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Abstract

This Thesis presents a novel two-robot collaboration method for precise 2D self-
localization using relatively simple sensors. The main advantage of this method lies in its ability
to precisely measure the orientations of the robots, therefore reducing cumulative errors. Each
robot is fitted with a rotating turret carrying a camera to track the moving robot and calculate
the relative distance and position, and an encoder to provide the orientation of the turret. At each
step, a single robot advances while the other remains stationary and measures the position of
the moving robot (continuously or at the end of the step), using the angular orientation of the
turret and the distance measured using the camera. The orientation of the moving robot is
obtained by turning its own turret towards the static robot and measuring its turret orientation.
By fusing the data from the two robots, the precise location and orientation of the moving robot
are obtained.

We also present an analytical model of the position of the robots as a function of the sensor
data and then proceed to present a statistical estimate using Monte Carlo simulations of the
location of the robots while assuming that the sensor data includes random errors. Additionally,

real-world experiments are presented and compared to simulation results.

For the two-robot system to advance autonomously, a path planning algorithm and a closed-
loop controller are presented in this Thesis, given the measurements are the distance and
orientation of the moving robot with respect to the stationary robot and the control inputs are
the linear and angular velocities of the moving robot. The path planning algorithm include
choosing a target point for the moving robot each step and finding the optimal path while
avoiding obstacles in the environment such as walls, objects or the stationary robot. The closed-
loop control method assumes target points in the explored environment and trajectories between
them were chosen, meaning each step is a path following problem. Due to the polar
characteristics of the measurements, the controller is designed in polar coordinates.

This research was recently accepted for publication in IEEE Access, the Multidisciplinary
Open Access Journal of the Institute of Electrical and Electronics Engineers. Additionally, we
presented this research in the 35" Israeli Conference on Mechanical Engineering (ICME 2018)
and in the 6" Israeli Conference on Robotics (ICR 2019).

Key Words — Localization, Multi-robot Systems, SLAM, Cooperative Localization,
Monte Carlo Simulation, Path Planning, Path Following, Control under Constraints.
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Nomenclature

Symbol Units/Dimensions Description
A 3x3 Transformation matrix from i-coordinate system to j-
coordinate system
AA 2%2 State matrix
a,b m, m Length of semi axes of ellipse obstacle
B 2x1 Control matrix
by i x coordinate of the center of the ball in pixels, with
respect to the center of the frame
(Cx,Cy) m, m Center of ellipse obstacle
Dy, Dy m. m Distance bet\(/j\{een poordinate systems inxandy
irections respectively
d m Length of desired path
de m Current distance between Fh_e robot's current and initial
positions.
[E]i 3x1 Location error at step i
g 2x1 Error state vector
€.¢, m, deg Robot’s position and heading errors respectively
F - General operator
f - Measured location function
g - General function
H(s) - Transfer function
i - Current step number
J - Cost function
[J]i 3x3i Jacobian matrix at step i
K 1x2 Gain matrix
k1, k2 - Control gains
L m Length of turret
I m Length of robot
Mo % Maximum (present) overshoot of dynamic response
N - Number of random error values
[ - Size of the turret in image in pixels
Ny, Ny i Number of pixelsdin image in the h_orizontal and vertical
irections respectively
n - Number of steps



P,Q
P, q
Pe
P
Po
R™
(RxRy)
ra=f(a)
(r.,a.)
Fi
Fmax

]

tf
ts
u(t)
V(x)
1%

v
Vimax
Xi=(Xi,Yi, &)
Xe
(xt,yr)
Xib, Xub
(x™y"™)
(x"y")
(Xs,Ys)
(X0,Yo)
Yib, Yub
aij
Qimage

Clturret

2%2

m, m

m, m

m, deg

Sec

Sec

2x1
m/sec
m/sec

m, m, deg

m, m
m, m
m, m
deg
deg
deg

Positive definite matrices
Dimensions of rectangular obstacle
Traveling vehicle’s target point
Stationary vehicle’s position
Traveling vehicle’s initial position
Real coordinate space of n dimensions
Center of rectangular obstacle
Robot's desired trajectory function
Traveling robot's target point
Measured distance between robots at step i

Distance sensor's maximal range

Initial distance between traveling and stationary
vehicles

Laplace domain's variable
Final time
Settling time of dynamic response
Control signal
Lyapunov function
Eigenvector
Vehicles' linear velocity
Maximal linear velocity
Location and orientation of the robot at step i.
Equilibrium point
Moving robot’s final position
Upper and lower boundaries in x direction
Robot’s measured location
Robot’s real location
Stationary robot’s position
Moving robot’s initial position
Upper and lower boundaries in y direction
Measured bearing angle of vehicle j at step i
Angular position of the tennis ball in the image

Orientation of the turret



aL deg View angle of the height of the turret

(.1, 0) deg, m, deg Robot's position and oglesr:éa:;ion in polar coordinate
B deg Angle between main z_i>§is of t_he ellipse and the x
positive axis
Px deg Camera’s field of view in the horizontal direction
Py deg Camera’s field of view in the vertical direction
A m Distance sensor's resolution
[A]i 3ix1 Error vector at step i
Ar, m Distance measurement error at step i
Ag; deg Bearing measurement error of vehicle j at step i
A6 deg Robot’s Orientation error
0 - Allowed range around final value response
06 deg Small angle
. m Minimal allowed distance between the moving vehicle
and an obstacle
A - Eigenvalue
I - Mean value
p deg Orientation of ellipse obstacle
o m Total standard deviation
oy % Distance sensor's resolution
o0, m. m Standard deviati()rr;;;\et:rl(ia\;g; ;md ‘y’ directions
o, deg Bearing sensor's resolution
o, deg Robot’s orientation standard deviation
6,,0, m, m Standard de:via_tion in the directio_n of the sem_i-major
and semi-minor axes of the ellipse respectively
o’ - Variance
@ deg Robot's heading angle
?q deg Robot's desired heading
x deg Angle between initial position and desired path
v, deg Relative angle between coordinate systems at step i
0} rad/sec Vehicle's angular velocity
Wmax rad/sec Maximal angular velocity
@n rad/sec Natural frequency
¢ - Damping coefficient
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1 Introduction

Many robotic applications such as search and rescue, surveillance, planetary exploration
and others require Simultaneous Localization and Mapping (SLAM) of unknown unstructured
locations. SLAM is known as a 'chicken and egg problem' meaning, how can a robot build or
update a map of an unknown environment, while simultaneously keeping track of its own

location within it?

This problem is well-researched due to its great potential in solving a wide range of robotic
applications. Nowadays, as technology advances, Global Positioning System (GPS) is the
simplest and most accurate localization technique. SLAM techniques become more crucial
where GPS and other localization techniques are unavailable such as indoors, inside caves or in

tunnels.

Many solutions for self-localization rely on measuring the relative position of the robot
with respect to known features in space, also known as landmarks. However, the complexity
grows in cases where there is no prior knowledge of the explored area. In 1994, Kurazume et
al. first suggested cooperative positioning for multi-robot systems as a solution to the SLAM
problem [1]. By advancing the robots in alternating steps, such that at each point in time some
robots remain stationary and the others travel to new positions, the stationary robots whose
absolute locations are known serve as landmarks for the traveling robots. Therefore, this method
is especially useful while exploring an uncharted environment where there are no known

landmarks.

The cooperative positioning method has been further developed by other groups [2]-[6] to
suggest the use of different kinds of sensors to determine relative positioning with different
advancing algorithms. The advantage of this method is that a unified map of the robots'
trajectories is created using all available relative measurements. However, to implement this
method, a centralized communication system is required. Centralized approaches, though
theoretically effective, require ideal communication and high computational cost, thus making

them vulnerable to single-point failures especially as the number of robots increases.

In 1997, A different method for multi-robot SLAM was suggested by Roy and Dudek
known as the rendezvous case [7], further developed in [8]. In this method, each robot explores
a different part of the environment and creates its own map. When two robots meet (this could
be a random event or could be arranged by the two robots [8]), the robots measure their relative

distance and bearings; this information can be used to compute the coordinate transformation
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required to merge both maps. Due to noise in these measurements, the estimated transformation
may be inaccurate, reducing the quality of the merged map. If landmarks are available in the
explored environment, the most probable transformation between two maps can be identified as
the one that produces the maximum number of landmark correspondences [9]. Available
landmarks also allow successful localization of a multi robot system even when the initial
positions of the robots are unknown [9],[10]. Other solutions for map merging have been offered

such as using particle filters [10] or occupancy grid maps [11].

Though map merging increases complexity, this method has an obvious advantage,
especially while exploring large areas, of enhancing efficiency, i.e. reducing exploration time.
The exploration time could be further reduced by wisely choosing different paths for different
robots. While in most methods the robots are guided to points in the explored environment
which have minimum travel cost out of all unexplored points, [12] suggests an approach that
takes into account not only the travel cost but also the utility of unexplored points, where the
utility of a target location depends on the probability that this location is visible from a target

location assigned to another robot.

The main challenge in using relative measurements is determining the absolute locations of
the robots, since the locations are obtained with regard to a local coordinate system. Some
solutions address this issue by combining both external measurements such as GPS [13] or an
affixed IR range detector [14], which return inaccurate yet absolute locations and relative
measurements between the robots to enhance accuracy and obtain the orientation of the robots
as well. The practicality of these methods is limited since they require either GPS reception
which is not available in many cases such as indoor or underground areas or prior placing of
sensing tools. Similarly, many solutions use filtering techniques, most commonly the Extended
Kalman Filter (EKF) [15]-[18], where the robots' locations are predicted by odometry data (such
as linear and angular velocities) and corrected by relative measurements between neighboring
robots. Recently, the use of Ultra-Wideband (UWB) range-sensors has become popular for
relative distance measurements in multi-robot systems, because they make it possible to perform

the localization process in a fully decentralized manner [19]-[21].

While the relative locations of a multi-robot system can be calculated by using any of the
aforementioned methods, obtaining the accurate relative orientation of the robots is much more
challenging. Besides visual methods [22]-[25], many attempts to find the orientation of the
robots have been made using range-only measurements [6],[19]-[21],[26] and angle-only

measurements [17] or a combination of both [16],[27]-[29]. The accuracy of the orientation
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remains however very challenging at long distances. While some work has focused on
evaluating the uncertainty of the estimated locations [30], the uncertainty in the orientation of

the robots has not been appropriately examined.

Our goal in this work is to provide a simple low-cost high accuracy localization and
orientation method for a multi-robot system, suitable for indoor areas where GPS signals are
unavailable, and visibility is relatively low. This could be useful for underground, under water
and planetary explorations or search and rescue missions in cases such as natural disasters or

collapsed structures.

Figure 1.1: Examples for dark areas without GPS reception.

We would also like our system to be able to advance autonomously, i.e. plan its path and
motion, in such uncharted constrained environments which lacks GPS reception. Motion
planning is a fundamental problem in the field of robotics and an essential step towards complete
autonomic mobile robots. Motion planning consists of computing a series of actions that drives
the robot from its initial position to a desired final position, while considering its surrounding
(avoiding obstacles) and its own motion limitations (kinematic/dynamic constraints or in short,
differential constraints) [31]. The basic problem where the robot has no motion limitations and
only an obstacle-free solution is required is a well understood problem and solutions were
offered for various scenarios [32]. Since robots usually do have strict motion limitations, the

previously mentioned solutions cannot actually be executed by real robots.

There are two main approaches for motion planning under differential constraints [32]:
The first is a decoupling approach in which first a collision-free path is found and then the path
is smoothened so that the motion constraints are fulfilled. The second is a direct approach in

which the differentially constrained motion planning problem is solved all in once. While the
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first approach is easier to compute, a solution is not guaranteed and even if found, may be

extremely inefficient.

A direct approach on the other hand, which also includes optimizing an objective function,
guaranties finding the optimal solution. Most solutions which guaranty optimization are model
based methods such as the very well researched Model Predictive Control (MPC) [33]-[36] (or
NMPC for nonlinear systems [37],[38]), the not as common Interpolating Control (IC) [39], and
the most commonly used today sampling-based planning [32],[40]-[42], which is based on a
graph search of all possible trajectories. For our work, an optimal control tool for nonlinear

systems under differential constraints is used [43].

We consider two robots each of which is equipped with one camera and one
rotation/bearing sensor mounted on a rotating turret. The outline of the Thesis is as follows:
theoretical background is presented in Section 2, the robotic system and the localization
algorithm are described in Section 3 and the error evaluation using an analytical exact method
and first order approximation method is presented in Section 4. The two methods are used to
statistically evaluate the location and orientation errors using Monte Carlo simulations in

Section 5 and real-world experiments are described in Section 6.

Section 7 presents a path planning algorithm (Section 7.1) and a closed-loop controller for
following the desired path (Section 7.2); due to the polar nature of the measurements, the
controller is described in polar coordinates which was proven to be as efficient as Cartesian
coordinates, and can represent non-linear distributions in the Cartesian space as linear
distributions in the polar space [44]-[48]. Section 7.3 presents the fusion and implementation of

both algorithms. Finally, conclusions are discussed in Section 8.
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2 Theoretical Background

This section presents relevant theoretical background for this paper.

2.1 Transformation Matrix

One of the challenges when using a multi-robot system to solve a SLAM problem, is that
the measurements from each robot are obtained in its local coordinate system. One of the
requirements for executing a SLAM algorithm is that all information is obtained in a fixed global

coordinate system. To do so, transformation matrices are used.

The main idea of this method is based on the fact that every vector in one coordinate system
can be represented in a second coordinate system, by multiplying the vector with the desired
coordinate system's basis vectors. In the two-dimensional case, this is a linear operation of the

following form:
. : Ccos —sin
=[x we[ie wel o) el
Yo% Yi-Ye| |sin(a) cos(a)
while R; is the rotation matrix, converting the vector (x1 yl)T to the O-coordinate system, and

« is the rotation angle between the two coordinate systems.

In our case, the goal in each step is to covert the robot's position to the global coordinate
system. Therefore, the difference between the robot's local coordinate systems and the global
one, is not only in orientation but also the distance traveled, say Dx in the x axis direction and

Dy in the y axis direction. The overall transformation matrix is:

cos(a) —sin(a) D,
Ay =|sin(a) cos(a) D,|. 2)
0 0 1

This method is the basis of the localization method presented in this paper (3.4 and 3.5).
For each step, the moving robot's position is converted to the global coordinate system; the n

step's transformation matrix is received as following:

A\;:A;_l' n—l’ 3)

while A", is the last step's transformation matrix from the moving robot's coordinate system (n)

to the stationary robot's coordinate system (n-1), and A;“l is the overall transformation matrix
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calculated at the previous step, converting from (n-1) coordinate system to the global coordinate

system (0).

2.2 Jacobian Matrix

Suppose F: R" — R™ is an operator which receives as an input a vector ge R" and
produces as an output the vector F(q) e R™. Then the Jacobian of F is a m by n matrix that is

defined as follows [49]:

_6_f1 afl -
oF oF v
ql qn af_m afm
g, o, |

while f,... f_ are the functions that define operator F and g, ...q, are the variables of these
functions. In our case, the functions f determine the robot's location and orientation in space
in the global coordinate system (x,y,8), and the variables are the robots' measurements (see

Section 3.4).

If F is differentiable at point g, then the Jacobian matrix defines a linear map R" — R™
which is the best linear approximation of function F near point ¢; meaning, the Jacobian matrix
can be used to approximate the value of function F at point g, without actually calculating

F(q) . An explanation of this process in our system is presented in Section 4.2.

2.3 Probability Theory

Probability is a very broad branch in mathematics. In this section, specific concepts,

regarding this paper, within probability theory will be explained.

Probability distribution is a mathematical function that provides the probability of
occurrence of different possible outcomes of a certain experiment [50]. The distribution of
numerical data can be accurately represented by a histogram. To build a histogram, the entire
range of values must be divided into 'bins' i.e., a series of intervals, and then count how many

values fall into each bin.
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If the Probability distribution function is continuous, by sampling experiment results for
many random values, a probability density function (PDF) can be obtained. These functions
have two main characteristics. The first is mean value (also known as expected value or
average), represented in Figure 2.1 as (. The mean value is simply calculated by summing all

values and dividing the sum by the number of values.

L L L B L L
1.0

0220.2, m—
02=1.0, =—
, 0%2=50, =[]
=-2, 0%=05, =——| |

Im o n
oceo

= = =i =

N
0.2
| /% i\\ |
0.0 —T-"""' / N ——
*5I I I*4I I I*SI I I*ZI I I*fll I 0 — 1 — 2 = 3 I 4 = 5

Figure 2.1: Probability density function. The red curve is a normal distribution?.

The second characteristic is variance, represented in Figure 2.1 as o°. Variance is the
expectation of the squared deviation of a random variable from its mean. The square root of the
variance is called standard deviation - o . Standard deviation indicates how far a set of random
values are spread out from the mean value (amount of dispersion). Standard deviation is

calculated as following:

o

LS -y ©
N —'l.i:1 i —H '
as x, is the measured value in all data points and N are the number of data points.

Normal distribution (also known as Gaussian distribution) is a very common continuous
probability distribution. Normal distributions have a mean value of 0 and a standard deviation
of 1. This distribution is often used to represent real-valued random variables whose

distributions are not known.

