
September 2019

BEN-GURION UNIVERSITY OF THE NEGEV

THE FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF MECHANICAL ENGINEERING

A Novel Simple Two-Robot Precise Self-

Localization Method

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

M.Sc. DEGREE

By: Dana Erez

September 2019

BEN-GURION UNIVERSITY OF THE NEGEV

THE FACULTY OF ENGINEERING SCIENCE

DEPARTMENT OF MECHANICAL ENGINEERING

A Novel Simple Two-Robot Precise Self-

Localization Method

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

M.Sc. DEGREE

By: Dana Erez

Supervised by: Dr. David Zarrouk and Dr. Shai Arogeti

Author: Dana Erez

Date: 22/12/2019

Supervisor: David Zarrouk

Date: 22/12/2019

Supervisor: Shai Arogrti

Date: 22/12/2019

Chairman of graduate studies committee:______________ Date: ____________ 23/12/19

- 1 -

Abstract

This Thesis presents a novel two-robot collaboration method for precise 2D self-

localization using relatively simple sensors. The main advantage of this method lies in its ability

to precisely measure the orientations of the robots, therefore reducing cumulative errors. Each

robot is fitted with a rotating turret carrying a camera to track the moving robot and calculate

the relative distance and position, and an encoder to provide the orientation of the turret. At each

step, a single robot advances while the other remains stationary and measures the position of

the moving robot (continuously or at the end of the step), using the angular orientation of the

turret and the distance measured using the camera. The orientation of the moving robot is

obtained by turning its own turret towards the static robot and measuring its turret orientation.

By fusing the data from the two robots, the precise location and orientation of the moving robot

are obtained.

We also present an analytical model of the position of the robots as a function of the sensor

data and then proceed to present a statistical estimate using Monte Carlo simulations of the

location of the robots while assuming that the sensor data includes random errors. Additionally,

real-world experiments are presented and compared to simulation results.

For the two-robot system to advance autonomously, a path planning algorithm and a closed-

loop controller are presented in this Thesis, given the measurements are the distance and

orientation of the moving robot with respect to the stationary robot and the control inputs are

the linear and angular velocities of the moving robot. The path planning algorithm include

choosing a target point for the moving robot each step and finding the optimal path while

avoiding obstacles in the environment such as walls, objects or the stationary robot. The closed-

loop control method assumes target points in the explored environment and trajectories between

them were chosen, meaning each step is a path following problem. Due to the polar

characteristics of the measurements, the controller is designed in polar coordinates.

This research was recently accepted for publication in IEEE Access, the Multidisciplinary

Open Access Journal of the Institute of Electrical and Electronics Engineers. Additionally, we

presented this research in the 35th Israeli Conference on Mechanical Engineering (ICME 2018)

and in the 6th Israeli Conference on Robotics (ICR 2019).

Key Words – Localization, Multi-robot Systems, SLAM, Cooperative Localization,

Monte Carlo Simulation, Path Planning, Path Following, Control under Constraints.

- 2 -

Acknowledgments

First, I would like to express my gratitude to my advisors Dr. David Zarrouk and Dr. Shai

Arogeti for guidance and encouragement during my research and thesis writing. I would like to

thank them for all the support, patient advice and the trust they placed in me. I would also like

to thank Prof. Per-Olof Gutman for his help and guidance during the last semester.

A special thanks goes to my friends and colleagues, Lee-Hee Drory, Nir Meiri, Dan

Shachaf, Dana Shimoni and Benny Kosarnovsky for the constant support and advice on a daily

basis. I would also like to thank my friends and fellow masters' students for their support, the

shared lunches and laughter during our time in the university and outside of it.

Finally, I would like to thank my partner Ophir Weinreb and my family for loving and

supporting me and for providing me with continuous encouragement throughout my years of

study and throughout the research process and the thesis writing. A special thanks goes to my

mother, Francine Ex, for devoting many hours proofreading my papers the last year.

This research was supported in part by the Pearlstone Center for Aeronautical Studies and

by the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics

Initiative and by the Marcus Endowment Fund all at Ben-Gurion University of the Negev.

- 3 -

Table of Contents

Nomenclature ... 5

List of Figures .. 8

List of Tables ... 11

1 Introduction ... 12

2 Theoretical Background .. 16

2.1 Transformation Matrix .. 16

2.2 Jacobian Matrix ... 17

2.3 Probability Theory ... 17

2.4 State-Space Representation ... 19

2.4.1 Full State Feedback ... 19

2.5 Lyapunov Function ... 20

2.6 Second Order System's Response ... 20

2.7 Optimization and Cost Function ... 22

3 Localization Method ... 23

3.1 Assumptions and Limitations .. 23

3.2 Robotic Setup .. 24

3.3 Two Point Measurement Approach ... 25

3.4 Relative Orientation Method (Suggested Method) ... 26

3.5 Multistep Representation using Homogeneous Coordinates 28

4 Error Evaluation .. 30

4.1 Exact Method .. 30

4.2 First Order Approximated Method .. 31

5 Monte Carlo Simulation .. 32

5.1 Comparing the First Order Approximated Method to the Exact Method 33

5.2 Statistical Distribution ... 35

- 4 -

5.3 Comparing the Influence of the Sensor Error on the Accuracy of the Measured

Location ... 38

5.4 Path Comparison ... 39

6 Experiments ... 41

6.1 Experimental System ... 41

6.2 Results ... 44

6.3 Comparison to Simulation ... 45

7 Control ... 46

7.1 Autonomous Path Planning ... 46

7.1.1 The Model ... 46

7.1.2 Implementation .. 47

7.1.3 Defining Constraints ... 48

7.1.4 Simulation Results ... 50

7.2 Path Following with Polar Coordinates .. 55

7.2.1 Straight Line Path Following and Convergence ... 58

7.2.2 Simulation ... 59

7.3 Path Planning and Following .. 61

7.3.1 Simulation ... 62

8 Conclusions ... 66

9 References ... 68

10 Appendices .. 71

- 5 -

Nomenclature

Symbol Units/Dimensions Description

j

iA 3×3
Transformation matrix from i-coordinate system to j-

coordinate system

,A A 2×2 State matrix

a, b m, m Length of semi axes of ellipse obstacle

B 2×1 Control matrix

bx -
x coordinate of the center of the ball in pixels, with

respect to the center of the frame

(Cx,Cy) m, m Center of ellipse obstacle

Dx, Dy m, m
Distance between coordinate systems in x and y

directions respectively

d m Length of desired path

dc m
Current distance between the robot's current and initial

positions.

[E]i 3×1 Location error at step i

e 2×1 Error state vector

re , e m, deg Robot’s position and heading errors respectively

F - General operator

f - Measured location function

g - General function

H(s) - Transfer function

i - Current step number

J - Cost function

[J]i 3×3i Jacobian matrix at step i

K 1×2 Gain matrix

k1, k2 - Control gains

L m Length of turret

l m Length of robot

Mp % Maximum (present) overshoot of dynamic response

N - Number of random error values

NL - Size of the turret in image in pixels

Nx, Ny -
Number of pixels in image in the horizontal and vertical

directions respectively

n - Number of steps

- 6 -

P, Q 2×2 Positive definite matrices

p, q m, m Dimensions of rectangular obstacle

Pe - Traveling vehicle’s target point

Pr - Stationary vehicle’s position

P0 - Traveling vehicle’s initial position

ℝ𝑛 - Real coordinate space of n dimensions

(Rx,Ry) m, m Center of rectangular obstacle

rd = f () - Robot's desired trajectory function

(,)e er m, deg Traveling robot's target point

ri m Measured distance between robots at step i

rmax m Distance sensor's maximal range

r0 m
Initial distance between traveling and stationary

vehicles

s - Laplace domain's variable

tf sec Final time

ts sec Settling time of dynamic response

u(t) - Control signal

𝑉(𝑥) - Lyapunov function

𝑉̅ 2×1 Eigenvector

v m/sec Vehicles' linear velocity

vmax m/sec Maximal linear velocity

Xi=(xi,yi,i) m, m, deg Location and orientation of the robot at step i.

xe - Equilibrium point

(xf,yf) m, m Moving robot’s final position

xlb, xub m, m Upper and lower boundaries in x direction

(xm,ym) m Robot’s measured location

(xr,yr) m Robot’s real location

(xs,ys) m, m Stationary robot’s position

(x0,y0) m, m Moving robot’s initial position

ylb, yub m, m Upper and lower boundaries in y direction

αij deg Measured bearing angle of vehicle j at step i

αimage deg Angular position of the tennis ball in the image

αturret deg Orientation of the turret

- 7 -

αL deg View angle of the height of the turret

(, ,) r deg, m, deg
Robot's position and orientation in polar coordinate

system

 deg
Angle between main axis of the ellipse and the x

positive axis

γx deg Camera’s field of view in the horizontal direction

γy deg Camera’s field of view in the vertical direction

res m Distance sensor's resolution

 
i

 3i×1 Error vector at step i

ir m Distance measurement error at step i

ij deg Bearing measurement error of vehicle j at step i

 deg Robot’s Orientation error

δ - Allowed range around final value response

δθ deg Small angle

ε m
Minimal allowed distance between the moving vehicle

and an obstacle

λ - Eigenvalue

µ - Mean value

ρ deg Orientation of ellipse obstacle

 m Total standard deviation

d % Distance sensor's resolution

x , y m, m
Standard deviation in the 'x' and ‘y’ directions

respectively

 deg Bearing sensor's resolution

 deg Robot’s orientation standard deviation

1 , 2 m, m
Standard deviation in the direction of the semi-major

and semi-minor axes of the ellipse respectively
2 - Variance

 deg Robot's heading angle

d deg Robot's desired heading

χ deg Angle between initial position and desired path

i deg Relative angle between coordinate systems at step i

ω rad/sec Vehicle's angular velocity

ωmax rad/sec Maximal angular velocity

ωn rad/sec Natural frequency

ζ - Damping coefficient

- 8 -

List of Figures

Figure 1.1: Examples for dark areas without GPS reception. .. 14

Figure 2.1: Probability density function. The red curve is a normal distribution. 18

Figure 2.2: The response of an underdamped second order system to a step unit input

(normalized by final value). .. 21

Figure 3.1: The mobile robot and its sensors. Each robot incorporates a camera fitted on a

rotating turret and a bearing sensor. .. 25

Figure 3.2: Distance measurement errors when estimating the orientation of a vehicle. In

black: real position of vehicle, in grey: estimated position. .. 26

Figure 3.3: The first three steps and their measurements. At each step, one robot is static

and tracks the motion of the advancing robot. .. 27

Figure 4.1: Real location (left), Measured location with sensor errors (right). 30

Figure 5.1: Flow chart of the Monte Carlo simulation, calculating locations with errors by

two methods for a path of n steps, using a set of N random errors. .. 32

Figure 5.2: A 25 step straight line path. This simple path was chosen for our numerical

MCS. ... 33

Figure 5.3: Relative difference between the last step's locations, calculated using the exact

and approximated methods, relative to total distance traveled (200 m), as a function of bearing

sensor's resolution (top), and as a function of range sensor's resolution (bottom). Each point is

the average of 10,000 simulations. .. 34

Figure 5.4: Histogram distribution of the measured locations using the MCS with 10,000

paths with d =2% and =0.5 for steps 1, 2, 8, 14, 20, and 25 with the confidence distribution

68% () and 95% (2). ... 36

Figure 5.5: Standard deviations as a function of the number of steps for a 200 m straight

path using d=2% and =0.5. .. 36

Figure 5.6: Relative error between the measured position of the robot and the real position

for a travelled distance of 200 m, as a function of bearing sensor's resolution (top), and as a

function of range sensor’s resolution (bottom). Each point is the average of 10,000 simulations.

 ... 38

Figure 5.7: Nine scenarios of three different paths and three different advancing methods.

From top to bottom: straight path, 'S' path and square path. From left to right: parallel advancing,

alternating advancing and following advancing. Lighter colors present 30 optional locations due

to random sensors errors with d=2% and =0.5. ... 39

- 9 -

Figure 6.1: The robotic system used in the experiments. ... 42

Figure 6.2: Top view of the robotics system. The turrets rotate in steps of 45 degrees..... 42

Figure 6.3: Schematic diagram of distance (bottom right) and bearing (top right) calculation

from frame. Top left: original frame, bottom left: frame after image filtering, center of ball and

top and bottom of turret detected. ... 43

Figure 6.4: Experiment results of four different paths; top: straight path following (left) and

parallel (right), bottom: square path (left) and 'S' path (right). Darker colors present real locations

and lighter colors present calculated locations from five experiment results. 44

Figure 7.1: The system. .. 47

Figure 7.2: Ellipse (left) and rectangular (right) obstacles. ... 49

Figure 7.3: Simulation's (a) trajectory, constraints (left), state and control input values over

time (right). .. 50

Figure 7.4: Simulation's (b) trajectory, constraints (left), state and control input values over

time (right). .. 51

Figure 7.5: Simulation's (c) trajectory, constraints (left), state and control input values over

time (right). .. 52

Figure 7.6: Simulation's (d) trajectory, constraints (left), state and control input values over

time (right). .. 52

Figure 7.7: Multi-step algorithm flow chart. .. 53

Figure 7.8: Four multi-step simulations’ results with the same conditions and random

obstacles. ... 54

Figure 7.9: Differentially driven vehicle model in polar coordinates. Pr – stationary vehicle

and polar coordinate system origin, P0 – traveling vehicle's initial position, Pe – traveling

vehicle's target point. ... 55

Figure 7.10: Straight Line advancement strategy. Pr is the stationary observing vehicle’s

position, P0 is the moving vehicle’s initial position and Pe is the moving vehicle’s target point.

 ... 58

Figure 7.11: Simulation results. Top: the traveling robot's path (green solid line), while the

observing robot measures relative location and orientation (blue dashed line). Bottom:

corresponding location and angle errors relative to the desired path. Left: initial orientation of

0°, right: initial orientation of -90°+ε. ... 60

Figure 7.12: Path following in polar coordinates. Pr is the stationary observing vehicle’s

position, P0 is the moving vehicle’s initial position and Pc is the moving vehicle’s current

position. ... 61

- 10 -

Figure 7.13: Simulation's (a) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right). 63

Figure 7.14: Simulation's (b) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right). 63

Figure 7.15: Simulation's (c) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right). 64

Figure 7.16: Simulation's (d) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right). 64

Figure 10.1: Block diagram of model. ... 89

Figure 10.2: Vehicle 1 block diagram, describing the vehicle’s kinematics in Cartesian

coordinates. ... 89

Figure 10.3: Measurements block diagram, describing the vehicle’s location in polar

coordinates, with respect to the stationary vehicle. ... 90

Figure 10.4: Stop Condition block diagram. .. 90

Figure 10.5: Controller block diagram, calculates the required angular velocity for path

following. .. 91

- 11 -

List of Tables

Table 2.1: State space representation vectors and matrices. .. 19

Table 5.1: Values of sensor variables used in the simulation .. 39

Table 5.2: 200 meters straight path standard deviation values for different sensors resolution

(using 10,000 simulations) .. 40

Table 5.3: 200 meters 'S' path standard deviation values for different sensors resolution

(using 10,000 simulations) .. 40

Table 5.4: 200 meters square path standard deviation values for different sensors resolution

(using 10,000 simulations) .. 40

Table 6.1: Standard deviation values of experiments' last step results. 44

Table 6.2: Mean error values of experiments' last step results. ... 45

Table 6.3: Standard deviation values of simulations' last step results with d=1% and

=0.3. ... 45

Table 7.1: List of state parameters and control inputs ... 47

Table 7.2: Constant values for all single step simulations. .. 50

Table 7.3: Constant values for simulation (a). ... 50

Table 7.4: Constant obstacle values for simulation (b). ... 51

Table 7.5: Constant values for simulation (c). ... 51

Table 7.6: Constant obstacle values for simulation (d). ... 52

Table 7.7: Constant values for all multi-step simulations. ... 54

Table 7.8: Simulation Variables ... 60

Table 10.1: Total standard deviation values using 10,000 simulations, analytic calculation

and relative difference, 200 meters 'S' path. .. 73

- 12 -

1 Introduction

Many robotic applications such as search and rescue, surveillance, planetary exploration

and others require Simultaneous Localization and Mapping (SLAM) of unknown unstructured

locations. SLAM is known as a 'chicken and egg problem' meaning, how can a robot build or

update a map of an unknown environment, while simultaneously keeping track of its own

location within it?

This problem is well-researched due to its great potential in solving a wide range of robotic

applications. Nowadays, as technology advances, Global Positioning System (GPS) is the

simplest and most accurate localization technique. SLAM techniques become more crucial

where GPS and other localization techniques are unavailable such as indoors, inside caves or in

tunnels.

Many solutions for self-localization rely on measuring the relative position of the robot

with respect to known features in space, also known as landmarks. However, the complexity

grows in cases where there is no prior knowledge of the explored area. In 1994, Kurazume et

al. first suggested cooperative positioning for multi-robot systems as a solution to the SLAM

problem [1]. By advancing the robots in alternating steps, such that at each point in time some

robots remain stationary and the others travel to new positions, the stationary robots whose

absolute locations are known serve as landmarks for the traveling robots. Therefore, this method

is especially useful while exploring an uncharted environment where there are no known

landmarks.

The cooperative positioning method has been further developed by other groups [2]-[6] to

suggest the use of different kinds of sensors to determine relative positioning with different

advancing algorithms. The advantage of this method is that a unified map of the robots'

trajectories is created using all available relative measurements. However, to implement this

method, a centralized communication system is required. Centralized approaches, though

theoretically effective, require ideal communication and high computational cost, thus making

them vulnerable to single-point failures especially as the number of robots increases.

In 1997, A different method for multi-robot SLAM was suggested by Roy and Dudek

known as the rendezvous case [7], further developed in [8]. In this method, each robot explores

a different part of the environment and creates its own map. When two robots meet (this could

be a random event or could be arranged by the two robots [8]), the robots measure their relative

distance and bearings; this information can be used to compute the coordinate transformation

- 13 -

required to merge both maps. Due to noise in these measurements, the estimated transformation

may be inaccurate, reducing the quality of the merged map. If landmarks are available in the

explored environment, the most probable transformation between two maps can be identified as

the one that produces the maximum number of landmark correspondences [9]. Available

landmarks also allow successful localization of a multi robot system even when the initial

positions of the robots are unknown [9],[10]. Other solutions for map merging have been offered

such as using particle filters [10] or occupancy grid maps [11].

Though map merging increases complexity, this method has an obvious advantage,

especially while exploring large areas, of enhancing efficiency, i.e. reducing exploration time.

The exploration time could be further reduced by wisely choosing different paths for different

robots. While in most methods the robots are guided to points in the explored environment

which have minimum travel cost out of all unexplored points, [12] suggests an approach that

takes into account not only the travel cost but also the utility of unexplored points, where the

utility of a target location depends on the probability that this location is visible from a target

location assigned to another robot.

The main challenge in using relative measurements is determining the absolute locations of

the robots, since the locations are obtained with regard to a local coordinate system. Some

solutions address this issue by combining both external measurements such as GPS [13] or an

affixed IR range detector [14], which return inaccurate yet absolute locations and relative

measurements between the robots to enhance accuracy and obtain the orientation of the robots

as well. The practicality of these methods is limited since they require either GPS reception

which is not available in many cases such as indoor or underground areas or prior placing of

sensing tools. Similarly, many solutions use filtering techniques, most commonly the Extended

Kalman Filter (EKF) [15]-[18], where the robots' locations are predicted by odometry data (such

as linear and angular velocities) and corrected by relative measurements between neighboring

robots. Recently, the use of Ultra-Wideband (UWB) range-sensors has become popular for

relative distance measurements in multi-robot systems, because they make it possible to perform

the localization process in a fully decentralized manner [19]-[21].

While the relative locations of a multi-robot system can be calculated by using any of the

aforementioned methods, obtaining the accurate relative orientation of the robots is much more

challenging. Besides visual methods [22]-[25], many attempts to find the orientation of the

robots have been made using range-only measurements [6],[19]-[21],[26] and angle-only

measurements [17] or a combination of both [16],[27]-[29]. The accuracy of the orientation

- 14 -

remains however very challenging at long distances. While some work has focused on

evaluating the uncertainty of the estimated locations [30], the uncertainty in the orientation of

the robots has not been appropriately examined.

