
contralateral/ipsilateral) (Figure 4). Arm length was measured with the elbow
extended from the medial axillary border to the distal wrist crease. Arm motion was
recorded by a wireless electromagnetic tracking system G4 (Polhemus, Colchester,
VT) with 5 sensors, each measuring 6 degrees of freedom with respect to a base
calibration frame and is tracked at 120Hz. Sensors were placed on the midsternum,
midpoint of the acromial superior-lateral border, midpoint of the ventrolateral arm,
dorsal forearm (1/3 forearm length proximal to ulnar head), and the index
metacarpophalangeal joint (Figure 5). All experiment recordings were saved to

Microsoft Excel™ files using Matlab™.

Participants sat on an armless, wooden chair, in front of a table, with feet supported
but unrestricted trunk movement (Figure 3). Initial arm posture was set with 30°
elbow flexion by placement of the third fingertip on an ipsilateral seat height-support
(Figure 3). The experiment began with recording session of calibration movements
which included seven movement types: elbow extension, elbow supination, wrist
extension, wrist adduction, shoulder adduction, shoulder extension, and shoulder

rotation. Moreover, a static calibration was performed for the chair. The target
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locations suitable for the participants were determined and marked by colored tape.
The sensors were attached to the participants. Before motion was recorded,
participants practiced reaching each target twice (a total of 8 reaching movements).
During the recording participants performed 2 sets of 40 semi-randomized reach-to-
grasp movements (10 trials toward each of the 4 targets, for 2 sets, total 80 trials)
balanced in blocks across targets (so even when not all trials were completed, e.g.
due to fatigue, a balanced number of trails per target was maintained). Each trial
consisted of a series of movements starting from the initial position: reaching to
grasp the cone "as fast and as precisely as possible"; holding the cone for 2 s; lifting
the cone toward the chin; returning it to the target position on the table, and finally
returning the hand to the initial position (Figure 3-right). Only the first segment of
the sequence, reaching to grasp the cone, was analyzed. The full sequence was
conducted to maintain a functional reaching task. Participants rested between trials
and blocks as needed. Events during trials were logged, e.g. when the participant
didn’t succeed in grasping the cone, collided with the table, or dropped the cone

during the movement.

Figure 3 : Experimental setup. Left: participant grasping a target cone (near-center target). Right:
participant with the arm in the initial position and the elbow slightly bent.
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Figure 4 : Targets locations. 4 targets on the table in front of the participant. The far targets
(contralateral, far-center, and ipsilateral) were at arm’s length, and the near target (near-center) was
at two-third the arm’s length. The center targets were in the midsagittal plane. Contralateral and
ipsilateral targets for right-hand hemiparetic participants were 30 cm along the horizontal axis to the
left (contralateral) and right (ipsilateral) of the center targets, respectively (Davidowitz et al., 2019).

Figure 5 : Sensors positions. Movement was recorded using 5 sensors, each measuring 6 degrees of
freedom with respect to a base calibration frame and is tracked at 120Hz. Sensors were placed on the
midsternum, midpoint of the acromial superior-lateral border, midpoint of the ventrolateral arm,
dorsal forearm (1/3 forearm length proximal to ulnar head), and the index metacarpophalangeal joint.

3.4 Pre-processing

3.4.1 Data validation

Due to the fact that the data are collected by three international centers, creating
uniformity in the process was difficult. This difficulty led to errors and
inconsistencies, which added a lot of work to the analyzing process of the data. The

main causes of the data errors were sensor hubs that fail to communicate the data
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to the computer, reverse connection of some of the sensors which caused disruption
of the axes systems' directions, and switching the locations of the contralateral and
ipsilateral targets. These problems created a regression at the analysis of the data. In
order to reveal these errors and find the failed recordings, we had to analyze the
data and the graphs of the movements. Data reparation was performed manually,
tests were performed using Matlab™ code and by analysis of graphs of sensor

outputs.

Sensor measurements with the value “0” indicated a faulty measurement and files
with more than 10% faulty measurements were considered damaged and removed
from further analysis. In addition, recorded movements were determined as
erroneous in several cases: the experimenter noted during task execution that the
subject did not wait after grasping the cone, the target was misplaced, or the
experimenter determined that the subject did not perform the task well (hand

collided with the table, task not completed, motion started prior to the cue).
3.4.2 Movement Segmentation

Segmentation was performed semi-autonomously as part of this work. The motion
segmentation was conducted in order to identify the reach-to-grasp segment for
each of the recorded movements of each subject. The automatic procedure was
developed for the initial segmentation, and the segmentation results were all
manually screened. Movement trajectories were filtered using a Butterworth filter
with 6 Hz cutoff frequency. Tangential velocity was computed by differentiating
position samples and averaging linear velocity components, and angular velocity was
similarly computed for angular components. Motion onset and offset were defined
as the times at which the wrist (forward arm sensor) tangential velocity exceeded
and remained above, or decreased and remained below threshold of 10% peak wrist
tangential velocity. The threshold for the movement was iteratively increase by 1%
in case a hand closure was not identified. Subjects typically performed two sub-
movements; they raised their arm and then reached forward toward the target. The
sub-movement interchange point was determined between movement onset and
offset, when the elbow (upper arm sensor) tangential velocity reached a local

minimum.
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3.4.3 Spatial and temporal scaling

Spatial and temporal dimensions of movement trajectories differ in magnitude.
Using different value ranges in stochastic modeling would result in a construction of
a biased model, where the dimension with larger values would have a larger weight
(Bishop, 2006). To avoid this, joint angles were linearly scaled to the range of [-1, 1],

similar to the average task duration:

x;—min(x) .
max(x)—min(x)

(3.1)

Xinew = 2 %

where x is the original joint angle trajectory vector, x; is a point along the trajectory,
and X; new is the transformed point. To create a model per participant and target,
trajectory lengths were scaled to a uniform length for all the trials of each target per
participant. A function representing each movement was approximated using
general regression neural networks (Specht, 1991). To equalize the number of
samples for each trial per target, the function was resampled at a constant rate
determined for each participant and target, based on the average trial length

originally sampled at 120 Hz.
3.4.4 Finding the coordinate frames

The purpose of computing the joint centers and the directions of the wrist, elbow,
and shoulder is computing the true joint angles of the motion trajectory. The
algorithm implemented for finding the joint centers is based on the work by O'Brien
et al. (1999). In this method, the human arm is modeled as an articulated hierarchy

of bodies connected by joints.