1 https://en.wikipedia.org/wiki/Normal_distribution
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2.4 State-Space Representation

State-space representation is a mathematical method, used in the field of control-
engineering, representing physical systems as a set of inputs, outputs and 'state variables', related
by a first order matrix differential equation. In the case of linear, time-invariant and finite-
dimensional dynamical systems (LTI systems), the system can be represented by a 'state

equation’ and a 'measurement equation’ respectively:

X (t) = AX(t) + B (t)
y(t) =CX(t)+Du(t) '

with the description and dimensions of all symbols described in Table 2.1. Note that in the

(6)

discussed case these matrices are constant, but they could be time dependent in the case of a
continuous time-variant system. In many cases there is no direct connection between the input

and output vectors, hence D=0.

Stability and natural response characteristics of a continuous LTI system are determined by

the eigenvalues of matrix A.

Table 2.1: State space representation vectors and matrices.

Symbol Dimensions Description
X nx1 State vector
y mx1 Output/measurement vector
u px1 Input/control vector
T px1 Reference vector
A nxn State/system matrix
B nxp Input matrix
C mxn Output matrix
D mxp Feedforward matrix
K pxn Gain matrix

2.4.1 Full State Feedback

Eq. (6) is also called the open loop system, which acts completely on the basis of the input.
A closed loop system refers to a common control technique that relays on receiving feedback on
the system's behavior by feeding the output back, i.e. closing the system, and altering the input

accordingly. In state space representation, a full state feedback is utilized by the following input:
u=r—-Kx, @)
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where 7 is the reference vector (or the input of the closed-loop system) and K is a gain matrix
of constant values (dimensions are described in Table 2.1). Placing the control law in Eq. (6)

results in the following dynamic equation:

X(t) =(A-BK)X(t)+Br . (8)
Therefore, the stability and natural response characteristics of the closed-loop system are

determined by the eigenvalues of matrix (A—BK).

2.5 Lyapunov Function

In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar
functions that may be used to prove the stability of an equilibrium of an ODE [51]. Lyapunov's
stability theory determines that if the solutions to a differential equation that start out near an

equilibrium point xe stay near xe forever, then xe is Lyapunov stable [52]. According Lyapunov's

second method of stability, if a system X =g (7) has a point of equilibrium at xe=0, the point is
Lyapunov stable if there exists a Lyapunov function V (x) :R" — R that fulfills the following:
e V(x)=0 ifandonlyifx = 0.

e V(x)>0 ifandonlyif x # 0.
e V(x)<O forall x=0 (or V(x)<0 forall x=0 for asymptotic stability).

2.6 Second Order System's Response

A second order linear system is a common description of many dynamic processes. In the
general form where y(t) is the system's output and x(t) is the system's input, in time domain the

system is presented by the following differential equation:

1 . 2¢ .

—J(t)+=y@)+y(t)=x(t), 9

—I(O)+==O+y (1) =x(t) )
and in Laplace domain, the system is presented by the following transfer function:

YG)_ @
X(s) s*+2dos+a]’ (10)

H(s)=
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where (is the system's damping ratio and wn is the system's natural frequency. The denominator
of the transfer function is also called the characteristic equation of the system since it

determines the system's response's behavior.
The system's time response to a unit step input i.e.:

1, ift>0
X(t)= , 11
() {0, ift<0 (1)
depends on the placement of the system's poles (the characteristic equation's roots). If

0< ¢ <1, the system is considered underdamped and the system contains a pair of complex

poles:

S1,2 = _é,a)n * ja)n Vl_gz ) (12)

The response of an underdamped second order system to a step unit input is presented in Figure

2.2. The transit response is characterized by the following:

e Delay time (tq) — The time required for the response to reach half its final value

e Rise time (tr) — The time required for the response to rise from 10% to 90% or from 0% to
100% of its final value.

e Peak time (tp) — The time required for the response reaches its first peak.

e Maximal (present) overshoot (Mp) — The maximum peak’s value with respect to the final
value.

e Settling time (ts) — The time required for the response to reach and stay within a range around

the final value (usually 2% or 5%).

-
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il tp
- t,
Figure 2.2: The response of an underdamped second order system to a step unit input
(normalized by final value)?.

2 http://shiwasu.ee.ous.ac.jp/matweb_cs/help/english_sole t_help.htm
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These characteristics can be approximated by appropriate formulas. Presenting only the

formulas that will be used on this paper (7.2.2), the maximal overshoot can be approximated by:

M, = exp{—%}, (13)

and the response's settling time can be approximated by:

t, (%)= —In(3). (14)

s,

where ¢ determines the allowed range around the final value.

2.7 Optimization and Cost Function

In the field of mathematics, the process of optimization is the selection of the best element,
with regards to some defined criteria, from some set of available alternatives [53]. An
optimization problem usually consists of maximizing or minimizing an objective real function
g by systematically choosing input values within an allowed set and calculating the value of the
function g [54]. When the goal is minimization, the objective function is called a loss function
or a cost function. The cost function maps an event or values of one or more variables onto a

real number, representing the “cost” associated with the event.
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3 Localization Method

In this section, the assumptions and limitations of the work are defined (3.1). Then, we
present our robotic setup (3.2) and two localization methods. The first method is based on a
two-point measurement approach to calculate the orientation (3.3), whereas the second method,
which is our newly developed method, fuses the distance and relative orientation to yield more

accurate results (3.4 and 3.5).

3.1 Assumptions and Limitations

This research focuses on the problem of self-localization in areas without access to GPS
signals. The solution proposed includes the use of a two-robot system advancing in alternating
steps, also known as cooperative positioning. The research is conducted under the following

assumptions and limitations:

e The research is limited to the use of a two-robot system.

e The initial position of at least one of the robots must be known.

e The system performs 2D localization, therefore the environment explored must be flat.

e At each step, one robot remains stationary, as the other robot moves in the environment.
Therefore, the advance of the system is not continuous.

e The measurements are not necessarily continuous; to implement the localization method
(Section 3.4 and 3.5), the relative position between the robots is measured only when
the moving robot has stopped. To implement the control loop presented in Section 7.2,
continues measurements are required.

e The sensors should be able to determine distance and orientation between the robots.

e The robots always stay in each other's range of 'sight' (depends on the range of the
distance sensor and the camera’s field of view).

e The sensors’ measurement errors are assumed to be normally distributed. This is a very
common assumption, broadly used in cases of implementing observing methods in order

to estimate the true position of the robot, such as Kalman Filter [15]-[18].
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3.2 Robotic Setup

Consider a robot fitted with a rotating turret which carries a camera (see Figure 3.1). The
orientation of the turret relative to the heading of the robot is measured with a bearing sensor
(such as an encoder). The camera is used to detect the target and to aim the turret towards it.
The distance is measured using the camera® whereas the bearing sensor measures its angular
coordinate. The polar coordinates can then be transformed into the real Cartesian location
coordinates (x", y") using:

X" = rcos(a)’ (15)
y" =rsin(a)
where r is the distance of the target and « is the orientation of the turret. Practically speaking,
each of the sensor measurements contains a small error. We denote by Ar and Ae, respectively
the distance and orientation errors. Then the coordinates (x", y™) based on the sensor
measurement become:
X" :(r+Ar)cos(a+Aa). (16)
y" =(r+Ar)sin(a+Aa)

The distance error range is often (according to many laser sensor catalogs and visual based
sensing) proportional to the measured distance, whereas the angular error is dependent on the
resolution of the camera and encoder and is constant for a long range of distances (as long as
the target is detected by multiple camera pixels). Assuming small measurement errors Ar,

A« and using a first order Taylor series approximation:

cos(a+Aa)=cos(a)-sin(a)Aa

: _ : 17
sin(a+Aa)=sin(a)+cos(a)Aa
neglecting the product of Ar times A, Eq. (16) becomes:
X" = (r+Ar)cos(a)-rsin(a)Aa (18)

y" = (r+Ar)sin(a)+rcos(a)Aa '

3 The distance measurement could equally be achieved by using a camera or a laser range sensor. The term
'distance measurement' or 'distance sensor' refers to either kind of measurement method.
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Figure 3.1: The mobile robot and its sensors. Each robot incorporates a camera fitted on a
rotating turret and a bearing sensor.

3.3 Two Point Measurement Approach

A straightforward approach is to estimate the orientation of the robot by measuring the
position of two specific points on its side. Assuming that the measured distance and relative
orientation of two points 1 and 2 are respectively r;, as, r> and a2 (see Figure 3.2), the measured

position of the center of the robot (x,y) and its orientation @ can be calculated as follows:

o fLc0say +1, cos

2 (19)
_nsing, +1,sina,
2
and
I, cOSa, — I, COS
«9=—atan(2 i B al]. (20)
r,sina, —r sing,

This method results in a relatively large error in the robot's orientation if the errors Ari,Ar
become significantly large relative to the distance | between the two measured points. Omitting

the angle measurement errors, the maximal orientation error of the robot:

. JAn|+]Ar

AG = )
| cos(a—0)

(21)

For example, assume a robot with a length of I=0.5 m is measured from a distance of r=10
m by a distance measurement with a resolution of 0.2%; hence Ar=2 cm. Given a=45° and
6¢=30°, the orientation error according to Eq. (21) is A@~ 4.8°. Note that this orientation error

for each single step is very large especially since the error is cumulative.
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v

Figure 3.2: Distance measurement errors when estimating the orientation of a vehicle. In
black: real position of vehicle, in grey: estimated position.

3.4 Relative Orientation Method (Suggested Method)

Our method is based on the approach of two vehicles which advance in alternating steps.
At any given time, one vehicle whose position Xigs, Yis and orientation & are known remains
stationary, while the other vehicle advances. The index i indicates the step number and 's’ stands
for stationary. At the end of each step, the distance and bearing of the two vehicles are measured
(ri, ais, ait); These measurements are used to estimate the traveling vehicle's position Xit, yit and

orientation & (where 't stands for traveling).

The traveling vehicle's location and orientation at each step is determined with respect to
the observing vehicle's position. The general form of the Cartesian location and orientation of

the traveling vehicle at step i is:

Xi,t :Xi,s+F(8i,s’ri’ais’ait)v (22)

where the vector Xi includes both the position and orientation of the vehicle: X; =[x, Hi]T :

For example, in step 1, assume that vehicle 1 is stationary and its position X1,1, y1,1 and
orientation @11 are known and vehicle 2 traveled to a new position. The measured distance
between the vehicles is r1 and the measured bearing angles are a1 and aa2, where the first index
refers to the step number and the second index refers to the measuring vehicle (see Figure 3.3,

left). Therefore, the Cartesian position and orientation of vehicle 2 with respect to vehicle 1 is:
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X, =, COSa,
Y, = Sinay, . (23)
0, =0, +180°-a,,
By setting the initial position and orientation of vehicle 1 as the origin of the global
coordinate system, meaning x1,1=0, y11=0 and 81,:=0, Eq. (23) represents the global position

of vehicle 2 at the end of the first step.

Note that the orientation & is determined solely by bearing measurements and is hardly
influenced at all by the distance measurement, unlike in the two-point approach (3.3), where the
orientation accuracy is decreased by the distance. This is one of the key advantages of our
method since distance errors tend to increase together with the distance while angle

measurements remain almost unchanged.

In step 2, vehicle 1 travels to its next target point while vehicle 2 is stationary and its
position is known (x2.2=X1,2, y2,2=Y1,2 and & =61 ). At the end of the step, the distance and angle
measurements are r., a2 and ao1 (See Figure 3.3, center). It should be noted that the
measurements are obtained with respect to vehicle's 2 current position and its local coordinate
system. In order to obtain the position of vehicle 1 in the global coordinate system, a

transformation is needed.

Knowul e i 1BD Known
)
i o"/(

[ ]

First Step Second Step Third Step

Figure 3.3: The first three steps and their measurements. At each step, one robot is static
and tracks the motion of the advancing robot.
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3.5 Multistep Representation using Homogeneous Coordinates

The local transformation matrix (2.1) at step n from the traveling vehicle's coordinate

system (n) to the stationary vehicle's coordinate system (n-1) is:

cosy, —siny, I CoOSa,
Al =|siny, cosy, rsing, |, (24)
0 0 1

where yn is the relative angle between the two coordinate systems, hence ynh=cons+180°—ant (See
Figure 3.3). Obtaining the position of the traveling vehicle in the global coordinate system (0),

can be achieved recursively as follows:

A=A A (25)
where A} is the overall transformation matrix obtained in the last step (n-1), and A", isthen

step's local transformation matrix as shown in Eq. (24).

Since the transformation matrix is composed of a rotation matrix and a shifting vector, the
first two expressions of the third column of matrix A are the Cartesian location of the traveling

vehicle in the global coordinate system at step n, and the angle of the rotation matrix is the

vehicle's orientation in the global coordinate system.

For example, the transformation matrix of the first step is:

cosy, -—sSiny, [r,CoSay,
A =|siny, cosy, rsina, |. (26)
0 0 1

The transformation matrix from the first to the second step:

cosy, —siny, T,C0Sa,,
A =|siny, cosy, I,sina, |. 27
0 0 1

Therefore, the overall transformation matrix for the second step is:

cos(y, +v,) —sin(y,+y,) rcosa, +r,cos(y, +a,)
A\)Zz'bé'Alz: Sin(‘/’l""//z) COS(‘/’l""//z) 'ﬁsmall"'rzsm(‘//l"'azz) . (28)
0 0 1

Hence, vehicle’s 1 location in the global coordinate system at the end of the second step (see

Figure 3.3, center) is:
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X,; =1,COS e, +T1,C0S(y, +ary, )

You =hsinag, +nsin(y, +a,) . (29)

‘92,1 Sty =0 — 0, 0, — 0y

The general form of the location of the traveling vehicle at step n:

Xn,t = Zrl Cos(l//i—l + ais)
i=1

yn,t :zrl Sin(l//i—1+ais)> (30)
i=1

en,t = Z l//i
i=1

where:

v, = o +180° — o, (31)
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4 Error Evaluation

Since all sensor measurements contain precision errors, this section presents a statistical
analysis to evaluate the influence of the cumulative errors on the overall location of the robot

after a large number of steps.

4.1 Exact Method

The measured location of the traveling vehicle at step n is expressed as a function of
measured distances ri,ra,...,rn and angles aoi1,a12,...,an1,an2 In the global coordinate system
f(r,...,M,a11,...,an2); thus the real location including distance and bearing measurement errors,
AriAra,... Al and Ao, Aaiz,...,Aon,Aom respectively, is

f(ritAra,...,rtAMm,autAait,...,cntAan).

For example, if during the first step (Eq. (23)) the distance and bearing were measured with

an error of Ary, Acar and Ao respectively, the measured location of vehicle 2:

X5 = (1, +Ar)cos(ay, +Aay, )
yi, = (1 +Ar)sin (o, +Aay, ) : (32)
0, = o, + Aoy, +180° — (0512 + Aalz)
This method uses the presented localization method directly (see Section 3.4 and 3.5), and
hence requires multiple matrix multiplications and a large number of trigonometric calculations

which result in high numerical complexity.

Moving vehicle

A 4

Stationary vehicle Stationary vehicle
Figure 4.1: Real location (left), Measured location with sensor errors (right).
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4.2 First Order Approximated Method

An approximated, yet computationally simpler method to evaluate the measured locations

of the vehicles uses:

r

X X
y" |=|y" [+[I][A], (33)
o" o'

where the index 'r' refers to the real location, [A] is the measurement errors vector and [J] stands
for the Jacobian matrix (2.2):
of.
Ji==—> (34)
oq;
where fi are the functions of Cartesian location and orientation and g; are the variables of these
functions, hence r1,o11,212,....1j,a41,42. For example, the estimated position of vehicle 2 after

the first step is:

X r,COSary, cosey, -nsina,; 0| Ar
yh |=| nsinag, |+|sine, rcose, O | Aay, |- (35)
o, a,, +180° -, 0 1 -1 Aay,

At the next step, the location is determined by 6 measurements; thus, the Jacobian becomes
a 3x6 matrix and the measurement error is a 6x1 vector. At step n, the Jacobian is a 3x3n matrix

and the measurement error is a 3nx1 vector. A general form of the location error for step n is:

—t,sin(6,, +a, )-£+Ar,cos(6, , +a,,)
[E], =[31,[A], =[E],, +| r,c08(6,,+a,,) e+Arsin(6,,+a,,) | (36)
Aa,—Aa,

n,t

where:

n n-1
&= Zi:lAai,s -2 a0, (37)
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5 Monte Carlo Simulation

A Monte Carlo Simulation (MCS) was used in order to simulate a real-life scenario where
the input of the sensors contains statistical errors. A natural random statistical error with a given
standard deviation was inserted to the “measured values” and the statistical distribution of the
position of the vehicles was calculated (using 10,000 simulations for each step), by both exact
and approximated methods, as presented in Figure 5.1. This section first presents a comparison
between the first order approximation to the exact method (5.1), the statistical distribution along
the path (5.2), the influence of the sensor error on the accuracy of the measured location (5.3)
and finally a comparison between different paths and advancing (parallel, alternating and
following) methods (5.4).