Our goal in this work is to provide a simple low-cost high accuracy localization and

orientation method for a multi-robot system, suitable for indoor areas where GPS signals are

unavailable, and visibility is relatively low. This could be useful for underground, under water

and planetary explorations or search and rescue missions in cases such as natural disasters or

collapsed structures.

Figure 1.1: Examples for dark areas without GPS reception.

We would also like our system to be able to advance autonomously, i.e. plan its path and

motion, in such uncharted constrained environments which lacks GPS reception. Motion

planning is a fundamental problem in the field of robotics and an essential step towards complete

autonomic mobile robots. Motion planning consists of computing a series of actions that drives

the robot from its initial position to a desired final position, while considering its surrounding

(avoiding obstacles) and its own motion limitations (kinematic/dynamic constraints or in short,

differential constraints) [31]. The basic problem where the robot has no motion limitations and

only an obstacle-free solution is required is a well understood problem and solutions were

offered for various scenarios [32]. Since robots usually do have strict motion limitations, the

previously mentioned solutions cannot actually be executed by real robots.

 There are two main approaches for motion planning under differential constraints [32]:

The first is a decoupling approach in which first a collision-free path is found and then the path

is smoothened so that the motion constraints are fulfilled. The second is a direct approach in

which the differentially constrained motion planning problem is solved all in once. While the

- 15 -

first approach is easier to compute, a solution is not guaranteed and even if found, may be

extremely inefficient.

A direct approach on the other hand, which also includes optimizing an objective function,

guaranties finding the optimal solution. Most solutions which guaranty optimization are model

based methods such as the very well researched Model Predictive Control (MPC) [33]-[36] (or

NMPC for nonlinear systems [37],[38]), the not as common Interpolating Control (IC) [39], and

the most commonly used today sampling-based planning [32],[40]-[42], which is based on a

graph search of all possible trajectories. For our work, an optimal control tool for nonlinear

systems under differential constraints is used [43].

We consider two robots each of which is equipped with one camera and one

rotation/bearing sensor mounted on a rotating turret. The outline of the Thesis is as follows:

theoretical background is presented in Section 2, the robotic system and the localization

algorithm are described in Section 3 and the error evaluation using an analytical exact method

and first order approximation method is presented in Section 4. The two methods are used to

statistically evaluate the location and orientation errors using Monte Carlo simulations in

Section 5 and real-world experiments are described in Section 6.

 Section 7 presents a path planning algorithm (Section 7.1) and a closed-loop controller for

following the desired path (Section 7.2); due to the polar nature of the measurements, the

controller is described in polar coordinates which was proven to be as efficient as Cartesian

coordinates, and can represent non-linear distributions in the Cartesian space as linear

distributions in the polar space [44]-[48]. Section 7.3 presents the fusion and implementation of

both algorithms. Finally, conclusions are discussed in Section 8.

- 16 -

2 Theoretical Background

This section presents relevant theoretical background for this paper.

2.1 Transformation Matrix

One of the challenges when using a multi-robot system to solve a SLAM problem, is that

the measurements from each robot are obtained in its local coordinate system. One of the

requirements for executing a SLAM algorithm is that all information is obtained in a fixed global

coordinate system. To do so, transformation matrices are used.

The main idea of this method is based on the fact that every vector in one coordinate system

can be represented in a second coordinate system, by multiplying the vector with the desired

coordinate system's basis vectors. In the two-dimensional case, this is a linear operation of the

following form:

() ()

() ()
1 0 1 01 1 1

0 0 0

1 0 1 0

cos sin

sin cos

x x x y
R X Y

y x y y

 

 

  −  
 = = =         

, (1)

while
1

0R is the rotation matrix, converting the vector ()1 1

T
x y to the 0-coordinate system, and

 is the rotation angle between the two coordinate systems.

In our case, the goal in each step is to covert the robot's position to the global coordinate

system. Therefore, the difference between the robot's local coordinate systems and the global

one, is not only in orientation but also the distance traveled, say Dx in the x axis direction and

Dy in the y axis direction. The overall transformation matrix is:

() ()

() ()1

0

cos sin

sin cos

0 0 1

x

y

D

A D

 

 

− 
 

=  
 
 

. (2)

This method is the basis of the localization method presented in this paper (3.4 and 3.5).

For each step, the moving robot's position is converted to the global coordinate system; the n

step's transformation matrix is received as following:

1

0 0 1

n n n

nA A A−

−=  , (3)

while 1

n

nA − is the last step's transformation matrix from the moving robot's coordinate system (n)

to the stationary robot's coordinate system (n-1), and
1

0

nA −
is the overall transformation matrix

- 17 -

calculated at the previous step, converting from (n-1) coordinate system to the global coordinate

system (0).

2.2 Jacobian Matrix

Suppose : n mF → is an operator which receives as an input a vector nq  and

produces as an output the vector () mF q  . Then the Jacobian of F is a m by n matrix that is

defined as follows [49]:

1 1

1

1

1

n

n

m m

n

f f

q q
F F

J
q q

f f

q q

  
  
   
 = = 

       
   

, (4)

while 1 mf f are the functions that define operator F and 1 nq q are the variables of these

functions. In our case, the functions f determine the robot's location and orientation in space

in the global coordinate system (), ,x y  , and the variables are the robots' measurements (see

Section 3.4).

If F is differentiable at point q, then the Jacobian matrix defines a linear map n m→

which is the best linear approximation of function F near point q; meaning, the Jacobian matrix

can be used to approximate the value of function F at point q, without actually calculating

()F q . An explanation of this process in our system is presented in Section 4.2.

2.3 Probability Theory

Probability is a very broad branch in mathematics. In this section, specific concepts,

regarding this paper, within probability theory will be explained.

Probability distribution is a mathematical function that provides the probability of

occurrence of different possible outcomes of a certain experiment [50]. The distribution of

numerical data can be accurately represented by a histogram. To build a histogram, the entire

range of values must be divided into 'bins' i.e., a series of intervals, and then count how many

values fall into each bin.

- 18 -

If the Probability distribution function is continuous, by sampling experiment results for

many random values, a probability density function (PDF) can be obtained. These functions

have two main characteristics. The first is mean value (also known as expected value or

average), represented in Figure 2.1 as µ. The mean value is simply calculated by summing all

values and dividing the sum by the number of values.

Figure 2.1: Probability density function. The red curve is a normal distribution1.

The second characteristic is variance, represented in Figure 2.1 as 2 . Variance is the

expectation of the squared deviation of a random variable from its mean. The square root of the

variance is called standard deviation -  . Standard deviation indicates how far a set of random

values are spread out from the mean value (amount of dispersion). Standard deviation is

calculated as following:

2

1

1
()

1

N

i

i

x
N

 
=

= −
−

 , (5)

as ix is the measured value in all data points and N are the number of data points.

Normal distribution (also known as Gaussian distribution) is a very common continuous

probability distribution. Normal distributions have a mean value of 0 and a standard deviation

of 1. This distribution is often used to represent real-valued random variables whose

distributions are not known.

1 https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution

- 19 -

2.4 State-Space Representation

State-space representation is a mathematical method, used in the field of control-

engineering, representing physical systems as a set of inputs, outputs and 'state variables', related

by a first order matrix differential equation. In the case of linear, time-invariant and finite-

dimensional dynamical systems (LTI systems), the system can be represented by a 'state

equation' and a 'measurement equation' respectively:

() () ()

() () ()

x t Ax t Bu t

y t Cx t Du t

= +

= +
 , (6)

with the description and dimensions of all symbols described in Table 2.1. Note that in the

discussed case these matrices are constant, but they could be time dependent in the case of a

continuous time-variant system. In many cases there is no direct connection between the input

and output vectors, hence D=0.

Stability and natural response characteristics of a continuous LTI system are determined by

the eigenvalues of matrix A.

Table 2.1: State space representation vectors and matrices.

Symbol Dimensions Description

𝑥̅ n×1 State vector

𝑦̅ m×1 Output/measurement vector

𝑢̅ p×1 Input/control vector

𝑟̅ p×1 Reference vector

A n×n State/system matrix

 n×p Input matrix

C m×n Output matrix

D m×p Feedforward matrix

K p×n Gain matrix

2.4.1 Full State Feedback

Eq. (6) is also called the open loop system, which acts completely on the basis of the input.

A closed loop system refers to a common control technique that relays on receiving feedback on

the system's behavior by feeding the output back, i.e. closing the system, and altering the input

accordingly. In state space representation, a full state feedback is utilized by the following input:

 u r Kx= − , (7)

- 20 -

where 𝑟̅ is the reference vector (or the input of the closed-loop system) and K is a gain matrix

of constant values (dimensions are described in Table 2.1). Placing the control law in Eq. (6)

results in the following dynamic equation:

 ()() ()x t A BK x t Br= − + . (8)

Therefore, the stability and natural response characteristics of the closed-loop system are

determined by the eigenvalues of matrix ()A BK− .

2.5 Lyapunov Function

In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar

functions that may be used to prove the stability of an equilibrium of an ODE [51]. Lyapunov's

stability theory determines that if the solutions to a differential equation that start out near an

equilibrium point xe stay near xe forever, then xe is Lyapunov stable [52]. According Lyapunov's

second method of stability, if a system ()x g x= has a point of equilibrium at xe=0, the point is

Lyapunov stable if there exists a Lyapunov function () : nV x → that fulfills the following:

• () 0V x = if and only if 𝑥 = 0.

• () 0V x  if and only if 𝑥 ≠ 0.

• () 0V x  for all 0x  (or () 0V x  for all 0x  for asymptotic stability).

2.6 Second Order System's Response

A second order linear system is a common description of many dynamic processes. In the

general form where y(t) is the system's output and x(t) is the system's input, in time domain the

system is presented by the following differential equation:

 () () ()2

1 2
()y t y t y t x t



 
+ + = , (9)

and in Laplace domain, the system is presented by the following transfer function:

 ()
()

()

2

2 22

n

n n

Y s
H s

X s s s



 
= =

+ +
 , (10)

- 21 -

where ζ is the system's damping ratio and ωn is the system's natural frequency. The denominator

of the transfer function is also called the characteristic equation of the system since it

determines the system's response's behavior.

The system's time response to a unit step input i.e.:

 ()
1, 0

0, 0

if t
x t

if t


= 


 , (11)

depends on the placement of the system's poles (the characteristic equation's roots). If

0 1  , the system is considered underdamped and the system contains a pair of complex

poles:

2

1,2 1n ns j  = −  − , (12)

The response of an underdamped second order system to a step unit input is presented in Figure

2.2. The transit response is characterized by the following:

• Delay time (td) – The time required for the response to reach half its final value

• Rise time (tr) – The time required for the response to rise from 10% to 90% or from 0% to

100% of its final value.

• Peak time (tp) – The time required for the response reaches its first peak.

• Maximal (present) overshoot (Mp) – The maximum peak’s value with respect to the final

value.

• Settling time (ts) – The time required for the response to reach and stay within a range around

the final value (usually 2% or 5%).

Figure 2.2: The response of an underdamped second order system to a step unit input

(normalized by final value)2.

2 http://shiwasu.ee.ous.ac.jp/matweb_cs/help/english_sole_t_help.htm

http://shiwasu.ee.ous.ac.jp/matweb_cs/help/english_sole_t_help.htm

- 22 -

These characteristics can be approximated by appropriate formulas. Presenting only the

formulas that will be used on this paper (7.2.2), the maximal overshoot can be approximated by:

2

exp
1

pM




 
 = −
 − 

, (13)

and the response's settling time can be approximated by:

 ()
()ln

%s

n

t





−
= , (14)

where δ determines the allowed range around the final value.

2.7 Optimization and Cost Function

In the field of mathematics, the process of optimization is the selection of the best element,

with regards to some defined criteria, from some set of available alternatives [53]. An

optimization problem usually consists of maximizing or minimizing an objective real function

g by systematically choosing input values within an allowed set and calculating the value of the

function g [54]. When the goal is minimization, the objective function is called a loss function

or a cost function. The cost function maps an event or values of one or more variables onto a

real number, representing the “cost” associated with the event.

- 23 -

3 Localization Method

In this section, the assumptions and limitations of the work are defined (3.1). Then, we

present our robotic setup (3.2) and two localization methods. The first method is based on a

two-point measurement approach to calculate the orientation (3.3), whereas the second method,

which is our newly developed method, fuses the distance and relative orientation to yield more

accurate results (3.4 and 3.5).

3.1 Assumptions and Limitations

This research focuses on the problem of self-localization in areas without access to GPS

signals. The solution proposed includes the use of a two-robot system advancing in alternating

steps, also known as cooperative positioning. The research is conducted under the following

assumptions and limitations:

• The research is limited to the use of a two-robot system.

• The initial position of at least one of the robots must be known.

• The system performs 2D localization, therefore the environment explored must be flat.

• At each step, one robot remains stationary, as the other robot moves in the environment.

Therefore, the advance of the system is not continuous.

• The measurements are not necessarily continuous; to implement the localization method

(Section 3.4 and 3.5), the relative position between the robots is measured only when

the moving robot has stopped. To implement the control loop presented in Section 7.2,

continues measurements are required.

• The sensors should be able to determine distance and orientation between the robots.

• The robots always stay in each other's range of 'sight' (depends on the range of the

distance sensor and the camera's field of view).

• The sensors' measurement errors are assumed to be normally distributed. This is a very

common assumption, broadly used in cases of implementing observing methods in order

to estimate the true position of the robot, such as Kalman Filter [15]-[18].

- 24 -

3.2 Robotic Setup

Consider a robot fitted with a rotating turret which carries a camera (see Figure 3.1). The

orientation of the turret relative to the heading of the robot is measured with a bearing sensor

(such as an encoder). The camera is used to detect the target and to aim the turret towards it.

The distance is measured using the camera3 whereas the bearing sensor measures its angular

coordinate. The polar coordinates can then be transformed into the real Cartesian location

coordinates (xr, yr) using:

()

()

cos

sin

r

r

x r

y r





=

=
, (15)

where r is the distance of the target and  is the orientation of the turret. Practically speaking,

each of the sensor measurements contains a small error. We denote by r and , respectively

the distance and orientation errors. Then the coordinates (xm, ym) based on the sensor

measurement become:

() ()

() ()

cos

sin

m

m

x r r

y r r

 

 

= +  + 

= +  + 
. (16)

The distance error range is often (according to many laser sensor catalogs and visual based

sensing) proportional to the measured distance, whereas the angular error is dependent on the

resolution of the camera and encoder and is constant for a long range of distances (as long as

the target is detected by multiple camera pixels). Assuming small measurement errors r,

 and using a first order Taylor series approximation:

() () ()

() () ()

cos cos sin

sin sin cos

    

    

+  = − 

+  = + 
, (17)

neglecting the product of r times  Eq. (16) becomes:

() () ()

() () ()

cos sin

sin cos

m

m

x r r r

y r r r

  

  

 +  − 

 +  + 
. (18)

3 The distance measurement could equally be achieved by using a camera or a laser range sensor. The term

'distance measurement' or 'distance sensor' refers to either kind of measurement method.

- 25 -

Figure 3.1: The mobile robot and its sensors. Each robot incorporates a camera fitted on a

rotating turret and a bearing sensor.

3.3 Two Point Measurement Approach

A straightforward approach is to estimate the orientation of the robot by measuring the

position of two specific points on its side. Assuming that the measured distance and relative

orientation of two points 1 and 2 are respectively r  r and  (see Figure 3.2), the measured

position of the center of the robot (x,y) and its orientation θ can be calculated as follows:

1 1 2 2

1 1 2 2

cos cos

2

sin sin

2

r r
x

r r
y

 

 

+
=

+
=

, (19)

and

 2 2 1 1

2 2 1 1

cos cos
atan

sin sin

r r

r r

 


 

 −
= −  

− 
. (20)

This method results in a relatively large error in the robot's orientation if the errors r1,r2

become significantly large relative to the distance l between the two measured points. Omitting

the angle measurement errors, the maximal orientation error of the robot:

()

1 2

cos

r r

l


 

 + 
 

−
. (21)

For example, assume a robot with a length of l=0.5 m is measured from a distance of r=10

m by a distance measurement with a resolution of 0.2%; hence r=2 cm. Given =45° and

=30°, the orientation error according to Eq. (21) is  ≈ 4.8°. Note that this orientation error

for each single step is very large especially since the error is cumulative.

- 26 -

Figure 3.2: Distance measurement errors when estimating the orientation of a vehicle. In

black: real position of vehicle, in grey: estimated position.

3.4 Relative Orientation Method (Suggested Method)

Our method is based on the approach of two vehicles which advance in alternating steps.

At any given time, one vehicle whose position xi,s, yi,s and orientation i,s are known remains

stationary, while the other vehicle advances. The index i indicates the step number and 's' stands

for stationary. At the end of each step, the distance and bearing of the two vehicles are measured

(ri, is, it); These measurements are used to estimate the traveling vehicle's position xi,t, yi,t and

orientation i,t (where 't' stands for traveling).

The traveling vehicle's location and orientation at each step is determined with respect to

the observing vehicle's position. The general form of the Cartesian location and orientation of

the traveling vehicle at step i is:

 (), , , , , ,i t i s i s i is itX X F r  = + , (22)

where the vector Xi includes both the position and orientation of the vehicle:  
T

i i i iX x y = .

For example, in step 1, assume that vehicle 1 is stationary and its position x1,1, y1,1 and

orientation 1,1 are known and vehicle 2 traveled to a new position. The measured distance

between the vehicles is r1 and the measured bearing angles are 11 and 12, where the first index

refers to the step number and the second index refers to the measuring vehicle (see Figure 3.3,

left). Therefore, the Cartesian position and orientation of vehicle 2 with respect to vehicle 1 is:

- 27 -

1,2 1 11

1,2 1 11

1,2 11 12

cos

sin

180

x r

y r





  

=

=

= +  −

. (23)

By setting the initial position and orientation of vehicle 1 as the origin of the global

coordinate system, meaning x1,1=0, y1,1=0 and  1,1=0, Eq. (23) represents the global position

of vehicle 2 at the end of the first step.

Note that the orientation θ is determined solely by bearing measurements and is hardly

influenced at all by the distance measurement, unlike in the two-point approach (3.3), where the

orientation accuracy is decreased by the distance. This is one of the key advantages of our

method since distance errors tend to increase together with the distance while angle

measurements remain almost unchanged.

In step 2, vehicle 1 travels to its next target point while vehicle 2 is stationary and its

position is known (x2,2=x1,2, y2,2=y1,2 and 2,2=1,2). At the end of the step, the distance and angle

measurements are r2, 22 and 21 (see Figure 3.3, center). It should be noted that the

measurements are obtained with respect to vehicle's 2 current position and its local coordinate

system. In order to obtain the position of vehicle 1 in the global coordinate system, a

transformation is needed.

Figure 3.3: The first three steps and their measurements. At each step, one robot is static

and tracks the motion of the advancing robot.

- 28 -

3.5 Multistep Representation using Homogeneous Coordinates

The local transformation matrix (2.1) at step n from the traveling vehicle's coordinate

system (n) to the stationary vehicle's coordinate system (n-1) is:

 1

cos sin cos

sin cos sin

0 0 1

n n n ns

n

n n n n ns

r

A r

  

  −

− 
 

=
 
  

, (24)

where n is the relative angle between the two coordinate systems, hence n=ns+−nt (see

Figure 3.3). Obtaining the position of the traveling vehicle in the global coordinate system (0),

can be achieved recursively as follows:

1

0 0 1

n n n

nA A A−

−= 
, (25)

where 1

0

nA − is the overall transformation matrix obtained in the last step (n-1), and
1

n

nA −
 is the n

step's local transformation matrix as shown in Eq. (24).

Since the transformation matrix is composed of a rotation matrix and a shifting vector, the

first two expressions of the third column of matrix
0

nA are the Cartesian location of the traveling

vehicle in the global coordinate system at step n, and the angle of the rotation matrix is the

vehicle's orientation in the global coordinate system.