A joint center positioned between body i and its parent body, can be defined by
vectors originated from the origins ci and li respectively (Figure 6). A point x; in the i-
th coordinate system can be expressed in the j-th coordinate system. The
transformation from the j-th body’s coordinate system to the coordinate system of
the j-th body consists of a rotational component and a translational component. The

transformation can be done using the following equation:

X=Ri=ixi4+di~i (3.2)
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where R is a multiplicative, invertible, 3X3 matrix component and d is a length 3
vector component. Ri?J in this expression is referred as the rotational component of
the transformation and di®/ in this expression is referred as the translational

component of the transformation.

The usage of the articulated hierarchy model of the arm, allows describing the same
transformations by the following equation, using vectors at time frame k (out of n

discrete time frames of motion):
xPO=R>PO(xi—ci)+Li (3.3)

where P(i) is the parent body of body i. By comparing these two equations and

changing to a matrix form, the following equation can be obtained:

Qui=P® (1) =dii=P@ (3.4)

A Onigin of C_,r

Figure 6 : Joint diagram. The location of the joint i is between bodies j and j. The location of the joint is
defined by a vector c;, relative to the coordinate system of body i, and a second vector [; in the
coordinate system of body j.

In the current work, we used the described algorithm in order to compute the
elbow, wrist, and shoulder centers for each participant. The sensors on each
participant's arm, below and above each joint center, were used as the vectors
origins (ci and [; respectively). The output of the algorithm is two vectors per joint
center per participant: c; is the vector between joint i center and the sensor below it
(origin of ci) and l; is the vector between joint i center and the sensor above it (origin
of ¢j) (Figure 6). Using these vectors, each point determined in the sensor coordinate

system can be represented in the corresponding joint center coordinate system.
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Motion data from all n time frames was used in order to calculate ¢i and li. In
addition, the calculation required a numerical solution obtained from a least squares
solution using singular value decomposition, as described in O'Brien et al. (1999) and
Press et al. (2007). After obtaining the vectors c¢i and li for each joint, the joint
centers can be computed by using the sensors Cartesian positions at each time step
with the relative vectors. Having the location of each sensor and a vector from the
sensor to the joint center, the center location can be obtained in relation to a global

coordinate system. The algorithm was implemented using Matlab™,

In order to calculate the joints centers vectors according to the specified method, we
used calibration files recorded for each participant at the beginning of the
experiment — one for each degree of freedom. The calibration files contain the
position (x, y, z) and the angle (x, y, z) of each of the 5 sensors at each time step
during the movement. The sensors' locations were sampled using repeated local
movements of each degree of freedom. For each joint, the center was computed
twice, once using the vector l; and once using the vector ci. Center total error was

defined as the total Euclidean distance between the two center position vectors.

Performing the distal arm movement around the elbow (supination), the forearm
sensor moves only slightly compared to the elbow center. Hence, most of the data
for the elbow joint center algorithm comes from the extension movement. Since
most of the movement is around one axis, the output of the algorithm is an axis on
which the center lies and not an exact point. This fact caused a large error in this
center's estimation. Due to this error, the elbow center was calculated by obtaining
the location that remains at the same distance from the shoulder center and the
wrist center at all time steps. This location was calculated using optimization

algorithm.
3.4.5 Finding joint angles

Arm kinematics in the form of angles of joints rotations were reconstructed from the
sensor data and from the joint centers. In order to properly define joint rotations, a
homogenous transformation matrix ToM! was built for each sensor Mi to transform

the global task coordinate system to the sensor coordinate system:
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Xwmi
ToMi= Rzyx(oxMi. Oywmi, 0zy;) Yui (3.5)
Zy;
0 0 0 1

where Ryx(Oxmi,0ymi,0zumi) is the rotation component of the matrix, based on Tait-
Bryan angles convention (2006) (Diebel, 2006) and with accordance to the sensor
specifications:

Rzyx(a,e,r)=

cos(a)cos(e) cos(a)sin(e)sin(r) — sin(a)cos(r) cos(a)sin(e)cos(r) + sin(a)sin(r) (3_6)
sin(a)cos(e) cos(a)cos(r) + sin(a)sin(e)sin(r) sin(a)sin(e)cos(r) — cos(a)sin(r)
—sin(e) cos(e)sin(r) cos(e)cos(r)

where a is azimuth, e is elevation, and r is roll.

In order to validate the joint trajectories, we recorded and filmed movements of 1
control participant. The participant conducted all calibration movements and 10
reach-to-grasp movements toward the 4 targets. Using the calibration files, joint
centers were computed. The joint angles were calculated per time step. The angles
were then represented by a graph of joint angle against time in seconds from the

beginning of the movement. The graphs were compared to the films manually.

7 angles (shoulder extension, shoulder adduction, shoulder rotation, elbow
extension, elbow supination, wrist extension, and wrist adduction) were computed
for the ENHANCE project, yet only the elbow extension angle was used and analyzed
in this project. Joint angles definition can be found in Appendix D - Joint Angles

definitions.
3.5 Analysis

Trials were discarded in case of a recording error or task failure. Sensor data were
filtered using a standard 2-way (zero lag), low-pass, third-order Butterworth filter
with a 6-Hz cutoff. The first movement segment’s onset and offset were defined as
the times at which the forearm tangential velocity exceeded and remained above, or
decreased and remained below 10% of peak forearm tangential velocity for 0.1 s.
Tangential velocity was computed by differentiating position samples. The joints'

centers were calculated for each subject and joints' angles were calculated per trial.
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The GMMs were computed per subject for each target. Each of the 4 models per
subject included spatial dimension (angle) and temporal dimension (time). The
parameters for each model were initialized using K-means algorithm and estimated
using EM algorithm. The best fitted model was chosen according to the "knee
method" (Zhao et al., 2008) — GMMs were computed for different values of K
(number of GMM components) varying from 2 to 25 Gaussians, for each K the
model's BIC score was calculated. The curve of the BIC scores according to K was
plotted, and the location of the bend (knee), where the BIC score ceases to improve
significantly, was chosen. The BIC estimations were calculated according to 7

repetitions for each k.