Steps = desired locations of
2 robots for n steps

Steps
Exact v N Approximated
method ( Delta_cars = [3n,N] matrix of random ] method
Steps L errors: Ar, Ao, A, N for each step J Steps
Delta_cars n
i=1 Delta_cars
A 4 h 4

p
Measured locations with N

errors for all steps by

approximated method

v

Calculate Jacobi_error =
[2n,N] matrix of N (x,y)

s N
Measured location with N
errors for step i by exact
method
v k=1

[ A
Measured location with

error k for step i

-

‘ kIocation errors for each step)
~
Calculate current p * .
transformation matrix Add Jacobi_error to desired
i locations
AL (k) | \ )

4500 = 4500 - 4L, (1) |

Figure 5.1: Flow chart of the Monte Carlo simulation, calculating locations with errors by
two methods for a path of n steps, using a set of N random errors.
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5.1 Comparing the First Order Approximated Method to the Exact Method

The MCS was first performed throughout a simple path composed of two straight lines as
seen in Figure 5.2. At each step, the traveling vehicle advances by 8 m and the final distance

from the stationary vehicle is 10 m; i.e. the system overall advances 200 m throughout 25 steps.

The distance and angle measurement errors were simulated as normally distributed (2.3)
sets of N samples each (for each step), with zero mean. The standard deviation of the distance
measurement error was set to ouri, where oy is the distance sensor's resolution and r; is the
current step's measured relative distance. The standard deviation of the angle measurement error

was set to o, the bearing sensor's resolution.

200 f ‘ ! ]

[ IVehicle 1

[ IVehicle 2
150 ¢ 1
E£.100 1

>
50 + 1
0t | ]
-100 -50 0 50 100
X[m]
Figure 5.2: A 25 step straight line path. This simple path was chosen for our numerical
MCS.

The MCS comparison was performed using the exact method (4.1, [B]7) and the
approximated method (4.2, [B]5). In both cases, N=10,000; i.e., each step of the path was
evaluated 10,000 times, for a set of 10,000 samples of random measurement errors ([B]4),
resulting in 10,000 possible locations for each step. Figure 5.3 presents the relative difference
between the final locations calculated by both methods, relative to the total traveled distance.
Figure 5.3 (top) shows that for 0,<0.5° (a reasonable assumption for a standard bearing sensor),
the difference between the exact and approximated methods is less than 0.1% of the traveled
distance (200 meters in 25 steps). The error increases to 1.5% for o»=2°. Figure 5.3 (bottom)
which presents the difference between the two methods as a function of distance standard

deviation og shows that the error is dominated by the angle error.
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Figure 5.3: Relative difference between the last step’s locations, calculated using the exact

and approximated methods, relative to total distance traveled (200 m), as a function of bearing

sensor’s resolution (top), and as a function of range sensor’s resolution (bottom). Each point is
the average of 10,000 simulations.

As seen in Figure 5.1, the exact method uses transformation matrices, therefore the same
matrix multiplication (with different random errors) has to be computed N times for each step,
overall N-n matrix multiplications for n steps ([B]1, [B]7). In the approximated method on the
other hand, due to the general form of the location errors (Eq. (36)-(37)), all N possible locations
for each of the n steps are calculated directly using matrix addition ([B]1, [B]5). As a result, in
terms of computation time, the approximated method was found to be nearly 200 times faster
than the exact method computation time. Hence, the approximated method was used in the
following MCS.
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5.2 Statistical Distribution

This section presents a statistical analysis of the MCS location errors using c¢=2% and
0.=0.5°. The distribution of possible locations for each step is presented as a two-dimensional
histogram (see Figure 5.4 and Appendix [B]8). The size and shape of the distribution can be
described by three standard deviation values (2.3). The first is the total standard deviation

according to the distance between the centroid and the different simulation results:

G=Gﬁzg;m—mf+wfwﬂﬂ', (38)

where (ux,uy) are the coordinates of the approximated method's centroid and (xiyi) are the

coordinates of all possible locations, i=/,...,N.

Since the distribution pattern of possible locations tends to yield an ellipse (see Figure 5.4),
two other standard deviations were calculated according to the ellipse's axes. These values were

obtained by calculating the covariance matrix of the N Cartesian locations ([B]9):

X Y
cov| @ i, (39)

XN Yn

resulting in a 2x2 covariance matrix, with two 2x1 eigenvectors {V,,V,} and two corresponding

eigenvalues {Al,ﬂz}. The eigenvectors of the covariance matrix represent the direction of the

ellipse’'s axes, and the square root of their corresponding eigenvalues represent the standard

deviations in their direction. Assuming 4, > 4,, the two standard deviations values are:

o =4, 0, =", (40)
where o1 is the standard deviation in the direction of the main axis of the ellipse and o is the
standard deviation in the perpendicular direction. The angle between the ellipse's main axis and

the global x positive axis (see Figure 5.4 top left) is:

Vi(y)

Vi(x)

f =atan

(41)
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Figure 5.4: Histogram distribution of the measured locations using the MCS with 10,000
paths with oy =2% and o,=0.5° for steps 1, 2, 8, 14, 20, and 25 with the confidence distribution

68% (o) and 95% (2c).
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Figure 5.5: Standard deviations as a function of the number of steps for a 200 m straight

path using 0s=2% and 0,=0.5°.

Although the error distribution of the first step seemed to be affected mostly by the distance

sensor's error, the error distribution of the next step had a circular pattern. The pattern became

elliptical in the next steps with o1 becoming larger relative to o» (see Figure 5.4 and Figure 5.5).

The overall standard deviation of the error o grew almost linearly with the number of steps and

distance traveled. The ratio of o of the last step divided by the overall traveled distance is 0.036

which is in the same order of magnitude as the sensors' relative error.
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Using Eq. (36), the standard deviation of the orientation of the vehicle at step n can be
evaluated directly as follows:

o,= \/%-Ga, (42)
implying that the orientation error depends solely on the number of steps and the bearing

sensor's accuracy.

Additionally, the standard deviations in the 'x' and 'y' axes directions can be analytically
derived from Eq. (36) (see Appendices [A] and [B]6):

0.5

r 2
o, =| > cos? (9i_1 +a;)os +>. 9 j){Zri sin(¢9i_1 +a;, )J Jj} : (43)
L=t = i

0.5

ay:_Zn“rizsinz(a_ﬁaiys)aj+Zn:Q(j)(Zn:ricos(¢9i_1+aiys)j 0§] , (44)

i=j

where:
1, =1
Q(j)={2, = (45)

These equations have been validated by comparing between the total standard deviation values

o calculated using the MCS (10,000 simulations) and the analytical expression (see Table 10.1).
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5.3 Comparing the Influence of the Sensor Error on the Accuracy of the
Measured Location

Figure 5.6 (top) presents the relative error between the measured position of the robot and
the real position as a function of the standard deviation of the bearing measurement error o,
while Figure 5.6 (bottom) presents the same error as a function of the standard deviation of the
distance measurement error og. For each case, we ran 10,000 simulations, each composed of 25
steps and the total net advancement is 200 meters. The results presented in this figure show that

the relative error is governed by the bearing error measurements.
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Figure 5.6: Relative error between the measured position of the robot and the real position
for a travelled distance of 200 m, as a function of bearing sensor's resolution (top), and as a
function of range sensor’s resolution (bottom). Each point is the average of 10,000 simulations.
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5.4 Path Comparison

In this section, MCS are used to statistically calculate the influence of the sensor accuracy
on the location error for three different paths (straight, 'S' shape, and square) using three
advancing methods (parallel, alternating and following). In total, nine scenarios were examined
for four different combinations of sensor errors (see Table 5.1). The three different paths were
chosen as basic segments that can be used to define more complex paths, whereas the three

advancing methods map the most basic methods of forwards advancing of two vehicles.

Table 5.1: Values of sensor variables used in the simulation

Sensor variables STD#1 STD#2 STD#3 STD#4

og=error/distance 1% 5% 2% 5%
o [°] 0.1 0.1 05 1
2000 A 200 m Straight Path 20f g 200 m Straight Path wf ¢ 200m StraightPath
Parallel Advancment Alternating Advancment Following Advancment
I =hice 1 R =hice 1 R =hice 1
Il =hic 2 I =hice 2 I =hice 2
150 150 1 150
E E E
= 100 = 100 = 100
50 50 50
0 . . N " 0 L . 0 . . l& .
-100 50 0 50 100 -100 50 0 30 100 -100 50 0 50 100
Xm] X[m] X[m]
140 200 m'S' Path 140 200m 'S'Path 140 I ] 200m 'S' Path
D Parallel Advancment E Alternating Advancment 120 F Following Advancment
120 . =hice 1 120 I =nicke 1 I =hics 1
100 v =hick 2 100 I =nick 2 100 I =hicis 2
80 1 80 80
E E £
= 60 = 60 = 60
40 40 40
20 1 20 20
0 0 0
-50 0 50 100 50 0 50 100 -50 0 50 100
X[m] X[m] X[m]
60 G sof H 60T |
0o o o o=
50 50 30
40 40 40
e 30 z 30 = 30
= = 5 > a0
20
10 — 10 10
200m Square Path 0 200 m Square Pah 0 200 m Square Path
or Parallel Ady Alternating Advancment ing Adh
=hice 1 10 [ . 10 E=hice 1
10t B =hice 2 - I =hice 2 B =hick 2
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
X[m] X[m] X[m]

Figure 5.7: Nine scenarios of three different paths and three different advancing methods.
From top to bottom: straight path, 'S' path and square path. From left to right: parallel
advancing, alternating advancing and following advancing. Lighter colors present 30 optional
locations due to random sensors errors with z=2% and &,=0.5°.
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Table 5.2: 200 meters straight path standard deviation values for different sensors resolution
(using 10,000 simulations)

Sensor Total standard deviation (o) Advancing direction (oy) Perpendicular direction (ox)
variables Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow.
oa=1% 151 m 1.49m 151 m 0.404 m 0.403 m 0.631 m 1.46m 143 m 1.37m
0.=0.1° [0.75%] [0.72%)] [0.75%] [0.20%] [0.20%] [0.31%] [0.72%)] [0.72%)] [0.69%]
od=5% 2.86 m 2.66 m 343 m 1.97m 1.99m 3.14m 2.08 m 1.77m 1.38m
0.=0.1° [1.4%] [1.3%] [1.7%] [1.0%)] [1.0%)] [1.6%)] [1.0%)] [0.88%] [0.69%)]
ai=2% 7.23 m 7.16 m 6.97 m 0.836 m 0.840 m 1.26 m 7.18 m 7.11m 6.86 m
0a=0.5° [3.6%] [3.6%] [3.5%] [0.42%)] [0.42%] [0.63%] [3.6%] [3.6%] [3.4%]
ad=5% 143 m 144m 141m 2.06 m 2.08 m 3.17m 14.2m 14.2m 13.8m
0a=1° [7.2%] [7.2%] [7.1%] [1.0%] [1.0%] [1.6%] [7.2%] [7.1%] [6.9%]

Table 5.3: 200 meters 'S" path standard deviation values for different sensors resolution (using
10,000 simulations)

Sensor Total standard deviation (o) Advancing direction (ox) Perpendicular direction (oy)
variables Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow.
od=1% 1.07m 1.14m 1.20 m 0.926 m 0.960 m 1.02m 0.542 m 0.609 m 0.629 m
0.=0.1° | [0.54%] [0.57%]  [0.60%] | [0.46%]  [0.48%]  [0.51%] | [0.27%]  [0.30%]  [0.31%]
od=5% 3.35m 3.89m 4.02m 2.43 m 2.80m 291m 2.31m 2.70m 2.78 m
0.=0.1° | [1.7%] [1.9%] [2.0%] [1.29%] [1.4%] [1.4%] [1.2%] [1.3%] [1.4%]
od=2% 4.46 m 448 m 4.86 m 412 m 411 m 449 m 1.71m 1.79 m 1.87m
0.=05° | [2.2%] [2.2%] [2.4%] [2.1%] [2.1%] [22%] | [0.85%] [0.90%]  [0.94%]
od=5% 9.17m 9.23m 10.0m 8.40m 8.36 m 9.12m 3.68m 3.92m 412m
o=1° [4.6%] [4.6%] [5.0%] [4.2%] [4.2%] [4.6%] [1.8%] [2.0%] [2.1%]

Table 5.4: 200 meters square path standard deviation values for different sensors resolution (using
10,000 simulations)

Sensor Total standard deviation (o) Advancing direction (ox) Perpendicular direction (oy)
variables Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow.
a6=1% 0.877m  0.973m 0.831m | 0607m  0.734m 0.587 m 0.634 m 0.638m  0.583m
0.=0.1° | [0.44%] [0.49%)] [0.42%)] [0.30%)] [0.37%)] [0.29%)] [0.32%)] [0.32%)] [0.29%)]
au=5% 3.70m 3.96m 3.03m 254 m 3.02m 2.14m 2.69m 2.56m 215m
0.=0.1° [1.8%)] [2.0%)] [1.5%)] [1.3%)] [1.5%)] [1.1%)] [1.3%] [1.3%] [1.1%)]
ai=2% 2.83m 3.24m 3.15m 1.99 m 241m 2.25m 2.01m 2.19m 2.20m
0=0.5° [1.4%)] [1.6%)] [1.6%)] [0.99%)] [1.2%)] [1.1%)] [1.0%] [1.1%] [1.1%)]
au=5% 6.07m 6.92m 6.48 m 427m 514m 459m 432m 4.63m 457m
oe=1° [3.0%)] [3.5%] [3.2%)] [2.1%)] [2.6%)] [2.3%)] [2.2%] [2.3%] [2.3%]

Figure 5.7 A-C, presents the path distribution of 30 simulations in a straight path using
three different advancing methods: A) parallel, B) alternating and C) following. Figure 5.7 D-
F, and G-I present the same different advancing methods for 'S' shape and square paths

respectively. We used og=2% and o» =0.5°.

The resulting total standard deviation, and its components along the direction of motion and
in the vertical direction are summarized in Table 5.2, Table 5.3 and Table 5.4. Note that the

standard deviation values were calculated twice; once using MCS (10,000 simulations) and then
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using the analytical expressions developed in the Appendix. The relative difference between

both methods is always smaller than 1% (see Appendix [A]).

For the straight path, (Table 5.2), the overall standard deviation is the largest compared to
the other paths and is nearly unaffected by the advancing method. However, for the other two
paths ('S' shape (Table 5.3) and square (Table 5.4)), the parallel advancing method mostly
generated smaller location errors, where the square path resulted with the smallest errors.

For the straight path, the standard deviation in the vertical direction is substantially larger
than the standard deviation in the direction of motion. The square path on the other hand,
resulted in nearly equal standard deviations both in the parallel and perpendicular direction, due

to equal advancement in both directions.

Overall, the three different advancing methods (parallel, alternating and following) do not
result in significant differences in the standard deviation values within a specific path. The size
and the distribution pattern of the errors are influenced mainly by the overall advancing direction

of the system and almost unaffected by the relative position of the vehicles within each step.

6 Experiments

This section presents a real-world experimental system that was used to validate our
algorithm (6.1), experimental results (6.2) and comparison to the previously presented Monte

Carlo simulation (0).

6.1 Experimental System

To validate our algorithm and simulations, we built a two-robot experimental system fitted
with rotating turrets and cameras (see Figure 6.1). Each turret is equipped with a smartphone’s
video camera (1080x1920 pixels at 30fps). A green 6.2 cm tennis ball was placed at the top of
the turret for visual identification. The turret is connected to a servo motor controlled by an
Arduino microcontroller programmed to continuously rotate the turret by steps of 45 degrees,
from zero till 180 and returning (see Figure 6.2). At each stop, the turret pauses for one second.
Given the camera’s field of view in the horizontal direction yx is 40 degrees, the total field of

view of each robot is 220 degrees.
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Figure 6.2: Top view of the robotics system. The turrets rotate in steps of 45 degrees.

We ran four different experiments that were each repeated five times. In each experiment,
the robots (controlled by a human operator) advance in alternating steps while the turret rotates
as the camera continuously records video. The localization of the robots is performed off-line
at the end of the experiment (see Appendix [C]). Each step is represented by two images

(1080x1920), one from each camera and the orientation of the turrets ourret.

The bearing angle « of each robot is the sum of the orientation of the turret awrret plus the

angular position of the tennis ball in the picture aimage:

O=Clyre T (46)

turret Image

The angular position in the image is calculated using:

b,
Qliage = atan( WE tan (72* B 47)
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where by is the x coordinate of the center of the ball in pixels, with respect to the center of the

frame (see Figure 6.3, top right) and Ny is the overall size of the image in pixels in the x direction.
The distance r between the robots (see Figure 6.3, bottom right) is calculated using:

L
r=———o, 48
atan(a, ) (48)
where L is the length of the turret (21 cm) and av is the view angle of the height of the turret in
the frame, calculated from the image:
N
aL = N_L : 7/y s (49)

y

where N_ is the size of the turret in pixels and Ny is the overall size of the image in pixels in the
y direction. The camera’s field of view yy in the vertical direction is 70 degrees. The distance r

at each step is calculated from the average of both images (one from each robot).

Figure 6.3: Schematic diagram of distance (bottom right) and bearing (top right) calculation
from frame. Top left: original frame, bottom left: frame after image filtering, center of ball and
top and bottom of turret detected.
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6.2 Results

The results of the experiments are presented in Figure 6.4, Table 6.1 and Table 6.2. Both
straight parallel and square parallel experiments show high repeatability with a relatively small
average error (1.1% and 0.14% respectively). The total standard deviation is also relatively
small with respectively 1% and 0.63%. The straight following and 'S' parallel experiments
results are not as highly repeatable, indicating a possible drift in the servo motor. We believe
that the most significant error in our experimental system is a systematic error in the bearing
measurements which could be addressed by replacing the servo motor with a higher accuracy
device. As previously discussed, the bearing sensor's error has a high impact on the localization

error.
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Figure 6.4: Experiment results of four different paths; top: straight path following (left) and
parallel (right), bottom: square path (left) and 'S path (right). Darker colors present real
locations and lighter colors present calculated locations from five experiment results.