For example, the transformation matrix of the first step is:

1 1 1 11

1

0 1 1 1 11

cos sin cos

sin cos sin

0 0 1

r

A r

  

  

− 
 

=
 
  

. (26)

The transformation matrix from the first to the second step:

2 2 2 22

2

1 2 2 2 22

cos sin cos

sin cos sin

0 0 1

r

A r

  

  

− 
 

=
 
  

. (27)

Therefore, the overall transformation matrix for the second step is:

() () ()

() () ()
1 2 1 2 1 11 2 1 22

2 1 2

0 0 1 1 2 1 2 1 11 2 1 22

cos sin cos cos

sin cos sin sin

0 0 1

r r

A A A r r

      

      

+ − + + + 
 

=  = + + + + 
 
 

. (28)

Hence, vehicle’s 1 location in the global coordinate system at the end of the second step (see

Figure 3.3, center) is:

- 29 -

()

()

2,1 1 11 2 1 22

2,1 1 11 2 1 22

2,1 1 2 11 12 22 21

cos cos

sin sin

x r r

y r r

  

  

      

= + +

= + +

= + = − + −

. (29)

The general form of the location of the traveling vehicle at step n:

()

()

, 1

1

, 1

1

,

1

cos

sin

n

n t i i is

i

n

n t i i is

i

n

n t i

i

x r

y r

 

 

 

−

=

−

=

=

= +

= +

=







, (30)

where:

 .
180i is it  = +  −

 (31)

- 30 -

4 Error Evaluation

Since all sensor measurements contain precision errors, this section presents a statistical

analysis to evaluate the influence of the cumulative errors on the overall location of the robot

after a large number of steps.

4.1 Exact Method

The measured location of the traveling vehicle at step n is expressed as a function of

measured distances r1,r2,…,rn and angles 11,12,…,n1,n2 in the global coordinate system

f(r1,…,rn,11,…,n2); thus the real location including distance and bearing measurement errors,

r1,r2,…,rn and nn respectively, is

f(r1+r1,…,rn+rn,11+,…,n2+n)

For example, if during the first step (Eq. (23)) the distance and bearing were measured with

an error of r1, 11 and 12 respectively, the measured location of vehicle 2:

() ()

() ()

()

1,2 1 1 11 11

1,2 1 1 11 11

1,2 11 11 12 12

cos

sin

180

m

m

m

x r r

y r r

 

 

    

= +  + 

= +  + 

= +  +  − + 

. (32)

This method uses the presented localization method directly (see Section 3.4 and 3.5), and

hence requires multiple matrix multiplications and a large number of trigonometric calculations

which result in high numerical complexity.

Figure 4.1: Real location (left), Measured location with sensor errors (right).

- 31 -

4.2 First Order Approximated Method

An approximated, yet computationally simpler method to evaluate the measured locations

of the vehicles uses:

 [][]

m r

m r

m r

x x

y y J

 

   
   

 +    
   
   

, (33)

where the index 'r' refers to the real location, [] is the measurement errors vector and [J] stands

for the Jacobian matrix (2.2):

 i

ij

j

f
J

q


=


, (34)

where fi are the functions of Cartesian location and orientation and qj are the variables of these

functions, hence r1,11,12,…,rj,j1,j2. For example, the estimated position of vehicle 2 after

the first step is:

1,2 1 11 11 1 11 1

1,2 1 11 11 1 11 11

1,2 11 12 12

cos cos sin 0

sin sin cos 0

180 0 1 1

m

m

m

x r r r

y r r

  

   

   

  −      
       

 +        
       +  − −       

. (35)

At the next step, the location is determined by 6 measurements; thus, the Jacobian becomes

a 3×6 matrix and the measurement error is a 6×1 vector. At step n, the Jacobian is a 3×3n matrix

and the measurement error is a 3n×1 vector. A general form of the location error for step n is:

   

() ()
() ()

1 , 1 ,

1 , 1 ,1

, ,

sin cos

[] [] cos sin

n n n s n n n s

n n n n n s n n n sn n

n s n t

r r

E J E r r

    

    

 

− −

− −−

 − +  +  +
 

=  = + +  +  + 
 

 −   

, (36)

where:

 .

1

, ,1 1

n n

i s j ti j
  

−

= =
=  −  

 (37)

- 32 -

5 Monte Carlo Simulation

A Monte Carlo Simulation (MCS) was used in order to simulate a real-life scenario where

the input of the sensors contains statistical errors. A natural random statistical error with a given

standard deviation was inserted to the “measured values” and the statistical distribution of the

position of the vehicles was calculated (using 10,000 simulations for each step), by both exact

and approximated methods, as presented in Figure 5.1. This section first presents a comparison

between the first order approximation to the exact method (5.1), the statistical distribution along

the path (5.2), the influence of the sensor error on the accuracy of the measured location (5.3)

and finally a comparison between different paths and advancing (parallel, alternating and

following) methods (5.4).

Figure 5.1: Flow chart of the Monte Carlo simulation, calculating locations with errors by

two methods for a path of n steps, using a set of N random errors.

- 33 -

5.1 Comparing the First Order Approximated Method to the Exact Method

The MCS was first performed throughout a simple path composed of two straight lines as

seen in Figure 5.2. At each step, the traveling vehicle advances by 8 m and the final distance

from the stationary vehicle is 10 m; i.e. the system overall advances 200 m throughout 25 steps.

The distance and angle measurement errors were simulated as normally distributed (2.3)

sets of N samples each (for each step), with zero mean. The standard deviation of the distance

measurement error was set to d∙ri, where d is the distance sensor's resolution and ri is the

current step's measured relative distance. The standard deviation of the angle measurement error

was set to , the bearing sensor's resolution.

Figure 5.2: A 25 step straight line path. This simple path was chosen for our numerical

MCS.

The MCS comparison was performed using the exact method (4.1, [B]7) and the

approximated method (4.2, [B]5). In both cases, N=10,000; i.e., each step of the path was

evaluated 10,000 times, for a set of 10,000 samples of random measurement errors ([B]4),

resulting in 10,000 possible locations for each step. Figure 5.3 presents the relative difference

between the final locations calculated by both methods, relative to the total traveled distance.

Figure 5.3 (top) shows that for ≤0.5 (a reasonable assumption for a standard bearing sensor),

the difference between the exact and approximated methods is less than 0.1% of the traveled

distance (200 meters in 25 steps). The error increases to 1.5% for =2. Figure 5.3 (bottom)

which presents the difference between the two methods as a function of distance standard

deviation d shows that the error is dominated by the angle error.

- 34 -

Figure 5.3: Relative difference between the last step's locations, calculated using the exact

and approximated methods, relative to total distance traveled (200 m), as a function of bearing

sensor's resolution (top), and as a function of range sensor's resolution (bottom). Each point is

the average of 10,000 simulations.

As seen in Figure 5.1, the exact method uses transformation matrices, therefore the same

matrix multiplication (with different random errors) has to be computed N times for each step,

overall N·n matrix multiplications for n steps ([B]1, [B]7). In the approximated method on the

other hand, due to the general form of the location errors (Eq. (36)-(37)), all N possible locations

for each of the n steps are calculated directly using matrix addition ([B]1, [B]5). As a result, in

terms of computation time, the approximated method was found to be nearly 200 times faster

than the exact method computation time. Hence, the approximated method was used in the

following MCS.

- 35 -

5.2 Statistical Distribution

This section presents a statistical analysis of the MCS location errors using d=2% and

=0.5. The distribution of possible locations for each step is presented as a two-dimensional

histogram (see Figure 5.4 and Appendix [B]8). The size and shape of the distribution can be

described by three standard deviation values (2.3). The first is the total standard deviation

according to the distance between the centroid and the different simulation results:

0.5

2 2

1

1
() ()

1

N

i x i y

i

x y
N

  
=

 
= − + − 

− 
 , (38)

where (x,y) are the coordinates of the approximated method's centroid and (xi,yi) are the

coordinates of all possible locations, i=1,…,N.

Since the distribution pattern of possible locations tends to yield an ellipse (see Figure 5.4),

two other standard deviations were calculated according to the ellipse's axes. These values were

obtained by calculating the covariance matrix of the N Cartesian locations ([B]9):

1 1

cov

N N

x y

x y

 
 
 
  

, (39)

resulting in a 2×2 covariance matrix, with two 2×1 eigenvectors  1 2,V V and two corresponding

eigenvalues  1 2,  . The eigenvectors of the covariance matrix represent the direction of the

ellipse's axes, and the square root of their corresponding eigenvalues represent the standard

deviations in their direction. Assuming 1 2  , the two standard deviations values are:

0.5 0.5

1 1 2 2,   = = , (40)

where 1 is the standard deviation in the direction of the main axis of the ellipse and 2 is the

standard deviation in the perpendicular direction. The angle between the ellipse's main axis and

the global x positive axis (see Figure 5.4 top left) is:

()

()
1

1

atan
V y

V x
 = . (41)

- 36 -

Figure 5.4: Histogram distribution of the measured locations using the MCS with 10,000

paths with d =2% and =0.5 for steps 1, 2, 8, 14, 20, and 25 with the confidence distribution

68% () and 95% (2).

Figure 5.5: Standard deviations as a function of the number of steps for a 200 m straight

path using d=2% and =0.5.

Although the error distribution of the first step seemed to be affected mostly by the distance

sensor's error, the error distribution of the next step had a circular pattern. The pattern became

elliptical in the next steps with 1 becoming larger relative to 2 (see Figure 5.4 and Figure 5.5).

The overall standard deviation of the error  grew almost linearly with the number of steps and

distance traveled. The ratio of  of the last step divided by the overall traveled distance is 0.036

which is in the same order of magnitude as the sensors' relative error.

- 37 -

Using Eq. (36), the standard deviation of the orientation of the vehicle at step n can be

evaluated directly as follows:

 2n  =  , (42)

implying that the orientation error depends solely on the number of steps and the bearing

sensor's accuracy.

Additionally, the standard deviations in the 'x' and 'y' axes directions can be analytically

derived from Eq. (36) (see Appendices [A] and [B]6):

() () ()

0.5
2

2 2 2 2

1 , 1 ,

1 1

cos sin
n n n

x i i i s d i i i s

i j i j

r j r       − −

= = =

 
= + +  + 
   

   , (43)

() () ()

0.5
2

2 2 2 2

1 , 1 ,

1 1

sin cos
n n n

y i i i s d i i i s

i j i j

r j r       − −

= = =

 
= + +  + 
   

   , (44)

where:

 ()
1, 1

2, 1

j
j

j

=
 = 


 . (45)

These equations have been validated by comparing between the total standard deviation values

 calculated using the MCS (10,000 simulations) and the analytical expression (see Table 10.1).

- 38 -

5.3 Comparing the Influence of the Sensor Error on the Accuracy of the

Measured Location

Figure 5.6 (top) presents the relative error between the measured position of the robot and

the real position as a function of the standard deviation of the bearing measurement error ,

while Figure 5.6 (bottom) presents the same error as a function of the standard deviation of the

distance measurement error d. For each case, we ran 10,000 simulations, each composed of 25

steps and the total net advancement is 200 meters. The results presented in this figure show that

the relative error is governed by the bearing error measurements.

Figure 5.6: Relative error between the measured position of the robot and the real position

for a travelled distance of 200 m, as a function of bearing sensor's resolution (top), and as a

function of range sensor’s resolution (bottom). Each point is the average of 10,000 simulations.

- 39 -

5.4 Path Comparison

In this section, MCS are used to statistically calculate the influence of the sensor accuracy

on the location error for three different paths (straight, 'S' shape, and square) using three

advancing methods (parallel, alternating and following). In total, nine scenarios were examined

for four different combinations of sensor errors (see Table 5.1). The three different paths were

chosen as basic segments that can be used to define more complex paths, whereas the three

advancing methods map the most basic methods of forwards advancing of two vehicles.

Table 5.1: Values of sensor variables used in the simulation

Sensor variables STD #1 STD #2 STD #3 STD #4

d=error/distance 1% 5% 2% 5%

 [] 0.1 0.1 0.5 1

Figure 5.7: Nine scenarios of three different paths and three different advancing methods.

From top to bottom: straight path, 'S' path and square path. From left to right: parallel

advancing, alternating advancing and following advancing. Lighter colors present 30 optional

locations due to random sensors errors with d=2% and =0.5.

- 40 -

Table 5.2: 200 meters straight path standard deviation values for different sensors resolution

(using 10,000 simulations)

Sensor

variables
Total standard deviation () Advancing direction (y) Perpendicular direction (x)

Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow.

d=1%

=0.1

1.51 m

[0.75%]

1.49 m

[0.72%]

1.51 m

[0.75%]

0.404 m

[0.20%]

0.403 m

[0.20%]

0.631 m

[0.31%]

1.46 m

[0.72%]

1.43 m

[0.72%]

1.37 m

[0.69%]

d=5%

=0.1

2.86 m

[1.4%]

2.66 m

[1.3%]

3.43 m

[1.7%]

1.97 m

[1.0%]

1.99 m

[1.0%]

3.14 m

[1.6%]

2.08 m

[1.0%]

1.77 m

[0.88%]

1.38 m

[0.69%]

d=2%

=0.5

7.23 m

[3.6%]

7.16 m

[3.6%]

6.97 m

[3.5%]

0.836 m

[0.42%]

0.840 m

[0.42%]

1.26 m

[0.63%]

7.18 m

[3.6%]

7.11 m

[3.6%]

6.86 m

[3.4%]

d=5%

=1

14.3 m

[7.2%]

14.4 m

[7.2%]

14.1 m

[7.1%]

2.06 m

[1.0%]

2.08 m

[1.0%]

3.17 m

[1.6%]

14.2 m

[7.2%]

14.2 m

[7.1%]

13.8 m

[6.9%]

Table 5.3: 200 meters 'S' path standard deviation values for different sensors resolution (using

10,000 simulations)

Sensor

variables
Total standard deviation () Advancing direction (x) Perpendicular direction (y)

Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow.

d=1%

=0.1

1.07 m

[0.54%]

1.14 m

[0.57%]

1.20 m

[0.60%]

0.926 m

[0.46%]

0.960 m

[0.48%]

1.02 m

[0.51%]

0.542 m

[0.27%]

0.609 m

[0.30%]

0.629 m

[0.31%]

d=5%

=0.1

3.35 m

[1.7%]

3.89 m

[1.9%]

4.02 m

[2.0%]

2.43 m

[1.2%]

2.80 m

[1.4%]

2.91 m

[1.4%]

2.31 m

[1.2%]

2.70 m

[1.3%]

2.78 m

[1.4%]

d=2%

=0.5

4.46 m

[2.2%]

4.48 m

[2.2%]

4.86 m

[2.4%]

4.12 m

[2.1%]

4.11 m

[2.1%]

4.49 m

[2.2%]

1.71 m

[0.85%]

1.79 m

[0.90%]

1.87 m

[0.94%]

d=5%

=1

9.17 m

[4.6%]

9.23 m

[4.6%]

10.0 m

[5.0%]

8.40 m

[4.2%]

8.36 m

[4.2%]

9.12 m

[4.6%]

3.68 m

[1.8%]

3.92 m

[2.0%]

4.12 m

[2.1%]

Table 5.4: 200 meters square path standard deviation values for different sensors resolution (using

10,000 simulations)

Sensor

variables
Total standard deviation () Advancing direction (x) Perpendicular direction (y)

Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow.

d=1%

=0.1

0.877 m

[0.44%]

0.973 m

[0.49%]

0.831 m

[0.42%]

0.607 m

[0.30%]

0.734 m

[0.37%]

0.587 m

[0.29%]

0.634 m

[0.32%]

0.638 m

[0.32%]

0.583 m

[0.29%]

d=5%

=0.1

3.70 m

[1.8%]

3.96 m

[2.0%]

3.03 m

[1.5%]

2.54 m

[1.3%]

3.02 m

[1.5%]

2.14 m

[1.1%]

2.69 m

[1.3%]

2.56 m

[1.3%]

2.15 m

[1.1%]

d=2%

=0.5

2.83 m

[1.4%]

3.24 m

[1.6%]

3.15 m

[1.6%]

1.99 m

[0.99%]

2.41 m

[1.2%]

2.25 m

[1.1%]

2.01 m

[1.0%]

2.19 m

[1.1%]

2.20 m

[1.1%]

d=5%

=1

6.07 m

[3.0%]

6.92 m

[3.5%]

6.48 m

[3.2%]

4.27 m

[2.1%]

5.14 m

[2.6%]

4.59 m

[2.3%]

4.32 m

[2.2%]

4.63 m

[2.3%]

4.57 m

[2.3%]

Figure 5.7 A-C, presents the path distribution of 30 simulations in a straight path using

three different advancing methods: A) parallel, B) alternating and C) following. Figure 5.7 D-

F, and G-I present the same different advancing methods for 'S' shape and square paths

respectively. We used d=2% and  =0.5.

The resulting total standard deviation, and its components along the direction of motion and

in the vertical direction are summarized in Table 5.2, Table 5.3 and Table 5.4. Note that the

standard deviation values were calculated twice; once using MCS (10,000 simulations) and then

- 41 -

using the analytical expressions developed in the Appendix. The relative difference between

both methods is always smaller than 1% (see Appendix [A]).

For the straight path, (Table 5.2), the overall standard deviation is the largest compared to

the other paths and is nearly unaffected by the advancing method. However, for the other two

paths ('S' shape (Table 5.3) and square (Table 5.4)), the parallel advancing method mostly

generated smaller location errors, where the square path resulted with the smallest errors.

For the straight path, the standard deviation in the vertical direction is substantially larger

than the standard deviation in the direction of motion. The square path on the other hand,

resulted in nearly equal standard deviations both in the parallel and perpendicular direction, due

to equal advancement in both directions.

Overall, the three different advancing methods (parallel, alternating and following) do not

result in significant differences in the standard deviation values within a specific path. The size

and the distribution pattern of the errors are influenced mainly by the overall advancing direction

of the system and almost unaffected by the relative position of the vehicles within each step.

6 Experiments

This section presents a real-world experimental system that was used to validate our

algorithm (6.1), experimental results (6.2) and comparison to the previously presented Monte

Carlo simulation (0).

6.1 Experimental System

To validate our algorithm and simulations, we built a two-robot experimental system fitted

with rotating turrets and cameras (see Figure 6.1). Each turret is equipped with a smartphone’s

video camera (1080×1920 pixels at 30fps). A green 6.2 cm tennis ball was placed at the top of

the turret for visual identification. The turret is connected to a servo motor controlled by an

Arduino microcontroller programmed to continuously rotate the turret by steps of 45 degrees,

from zero till 180 and returning (see Figure 6.2). At each stop, the turret pauses for one second.

Given the camera’s field of view in the horizontal direction γx is 40 degrees, the total field of

view of each robot is 220 degrees.

- 42 -

Figure 6.1: The robotic system used in the experiments.

Figure 6.2: Top view of the robotics system. The turrets rotate in steps of 45 degrees.

We ran four different experiments that were each repeated five times. In each experiment,

the robots (controlled by a human operator) advance in alternating steps while the turret rotates

as the camera continuously records video. The localization of the robots is performed off-line

at the end of the experiment (see Appendix [C]). Each step is represented by two images

(1080×1920), one from each camera and the orientation of the turrets αturret.

The bearing angle  of each robot is the sum of the orientation of the turret αturret plus the

angular position of the tennis ball in the picture αimage:

 turret image  = + . (46)

The angular position in the image is calculated using:

 atan tan
/ 2 2

x x

image

x

b

N




  
=   

  
, (47)

- 43 -

where bx is the x coordinate of the center of the ball in pixels, with respect to the center of the

frame (see Figure 6.3, top right) and Nx is the overall size of the image in pixels in the x direction.

The distance r between the robots (see Figure 6.3, bottom right) is calculated using:

()atan L

L
r


= , (48)

where L is the length of the turret (21 cm) and L is the view angle of the height of the turret in

the frame, calculated from the image:

 L
L y

y

N

N
 =  , (49)

where NL is the size of the turret in pixels and Ny is the overall size of the image in pixels in the

y direction. The camera’s field of view γy in the vertical direction is 70 degrees. The distance r

at each step is calculated from the average of both images (one from each robot).

Figure 6.3: Schematic diagram of distance (bottom right) and bearing (top right) calculation

from frame. Top left: original frame, bottom left: frame after image filtering, center of ball and

top and bottom of turret detected.

- 44 -

6.2 Results

The results of the experiments are presented in Figure 6.4, Table 6.1 and Table 6.2. Both

straight parallel and square parallel experiments show high repeatability with a relatively small

average error (1.1% and 0.14% respectively). The total standard deviation is also relatively

small with respectively 1% and 0.63%. The straight following and 'S' parallel experiments

results are not as highly repeatable, indicating a possible drift in the servo motor. We believe

that the most significant error in our experimental system is a systematic error in the bearing

measurements which could be addressed by replacing the servo motor with a higher accuracy

device. As previously discussed, the bearing sensor's error has a high impact on the localization

error.