HDs (calculated using the unscented transform) and BKLDs (calculated using the
variational approximation) were computed between GMMs of different subjects per
target. Within-control group values were computed for all controls (for each control
subject versus all other control subjects), and between-group values were computed
between patients with stroke and control subjects. BKLD is a unitless measure,
therefore within-control group BKLDs were used as normative comparators. The final
HD and BKLD scores for each participant (for both within and between
computations) were determined as the minimal HD and minimal BKLD score using
the nearest-neighbor methodology (Komaty et al., 2013). The between-group values
were used in order to assess movement similarity between subjects with stroke and
control subjects, and the within-group values were used in order to examine the

similarity of the movement patterns of healthy subjects.

Additionally to the HD and BKLD values, kinematic measures were calculated for the
reach-to-grasp movements. The measures included final elbow angle, movement
time, average elbow velocity, and elbow velocity smoothness. Each measure was
calculated per each trial and the mean was calculated for each subject per target.
Average elbow final angle was calculated using circular mean calculation of the
movements. Velocity was computed by differentiating joint angles at each time step.
Subjects typically performed two sub-movements; they raised their arm and then
reached forward toward the target. Therefore, the velocity was computed by

averaging only samples that have passed the threshold of 0.1 of the maximum
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sample value - ignoring the pauses. Mean movement time was calculated as the
difference between movement offset and onset (from start to end of reach). For
assessing discontinuities in the motion trajectory, elbow velocity smoothness was
calculated by the number of acceleration zero-crossings. All of these measures were

calculated for both stroke and control groups.
3.6 Statistical analysis

Statistical analysis was performed using R Studio IDE for R (version 3.4.2). Analysis
was performed using Linear Mixed Models (LMMs) with restricted maximum
likelihood (REML) criterion for convergence (Satterthwaite, 1946). REML is a
particular form of maximum likelihood (ML) estimation that does not base estimates
on a ML fit of all the information, but instead uses a likelihood function calculated
from a transformed set of data (Cheung, 2013). All LMMs included subjects as

random effect intercept. The LMM equation is as follows:
Yij = BXijtajte (3.7)

where y; ; is the outcome value of measurement j, for participant j. B is the fixed
effects vector, X; ; is the explanatory variable vector, a;~N (0, 02) is the random

effect of participant j, and &; j~N (0, 02) is the random error.

LMMs are an extension of simple linear models in order to allow both fixed and
random effects. The LMM model is suitable for data sampled from normal
distributions (Cnaan et al., 1997). LMM can be thought of as a trade-off between
aggregating all the data coming from each subject and analyzing data from one unit
at a time. The individual regressions have many estimates and lots of data, but are
noisy. The aggregate is less noisy, but may lose important differences by averaging
all samples within each subject. In our model the subject's values were treated as

the sum of fixed and random effects.

LMM vyields asymptotically efficient estimators - that is, tend toward being optimal
(minimal variance) as the sample size increases for both balanced and unbalanced
research designs. In contrast, analysis of variance (ANOVA) produces an optimal
estimator only for balanced designs, and is not exact as the REML of the LMMs. In

LMM, maximum likelihood and REML methods are used for estimating model
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parameters. REML produces variance component estimators with a smaller bias than

maximum likelihood and is, thus, more similar to the traditional ANOVA analysis.

In order to determine differences between within-control group and between-
groups HD and BKLD values, we used two LMMs. Each LMM included HD or BKLD
type (within-control group, between-group), target (near center, far center,
contralateral, ipsilateral), and their interaction as factors. LMMs were computed for
final elbow angle, mean movement time, average movement velocity, and velocity
smoothness as independent variables as well. The models included group (control,
stroke), target location, and their interaction as factors. Separate LMMs were used
for each group in case of a significant interaction between groups. In addition, in
order to examine the influence of elbow spasticity measured by TSRT, the regression
slope, and MAS, with the upper limb impairment level measured by FMA, on
kinematic characteristics (HD, BKLD, final elbow angle, mean movement time,
average movement velocity, and velocity smoothness), LMMs were computed. In all
analyses, target location and its interactions with the clinical measure (TSRT, slope,
MAS, FMA) were defined as factors. Furthermore, in order to examine the influence
of elbow spasticity measured by MAS separately from FMA, LMM including MAS,

target location, and its interaction was used for each measure.

Conditional R? (R?) and marginal R? (R2) values were evaluated for all models
(Nakagawa & Schielzeth, 2013). The R? represents the variance explained by both
fixed and random factors, and thus indicates how the model fits the participant
group. The R2, represents the variance explained by fixed factors only, and thus

indicates how the model fits the general population of people affected by stroke.

Target location was used as an explanatory variable in the models due to the fact
that different target locations made the participants move using different elbow
angle zones. The various angles affected the movements and were therefore
expected to affect the measures as well. The FMA was used as an explanatory
variable in the models because upper limb motor function is likely to affect the
movement patterns and therefore the measures. However, the measure is general
and does not measure spasticity, thus clinical spasticity measures were also included

in the models in order to explain the measures values.
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4. Results

Healthy controls completed 98% of trials, whereas participants with stroke
completed 79% (22% SD) of trials. For controls, 6% of all completed trials were
discarded (0.7% task failure), and for participants with stroke 22% (16% task failure).
Control group made smoother and faster movements than the stroke group, with
smaller variance between movements (Figure 7). GMMs were constructed based on
the movement patterns, thus the amount of components of the GMMs, in addition
to the width of each Gaussian component, reflected the variability of the
movements of each subject (Figure 8). Therefore, control group had less Gaussian
components comparing to subjects with stroke (5.77 + 0.90 for control, 11.04 + 1.31
for stroke; x?> = 601.89, P<.001), with difference between targets (y?> = 19.62,
P<.001). The amount of Gaussians in the models of patients with stroke while
reaching to the near center target was more similar to that of the control subjects
(estimated difference of 4.4 components), comparing to the amount while reaching
to the far targets (estimated component differences: far center: 5.82, P<.01;
contralateral: 5.29, P<.05, ipsilateral: 5.94, P<.01). Within and between-group HDs
and BKLDs, movement times, final angles, average elbow velocities, and velocity

smoothness are listed in Table 2.
4.1 Hellinger’s distance and Bidirectional Kullback-Liebler divergence