Table 6.1: Standard deviation values of experiments' last step results.

Paths Total Advancement dir. Perpendicular dir. Orientation
o Oy Ox Oy

Straight Follow 0.143m 0.00897 m 0.143m 103
[10 steps, 7.5 m] [1.9%] [0.12%] [1.9%] '

Straight Parallel 0.0773m 0.0492 m 0.0597 m 3.00°
[10 steps, 7.5 m] [1.0%] [0.66%] [0.79%] '

Square Parallel 0.0751m 0.0594 m 0.0458 m 1.06°
[16 steps, 12 m] [0.63%] [0.49%] [0.38%] '

'S' Parallel 0.179m 0.127 m 0.0997 m 4.78°
[8 steps, 6 m] [3.0%] [2.1%] [1.7%] '
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Table 6.2: Mean error values of experiments' last step results.

Path Total Advancement dir. Perpendicular dir. Orientation
ams Mean Error Mean Error Mean Error Mean Error
Straight Follow 0.395m 0.152 m -0.363 m 0523
[10 steps, 7.5 m] [5.3%] [2.0%] [4.8%] '
Straight Parallel 0.0797 m -0.0424 m -0.0278 m 357
[10 steps, 7.5 m] [1.1%)] [0.56%] [0.37%] '
Square Parallel 0.0174 m -0.0078m -0.00006m .0.011°
[16 steps, 12 m] [0.14%] [0.065%] [0.0005%] '
'S' Parallel 0.207 m 0.0529 m 0.200 m .3.350
[8 steps, 6 m] [3.4%] [0.88%] [3.3%] '

6.3 Comparison to Simulation

The system's repeatability error was evaluated by repeating the same measurement at least
10 times. The standard deviation of the calculated distances and bearing angles were cy=1%
(with respect to the real distance) and .=0.3°. The values of the standard deviation were
implemented in the MCS in order to compare the simulation to the experiments. The simulation
results presented in Table 6.3 show that the experimental results (Table 6.1) are of the same
order as expected by the simulation. Note that since the MCS uses normally distributed random

errors, the mean error for each step is zero.

For the first three experiments, straight following, straight parallel and square parallel paths,
the standard deviation is very similar to the simulation, especially for the square path. In the 'S’
shape path, the standard deviation of the experiment is of the same order as the simulation but
is slightly more than 3 times larger. All four experiments show high compatibility in the relation
between the standard deviation in the advancement and in the perpendicular directions, meaning
the experimental system describes with high accuracy the distribution pattern of the location

errors.

Table 6.3: Standard deviation values of simulations' last step results with gz=1% and o,=0.3°.

Paths Total Advancement dir. Perpendicular dir. Orientation
o Oy Ox Oy

Straight Following 0.102 m 0.0487 m 0.0895 m 0.0234°
[10 steps, 7.5 m] [1.4%] [0.65%)] [1.2%)] '

Straight Parallel 0.114m 0.0423m 0.106 m 0.0234°
[10 steps, 7.5 m] [1.5%] [0.56%] [1.4%] ‘

Square Parallel 0.0778 m 0.0637 m 0.0446 m 0.0296°
[16 steps, 12 m] [0.65%] [0.53%)] [0.37%] '

'S' Parallel 0.0523 m 0.0389m 0.0350 m 0.0209°
[8 steps, 6 m] [0.87%] [0.65%] [0.58%] ‘
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7 Control

This section presents a path planning algorithm for the two-robot system, while considering
state, input and path constraints (7.1). Then, a closed-loop path following controller is described

in polar coordinates (7.2). The fusion of both algorithms is implemented in Section 7.3.

7.1 Autonomous Path Planning

In this section, the objective is to design a controller which will allow the two-robot system
to advance autonomously in an uncharted constrained environment which lacks GPS reception
such as a narrow underground tunnel. To do so, each step of the system is considered as an
optimal control problem, where the goal is to advance to a chosen target point in minimum time,

under the surrounding constraints (which will be defined shortly).

Assuming each robot is a differentially driven vehicle whose control inputs are (v,),
defined respectively as the linear and angular velocities, the continues kinematic model of a
single robot can be defined either by Cartesian or polar coordinates. After considering both
representations, the Cartesian representation was chosen due to simpler representation of the

constraints.

7.1.1 The Model
The continuous Cartesian kinematic model of a single robot:

X =vsin@

y =VvCosd, (50)

O=w
where (x,y) represent the Cartesian location of the robot and & represents the heading angle. The
global coordinate system is set as the initial position of the moving robot (xo,yo). The heading
angle 0 is measured with respect to the positive y axis, clockwise (see Figure 7.1). Notice that

both the heading angle 8 and the angular velocity o directions are CW.

The states of the system are:

x=[x y G]T, (51)

and the control signals are:

u=[v o] . (52)
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(Xo,}’o)

Figure 7.1: The system.

Table 7.1: List of state parameters and control inputs

State/control signal Units Description
X [m] : o o -
y (i Cartesian location with respect to initial position.
17 [rad] Heading angle with respect to positive y axis.
Vv [m/sec] Linear velocity
1) [rad/sec] Angular velocity

7.1.2 Implementation

Since the system is not linear (see Eq. (50)), linear methods for control under constraints
such as Model Predictive Control (MPC) or Interpolation Control (IC) are not practical.
Therefore, we have decided to use FALCON.m - an optimal control tool for MATLAB,
developed at the institute of Flight System Dynamics of Technische Universitat Miinchen [43].
FALCON.m uses direct discretization methods in combination with gradient based numerical
optimization and automatic analytic differentiation to solve mathematical optimal control
problems. The numerical optimization is performed by IPOPT — Interior Point Optimizer, a

software library for large scale nonlinear optimization of continuous systems [56].

As an optimization problem, the objective is solving the problem while minimizing the
cost function (2.7). The cost function is set as the final time t; where the robot arrives to its goal
point:

minJ =t, . (53)
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7.1.3 Defining Constraints

a. Movement constraints

Limiting the linear and angular velocities of the vehicle:

<v<
0<v<sv,,, | (54)
) 2

where the linear velocity is constrained to be positive, meaning the vehicle can only advance

forwards.

b. Linear constraints due to shape of tunnel

X < X< Xy,

Yo Y=V o (55)
—2r1<0<2r
where Xib, Xub, Yib @nd yup are defined by the shape of the tunnel and the orientation of the robot

is actually not constrained. If the object is advancing forwards, the orientation can be

constrained as follows:

—l2-00<0<7m]2+00, (56)
where 66 is some small angle in order to allow maneuvers (recall that &is defined with respect

to the positive y axis, see Figure 7.1).

c. Visibility by static vehicle constraint

As defined previously, the two vehicles must remain in each other's range of 'sight’,
therefore:

e<r<r (57)

— "max ?

where:

r=\/(x—xs)2+(y—ys)2 : (58)
where r is the distance between the stationary and the moving vehicle, rmax is the distance

sensor’s maximal range and ¢ is the minimal allowed distance between the moving vehicle and

an obstacle (the stationary vehicle is also an obstacle).

d. |Initial and final positions

The initial and final positions could be set either as equality or inequality constraints:
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X,=[0 0 0f
[xf Yi —Zﬂ}Tsts[xf Yi Zﬂ]T’

meaning the final desired location is (xs,yr) whereas the orientation of the robot at the final point

(59)

time is not constrained.

e. Avoid obstacles

The final constrains are defined by the obstacles in the environment.

1. Ellipse obstacle
The constraint due to an ellipse shaped obstacle with a center of (Cx,Cy), semi axes of a and

b and orientation of p is defined as follows:

((x—CX)cos,o+(y—Cy)sinp)2 ((x—CX)sinp—(y—Cy)cos,o)2

> + > >1
(a+¢) (b+e)

N (60)

where the addition of ¢is set so the robot will not come closer than ¢ to the obstacle.

2. Rectangular obstacle

The constraint due to a rectangular obstacle with a center of (Ry,Ry) and the dimensions of

2px*2q is defined as follows:

(x-R)  (Y=R)

(x=R)_(y-R)[_,
p+e q+é ‘ B

LR
‘ p+e g+e¢ ‘

: (61)
where the addition of ¢is set so the robot will not come closer than ¢to the obstacle. As will be
demonstrated ahead, the rectangular obstacle is useful for dealing with corners in the explored

tunnel.

(RoRy)

Figure 7.2: Ellipse (left) and rectangular (right) obstacles.
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7.1.4 Simulation Results

This section presents the results of implementing the described control algorithm. First,
single step scenarios were simulated (1) and then, a multi-step simulation is presented (2). In all
figures, the two robots are marked by blue and green rectangles, black lines and ellipses

represent borders and obstacles respectfully and the dashed black line represents the visibility
constraint from the stationary robot.

1. Single Step Scenarios

This section presents the results of four different single step scenarios, validating the
algorithm for different cases of borders and obstacles.

Table 7.2: Constant values for all single step simulations.

(Xo,Y0) (Xs,Ys) Vmax (Omax I'max &
(O[m],0[m]) (8[m],6[m]) 5 [m/sec] n/8[rad/sec] 10[m] 0.5[m]

a. Straight tunnel no obstacle

Table 7.3: Constant values for simulation (a).

(Xt,y1) Xib Xub Yib Yub
(8[m],16[m]) -2[m] 10[m] O[m] inf

Trajectory

N
o

w
S

Direction [deg]
- N
o o

S 8 1= 0 1 2 3 4
; % 8 time
6 S
6 72 |
4F @4 E
£ kel
ol 4t 33 §15 T
g 210
2
°r 2l £, E °
-2 L | | | |
5 0 5 10 5 O e s o e
X[m] x [m] time time
Figure 7.3: Simulation’'s (a) trajectory, constraints (left), state and control input values over

time (right).
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b. Straight tunnel with one ellipse obstacle

Same constant values as simulation (a) (Table 7.3), additional ellipse obstacle (Eg. (60)).

Table 7.4: Constant obstacle values for simulation (b).

(Cx.Cy) a b 0
@4[m],8[m]) 3[m] 1[m] /6 [rad]

Trajectory

30

Direction [deg]

= gl 4 0 1 2 3 4
>§_‘ % 8 time
6l
6 =20 ?
4 - w4 >
£ 15
2+ 4r '00)3 3
2 210
22 2
0f 2r 3 3
£4 g
B 5 0 5 10 1‘5 0= : ‘ . . °
) 0 2 4 6 8 0 2 4 0 2 4
X[m] x [m] time time
Figure 7.4: Simulation’'s (b) trajectory, constraints (left), state and control input values over
time (right).

c. Corner no obstacles

In this case, since the borders of the tunnel are not linear, they cannot be defined in the form

of Eq. (55)). Alternatively, a rectangular obstacle (square in this specific case) is used to define
the corner constraint (Eq. (61)).

Table 7.5: Constant values for simulation (c).

(%,Y5) Xib Xub Yib Yub (Rx,Ry) p q
(16 [m], 12 [m]) -2 [m] inf- O[m] 20[m] (15[m],5[m]) 5[m] 5[m]
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d. Corner and one ellipse obstacle
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Figure 7.5: Simulation's (c) trajectory, constraints (left), state and control input values over

Same constant values as simulation (c) (Table 7.5), additional ellipse obstacle (Eg. (60)).

Table 7.6: Constant obstacle values for simulation (d).

(Cx,Cy) a b
(5[m],8[m]) 3[m]

»

1[m] w/6[rad]

20
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16

14+

12

Y[m]

10

y [m]

Figure 7.6:

10 15 20
X[m]

Trajectory

Dirgction [deg]

50

time

N
=3

2

w4 2 0

= 1
0! E k=X
R 3

@ o 0
a a
@9 @

§ 5 10

S -
5 £1 =
©

-20

. . . 0
0 5 10 15 0 . 5 0 _ 5
x [m] time time

time (right).

-52-

Simulation's (d) trajectory, constraints (left), state and control input values over



2. Multi-Step Simulation

Consider a long straight tunnel with many obstacles. The objective is that the robots
autonomously advance in the tunnel in alternating steps while remaining in each other’s range
of sight and avoiding obstacles. Each step is an optimization problem solved as previously

presented.

The considered tunnel is 30 meters long and 9 meters wide. The distance sensor’s maximal
range is 5 meters (rmax=5 m); hence a minimum of 6 steps are needed to cross the tunnel. The

obstacles size, location and orientation are random within defined boundaries.

The flow chart of the process is described in Figure 7.7, the MATLAB codes are presented
in Appendix [E] and Figure 7.8 presents the results of four successful simulations. Next, further

details of each step in the process is presented.

Next Step

trajectory

Choose

Y

Create o Relevant .
M Initialization Obstac| Final Optimization
ap boundaries stacles obstacles Position

(%sYs)

Figure 7.7: Multi-step algorithm flow chart.

a. Create Map — setting the boundaries of the tunnel.
b. Initialization — setting the initial positions of the robots for current step.

c. Relevant Obstacles — first, we tried running the optimization with multiple (5) obstacles

and it crashed due to data overflow. Therefore, we decided to use for each step only the
nearby obstacles, a reasonable simplification since not all obstacles are visible to the
robots at all time. In practice, at each step a random obstacle is defined within the scope
of the current step (distance of rmax from stationary vehicle); The optimization is
performed under the previous and the new obstacles constraints.

d. Choose Final Position — The desired position for the traveling robot was determined as

the point of most advancement in the y direction while maintaining the following

conditions:

e Distance from stationary robot (r) not larger than distance sensor’s range, hence

I < I'max.
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e Not closer than ¢ from tunnel borders and obstacles. The condition of distance from
obstacle is verified by Eq. (60).
e. Optimization — finding the optimal trajectory for the current step from (Xo,yo) to (Xs,yr)
while avoiding obstacles using the FALCON.m tool.

Table 7.7: Constant values for all multi-step simulations.

Xlb Xub Yib Yub Imax & Vmax (max
2[m] 7[m] O[m] 30[m] 5[m] 1[m] 5 [m/sec] 7/8 [rad/sec]

30 7 30 g——— .
/
25 25 ‘ g
g g
20 Q q 20 0.

15 s 15 %4‘
10 U\ 10 i
5 \ . <

-2 0 2 4 6

Figure 7.8: Four multi-step simulations’ results with the same conditions and random
obstacles.
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7.2 Path Following with Polar Coordinates

This section presents a closed loop controller based on polar coordinates, designed to
control the vehicles” movement along a desired path within each step. Polar coordinates were
chosen due to the polar nature of the system's measurements — distance and bearing angle. The

controller is designed for a differentially driven vehicle whose control inputs are (v,w), defined

respectively as the linear and angular velocities (see Figure 7.9).

\ e = f(ae)
/

Figure 7.9: Differentially driven vehicle model in polar coordinates. P, — stationary vehicle
and polar coordinate system origin, Py — traveling vehicle's initial position, P. — traveling
vehicle's target point.

The kinematic model of the vehicle, using polar coordinates is:

.V
& =—C0SQ
r
r=vsing , (62)
: v
@ =w+—C0Sp
r
where the state of the vehicle is defined by (e, r, @). The variables « and r define the
vehicle's location whereas ¢ defines its heading, measured from the perpendicular to the radius
r (see Figure 7.9). The origin of the polar coordinate system is set to the position of the stationary

vehicle Py, and the initial position of the traveling vehicle Pg is set to a=0, r=ro. The traveling

vehicle's target point Pe is located at distance re from the origin and at angle ae from its initial
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position. The desired trajectory of the traveling vehicle (dashed grey line in Figure 7.9) is
ra="f(a).

The position error (in the direction of r) of the traveling vehicle with respect to the desired

trajectory is:

e, () =r(t) 1y (@) =r() - (). (63)

The time derivative of the position error is:

6 (1)=r—f'(@)a= (Slngo F(a) OS‘”]
. (64)

We define the heading error of the traveling vehicle with respect to the desired trajectory as:

cos (p

e, (t)=sinp—f'(a)— (65)

where [r|>¢and ¢>0. This definition represents the heading error because if the vehicle is on

the desired path, the desired advancement direction is:

fo(a)= 3@ sinoy (66)
da COS @,

In other words, if e,=0 then ¢(t)=gu, the vehicle is in the desired direction. Deriving Eq.