Figure 6.4: Experiment results of four different paths; top: straight path following (left) and

parallel (right), bottom: square path (left) and 'S' path (right). Darker colors present real

locations and lighter colors present calculated locations from five experiment results.

Table 6.1: Standard deviation values of experiments' last step results.

Paths
Total Advancement dir. Perpendicular dir. Orientation

 y x 

Straight Follow

[10 steps, 7.5 m]

0.143 m

[1.9%]

0.00897 m

[0.12%]

0.143 m

[1.9%]
1.03

Straight Parallel

[10 steps, 7.5 m]

0.0773 m

[1.0%]

0.0492 m

[0.66%]

0.0597 m

[0.79%]
3.00

Square Parallel

[16 steps, 12 m]

0.0751 m

[0.63%]

0.0594 m

[0.49%]

0.0458 m

[0.38%]
1.06

'S' Parallel

[8 steps, 6 m]

0.179 m

[3.0%]

0.127 m

[2.1%]

0.0997 m

[1.7%]
4.78

- 45 -

Table 6.2: Mean error values of experiments' last step results.

6.3 Comparison to Simulation

The system's repeatability error was evaluated by repeating the same measurement at least

10 times. The standard deviation of the calculated distances and bearing angles were d=1%

(with respect to the real distance) and =0.3. The values of the standard deviation were

implemented in the MCS in order to compare the simulation to the experiments. The simulation

results presented in Table 6.3 show that the experimental results (Table 6.1) are of the same

order as expected by the simulation. Note that since the MCS uses normally distributed random

errors, the mean error for each step is zero.

For the first three experiments, straight following, straight parallel and square parallel paths,

the standard deviation is very similar to the simulation, especially for the square path. In the 'S'

shape path, the standard deviation of the experiment is of the same order as the simulation but

is slightly more than 3 times larger. All four experiments show high compatibility in the relation

between the standard deviation in the advancement and in the perpendicular directions, meaning

the experimental system describes with high accuracy the distribution pattern of the location

errors.

Table 6.3: Standard deviation values of simulations' last step results with d=1% and =0.3.

Paths
Total Advancement dir. Perpendicular dir. Orientation

Mean Error Mean Error Mean Error Mean Error

Straight Follow

[10 steps, 7.5 m]

0.395 m

[5.3%]

0.152 m

[2.0%]

-0.363 m

[4.8%]
0.523

Straight Parallel

[10 steps, 7.5 m]

0.0797 m

[1.1%]

-0.0424 m

[0.56%]

-0.0278 m

[0.37%]
3.57

Square Parallel

[16 steps, 12 m]

0.0174 m

[0.14%]

-0.0078m

[0.065%]

-0.00006m

[0.0005%]
-0.011

'S' Parallel

[8 steps, 6 m]

0.207 m

[3.4%]

0.0529 m

[0.88%]

0.200 m

[3.3%]
-3.35

Paths
Total Advancement dir. Perpendicular dir. Orientation

 y x 
Straight Following

[10 steps, 7.5 m]

0.102 m

[1.4%]

0.0487 m

[0.65%]

0.0895 m

[1.2%]
0.0234

Straight Parallel

[10 steps, 7.5 m]

0.114 m

[1.5%]

0.0423 m

[0.56%]

0.106 m

[1.4%]
0.0234

Square Parallel

[16 steps, 12 m]

0.0778 m

[0.65%]

0.0637 m

[0.53%]

0.0446 m

[0.37%]
0.0296

'S' Parallel

[8 steps, 6 m]

0.0523 m

[0.87%]

0.0389 m

[0.65%]

0.0350 m

[0.58%]
0.0209

- 46 -

7 Control

This section presents a path planning algorithm for the two-robot system, while considering

state, input and path constraints (7.1). Then, a closed-loop path following controller is described

in polar coordinates (7.2). The fusion of both algorithms is implemented in Section 7.3.

7.1 Autonomous Path Planning

In this section, the objective is to design a controller which will allow the two-robot system

to advance autonomously in an uncharted constrained environment which lacks GPS reception

such as a narrow underground tunnel. To do so, each step of the system is considered as an

optimal control problem, where the goal is to advance to a chosen target point in minimum time,

under the surrounding constraints (which will be defined shortly).

Assuming each robot is a differentially driven vehicle whose control inputs are (v,ω),

defined respectively as the linear and angular velocities, the continues kinematic model of a

single robot can be defined either by Cartesian or polar coordinates. After considering both

representations, the Cartesian representation was chosen due to simpler representation of the

constraints.

7.1.1 The Model

The continuous Cartesian kinematic model of a single robot:

sin

cos

x v

y v





 

=

=

=

, (50)

where (x,y) represent the Cartesian location of the robot and θ represents the heading angle. The

global coordinate system is set as the initial position of the moving robot (x0,y0). The heading

angle θ is measured with respect to the positive y axis, clockwise (see Figure 7.1). Notice that

both the heading angle θ and the angular velocity ω directions are CW.

The states of the system are:

  
T

x y =x , (51)

and the control signals are:

  
T

v =u . (52)

- 47 -

Figure 7.1: The system.

Table 7.1: List of state parameters and control inputs

7.1.2 Implementation

Since the system is not linear (see Eq. (50)), linear methods for control under constraints

such as Model Predictive Control (MPC) or Interpolation Control (IC) are not practical.

Therefore, we have decided to use FALCON.m - an optimal control tool for MATLAB,

developed at the institute of Flight System Dynamics of Technische Universität München [43].

FALCON.m uses direct discretization methods in combination with gradient based numerical

optimization and automatic analytic differentiation to solve mathematical optimal control

problems. The numerical optimization is performed by IPOPT – Interior Point Optimizer, a

software library for large scale nonlinear optimization of continuous systems [56].

 As an optimization problem, the objective is solving the problem while minimizing the

cost function (2.7). The cost function is set as the final time tf where the robot arrives to its goal

point:

 min fJ t= . (53)

State/control signal Units Description

x [m]
Cartesian location with respect to initial position.

y [m]

 [rad] Heading angle with respect to positive y axis.

v [m/sec] Linear velocity

 [rad/sec] Angular velocity

- 48 -

7.1.3 Defining Constraints

a. Movement constraints

Limiting the linear and angular velocities of the vehicle:

 max

max max

0 v v

  

 

−  
, (54)

where the linear velocity is constrained to be positive, meaning the vehicle can only advance

forwards.

b. Linear constraints due to shape of tunnel

2 2

lb ub

lb ub

x x x

y y y

  

 

 

−  

, (55)

where xlb, xub, ylb and yub are defined by the shape of the tunnel and the orientation of the robot

is actually not constrained. If the object is advancing forwards, the orientation can be

constrained as follows:

 / 2 / 2    − −   + , (56)

where  is some small angle in order to allow maneuvers (recall that  is defined with respect

to the positive y axis, see Figure 7.1).

c. Visibility by static vehicle constraint

As defined previously, the two vehicles must remain in each other's range of 'sight',

therefore:

maxr r   , (57)

where:

 () ()
2 2

s sr x x y y= − + − , (58)

where r is the distance between the stationary and the moving vehicle, rmax is the distance

sensor’s maximal range and  is the minimal allowed distance between the moving vehicle and

an obstacle (the stationary vehicle is also an obstacle).

d. Initial and final positions

The initial and final positions could be set either as equality or inequality constraints:

- 49 -

 0 0 0 0

2 2

T

T T

f f f f f

X

x y X x y 

=

   −     

, (59)

meaning the final desired location is (xf,yf) whereas the orientation of the robot at the final point

time is not constrained.

e. Avoid obstacles

The final constrains are defined by the obstacles in the environment.

1. Ellipse obstacle

The constraint due to an ellipse shaped obstacle with a center of (Cx,Cy), semi axes of a and

b and orientation of ρ is defined as follows:

() ()()
()

() ()()
()

2 2

2 2

cos sin sin cos
1

x y x yx C y C x C y C

a b

   

 

− + − − − −
+ 

+ +
, (60)

where the addition of  is set so the robot will not come closer than  to the obstacle.

2. Rectangular obstacle

The constraint due to a rectangular obstacle with a center of (Rx,Ry) and the dimensions of

2p×2q is defined as follows:

() () () ()
2

y yx x
y R y Rx R x R

p q p q   

− −− −
+ + − 

+ + + +
, (61)

where the addition of  is set so the robot will not come closer than  to the obstacle. As will be

demonstrated ahead, the rectangular obstacle is useful for dealing with corners in the explored

tunnel.

Figure 7.2: Ellipse (left) and rectangular (right) obstacles.

- 50 -

7.1.4 Simulation Results

This section presents the results of implementing the described control algorithm. First,

single step scenarios were simulated (1) and then, a multi-step simulation is presented (2). In all

figures, the two robots are marked by blue and green rectangles, black lines and ellipses

represent borders and obstacles respectfully and the dashed black line represents the visibility

constraint from the stationary robot.

1. Single Step Scenarios

This section presents the results of four different single step scenarios, validating the

algorithm for different cases of borders and obstacles.

Table 7.2: Constant values for all single step simulations.

(x0,y0) (xs,ys) vmax max rmax 

(0 [m], 0 [m]) (8 [m], 6 [m]) 5 [m/sec] 8 [rad/sec] 10 [m] 0.5 [m]

a. Straight tunnel no obstacle

Table 7.3: Constant values for simulation (a).

(xf,yf) xlb xub ylb yub

(8 [m], 16 [m]) -2 [m] 10 [m] 0 [m] inf

Figure 7.3: Simulation's (a) trajectory, constraints (left), state and control input values over

time (right).

- 51 -

b. Straight tunnel with one ellipse obstacle

Same constant values as simulation (a) (Table 7.3), additional ellipse obstacle (Eq. (60)).

Table 7.4: Constant obstacle values for simulation (b).

(Cx,Cy) a b 

(4 [m], 8 [m]) 3 [m] 1 [m]  rad]

Figure 7.4: Simulation's (b) trajectory, constraints (left), state and control input values over

time (right).

c. Corner no obstacles

In this case, since the borders of the tunnel are not linear, they cannot be defined in the form

of Eq. (55)). Alternatively, a rectangular obstacle (square in this specific case) is used to define

the corner constraint (Eq. (61)).

Table 7.5: Constant values for simulation (c).

(xf,yf) xlb xub ylb yub (Rx,Ry) p q

(16 [m], 12 [m]) -2 [m] inf 0 [m] 20 [m] (15 [m], 5 [m]) 5 [m] 5 [m]

- 52 -

Figure 7.5: Simulation's (c) trajectory, constraints (left), state and control input values over

time (right).

d. Corner and one ellipse obstacle

Same constant values as simulation (c) (Table 7.5), additional ellipse obstacle (Eq. (60)).

Table 7.6: Constant obstacle values for simulation (d).

(Cx,Cy) a b 

(5 [m], 8 [m]) 3 [m] 1 [m]  rad]

Figure 7.6: Simulation's (d) trajectory, constraints (left), state and control input values over

time (right).

- 53 -

2. Multi-Step Simulation

Consider a long straight tunnel with many obstacles. The objective is that the robots

autonomously advance in the tunnel in alternating steps while remaining in each other’s range

of sight and avoiding obstacles. Each step is an optimization problem solved as previously

presented.

The considered tunnel is 30 meters long and 9 meters wide. The distance sensor’s maximal

range is 5 meters (rmax=5 m); hence a minimum of 6 steps are needed to cross the tunnel. The

obstacles size, location and orientation are random within defined boundaries.

The flow chart of the process is described in Figure 7.7, the MATLAB codes are presented

in Appendix [E] and Figure 7.8 presents the results of four successful simulations. Next, further

details of each step in the process is presented.

Figure 7.7: Multi-step algorithm flow chart.

a. Create Map – setting the boundaries of the tunnel.

b. Initialization – setting the initial positions of the robots for current step.

c. Relevant Obstacles – first, we tried running the optimization with multiple (5) obstacles

and it crashed due to data overflow. Therefore, we decided to use for each step only the

nearby obstacles, a reasonable simplification since not all obstacles are visible to the

robots at all time. In practice, at each step a random obstacle is defined within the scope

of the current step (distance of rmax from stationary vehicle); The optimization is

performed under the previous and the new obstacles constraints.

d. Choose Final Position – The desired position for the traveling robot was determined as

the point of most advancement in the y direction while maintaining the following

conditions:

• Distance from stationary robot (r) not larger than distance sensor’s range, hence

r ≤ rmax.

- 54 -

• Not closer than ε from tunnel borders and obstacles. The condition of distance from

obstacle is verified by Eq. (60).

e. Optimization – finding the optimal trajectory for the current step from (x0,y0) to (xf,yf)

while avoiding obstacles using the FALCON.m tool.

Table 7.7: Constant values for all multi-step simulations.

xlb xub ylb yub rmax ε vmax max

-2 [m] 7 [m] 0 [m] 30 [m] 5 [m] 1 [m] 5 [m/sec] 8 [rad/sec]

Figure 7.8: Four multi-step simulations’ results with the same conditions and random

obstacles.

- 55 -

7.2 Path Following with Polar Coordinates

This section presents a closed loop controller based on polar coordinates, designed to

control the vehicles’ movement along a desired path within each step. Polar coordinates were

chosen due to the polar nature of the system's measurements – distance and bearing angle. The

controller is designed for a differentially driven vehicle whose control inputs are (v,), defined

respectively as the linear and angular velocities (see Figure 7.9).

Figure 7.9: Differentially driven vehicle model in polar coordinates. Pr – stationary vehicle

and polar coordinate system origin, P0 – traveling vehicle's initial position, Pe – traveling

vehicle's target point.

The kinematic model of the vehicle, using polar coordinates is:

cos

sin

cos

v

r

r v

v

r

 



  

=

=

= +

, (62)

where the state of the vehicle is defined by (, r, ). The variables  and r define the

vehicle's location whereas  defines its heading, measured from the perpendicular to the radius

r (see Figure 7.9). The origin of the polar coordinate system is set to the position of the stationary

vehicle Pr, and the initial position of the traveling vehicle P0 is set to =0, r=r0. The traveling

vehicle's target point Pe is located at distance re from the origin and at angle e from its initial

 = 0
𝑟 = 𝑟

𝑟 =

𝑟

v

ω

𝑟 =

𝑟

- 56 -

position. The desired trajectory of the traveling vehicle (dashed grey line in Figure 7.9) is

rd = f ().

The position error (in the direction of r) of the traveling vehicle with respect to the desired

trajectory is:

 () () () () ()r de t r t r r t f = − = − . (63)

The time derivative of the position error is:

 .

()
cos

() sin ()re t r f f v
r


   

 
 = − = − 

  (64)

We define the heading error of the traveling vehicle with respect to the desired trajectory as:

 ()
cos

sin ()e t f
r




 = − . (65)

where |r|> and  >0. This definition represents the heading error because if the vehicle is on

the desired path, the desired advancement direction is:

 ()
() sin

'
cos

d

d

df
f r

d

 


 
= = . (66)

In other words, if e=0 then (t)=d, the vehicle is in the desired direction. Deriving Eq.

(65) by time yields:

2

2

2

2 2

2

2 2

cos sin cos
cos () ()

cos cos sin
() () () cos

cos cos sin sin
() () () cos cos

cos cos sin
() ()

r r
e f f

r r

f f r f
r rr

v
f v f v f

r rr r

f v f
r r



  
   

  
     

   
     

  
 

+
 = − +

 
  = − + + + 

 

  
  = − + + + +  

  

 = − +
2

2

2 2

2 2

sin cos cos sin
() () cos

cos cos sin cos sin
2 () () () cos

v f v f
r rr

f f v f
r rr r

   
   

    
    

   
 + + + +   

  

   
  = + − + +   

  

. (67)

Similar to the design method presented in [55], by choosing the input of the angular velocity as:

 ,

2 2

2 2

cos cos sin cos
() 2 ()

()sin cos

r
f f u v

f r rr r

   
  

  

 
 = − − + 

 +   (68)

with the signal u(t) to be designed, the following second order chain model is achieved:

 re e v

e uv





=

=
. (69)

- 57 -

The proper choice of u(t) should compel the errors to converge to zero. Using a standard

full state feedback method (2.4.1):

1 2() ru t k e k e= − − , (70)

leads to the following closed loop system in a state space representation (2.4):

1 2

0 1
,

r

e Aev

e
e A

e k k

=

   
= =   

− −  

. (71)

The constants k1,k2 should be chosen so that the matrix A is stable, under the assumption

that v>0. Choosing a larger k1 will cause faster convergence of the location but slower

convergence of the heading angle, and vice versa. A stable matrix A and v>0 can be shown to

ensure stability of the closed loop by using the following Lyapunov function (2.5):

 , 0TV e Pe P=  , (72)

which is a positive definite matrix. Its derivative is always negative:

() 0

T T T T T

T T

V e Pe e Pe ve A Pe e PAev

e A P PA ev Qv

= + = +

= + = − 
. (73)

Alternatively, the system can also be expressed using the path variable 'p' instead of the

time 't':

0 1 0

0 0 1

r r re de dt e dp
u

e de dt e dt  

         
= = +          

         

. (74)

By multiplying both sides of the equation by dt/dp, we obtain:

 1 2

' ()

0 1 0
, , ,

0 0 1

e A BK e

A B K k k u Ke

= −

   
= = = = −   

   

, (75)

and the state variable derivatives are by the path variable 'p'.

The standard full state feedback structure of the dynamic system in state space

representation allows for the use of standard methods to determine the control values [k1,k2],

such as pole placement or linear-quadratic regulator (LQR). It should be noted that performance

is obtained relative to the path variable 'p' instead of the time 't'.

After planning appropriate control variables 1k and 2k , the angular velocity that should be

applied:

- 58 -

()
2 2

1 1 2 22 2

cos cos sin cos
() 2

()sin cos

r
f f k e k e v

f r r r r

   
  

  

 
 = − − − − 

 +  
. (76)

It could be seen that the input signal reaches singularity when:

 ()sin cos 0f r   + = . (77)

To understand the physical meaning of this phrase, it could be written as follows:

 ()
()cossin

sin cos sin cos 0
cos cos

rr

r r

f r r r r
 

    
 

−
 + = + = = , (78)

hence, this singularity accrues when the angle between the heading of the vehicle and the desired

path is 2 . In this scenario, the direction of the required angular velocity is undefined since

the convergence towards the desired path can be reached by turning left or right equally.

7.2.1 Straight Line Path Following and Convergence

At this point, the assumption is that at each step, the vehicle is given a target point. If there

are no obstacles in the explored area, an optional solution is to advance in a straight line to the

target point; this section presents the implementation of the path following algorithm presented

above while the desired path is a straight line.

Figure 7.10: Straight Line advancement strategy. Pr is the stationary observing vehicle’s

position, P0 is the moving vehicle’s initial position and Pe is the moving vehicle’s target point.

The measurements of the moving vehicle are obtained with respect to point Pr, according

to polar coordinates; therefore, the desired path will be represented according to a polar frame

- 59 -

which origin is at Pr and the angle 0 = represents the moving vehicle’s initial position, as

seen in Figure 7.10. The given data of the problem are 0 , ,e er r , where 0r describes the initial

position and ,e er describe the final desired position. The desired path is a straight line, but it

needs to be described in polar coordinates i.e. ()=dr f .

From the given data, the length of the desired path d can be calculated using the law of

cosines:

 2 2

0 02 cose e ed r r r r = + − . (79)

The angle χ (see Figure 7.10) can be calculated using the law of sines:

sin

arcsin
sin sin

e e e

e

r rd

d




 
= → = . (80)

The law of sines can be used again to calculate the desired path:

() ()

()0 0
0

sin
() sin csc

sin sin 180 sin

d
d

r r r
r f r


   

    
= → = = = +

− − +
. (81)

In order to implement the previously presented controller, the first and second derivatives

of ()f are needed:

() ()

() () ()()
0

2 2

0

() sin csc cot

() sin csc cot csc

f r

f r

     

       

 = − + +

 = + + + +
. (82)

7.2.2 Simulation

Our control method was simulated using MATLAB Simulink program with a control rate

of 104 loops per meter, see Appendix [D]. The values of the variables used in the simulation are

presented in Table 7.8. If the maximum desired overshoot is 10% (2.6), then the damping

coefficient is:

2

exp 0.1 0.6
1

pM





 
 = − = → 
 − 

. (83)

Demanding convergence after half of the path with a tolerance of 5%:

()ln 0.05 1 10

(5%)
2

s n

n

P d
d




−
= = → = . (84)

The characteristic equation (2.6) of the system (Eq. (75)) is:

- 60 -

 () 2

2 1s s k s k = + + . (85)

By comparing to the standard characteristic equation (Eq. (10)), the control values should be:

1 22

100 12
,k k

d d
= = . (86)

The simulation results are presented in Figure 7.11. Figure 7.11 (left) shows that in the first

case, the robot accurately followed the trajectory with a very small error which was 4 orders

smaller than the length of the trajectory. In the second case (Figure 7.11, right), where the robot

was initially positioned with an incorrect heading of nearly 90 degrees, the solution converged

to the desired trajectory (5% angular error), within half of the trajectory and the overshoot was

smaller than 10% as desired.