Between-group HD and BKLD values were an order of magnitude higher than within-
control group values (HD: 2 = 17.96, P<.001, R?n =0.13, R%. =0.88; BKLD: y? = 5.40,
P<.05, R?m =0.07, R%. =0.86) (Figure 9). There were no significant interaction effects
of HD type and target location on the HD values. There was no main effet of target
location. Within-group BKLD values did not change significantly between targets
while for the between-group BKLDs there were significant differences between
targets (x2 = 50.97, P<.001). Participants with stroke had lower BKLD values (e.g.,
were more similar to controls) for reaches to the near center target than for all other

targets (P<.001 for each of the 3 far targets) (Figure 9).
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Figure 9 : HD and BKLD box-plots. Box plots of Hellinger’s distance values (left) and BKLD values (right)
for elbow extension for reaches to each of the 4 targets in control participants (red) and participants
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group, cuased the control boxplots in the BKLD graph to be barely visible. Abbreviations: BKLD,
bidirectional Kullback-Liebler divergence; NC, near-center; FC, far-center; CL, contralateral; IL,
ipsilateral.

Table 2 : Mean (SD) estimates of kinematic characteristics

Stroke Control
Measure\ | FC cL IL NC FC cL IL
Target
"D 0.74 0.75 0.76 0.76 0.39 0.42 0.44 0.42
0.17) | (0.13) | (0.14) | (0.14) | (0.11) | (0.11) | (0.13) | (0.14)
BKLD 1840 | 2768 | 33.19 | 3274 1.42 1.78 1.75 234
(16.55) | (27.60) | (33.07) | (32.28) | (0.78) | (1.10) | (1.11) | (3.60)
A 8934 | 9807 | 9648 | 99.98 | 8095 | 10158 | 9841 | 100.11
(11.86) | (1459) | (15.16) | (13.72) | (8.63) | (12.07) | (12.48) | (10.64)
. 1.64 171 1.80 167 0.65 0.68 0.70 0.67
051) | (056) | (059) | (0.57) | (0.15) | (0.15) | (0.16) | (0.17)
My 8937 | 8599 | 86.81 | 80.66 | 24429 | 22485 | 22613 | 218.84
(40.46) | (36.48) | (36.26) | (34.35) | (50.44) | (36.12) | (41.11) | (50.82)
Vs 7.36 7.88 8.34 7.41 1.83 1.79 1.82 1.83
3.36) | (3.83) | (3.94) | (3.62) | (0.97) | (112) | (0.97) | (1.15)

Abbreviations: NC- Near center; FC- Far center; CL- Contralateral; IL- Ipsilateral; HD-
Hellinger's distance; BKLD- Bidirectional Kullback-Leibler divergence; FA- Elbow extension
final angle; MT- Movement time; MV- Mean velocity; VS- Velocity smoothness.
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4.2 Clinical measures

4.2.1 Relationship with TSRT and FMA

HD values were strongly related to the clinical measures and had the highest value of
R2m comparing to all other measures (R%n = 0.55, R% = 0.89) (Table 3). The HD values
were related to FMA (y? = 46.07, P<.001) (Figure 11), to the TSRT (x2 = 8.51, P<.01)
and to the interaction of TSRT and slope (2 = 8.13, P<.01). BKLD values were
marginally related to the slope values (y? = 3.35, P=0.07) and were associated with
FMA (y? = 17.23, P<.001) (Figure 11). They were also associated with target location
(x? = 51.04, P<.001) but not with its interactions. In addition, all kinematic measures
(final elbow angle, mean movement time, average velocity, velocity smoothness)
had significant main effect of FMA as explanatory variable as well (P<.01), and of
target location (P<.001). Each of mean movement times, average velocity, and
velocity smoothness, had significant effect of one of the measures TSRT or slope
(mean time: slope: %%=3.22, P<.1 ; average velocity: TSRT: %2=10.79, P<.01 ; velocity
smoothness: slope: x2=4.24, P<.05). Final elbow angles were not related to the TSRT
or to the slope. The interactions with target location were not significant for any of
the measures. All relations with FMA, TSRT, slope, target location, and the

interactions are listed in Table 3.

Table 3 : Wald chi-square values (significance levels) for LMM: Measure~FMA+(Slope+TSRT+Target)"2+ (1|ID)

Measure FMA Target Slope TSRT Slope*TSRT R%m|R%
HD 46.07 (***) 4.55 () 0.23 (1) 8.51 (**) 8.13 (**) | 0.55/0.89
BKLD 17.24 (***) | 51.04 (***) | 3.35() 0.50 (-) 1.97 (1) 0.37/0.87
FA 9.53 (**) | 101.24 (***) | 0.30() 0.07 (-) 1.29 (1) 0.26/0.88
MT 13.05 (***) | 31.10 (***) | 3.22() 173 () 1.66 () 0.34]0.96
MV 11.44 (***) | 27.60 (***) | 0.03() | 10.79 (**) 1.82 (1) 0.35]0.96
Vs 9.32 (**) | 36.67 (***) | 4.24(*) 0.75 (-) 1.28 () 0.30/0.95

The age, days since stroke, country, gender, and the interactions with target were not
significant for any of the measures. Abbreviations: HD- Hellinger’s distance measure;
BKLD- Bidirectional Kullback-Leibler divergence; FA- elbow extension final angle; MT-
movement time; MV- mean velocity; VS- velocity smoothness; FMA- Fugl-Meyer
Assessment; TSRT- Tonic stretch reflex threshold; Significance levels: . P<.1; * P<.05 **
P<.01 *** p<.001
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4.2.2 Relationship with MAS and FMA

When examining a model containing both FMA and MAS values as explanatory
variables, all measures (HD, BKLD, mean movement time, final elbow angle, average
movement velocity, velocity smoothness) had strong relationships with FMA (P<.01
each) and no relationship with MAS or with the interaction with target location. HD
had the highest R?y, of all models (R?+=0.42, R?.=0.88). All relations with FMA, MAS,

target location, and its interactions are listed in Table 4.

When examining the models without FMA effect, MAS had marginally significant
main effect (P<.1) for HD, BKLD, final elbow angle, and movement time. Mean
movement time and velocity smoothness only had target location main effects. None
of the models had a significant effect of the interaction of MAS with target location.

All relations with MAS, target location, and its interactions are listed in Table 5.