(65) by time yields:

sin pgr + cos pf
r2

6, = cospp— f "(a)a@+ f'(a)
:—f”(a)@d+f’(a)c?’sw [f(a) +cos¢j¢)
- )cos ys e )coswsm(p (f’(a)Tw+COS¢j(w+¥COS(p) : (67)
r

. , .
:—f”(a)COS Pvif(a )—Cowf'”‘/’w(f'(a)s'“‘”fos‘/’+cos (pjv+(f'(a)—smq)+cosgoja)
r r r r r

2 H 2 H
= (—COS ? . of () c05¢723|n L f"(a) 0052 (pjv+[ f'(a) e +COS(pjw
r r r r

Similar to the design method presented in [55], by choosing the input of the angular velocity as:

r ., . C0s? cossin cos?
[() ~2f(a) f’ PEO, jv

f'(a)sing+rcose r ’ (68)

with the signal u(t) to be designed, the following second order chain model is achieved:

=g (69)

e(ﬂ:UV
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The proper choice of u(t) should compel the errors to converge to zero. Using a standard
full state feedback method (2.4.1):
u(t) =—ke, —k.e,, (70)

leads to the following closed loop system in a state space representation (2.4):

g = Agv

SRS
etp _kl _kz

The constants ki,k> should be chosen so that the matrix A is stable, under the assumption
that v>0. Choosing a larger ki will cause faster convergence of the location but slower
convergence of the heading angle, and vice versa. A stable matrix A and v>0 can be shown to
ensure stability of the closed loop by using the following Lyapunov function (2.5):

V=eg'Pe , P>0, (72)

which is a positive definite matrix. Its derivative is always negative:

V =g Pe+€&'Pé =ve'ATPg +&' PAgv

- i (73)
=g (ATP+PA)ev=-Qv<0

Alternatively, the system can also be expressed using the path variable 'p' instead of the

PR MR

By multiplying both sides of the equation by dt/dp, we obtain:

time 't

g'=(A-BK)e

00 1

and the state variable derivatives are by the path variable 'p'.

The standard full state feedback structure of the dynamic system in state space
representation allows for the use of standard methods to determine the control values [ki,k2],
such as pole placement or linear-quadratic regulator (LQR). It should be noted that performance
is obtained relative to the path variable 'p’ instead of the time 't".

After planning appropriate control variables k and k,, the angular velocity that should be

applied:
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r cos’ ¢ cosgsing  cos’ o
B t —2f’ - —ke —kye, |V. 76
@ f’(a)sin(o+ I’COS(/)[ (a) r? (a) r2 r 16 — K€, ( )

It could be seen that the input signal reaches singularity when:

f'(a)sinp+rcosp=0. (77)

To understand the physical meaning of this phrase, it could be written as follows:

. i . cos(¢, —
f'(a)SIn(0+rCOS(p=rsm—(prSIn(D—H'COS(p:rMZOJ (78)

cos @, cos @,
hence, this singularity accrues when the angle between the heading of the vehicle and the desired

path is +7/2. In this scenario, the direction of the required angular velocity is undefined since

the convergence towards the desired path can be reached by turning left or right equally.

7.2.1 Straight Line Path Following and Convergence

At this point, the assumption is that at each step, the vehicle is given a target point. If there
are no obstacles in the explored area, an optional solution is to advance in a straight line to the
target point; this section presents the implementation of the path following algorithm presented

above while the desired path is a straight line.

S~ =f)

Figure 7.10: Straight Line advancement strategy. P; is the stationary observing vehicle’s
position, Pq is the moving vehicle’s initial position and P, is the moving vehicle’s target point.

The measurements of the moving vehicle are obtained with respect to point Py, according

to polar coordinates; therefore, the desired path will be represented according to a polar frame
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which origin is at P, and the angle =0 represents the moving vehicle’s initial position, as

seen in Figure 7.10. The given data of the problem are r,r,,,, where r, describes the initial
position and r,,, describe the final desired position. The desired path is a straight line, but it
needs to be described in polar coordinates i.e. Iy = f ().

From the given data, the length of the desired path d can be calculated using the law of

cosines:

d= \/roz +12-2rr cosa, . (79)

The angle y (see Figure 7.10) can be calculated using the law of sines:

r . r,sin
- _d — y=arcsin 22N % (80)
siny sineg, d

The law of sines can be used again to calculate the desired path:

Iy T

B r,sin y
sing  sin(180—a—y)

- 1 =f(a)=—"—%~=rsinycsc(a+y)- (81)
sin(a+y)

In order to implement the previously presented controller, the first and second derivatives
of f(8) are needed:
f'(a) = —rysin ycsc(a+ y)cot(a+ y)

t"(a) =1,sin yesc(a+ y)(cot’ (a+ ) +csc? (a+z)) (82)

7.2.2 Simulation

Our control method was simulated using MATLAB Simulink program with a control rate
of 10* loops per meter, see Appendix [D]. The values of the variables used in the simulation are
presented in Table 7.8. If the maximum desired overshoot is 10% (2.6), then the damping

coefficient is:

g
M, =exp| - =01 - {~06. (83)
" ( 1-¢° ]
Demanding convergence after half of the path with a tolerance of 5%:
—In(0.05
&(5%)=¥=1d - a,n:E_ (84)
(o, 2 d

The characteristic equation (2.6) of the system (Eq. (75)) is:
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A(s) =5 +k,5+k,. (85)

By comparing to the standard characteristic equation (Eq. (10)), the control values should be:

100 12
= k=T (86)
The simulation results are presented in Figure 7.11. Figure 7.11 (left) shows that in the first

K,

case, the robot accurately followed the trajectory with a very small error which was 4 orders
smaller than the length of the trajectory. In the second case (Figure 7.11, right), where the robot
was initially positioned with an incorrect heading of nearly 90 degrees, the solution converged
to the desired trajectory (5% angular error), within half of the trajectory and the overshoot was

smaller than 10% as desired.

Table 7.8: Simulation Variables

Variables  (x.,yr) (Xo,Yo) (re,ce) v
Values (0,0) (-15,0) (21.2,45°) 1 [misec]

15 [ ‘ ' ] o150 [
i N
N RN
i N i \\
10 ¢ i N 1 10+ I N
— — I N
E i s £ i .
> i AN > ' A
5r¢ 1 \\ i 5t i \\
! N I N
| N | Y
1 ‘\ , \\
o [] | . By o= | H
-15 -10 -5 0 -15 -10 -5 0
4 X[m] X[m]
8 x10 . ‘ 0.5 .
——location error [m]
6 l‘ = = =angle error [rad] |1
S |
L |1

——location error [m]

I = = =angle error [rad]
-1 : :
15 0 5 10 15
Traveled Distance Traveled Distance

Figure 7.11: Simulation results. Top: the traveling robot's path (green solid line), while the
observing robot measures relative location and orientation (blue dashed line). Bottom:
corresponding location and angle errors relative to the desired path. Left: initial orientation of
0°, right: initial orientation of -90°+s.

-60 -



7.3 Path Planning and Following

This section presents the fusion and implementation of the two presented algorithms. In
Section 7.1, we found the optimal trajectory for each step in a constrained environment. The
outputs of the algorithm are a set of (x4,yd,6q) points representing the robot's optimal trajectory
and the required open-loop control inputs (vq,c0d). Given continues measurements of the distance
and bearing with respect to the stationary robot, the presented closed-loop controller (7.2) could
be used to follow the optimal path, giving the system the ability to self-adjust depending on the
outputs and measurements (rather than implementing the path planning algorithm directly as an
open-loop controller). It should be mentioned, that this implementation requires that the robots

stay in each other's range of 'sight' and any obstacle between them must be adequately low.

/
l
VS
v ? 2 Ta
30 g e
Y \ PS
dc (xs:ys)

N

Figure 7.12: Path following in polar coordinates. P, is the stationary observing vehicle’s

position, Pg is the moving vehicle’s initial position and P is the moving vehicle’s current position

In order to implement the closed-loop controller presented in Section 7.2, the desired path
must be represented as rq = f (¢ ), while the origin of the polar coordinate system is set to the

position of the stationary vehicle (xs,ys). Representing the optimal trajectory (Xq,yd) in polar
coordinates (rg,o.q):

Iy :\/(Xd_xs)2+(Yd_ys)2 , (87)

and the angle is derived from the law of cosines:
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2 2_ 42
a, :acos[uj . (88)
2r,r,

In Eq. (88), ro is the initial distance of the moving vehicle:

rO:\/(XO_Xs)2+(yO_ys)2 ; (89)

and dc is the current distance of the moving vehicle from its initial position:

dcz\/(xd—x0)2+(yd—yo)2. (90)
Notice that we use only the location (xd,ys) and not the orientation 6q obtained by the

optimal path algorithm.

In order to implement the closed-loop controller, the desired trajectory must be described

as a continues function rather than a set of points. We used a 4-th order polynomial curve fitting:

()= pa’+pa’+pa’ +pa+ps, (92)

making the first and second derivatives:
r,'(a)=4pa’+3p,a’+2p,a+p,, (92)
r,"(a)=12pa’ +6p,a +2p,. (93)

7.3.1 Simulation

We used the closed-loop polar coordinate controller on the optimal trajectories obtained
from the four single step scenarios presented in Section 7.1.4 (1). The linear velocity was set to
be the constant maximal velocity v=5 m/sec. We used the control values designed in Section
7.2.2 (Eq. (86)), which should result in maximum overshoot of 10% and convergence after half

of the path with a tolerance of 5%.

The following figures present the actual trajectory (solid green line) as well as the desired
optimal trajectory (black dotted line). Additionally, location and angle errors relative to the

desired path are presented, as well as control input values.
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a. Straight tunnel no obstacle

Y[m]

Figure 7.13: Simulation's (a) trajectory and constraints (left), location and angle errors

18

16

14

12

10

X[m]

Error

0.1
N
-0.05 j location error [m] ||
= = =angle error [rad]
-0.1
0 1 2 3
Traveled Distance
20
® 101
a ————————
£ of
©
=107}
c
S
O 20t w [deg/s] |
= = =v [m/s]
-30 ; : -
0 1 2 3

Traveled Distance

relative to the desired path (top right), and control input values (bottom right).

b. Straight tunnel with one ellipse obstacle

Y[m]

Figure 7.14: Simulation's (b) trajectory and constraints (left), location and angle errors
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relative to the desired path (top right), and control input values (bottom right).
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c. Corner no obstacles
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Figure 7.15: Simulation's (c) trajectory and constraints (left), location and angle errors
relative to the desired path (top right), and control input values (bottom right).

d. Corner and one ellipse obstacle

In the last case the optimal trajectory was not as well fitted by a 4-th order polynomial

function, thus a 6-th order polynomial was used and the derivatives were changed respectively.

I I ! A location error [m]
25 f 1 = = =angle error [rad]
20
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0 5 10 15 0 ! 2 3 4
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Figure 7.16: Simulation's (d) trajectory and constraints (left), location and angle errors
relative to the desired path (top right), and control input values (bottom right).
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As seen in Figure 7.13, Figure 7.14 and Figure 7.15, the robot successfully followed the
desired path with very low location and angle errors for simulations (a)-(c). The top right figures
show that the solution converged to the desired trajectory (5% error), with a settling distance
that is under half of the trajectory and the overshoot was smaller than 10% as desired. Simulation
(d) was also successful, though required very high angular velocity (Figure 7.16 bottom right),
since the closed-loop controller is designed for geometric following of a path and not a

trajectory, i.e. velocity constraints are not considered.

Comparing the required control signals in both methods, the closed-loop resulted in
smoother angular velocity as opposed to the open-loop (see Figure 7.3, Figure 7.4, Figure 7.5
and Figure 7.6 bottom right), which resulted in abruptly switching control signals between the
upper and lower bounds, resembling the 'bang-bang’ control method [57]. On the other hand, as
opposed to the closed-loop solution, in the path planning algorithm the control inputs are
constrained; Figure 7.16 bottom right shows that not constraining the angular velocity could
result in high and possibly not practicable values. It should be reminded, that the linear velocity
was set to a constant 5 m/sec and the angular velocity depends directly on the linear velocity
(Eq. (76)). Therefore, the problem of high angular velocity values could be addressed by

lowering the linear velocity appropriately once the angular velocity reaches its upper boundary.

This method has the clear advantage of a closed-loop controller as opposed to an open-loop
controller, giving the system the ability to overcome disturbances. Though it should be
reminded, that this method requires continues measuring throughout each step, or partial
measurement combined with estimation; for example, measuring the position of the moving
vehicle by the static vehicle and estimating its orientation, meaning only the static vehicle
performs measurements. Implementing the open loop algorithm on its own (Section 7.1),

requires that measurements will be obtained only at the end of each step.
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8 Conclusions

In this paper we presented a simple, low cost method for precise multi-robot self-
localization that relies on distance and bearing measurements. The system can be deployed in
indoor areas where GPS signals are unavailable, and visibility is relatively low. The key
advantage of this method is that it reduces the errors resulting from the inaccuracies of
evaluating the orientation of the robots. We developed an analytical solution for the position of
the robots and a numerical simulation to account for the statistical sensors' errors. We show that
the total relative error (cumulative error divided by travelled distance) is on the same order of
magnitude as the sensors' relative errors (error divided by distance), and that the angular error
has a larger impact on the location errors than the distance error, thus making it important to use

a relatively accurate bearing sensor.

Given that the sensor measurement contains statistical errors, we ran a Monte Carlo
Simulation (MCS) and determined the spatial distribution of the measured/estimated location of
the robot with the given sensors' random errors (10,000 simulations for each case). To reduce
the MCS computation time, we developed an approximated error evaluation method based on

first order linear approximation. This method was 200 times faster than the direct method.

We then used the MCS to compare between different paths and advancing methods. We
found that the chosen path governed the size of the location error, whereas the different
advancing methods had little influence on the total error. For a given equal number of steps and
total travelled distance, the smallest error is in the square path, followed by the 'S' shaped path
and the largest error is with the straight path. Overall, using our localization algorithm, it is best
to increase the size of the steps and decrease their number in order to reduce the bearing errors

and increase the accuracy of the localization.

Next we present a two-robot system used to further validate our algorithm by real-world
experiments. We performed experiments in four different paths, calculated the standard
deviation and mean error values and compared the results to the Monte Carlo simulation. The
results show that the method is very accurate with errors of about 1-3% of the total distance
traveled.

Finally, we developed a path planning algorithm and a closed-loop path following
controller, allowing the two robots to autonomously advance in an uncharted constrained area.
In the path planning algorithm cartesian coordinates are used due to simpler representation of

the path and obstacle constraints whereas in the path following algorithm polar coordinates are
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used due to the polar nature of the system's measurements. The path planning algorithm finds
the optimal (shortest) trajectory at each step while avoiding obstacles and remaining visible to
the stationary robot. Following the optimal path is obtained by using a closed-loop controller;
we found that our path following algorithm quickly converges to the desired path even when

the initial error is large.

Besides its advantages, the method presented in this research does require a line of sight
between the two cooperating robots and that one of the robots must remain fully static during
each step. Another limitation is that the method is currently limited to 2D localization. However,
we expect that it can be generalized to 3D problems by adding another relative bearing
measurement between the robots. Additionally, the presented algorithm can be further
developed to a multi-robot system (three or more robots), enabling to reduce the cumulative

error by a proper estimation algorithm.

As to the control algorithm, we believe the presented path planning algorithm can be further
developed to fit more complex constraints. For example, more complex shaped obstacles can
be approximated as a combination of the presented ellipse and rectangle obstacles, or curvy
tunnel boundaries could be defined by ellipse obstacles, similar to the shown case of a rectangle
obstacle used to define a straight corner. Additionally, the visibility by the static vehicle
constraint could be formulated so that obstacles are also taken into consideration, ensuring the

two robots always remain in each other's range of sight, even in the presents of high obstacles.
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10 Appendices

[A] ANALYTICAL STANDARD DEVIATION AND COMPARISON TO SIMULATION

In this appendix we develop an analytical approximation of the standard deviation of the
location error as a function of the standard deviations of the sensor accuracy. The approximated
location and orientation of the vehicles is cumulative, meaning that it is affected by all the

previous error measurements of the distance and bearing. The measurement error of the first
step (see Eq. (35)) is:

cose,, -—hLsing, O
E =|sine,; rcose,; 0 (A (94)
0 1 -1

At the second step it becomes:

0 —nsin(6+a,,) nsin(6+a,,)

E,=E +[0 rcos(6+a,,) —1,c05(6,+a,,)|A,

0 0 0
(95)
cos(6, +a,,) —hsin(6,+a,,) 0
+|sin(6,+a,,) ncos(f+a,,) O |A,
0 1 -1
And in the third step:
0 -nsin(6,+a,,) rsin(6,+a,)
E,=E,+|0 rcos(6,+a,,) —rcos(6, +0!35 A,
0 0
0 -rsin(6,+a,,) rsin(6,+a,
+/0 rcos(6,+a,,) —r,cos(6, +0535 } (96)
0 0

cos(6,+ay,) —rsin(6,+a,)
+| sin(6,+a;,) rcos(f,+a,;) O |A,
0 1 -1
Generalizing the total error at step n, the error E, in the directions X,y and the orientation
ais:
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EX
E,=|E,| =D.B A, (97)
E, |
where the sensor error A; at step i is:

A=[Ar Agy, Ag, ], (98)

and the matrix Bi_n is calculated using:

B ,-B+>C,, (99)
j=i+l
where:
cos(6,+a;) —hsin(f,+a,) 0
B =|sin(6,+a,) rcos(f,+a,) 0| (100)
0 1 -1
and:

0 —rsin(0,,+a;,) rsin(0,+a;,)
C,=|0 rcos(6,,+a;,) -rjcos(d,+a;,)|. (101)
0 0 0

Using Eqg. (97), and under the assumption of random uncorrelated sensor measurement

errors Aj (i.e. covariance of any two measurements is zero),

var (Ar,) ‘o’
var(A)=| var(Ag,,) [=| o2 |, (102)
var(Ag; ) o,

the variance of the total measurement error is:

var(E, ) = Zn:var(Bi_nAi ). (103)

The standard deviation in the x and y directions, respectively ox and oy are (Eq. (43)-(45)):

i=1

Oy :|:Zn:ri2 COSZ(QH T §+Zn:Q(J)(Zn:r' Sin(eil_'_aiﬁ)] oﬁ] ' (104)
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0.5

o, = {Zn“ r’ sin’ (HH +0{i’S)G§ +Zn:Q( j)(il’, COS(HH +ai’s)j o2l (105)

i=]

where:

1, j=1
Q(j):{a ;>1' (106)

And the standard deviation of the orientation ovis (EQ. (42)):
o,=~2n-o, . (107)

The validation of Eq. (104)-(106) is presented in Table 10.1 where a comparison is made
between the total standard deviation values o calculated using the MCS (10,000 simulations)
and the analytical expression. The results show that the largest relative difference between the

two methods is 0.79%.