Table 7.8: Simulation Variables

Variables (xr,yr) (x0,y0) (re,e) v

Values (0,0) (-15,0) (21.2,45) 1 [m/sec]

Figure 7.11: Simulation results. Top: the traveling robot's path (green solid line), while the

observing robot measures relative location and orientation (blue dashed line). Bottom:

corresponding location and angle errors relative to the desired path. Left: initial orientation of

0°, right: initial orientation of -90°+ε.

- 61 -

7.3 Path Planning and Following

This section presents the fusion and implementation of the two presented algorithms. In

Section 7.1, we found the optimal trajectory for each step in a constrained environment. The

outputs of the algorithm are a set of (xd,yd,θd) points representing the robot's optimal trajectory

and the required open-loop control inputs (vd,ωd). Given continues measurements of the distance

and bearing with respect to the stationary robot, the presented closed-loop controller (7.2) could

be used to follow the optimal path, giving the system the ability to self-adjust depending on the

outputs and measurements (rather than implementing the path planning algorithm directly as an

open-loop controller). It should be mentioned, that this implementation requires that the robots

stay in each other's range of 'sight' and any obstacle between them must be adequately low.

Figure 7.12: Path following in polar coordinates. Pr is the stationary observing vehicle’s

position, P0 is the moving vehicle’s initial position and Pc is the moving vehicle’s current position.

In order to implement the closed-loop controller presented in Section 7.2, the desired path

must be represented as rd = f (), while the origin of the polar coordinate system is set to the

position of the stationary vehicle (xs,ys). Representing the optimal trajectory (xd,yd) in polar

coordinates (rd,αd):

 () ()
2 2

d d s d sr x x y y= − + − , (87)

and the angle is derived from the law of cosines:

- 62 -

2 2 2

0

0

acos
2

d c
d

d

r r d

r r


 + −
=  

 
 . (88)

 In Eq. (88), r0 is the initial distance of the moving vehicle:

 () ()
2 2

0 0 0s sr x x y y= − + − , (89)

and dc is the current distance of the moving vehicle from its initial position:

 () ()
2 2

0 0c d dd x x y y= − + − . (90)

Notice that we use only the location (xd,yd) and not the orientation θd obtained by the

optimal path algorithm.

In order to implement the closed-loop controller, the desired trajectory must be described

as a continues function rather than a set of points. We used a 4-th order polynomial curve fitting:

 () 4 3 2

1 2 3 4 5dr p p p p p    = + + + + , (91)

making the first and second derivatives:

 () 3 2

1 2 3 4' 4 3 2dr p p p p   = + + + , (92)

 () 2

1 2 3'' 12 6 2dr p p p  = + + . (93)

7.3.1 Simulation

We used the closed-loop polar coordinate controller on the optimal trajectories obtained

from the four single step scenarios presented in Section 7.1.4 (1). The linear velocity was set to

be the constant maximal velocity v=5 m/sec. We used the control values designed in Section

7.2.2 (Eq. (86)), which should result in maximum overshoot of 10% and convergence after half

of the path with a tolerance of 5%.

The following figures present the actual trajectory (solid green line) as well as the desired

optimal trajectory (black dotted line). Additionally, location and angle errors relative to the

desired path are presented, as well as control input values.

- 63 -

a. Straight tunnel no obstacle

Figure 7.13: Simulation's (a) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right).

b. Straight tunnel with one ellipse obstacle

Figure 7.14: Simulation's (b) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right).

- 64 -

c. Corner no obstacles

Figure 7.15: Simulation's (c) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right).

d. Corner and one ellipse obstacle

In the last case the optimal trajectory was not as well fitted by a 4-th order polynomial

function, thus a 6-th order polynomial was used and the derivatives were changed respectively.

Figure 7.16: Simulation's (d) trajectory and constraints (left), location and angle errors

relative to the desired path (top right), and control input values (bottom right).

- 65 -

As seen in Figure 7.13, Figure 7.14 and Figure 7.15, the robot successfully followed the

desired path with very low location and angle errors for simulations (a)-(c). The top right figures

show that the solution converged to the desired trajectory (5% error), with a settling distance

that is under half of the trajectory and the overshoot was smaller than 10% as desired. Simulation

(d) was also successful, though required very high angular velocity (Figure 7.16 bottom right),

since the closed-loop controller is designed for geometric following of a path and not a

trajectory, i.e. velocity constraints are not considered.

Comparing the required control signals in both methods, the closed-loop resulted in

smoother angular velocity as opposed to the open-loop (see Figure 7.3, Figure 7.4, Figure 7.5

and Figure 7.6 bottom right), which resulted in abruptly switching control signals between the

upper and lower bounds, resembling the 'bang-bang' control method [57]. On the other hand, as

opposed to the closed-loop solution, in the path planning algorithm the control inputs are

constrained; Figure 7.16 bottom right shows that not constraining the angular velocity could

result in high and possibly not practicable values. It should be reminded, that the linear velocity

was set to a constant 5 m/sec and the angular velocity depends directly on the linear velocity

(Eq. (76)). Therefore, the problem of high angular velocity values could be addressed by

lowering the linear velocity appropriately once the angular velocity reaches its upper boundary.

This method has the clear advantage of a closed-loop controller as opposed to an open-loop

controller, giving the system the ability to overcome disturbances. Though it should be

reminded, that this method requires continues measuring throughout each step, or partial

measurement combined with estimation; for example, measuring the position of the moving

vehicle by the static vehicle and estimating its orientation, meaning only the static vehicle

performs measurements. Implementing the open loop algorithm on its own (Section 7.1),

requires that measurements will be obtained only at the end of each step.

- 66 -

8 Conclusions

In this paper we presented a simple, low cost method for precise multi-robot self-

localization that relies on distance and bearing measurements. The system can be deployed in

indoor areas where GPS signals are unavailable, and visibility is relatively low. The key

advantage of this method is that it reduces the errors resulting from the inaccuracies of

evaluating the orientation of the robots. We developed an analytical solution for the position of

the robots and a numerical simulation to account for the statistical sensors' errors. We show that

the total relative error (cumulative error divided by travelled distance) is on the same order of

magnitude as the sensors' relative errors (error divided by distance), and that the angular error

has a larger impact on the location errors than the distance error, thus making it important to use

a relatively accurate bearing sensor.

Given that the sensor measurement contains statistical errors, we ran a Monte Carlo

Simulation (MCS) and determined the spatial distribution of the measured/estimated location of

the robot with the given sensors' random errors (10,000 simulations for each case). To reduce

the MCS computation time, we developed an approximated error evaluation method based on

first order linear approximation. This method was 200 times faster than the direct method.

We then used the MCS to compare between different paths and advancing methods. We

found that the chosen path governed the size of the location error, whereas the different

advancing methods had little influence on the total error. For a given equal number of steps and

total travelled distance, the smallest error is in the square path, followed by the 'S' shaped path

and the largest error is with the straight path. Overall, using our localization algorithm, it is best

to increase the size of the steps and decrease their number in order to reduce the bearing errors

and increase the accuracy of the localization.

Next we present a two-robot system used to further validate our algorithm by real-world

experiments. We performed experiments in four different paths, calculated the standard

deviation and mean error values and compared the results to the Monte Carlo simulation. The

results show that the method is very accurate with errors of about 1-3% of the total distance

traveled.

Finally, we developed a path planning algorithm and a closed-loop path following

controller, allowing the two robots to autonomously advance in an uncharted constrained area.

In the path planning algorithm cartesian coordinates are used due to simpler representation of

the path and obstacle constraints whereas in the path following algorithm polar coordinates are

- 67 -

used due to the polar nature of the system's measurements. The path planning algorithm finds

the optimal (shortest) trajectory at each step while avoiding obstacles and remaining visible to

the stationary robot. Following the optimal path is obtained by using a closed-loop controller;

we found that our path following algorithm quickly converges to the desired path even when

the initial error is large.

Besides its advantages, the method presented in this research does require a line of sight

between the two cooperating robots and that one of the robots must remain fully static during

each step. Another limitation is that the method is currently limited to 2D localization. However,

we expect that it can be generalized to 3D problems by adding another relative bearing

measurement between the robots. Additionally, the presented algorithm can be further

developed to a multi-robot system (three or more robots), enabling to reduce the cumulative

error by a proper estimation algorithm.

As to the control algorithm, we believe the presented path planning algorithm can be further

developed to fit more complex constraints. For example, more complex shaped obstacles can

be approximated as a combination of the presented ellipse and rectangle obstacles, or curvy

tunnel boundaries could be defined by ellipse obstacles, similar to the shown case of a rectangle

obstacle used to define a straight corner. Additionally, the visibility by the static vehicle

constraint could be formulated so that obstacles are also taken into consideration, ensuring the

two robots always remain in each other's range of sight, even in the presents of high obstacles.

- 68 -

9 References

[1] R. Kurazume, S. Nagata and S. Hirose, "Cooperative positioning with multiple robots", IEEE

International Conference on Robotics and Automation, pp. 1250–1257, 1994.

[2] R. Kurazume, S. Nagata and S. Hirose, "Study on cooperative positioning system", IEEE

International Conference on Robotics and Automation, pp. 1421-1426, 1996.

[3] I. M. Rekleitis, G. Dudek and E. E. Milios, "Multi-robot exploration of an unknown environment,

efficiently reducing the odometry error", International Joint Conference in Artificial Intelligent

(IJCAI), Vol. 2, pp. 1340–1345. 1997.

[4] I. M. Rekleitis, G. Dudek and E. E. Milios, "Experiments in free-space triangulation using

cooperative localization", IEEE/RSJ International Conference Intelligent Robotic Systems, 2003.

[5] A. J. Davison and N. Kita, "Active visual localization for cooperating inspection robots",

IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1709–1715, 2000.

[6] M. Moors, F. Schneider and D. Wildermuth, "Relative position estimation in a group of robots",

International Conference on Climbing and Walking Robots, 2003.

[7] G. Dudek and N. Roy, “Multi-robot rendezvous in unknown environments, or, what to do when

you’re lost at the zoo,” In Proceedings of the AAAI National Conference Workshop on Online

Search, pp. 22–29, 1997.

[8] Roy N. and Dudek G., "Collaborative robot exploration and rendezvous: Algorithms, performance

bounds and observations", Autonomous Robots, vol. 11, pp 117–136, 2001.

[9] Zhou X. S. and Roumeliotis S. I., "Multi-robot SLAM with unknown initial correspondence: The

robot rendezvous case", IEEE/RSJ International Conference on Intelligent Robots and Systems,

2006.

[10] Howard A., "Multi-robot simultaneous localization and mapping using particle filters", SAGE

journals, vol. 25, pp. 1243-1256, 2006.

[11] Birk A. and Carpin S., "Merging occupancy grid maps from multiple robots", IEEE, vol. 94, pp.

1384 – 1397, 2006.

[12] Burgard W., Moors M., Fox D., Simmons R. and Thrun S., "Collaborative multi-robot

exploration", IEEE International Conference on Robotics and Automation, 2000.

[13] M. Todescato, A. Carron, R. Carli, A. Franchi, and L. Schenato, “Multi-robot localization via GPS

and relative measurements in the presence of asynchronous and lossy communication,” IEEE

European Control Conference, pp. 2527–2532, 2016.

[14] A. T. Rashid, M. Frasca, A. A. Ali, A. Rizzo, and L. Fortuna, “Multi-robot localization and

orientation estimation using robotic cluster matching algorithm,” Robotics and Autonomous

Systems, vol. 63, pp. 108–121, 2015.

[15] A. Martinelli, F. Pont and R. Siegwart, “Multi-robot localization using relative observations”,

IEEE International Conference on Robotics and Automation, pp. 2797-2802, 2005.

[16] O. De Silva, G. K. Mann, and R. G. Gosine, “Efficient distributed multi-robot localization: A

target tracking inspired design,” IEEE International Conference on Robotics and Automation, pp.

434–439. 2015.

[17] C. Lin, Z. Lin, R. Zheng, G. Yan, and G. Mao, “Distributed source localization of multi-agent

systems with bearing angle measurements”, IEEE Transactions on Automatic Control, vol. 61,

no. 4, pp. 1105–1110, 2016.

[18] L. Luft, T. Schubert, S. Roumeliotis, and W. Burgard, “Recursive decentralized localization for

multi-robot systems with asynchronous pairwise communication,” International Journal of

Robotic Research, 2018.

[19] J. Liu, J. Pu, L. Sun and Y. Zhang, “Multi-robot cooperative localization with range-only

measurement by UWB”, IEEE Chinese Automation Conference, 2018.

- 69 -

[20] C. Pierre, R. Chapuis, R. Aufrere, J. Laneurit, and C. Debain, “Range-only based cooperative

localization for mobile robots,” IEEE International Conference on Information Fusion, pp. 1933–

1939, 2018.

[21] Y. Cao, M. Li, I. Vogor, S. Wei and G. Beltrame, “Dynamic range-only localization for multi-

robot systems”, IEEE Access, vol. 6, 2018.

[22] S. Se, D. Lowe, and J. Little, “Mobile robot localization and mapping with uncertainty using scale-

invariant visual landmarks”, International Journal of Robotic Research, vol. 21, no. 8, pp. 735–

758, 2002.

[23] A. Gil, O. Reinoso, M. Ballesta and M. Julia, “Multi-robot visual SLAM using a Rao-

Blackwellized particle filter”, Robotics and Automation Systems, vol. 58, no. 1, pp. 68-80, 2010.

[24] J. Fuentes-Pacheco, J. Ruiz-Ascencio and J. M. Rendón-Mancha, “Visual simultaneous

localization and mapping: a survey”, Artificial Intelligent Review, vol. 43, pp. 55-81, 2015.

[25] M. Saska et al., “System for deployment of groups of unmanned micro aerial vehicles in GPS-

denied environments using onboard visual relative localization,” Autonomous Robots, vol. 41, no.

4, pp. 919–944, 2017.

[26] C. Alejandro and R. Nagpal, “Distributed range-based relative localization of robot swarms”,

Algorithmic Foundations of Robotics XI, Springer International Publishing, pp. 91-107, 2015.

[27] A. Prorok, A. Bahr, and A. Martinoli, “Low-cost collaborative localization for large-scale multi-

robot systems,” IEEE International Conference on Robotics and Automation, pp. 4236–4241,

2012.

[28] X. Zhou and S. Roumeliotis, “Determining the robot-to-robot 3D relative pose using combinations

of range and bearing measurements (Part II)”, IEEE International Conference on Robotics and

Automation, pp. 4736–4743, 2011.

[29] X. Zhou and S. Roumeliotis, “Determining 3D relative transformations for any combination of

range and bearing measurements,” IEEE Transactions on Robotics, vol. 29, no. 2, pp. 458 – 474,

2013.

[30] S.T. Pfister, K.L. Kriechbaum, S.I. Roumeliotis and J.W. Burdick, "Weighted range sensor

matching algorithms for mobile robot displacement estimation", IEEE International Conference

on Robotics and Automation, 2002.

[31] S. M. LaValle, "Planning algorithms", Cambridge University Press, 2006.

[32] S. M. LaValle, "Motion planning", IEEE Robotics Automation Magazine, vol. 18, no. 2, pp. 108-

118, 2011.

[33] C. E. Garcia, D. M. Prett, and M. Morari, "Model predictive control: Theory and practice - a

survey", Automatica, vol. 25, no. 3, pp. 335-348, 1989.

[34] M. Morari and J.H. Lee, “Model predictive control: Past, present and future,” Computers and

Chemical Engineering, vol. 23, no. 4-5, pp. 667-682, 1999.

[35] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained model predictive

control: Optimality and stability,” Automatica, vol. 36, no. 6, pp. 789–814, 2000.

[36] F. Borrelli, A. Bemporad, and M. Morari, “Predictive control for linear and hybrid systems”,

[Online], Available: http://www.mpc.berkeley.edu/mpc-course-material, 2014.

[37] E. Allgower and A. Zheng (eds), "Nonlinear model predictive control", vol. 26 of Progress in

Systems and Control Theory, Birkhauser, 2000.

[38] D.H. Shim, H.J. Kim and S. Sastry, “Decentralized nonlinear model predictive control of multiple

flying robots”, IEEE International Conference on Decision and Control, 2003.

[39] H. N. Nguyen, "Constrained control of uncertain, time-varying, discrete-time systems: an

interpolation-based approach", Lecture Notes in Control and Information Sciences 451, Springer,

2014.

- 70 -

[40] S. Karaman and E. Frazzoli, "Sampling-based algorithms for optimal motion planning", The

International Journal of Robotics Research, vol. 30, no. 7, pp. 846-894, 2011.

[41] M. Elbanhawi and M. Simic, "Sampling-based robot motion planning: A review", IEEE

Access, vol. 2, pp. 56-77, 2014.

[42] E. Schmerling, L. Janson and M. Pavone, "Optimal sampling-based motion planning under

differential constraints: the driftless case", IEEE International Conference on Robotics and

Automation, pp. 2368-2375, 2015.

[43] M. Rieck, M. Bittner, B. Gruter, J. Diepolder, and P. Piprek, “Falcon.m user guide” [Online],

Available: www.falcon-m.com, 2019.

[44] A. D. Luca, G. Oriolo, and M. Vendittelli, “Control of wheeled mobile robots: An experimental

overview,” In: S. Nicosia, B. Siciliano, A. Bicchi, P. Valigi (eds) Ramsete, Lecture Notes in

Control and Information Sciences, Springer, vol. 270, pp. 181–223, 2001.

[45] D. K. Chwa, “Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar

coordinates,” IEEE Transactions in Control Systems Technology, vol. 12, no. 4, pp. 637–644,

2004.

[46] J. Djugash, S. Singh and B. P. Grocholsky, “Modeling mobile robot motion with polar

representations”, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.

[47] J. Park and B. Kuipers, “A smooth control law for graceful motion of differential wheeled mobile

robots in 2D environment,” IEEE International Conference on Robotics and Automation, pp.

4896–4902, 2011.

[48] J. Cornejo, J. Magallanes, E. Denegri and R. Canahuire, “Trajectory tracking control of a

differential wheeled mobile robot: A polar coordinates control and LQR comparison,” IEEE

International Conference Electronics, Electrical Engineering and Computing, no. 2, pp. 1–4,

2018.

[49] M. Hazewinkel, ed., "Jacobian", Encyclopedia of Mathematics, Springer Science+Business Media

B.V. / Kluwer Academic Publishers, 2001.

[50] B. S. Everitt, “The Cambridge dictionary of statistics”, Cambridge (3rd edition), Cambridge

University Press, 2006.

[51] W. Hahn, “Theory and application of Liapunov's direct method”, Englewood Cliffs, NJ: Prentice-

Hall, 1963.

[52] A. M. Lyapunov, “The general problem of the stability of motion” (In Russian), Doctoral

dissertation, Univ. Kharkov, 1892, English translations: (1) “Stability of Motion”, Academic

Press, New-York & London, 1966 (2) “The General Problem of the Stability of Motion”, (A. T.

Fuller trans.) Taylor & Francis, London 1992.

[53] G. B. Dantzig, "The nature of mathematical programming”, Archived at the Wayback Machine,

Mathematical Programming Glossary, INFORMS Computing Society, 2014.

[54] D. Z. Du, P. M. Pardalos, W. Wu, "History of optimization", In C. Floudas, P. Pardalos, (eds.),

Encyclopedia of Optimization, Boston: Springer, pp. 1538–1542, 2008.

[55] S. A. Arogeti and N. Berman, “Path following of autonomous ground vehicles in the presence of

sliding effects,” IEEE Transactions on Vehicular Technology, vol. 61, no. 4, pp. 1481–1492, 2012.

[56] A. Wächter and L.T. Biegler, “On the implementation of a primal-dual interior point filter line

search algorithm for large-scale nonlinear programming”, Mathematical Programming, vol. 106,

no. 1, pp. 25-57, 2006.