Relationship of HD and BKLD with MAS are presented in Figure 10. Relationship of
HD and BKLD with FMA are presented in Figure 11. We can see in Figure 10 that the
relation of HD and BKLD with MAS is not consistent, as patients with MAS=2 had

smaller HD or BKLD values compared to those with MAS=1+.

Table 4 : Wald chi-square values (significance levels) for LMM: Measure~FMA+(MAS+Target)*2+ (1]ID)

Measure FMA Target MAS MAS*Target R%m|R2%
HD 23.53 (***) 4.34 (-) 2.76 (-) 5.54 (-) 0.42]0.88
BKLD 12.53 (***) 52.53 (***) 3.67 (-) 12.75 (-) 0.34]0.87
FA 7.47 (**) 101.67 (***) 0.86 (-) 6.71(-) 0.25]0.88
MT 8.79 (**) 31.80 (***) 3.84 (-) 10.85 (-) 0.29]0.95
MV 8.49 (**) 27.79 (***) 1.54 (-) 8.09 (-) 0.19]0.96
VS 7.41 (**) 37.33 (***) 3.11 (-) 9.49 (-) 0.24]0.95

The age, days since stroke, country, gender, and the interactions with target location
were not significant for any of the measures. The interaction between FMA and target
was not significant as well. Abbreviations: HD- Hellinger’s distance measure; BKLD-
Bidirectional Kullback-Leibler divergence; FA- elbow extension final angle; MT- movement
time; MV- mean velocity; VS- velocity smoothness; FMA- Fugl-Meyer Assessment; TSRT-
Tonic stretch reflex threshold; Significance levels: . P<.1; * P<.05 ** P<.01 *** P<.001
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Table 5 : Wald chi-square values (significance levels) for LMM: Measure~(MAS+Target)*2+ (1|ID)

Measure Target MAS MAS*Target R%m|R2
HD 4.34(-) 7.56 (.) 5.54 (-) 0.15/0.90
BKLD 52.53 (***) 7.15(.) 12.75(-) 0.17/0.87
FA 52.53 (***) 7.15(.) 12.75(-) 0.17/0.87
MT 31.80 (***) 7.05(.) 10.85 (-) 0.15/0.94
MV 27.79 (***) 0.88 (-) 8.08 (-) 0.03/0.95
Vs 37.33 (***) 4.99 () 9.49 (-) 0.11/0.95

Abbreviations: HD- Hellinger’s distance measure; BKLD- Bidirectional Kullback-Leibler
divergence; FA- elbow extension final angle; MT- movement time; MV- mean velocity; VS-
velocity smoothness; MAS— Modified Ashworth Scale; TSRT- Tonic stretch reflex threshold;

Significance levels: . P<.1; * P<.05 ** P<.01 *** P<.001
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Figure 10 : Relationship of HD and BKLD with MAS. Box plots of Hellinger's distance values (left) and
Bidirectional Kullback-Leibler divergence values (right) for elbow extension related to Modified

Ashworth scale (MAS) scores for reaches to each target in participants with stroke.
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Figure 11 : Relationship of HD and BKLD with FMA. Box plots of Hellinger's distance values (left) and
Bidirectional Kullback-Leibler divergence values (right) for elbow extension related to Fugl-Meyer
assessment (FMA) scores for reaches to each target in participants with stroke. FMA scores between 0
and 30, 31 and 50, and 51 and 66, represent severe, moderate, and mild motor impairment,
respectively.

4.2.3 FMA distribution

In a previous research of our group (Davidowitz et al., 2019) the relationship of BKLD
and the kinematic measures with MAS and FMA was tested. FMA had no significant
effect when explaining the BKLD values. In order to understand the reason for the
lack of importance of FMA values in the models of the previous study considering
our results, we conducted goodness-of-fit tests. The aim of the tests was to examine
which distribution best fits the FMA values of the current study (42 values) and of
the previous one (16 values). Normal, gamma, and beta distributions were
examined. Results showed that beta distribution best suites the FMA values in ours
and in the previous researches based on the log likelihood values (Table 6). We
conducted a Kolmogorov-Smirnov test (Massey Jr, 1951) which confirmed the
hypothesis - the values came from the beta distribution with the estimated
parameters (KS statistic=0.10), and accordingly the current study's standard
deviation (SD) was larger than the SD of the previous one. Results presented in Table

7. We conducted a Levene test (Levene, 1961) for testing equality of the variances of
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the two studies and found that the variances are indeed not equal (P<0.05). We then
conducted a Welch test (Welch, 1947) for testing the equality of the means (under

the assumption of un-equal variances) and found that the means are marginally not

equal (P=0.05).

Table 6 : Log likelihood values for different distributions fitted to the FMA values

Study Beta Normal Gamma
Previous 38.42 36.67 37.96
Current 52.17 44.92 45.92

Table 7 : Beta parameters estimates (SD) for the FMA values
Study shapel shape2 Mean SD
Previous 6.99 (1.22) 5.68 (0.98) 36.41 8.85
Current 3.37 (0.36) 3.31(0.35) 33.30 11.43
.. . . . 1
Mean and standard deviation (SD) of the distributions were calculated by: p = —g—> =
shapel
shape 1 . _ shapelshape2
shape 1+shape2 ’ Var(X) = (shapel+shape2)?(shapel+shape2+1) (Johnson et al., 1995)
4.2.4 TSRT and MAS

As can be seen in Figure 12, the majority of participants (28 out of 42) were classifies
as MAS=1+. It is also shown that the TSRT values are scattered. Shannon entropy
(Shannon, 1948) was calculated for each of the measures. Shannon entropy
represents the average rate at which information is produced by a stochastic source
of data, and is calculated by: S = —}}; Plog,P,. The log was calculated with 4 as the
log base in order to get 0 < S < 1 while there are 4 values of MAS. S=1 means no
information at all (uniform distribution, all probabilities are the same), so that every
sample gets its own value. $=0 means full information, so that the values are
expected and all the samples can get the same value. For the continuous TSRT
measure, the values were divided into 4 equal-length groups from the minimum to

the maximum values. The results were Sy;45 = 0.59; Srspr = 0.97.
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Figure 12 : Clinical spasticity measures graphs. Left panel: Histogram of the Modified
Ashworth Scale (MAS) values (total of 42 participants). Right panel: Scatter plot of the
Tonic Stretch reflex (TSRT) values of the participants against the sampling index.

4.3 Movement time, final angle, average velocity, and velocity

smoothness

Final elbow extension angle (Figure 13A) was greater in controls than patients with
stroke for all targets but the near center target (32 = 4.51, P<.05). Elbow extension in
both groups was affected by target location (stroke: %?=103.59, P<.001; controls:
%?=209.06, P<.001). Controls used less elbow extension for the near center
compared with all far targets (P<.001 for each target) with no difference between
the far targets. Similarly, participants with stroke used less elbow extension for the
near center compared with all other targets (P<.001 for each target), whereas the

other elbow ranges were not modified by target location.

Participants with stroke had longer movement times (Figure 13B) than controls for
all targets (y2=38.48, P<.001), with no differences between targets and with no
interactions between targets and groups.

Average elbow velocity (Figure 13C) was higher in controls than stroke for all targets
(x?=415.44, P<.001). Controls reached the near center target with the highest
average velocity (far center: P<.01; contralateral: P<.01; ipsilateral: P<.001) with no
difference between the 3 far targets. Participants with stroke reached at different
speeds to different targets (%2=28.00, P<.001). The average velocity of patients with
stroke for movement to the near center target was higher than to the ipsilateral

target (P<.001) and marginally higher than that to the far center target (P=.05). The
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average velocity of patients with stroke toward the ipsilateral target was the lowest
(near center: P<.001; far center: P<.01; contralateral: P<.001).

Velocity smoothness (Figure 13D) was higher (lower number of acceleration zero-
crossings) in controls than participants with stroke for all targets (y?=63.48, P<.001).
Reaches in controls had similar smoothness to all targets, whereas it differed
according to target location in participants with stroke (y?=37.18, P<.001). Average
velocity smoothness for the near center target was similar to that toward the
ipsilateral but lower than that for the far center target (P<.01) and the contralateral

target (P<.001).
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Figure 13 : Kinematic measures - box plots with line over means for (A) final elbow angle; (B)
movement time; (C) elbow velocity; (D) the number of acceleration zero-crossings, per target for
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5. Discussion and conclusions

5.1 HD and BKLD

It has been shown that BKLD can be a useful tool for characterizing movement
disorders (Davidowitz et al., 2019). In the current work, when examining BKLD, the
results were in line with the previous finding. The BKLD values between the stroke
and control groups were an order of magnitude higher than the values within the
control group. Moreover, this work's results indicate that HD between participants
with stroke and controls was an order of magnitude higher than the HD between
healthy controls, as well. This suggests that HD may also be a good biomarker of the
disruption in movement patterns in people with stroke. Furthermore, compared with
the BKLD, HD has higher generalization to the population of people affected by

stroke (R?mw) and higher fit to the examined group (R%).

In addition, our results show that the BKLD values for the reach-to-grasp movements
of the patients with stroke to the near center target were lower than for the far
targets. The results show that those movements were more similar to those of the
control subjects comparing to the movements to the far targets. It is likely that the
far targets required motion beyond the patient’s TSRT angle into the spasticity zone,
resulting in greater differences from healthy motion patterns expressed as greater
BKLD values. HD values were not influenced by target location. This is likely because
of the way each measure is calculated - HD using a first norm with value range of 0
to 1, and BKLD using a second norm with no upper bound. This allows BKLD values to
differentiate the movement characteristic within and outside the patient's control
zone. On the other hand, this makes BKLD values influenced by every sample
including noises and outliers, and gives a larger weight to the tails of the distribution,
especially in short movements. The first norm and the range of 0 to 1 also makes HD
values easier to interpret, and less susceptible to outliers. This work shows that HD is
a better biomarker of the general disruption in movement patterns in people with
stroke than BKLD. However, BKLD is a better biomarker when examining the

differences between the control and the spasticity zones.
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Furthermore, HD was strongly related to the TSRT measure of spasticity, and to the
interaction of TSRT and the slope, while BKLD was only marginally related to the
slope, with no relation to the TSRT. The generalization of the models which
explained the BKLD and the kinematic measures (mean movement time, average
velocity, elbow final angle, and velocity smoothness) using the spasticity measures,
was not very high (R?m values were below 0.37). In contrast, patient functional ability
(FMA) and joint spasticity (TSRT and slope) strongly explained HD values for the
examined group (R%:=0.90) and had the best generalizability to the larger stroke
population (R2m=0.55). This shows that HD can serve as a robust, objective measure
of the influence of spasticity on motor kinematics during voluntary movement. We
demonstrated that HD has advantages over BKLD, and showed that HD is a better
measure for quantifying the relationship between spasticity and movement

disorders than BKLD.
5.2 Functional ability, joint spasticity, and muscle resistance

Generally, current clinical spasticity indexes measure biomechanical variables (e.g.,
resistance to passive muscle stretch) that are effects rather than causes of spasticity
(Malhotra et al., 2009). This, together with the multidimensionality of both spasticity
and motion, may explain why determination of the relationship between spasticity

and movement disorders has, thus far, been elusive.

Our results show that MAS, the most commonly used clinical spasticity measure, did
not explain the kinematic measures and our motion deficits measures when tested
with the patient functional ability index (FMA). When tested without FMA, the elbow
flexor passive muscle resistance (MAS) was marginally related to the HD, BKLD, final
elbow angle, and mean movement time. Furthermore, the models generalization
was very low (RZ2m<0.17). In contrast, spasticity quantified by TSRT and the slope was
related to the movement disorders characterized by HD, BKLD, and the kinematics
measures (mean movement time, average velocity, and velocity smoothness). This
suggests that spasticity quantified by the TSRT and the slope has much better

capability to explain the movement patterns of patients with stroke.
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In order to examine the differences between the results of the two spasticity clinical
measures, Shannon entropy was calculated. Results show that the MAS entropy was
much lower than the entropy of the TSRT (MAS: 0.57; TSRT: 0.97). These results
indicate that the MAS values are centered, and thus most of the patients get the
same MAS score, and the measure cannot explain different levels of spasticity,
comparing to the TSRT. As an explanatory variable, it is preferred that the entropy
would be high, thus the distribution is not centered to one value and each patient

can get a suitable value for his spasticity level.

Our results also show that FMA was necessary in order to explain all measures. This
may be due to the fact that the total motor function of the upper limb is likely to
impact the elbow reaching movements. However, the FMA index measures
individual and combined joint movements and does not focuses specifically on the
elbow or a specific reaching task. Thus, the TSRT measure was significantly necessary
in the models in order to explain the relationship between spasticity and reaching
kinematics, and is independent of FMA. In contrast, all the models that included MAS
in addition to the patient functional ability index as explanatory variables had no
effect of MAS on the measures. This suggests that MAS, as a spasticity measure,
does not have additional information to the patient upper limb functional ability in
order to explain the voluntary movement disorders. FMA has more information than

the MAS and it reflects more of the differences between subjects.

This work shows that the subjective MAS measure has low resolution and entropy,
low capability of explaining different levels of spasticity, and has multicollinearity
effects with FMA when modeling kinematic characteristics, whereas the TSRT is
independent of the FMA. In addition, MAS only measures the resistance to a passive
muscle stretch and not spasticity exclusively. We showed that TSRT is statistically

superior to MAS as a clinical spasticity measure.

It is also shown that in this study FMA was necessary in order to explain all of the
measures, whereas in the previous research of our group (Davidowitz et al., 2019) it
was not related to the BKLD measure. This is probably due to the lower variance of
the FMA distribution in the previous research compared to the variance in this

research. As shown in this work - the FMA values in both researches came from the
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beta distribution which has both upper and lower bounds, with SD of 11.43 in the
current work (42 participants) and SD of 8.85 in the previous one (16 participants),
thus making the FMA values less meaningful. In addition, most of the previous
study's participants had low FMA scores (severe impairment) limiting the
explanatory capability of the FMA measure. Our results suggest that the general
upper limb motor function in patients with stroke affects the motor impairments of

the elbow during voluntary reaching movements.
5.3 Kinematic measures

All kinematic measures (final elbow angle, mean movement time, average velocity,
and velocity smoothness) differed significantly between groups (control subjects and
patient with stroke). Generally, results were in line with the results of the previous
study of our group which tested a smaller amount of participants (Davidowitz et al.,

2019).

Final angles differed between targets and there was a significant interaction
between target and group. When analyzing each group separately, the elbow
extension final angle for the near center target was lower than the final angles used
for all 3 far targets, which were similar to each other. This finding is in line with the
significantly lower BKLD values and lower amount of GMM components, for the near
center target compared to the far targets. This shows that the motion to the near
center target is within the participants control zone, and therefore is more similar to

that of the control group.

While final angles were affected by target location, movement times were not
influenced by the target. The lack of effect of target on movement time is in line with
the well-known concept of isochrony, i.e., the subjects moved within a similar time

frame to all targets (Viviani & Flash, 1995).
5.4 Using stochastic mixture models for modeling human motion

In this work, the amount of GMM components differed significantly between models
of controls and of patients with stroke. In addition, patients with stroke had lower
amount of Gaussian components when modeling reaching toward the near center

target, where the movement is more similar to that of controls. Spasticity effects
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both temporal and spatial axes, and the model reflects the combination of these two
dimensions. However, the differences between the models may also be effected by
the influence of motion time on smoothness. Subjects with stroke had significantly
longer movements, and longer movements tend to be less smooth. It is difficult to
isolate the influence of the movement time from the influence of the motor

disorders.

In the present work we reinforce the conclusions drawn in the previous work of our
group (Davidowitz et al., 2019), and show that stochastic mixture models, e.g.
GMMs, which can incorporate time, space, and variability within a single
representation, facilitating integration of specific joint variability as part of the task-
specific motion model. Thus, representing an advantage over methods using global
variability measures, such as Principal Component Analysis (PCA) (details regarding
PCA in Appendix B - Principal component analysis (PCA)) (Pearson, 1901) or
Uncontrolled Manifold (UCM) (details regarding UCM in Appendix C - Un-controlled
manifold (UCM)) (Scholz & Schoner, 1999). They are therefore suitable for modeling
human motion. This modeling method permits the identification of key joint motion
deficits, such as limitations in elbow extension caused by elbow flexor spasticity in
patients with post-stroke hemiparesis and can be used to model any movement
without imposing excessive constraints on initial and final arm or joint

configurations.
5.5 Future work

Elbow spasticity is the only joint analyzed, whereas patients with stroke can also
have spasticity in the shoulder girdle, wrist or finger flexors. It is possible that
spasticity in muscles spanning adjacent joints may have affected the elbow reaching
movement. Shoulder and wrist joint centers, angles, and GMMs were calculated, and
it is possible to answer this question in future studies. In addition, post and follow-up
recordings were not statistically analyzed in the current work. In order to answer
ENHANCE research questions it is necessary to analyze this data and examine the

differences between the results of pre, post, and follow-up of the ENHANCE training.
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Appendix A - Lebesgue measure

The Lebesgue measure (Lebesgue, 1902) is the standard way of assigning a measure
to subsets of n-dimensional Euclidean space. For n=1, 2, or 3, it coincides with the
standard measure of length, area, or volume. It is used throughout real analysis, in

particular to define Lebesgue integration.

Given a subset c R, with the length of interval /=[a,b] given by [(I) = b — a, the
Lebesgue A (E) is defined as

AE) = inf{z (k) : (I)ken is a sequance of intervals with open boundries with

k=1
Ec U I }
k=1

The Lebesgue measure is defined on the Lebesgue o-algebra, which is the collection

(A.1)

of all sets E which satisfy that for everyA c R, 1(4) = 2(ANE)+ 2(ANE").
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Appendix B - Principal component analysis (PCA)

Principal Component Analysis (PCA) is a statistical method for data analysis (Pearson,
1901). PCA aims to compress the size of a data set and evaluate it in terms of the
main components that capture the essential data patterns of the data set. To
achieve this goal, PCA computes a new set of latent variables called Principal
Components (PC) (Wold, Esbensen, & Geladi, 1987). PCA is the simplest and most
popular method to perform dimensionality reduction (DR) effectively- the process of
reducing the number of random variables. Using PCA, the original space is reduced
(with data loss, but hopefully retaining the most important variance) to the new

space.

The PCs are a linear combination of the original variables, hence making PCA a linear
DR method. The new variables are orthogonal to each other so they can span a
projected latent space. DR with PCA achieves the best mean-square error compared

to other linear DR methods (Bro & Smilde, 2014).

The transformation that is done to convert a set of observations of possibly
correlated variables into a set of values of linearly uncorrelated variables, the PC, is
defined in such a way that the first principal component is required to have the
largest amount of variance and each succeeding component in turn has the highest
variance possible under the constraint that it is orthogonalto the preceding
components. Larger amount of variance implies that the component contains more
information compared to other components. The components are computed in this
manner, until the PC contains most of the information of the data, as defined by an
empirical demand - a set proportion of the data variability (a threshold). There are a
few more methods to determine when to stop adding components — according to
the predicted residual sum of squares or to a plot of the size of the eigenvalues.
Another standard tradition is to keep only the components whose eigenvalue is

larger than the average of the eigenvalues (Abdi & Williams, 2010).

Let the matrix X be defined as a column matrix X = {x;, x5 , ... , x4}, where d is the
original space dimensionality and x; denotes a set of observations of the variable i in

the original data space. First, the columns of X are centered by subtracting the
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means- X; , from each column i for each i = {1,..,d}. Now let X be the centered

matrix.
After that, covariance matrix of the data is calculated by:
C =EXXT) (B.1)

The matrix of eigenvalues A;, and corresponding eigenvectors w; are calculated as
follows: Cw; = A;w; . The value A; denotes the importance of component j, and w;
denotes a weight vector. The eigenvalues A; are sorted in descending order- from
the most important component to the least. Matrix W composed of the columns w;,
where the columns are ordered corresponding to the order of the eigenvalues. This
matrix can be used to project the original features into the latent space encoded by

the latent variables as follows:
Y=W-X (B.2)

Where Y contains the new latent variables &, Jj= {1,...,d}. The principal components

are the set of ¢;, j={1,...,p} where Z}Lllj > T1.

T1 is set to be the threshold for data variability explanation. If T1=100% than all
components will be selected and dimensionality will not be reduced. The number of
principal components is less than or equal to the smaller of the number of original
variables or the number of observations, the new space contains equal or less

dimensions of the original dataset space.

PCA is simple to apply; takes polynomial computation time and the linear
transformation applied allow re-projecting the data to the original space. PCA
applied on motion data shows inconsistencies in the latent spaces created when

different coordinate systems are used (Calinon, Guenter, & Billard, 2007).
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Appendix C - Un-controlled manifold (UCM)

The Uncontrolled Manifold (UCM) is a motor coordination theory. The theory
suggests a hypothesis about the human central nervous system and how it achieves
motor coordination. UCM theory does not eliminate the redundant degrees of
freedom which exist in motion, but instead it uses all of them to ensure flexible and
stable performance of motor tasks. The central nervous system makes use of this
abundance from the redundant systems instead of restricting them like other
hypothesized. The concept can be described using synergies (Scholz & Schoéner,

1999).

Any ordinary human activity requires cooperation among many structurally diverse
elements. One hypothesis claims that in such complex living systems the elements
are organized into synergies (also known as coordinative structures) defined as
functional groupings of structural elements (e.g. neurons, muscles, joints) that are

temporarily constrained to act as a single coherent unit (Kelso, 2008).

Synergies relates to two types of variables — elemental variables and performance
variables. Elemental variables are the smallest sensible variables that can be used to
describe the system mechanics. On the other hand, performance variables refer to
important variables produced by the system as a whole, some might be goal or
target related. According to the UCM hypothesis, the controller (the human brain)
acts in the space of elemental variables (for example-the 7 major rotations shared by
the shoulder, elbow, and wrist joints), and selects in that space sets of values
corresponding to a required value of a performance variable. This is the
Uncontrolled Manifold- Little to no control over these elements is required since

they do not affect the performance variables.

The UCM subspace is orthogonal to the subspace consisting of all the variables which
affect the performance variables. Most of the variability among the elemental
variables is limited to the UCM, which allows flexibility in the performance. The UCM
hypothesis suggests that variability can be “bad”- affecting an important
performance variable and causing larger errors, or “good”- variability within the

UCM which is maintaining a successful outcome with more motion flexibility (Latash
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& Anson, 2006). In order to accept the UCM hypothesis, the “Good” variability in the
UCM (referred to as Veoop) needs to be greater than the variability orthogonal to it
(referred to as Veap). If Vgoop = Vpap it can be concluded that a synergy exists,
stabilizing a performance variable for which the UCM was computed. In contrast, in a
case where Vgap > Vigoop , the variability indicates that abundance in DOF’s was
used for achieving performance variable goal. The UCM is not a linear subspace and
therefore the UCM analysis for joint configurations requires derivation of the
Jacobian which will be used for linear estimation of the UCM. Using regression for
estimating the Jacobian is preferable over analytical approach (de Freitas & Schol,

2010). UCM analysis can also be applied in order to achieve effects of DR methods.

UCM requires the analysis of the Jacobian matrix, which is not always possible to
define and depends on the data. If possible, the UCM method result can be stronger
than the PCA since it allows more complex tasks and flexibility in the movement
instead of simply disregarding the redundant degrees of freedom as in the PCA

algorithm.
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Appendix D - Joint Angles definitions

Joint angles were defined according to Table 8 : Joint angles definition. All the seven

angles detailed below were computed for the ENHANCE project, yet only the elbow
extension angle was analyzed in this project.
Table 8 : Joint angles definition
Name Explanation Units
shoulder Angle between upper arm marker Xms and sternum marker Xus in M5 XZ
) plane. Fix to 0 when arm pointing down alongside body Xm3 and Xws Deg
Extension
orthogonal.
Shoulder Angle between upper arm marker Xms and sternum marker -Zws in M5 ZY
. plane. Fix to 0 when arm pointing down alongside body Xms and -Zws Deg
Adduction
orthogonal.
Shoulder Angle around the shoulder elbow vector Xs. 0 according to rest position, De
Rotation positive direction external. &
Elbow Angle between upper arm marker Xms and lower arm marker Xm2. 180 deg- De
Extension Full arm extension. &
Elbow Angle around wrist elbow vector Xe. 0 is according to rest position. Positive De
Supination direction external. &
Wrist Rotation around Zm2 (right hand rule), Angle between Xm1 and Xm2. 0 when De
adduction Xm1 and Xwmz2 are parallel. &
Wrist
. Angle between Zm2 and Zmz. Deg
Extension
Angle between normal to arm plane and vertical body direction set by torso
Plane angle . . ) . Deg
marker. 90 When arm plane normal pointing upwards in body direction.
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