Table 10.1: Total standard deviation values using 10,000 simulations, analytic calculation and
relative difference, 200 meters 'S' path.

Parallel Alternating Following
Sensor Relative Relative Relative
variables  Simulation  Analytic - Simulation  Analytic . Simulation  Analytic -
diff. diff. diff.
=10,
;’d_g $ | 1073m  1075m  023% | 1137m  113m  027% | 1198m  1204m  055%
o4=5%
04=0.1° 3.353m 3.372m 0.58% 3.887 m 3.857m 0.79% 4.023 m 4.010 m 0.32%
=20,
Oc_fd_g glo 4.465m 4468 m  0.080% 4.484 m 4.499 m 0.32% 4.864 m 4.843 m 0.45%
o4=5%
ol 9.173 m 9.148 m 0.27% 9.233m 9.276 m 0.46% 10.01 m 9.965 m 0.43%
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[B] MATLAB CODES FOR MONTE CARLO SIMULATION
MATLAB codes used to obtain the results presented in Section 5.

1. Main

function slam

% Calculates errors between desired location and real location (with Jacobi
errors) for N possible random errors

% Car2 takes first step and then alternate

% Carl initial position [0,0,0]

global N; % how many dots, number of errors for each step
N=10000;

global NUM OF DIFF3;

NUM OF DIFF3=1;

global NUM OF DIFF2;

NUM OF DIFF2=1;

global delta range delta angle

delta range = 0.02;

delta angle = 0.5*%pi/180;

global steps;

colormap bone

% 2 straight lines 10 steps 100m

Carl = [ 0 0 0; O 20 0, O 40 0; O 60 O0; O 80 0O; O 100 O1;
Car2 = [10 O 0; 10 10 O; 10 30 0; 10 50 O0; 10 70 0; 10 90 01,

map (Carl, Car2)
steps = path to steps(Carl,Car2);

n=size(steps,2); % number of steps
sum_1=1; S%Snumber of steps

sum 2=1;
orientation=0;
carll=zeros (3,N
car22=zeros (3,N
Ae = eye(3);
Ae=repmat (Ae,1,N); $ Rotation matrix for error calculation
AA=eye (3); % Rotation matrix for no error calculation

carl Jerrors=zeros(2,N); % matrix of X Y of cars with Jjacobian
car2 Jerrors=zeros(2,N);

errorBarl=zeros(1l,n);

sigma 1 his=zeros(1l,n);

sigma 2 his=zeros(1l,n);

sigma tot=zeros(1l,n);

angles=zeros(1l,n);

% the orientation angle
y; % matrix of X Y of cars with real errors
)

’

% N random errors for each step
Deltas cars = rand n;
[Jacob,xi,yi] = Jacob multipication(Deltas cars);

% calculating the variance directly from Jacobian
stds = var direct calc;

sigma x direct = stds(l,:);

sigma y direct = stds(2,:);

sigma t direct = stds(3,:);

F———m e — INITIALTZE-—-=—=—=—=——=——=———————————————————————
car = steps(1l,:);
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alpha s = steps(2,:)*pi/180;
R = steps(3,:);

alpha t = steps(4,:)*pi/180;
phi = alpha s+pi-alpha t;

prev_phi zeros (1,N);

figure

for i=1:n %for each step

F—— WITH ERRORS
r = Deltas cars(NUM OF DIFF3,:);
al = Deltas cars(NUM OF DIFF3+1,
az = Deltas cars(NUM OF DIFF3+2,
J 1;
if car(i)==

sum_l=sum 1+1;

for k=1:N

[carll(:,k),A] =
errorll (steps,Ae(:,J:3+2),al (k)

RAe(:,3:3+2) = A; % fo
J=3+3;

end

prev_phi = carll(3,:); %

else
sum_2=sum_ 2+1;
for k=1:N

[car22(:,k),A]
errorll (steps,Ae(:,J:]+2)

(REAL LOCATION)

)
1)

’

I

N radius errors for current step
% N angle errors for current step
% N angle errors for current step

,a2(k),r(k),i,prev_phi(k));
r next step

for next step

al(k),az2(k),r(k),i,prev _phi(k)):;

for next step

Ae(:,3:J+2) = A; % for next step
J=3+3;
end
prev_phi = car22(3,:); %
end
e —— ORIGIN (NO ERRORS)

% The current rotation matrix
A curent=[cos(phi(i))

sin (phi (1))

-sin (phi(i))
cos (phi (1))

R(i) *cos (alpha s(i));
R(i)*sin(alpha s(i));

0 0 1];
AA=AA*A curent;
orientation=orientation+phi (i) ;
if orientation >= 2*pi
orientation = orientation - 2*pi;
end
if car(i)==1

orientationl=orientation;

Carl(sum 1,1)=AA(1,3);

Carl (sum _1,2)=AA(2,3);

Carl(sum 1, 3)=orientationl;
else

orientation2=orientation;

Car2(sum 2,1)=AA(1,3);

Car2(sum _2,2)=AA(2,3);

Car2(sum 2, 3)=orientation2;
end

——————————————————————— JACOBRI

oo

o3
°

% [real location]
JacobiError
if car (i)

carl Jerrors(l,:) = xi (i)
carl Jerrors(2,:) = yi(i)

else

calculating real locations by equation:
[ [desired location]
Jacob (NUM _OF DIFF2:NUM OF DIFF2+1, :

+ Jacobikrror (1,
+ Jacobikrror (2,

+ [J]*[delta]

1)
1)
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car2 Jerrors(l,:) = xi(i) + JacobiError(l,:);

car2 Jerrors(2,:) = yi(i) + JacobiError(2,:);

end

e e E T e e DIFFERENCES—————————————— - —————

if car(i)==1
cc_J = [mean(carl Jerrors(l,:)), mean(carl Jerrors(2,:))];
cc_R = [mean(carll(l,:)), mean(carll(2,:))];

else
cc_J = [mean(car2 Jerrors(l,:)), mean(car2 Jerrors(2,:))];
cc_R = [mean(car22(1l,:)), mean(car22(2,:))];

end

[

% comparing locations of Jacobi calc and direct calc
if car(i)==

error x1 = mean (abs(carl Jerrors(l,:)-carll(l,:)));
error_yl = mean (abs(carl Jerrors(2,:)-carll(2,:)));
else
error x1 = mean (abs(car2 Jerrors(l,:)-car22(1l,:)));
error_yl = mean (abs(car2 Jerrors(2,:)-car22(2,:)));
end
errorBarl (i) = sqgrt(error xl”*2+error yl"2); % radius error

% calculating distance std (Jacobi)
if car(i)==

for j=1:N
% distance squared
disX(j) = (carl Jerrors(l,j)-cc_J(1))"2;
disY(j) = (carl Jerrors(2,j)-cc_J(2))"2;
end
else
for j=1:N
disX(j) = (car2 Jerrors(l,j)-cc_J(1))"2;
disY(j) = (car2 Jerrors(2,j)-cc_J(2))"2;
end
end
sigma x jacobi (i) = sqgrt(sum(disX(:))/(N-1));
sigma y jacobi (i) = sqgrt(sum(dis¥(:))/(N-1));
dis = disX + disY;
sigma d jacobi (i) = sqgrt(sum(dis(:))/(N-1)); % variance eq.
$ % Fm—mmmm e PLOT——====—— = —
% map of desired location of cars + histogram
if car(i)==
[X,Y,C] = histogram2(carl Jerrors(l,:),carl Jerrors(2,:));
if i==1 || i==2 || i==8 || i==14 || i==20 || i==25
image ('XData',X, 'YData',Y, 'CDhata',C, 'CDataMapping', 'scaled"');
hold on
end
else
[X,Y,C] = histogram2(car2 Jerrors(l,:),car2 Jerrors(2,:));
if i==1 || i==2 || i==8 || i==14 || i==20 || i==25
image ('XData',X, 'YData',Y, 'CDhata',C, 'ChataMapping', "scaled");
hold on
end
hold on
end
c = plot(cc J(1),cc_Jd(2),"'*m"); % plotting Jacobian centroid
d = plot(cc R(1l),cc R(2),'xr"); % plotting direct calc centroid

hold on
axis equal;

o\°
o\°

o

calculating std values and plot ellipse
if car(i)==
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[sigma_1 his(i),sigma_ 2 his (i), angle]
error_ellipse(carl Jerrors',i);
else
[sigma 1 his(i),sigma 2 his (i), angle]
error_ellipse(car2 Jerrors',i);

end
sigma tot (i) = sqgrt(sigma 1 his(i)"2 + sigma 2 his(i)"2);
angles (i) = angle*180/pi; % rad to deg

NUM OF DIFF3=NUM OF DIFF3+3;
NUM OF DIFF2=NUM OF DIFF2+2;
end

a=plot(Carl(:,1),Carl(:,2),"'s-b'"); % connecting the path
b=plot (Car2(:,1),Car2(:,2),"'s-g");

axis equal;

grid on;

xlabel ('x[m]");

ylabel ("y[m]");

legend([c d], 'Approx. centroid', 'Exact centroid');

hold off

figure

bar([sigma_tot', sigma 1 his', sigma 2 his']);
grid on

% title('From histogram');

xlabel ('Step Number');

ylabel ('Standard deviations [m]"'");

legend('\sigma {tot}','\sigma 1','\sigma 2');

2. Map of Robot Positions

function map (Carl,Car?2)
%$the function's input- mat for each car: x;y;teta(deg NOT rad)
%$the function's output- figure of mapping with orientations

lengtha=size (Carl, 1) ;
lengthb=size (Car2,1);
plot(Carl(:,1

L = 4;

W= 2;

for i=l:1lengtha %patch for the car and orientation
originl=[Carl(i,1l);Carl(i,2);0]; %the specific x,y of the car
coord=[Carl(i,1)-W Carl(i,1l)+W Carl(i,1)+W Carl(i,1)-W;
Carl(i,2)-L Carl(i,2)-L Carl(i,2)+L Carl(i,2)+L;
00001
%the coords of the polygon car
vectors=coord-[originl,originl,originl,originl];
svectors of the polygon, from origin to the coords
rotvectors=rotz (Carl (i, 3)) *vectors;
%$rotating the vectors according to the angle in deg
newcoord=rotvectors+[originl,originl,originl,originl];
%finding the new coords of the polygon after the rotation
axl=patch (newcoord(1l, :),newcoord(2,:), [51 202 255]/255);
hold on
end
for i=1l:lengthb
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origin2=[Car2(i,1

);Car2(i,2);0];

coord=[Car2(i,1)-W Car2(i,1)+W Car2(i,1)+W Car2(i,1)-w;
Car2(i,2)-L Car2(i,2)-L Car2(i,2)+L Car2(i,2)+L;

0 00O0];

vectors=coord-[origin2,origin2,origin2,origin2];

rotvectors=rotz (C

ar2 (i, 3)) *vectors;

newcoord=rotvectors+[origin2,origin2,origin2,origin2];
ax2=patch (newcoord (1, :),newcoord(2,:),[169 218 116]/255);

hold on
end

axis equal %otherwise
grid on
box on

the polygons are deformed

legend([axl,ax2], 'Vehicle 1", 'Vehicle 2', '"Location', 'northoutside');

xlabel ("X [m]");
ylabel ('Y [m]");
end

3. Path to Steps

function steps =
% take path of 2 cars
% [moving car index,
traveling car]

o)

% angles in deg

path to steps(Carl,Car2)
and create steps matrix:
distance,

[X,Y, theta]
angle from stationary car,

n = size(Carl,1l) + size(Car2,1) - 2; % number of steps
positions)
steps = zeros(4,n);
moving car = 2; % Car2 takes first step
suml = 1;
sum2 = 1;
for i = 1:n
if moving car ==
suml = suml + 1;
steps (1,1i) = 1;
x dis = Carl(suml,1l)-Car2(sum2,1);
y _dis = Carl(suml,2)-Car2(sum2,2) ;
angle = atan2(y dis,x dis)*180/pi;
have 0 orientation
steps(2,1) = angle - Car2(sum2,3); % angle
steps (4,1) = angle + 180 - Carl(suml,3);
steps(3,1) = sgrt(x _dis"2 + y dis”"2);
moving car = 2; % for next step
else
sum2 = sum2 + 1;
steps(1l,1i) = 2;
x dis = Car2(sum2,1l)-Carl(suml,1);
y dis = Car2(sum2,2)-Carl (suml, 2) ;
angle = atan2(y dis,x dis)*180/pi;
steps(2,1) = angle - Carl (suml,3);
steps(4,1) = angle + 180 - Car2(sum2,3);
steps (3,1) = sgrt(x dis”2 + y dis"2);
moving car = 1;
end
end
end
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4. Random Measurement Errors

function Deltas cars = rand n
% returns a matrix [3*n,N] of N random errors for each step with normal
distribution

[

% angles in rad

global delta range delta angle

global N steps

n=size(steps,2); % number of steps

R=steps(3,:); % vector of all radiuses for each step

Deltas cars=zeros(2*n,N);

j=1;

rng ('shuffle');%in order to initialize the generator and get different

random numbers

% randn returns random numbers normally with wvariance 1 and mean O

for i=1:n
Deltas cars(j,:) = delta range*R(i)*randn(l,N); % delta r
Deltas cars(j+l,:) = delta angle*randn(l,N); % delta alpha s
Deltas cars (j+2,:) delta angle*randn(l,N); % delta alpha t
J=3+3;

end

end

5. Location Errors via Jacobi Mathod

function [Jacobi,X,Y] = Jacob multipication(Deltas cars)
calculates the Jacobi matrix for current steps

+ multiplication of Jacobi matrix and errors

+ parametric location of car (X,Y)

Jacobi (2*n,N) contains multiplication of Jacobi and errors
each 2 lines for each step - (x,y) errors

o 0P o o°

oe

N = size(Deltas_cars,2);
global steps;

n = size(steps,2); % number of steps
Jacobi = zeros(2*n,N);

X = zeros(n,l); Y = zeros(n,1l);

x = 0; y = 0;

J old = 0;

3 =1; k=1;

theta prev = 0;

D ai = 0;

[

% desired positions data

alpha s = steps(2,:)*pi/180; % to rad
R = steps(3,:);

alpha t = steps(4,:)*pi/180;

phi = alpha s+pi-alpha t;

for i=1l:n

ri = R(i); % current radius
D ri = Deltas cars(k,:);
D ai = D ai + Deltas cars(k+l,:);

S = sin(theta prev+alpha s(i));

C = cos(theta prev+alpha s(i));
J times delta = [-ri*S*D ai + D ri*C;
ri*C*D _ai + D ri*s];
X(i) = x + ri*C; Y(i) =y + ri*S; % desired positions
X = X(1); % = Y (1); % for next step
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Jacobi (j:j+1,:)

% for next step

= J old + J times delta;

J old = Jacobi(j:j+1,:);
theta prev = theta prev + phi(i);
D ai = D ai - Deltas cars(k+2,:);
=j+2;
k=k+3;

end

end

6. Analytic Standard Deviation Calculation

function stds = var direct calc

% calculating the variance directly from Jacobian calc

global steps delta range delta angle
n = size(steps,2); % number of steps
alpha s = steps(2,:)*pi/180;

R = steps(3,:);

alpha t = steps(4,:)*pi/180;

phi = alpha s+pi-alpha t;

var r = delta range”2;

var _a = delta angle®2;

std x = zeros(1l,n);

std y =

o)

% first

zeros (l,n);
step

A = [cos(alpha s(1)) -R(1l)*sin(alpha s (1))
sin(alpha s(1)) R(1) *cos (alpha s(1))
0 1

= sqgrt(R(1)"2*A(1,1)"2*var r + (A(1,2)"
sqrt( (1)"2*A(2,1)"2*var_ r + (A(2,2)"
(3 3*n); % matrix of n A matrices

) = A; % allA = [A 0O 0]

phi(l); % for next step

0;
0;
-11;
std x(1
std y (1
allA =
allA(:
prev_phl

+ A(1,3)"2)*var_a);
+ A(2,3)"2)*var_a);

[\)[\)

2
2

)
)
ze
, 1

IIUJH

for i = 2:n
A = [cos(prev_phitalpha s(i)) -R(i)*sin(prev_phi+alpha s (i
sin(prev_phi+alpha s(i)) R(i)*cos(prev_phi+alpha s (i
0 1

0 -R R(1i)*

(i -R(i)*

) *sin (prev_phi+alpha s(i))

n(prev_phi+alpha s (i
i)) (1

(1
R (i) *cos (prev_phi+alpha s ( s (prev_phi+alpha s
0

inserting A and B matrices to general allA matrix

’

o\
Hhox P OO

[

i-1 % adding matrix B
k:k+2) = allA(:,k:k+2) +
3;

or 1:
11A(: B;
k

e
+\

end
allA(:,3*%1-2:3*1) =
calc ulatlng stds

A;

(R(3)*allAa(1l,k))"2;
allA(1,k+1)"2 + allA(l,k+2)"2;
(R(J)*allA(2,k))"2;
allA(2,k+1)"2 + allA(2,k+2)"2;

\
\
+ 4+ + +
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std y(i) = sgrt(A ry*var r + A ay*var a);
prev_phi = prev _phi + phi(i); % for next step
end
std d = sqrt(std x.72 + std y."2);
stds = [std x; std y; std dl;
end

7. Location via Exact Method

function [Car,A] = errorll(steps,Ae,al,a2,r,i,prev_phi)
% calcs location with errors by exact method

% f(R+delta R , tetat+delta teta)

Car=[0;0;0]; % X Y theta

alpha s = steps(2,1i)*pi/180 + al;
R = steps(3,1i) + r;

alpha t = steps(4,1i)*pi/180 + a2;
phi = alpha s+pi-alpha t;

% The current rotation matrix

A current = [cos(phi) -sin(phi) R*cos(alpha_s);
sin(phi) cos(phi) R*sin(alpha_s);
0 0 117

A = Ae*A current; % The overall rotation matrix

Car(l) = A(1,3);

Car(2) = A(2,3);

Car(3) = prev_phi + phi;
end

8. 2D Histogram

function [X,Y,C] = histogram?2 (x,y)

plot the distribution of random errors for each step;
locations of dots (x,V)

X,Y - axis, C - distribution matrix

o od° oe

oe

colormap bone

minx = min(x); maxx = max(x);
deltax (maxx-minx) / (length (x)-1);
ncellx = 2*ceil (length(x) " (1/3));
miny = min(y); maxy = max(y);
deltay = (maxy-miny)/ (length(y)-1);
ncelly = ncellx;

lowerx = minx - deltax/2;
upperx = maxx + deltax/2;
lowery = miny - deltay/2;
uppery = maxy + deltay/2;

result(l:ncellx,l:ncelly)=0;

upperx-lowerx) *ncellx + 1/2 );
uppery-lowery) *ncelly + 1/2 );

xx=round ( (x-lowerx

)/ (
yy=round ( (y-lowery) / (

for n=1:length (xx)
indexx=xx (n) ;
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indexy=yy (n);
if indexx >= 1 && indexx <= ncellx && indexy >= 1 && indexy <= ncelly
result (indexx, indexy)=result (indexx, indexy) +1;
end
end

L max (max (result));

C = (L - result)./L; % reverse the matrix and normalize to fit colormap
(values between 0&1

X °

Y

)
= [minx maxx]; % x axis
= [miny maxy]; % y axis

9. Error Ellipse

function [sigma x,sigma_y,angle] = error ellipse(data,i)

data = JacobiError matrix [J]*[delta], size: [N, 2]

plots the ellipse's main axes and returns stds and rotation angle
Copyright Vincent Spruyt
http://www.visiondummy.com/2014/04/draw-error-ellipse-representing-
covariance-matrix/

o 0o oe

oe

% Calculate the eigenvectors and eigenvalues
covariance = cov(data);
[eigenvec, eigenval ] = eig(covariance);
% Get the index of the largest eigenvector
[largest eigenvec ind ¢, ~] = find(eigenval == max (max(eigenval))):;
largest eigenvec = eigenvec(:, largest eigenvec ind c);
% Get the largest eigenvalue
largest eigenval = max(max(eigenval)) ;
% Get the smallest eigenvector and eigenvalue
if (largest eigenvec ind c == 1)
smallest eigenval = max(eigenval(:,2));

smallest eigenvec = eigenvec(:,2);

else
smallest eigenval = max(eigenval(:,1));
smallest eigenvec = eigenvec(l,:);

end
% Calculate the angle between the x-axis and the largest eigenvector
angle = atan2(largest eigenvec(2), largest eigenvec(l));

% This angle is between -pi and pi.
Let's shift it such that the angle is between 0 and 2pi
if (angle < 0)
angle = angle + 2*pi;
end

o)

% To keep angles between -pi/2 and pi/2

o)

if angle > pi/2 && angle < pi % second Quadrant

o\°

angle = angle - pi;

end

if angle > pi && angle < 3*pi/2 % third Quadrant
angle = angle - pi;

end

if angle > 3*pi/2 && angle < 2*pi % forth Quadrant
angle = angle - 2*pi;
end

o)

% Get the coordinates of the data mean
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avg = mean (data);
X0=avg(l) ;
YO0=avg(2) ;

%% drawing error ellipses

if 1 == || 1 == || 1 == || 1 == 14 || 1 == 20 || 1 == 25
% Get the 68%~sigma% confidence interval error ellipse
chisquare val = 2.408; % for 70%

theta grid = linspace(0,2*pi);

a=sqgrt (chisquare val*largest eigenval);
b=sqgrt (chisquare val*smallest eigenval);
% the ellipse in x and y coordinates

ellipse x r = a*cos( theta grid );

ellipse y r = b*sin( theta grid );

% Define a rotation matrix

R = [ cos(angle) sin(angle); -sin(angle) cos(angle) 1;
%let's rotate the ellipse to some angle phi

r ellipse = [ellipse x r;ellipse y r]' * R;

o)

% plotting confidence ellipses

plot(r ellipse(:,1) + X0,r ellipse(:,2) + YO0, 'Color',[0 0.4
1], 'LineWidth',3) % blue

hold on;

%% Plot the eigenvectors

quiver (X0, YO, largest eigenvec(l) *sqgrt(chisquare val*
largest eigenval), largest eigenvec(2) *sqgrt (chisquare val*
largest eigenval), '-m', 'LineWidth',3);

quiver (X0, YO,
smallest eigenvec (1) *sqgrt (chisquare val*smallest eigenval),
smallest eigenvec (2) *sgrt (chisquare val*smallest eigenval),
'LineWidth', 3);

-m',

% Get the 95%~2*sigma% confidence interval error ellipse
chisquare val = 5.991;
theta grid = linspace(0,2*pi);
a=sgrt (chisquare val*largest eigenval);
b=sqgrt (chisquare val*smallest eigenval);
% the ellipse in x and y coordinates
ellipse x r = a*cos( theta grid );
ellipse y r = b*sin( theta grid );
Define a rotation matrix
= [ cos(angle) sin(angle); -sin(angle) cos(angle) 1;
let's rotate the ellipse to some angle phi
r ellipse = [ellipse x r;ellipse y r]' * R;
% plotting confidence ellipses
plot(r ellipse(:,1) + X0,r ellipse(:,2) + YO,'--",'"Color',[0.4 0
0.8], 'LineWidth',3) % purple
end
sigma x = sqrt(largest eigenval);
sigma y = sqrt(smallest eigenval);
end

o° vt oo
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[C] MATLAB CODES FOR EXPERIMENT RESULTS ANALYSIS

MATLAB codes used to obtain the results presented in Section 0. All presented codes refer

to the straight parallel path, similar codes were used for the other three paths.

1. Create Excel File

% create excel file

path = 'straight parallel';

exp = ' expb';

title = {'x center','y center', 'ML'};
sheet = 1;

car = 'L';

fileName = strcat (path,exp,car,'.xlsx");

xlswrite (fileName, title, sheet, 'A1l");
for i = 0:10

img = strcat(car,num2str(i),'.Jjpg');
toExcel (fileName, img, 1)

end

car = 'R';

fileName = strcat (path,exp,car,'.xlsx");

xlswrite (fileName, title, sheet, 'A1l");

for 1 = 0:10
img = strcat (car,num2str(i),'.jpg'");
toExcel (fileName, img, i)

end

2. Write Image Data to Excel

function toExcel (fileName, img, i)
% write to excel coordinates of center of ball (in pixels) X
% and length of height (in pixels) ML

X = findCenter (img,i); % [x,v] 2 values
ML = findDis(img); % 1 value

line = num2str (i+2);

range = strcat('A',line);

sheet = 1;

x1lswrite (fileName, [X ML], sheet, range);

end

3. Find Center

function X = findCenter (img, i)
% find x center of tennis ball in image I
NL = number of pixels of diameter

oe

RGB = imread(img) ;
huelow = 45; % hue value of ball color

huehigh = 100;
satlow = 25;
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sathigh = 200;

if mod(i,2) == 0 % even
radiusRange = [75 100];

else % uneven
radiusRange = [15 25];

end

%% filter

o

filter by hue (color of ball)

= rgb2hsv (RGB); % hsv

% Create mask based on hue value

BW = ((I(:,:,1) >= huelow/256 & I(:,:,1) <= huehigh/256) &
(I(:,:,2) >= satlow/256 & I(:,:,2) <= sathigh/256));

% Initialize output masked image based on input image

maskedRGBImage = RGB;

% Set background pixels where BW is false to zero

maskedRGBImage (repmat (~BW, [1 1 3])) = 0;

—

$% find center

sens = 0.9;

radii = [];

while isempty(radii) % no center found
[centers, radii] =

imfindcircles (maskedRGBImage, radiusRange, 'Sensitivity', sens);
sens = sens + 0.01;

end

figure; imshow (maskedRGBImage); title(img); hold on

scatter (centers(1l,1),centers(1,2),"'*r")

X = centers(1l,:);

end

4. Plot Results and Calculate Standard Deviation and Mean Error VValues

o)

% 5 experiments

clear

CarR = zeros(6,3,5);

CarlL = zeros(6,3,5);

CarRreal = [0 0O O; O 1.5 0; 0 3 0; 0 4.5 0; 06 0; 0 7.507;

CarLreal = [-1.5 0 0; -1.5 1.5 0; -1.5 3 0; -1.54.50; -1.5 6 0; -1.5 7.5
017

title = {'7.5 m Straight Path', 'Parallel Advancment'};
map (CarLreal,CarRreal,title); hold on; axis equal;

for 1 = 1:5

[CarR(:, :,1i),CarL(:,:,1)] = singleExp(i+l); % 2 to 6
scatter (CarL(:,1,1),CarL(:,2,1),50, [51 202 255]1/255,"'s"','filled"); %

blue
plot(CarL(:,1,1i),CarL(:,2,1), 'Color',[51 202 255]/255);
scatter (CarR(:,1,1i),CarR(:,2,1),50,[169 218 116]/255,'s","filled"); *
green
plot (CarR(:,1,1),CarR(:,2,1), 'Color',[169 218 116]/255);
drawnow

o\

%% calc errors
% mean error, mean of both cars last step
disX R = mean (CarR(end, 1, :)-CarRreal (end, 1))
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disY R = mean (CarR(end, 2, :)-CarRreal (end, 2));
disR = sqgrt(disX R"2 + disY R"2);
disX L = mean(CarL(end, 1, :)-CarLreal (end, 1))
disY L = mean(CarL(end, 2, :)-CarLreal (end, 2));
disL = sqgrt(disX L"2 + disY L"2);

disX = (disX R + disX L)/2;
disY = (disY R + disY L)/2;
dis = (disR + disl)/2;

% std, mean of both cars last step

sigmaX R = std(CarR(end,1,:));
sigmaY R = std(CarR(end,2,:));
sigmaX L = std(CarL(end,1,:));
sigmaY L = std(CarL(end,2,:));
sigmaX =

sqgrt ((sigmaX R"2 + sigmaX L"2)/2);

sigma¥Y = sqgrt((sigma¥ R"2 + sigma¥Y L"2)/2);
sigmaD = sqrt(sigma¥”"2 + sigma¥"2);

% orientation error and std

% angles [-180 180] so around 0 will be +-
CarR(:,3,:) = wrapTol80(CarR(:,3,:));
CarL(:,3,:) = wrapTol80(CarL(:,3,:));

orienR =

mean (CarR (end, 3, :) -CarRreal (end, 3)) ;

orienlL = mean (CarL(end, 3, :)-CarLreal (end, 3));
orien error = (orienR + orienl)/2;

sigma theta R =
sigma theta L

std(CarR(end, 3, :));
std(CarL(end, 3, :));

small numbers

sigma theta = sqrt((sigma theta R"2 + sigma_ theta L"2)/2);

o)

% to excel

fileName = 'straight parallel errors';
sheet = 1;
title = {'sigma d', 'sigma x', 'sigma y',...

'mean error', 'mean error x', 'mean error y',...
'sigma theta', 'mean error theta'};

xlswrite (fileName, title,
x1lswrite (fileName, sigmaD,
x1lswrite (fileName, sigmaX,
x1lswrite (fileName, sigmay,
xlswrite (fileName, dis,
xlswrite (fileName, disX,
xlswrite (fileName, disY,
xlswrite (fileName, sigma theta,
xlswrite(fileName, orien error,

%% simulation
delta range = 0.01;
delta angle = 0.3*pi/180;

sheet,
sheet,
sheet,
sheet,
sheet,
sheet,
sheet,
sheet,
sheet,

'Al'

steps = path to steps(CarRreal,Carlreal); % carl = CarR, car?2 = CarlL
Deltas cars = rand n(steps,delta range,delta angle);
[stds,mean error] = jacobi method(steps,Deltas cars,delta angle);
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5. Single Experiment

function [CarR,CarlL] = singleExp (num)

CarR = [0 0 0];
path 'straight parallel exp';

fileName = strcat (path,num2str (num), 'R.xlsx");
[rR,alphaR] = ImagePros(fileName) ;
fileName = strcat (path,num2str (num), 'L.xlsx");
[rL,alphal] = ImagePros(fileName) ;

r = (rL + rR)/2;

Thetal. = findTheta ('L',0);

ThetaR = findTheta('R',0); % [deqg]
-~ ThetaR + alphaR(1

alpha t = Thetal + alphal(1l

x = r(l)*cos(alpha s*pi/180

y = r(l)*sin(alpha s*pi/180);

o°

Q.

()
Q

)

'_l
o}

=
)
[0)
Il

)7
)
).
)

I

theta alpha s + 180 - alpha t;
Carl = [x y thetal;

moving = 'L'; % first car to move
A last = eye(3);

theta = 0;

sumL = 1; sumR = 1;

for 1 = 1:10
Thetal. = findTheta('L',1); % [deqg]
ThetaR = findTheta('R',1i); % [deqg]
if moving == 'L’
alpha s ThetaR + alphaR(i+1);
alpha t = Thetal + alphaL(i+1);
else
alpha s = Thetal + alphaL(i+1);
alpha t ThetaR + alphaR(i+1);
end
phi = (alpha s + 180 - alpha t);
A new = [cos(phi*pi/180) -sin(phi*pi/180) r(i+l)*cos(alpha s*pi/180);
sin(phi*pi/180) cos(phi*pi/180) r(i+l)*sin(alpha s*pi/180);
0 0 1 1
A = A last*A new;
x = A(1,3); vy = A(2,3); theta = wrapTo360 (theta + phi);

—

if moving == 'L’
sumL = sumL + 1;
CarL(sumL,:) = [x vy thetal;
moving = 'R'; % for next step
else
sumR = sumR + 1;
CarR(sumR, :) = [x y thetal;
moving = 'L'; % for next step
end
A last = A; % for next step

end
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6. Calculate Distance and Bearing from Image

function [r,alpha] = ImagePros (fileName)
% calc distance and orientation from other robot for each step

global N M FoV_x FoV_ y

FoV_x = 40*pi/180; % camera's field of view in x direction[rad]
FoV_y = 70*pi/180; % camera's field of view in y direction[rad]

L = 21/100; % length from turret (top surface) to top of ball [m]

N = 1080; % number of pixels in horizontal direction
M = 1920; % number of pixels in vertical direction

Q

xCenter = xlsread(fileName, 'A:A'"); % x center of ball
X = N/2 - xCenter;

alpha = atan(x./(N/2)*tan(FoV_x/2))*180/pi; % [deg] without correction of

theta
ML = xlsread(fileName, 'C:C");
alphal. = (ML/M)*FoV_y; % [rad]

r = L./tan(alphal);

end
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[D] SIMULINK MODEL PATH FOLLOWING ALGORITHM

Simulink model and MATLAB codes used to obtain the results presented in Section 7.2.

= B .
4..

. =
alfa * y .
' =

Controller Vehicle 1
. ‘ r theta
alfa y y
measurements Stop Conditions

Figure 10.1: Block diagram of model.

D > 1
Vv % gy (1O
» COS - X
. (B R -
» sin > S
Yy
1
& gy »(3)
W theta

Figure 10.2: Vehicle 1 block diagram, describing the vehicle’s kinematics in Cartesian
coordinates.
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D= Va
r . _L

D

theta
®D pir2
phi

atan2

@
alfa atan2

-

Figure 10.3: Measurements block diagram, describing the vehicle’s location in polar
coordinates, with respect to the stationary vehicle.

(_%_) j > |ul > <
(ﬁ\l/__) >@ > |ul > <
y_e J 0.01 4,—>

AND

Figure 10.4: Stop Condition block diagram.
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el

(2 ) »alfa

_ e2——»(4 )
C1 ) » phi e

phi
Figure 10.5: Controller block diagram, calculates the required angular velocity for path
following.
1. Controller Function
function [w,el,e2] = fcn(v,r,alfa,phi, x 0, v 0, x r, vy r, x e, y_ e)
r 0 = sgrt((x 0-x r)"2+(y O-y r)"2);
r e = sqrt((x _e-x r)"2+(y e-y r)"2);
L = sqgrt((x 0-x e)"2+(y O-y e)"2);
alfa e = acos((r 072+r e”2-L" 2)/(2*r 0*r e));
chi = asin(r e* 31n(alfa_e )y /L)

r d =r 0*sin(chi)/sin(alfa+chi);
dr d = -r O*sin(chi) *csc(alfa+chi) *cot (alfa+chi);
ddr d = r O*sin(chi)*csc(alfa+chi) * (cot (alfa+chi) *2+csc(alfa+chi)"2);

el = r - r d;
e2 sin(phi) - (dr d*cos (phi)/r);

% pole placement
k1l = 100/ (L"2)

k2 = 12/L;
u = —-kl*el -k2*e2;
w = (r/(dr d*sin(phi)+r*cos(phi)))*...

((ddr_d*cos (phi)"2/r"2) - (2*dr_d*cos (phi) *sin(phi) /r"2) -
(cos (phi) ~2/r) +u) *v;

end
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2. Path Following

function
path following no video(x,y,theta,x 0,y O,theta 0,x r,y r,r e,alfa e,el,e2)

e of wvehicle

Z
0.8;
0.4;

I

figure;

[

% plot stationary car
theta r = 90; % deg

origin = [x r;y r;0];
coord = [x r-L x r+L x r+L x r-L;

y r-Wy r-Wy r+W y r+W;

0 0001
vectors = coord - [origin,origin,origin,origin];
rotvectors = rotz(theta r)*vectors;
newcoord = rotvectors + [origin,origin,origin,origin];
patch (newcoord (1, :),newcoord(2,:), [51 202 255]/255);
hold on

% plot actual locations

XX = x.signals.values;

yy = y.signals.values;

plot (xx,vyy, 'Color',[169 218 116]/255, 'LineWidth',3);

% plot desired path
alfa e = alfa e*pi/180;
alfa 0 = atan2((y 0O-y r), (x 0-x r)) + 2*pi;
if alfa 0 < O
alfa 0 = alfa 0 + 2*pi;
end

theta e = alfa 0 - alfa e;
X € = X r + r e*cos(theta e);

y € =y r + r e*sin(theta e);

line([x 0 x e], [y O y e],'color','k', 'LineStyle', '-.", "LineWidth',1);
scatter(x e,y e, 'r','filled"); % target point

grid on

xlabel ("X[m]"'); ylabel('Y[m]");

% plot end position (from function 'map')
theta e real theta.signals.values (end) ;

X e real = xx(end);

y_ e real = yy(end);

origin = [x e real;y e real;0];

coord = [x e real-L x e real+lL x e real+lL x e real-L;
y e real-W y e real-W y e real+W y e real+W;
000 O01;

vectors = coord - [origin,origin,origin,origin];

rotvectors = rotz(theta e real) *vectors;

newcoord = rotvectors + [origin,origin,origin,origin];

patch (newcoord (1, :),newcoord(2,:),[169 218 116]/255);

[

% plot initial position

origin = [x O0;y 0;0];
coord = [x 0-L x 0+L x O0+L x O-L;
y 0-W y 0-W y O+W y O+W;
000 O0];
vectors = coord - [origin,origin,origin,origin];
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rotvectors = rotz(theta 0)*vectors;
newcoord = rotvectors + [origin,origin,origin,origin];
patch (newcoord (1, :),newcoord(2,:), [169 218 116]/255);

% plot observation
line([x r x e real], [y r y e real],'color','b', 'LineStyle', '--
', 'LineWidth', 2);

hold on

axis equal;

box on

figure;

El = el.signals.values(:);

E2 = e2.signals.values(:);

s = el.time;

a = plot(s,El,'-",s8,E2,"'-=-");

a(l).Color = [204 4 109]1/255; a(l).LineWidth = 2;
a(2).Color = [102 0 204]1/255; a(2).LineWidth = 2;
legend('location error [m]', 'angle error [rad]');

xlabel ('Traveled Distance');
ylabel ('"Error'");
grid on;

end
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[E] MATLAB CODES FOR PATH PLANNING SIMULATION

1. Main Function for Multi-Step Simulation

$ main

% straight tunnel with 5 obstacles

global eps rmax xmin xmax ymin ymax

eps = 1;

rmax = 5; % max distance between cars

[xlimit,ylimit] = create map;

% initial positions

x 0 =0; y 0 =0; theta 0 = 0;

X s =5 y s =0;

Carl = [x s y s theta 0]; mapSingle(Carl, [ 51 202 2551/255); % blue
Car2 = [x 0 y 0 theta 0]; mapSingle(Car2, [169 218 116]1/255); % green
F(l) = getframe(gcf); % for video

o)

% new obstacle

obstacles = singleObs(x s,y s,x 0,y 0);

F(2) =

o\°

R X o
Il

(3)

getframe (gcf) ;

plot r constraints
= 0:0.01:2*pi;

= X s + rmax*cos(t);
y_s + rmax*sin(t);
= plo

t(x,y,"'--k'); hold on
getframe (gcf) ;

choose final position
f,y f] = finalPos(xlimit,obstacles,x s,y s);

Q

car =
color
suml =
f = 4;

for 1

2

[x_
plot(x f,y f,'rx','MarkerSize',8, 'LineWidth',2);
F(4)

getframe (gcf) ;

% initialization

; % moving car
[169 218 116]/255; % green
1; sum2 = 1;

1:6 % 6 steps

%% optimize trajectory
Car =
optimize(x s,y s,x 0,y 0O,theta 0,x f,y f,obstacles,xlimit,ylimit);

%% plot path
= size(Car,1);

5o 5

0; % stop condition
1; $ 1 ton

= 1; % frames count

animatedline('Color',color, 'Linewidth',2);

axis([xmin xmax ymin ymax])
while a~=1

o\

if 3 == n go through all points
a =1; % stop

end

addpoints (h,Car(j,1),Car(3,2));
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drawnow limitrate
F(f+k) = getframe (gcf):;
k =k
J =3
end
delete(r); % delete r constraint
Car = Car(end,:); % only last position
(

I

+ 1
+ 5; % draw only every 5 points

Q

mapSingle (Car,color); % plot square

%% update locations

rng ('shuffle'); % in order to initialize the generator and get
different random numbers

if car == 1 && 1 ~= 6
suml = suml + 1;
Carl (suml, :) = Car;
% for next step
car = 2; color = [169 218 116]/255; % green
X s = Carl(suml,1l); y s = Carl(suml,2);
x 0 = Car2(sum2,1); y 0 = Car2(sum2,2); theta 0 = Car2(sumz, 3);
% current and new obstacle
obstacles = [obstacles(end,:); singleObs(x s,y s,x 0,y 0)];
F(f+k) = getframe(gcf);

o)

% plot r constraints
= 0:0.01:2*pi;
= X s + rmax*cos(t);
y_s + rmax*sin(t);
= plot(x,vy,'--k"); hold on
(f+k+1) = getframe(gct);
choose final position
x f,y f] = finalPos(xlimit,ylimit,obstacles,x s,y s);
X = plot(x f,y f,'rx'",'MarkerSize',8, 'LineWidth',2); hold on
F(f+k+2) = getframe(gct);
elseif car == 2 && i ~= 6
sum2 = sum2 + 1;
Car2 (sum2, :) = Car;
% for next step
car = 1; color = [51 202 255]/255; % blue
s = Car2(sum2,1); y s = Car2(sum2,2);
0 = Carl(suml,1l); y 0 = Carl(suml,2); theta 0 = Carl(suml, 3);
% current and new obstacle
obstacles = [obstacles(end,:); singleObs(x s,y s,x 0,y 0)];
F(f+k) = getframe(gcf);
% plot r constraints

t
x
Yy
r
F
[

XX

o

t = 0:0.01:2%pi;
X = X_s + rmax*cos(t);
y = y_s + rmax*sin(t);
r = plot(x,y,"'--k"); hold on
F(f+k+1l) = getframe(gctt);
% choose final position
[x f,y f] = finalPos(xlimit,ylimit,obstacles,x s,y s);
X = plot(x f,y f,'rx"','MarkerSize',8, 'LineWidth',2); hold on
F(f+k+2) = getframe(gct);
end
f = length(F);

end

delete(r); delete (X);

video = VideoWriter ('Control under Constraints.avi', 'Uncompressed AVI');
open (video)

writeVideo (video, F)
close (video)
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2. Create Map

function [xlimit,ylimit] = create map
% tunnel limits: xlimit = [xlb, xub], ylimit = [ylb,yub]

%% straight tunnel with obstacles
global xmin xmax ymin ymax

n = 1000;

xmin = -2; xmax = 7;
xlimit = [xmin, xmax];
ymin = -2; ymax = 30;
ylimit = [ymin, ymax];

figure (1) ;

plot (xmin*ones(l,n),linspace (ymin, ymax,n), '-k', "lineWidth',4);
hold on; axis equal; ylim([ymin,ymax]);

plot (xmax*ones (l,n),linspace(ymin,ymax,n),'-k',"linewidth',4);

end

3. Plot Car

function p = mapSingle(Car,color)
%$the function's input- vector for each car: x;y;teta(deg NOT rad)
%$the function's output- figure of mapping with orientations

global xmin xmax ymin ymax

8;
4.

’

L =0.
W = 0.
);0]; %Sthe specific x,y of the car
1)+W Car (1)+W Car(l)-W;
2

origin=[Car(1l);Car (2
(
(2)-L Car (2)+L Car(2)+L;

(1
coord=[Car(l)-W Car
Car (2)-L Car
000 O0];
%the coords of the polygon car
vectors=coord-[origin,origin,origin,origin];
svectors of the polygon, from origin to the coords
rotvectors=rotz (-Car (3) *180/pi) *vectors;
$rotating the vectors according to the angle in deg
newcoord=rotvectors+[origin,origin,origin,origin];
%$finding the new coords of the polygon after the rotation
p = patch(newcoord(l, :),newcoord(2,:),color);
axis equal % otherwise the polygons are deformed
axis([xmin xmax ymin ymax])
grid on
hold on

end
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4. Single Obstacle

function obstacle = singleObs(x s,y s,x 0,y 0)
% obstacle: [Cx,Cy,a,b,phi]
% within current step size (rmax from stationary car)

global xmin xmax rmax
o)

rng ('shuffle'); % in order to initialize the generator and get different
random numbers

minRadi = 0.5; maxRadi = 2;
c = 0; % for stop condition
tol = 5;
while c~=1 % continue until obstacle is not to close to both cars
a = minRadi + (maxRadi-minRadi) *rand;
b = minRadi + (maxRadi-minRadi) *rand;
Cx = xmin + (xmax-xmin) *rand;
Cy = y s + rmax*rand;

phi = 2*pi*rand;
theta = 0:0.01:2*pi;
obstacle = [Cx, Cy, a, b, phil;
% check if obstacle is too close to cars

if isClose20bs(x 0,y 0,obstacle,tol) == |
isClose20bs(x_s,y s,obstacle,tol) ==

c = 1; % stop, good obstacle

end
end
% plot obstacle
xellipse = Cx + a*cos(theta+phi);
yellipse = Cy + b*sin(theta);
patch(xellipse,yellipse, 'k');
hold on

end

5. Is Close to Obstacle

function ¢ = isClose20bs (x,y,obstacles, tol)
% check of point is at least eps away from all obstacles

% too close --> ¢ = 1, not close —--> ¢ = 0
% obstacles: [Cx,Cy,a,b,phi] each 5x1 vector for 5 obstacles
numObs = size (obstacles,1);
c = 0; % point is not near obstacle
for i = 1:numObs
Cx = obstacles(i,1l); Cy = obstacles(i,2);
a = obstacles(i,3); b = obstacles(i,4):;
phi = obstacles(i,5);
X = (x-Cx)*cos (phi) + (y-Cy)*sin (phi);
Y = (x-Cx)*sin(phi) - (y-Cy) *cos (phi);
% check if point is inside obstacle ellipse (+tol)
if (X*2)/((a+ttol)”2) + (¥Y*2)/ ((b+tol)"2) <=1
c = 1; % inside
end
end
end
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6. Final Position

function [x f,y f] = finalPos(xlimit,obstacles,x s,y s)
% choose final position for current phase by the following algorithm: y e =
ymax while r<=rmax and not colliding with obstacles

global eps rmax

t = 0:0.01:2%p1i;
% all positions that are rmax from stationary car
Xrmax = X_s + rmax*cos(t);
yrmax = y s + rmax*sin(t);
% delete positions that are outside of tunnel boundaries or in obstacles
(and don't come closer than eps)
s = length(t);
i=1;
tol = 2;
while s ~= 0
% outside of tunnel boundaries

if xrmax (i) < xlimit(l)+eps || xrmax (i) > xlimit (2)-eps
xrmax (i) = [];
yrmax (1) = [];
% check 1if point is at least tol away from all obstacles
elseif isClose20bs (xrmax (i),yrmax(i),obstacles,tol) == % too close
xrmax (i) = [];
yrmax (i) = [];
else
i=1i+1; % if point not erased, continue to next
end
s =s - 1; % for stop condition
end
y f,ind] = max(yrmax) ;

[y_
x f = xrmax(ind);

end

7. Optimize

function Car =
optimize(x s,y s,x 0,y 0O,theta 0,x f,y f,obstacles,xlimit,ylimit)
straight tunnel with 5 ellipse obstacle

o\°

% (x s,y s) - stationary car position

% (x 0,y 0,theta 0) - initial position moving car
% (x f,y f) - final desired position moving car
global eps

Vmax = 5;
Wmax = pi/8;

%% Define States Controls and Parameter
States = [...
falcon.State('x',x1limit (1) +eps, xlimit (2)-eps, 1/abs(xlimit(2)-
x1limit(1))) ;...
falcon.State('y', ylimit(l), ylimit(2), 1/abs(ylimit(2)-ylimit(1l)));...
falcon.State ('theta',-pi/2-Wmax,pi/2+Wmax,1)]; % go only forwards
Controls = [...
falcon.Control ('V', 0, Vmax, 1);
falcon.Control ('W', -Wmax, Wmax, 1)];
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tf = falcon.Parameter('FinalTime', 20, 0, 100, 0.1);

%% Define Optimal Control Problem

problem = falcon.Problem('Car');

% Specify Discretization

tau = linspace(0,1,1001);

% Path Constraint

pathconstraints = [...
falcon.Constraint('r 1b', -inf, 0);...

falcon.Constraint ('r ub', -inf, 0)];

numObs = size (obstacles,1);
for 1 = 1:numObs
name = strcat('obstacle',num2str(i));
pathconstraints = [pathconstraints; falcon.Constraint (name,-inf, 0)];
end

[

% Path constraint builder

path =
falcon.PathConstraintBuilder ('CarPCon', [],States, [], [],@source path);
path.addConstantInput ('x s', [1,11);

path.addConstantInput('y s', [1,11);

path.addConstantInput ('obstacles', [numObs,5]);

path.Build();

%% Add a new Phase
phase = problem.addNewPhase (@source car, States, tau, 0, tf);
phase.addNewControlGrid(Controls, tau);
% Set Boundary Condition
phase.setInitialBoundaries([x 0; y 0; theta 0]);
phase.setFinalBoundaries ([x_f; y f; -pi*2],[x f; y f; 2*pil);
% Set initial guess
initGuess = [linspace(0,x f, length(tau)):

linspace (0,y f, length(tau)):

linspace (0,pi/2,length(tau))];
phase.StateGrid.setValues (tau, initGuess) ;
% apply Path Constraint
pathc = phase.addNewPathConstraint (@CarPCon, pathconstraints, tau);
pathc.addConstants (x_s);
pathc.addConstants (y_s);
pathc.addConstants (obstacles) ;
% Add Cost Function
problem.addNewParameterCost (tf) ;

% Prepare problem for solving
problem.Bake () ;

%% Solve problem

solver = falcon.solver.ipopt (problem) ;
solver.Options.MajorIterLimit = 1000;
solver.Options.MajorFeasTol le-5;
solver.Options.MajorOptTol = le-5;
solver.Solve () ;

%% Plot
Car = [phase.StateGrid.Values(l,:)' phase.StateGrid.Values (2, :)"
phase.StateGrid.Values (3,:)'];

end
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8. Source Car

function states dot =

% Extract states
theta = states(3);

Extract controls
= controls(1l);
= controls(2);

= g e

o

source car (states,

controls)

implement state derivatives here

x_dot = V*sin(theta);
y_dot = V*cos (theta);
theta dot = W;

states dot =

end

9. Source Path

function [constraints]

global eps rmax

oe

Extract states
= states(1l);
= states (2);

o° X

oe

r constraint

1b = eps - r;

~ub = r - rmax;
constraints = [r lb;
% ellipse obstacle
numObs =

for 1 =

o)

B BB

1:numObs

Cx = obstacles(i,
Cy = obstacles(i,
a = obstacles (i,
b = obstacles (i,
phi = obstacles (i,

% ellipse obstacle

=
Il

s
obstacle 1 -
constraints =

end

end

= source path(states,

(x-Cx) *cos (phi)

= (x-Cx) *sin (phi)
= (X~2)/ ((ateps)"2) -
[constraints;

[x dot; y dot; theta dot];

X_ S, Y_Sy

implement constraint values here

= sqrt ((x-x_s) "2+ (y-y_s)"2);

r ub];
size (obstacles,1);

s Extract parameters

)7
) ;
) ;
) ;
)

’

+ (y-Cy) *sin(phi);
- (y-Cy) *cos (phi) ;

obstacle];
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