[57] R. Bellman, I. Glicksberg and O. Gross, "On the 'bang-bang' control problem," Quarterly of

Applied Mathematics, vol. 14, pp. 11-18, 1956.

http://www.falcon-m.com/

- 71 -

10 Appendices

[A] ANALYTICAL STANDARD DEVIATION AND COMPARISON TO SIMULATION

In this appendix we develop an analytical approximation of the standard deviation of the

location error as a function of the standard deviations of the sensor accuracy. The approximated

location and orientation of the vehicles is cumulative, meaning that it is affected by all the

previous error measurements of the distance and bearing. The measurement error of the first

step (see Eq. (35)) is:

11 1 11

1 11 1 11 1

cos sin 0

sin cos 0

0 1 1

r

E r

 

 

− 
 

= 
 
 − 

. (94)

At the second step it becomes:

() ()
() ()

() ()
() ()

2 1 2, 2 1 2,

2 1 2 1 2, 2 1 2, 1

1 2, 2 1 2,

1 2, 2 1 2, 2

0 sin sin

0 cos cos

0 0 0

cos sin 0

sin cos 0

0 1 1

s s

s s

s s

s s

r r

E E r r

r

r

   

   

   

   

 − + +
 

= + + − +  
 
  

 + − +
 

+ + +  
 

−  

. (95)

And in the third step:

() ()
() ()

() ()
() ()

() ()
() ()

3 2 3, 3 2 3,

3 2 3 2 3, 3 2 3, 1

3 2 3, 3 2 3,

3 2 3, 3 2 3, 2

2 3, 3 2 3,

2 3, 3 2 3,

0 sin sin

0 cos cos

0 0 0

0 sin sin

0 cos cos

0 0 0

cos sin 0

sin cos 0

0 1 1

s s

s s

s s

s s

s s

s s

r r

E E r r

r r

r r

r

r

   

   

   

   

   

   

 − + +
 

= + + − +  
 
  

 − + +
 

+ + − +  
 
  

 + − +


+ + +

−

3




 
 
 

. (96)

Generalizing the total error at step n, the error En in the directions x,y and the orientation

 is:

- 72 -

_

1

x n

n y i n i

i

n

E

E E B

E

=

 
 

= = 
 
  

 , (97)

where the sensor error Δi at step i is:

, ,

T

i i i s i tr    =     , (98)

and the matrix Bi_n is calculated using:

_

1

n

i n i j

j i

B B C
= +

= +  , (99)

where:

() ()
() ()

1 , 1 ,

1 , 1 ,

cos sin 0

sin cos 0

0 1 1

i i s i i i s

i i i s i i i s

r

B r

   

   

− −

− −

 + − +
 

= + + 
 

−  

, (100)

and:

() ()

() ()
1 , 1 ,

1 , 1 ,

0 sin sin

0 cos cos

0 0 0

j j j s j j j s

j j j j s j j j s

r r

C r r

   

   

− −

− −

 − + +
 
 = + − +
 
 
 

. (101)

Using Eq. (97), and under the assumption of random uncorrelated sensor measurement

errors Δi (i.e. covariance of any two measurements is zero),

 ()

()

()
()

2 2

2

,

2

,

var

var var

var

i i d

i i s

i t

r r







 



   
   

 =  =   
       

, (102)

the variance of the total measurement error is:

 () ()_

1

var var
n

n i n i

i

E B
=

=  . (103)

The standard deviation in the x and y directions, respectively x and y are (Eq. (43)-(45)):

 () () ()

0.5
2

2 2 2 2

1 , 1 ,

1 1

cos sin
n n n

x i i i s d i i i s

i j i j

r j r       − −

= = =

 
= + +  + 
   

   , (104)

- 73 -

() () ()

0.5
2

2 2 2 2

1 , 1 ,

1 1

sin cos
n n n

y i i i s d i i i s

i j i j

r j r       − −

= = =

 
= + +  + 
   

   , (105)

where:

 ()
1, 1

2, 1

j
j

j

=
 = 


. (106)

And the standard deviation of the orientation  is (Eq. (42)):

 2n  =  . (107)

The validation of Eq. (104)-(106) is presented in Table 10.1 where a comparison is made

between the total standard deviation values  calculated using the MCS (10,000 simulations)

and the analytical expression. The results show that the largest relative difference between the

two methods is 0.79%.

Table 10.1: Total standard deviation values using 10,000 simulations, analytic calculation and

relative difference, 200 meters 'S' path.

Sensor

variables

Parallel Alternating Following

Simulation Analytic
Relative

diff.
Simulation Analytic

Relative

diff.
Simulation Analytic

Relative

diff.

d=1%

=0.1
1.073 m 1.075 m 0.23% 1.137 m 1.134 m 0.27% 1.198 m 1.204 m 0.55%

d=5%

=0.1
3.353 m 3.372 m 0.58% 3.887 m 3.857 m 0.79% 4.023 m 4.010 m 0.32%

d=2%

=0.5
4.465 m 4.468 m 0.080% 4.484 m 4.499 m 0.32% 4.864 m 4.843 m 0.45%

d=5%

=1
9.173 m 9.148 m 0.27% 9.233 m 9.276 m 0.46% 10.01 m 9.965 m 0.43%

- 74 -

[B] MATLAB CODES FOR MONTE CARLO SIMULATION

MATLAB codes used to obtain the results presented in Section 5.

1. Main

function slam

% Calculates errors between desired location and real location (with Jacobi

errors) for N possible random errors

% Car2 takes first step and then alternate

% Car1 initial position [0,0,0]

global N; % how many dots, number of errors for each step

N=10000;

global NUM_OF_DIFF3;

NUM_OF_DIFF3=1;

global NUM_OF_DIFF2;

NUM_OF_DIFF2=1;

global delta_range delta_angle

delta_range = 0.02;

delta_angle = 0.5*pi/180;

global steps;

colormap bone

% 2 straight lines 10 steps 100m

Car1 = [0 0 0; 0 20 0; 0 40 0; 0 60 0; 0 80 0; 0 100 0];

Car2 = [10 0 0; 10 10 0; 10 30 0; 10 50 0; 10 70 0; 10 90 0];

map(Car1,Car2)

steps = path_to_steps(Car1,Car2);

n=size(steps,2); % number of steps

sum_1=1; %number of steps

sum_2=1;

orientation=0; % the orientation angle

car11=zeros(3,N); % matrix of X Y of cars with real errors

car22=zeros(3,N);

Ae = eye(3);

Ae=repmat(Ae,1,N); % Rotation matrix for error calculation

AA=eye(3); % Rotation matrix for no error calculation

car1_Jerrors=zeros(2,N); % matrix of X Y of cars with jacobian

car2_Jerrors=zeros(2,N);

errorBar1=zeros(1,n);

sigma_1_his=zeros(1,n);

sigma_2_his=zeros(1,n);

sigma_tot=zeros(1,n);

angles=zeros(1,n);

% N random errors for each step

Deltas_cars = rand_n;

[Jacob,xi,yi] = Jacob_multipication(Deltas_cars);

% calculating the variance directly from Jacobian

stds = var_direct_calc;

sigma_x_direct = stds(1,:);

sigma_y_direct = stds(2,:);

sigma_t_direct = stds(3,:);

%----------------------INITIALIZE------------------------------------

car = steps(1,:);

- 75 -

alpha_s = steps(2,:)*pi/180;

R = steps(3,:);

alpha_t = steps(4,:)*pi/180;

phi = alpha_s+pi-alpha_t;

prev_phi = zeros(1,N);

figure

for i=1:n %for each step

%-----------------------WITH ERRORS (REAL LOCATION)------------------

 r = Deltas_cars(NUM_OF_DIFF3,:); % N radius errors for current step

 a1 = Deltas_cars(NUM_OF_DIFF3+1,:); % N angle errors for current step

 a2 = Deltas_cars(NUM_OF_DIFF3+2,:); % N angle errors for current step

 j = 1;

 if car(i)==1

 sum_1=sum_1+1;

 for k=1:N

 [car11(:,k),A] =

error11(steps,Ae(:,j:j+2),a1(k),a2(k),r(k),i,prev_phi(k));

 Ae(:,j:j+2) = A; % for next step

 j=j+3;

 end

 prev_phi = car11(3,:); % for next step

 else

 sum_2=sum_2+1;

 for k=1:N

 [car22(:,k),A] =

error11(steps,Ae(:,j:j+2),a1(k),a2(k),r(k),i,prev_phi(k));

 Ae(:,j:j+2) = A; % for next step

 j=j+3;

 end

 prev_phi = car22(3,:); % for next step

 end

%---------------------ORIGIN (NO ERRORS)-----------------------------

 % The current rotation matrix

 A_curent=[cos(phi(i)) -sin(phi(i)) R(i)*cos(alpha_s(i));

 sin(phi(i)) cos(phi(i)) R(i)*sin(alpha_s(i));

 0 0 1];

 AA=AA*A_curent;

 orientation=orientation+phi(i);

 if orientation >= 2*pi

 orientation = orientation - 2*pi;

 end

 if car(i)==1

 orientation1=orientation;

 Car1(sum_1,1)=AA(1,3);

 Car1(sum_1,2)=AA(2,3);

 Car1(sum_1,3)=orientation1;

 else

 orientation2=orientation;

 Car2(sum_2,1)=AA(1,3);

 Car2(sum_2,2)=AA(2,3);

 Car2(sum_2,3)=orientation2;

 end

%-----------------------JACOBI---------------------------------------

% calculating real locations by equation:

% [real location] = [desired location] + [J]*[delta]

 JacobiError = Jacob(NUM_OF_DIFF2:NUM_OF_DIFF2+1,:); % Jacobian*delta

 if car(i)==1

 car1_Jerrors(1,:) = xi(i) + JacobiError(1,:);

 car1_Jerrors(2,:) = yi(i) + JacobiError(2,:);

 else

- 76 -

 car2_Jerrors(1,:) = xi(i) + JacobiError(1,:);

 car2_Jerrors(2,:) = yi(i) + JacobiError(2,:);

 end

%--------------------------DIFFERENCES--------------------------

 if car(i)==1

 cc_J = [mean(car1_Jerrors(1,:)), mean(car1_Jerrors(2,:))];

 cc_R = [mean(car11(1,:)), mean(car11(2,:))];

 else

 cc_J = [mean(car2_Jerrors(1,:)), mean(car2_Jerrors(2,:))];

 cc_R = [mean(car22(1,:)), mean(car22(2,:))];

 end

 % comparing locations of Jacobi calc and direct calc

 if car(i)==1

 error_x1 = mean(abs(car1_Jerrors(1,:)-car11(1,:)));

 error_y1 = mean(abs(car1_Jerrors(2,:)-car11(2,:)));

 else

 error_x1 = mean(abs(car2_Jerrors(1,:)-car22(1,:)));

 error_y1 = mean(abs(car2_Jerrors(2,:)-car22(2,:)));

 end

 errorBar1(i) = sqrt(error_x1^2+error_y1^2); % radius error

%---

 % calculating distance std (Jacobi)

 if car(i)==1

 for j=1:N

 % distance squared

 disX(j) = (car1_Jerrors(1,j)-cc_J(1))^2;

 disY(j) = (car1_Jerrors(2,j)-cc_J(2))^2;

 end

 else

 for j=1:N

 disX(j) = (car2_Jerrors(1,j)-cc_J(1))^2;

 disY(j) = (car2_Jerrors(2,j)-cc_J(2))^2;

 end

 end

 sigma_x_jacobi(i) = sqrt(sum(disX(:))/(N-1));

 sigma_y_jacobi(i) = sqrt(sum(disY(:))/(N-1));

 dis = disX + disY;

 sigma_d_jacobi(i) = sqrt(sum(dis(:))/(N-1)); % variance eq.

% % %-----------------------PLOT---------------------------------

% map of desired location of cars + histogram

 if car(i)==1

 [X,Y,C] = histogram2(car1_Jerrors(1,:),car1_Jerrors(2,:));

 if i==1 || i==2 || i==8 || i==14 || i==20 || i==25

 image('XData',X,'YData',Y,'CData',C,'CDataMapping','scaled');

 hold on

 end

 else

 [X,Y,C] = histogram2(car2_Jerrors(1,:),car2_Jerrors(2,:));

 if i==1 || i==2 || i==8 || i==14 || i==20 || i==25

 image('XData',X,'YData',Y,'CData',C,'CDataMapping','scaled');

 hold on

 end

 hold on

 end

 c = plot(cc_J(1),cc_J(2),'*m'); % plotting Jacobian centroid

 d = plot(cc_R(1),cc_R(2),'xr'); % plotting direct calc centroid

 hold on

 axis equal;

% % %--

% calculating std values and plot ellipse

 if car(i)==1

- 77 -

 [sigma_1_his(i),sigma_2_his(i),angle] =

error_ellipse(car1_Jerrors',i);

 else

 [sigma_1_his(i),sigma_2_his(i),angle] =

error_ellipse(car2_Jerrors',i);

 end

 sigma_tot(i) = sqrt(sigma_1_his(i)^2 + sigma_2_his(i)^2);

 angles(i) = angle*180/pi; % rad to deg

 NUM_OF_DIFF3=NUM_OF_DIFF3+3;

 NUM_OF_DIFF2=NUM_OF_DIFF2+2;

end

a=plot(Car1(:,1),Car1(:,2),'s-b'); % connecting the path

b=plot(Car2(:,1),Car2(:,2),'s-g');

axis equal;

grid on;

xlabel('x[m]');

ylabel('y[m]');

legend([c d],'Approx. centroid','Exact centroid');

hold off

figure

bar([sigma_tot', sigma_1_his', sigma_2_his']);

grid on

% title('From histogram');

xlabel('Step Number');

ylabel('Standard deviations [m]');

legend('\sigma_{tot}','\sigma_1','\sigma_2');

2. Map of Robot Positions

function map(Car1,Car2)

%the function's input- mat for each car: x;y;teta(deg NOT rad)

%the function's output- figure of mapping with orientations

lengtha=size(Car1,1);

lengthb=size(Car2,1);

plot(Car1(:,1),Car1(:,2),'b',Car2(:,1),Car2(:,2),'g','LineWidth',1);

L = 4;

W = 2;

for i=1:lengtha %patch for the car and orientation

 origin1=[Car1(i,1);Car1(i,2);0]; %the specific x,y of the car

 coord=[Car1(i,1)-W Car1(i,1)+W Car1(i,1)+W Car1(i,1)-W;

 Car1(i,2)-L Car1(i,2)-L Car1(i,2)+L Car1(i,2)+L;

 0 0 0 0];

 %the coords of the polygon car

 vectors=coord-[origin1,origin1,origin1,origin1];

 %vectors of the polygon, from origin to the coords

 rotvectors=rotz(Car1(i,3))*vectors;

 %rotating the vectors according to the angle in deg

 newcoord=rotvectors+[origin1,origin1,origin1,origin1];

 %finding the new coords of the polygon after the rotation

 ax1=patch(newcoord(1,:),newcoord(2,:),[51 202 255]/255);

 hold on

end

for i=1:lengthb

- 78 -

 origin2=[Car2(i,1);Car2(i,2);0];

 coord=[Car2(i,1)-W Car2(i,1)+W Car2(i,1)+W Car2(i,1)-W;

 Car2(i,2)-L Car2(i,2)-L Car2(i,2)+L Car2(i,2)+L;

 0 0 0 0];

 vectors=coord-[origin2,origin2,origin2,origin2];

 rotvectors=rotz(Car2(i,3))*vectors;

 newcoord=rotvectors+[origin2,origin2,origin2,origin2];

 ax2=patch(newcoord(1,:),newcoord(2,:),[169 218 116]/255);

 hold on

end

axis equal %otherwise the polygons are deformed

grid on

box on

legend([ax1,ax2],'Vehicle 1','Vehicle 2','Location','northoutside');

xlabel('X[m]');

ylabel('Y[m]');

end

3. Path to Steps

function steps = path_to_steps(Car1,Car2)

% take path of 2 cars [X,Y,theta] and create steps matrix:

% [moving car index, angle from stationary car, distance, angle from

traveling car]

% angles in deg

n = size(Car1,1) + size(Car2,1) - 2; % number of steps (first 2 initial

positions)

steps = zeros(4,n);

moving_car = 2; % Car2 takes first step

sum1 = 1;

sum2 = 1;

for i = 1:n

 if moving_car == 1

 sum1 = sum1 + 1;

 steps(1,i) = 1;

 x_dis = Car1(sum1,1)-Car2(sum2,1);

 y_dis = Car1(sum1,2)-Car2(sum2,2);

 angle = atan2(y_dis,x_dis)*180/pi; % angle between cars if both

have 0 orientation

 steps(2,i) = angle - Car2(sum2,3); % angle - orientation Car2

 steps(4,i) = angle + 180 - Car1(sum1,3);

 steps(3,i) = sqrt(x_dis^2 + y_dis^2);

 moving_car = 2; % for next step

 else

 sum2 = sum2 + 1;

 steps(1,i) = 2;

 x_dis = Car2(sum2,1)-Car1(sum1,1);

 y_dis = Car2(sum2,2)-Car1(sum1,2);

 angle = atan2(y_dis,x_dis)*180/pi;

 steps(2,i) = angle - Car1(sum1,3);

 steps(4,i) = angle + 180 - Car2(sum2,3);

 steps(3,i) = sqrt(x_dis^2 + y_dis^2);

 moving_car = 1;

 end

end

end

- 79 -

4. Random Measurement Errors

function Deltas_cars = rand_n

% returns a matrix [3*n,N] of N random errors for each step with normal

distribution

% angles in rad

global delta_range delta_angle

global N steps

n=size(steps,2); % number of steps

R=steps(3,:); % vector of all radiuses for each step

Deltas_cars=zeros(2*n,N);

j=1;

rng('shuffle');%in order to initialize the generator and get different

random numbers

% randn returns random numbers normally with variance 1 and mean 0

for i=1:n

 Deltas_cars(j,:) = delta_range*R(i)*randn(1,N); % delta r

 Deltas_cars(j+1,:) = delta_angle*randn(1,N); % delta alpha_s

 Deltas_cars(j+2,:) = delta_angle*randn(1,N); % delta alpha_t

 j=j+3;

end

end

5. Location Errors via Jacobi Mathod

function [Jacobi,X,Y] = Jacob_multipication(Deltas_cars)

% calculates the Jacobi matrix for current steps

% + multiplication of Jacobi matrix and errors

% + parametric location of car (X,Y)

% Jacobi(2*n,N) contains multiplication of Jacobi and errors

% each 2 lines for each step - (x,y) errors

N = size(Deltas_cars,2);

global steps;

n = size(steps,2); % number of steps

Jacobi = zeros(2*n,N);

X = zeros(n,1); Y = zeros(n,1);

x = 0; y = 0;

J_old = 0;

j = 1; k = 1;

theta_prev = 0;

D_ai = 0;

% desired positions data

alpha_s = steps(2,:)*pi/180; % to rad

R = steps(3,:);

alpha_t = steps(4,:)*pi/180;

phi = alpha_s+pi-alpha_t;

for i=1:n

 ri = R(i); % current radius

 D_ri = Deltas_cars(k,:);

 D_ai = D_ai + Deltas_cars(k+1,:);

 S = sin(theta_prev+alpha_s(i));

 C = cos(theta_prev+alpha_s(i));

 J_times_delta = [-ri*S*D_ai + D_ri*C;

 ri*C*D_ai + D_ri*S];

 X(i) = x + ri*C; Y(i) = y + ri*S; % desired positions

 x = X(i); y = Y(i); % for next step

- 80 -

 Jacobi(j:j+1,:) = J_old + J_times_delta;

 % for next step

 J_old = Jacobi(j:j+1,:);

 theta_prev = theta_prev + phi(i);

 D_ai = D_ai - Deltas_cars(k+2,:);

 j=j+2;

 k=k+3;

end

end

6. Analytic Standard Deviation Calculation

function stds = var_direct_calc

% calculating the variance directly from Jacobian calc

global steps delta_range delta_angle

n = size(steps,2); % number of steps

alpha_s = steps(2,:)*pi/180;

R = steps(3,:);

alpha_t = steps(4,:)*pi/180;

phi = alpha_s+pi-alpha_t;

var_r = delta_range^2;

var_a = delta_angle^2;

std_x = zeros(1,n);

std_y = zeros(1,n);

% first step

A = [cos(alpha_s(1)) -R(1)*sin(alpha_s(1)) 0;

 sin(alpha_s(1)) R(1)*cos(alpha_s(1)) 0;

 0 1 -1];

std_x(1) = sqrt(R(1)^2*A(1,1)^2*var_r + (A(1,2)^2 + A(1,3)^2)*var_a);

std_y(1) = sqrt(R(1)^2*A(2,1)^2*var_r + (A(2,2)^2 + A(2,3)^2)*var_a);

allA = zeros(3,3*n); % matrix of n A matrices

allA(:,1:3) = A; % allA = [A 0 0 ... 0]

prev_phi = phi(1); % for next step

for i = 2:n

 A = [cos(prev_phi+alpha_s(i)) -R(i)*sin(prev_phi+alpha_s(i)) 0;

 sin(prev_phi+alpha_s(i)) R(i)*cos(prev_phi+alpha_s(i)) 0;

 0 1 -1];

 B = [0 -R(i)*sin(prev_phi+alpha_s(i)) R(i)*sin(prev_phi+alpha_s(i));

 0 R(i)*cos(prev_phi+alpha_s(i)) -R(i)*cos(prev_phi+alpha_s(i));

 0 0 0];

 % inserting A and B matrices to general allA matrix

 k = 1;

 for j = 1:i-1 % adding matrix B

 allA(:,k:k+2) = allA(:,k:k+2) + B;

 k = k + 3;

 end

 allA(:,3*i-2:3*i) = A;

 % calculating stds

 k = 1;

 A_rx = 0; A_ax = 0; A_ry = 0; A_ay = 0;

 for j = 1:i

 A_rx = A_rx + (R(j)*allA(1,k))^2;

 A_ax = A_ax + allA(1,k+1)^2 + allA(1,k+2)^2;

 A_ry = A_ry + (R(j)*allA(2,k))^2;

 A_ay = A_ay + allA(2,k+1)^2 + allA(2,k+2)^2;

 k = k + 3;

 end

 std_x(i) = sqrt(A_rx*var_r + A_ax*var_a);

- 81 -

 std_y(i) = sqrt(A_ry*var_r + A_ay*var_a);

 prev_phi = prev_phi + phi(i); % for next step

end

std_d = sqrt(std_x.^2 + std_y.^2);

stds = [std_x; std_y; std_d];

end

7. Location via Exact Method

function [Car,A] = error11(steps,Ae,a1,a2,r,i,prev_phi)

% calcs location with errors by exact method

% f(R+delta_R , teta+delta_teta)

Car=[0;0;0]; % X Y theta

alpha_s = steps(2,i)*pi/180 + a1;

R = steps(3,i) + r;

alpha_t = steps(4,i)*pi/180 + a2;

phi = alpha_s+pi-alpha_t;

% The current rotation matrix

A_current = [cos(phi) -sin(phi) R*cos(alpha_s);

 sin(phi) cos(phi) R*sin(alpha_s);

 0 0 1];

A = Ae*A_current; % The overall rotation matrix

Car(1) = A(1,3);

Car(2) = A(2,3);

Car(3) = prev_phi + phi;

end

8. 2D Histogram

function [X,Y,C] = histogram2(x,y)

% plot the distribution of random errors for each step;

% locations of dots (x,y)

% X,Y - axis, C - distribution matrix

% Copyright (c) by R. Moddemeijer, Date: 2001/02/05 09:54:29

colormap bone

minx = min(x); maxx = max(x);

deltax = (maxx-minx)/(length(x)-1);

ncellx = 2*ceil(length(x)^(1/3));

miny = min(y); maxy = max(y);

deltay = (maxy-miny)/(length(y)-1);

ncelly = ncellx;

lowerx = minx - deltax/2;

upperx = maxx + deltax/2;

lowery = miny - deltay/2;

uppery = maxy + deltay/2;

result(1:ncellx,1:ncelly)=0;

xx=round((x-lowerx)/(upperx-lowerx)*ncellx + 1/2);

yy=round((y-lowery)/(uppery-lowery)*ncelly + 1/2);

for n=1:length(xx)

 indexx=xx(n);

- 82 -

 indexy=yy(n);

 if indexx >= 1 && indexx <= ncellx && indexy >= 1 && indexy <= ncelly

 result(indexx,indexy)=result(indexx,indexy)+1;

 end

end

L = max(max(result));

C = (L - result)./L; % reverse the matrix and normalize to fit colormap

(values between 0&1)

X = [minx maxx]; % x axis

Y = [miny maxy]; % y axis

end

9. Error Ellipse

function [sigma_x,sigma_y,angle] = error_ellipse(data,i)

% data = JacobiError matrix [J]*[delta], size: [N,2]

% plots the ellipse's main axes and returns stds and rotation angle

% Copyright Vincent Spruyt

% http://www.visiondummy.com/2014/04/draw-error-ellipse-representing-

covariance-matrix/

% Calculate the eigenvectors and eigenvalues

covariance = cov(data);

[eigenvec, eigenval] = eig(covariance);

% Get the index of the largest eigenvector

[largest_eigenvec_ind_c, ~] = find(eigenval == max(max(eigenval)));

largest_eigenvec = eigenvec(:, largest_eigenvec_ind_c);

% Get the largest eigenvalue

largest_eigenval = max(max(eigenval));

% Get the smallest eigenvector and eigenvalue

if(largest_eigenvec_ind_c == 1)

 smallest_eigenval = max(eigenval(:,2));

 smallest_eigenvec = eigenvec(:,2);

else

 smallest_eigenval = max(eigenval(:,1));

 smallest_eigenvec = eigenvec(1,:);

end

% Calculate the angle between the x-axis and the largest eigenvector

angle = atan2(largest_eigenvec(2), largest_eigenvec(1));

% This angle is between -pi and pi.

% Let's shift it such that the angle is between 0 and 2pi

if(angle < 0)

 angle = angle + 2*pi;

end

% To keep angles between -pi/2 and pi/2

if angle > pi/2 && angle < pi % second Quadrant

 angle = angle - pi;

end

if angle > pi && angle < 3*pi/2 % third Quadrant

 angle = angle - pi;

end

if angle > 3*pi/2 && angle < 2*pi % forth Quadrant

 angle = angle - 2*pi;

end

% Get the coordinates of the data mean

- 83 -

avg = mean(data);

X0=avg(1);

Y0=avg(2);

%% drawing error ellipses

if i == 1 || i == 2 || i == 8 || i == 14 || i == 20 || i == 25

 % Get the 68%~sigma% confidence interval error ellipse

 chisquare_val = 2.408; % for 70%

 theta_grid = linspace(0,2*pi);

 a=sqrt(chisquare_val*largest_eigenval);

 b=sqrt(chisquare_val*smallest_eigenval);

 % the ellipse in x and y coordinates

 ellipse_x_r = a*cos(theta_grid);

 ellipse_y_r = b*sin(theta_grid);

 % Define a rotation matrix

 R = [cos(angle) sin(angle); -sin(angle) cos(angle)];

 %let's rotate the ellipse to some angle phi

 r_ellipse = [ellipse_x_r;ellipse_y_r]' * R;

 % plotting confidence ellipses

 plot(r_ellipse(:,1) + X0,r_ellipse(:,2) + Y0,'Color',[0 0.4

1],'LineWidth',3) % blue

 hold on;

 %% Plot the eigenvectors

 quiver(X0, Y0, largest_eigenvec(1) *sqrt(chisquare_val*

largest_eigenval), largest_eigenvec(2)*sqrt(chisquare_val*

largest_eigenval), '-m', 'LineWidth',3);

 quiver(X0, Y0,

smallest_eigenvec(1)*sqrt(chisquare_val*smallest_eigenval),

smallest_eigenvec(2)*sqrt(chisquare_val*smallest_eigenval), '-m',

'LineWidth',3);

 % Get the 95%~2*sigma% confidence interval error ellipse

 chisquare_val = 5.991;

 theta_grid = linspace(0,2*pi);

 a=sqrt(chisquare_val*largest_eigenval);

 b=sqrt(chisquare_val*smallest_eigenval);

 % the ellipse in x and y coordinates

 ellipse_x_r = a*cos(theta_grid);

 ellipse_y_r = b*sin(theta_grid);

 % Define a rotation matrix

 R = [cos(angle) sin(angle); -sin(angle) cos(angle)];

 % let's rotate the ellipse to some angle phi

 r_ellipse = [ellipse_x_r;ellipse_y_r]' * R;

 % plotting confidence ellipses

 plot(r_ellipse(:,1) + X0,r_ellipse(:,2) + Y0,'--','Color',[0.4 0

0.8],'LineWidth',3) % purple

end

sigma_x = sqrt(largest_eigenval);

sigma_y = sqrt(smallest_eigenval);

end

- 84 -

[C] MATLAB CODES FOR EXPERIMENT RESULTS ANALYSIS

MATLAB codes used to obtain the results presented in Section 0. All presented codes refer

to the straight parallel path, similar codes were used for the other three paths.

1. Create Excel File

% create excel file

path = 'straight parallel';

exp = ' exp5';

title = {'x center','y center','ML'};

sheet = 1;

car = 'L';

fileName = strcat(path,exp,car,'.xlsx');

xlswrite(fileName,title,sheet,'A1');

for i = 0:10

 img = strcat(car,num2str(i),'.jpg');

 toExcel(fileName,img,i)

end

car = 'R';

fileName = strcat(path,exp,car,'.xlsx');

xlswrite(fileName,title,sheet,'A1');

for i = 0:10

 img = strcat(car,num2str(i),'.jpg');

 toExcel(fileName,img,i)

end

2. Write Image Data to Excel

function toExcel(fileName,img,i)

% write to excel coordinates of center of ball (in pixels) X

% and length of height (in pixels) ML

X = findCenter(img,i); % [x,y] 2 values

ML = findDis(img); % 1 value

line = num2str(i+2);

range = strcat('A',line);

sheet = 1;

xlswrite(fileName,[X ML],sheet,range);

end

3. Find Center

function X = findCenter(img,i)

% find x center of tennis ball in image I

% NL = number of pixels of diameter

RGB = imread(img);

huelow = 45; % hue value of ball color

huehigh = 100;

satlow = 25;

- 85 -

sathigh = 200;

if mod(i,2) == 0 % even

 radiusRange = [75 100];

else % uneven

 radiusRange = [15 25];

end

%% filter

% filter by hue (color of ball)

I = rgb2hsv(RGB); % hsv

% Create mask based on hue value

BW = ((I(:,:,1) >= huelow/256 & I(:,:,1) <= huehigh/256) & ...

 (I(:,:,2) >= satlow/256 & I(:,:,2) <= sathigh/256));

% Initialize output masked image based on input image

maskedRGBImage = RGB;

% Set background pixels where BW is false to zero

maskedRGBImage(repmat(~BW,[1 1 3])) = 0;

%% find center

sens = 0.9;

radii = [];

while isempty(radii) % no center found

 [centers,radii] =

imfindcircles(maskedRGBImage,radiusRange,'Sensitivity',sens);

 sens = sens + 0.01;

end

figure; imshow(maskedRGBImage); title(img); hold on

scatter(centers(1,1),centers(1,2),'*r')

X = centers(1,:);

end

4. Plot Results and Calculate Standard Deviation and Mean Error Values

% 5 experiments

clear

CarR = zeros(6,3,5);

CarL = zeros(6,3,5);

CarRreal = [0 0 0; 0 1.5 0; 0 3 0; 0 4.5 0; 0 6 0; 0 7.5 0];

CarLreal = [-1.5 0 0; -1.5 1.5 0; -1.5 3 0; -1.5 4.5 0; -1.5 6 0; -1.5 7.5

0];

title = {'7.5 m Straight Path','Parallel Advancment'};

map(CarLreal,CarRreal,title); hold on; axis equal;

for i = 1:5

 [CarR(:,:,i),CarL(:,:,i)] = singleExp(i+1); % 2 to 6

 scatter(CarL(:,1,i),CarL(:,2,i),50,[51 202 255]/255,'s','filled'); %

blue

 plot(CarL(:,1,i),CarL(:,2,i),'Color',[51 202 255]/255);

 scatter(CarR(:,1,i),CarR(:,2,i),50,[169 218 116]/255,'s','filled'); %

green

 plot(CarR(:,1,i),CarR(:,2,i),'Color',[169 218 116]/255);

 drawnow

end

%% calc errors

% mean error, mean of both cars last step

disX_R = mean(CarR(end,1,:)-CarRreal(end,1));

- 86 -

disY_R = mean(CarR(end,2,:)-CarRreal(end,2));

disR = sqrt(disX_R^2 + disY_R^2);

disX_L = mean(CarL(end,1,:)-CarLreal(end,1));

disY_L = mean(CarL(end,2,:)-CarLreal(end,2));

disL = sqrt(disX_L^2 + disY_L^2);

disX = (disX_R + disX_L)/2;

disY = (disY_R + disY_L)/2;

dis = (disR + disL)/2;

% std, mean of both cars last step

sigmaX_R = std(CarR(end,1,:));

sigmaY_R = std(CarR(end,2,:));

sigmaX_L = std(CarL(end,1,:));

sigmaY_L = std(CarL(end,2,:));

sigmaX = sqrt((sigmaX_R^2 + sigmaX_L^2)/2);

sigmaY = sqrt((sigmaY_R^2 + sigmaY_L^2)/2);

sigmaD = sqrt(sigmaY^2 + sigmaY^2);

% orientation error and std

% angles [-180 180] so around 0 will be +- small numbers

CarR(:,3,:) = wrapTo180(CarR(:,3,:));

CarL(:,3,:) = wrapTo180(CarL(:,3,:));

orienR = mean(CarR(end,3,:)-CarRreal(end,3));

orienL = mean(CarL(end,3,:)-CarLreal(end,3));

orien_error = (orienR + orienL)/2;

sigma_theta_R = std(CarR(end,3,:));

sigma_theta_L = std(CarL(end,3,:));

sigma_theta = sqrt((sigma_theta_R^2 + sigma_theta_L^2)/2);

% to excel

fileName = 'straight parallel errors';

sheet = 1;

title = {'sigma_d','sigma_x','sigma_y',...

 'mean error','mean error x','mean error y',...

 'sigma_theta','mean error theta'};

xlswrite(fileName,title, sheet,'A1');

xlswrite(fileName,sigmaD, sheet,'A2');

xlswrite(fileName,sigmaX, sheet,'B2');

xlswrite(fileName,sigmaY, sheet,'C2');

xlswrite(fileName,dis, sheet,'D2');

xlswrite(fileName,disX, sheet,'E2');

xlswrite(fileName,disY, sheet,'F2');

xlswrite(fileName,sigma_theta, sheet,'G2');

xlswrite(fileName,orien_error, sheet,'H2');

%% simulation

delta_range = 0.01;

delta_angle = 0.3*pi/180;

steps = path_to_steps(CarRreal,CarLreal); % car1 = CarR, car2 = CarL

Deltas_cars = rand_n(steps,delta_range,delta_angle);

[stds,mean_error] = jacobi_method(steps,Deltas_cars,delta_angle);

- 87 -

5. Single Experiment

function [CarR,CarL] = singleExp(num)

CarR = [0 0 0];

path = 'straight parallel exp';

fileName = strcat(path,num2str(num),'R.xlsx');

[rR,alphaR] = ImagePros(fileName);

fileName = strcat(path,num2str(num),'L.xlsx');

[rL,alphaL] = ImagePros(fileName);

r = (rL + rR)/2;

ThetaL = findTheta('L',0); % [deg]

ThetaR = findTheta('R',0); % [deg]

alpha_s = ThetaR + alphaR(1);

alpha_t = ThetaL + alphaL(1);

x = r(1)*cos(alpha_s*pi/180);

y = r(1)*sin(alpha_s*pi/180);

theta = alpha_s + 180 - alpha_t;

CarL = [x y theta];

moving = 'L'; % first car to move

A_last = eye(3);

theta = 0;

sumL = 1; sumR = 1;

for i = 1:10

 ThetaL = findTheta('L',i); % [deg]

 ThetaR = findTheta('R',i); % [deg]

 if moving == 'L'

 alpha_s = ThetaR + alphaR(i+1);

 alpha_t = ThetaL + alphaL(i+1);

 else

 alpha_s = ThetaL + alphaL(i+1);

 alpha_t = ThetaR + alphaR(i+1);

 end

 phi = (alpha_s + 180 - alpha_t);

A_new = [cos(phi*pi/180) -sin(phi*pi/180) r(i+1)*cos(alpha_s*pi/180);

 sin(phi*pi/180) cos(phi*pi/180) r(i+1)*sin(alpha_s*pi/180);

 0 0 1];

 A = A_last*A_new;

 x = A(1,3); y = A(2,3); theta = wrapTo360(theta + phi);

 if moving == 'L'

 sumL = sumL + 1;

 CarL(sumL,:) = [x y theta];

 moving = 'R'; % for next step

 else

 sumR = sumR + 1;

 CarR(sumR,:) = [x y theta];

 moving = 'L'; % for next step

 end

 A_last = A; % for next step

end

- 88 -

6. Calculate Distance and Bearing from Image

function [r,alpha] = ImagePros(fileName)

% calc distance and orientation from other robot for each step

global N M FoV_x FoV_y

FoV_x = 40*pi/180; % camera's field of view in x direction[rad]

FoV_y = 70*pi/180; % camera's field of view in y direction[rad]

L = 21/100; % length from turret (top surface) to top of ball [m]

N = 1080; % number of pixels in horizontal direction

M = 1920; % number of pixels in vertical direction

xCenter = xlsread(fileName,'A:A'); % x center of ball

x = N/2 - xCenter;

alpha = atan(x./(N/2)*tan(FoV_x/2))*180/pi; % [deg] without correction of

theta

ML = xlsread(fileName,'C:C');

alphaL = (ML/M)*FoV_y; % [rad]

r = L./tan(alphaL);

end

- 89 -

[D] SIMULINK MODEL PATH FOLLOWING ALGORITHM

Simulink model and MATLAB codes used to obtain the results presented in Section 7.2.

Figure 10.1: Block diagram of model.

Figure 10.2: Vehicle 1 block diagram, describing the vehicle’s kinematics in Cartesian

coordinates.

- 90 -

Figure 10.3: Measurements block diagram, describing the vehicle’s location in polar

coordinates, with respect to the stationary vehicle.

Figure 10.4: Stop Condition block diagram.

- 91 -

Figure 10.5: Controller block diagram, calculates the required angular velocity for path

following.

1. Controller Function

function [w,e1,e2] = fcn(v,r,alfa,phi, x_0, y_0, x_r, y_r, x_e, y_e)

r_0 = sqrt((x_0-x_r)^2+(y_0-y_r)^2);

r_e = sqrt((x_e-x_r)^2+(y_e-y_r)^2);

L = sqrt((x_0-x_e)^2+(y_0-y_e)^2);

alfa_e = acos((r_0^2+r_e^2-L^2)/(2*r_0*r_e));

chi = asin(r_e*sin(alfa_e)/L);

r_d = r_0*sin(chi)/sin(alfa+chi);

dr_d = -r_0*sin(chi)*csc(alfa+chi)*cot(alfa+chi);

ddr_d = r_0*sin(chi)*csc(alfa+chi)*(cot(alfa+chi)^2+csc(alfa+chi)^2);

e1 = r - r_d;

e2 = sin(phi) - (dr_d*cos(phi)/r);

% pole placement

k1 = 100/(L^2);

k2 = 12/L;

u = -k1*e1 -k2*e2;

w = (r/(dr_d*sin(phi)+r*cos(phi)))*...

 ((ddr_d*cos(phi)^2/r^2)-(2*dr_d*cos(phi)*sin(phi)/r^2)-

(cos(phi)^2/r)+u)*v;

end

- 92 -

2. Path Following

function

path_following_no_video(x,y,theta,x_0,y_0,theta_0,x_r,y_r,r_e,alfa_e,e1,e2)

% size of vehicle

L = 0.8;

W = 0.4;

figure;

% plot stationary car

theta_r = 90; % deg

origin = [x_r;y_r;0];

coord = [x_r-L x_r+L x_r+L x_r-L;

 y_r-W y_r-W y_r+W y_r+W;

 0 0 0 0];

vectors = coord - [origin,origin,origin,origin];

rotvectors = rotz(theta_r)*vectors;

newcoord = rotvectors + [origin,origin,origin,origin];

patch(newcoord(1,:),newcoord(2,:),[51 202 255]/255);

hold on

% plot actual locations

xx = x.signals.values;

yy = y.signals.values;

plot(xx,yy,'Color',[169 218 116]/255,'LineWidth',3);

% plot desired path

alfa_e = alfa_e*pi/180;

alfa_0 = atan2((y_0-y_r),(x_0-x_r)) + 2*pi;

if alfa_0 < 0

 alfa_0 = alfa_0 + 2*pi;

end

theta_e = alfa_0 - alfa_e;

x_e = x_r + r_e*cos(theta_e);

y_e = y_r + r_e*sin(theta_e);

line([x_0 x_e],[y_0 y_e],'color','k','LineStyle','-.','LineWidth',1);

scatter(x_e,y_e,'r','filled'); % target point

grid on

xlabel('X[m]'); ylabel('Y[m]');

% plot end position (from function 'map')

theta_e_real = theta.signals.values(end);

x_e_real = xx(end);

y_e_real = yy(end);

origin = [x_e_real;y_e_real;0];

coord = [x_e_real-L x_e_real+L x_e_real+L x_e_real-L;

 y_e_real-W y_e_real-W y_e_real+W y_e_real+W;

 0 0 0 0];

vectors = coord - [origin,origin,origin,origin];

rotvectors = rotz(theta_e_real)*vectors;

newcoord = rotvectors + [origin,origin,origin,origin];

patch(newcoord(1,:),newcoord(2,:),[169 218 116]/255);

% plot initial position

origin = [x_0;y_0;0];

coord = [x_0-L x_0+L x_0+L x_0-L;

 y_0-W y_0-W y_0+W y_0+W;

 0 0 0 0];

vectors = coord - [origin,origin,origin,origin];

- 93 -

rotvectors = rotz(theta_0)*vectors;

newcoord = rotvectors + [origin,origin,origin,origin];

patch(newcoord(1,:),newcoord(2,:),[169 218 116]/255);

% plot observation

line([x_r x_e_real],[y_r y_e_real],'color','b','LineStyle','--

','LineWidth',2);

hold on

axis equal;

box on

figure;

E1 = e1.signals.values(:);

E2 = e2.signals.values(:);

s = e1.time;

a = plot(s,E1,'-',s,E2,'--');

a(1).Color = [204 4 109]/255; a(1).LineWidth = 2;

a(2).Color = [102 0 204]/255; a(2).LineWidth = 2;

legend('location error [m]','angle error [rad]');

xlabel('Traveled Distance');

ylabel('Error');

grid on;

end

- 94 -

[E] MATLAB CODES FOR PATH PLANNING SIMULATION

1. Main Function for Multi-Step Simulation

% main

% straight tunnel with 5 obstacles

close all

clear

global eps rmax xmin xmax ymin ymax

eps = 1;

rmax = 5; % max distance between cars

[xlimit,ylimit] = create_map;

% initial positions

x_0 = 0; y_0 = 0; theta_0 = 0;

x_s = 5; y_s = 0;

Car1 = [x_s y_s theta_0]; mapSingle(Car1,[51 202 255]/255); % blue

Car2 = [x_0 y_0 theta_0]; mapSingle(Car2,[169 218 116]/255); % green

F(1) = getframe(gcf); % for video

% new obstacle

obstacles = singleObs(x_s,y_s,x_0,y_0);

F(2) = getframe(gcf);

% plot r constraints

t = 0:0.01:2*pi;

x = x_s + rmax*cos(t);

y = y_s + rmax*sin(t);

r = plot(x,y,'--k'); hold on

F(3) = getframe(gcf);

% choose final position

[x_f,y_f] = finalPos(xlimit,obstacles,x_s,y_s);

plot(x_f,y_f,'rx','MarkerSize',8,'LineWidth',2);

F(4) = getframe(gcf);

% initialization

car = 2; % moving car

color = [169 218 116]/255; % green

sum1 = 1; sum2 = 1;

f = 4;

for i = 1:6 % 6 steps

 %% optimize trajectory

 Car =

optimize(x_s,y_s,x_0,y_0,theta_0,x_f,y_f,obstacles,xlimit,ylimit);

 %% plot path

 n = size(Car,1);

 a = 0; % stop condition

 j = 1; % 1 to n

 k = 1; % frames count

 h = animatedline('Color',color,'LineWidth',2);

 axis([xmin xmax ymin ymax])

 while a~=1

 if j == n % go through all points

 a = 1; % stop

 end

 addpoints(h,Car(j,1),Car(j,2));

- 95 -

 drawnow limitrate

 F(f+k) = getframe(gcf);

 k = k + 1;

 j = j + 5; % draw only every 5 points

 end

 delete(r); % delete r constraint

 Car = Car(end,:); % only last position

 mapSingle(Car,color); % plot square

 %% update locations

 rng('shuffle'); % in order to initialize the generator and get

different random numbers

 if car == 1 && i ~= 6

 sum1 = sum1 + 1;

 Car1(sum1,:) = Car;

 % for next step

 car = 2; color = [169 218 116]/255; % green

 x_s = Car1(sum1,1); y_s = Car1(sum1,2);

 x_0 = Car2(sum2,1); y_0 = Car2(sum2,2); theta_0 = Car2(sum2,3);

 % current and new obstacle

 obstacles = [obstacles(end,:); singleObs(x_s,y_s,x_0,y_0)];

 F(f+k) = getframe(gcf);

 % plot r constraints

 t = 0:0.01:2*pi;

 x = x_s + rmax*cos(t);

 y = y_s + rmax*sin(t);

 r = plot(x,y,'--k'); hold on

 F(f+k+1) = getframe(gcf);

 % choose final position

 [x_f,y_f] = finalPos(xlimit,ylimit,obstacles,x_s,y_s);

 X = plot(x_f,y_f,'rx','MarkerSize',8,'LineWidth',2); hold on

 F(f+k+2) = getframe(gcf);

 elseif car == 2 && i ~= 6

 sum2 = sum2 + 1;

 Car2(sum2,:) = Car;

 % for next step

 car = 1; color = [51 202 255]/255; % blue

 x_s = Car2(sum2,1); y_s = Car2(sum2,2);

 x_0 = Car1(sum1,1); y_0 = Car1(sum1,2); theta_0 = Car1(sum1,3);

 % current and new obstacle

 obstacles = [obstacles(end,:); singleObs(x_s,y_s,x_0,y_0)];

 F(f+k) = getframe(gcf);

 % plot r constraints

 t = 0:0.01:2*pi;

 x = x_s + rmax*cos(t);

 y = y_s + rmax*sin(t);

 r = plot(x,y,'--k'); hold on

 F(f+k+1) = getframe(gcf);

 % choose final position

 [x_f,y_f] = finalPos(xlimit,ylimit,obstacles,x_s,y_s);

 X = plot(x_f,y_f,'rx','MarkerSize',8,'LineWidth',2); hold on

 F(f+k+2) = getframe(gcf);

 end

 f = length(F);

end

delete(r); delete(X);

video = VideoWriter('Control under Constraints.avi','Uncompressed AVI');

open(video)

writeVideo(video,F)

close(video)

- 96 -

2. Create Map

function [xlimit,ylimit] = create_map

% tunnel limits: xlimit = [xlb, xub], ylimit = [ylb,yub]

%% straight tunnel with obstacles

global xmin xmax ymin ymax

n = 1000;

xmin = -2; xmax = 7;

xlimit = [xmin,xmax];

ymin = -2; ymax = 30;

ylimit = [ymin,ymax];

figure(1);

plot(xmin*ones(1,n),linspace(ymin,ymax,n),'-k','lineWidth',4);

hold on; axis equal; ylim([ymin,ymax]);

plot(xmax*ones(1,n),linspace(ymin,ymax,n),'-k','lineWidth',4);

end

3. Plot Car

function p = mapSingle(Car,color)

%the function's input- vector for each car: x;y;teta(deg NOT rad)

%the function's output- figure of mapping with orientations

global xmin xmax ymin ymax

L = 0.8;

W = 0.4;

origin=[Car(1);Car(2);0]; %the specific x,y of the car

coord=[Car(1)-W Car(1)+W Car(1)+W Car(1)-W;

 Car(2)-L Car(2)-L Car(2)+L Car(2)+L;

 0 0 0 0];

%the coords of the polygon car

vectors=coord-[origin,origin,origin,origin];

%vectors of the polygon, from origin to the coords

rotvectors=rotz(-Car(3)*180/pi)*vectors;

%rotating the vectors according to the angle in deg

newcoord=rotvectors+[origin,origin,origin,origin];

%finding the new coords of the polygon after the rotation

p = patch(newcoord(1,:),newcoord(2,:),color);

axis equal % otherwise the polygons are deformed

axis([xmin xmax ymin ymax])

grid on

hold on

end

- 97 -

4. Single Obstacle

function obstacle = singleObs(x_s,y_s,x_0,y_0)

% obstacle: [Cx,Cy,a,b,phi]

% within current step size (rmax from stationary car)

global xmin xmax rmax

rng('shuffle'); % in order to initialize the generator and get different

random numbers

minRadi = 0.5; maxRadi = 2;

c = 0; % for stop condition

tol = 5;

while c~=1 % continue until obstacle is not to close to both cars

 a = minRadi + (maxRadi-minRadi)*rand;

 b = minRadi + (maxRadi-minRadi)*rand;

 Cx = xmin + (xmax-xmin)*rand;

 Cy = y_s + rmax*rand;

 phi = 2*pi*rand;

 theta = 0:0.01:2*pi;

 obstacle = [Cx, Cy, a, b, phi];

 % check if obstacle is too close to cars

 if isClose2Obs(x_0,y_0,obstacle,tol) == 0 ||

isClose2Obs(x_s,y_s,obstacle,tol) == 0

 c = 1; % stop, good obstacle

 end

end

% plot obstacle

xellipse = Cx + a*cos(theta+phi);

yellipse = Cy + b*sin(theta);

patch(xellipse,yellipse,'k');

hold on

end

5. Is Close to Obstacle

function c = isClose2Obs(x,y,obstacles,tol)

% check of point is at least eps away from all obstacles

% too close --> c = 1, not close --> c = 0

% obstacles: [Cx,Cy,a,b,phi] each 5x1 vector for 5 obstacles

numObs = size(obstacles,1);

c = 0; % point is not near obstacle

for i = 1:numObs

 Cx = obstacles(i,1); Cy = obstacles(i,2);

 a = obstacles(i,3); b = obstacles(i,4);

 phi = obstacles(i,5);

 X = (x-Cx)*cos(phi) + (y-Cy)*sin(phi);

 Y = (x-Cx)*sin(phi) - (y-Cy)*cos(phi);

 % check if point is inside obstacle ellipse (+tol)

 if (X^2)/((a+tol)^2) + (Y^2)/((b+tol)^2) <= 1

 c = 1; % inside

 end

end

end

- 98 -

6. Final Position

function [x_f,y_f] = finalPos(xlimit,obstacles,x_s,y_s)

% choose final position for current phase by the following algorithm: y_e =

ymax while r<=rmax and not colliding with obstacles

global eps rmax

t = 0:0.01:2*pi;

% all positions that are rmax from stationary car

xrmax = x_s + rmax*cos(t);

yrmax = y_s + rmax*sin(t);

% delete positions that are outside of tunnel boundaries or in obstacles

(and don't come closer than eps)

s = length(t);

i = 1;

tol = 2;

while s ~= 0

 % outside of tunnel boundaries

 if xrmax(i) < xlimit(1)+eps || xrmax(i) > xlimit(2)-eps

 xrmax(i) = [];

 yrmax(i) = [];

 % check if point is at least tol away from all obstacles

 elseif isClose2Obs(xrmax(i),yrmax(i),obstacles,tol) == 1 % too close

 xrmax(i) = [];

 yrmax(i) = [];

 else

 i = i + 1; % if point not erased, continue to next

 end

 s = s - 1; % for stop condition

end

[y_f,ind] = max(yrmax);

x_f = xrmax(ind);

end

7. Optimize

function Car =

optimize(x_s,y_s,x_0,y_0,theta_0,x_f,y_f,obstacles,xlimit,ylimit)

% straight tunnel with 5 ellipse obstacle

% (x_s,y_s) - stationary car position

% (x_0,y_0,theta_0) - initial position moving car

% (x_f,y_f) - final desired position moving car

global eps

Vmax = 5;

Wmax = pi/8;

%% Define States Controls and Parameter

States = [...

 falcon.State('x',xlimit(1)+eps, xlimit(2)-eps, 1/abs(xlimit(2)-

xlimit(1)));...

 falcon.State('y', ylimit(1), ylimit(2), 1/abs(ylimit(2)-ylimit(1)));...

 falcon.State('theta',-pi/2-Wmax,pi/2+Wmax,1)]; % go only forwards

Controls = [...

 falcon.Control('V', 0, Vmax, 1);...

 falcon.Control('W', -Wmax, Wmax, 1)];

- 99 -

tf = falcon.Parameter('FinalTime', 20, 0, 100, 0.1);

%% Define Optimal Control Problem

problem = falcon.Problem('Car');

% Specify Discretization

tau = linspace(0,1,1001);

% Path Constraint

pathconstraints = [...

 falcon.Constraint('r_lb', -inf, 0);...

 falcon.Constraint('r_ub', -inf, 0)];

numObs = size(obstacles,1);

for i = 1:numObs

 name = strcat('obstacle',num2str(i));

pathconstraints = [pathconstraints; falcon.Constraint(name,-inf, 0)];

end

% Path constraint builder

path =

falcon.PathConstraintBuilder('CarPCon',[],States,[],[],@source_path);

path.addConstantInput('x_s', [1,1]);

path.addConstantInput('y_s', [1,1]);

path.addConstantInput('obstacles', [numObs,5]);

path.Build();

%% Add a new Phase

phase = problem.addNewPhase(@source_car, States, tau, 0, tf);

phase.addNewControlGrid(Controls, tau);

% Set Boundary Condition

phase.setInitialBoundaries([x_0; y_0; theta_0]);

phase.setFinalBoundaries([x_f; y_f; -pi*2],[x_f; y_f; 2*pi]);

% Set initial guess

initGuess = [linspace(0,x_f, length(tau));

 linspace(0,y_f, length(tau));

 linspace(0,pi/2,length(tau))];

phase.StateGrid.setValues(tau,initGuess);

% apply Path Constraint

pathc = phase.addNewPathConstraint(@CarPCon, pathconstraints, tau);

pathc.addConstants(x_s);

pathc.addConstants(y_s);

pathc.addConstants(obstacles);

% Add Cost Function

problem.addNewParameterCost(tf);

% Prepare problem for solving

problem.Bake();

%% Solve problem

solver = falcon.solver.ipopt(problem);

solver.Options.MajorIterLimit = 1000;

solver.Options.MajorFeasTol = 1e-5;

solver.Options.MajorOptTol = 1e-5;

solver.Solve();

%% Plot

Car = [phase.StateGrid.Values(1,:)' phase.StateGrid.Values(2,:)'

phase.StateGrid.Values(3,:)'];

end

- 100 -

8. Source Car

function states_dot = source_car(states, controls)

% Extract states

theta = states(3);

% Extract controls

V = controls(1);

W = controls(2);

% implement state derivatives here

x_dot = V*sin(theta);

y_dot = V*cos(theta);

theta_dot = W;

states_dot = [x_dot; y_dot; theta_dot];

end

9. Source Path

function [constraints] = source_path(states, x_s, y_s, obstacles)

global eps rmax

% Extract states

x = states(1);

y = states(2);

% implement constraint values here

% r constraint

r = sqrt((x-x_s)^2+(y-y_s)^2);

r_lb = eps - r;

r_ub = r - rmax;

constraints = [r_lb; r_ub];

% ellipse obstacle

numObs = size(obstacles,1);

for i = 1:numObs

 % Extract parameters

 Cx = obstacles(i,1);

 Cy = obstacles(i,2);

 a = obstacles(i,3);

 b = obstacles(i,4);

 phi = obstacles(i,5);

 % ellipse obstacle

 X = (x-Cx)*cos(phi) + (y-Cy)*sin(phi);

 Y = (x-Cx)*sin(phi) - (y-Cy)*cos(phi);

 obstacle = 1 - (X^2)/((a+eps)^2) - (Y^2)/((b+eps)^2);

 constraints = [constraints; obstacle];

end

end

 2019ספטמבר

 תקציר

ממדי -תזה זו מציגה מערכת חדשנית של שני רובוטים המשתפים פעולה לקבלת מיקום עצמי דו

תרון המרכזי של שיטה זו מצוי ביכולת של בדיוק גבוה, תוך שימוש בחיישנים פשוטים יחסית. הי

 המערכת למדוד את האוריינטציה של הרובוטים באופן מדויק ובכך להפחית את השגיאות המצטברות

. כל אחד מהרובוטים מצויד בצריח מסתובב ועליו מצלמה אשר משמשת למעקב אחר במדידת המיקום

ינקודר למדידת זווית הצריח. בכל צעד, ביניהם, וא יםהרובוט השני ומדידת המיקום והמרחק היחסי

יחסי של הרובוט הנייד)באופן ומודד את המיקום ה השני נותר נייחרובוט אחד מתקדם בעוד הרובוט

מתמשך או בסיום הצעד(, בשימוש מדידת זווית הצריח והמרחק הנמדד באמצעות המצלמה.

לו לכיוון הרובוט הסטטי ומדידת מחושבת באמצעות סיבוב הצריח שהאוריינטציה של הרובוט הנייד

זווית הצריח. באמצעות איחוד המידע הנמדד משני הרובוטים, המיקום והאוריינטציה של הרובוט

 הנייד מתקבלים באופן מדויק.

בנוסף, מוצג מודל אנליטי של מיקום הרובוטים כפונקציה של המידע מהחיישנים. לאחר מכן, מוצג

ים באמצעות סימולציית מונטה קרלו, בהנחה כי מדידות החיישנים שערוך סטטיסטי של מיקום הרובוט

 אמת של המערכת והשוואה לתוצאות הסימולציה.בזמן כוללות שגיאות רנדומליות. כמו כן, מוצג ניסוי

אלגוריתם תכנון מסלול ובקר בחוג סגור בשביל ששני הרובוטים יתקדמו בצורה אוטונומית,

ואותות הבקרה הן ק והאוריינטציה ביחס לרובוט הנייחבתזה זו, בהנחה כי המדידות הן המרח מוצגים

אלגוריתם תכנון המסלול כולל בחירת נקודת יעד מהירות קווית ומהירות סיבובית של הרובוט הנייד.

עבור הרובוט הנייד בכל צעד ומציאת המסלול האופטימלי תוך התחמקות ממכשולים בסביבה כמו

על בחירה קודמת של נקודות יעד בסביבה רות, חפצים או הרובוט הנייח. חוג הבקרה הסגור מתבססקי

המאפיינים מסלולים ביניהן כלומר, כל צעד הינו בעיית עקיבה אחר מסלול. בשל כן בחירה של הנחקרת ו

 בקורדינטות פולריות. תוכנן בקרהה, חוג של המדידות הפולריים

תחומי בגישה חופשית -, עיתון אינטרנטי רבIEEE Access-אחרונה במחקר זה התקבל לפרסום ל

להנדסת מכונות 35-של מוסד מהנדסי חשמל ואלקטרוניקה. בנוסף, מחקר זה הוצג בכנס הישראלי ה

(ICME 2018) לרובוטיקה 6-ובכנס הישראלי ה(ICR 2019).

 2019ספטמבר

 אוניברסיטת בן גוריון בנגב

 הפקולטה למדעי ההנדסה

 ת מכונותהמחלקה להנדס

עצמי של שני רובוטים בעלת -מערכת מיקום

 דיוק גבוה

 חיבור זה מהווה חלק מהדרישות לקבלת תואר מגיסטר בהנדסה

 דנה ארז מאת:

 וד"ר שי ארוגטימנחים: ד"ר דוד זרוק

 דנה ארז: מחברת

 22/12/2019: תאריך

 דוד זרוק: מנחה

 22/12/2019: תאריך

 ארוגטישי : מנחה

 22/12/2019: תאריך

 : תאריך ר ועדת תואר שני מחלקתית: "אישור יו

23/12/19

 2019ספטמבר

 בנגב גוריוןאוניברסיטת בן

 ההנדסההפקולטה למדעי

 ת מכונותהמחלקה להנדס

י של שני רובוטים בעלת עצמ-מערכת מיקום

 דיוק גבוה

 מגיסטר בהנדסהחיבור זה מהווה חלק מהדרישות לקבלת תואר

 דנה ארז מאת:

