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Abstract 

This Thesis presents a novel two-robot collaboration method for precise 2D self-

localization using relatively simple sensors. The main advantage of this method lies in its ability 

to precisely measure the orientations of the robots, therefore reducing cumulative errors. Each 

robot is fitted with a rotating turret carrying a camera to track the moving robot and calculate 

the relative distance and position, and an encoder to provide the orientation of the turret. At each 

step, a single robot advances while the other remains stationary and measures the position of 

the moving robot (continuously or at the end of the step), using the angular orientation of the 

turret and the distance measured using the camera. The orientation of the moving robot is 

obtained by turning its own turret towards the static robot and measuring its turret orientation. 

By fusing the data from the two robots, the precise location and orientation of the moving robot 

are obtained. 

We also present an analytical model of the position of the robots as a function of the sensor 

data and then proceed to present a statistical estimate using Monte Carlo simulations of the 

location of the robots while assuming that the sensor data includes random errors. Additionally, 

real-world experiments are presented and compared to simulation results. 

For the two-robot system to advance autonomously, a path planning algorithm and a closed-

loop controller are presented in this Thesis, given the measurements are the distance and 

orientation of the moving robot with respect to the stationary robot and the control inputs are 

the linear and angular velocities of the moving robot. The path planning algorithm include 

choosing a target point for the moving robot each step and finding the optimal path while 

avoiding obstacles in the environment such as walls, objects or the stationary robot. The closed-

loop control method assumes target points in the explored environment and trajectories between 

them were chosen, meaning each step is a path following problem. Due to the polar 

characteristics of the measurements, the controller is designed in polar coordinates. 

This research was recently accepted for publication in IEEE Access, the Multidisciplinary 

Open Access Journal of the Institute of Electrical and Electronics Engineers. Additionally, we 

presented this research in the 35th Israeli Conference on Mechanical Engineering (ICME 2018) 

and in the 6th Israeli Conference on Robotics (ICR 2019). 

Key Words – Localization, Multi-robot Systems, SLAM, Cooperative Localization, 

Monte Carlo Simulation, Path Planning, Path Following, Control under Constraints.  



- 2 - 

Acknowledgments 

First, I would like to express my gratitude to my advisors Dr. David Zarrouk and Dr. Shai 

Arogeti for guidance and encouragement during my research and thesis writing. I would like to 

thank them for all the support, patient advice and the trust they placed in me. I would also like 

to thank Prof. Per-Olof Gutman for his help and guidance during the last semester. 

A special thanks goes to my friends and colleagues, Lee-Hee Drory, Nir Meiri, Dan 

Shachaf, Dana Shimoni and Benny Kosarnovsky for the constant support and advice on a daily 

basis. I would also like to thank my friends and fellow masters' students for their support, the 

shared lunches and laughter during our time in the university and outside of it. 

Finally, I would like to thank my partner Ophir Weinreb and my family for loving and 

supporting me and for providing me with continuous encouragement throughout my years of 

study and throughout the research process and the thesis writing. A special thanks goes to my 

mother, Francine Ex, for devoting many hours proofreading my papers the last year. 

 

 

This research was supported in part by the Pearlstone Center for Aeronautical Studies and 

by the Helmsley Charitable Trust through the Agricultural, Biological and Cognitive Robotics 

Initiative and by the Marcus Endowment Fund all at Ben-Gurion University of the Negev. 

  



- 3 - 

Table of Contents 

Nomenclature ....................................................................................................................... 5 

List of Figures ...................................................................................................................... 8 

List of Tables ..................................................................................................................... 11 

1 Introduction ............................................................................................................... 12 

2 Theoretical Background ............................................................................................ 16 

2.1 Transformation Matrix ............................................................................................ 16 

2.2 Jacobian Matrix ....................................................................................................... 17 

2.3 Probability Theory ................................................................................................... 17 

2.4 State-Space Representation ..................................................................................... 19 

2.4.1 Full State Feedback ....................................................................................... 19 

2.5 Lyapunov Function ................................................................................................. 20 

2.6 Second Order System's Response ........................................................................... 20 

2.7 Optimization and Cost Function ............................................................................. 22 

3 Localization Method ................................................................................................. 23 

3.1 Assumptions and Limitations .................................................................................. 23 

3.2 Robotic Setup .......................................................................................................... 24 

3.3 Two Point Measurement Approach ......................................................................... 25 

3.4 Relative Orientation Method (Suggested Method) ................................................. 26 

3.5 Multistep Representation using Homogeneous Coordinates .................................. 28 

4 Error Evaluation ........................................................................................................ 30 

4.1 Exact Method .......................................................................................................... 30 

4.2 First Order Approximated Method .......................................................................... 31 

5 Monte Carlo Simulation ............................................................................................ 32 

5.1 Comparing the First Order Approximated Method to the Exact Method ............... 33 

5.2 Statistical Distribution ............................................................................................. 35 



- 4 - 

5.3 Comparing the Influence of the Sensor Error on the Accuracy of the Measured 

Location ................................................................................................................................. 38 

5.4 Path Comparison ..................................................................................................... 39 

6 Experiments ............................................................................................................... 41 

6.1 Experimental System ............................................................................................... 41 

6.2 Results ..................................................................................................................... 44 

6.3 Comparison to Simulation ....................................................................................... 45 

7 Control ....................................................................................................................... 46 

7.1 Autonomous Path Planning ..................................................................................... 46 

7.1.1 The Model ..................................................................................................... 46 

7.1.2 Implementation .............................................................................................. 47 

7.1.3 Defining Constraints ..................................................................................... 48 

7.1.4 Simulation Results ......................................................................................... 50 

7.2 Path Following with Polar Coordinates .................................................................. 55 

7.2.1 Straight Line Path Following and Convergence ........................................... 58 

7.2.2 Simulation ..................................................................................................... 59 

7.3 Path Planning and Following .................................................................................. 61 

7.3.1 Simulation ..................................................................................................... 62 

8 Conclusions ............................................................................................................... 66 

9 References ................................................................................................................. 68 

10 Appendices ................................................................................................................ 71 

 

 

  



- 5 - 

Nomenclature 

Symbol Units/Dimensions Description 

j

iA  3×3 
Transformation matrix from i-coordinate system to j-

coordinate system 

,A A   2×2 State matrix 

a, b m, m Length of semi axes of ellipse obstacle 

B 2×1 Control matrix 

bx - 
x coordinate of the center of the ball in pixels, with 

respect to the center of the frame 

(Cx,Cy) m, m Center of ellipse obstacle 

Dx, Dy m, m 
Distance between coordinate systems in x and y 

directions respectively 

d m Length of desired path 

dc m 
Current distance between the robot's current and initial 

positions. 

[E]i 3×1 Location error at step i 

e   2×1 Error state vector 

re , e  m, deg Robot’s position and heading errors respectively  

F - General operator 

f - Measured location function 

g - General function 

H(s) - Transfer function  

i - Current step number 

J - Cost function 

[J]i 3×3i Jacobian matrix at step i 

K 1×2 Gain matrix 

k1, k2 - Control gains 

L m Length of turret 

l m Length of robot 

Mp % Maximum (present) overshoot of dynamic response 

N - Number of random error values 

NL - Size of the turret in image in pixels 

Nx, Ny - 
Number of pixels in image in the horizontal and vertical 

directions respectively 

n - Number of steps 
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P, Q 2×2 Positive definite matrices 

p, q m, m Dimensions of rectangular obstacle 

Pe - Traveling vehicle’s target point 

Pr - Stationary vehicle’s position 

P0 - Traveling vehicle’s initial position 

ℝ𝑛 - Real coordinate space of n dimensions 

(Rx,Ry) m, m Center of rectangular obstacle 

rd  = f ( ) - Robot's desired trajectory function 

( , )e er  m, deg Traveling robot's target point 

ri m Measured distance between robots at step i 

rmax m Distance sensor's maximal range 

r0 m 
Initial distance between traveling and stationary 

vehicles  

s - Laplace domain's variable 

tf sec Final time 

ts sec Settling time of dynamic response 

u(t) - Control signal 

𝑉(𝑥) - Lyapunov function 

𝑉̅ 2×1 Eigenvector 

v m/sec Vehicles' linear velocity 

vmax m/sec Maximal linear velocity 

Xi=(xi,yi,i) m, m, deg Location and orientation of the robot at step i. 

xe - Equilibrium point 

(xf,yf) m, m Moving robot’s final position 

xlb, xub m, m Upper and lower boundaries in x direction 

(xm,ym) m Robot’s measured location 

(xr,yr) m Robot’s real location 

(xs,ys) m, m Stationary robot’s position 

(x0,y0) m, m Moving robot’s initial position 

ylb, yub m, m Upper and lower boundaries in y direction 

αij deg  Measured bearing angle of vehicle j at step i 

αimage deg Angular position of the tennis ball in the image 

αturret deg Orientation of the turret 
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αL deg View angle of the height of the turret 

( , , ) r  deg, m, deg 
Robot's position and orientation in polar coordinate 

system 

  deg 
Angle between main axis of the ellipse and the x 

positive axis 

γx deg Camera’s field of view in the horizontal direction 

γy deg Camera’s field of view in the vertical direction 

res  m Distance sensor's resolution 

 
i

  3i×1 Error vector at step i 

ir  m Distance measurement error at step i 

ij  deg Bearing measurement error of vehicle j at step i 

  deg Robot’s Orientation error 

δ - Allowed range around final value response 

δθ deg Small angle 

ε m 
Minimal allowed distance between the moving vehicle 

and an obstacle 

λ - Eigenvalue 

µ - Mean value 

ρ deg Orientation of ellipse obstacle 

  m Total standard deviation 

d  % Distance sensor's resolution 

x , y  m, m 
Standard deviation in the 'x' and ‘y’ directions 

respectively 

  deg Bearing sensor's resolution 

  deg Robot’s orientation standard deviation 

1 , 2  m, m 
Standard deviation in the direction of the semi-major 

and semi-minor axes of the ellipse respectively 
2  - Variance 

  deg Robot's heading angle 

d  deg Robot's desired heading 

χ deg Angle between initial position and desired path  

i   deg Relative angle between coordinate systems at step i 

ω rad/sec Vehicle's angular velocity 

ωmax rad/sec Maximal angular velocity 

ωn rad/sec Natural frequency 

ζ - Damping coefficient 
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1 Introduction 

Many robotic applications such as search and rescue, surveillance, planetary exploration 

and others require Simultaneous Localization and Mapping (SLAM) of unknown unstructured 

locations. SLAM is known as a 'chicken and egg problem' meaning, how can a robot build or 

update a map of an unknown environment, while simultaneously keeping track of its own 

location within it? 

This problem is well-researched due to its great potential in solving a wide range of robotic 

applications. Nowadays, as technology advances, Global Positioning System (GPS) is the 

simplest and most accurate localization technique. SLAM techniques become more crucial 

where GPS and other localization techniques are unavailable such as indoors, inside caves or in 

tunnels. 

Many solutions for self-localization rely on measuring the relative position of the robot 

with respect to known features in space, also known as landmarks. However, the complexity 

grows in cases where there is no prior knowledge of the explored area. In 1994, Kurazume et 

al. first suggested cooperative positioning for multi-robot systems as a solution to the SLAM 

problem [1]. By advancing the robots in alternating steps, such that at each point in time some 

robots remain stationary and the others travel to new positions, the stationary robots whose 

absolute locations are known serve as landmarks for the traveling robots. Therefore, this method 

is especially useful while exploring an uncharted environment where there are no known 

landmarks. 

The cooperative positioning method has been further developed by other groups [2]-[6] to 

suggest the use of different kinds of sensors to determine relative positioning with different 

advancing algorithms. The advantage of this method is that a unified map of the robots' 

trajectories is created using all available relative measurements. However, to implement this 

method, a centralized communication system is required. Centralized approaches, though 

theoretically effective, require ideal communication and high computational cost, thus making 

them vulnerable to single-point failures especially as the number of robots increases. 

In 1997, A different method for multi-robot SLAM was suggested by Roy and Dudek 

known as the rendezvous case [7], further developed in [8]. In this method, each robot explores 

a different part of the environment and creates its own map. When two robots meet (this could 

be a random event or could be arranged by the two robots [8]), the robots measure their relative 

distance and bearings; this information can be used to compute the coordinate transformation 
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required to merge both maps. Due to noise in these measurements, the estimated transformation 

may be inaccurate, reducing the quality of the merged map. If landmarks are available in the 

explored environment, the most probable transformation between two maps can be identified as 

the one that produces the maximum number of landmark correspondences [9]. Available 

landmarks also allow successful localization of a multi robot system even when the initial 

positions of the robots are unknown [9],[10]. Other solutions for map merging have been offered 

such as using particle filters [10] or occupancy grid maps [11]. 

Though map merging increases complexity, this method has an obvious advantage, 

especially while exploring large areas, of enhancing efficiency, i.e. reducing exploration time. 

The exploration time could be further reduced by wisely choosing different paths for different 

robots. While in most methods the robots are guided to points in the explored environment 

which have minimum travel cost out of all unexplored points, [12] suggests an approach that 

takes into account not only the travel cost but also the utility of unexplored points, where the 

utility of a target location depends on the probability that this location is visible from a target 

location assigned to another robot. 

The main challenge in using relative measurements is determining the absolute locations of 

the robots, since the locations are obtained with regard to a local coordinate system. Some 

solutions address this issue by combining both external measurements such as GPS [13] or an 

affixed IR range detector [14], which return inaccurate yet absolute locations and relative 

measurements between the robots to enhance accuracy and obtain the orientation of the robots 

as well. The practicality of these methods is limited since they require either GPS reception 

which is not available in many cases such as indoor or underground areas or prior placing of 

sensing tools. Similarly, many solutions use filtering techniques, most commonly the Extended 

Kalman Filter (EKF) [15]-[18], where the robots' locations are predicted by odometry data (such 

as linear and angular velocities) and corrected by relative measurements between neighboring 

robots. Recently, the use of Ultra-Wideband (UWB) range-sensors has become popular for 

relative distance measurements in multi-robot systems, because they make it possible to perform 

the localization process in a fully decentralized manner [19]-[21].  

While the relative locations of a multi-robot system can be calculated by using any of the 

aforementioned methods, obtaining the accurate relative orientation of the robots is much more 

challenging. Besides visual methods [22]-[25], many attempts to find the orientation of the 

robots have been made using range-only measurements [6],[19]-[21],[26] and angle-only 

measurements [17] or a combination of both [16],[27]-[29]. The accuracy of the orientation 
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remains however very challenging at long distances. While some work has focused on 

evaluating the uncertainty of the estimated locations [30],  the uncertainty in the orientation of 

the robots has not been appropriately examined. 

Our goal in this work is to provide a simple low-cost high accuracy localization and 

orientation method for a multi-robot system, suitable for indoor areas where GPS signals are 

unavailable, and visibility is relatively low. This could be useful for underground, under water 

and planetary explorations or search and rescue missions in cases such as natural disasters or 

collapsed structures. 

 
Figure 1.1: Examples for dark areas without GPS reception. 

We would also like our system to be able to advance autonomously, i.e. plan its path and 

motion, in such uncharted constrained environments which lacks GPS reception. Motion 

planning is a fundamental problem in the field of robotics and an essential step towards complete 

autonomic mobile robots. Motion planning consists of computing a series of actions that drives 

the robot from its initial position to a desired final position, while considering its surrounding 

(avoiding obstacles) and its own motion limitations (kinematic/dynamic constraints or in short, 

differential constraints) [31]. The basic problem where the robot has no motion limitations and 

only an obstacle-free solution is required is a well understood problem and solutions were 

offered for various scenarios [32]. Since robots usually do have strict motion limitations, the 

previously mentioned solutions cannot actually be executed by real robots. 

  There are two main approaches for motion planning under differential constraints [32]: 

The first is a decoupling approach in which first a collision-free path is found and then the path 

is smoothened so that the motion constraints are fulfilled. The second is a direct approach in 

which the differentially constrained motion planning problem is solved all in once. While the 
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first approach is easier to compute, a solution is not guaranteed and even if found, may be 

extremely inefficient. 

A direct approach on the other hand, which also includes optimizing an objective function, 

guaranties finding the optimal solution. Most solutions which guaranty optimization are model 

based methods such as the very well researched Model Predictive Control (MPC) [33]-[36] (or 

NMPC for nonlinear systems [37],[38]), the not as common Interpolating Control (IC) [39], and 

the most commonly used today sampling-based planning [32],[40]-[42], which is based on a 

graph search of all possible trajectories. For our work, an optimal control tool for nonlinear 

systems under differential constraints is used [43]. 

We consider two robots each of which is equipped with one camera and one 

rotation/bearing sensor mounted on a rotating turret. The outline of the Thesis is as follows: 

theoretical background is presented in Section 2, the robotic system and the localization 

algorithm are described in Section 3 and the error evaluation using an analytical exact method 

and first order approximation method is presented in Section 4. The two methods are used to 

statistically evaluate the location and orientation errors using Monte Carlo simulations in 

Section 5 and real-world experiments are described in Section 6.  

 Section 7 presents a path planning algorithm (Section 7.1) and a closed-loop controller for 

following the desired path (Section 7.2); due to the polar nature of the measurements, the 

controller is described in polar coordinates which was proven to be as efficient as Cartesian 

coordinates, and can represent non-linear distributions in the Cartesian space as linear 

distributions in the polar space [44]-[48]. Section 7.3 presents the fusion and implementation of 

both algorithms. Finally, conclusions are discussed in Section 8.  
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2 Theoretical Background 

This section presents relevant theoretical background for this paper. 

 

2.1 Transformation Matrix 

One of the challenges when using a multi-robot system to solve a SLAM problem, is that 

the measurements from each robot are obtained in its local coordinate system. One of the 

requirements for executing a SLAM algorithm is that all information is obtained in a fixed global 

coordinate system. To do so, transformation matrices are used. 

The main idea of this method is based on the fact that every vector in one coordinate system 

can be represented in a second coordinate system, by multiplying the vector with the desired 

coordinate system's basis vectors. In the two-dimensional case, this is a linear operation of the 

following form: 

 
( ) ( )

( ) ( )
1 0 1 01 1 1

0 0 0

1 0 1 0

cos sin

sin cos

x x x y
R X Y

y x y y

 

 

  −  
 = = =         

, (1) 

while 
1

0R   is the rotation matrix, converting the vector ( )1 1

T
x y  to the 0-coordinate system, and 

 is the rotation angle between the two coordinate systems. 

In our case, the goal in each step is to covert the robot's position to the global coordinate 

system. Therefore, the difference between the robot's local coordinate systems and the global 

one, is not only in orientation but also the distance traveled, say Dx in the x axis direction and 

Dy in the y axis direction. The overall transformation matrix is: 

 

( ) ( )

( ) ( )1

0

cos sin

sin cos

0 0 1

x

y

D

A D

 

 

− 
 

=  
 
 

.     (2) 

This method is the basis of the localization method presented in this paper (3.4 and 3.5). 

For each step, the moving robot's position is converted to the global coordinate system; the n 

step's transformation matrix is received as following: 

  
1

0 0 1

n n n

nA A A−

−=  ,      (3) 

while 1

n

nA − is the last step's transformation matrix from the moving robot's coordinate system (n) 

to the stationary robot's coordinate system (n-1), and 
1

0

nA −
is the overall transformation matrix 
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calculated at the previous step, converting from (n-1) coordinate system to the global coordinate 

system (0). 

 

2.2 Jacobian Matrix 

Suppose : n mF →  is an operator which receives as an input a vector nq   and 

produces as an output the vector ( ) mF q  . Then the Jacobian of F is a m by n matrix that is 

defined as follows [49]: 

 

1 1

1

1

1

n

n

m m

n

f f

q q
F F

J
q q

f f

q q

  
  
   
 = = 

       
   

,   (4) 

while 1 mf f  are the functions that define operator F and 1 nq q are the variables of these 

functions. In our case, the functions f  determine the robot's location and orientation in space 

in the global coordinate system ( ), ,x y  , and the variables are the robots' measurements (see 

Section 3.4). 

If F is differentiable at point q, then the Jacobian matrix defines a linear map n m→

which is the best linear approximation of function F near point q; meaning, the Jacobian matrix 

can be used to approximate the value of function F at point q, without actually calculating    

( )F q . An explanation of this process in our system is presented in Section 4.2. 

 

2.3 Probability Theory 

Probability is a very broad branch in mathematics. In this section, specific concepts, 

regarding this paper, within probability theory will be explained. 

Probability distribution is a mathematical function that provides the probability of 

occurrence of different possible outcomes of a certain experiment [50]. The distribution of 

numerical data can be accurately represented by a histogram. To build a histogram, the entire 

range of values must be divided into 'bins' i.e., a series of intervals, and then count how many 

values fall into each bin. 
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If the Probability distribution function is continuous, by sampling experiment results for 

many random values, a probability density function (PDF) can be obtained. These functions 

have two main characteristics. The first is mean value (also known as expected value or 

average), represented in Figure 2.1 as µ. The mean value is simply calculated by summing all 

values and dividing the sum by the number of values. 

 

Figure 2.1: Probability density function. The red curve is a normal distribution1. 

 

The second characteristic is variance, represented in Figure 2.1 as 2 . Variance is the 

expectation of the squared deviation of a random variable from its mean. The square root of the 

variance is called standard deviation -  . Standard deviation indicates how far a set of random 

values are spread out from the mean value (amount of dispersion). Standard deviation is 

calculated as following: 

 
2

1

1
( )

1

N

i

i

x
N

 
=

= −
−

 ,      (5) 

as ix  is the measured value in all data points and N are the number of data points. 

Normal distribution (also known as Gaussian distribution) is a very common continuous 

probability distribution. Normal distributions have a mean value of 0 and a standard deviation 

of 1. This distribution is often used to represent real-valued random variables whose 

distributions are not known. 

 

 
1 https://en.wikipedia.org/wiki/Normal_distribution 

https://en.wikipedia.org/wiki/Normal_distribution
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2.4 State-Space Representation 

State-space representation is a mathematical method, used in the field of control-

engineering, representing physical systems as a set of inputs, outputs and 'state variables', related 

by a first order matrix differential equation. In the case of linear, time-invariant and finite-

dimensional dynamical systems (LTI systems), the system can be represented by a 'state 

equation' and a 'measurement equation' respectively: 

 
( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

= +

= +
 , (6) 

with the description and dimensions of all symbols described in Table 2.1. Note that in the 

discussed case these matrices are constant, but they could be time dependent in the case of a 

continuous time-variant system. In many cases there is no direct connection between the input 

and output vectors, hence D=0. 

Stability and natural response characteristics of a continuous LTI system are determined by 

the eigenvalues of matrix A. 

 
Table 2.1: State space representation vectors and matrices. 

Symbol Dimensions Description 

𝑥̅ n×1 State vector 

𝑦̅ m×1 Output/measurement vector 

𝑢̅ p×1 Input/control vector 

𝑟̅ p×1 Reference vector 

A n×n State/system matrix 

 n×p Input matrix 

C m×n Output matrix 

D m×p Feedforward matrix 

K p×n Gain matrix 

  

2.4.1 Full State Feedback 

Eq. (6) is also called the open loop system, which acts completely on the basis of the input. 

A closed loop system refers to a common control technique that relays on receiving feedback on 

the system's behavior by feeding the output back, i.e. closing the system, and altering the input 

accordingly. In state space representation, a full state feedback is utilized by the following input: 

 u r Kx= −  , (7) 
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where 𝑟̅ is the reference vector (or the input of the closed-loop system) and K is a gain matrix 

of constant values (dimensions are described in Table 2.1). Placing the control law in Eq. (6) 

results in the following dynamic equation: 

 ( )( ) ( )x t A BK x t Br= − + . (8) 

Therefore, the stability and natural response characteristics of the closed-loop system are 

determined by the eigenvalues of matrix ( )A BK− . 

 

2.5 Lyapunov Function 

In the theory of ordinary differential equations (ODEs), Lyapunov functions are scalar 

functions that may be used to prove the stability of an equilibrium of an ODE [51]. Lyapunov's 

stability theory determines that if the solutions to a differential equation that start out near an 

equilibrium point xe stay near xe forever, then xe is Lyapunov stable [52]. According Lyapunov's 

second method of stability, if a system ( )x g x=  has a point of equilibrium at xe=0, the point is 

Lyapunov stable if there exists a Lyapunov function ( ) : nV x →  that fulfills the following: 

• ( ) 0V x =  if and only if 𝑥 = 0. 

• ( ) 0V x   if and only if 𝑥 ≠ 0. 

• ( ) 0V x   for all 0x   (or ( ) 0V x   for all 0x   for asymptotic stability). 

 

2.6 Second Order System's Response 

A second order linear system is a common description of many dynamic processes. In the 

general form where y(t) is the system's output and x(t) is the system's input, in time domain the 

system is presented by the following differential equation: 

 ( ) ( ) ( )2

1 2
( )y t y t y t x t



 
+ + = , (9) 

and in Laplace domain, the system is presented by the following transfer function: 

 ( )
( )

( )

2

2 22

n

n n

Y s
H s

X s s s



 
= =

+ +
 , (10) 
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where ζ is the system's damping ratio and ωn is the system's natural frequency. The denominator 

of the transfer function is also called the characteristic equation of the system since it 

determines the system's response's behavior. 

The system's time response to a unit step input i.e.: 

 ( )
1, 0

0, 0

if t
x t

if t


= 


  , (11) 

depends on the placement of the system's poles (the characteristic equation's roots). If    

0 1  , the system is considered underdamped and the system contains a pair of complex 

poles:  

 
2

1,2 1n ns j  = −  − , (12)  

The response of an underdamped second order system to a step unit input is presented in Figure 

2.2. The transit response is characterized by the following: 

• Delay time (td) – The time required for the response to reach half its final value  

• Rise time (tr) – The time required for the response to rise from 10% to 90% or from 0% to 

100% of its final value. 

• Peak time (tp) – The time required for the response reaches its first peak. 

• Maximal (present) overshoot (Mp) – The maximum peak’s value with respect to the final 

value. 

• Settling time (ts) – The time required for the response to reach and stay within a range around 

the final value (usually 2% or 5%). 

 
Figure 2.2: The response of an underdamped second order system to a step unit input 

(normalized by final value)2. 

 
2 http://shiwasu.ee.ous.ac.jp/matweb_cs/help/english_sole_t_help.htm 

http://shiwasu.ee.ous.ac.jp/matweb_cs/help/english_sole_t_help.htm
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These characteristics can be approximated by appropriate formulas. Presenting only the 

formulas that will be used on this paper (7.2.2), the maximal overshoot can be approximated by: 

 
2

exp
1

pM




 
 = −
 − 

, (13) 

and the response's settling time can be approximated by: 

  ( )
( )ln

%s

n

t





−
=  , (14) 

where δ determines the allowed range around the final value. 

 

2.7 Optimization and Cost Function 

In the field of mathematics, the process of optimization is the selection of the best element, 

with regards to some defined criteria, from some set of available alternatives [53]. An 

optimization problem usually consists of maximizing or minimizing an objective real function 

g by systematically choosing input values within an allowed set and calculating the value of the 

function g [54]. When the goal is minimization, the objective function is called a loss function 

or a cost function. The cost function maps an event or values of one or more variables onto a 

real number, representing the “cost” associated with the event.  
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3 Localization Method 

In this section, the assumptions and limitations of the work are defined (3.1). Then, we 

present our robotic setup (3.2) and two localization methods. The first method is based on a 

two-point measurement approach to calculate the orientation (3.3), whereas the second method, 

which is our newly developed method, fuses the distance and relative orientation to yield more 

accurate results (3.4 and 3.5). 

 

3.1 Assumptions and Limitations 

This research focuses on the problem of self-localization in areas without access to GPS 

signals. The solution proposed includes the use of a two-robot system advancing in alternating 

steps, also known as cooperative positioning. The research is conducted under the following 

assumptions and limitations: 

• The research is limited to the use of a two-robot system.  

• The initial position of at least one of the robots must be known.  

• The system performs 2D localization, therefore the environment explored must be flat. 

• At each step, one robot remains stationary, as the other robot moves in the environment. 

Therefore, the advance of the system is not continuous. 

• The measurements are not necessarily continuous; to implement the localization method 

(Section 3.4 and 3.5), the relative position between the robots is measured only when 

the moving robot has stopped. To implement the control loop presented in Section 7.2, 

continues measurements are required. 

• The sensors should be able to determine distance and orientation between the robots.  

• The robots always stay in each other's range of 'sight' (depends on the range of the 

distance sensor and the camera's field of view). 

• The sensors' measurement errors are assumed to be normally distributed. This is a very 

common assumption, broadly used in cases of implementing observing methods in order 

to estimate the true position of the robot, such as Kalman Filter [15]-[18]. 
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3.2 Robotic Setup 

Consider a robot fitted with a rotating turret which carries a camera (see Figure 3.1). The 

orientation of the turret relative to the heading of the robot is measured with a bearing sensor 

(such as an encoder). The camera is used to detect the target and to aim the turret towards it. 

The distance is measured using the camera3 whereas the bearing sensor measures its angular 

coordinate. The polar coordinates can then be transformed into the real Cartesian location 

coordinates (xr, yr) using:  

  
( )

( )

cos

sin

r

r

x r

y r





=

=
,      (15) 

where r is the distance of the target and  is the orientation of the turret. Practically speaking, 

each of the sensor measurements contains a small error. We denote by r and , respectively 

the distance and orientation errors. Then the coordinates (xm, ym) based on the sensor 

measurement become: 

 
( ) ( )

( ) ( )

cos

sin

m

m

x r r

y r r

 

 

= +  + 

= +  + 
.     (16) 

The distance error range is often (according to many laser sensor catalogs and visual based 

sensing) proportional to the measured distance, whereas the angular error is dependent on the 

resolution of the camera and encoder and is constant for a long range of distances (as long as 

the target is detected by multiple camera pixels). Assuming small measurement errors r, 

  and using a first order Taylor series approximation: 

 
( ) ( ) ( )

( ) ( ) ( )

cos cos sin

sin sin cos

    

    

+  = − 

+  = + 
,    (17) 

neglecting the product of r times   Eq. (16) becomes: 

 
( ) ( ) ( )

( ) ( ) ( )

cos sin

sin cos

m

m

x r r r

y r r r

  

  

 +  − 

 +  + 
.    (18) 

 
3 The distance measurement could equally be achieved by using a camera or a laser range sensor. The term 

'distance measurement' or 'distance sensor' refers to either kind of measurement method. 
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Figure 3.1: The mobile robot and its sensors. Each robot incorporates a camera fitted on a 

rotating turret and a bearing sensor. 

 

3.3 Two Point Measurement Approach 

A straightforward approach is to estimate the orientation of the robot by measuring the 

position of two specific points on its side. Assuming that the measured distance and relative 

orientation of two points 1 and 2 are respectively r  r  and   (see Figure 3.2), the measured 

position of the center of the robot (x,y) and its orientation θ can be calculated as follows: 

 

1 1 2 2

1 1 2 2

cos cos

2

sin sin

2

r r
x

r r
y

 

 

+
=

+
=

,      (19) 

and 

  2 2 1 1

2 2 1 1

cos cos
atan

sin sin

r r

r r

 


 

 −
= −  

− 
. (20) 

This method results in a relatively large error in the robot's orientation if the errors r1,r2 

become significantly large relative to the distance l between the two measured points. Omitting 

the angle measurement errors, the maximal orientation error of the robot: 

  
( )

1 2

cos

r r

l


 

 + 
 

−
.      (21) 

For example, assume a robot with a length of l=0.5 m is measured from a distance of r=10 

m by a distance measurement with a resolution of 0.2%; hence r=2 cm. Given =45° and 

=30°, the orientation error according to Eq. (21) is  ≈ 4.8°. Note that this orientation error 

for each single step is very large especially since the error is cumulative. 



- 26 - 

 
Figure 3.2: Distance measurement errors when estimating the orientation of a vehicle. In 

black: real position of vehicle, in grey: estimated position. 

 

3.4 Relative Orientation Method (Suggested Method) 

Our method is based on the approach of two vehicles which advance in alternating steps. 

At any given time, one vehicle whose position xi,s, yi,s and orientation i,s are known remains 

stationary, while the other vehicle advances. The index i indicates the step number and 's' stands 

for stationary. At the end of each step, the distance and bearing of the two vehicles are measured 

(ri, is, it); These measurements are used to estimate the traveling vehicle's position xi,t, yi,t and 

orientation i,t (where 't' stands for traveling). 

The traveling vehicle's location and orientation at each step is determined with respect to 

the observing vehicle's position. The general form of the Cartesian location and orientation of 

the traveling vehicle at step i is: 

 ( ), , , , , ,i t i s i s i is itX X F r  = + ,     (22) 

where the vector Xi includes both the position and orientation of the vehicle:  
T

i i i iX x y = . 

For example, in step 1, assume that vehicle 1 is stationary and its position x1,1, y1,1 and 

orientation 1,1 are known and vehicle 2 traveled to a new position. The measured distance 

between the vehicles is r1 and the measured bearing angles are 11 and 12, where the first index 

refers to the step number and the second index refers to the measuring vehicle (see Figure 3.3, 

left). Therefore, the Cartesian position and orientation of vehicle 2 with respect to vehicle 1 is: 
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1,2 1 11

1,2 1 11

1,2 11 12

cos

sin

180

x r

y r





  

=

=

= +  −

.      (23) 

By setting the initial position and orientation of vehicle 1 as the origin of the global 

coordinate system, meaning x1,1=0, y1,1=0 and  1,1=0, Eq. (23) represents the global position 

of vehicle 2 at the end of the first step. 

Note that the orientation θ is determined solely by bearing measurements and is hardly 

influenced at all by the distance measurement, unlike in the two-point approach (3.3), where the 

orientation accuracy is decreased by the distance. This is one of the key advantages of our 

method since distance errors tend to increase together with the distance while angle 

measurements remain almost unchanged. 

In step 2, vehicle 1 travels to its next target point while vehicle 2 is stationary and its 

position is known (x2,2=x1,2, y2,2=y1,2 and 2,2=1,2). At the end of the step, the distance and angle 

measurements are r2, 22 and 21 (see Figure 3.3, center). It should be noted that the 

measurements are obtained with respect to vehicle's 2 current position and its local coordinate 

system. In order to obtain the position of vehicle 1 in the global coordinate system, a 

transformation is needed. 

 
Figure 3.3: The first three steps and their measurements. At each step, one robot is static 

and tracks the motion of the advancing robot. 
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3.5 Multistep Representation using Homogeneous Coordinates 

The local transformation matrix (2.1) at step n from the traveling vehicle's coordinate 

system (n) to the stationary vehicle's coordinate system (n-1) is: 

 1

cos sin cos

sin cos sin

0 0 1

n n n ns

n

n n n n ns

r

A r

  

  −

− 
 

=
 
  

,    (24) 

where n is the relative angle between the two coordinate systems, hence n=ns+−nt (see 

Figure 3.3). Obtaining the position of the traveling vehicle in the global coordinate system (0), 

can be achieved recursively as follows: 

  
1

0 0 1

n n n

nA A A−

−= 
,      (25) 

where 1

0

nA −  is the overall transformation matrix obtained in the last step (n-1), and 
1

n

nA −
 is the n 

step's local transformation matrix as shown in Eq. (24). 

Since the transformation matrix is composed of a rotation matrix and a shifting vector, the 

first two expressions of the third column of  matrix 
0

nA  are the Cartesian location of the traveling 

vehicle in the global coordinate system at step n, and the angle of the rotation matrix is the 

vehicle's orientation in the global coordinate system. 

For example, the transformation matrix of the first step is: 

 

1 1 1 11

1

0 1 1 1 11

cos sin cos

sin cos sin

0 0 1

r

A r

  

  

− 
 

=
 
  

.    (26) 

The transformation matrix from the first to the second step: 

 

2 2 2 22

2

1 2 2 2 22

cos sin cos

sin cos sin

0 0 1

r

A r

  

  

− 
 

=
 
  

.    (27) 

Therefore, the overall transformation matrix for the second step is: 

( ) ( ) ( )

( ) ( ) ( )
1 2 1 2 1 11 2 1 22

2 1 2

0 0 1 1 2 1 2 1 11 2 1 22

cos sin cos cos

sin cos sin sin

0 0 1

r r

A A A r r

      

      

+ − + + + 
 

=  = + + + + 
 
 

.   (28) 

Hence, vehicle’s 1 location in the global coordinate system at the end of the second step (see 

Figure 3.3, center) is: 
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( )

( )

2,1 1 11 2 1 22

2,1 1 11 2 1 22

2,1 1 2 11 12 22 21

cos cos

sin sin

x r r

y r r

  

  

      

= + +

= + +

= + = − + −

.    (29) 

The general form of the location of the traveling vehicle at step n: 

 

( )

( )

, 1

1

, 1

1

,

1

cos

sin

n

n t i i is

i

n

n t i i is

i

n

n t i

i

x r

y r

 

 

 

−

=

−

=

=

= +

= +

=







,     (30) 

where: 

  .
180i is it  = +  −

      (31) 
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4 Error Evaluation 

Since all sensor measurements contain precision errors, this section presents a statistical 

analysis to evaluate the influence of the cumulative errors on the overall location of the robot 

after a large number of steps. 

 

4.1 Exact Method 

The measured location of the traveling vehicle at step n is expressed as a function of 

measured distances r1,r2,…,rn and angles 11,12,…,n1,n2 in the global coordinate system 

f(r1,…,rn,11,…,n2); thus the real location including distance and bearing measurement errors, 

r1,r2,…,rn and nn respectively, is 

f(r1+r1,…,rn+rn,11+,…,n2+n) 

For example, if during the first step (Eq. (23)) the distance and bearing were measured with 

an error of r1, 11 and 12 respectively, the measured location of vehicle 2: 

 

( ) ( )

( ) ( )

( )

1,2 1 1 11 11

1,2 1 1 11 11

1,2 11 11 12 12

cos

sin

180

m

m

m

x r r

y r r

 

 

    

= +  + 

= +  + 

= +  +  − + 

.    (32) 

This method uses the presented localization method directly (see Section 3.4 and 3.5), and 

hence requires multiple matrix multiplications and a large number of trigonometric calculations 

which result in high numerical complexity. 

 
Figure 4.1: Real location (left), Measured location with sensor errors (right). 
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4.2 First Order Approximated Method 

An approximated, yet computationally simpler method to evaluate the measured locations 

of the vehicles uses: 

  [ ][ ]

m r

m r

m r

x x

y y J

 

   
   

 +    
   
   

,      (33) 

where the index 'r' refers to the real location, [] is the measurement errors vector and [J] stands 

for the Jacobian matrix (2.2): 

  i

ij

j

f
J

q


=


,      (34) 

where fi are the functions of Cartesian location and orientation and qj are the variables of these 

functions, hence r1,11,12,…,rj,j1,j2. For example, the estimated position of vehicle 2 after 

the first step is: 

1,2 1 11 11 1 11 1

1,2 1 11 11 1 11 11

1,2 11 12 12

cos cos sin 0

sin sin cos 0

180 0 1 1

m

m

m

x r r r

y r r

  

   

   

  −      
       

 +        
       +  − −       

.     (35) 

At the next step, the location is determined by 6 measurements; thus, the Jacobian becomes 

a 3×6 matrix and the measurement error is a 6×1 vector. At step n, the Jacobian is a 3×3n matrix 

and the measurement error is a 3n×1 vector. A general form of the location error for step n is: 
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5 Monte Carlo Simulation 

A Monte Carlo Simulation (MCS) was used in order to simulate a real-life scenario where 

the input of the sensors contains statistical errors. A natural random statistical error with a given 

standard deviation was inserted to the “measured values” and the statistical distribution of the 

position of the vehicles was calculated (using 10,000 simulations for each step), by both exact 

and approximated methods, as presented in Figure 5.1. This section first presents a comparison 

between the first order approximation to the exact method (5.1), the statistical distribution along 

the path (5.2), the influence of the sensor error on the accuracy of the measured location (5.3) 

and finally a comparison between different paths and advancing (parallel, alternating and 

following) methods (5.4). 

 

Figure 5.1: Flow chart of the Monte Carlo simulation, calculating locations with errors by 

two methods for a path of n steps, using a set of N random errors. 
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5.1 Comparing the First Order Approximated Method to the Exact Method 

The MCS was first performed throughout a simple path composed of two straight lines as 

seen in Figure 5.2. At each step, the traveling vehicle advances by 8 m and the final distance 

from the stationary vehicle is 10 m; i.e. the system overall advances 200 m throughout 25 steps. 

The distance and angle measurement errors were simulated as normally distributed (2.3) 

sets of N samples each (for each step), with zero mean. The standard deviation of the distance 

measurement error was set to d∙ri, where d is the distance sensor's resolution and ri is the 

current step's measured relative distance. The standard deviation of the angle measurement error 

was set to , the bearing sensor's resolution. 

 
Figure 5.2: A 25 step straight line path. This simple path was chosen for our numerical 

MCS. 

 

The MCS comparison was performed using the exact method (4.1, [B]7) and the 

approximated method (4.2, [B]5). In both cases, N=10,000; i.e., each step of the path was 

evaluated 10,000 times, for a set of 10,000 samples of random measurement errors ([B]4), 

resulting in 10,000 possible locations for each step. Figure 5.3 presents the relative difference 

between the final locations calculated by both methods, relative to the total traveled distance. 

Figure 5.3 (top) shows that for ≤0.5 (a reasonable assumption for a standard bearing sensor), 

the difference between the exact and approximated methods is less than 0.1% of the traveled 

distance (200 meters in 25 steps). The error increases to 1.5% for =2. Figure 5.3 (bottom) 

which presents the difference between the two methods as a function of distance standard 

deviation d  shows that the error is dominated by the angle error. 
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Figure 5.3: Relative difference between the last step's locations, calculated using the exact 

and approximated methods, relative to total distance traveled (200 m), as a function of bearing 

sensor's resolution (top), and as a function of range sensor's resolution (bottom). Each point is 

the average of 10,000 simulations. 

 

As seen in Figure 5.1, the exact method uses transformation matrices, therefore the same 

matrix multiplication (with different random errors) has to be computed N times for each step, 

overall N·n matrix multiplications for n steps ([B]1, [B]7). In the approximated method on the 

other hand, due to the general form of the location errors (Eq. (36)-(37)), all N possible locations 

for each of the n steps are calculated directly using matrix addition ([B]1, [B]5). As a result, in 

terms of computation time, the approximated method was found to be nearly 200 times faster 

than the exact method computation time. Hence, the approximated method was used in the 

following MCS. 
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5.2 Statistical Distribution 

This section presents a statistical analysis of the MCS location errors using d=2% and          

=0.5. The distribution of possible locations for each step is presented as a two-dimensional 

histogram (see Figure 5.4 and Appendix [B]8). The size and shape of the distribution can be 

described by three standard deviation values (2.3). The first is the total standard deviation 

according to the distance between the centroid and the different simulation results: 
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where (x,y) are the coordinates of the approximated method's centroid and (xi,yi) are the 

coordinates of all possible locations, i=1,…,N. 

Since the distribution pattern of possible locations tends to yield an ellipse (see Figure 5.4), 

two other standard deviations were calculated according to the ellipse's axes. These values were 

obtained by calculating the covariance matrix of the N Cartesian locations ([B]9): 
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resulting in a 2×2 covariance matrix, with two 2×1 eigenvectors  1 2,V V  and two corresponding 

eigenvalues  1 2,  . The eigenvectors of the covariance matrix represent the direction of the 

ellipse's axes, and the square root of their corresponding eigenvalues represent the standard 

deviations in their direction. Assuming 1 2  , the two standard deviations values are: 
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where 1 is the standard deviation in the direction of the main axis of the ellipse and 2 is the 

standard deviation in the perpendicular direction. The angle between the ellipse's main axis and 

the global x positive axis (see Figure 5.4 top left) is: 
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Figure 5.4: Histogram distribution of the measured locations using the MCS with 10,000 

paths with d =2% and =0.5 for steps 1, 2, 8, 14, 20, and 25 with the confidence distribution 

68% () and 95% (2). 

 

Figure 5.5: Standard deviations as a function of the number of steps for a 200 m straight 

path using d=2% and =0.5. 

 

Although the error distribution of the first step seemed to be affected mostly by the distance 

sensor's error, the error distribution of the next step had a circular pattern. The pattern became 

elliptical in the next steps with 1 becoming larger relative to 2 (see Figure 5.4 and Figure 5.5). 

The overall standard deviation of the error  grew almost linearly with the number of steps and 

distance traveled. The ratio of  of the last step divided by the overall traveled distance is 0.036 

which is in the same order of magnitude as the sensors' relative error. 
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Using Eq. (36), the standard deviation of the orientation of the vehicle at step n can be 

evaluated directly as follows: 

  2n  =  ,      (42) 

implying that the orientation error depends solely on the number of steps and the bearing 

sensor's accuracy. 

Additionally, the standard deviations in the 'x' and 'y' axes directions can be analytically 

derived from Eq. (36) (see Appendices [A] and [B]6): 
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These equations have been validated by comparing between the total standard deviation values 

 calculated using the MCS (10,000 simulations) and the analytical expression (see Table 10.1).  
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5.3 Comparing the Influence of the Sensor Error on the Accuracy of the 

Measured Location 

Figure 5.6 (top) presents the relative error between the measured position of the robot and 

the real position as a function of the standard deviation of the bearing measurement error , 

while Figure 5.6 (bottom) presents the same error as a function of the standard deviation of the 

distance measurement error d. For each case, we ran 10,000 simulations, each composed of 25 

steps and the total net advancement is 200 meters. The results presented in this figure show that 

the relative error is governed by the bearing error measurements. 

 
Figure 5.6: Relative error between the measured position of the robot and the real position 

for a travelled distance of 200 m, as a function of bearing sensor's resolution (top), and as a 

function of range sensor’s resolution (bottom). Each point is the average of 10,000 simulations. 
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5.4 Path Comparison 

In this section, MCS are used to statistically calculate the influence of the sensor accuracy 

on the location error for three different paths (straight, 'S' shape, and square) using three 

advancing methods (parallel, alternating and following). In total, nine scenarios were examined 

for four different combinations of sensor errors (see Table 5.1). The three different paths were 

chosen as basic segments that can be used to define more complex paths, whereas the three 

advancing methods map the most basic methods of forwards advancing of two vehicles. 

 
Table 5.1: Values of sensor variables used in the simulation 

Sensor variables STD #1 STD #2 STD #3 STD #4 

d=error/distance 1% 5% 2% 5% 

 [] 0.1 0.1 0.5 1 

 

 
Figure 5.7: Nine scenarios of three different paths and three different advancing methods. 

From top to bottom: straight path, 'S' path and square path. From left to right: parallel 

advancing, alternating advancing and following advancing. Lighter colors present 30 optional 

locations due to random sensors errors with d=2% and =0.5. 
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Table 5.2: 200 meters straight path standard deviation values for different sensors resolution 

(using 10,000 simulations) 

Sensor 

variables 
Total standard deviation () Advancing direction (y) Perpendicular direction (x) 

Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow. 

d=1% 

=0.1 

1.51 m 

[0.75%] 

1.49 m 

[0.72%] 

1.51 m 

[0.75%] 

0.404 m 

[0.20%] 

0.403 m 

[0.20%] 

0.631 m 

[0.31%] 

1.46 m 

[0.72%] 

1.43 m 

[0.72%] 

1.37 m 

[0.69%] 

d=5% 

=0.1 

2.86 m 

[1.4%] 

2.66 m 

[1.3%] 

3.43 m 

[1.7%] 

1.97 m 

[1.0%] 

1.99 m 

[1.0%] 

3.14 m 

[1.6%] 

2.08 m 

[1.0%] 

1.77 m 

[0.88%] 

1.38 m 

[0.69%] 

d=2% 

=0.5 

7.23 m 

[3.6%] 

7.16 m 

[3.6%] 

6.97 m 

[3.5%] 

0.836 m 

[0.42%] 

0.840 m 

[0.42%] 

1.26 m 

[0.63%] 

7.18 m 

[3.6%] 

7.11 m 

[3.6%] 

6.86 m 

[3.4%] 

d=5% 

=1 

14.3 m 

[7.2%] 

14.4 m 

[7.2%] 

14.1 m 

[7.1%] 

2.06 m 

[1.0%] 

2.08 m 

[1.0%] 

3.17 m 

[1.6%] 

14.2 m 

[7.2%] 

14.2 m 

[7.1%] 

13.8 m 

[6.9%] 

 

Table 5.3: 200 meters 'S' path standard deviation values for different sensors resolution (using 

10,000 simulations) 

Sensor 

variables 
Total standard deviation () Advancing direction (x) Perpendicular direction (y) 

Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow. 

d=1% 

=0.1 

1.07 m 

[0.54%] 

1.14 m 

[0.57%] 

1.20 m 

[0.60%] 

0.926 m 

[0.46%] 

0.960 m 

[0.48%] 

1.02 m 

[0.51%] 

0.542 m 

[0.27%] 

0.609 m 

[0.30%] 

0.629 m 

[0.31%] 

d=5% 

=0.1 

3.35 m 

[1.7%] 

3.89 m 

[1.9%] 

4.02 m 

[2.0%] 

2.43 m 

[1.2%] 

2.80 m 

[1.4%] 

2.91 m 

[1.4%] 

2.31 m 

[1.2%] 

2.70 m 

[1.3%] 

2.78 m 

[1.4%] 

d=2% 

=0.5 

4.46 m 

[2.2%] 

4.48 m 

[2.2%] 

4.86 m 

[2.4%] 

4.12 m 

[2.1%] 

4.11 m 

[2.1%] 

4.49 m 

[2.2%] 

1.71 m 

[0.85%] 

1.79 m 

[0.90%] 

1.87 m 

[0.94%] 

d=5% 

=1 

9.17 m 

[4.6%] 

9.23 m 

[4.6%] 

10.0 m 

[5.0%] 

8.40 m 

[4.2%] 

8.36 m 

[4.2%] 

9.12 m 

[4.6%] 

3.68 m 

[1.8%] 

3.92 m 

[2.0%] 

4.12 m 

[2.1%] 

 

Table 5.4: 200 meters square path standard deviation values for different sensors resolution (using 

10,000 simulations) 

Sensor 

variables 
Total standard deviation () Advancing direction (x) Perpendicular direction (y) 

Para. Alter. Follow. Para. Alter. Follow. Para. Alter. Follow. 

d=1% 

=0.1 

0.877 m 

[0.44%] 

0.973 m 

[0.49%] 

0.831 m 

[0.42%] 

0.607 m 

[0.30%] 

0.734 m 

[0.37%] 

0.587 m 

[0.29%] 

0.634 m 

[0.32%] 

0.638 m 

[0.32%] 

0.583 m 

[0.29%] 

d=5% 

=0.1 

3.70 m 

[1.8%] 

3.96 m 

[2.0%] 

3.03 m 

[1.5%] 

2.54 m 

[1.3%] 

3.02 m 

[1.5%] 

2.14 m 

[1.1%] 

2.69 m 

[1.3%] 

2.56 m 

[1.3%] 

2.15 m 

[1.1%] 

d=2% 

=0.5 

2.83 m 

[1.4%] 

3.24 m 

[1.6%] 

3.15 m 

[1.6%] 

1.99 m 

[0.99%] 

2.41 m 

[1.2%] 

2.25 m 

[1.1%] 

2.01 m 

[1.0%] 

2.19 m 

[1.1%] 

2.20 m 

[1.1%] 

d=5% 

=1 

6.07 m 

[3.0%] 

6.92 m 

[3.5%] 

6.48 m 

[3.2%] 

4.27 m 

[2.1%] 

5.14 m 

[2.6%] 

4.59 m 

[2.3%] 

4.32 m 

[2.2%] 

4.63 m 

[2.3%] 

4.57 m 

[2.3%] 

 

Figure 5.7 A-C, presents the path distribution of 30 simulations in a straight path using 

three different advancing methods: A) parallel, B) alternating and C) following. Figure 5.7 D-

F, and G-I present the same different advancing methods for 'S' shape and square paths 

respectively. We used d=2% and  =0.5.  

The resulting total standard deviation, and its components along the direction of motion and 

in the vertical direction are summarized in Table 5.2, Table 5.3 and Table 5.4. Note that the 

standard deviation values were calculated twice; once using MCS (10,000 simulations) and then 
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using the analytical expressions developed in the Appendix. The relative difference between 

both methods is always smaller than 1% (see Appendix [A]). 

For the straight path, (Table 5.2), the overall standard deviation is the largest compared to 

the other paths and is nearly unaffected by the advancing method. However, for the other two 

paths ('S' shape (Table 5.3) and square (Table 5.4)), the parallel advancing method mostly 

generated smaller location errors, where the square path resulted with the smallest errors. 

For the straight path, the standard deviation in the vertical direction is substantially larger 

than the standard deviation in the direction of motion. The square path on the other hand, 

resulted in nearly equal standard deviations both in the parallel and perpendicular direction, due 

to equal advancement in both directions. 

Overall, the three different advancing methods (parallel, alternating and following) do not 

result in significant differences in the standard deviation values within a specific path. The size 

and the distribution pattern of the errors are influenced mainly by the overall advancing direction 

of the system and almost unaffected by the relative position of the vehicles within each step. 

 

 

6 Experiments 

This section presents a real-world experimental system that was used to validate our 

algorithm (6.1), experimental results (6.2) and comparison to the previously presented Monte 

Carlo simulation (0). 

 

6.1 Experimental System 

To validate our algorithm and simulations, we built a two-robot experimental system fitted 

with rotating turrets and cameras (see Figure 6.1). Each turret is equipped with a smartphone’s 

video camera (1080×1920 pixels at 30fps). A green 6.2 cm tennis ball was placed at the top of 

the turret for visual identification. The turret is connected to a servo motor controlled by an 

Arduino microcontroller programmed to continuously rotate the turret by steps of 45 degrees, 

from zero till 180 and returning (see Figure 6.2). At each stop, the turret pauses for one second. 

Given the camera’s field of view in the horizontal direction γx is 40 degrees, the total field of 

view of each robot is 220 degrees. 
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Figure 6.1: The robotic system used in the experiments. 

 

Figure 6.2: Top view of the robotics system. The turrets rotate in steps of 45 degrees. 

We ran four different experiments that were each repeated five times. In each experiment, 

the robots (controlled by a human operator) advance in alternating steps while the turret rotates 

as the camera continuously records video. The localization of the robots is performed off-line 

at the end of the experiment (see Appendix [C]). Each step is represented by two images 

(1080×1920), one from each camera and the orientation of the turrets αturret. 

The bearing angle  of each robot is the sum of the orientation of the turret αturret plus the 

angular position of the tennis ball in the picture αimage:  

 turret image  = + . (46) 

The angular position in the image is calculated using:  

 atan tan
/ 2 2

x x

image

x

b

N




  
=   

  
, (47) 



- 43 - 

where bx is the x coordinate of the center of the ball in pixels, with respect to the center of the 

frame (see Figure 6.3, top right) and Nx is the overall size of the image in pixels in the x direction. 

The distance r between the robots (see Figure 6.3, bottom right) is calculated using: 

 
( )atan L

L
r


= , (48) 

where L is the length of the turret (21 cm) and L is the view angle of the height of the turret in 

the frame, calculated from the image: 

 L
L y

y

N

N
 =  , (49) 

where NL is the size of the turret in pixels and Ny is the overall size of the image in pixels in the 

y direction. The camera’s field of view γy in the vertical direction is 70 degrees. The distance r 

at each step is calculated from the average of both images (one from each robot). 

 

Figure 6.3: Schematic diagram of distance (bottom right) and bearing (top right) calculation 

from frame. Top left: original frame, bottom left: frame after image filtering, center of ball and 

top and bottom of turret detected. 
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6.2 Results 

The results of the experiments are presented in Figure 6.4, Table 6.1 and Table 6.2. Both 

straight parallel and square parallel experiments show high repeatability with a relatively small 

average error (1.1% and 0.14% respectively). The total standard deviation is also relatively 

small with respectively 1% and 0.63%. The straight following and 'S' parallel experiments 

results are not as highly repeatable, indicating a possible drift in the servo motor. We believe 

that the most significant error in our experimental system is a systematic error in the bearing 

measurements which could be addressed by replacing the servo motor with a higher accuracy 

device. As previously discussed, the bearing sensor's error has a high impact on the localization 

error.  

 
Figure 6.4: Experiment results of four different paths; top: straight path following (left) and 

parallel (right), bottom: square path (left) and 'S' path (right). Darker colors present real 

locations and lighter colors present calculated locations from five experiment results. 

Table 6.1: Standard deviation values of experiments' last step results. 

Paths 
Total Advancement  dir. Perpendicular dir. Orientation 

 y x  

Straight Follow 

[10 steps, 7.5 m] 

0.143 m 

[1.9%] 

0.00897 m 

[0.12%] 

0.143 m 

[1.9%] 
1.03 

Straight Parallel 

[10 steps, 7.5 m] 

0.0773 m 

[1.0%] 

0.0492 m 

[0.66%] 

0.0597 m 

[0.79%] 
3.00 

Square Parallel 

[16 steps, 12 m] 

0.0751 m 

[0.63%] 

0.0594 m 

[0.49%] 

0.0458 m 

[0.38%] 
1.06 

'S' Parallel 

[8 steps, 6 m] 

0.179 m 

[3.0%] 

0.127 m 

[2.1%] 

0.0997 m 

[1.7%] 
4.78 
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Table 6.2: Mean error values of experiments' last step results. 

 

6.3 Comparison to Simulation 

The system's repeatability error was evaluated by repeating the same measurement at least 

10 times. The standard deviation of the calculated distances and bearing angles were d=1% 

(with respect to the real distance) and =0.3. The values of the standard deviation were 

implemented in the MCS in order to compare the simulation to the experiments. The simulation 

results presented in Table 6.3 show that the experimental results (Table 6.1) are of the same 

order as expected by the simulation. Note that since the MCS uses normally distributed random 

errors, the mean error for each step is zero. 

For the first three experiments, straight following, straight parallel and square parallel paths, 

the standard deviation is very similar to the simulation, especially for the square path. In the 'S' 

shape path, the standard deviation of the experiment is of the same order as the simulation but 

is slightly more than 3 times larger. All four experiments show high compatibility in the relation 

between the standard deviation in the advancement and in the perpendicular directions, meaning 

the experimental system describes with high accuracy the distribution pattern of the location 

errors. 

 

Table 6.3: Standard deviation values of simulations' last step results with d=1% and =0.3.   

Paths 
Total Advancement dir. Perpendicular dir. Orientation 

Mean Error Mean Error Mean Error Mean Error 

Straight Follow 

[10 steps, 7.5 m] 

0.395 m 

[5.3%] 

0.152 m 

[2.0%] 

-0.363 m 

[4.8%] 
0.523 

Straight Parallel 

[10 steps, 7.5 m] 

0.0797 m 

[1.1%] 

-0.0424 m 

[0.56%] 

-0.0278 m 

[0.37%] 
3.57 

Square Parallel 

[16 steps, 12 m] 

0.0174 m 

[0.14%] 

-0.0078m 

[0.065%] 

-0.00006m 

[0.0005%] 
-0.011 

'S' Parallel 

[8 steps, 6 m] 

0.207 m 

[3.4%] 

0.0529 m 

[0.88%] 

0.200 m 

[3.3%] 
-3.35 

Paths 
Total Advancement dir. Perpendicular dir. Orientation 

 y x  
Straight Following 

[10 steps, 7.5 m] 

0.102 m 

[1.4%] 

0.0487 m 

[0.65%] 

0.0895 m 

[1.2%] 
0.0234 

Straight Parallel 

[10 steps, 7.5 m] 

0.114 m 

[1.5%] 

0.0423 m 

[0.56%] 

0.106 m 

[1.4%] 
0.0234 

Square Parallel 

[16 steps, 12 m] 

0.0778 m 

[0.65%] 

0.0637 m 

[0.53%] 

0.0446 m 

[0.37%] 
0.0296 

'S' Parallel 

[8 steps, 6 m] 

0.0523 m 

[0.87%] 

0.0389 m 

[0.65%] 

0.0350 m 

[0.58%] 
0.0209 
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7 Control 

This section presents a path planning algorithm for the two-robot system, while considering 

state, input and path constraints (7.1). Then, a closed-loop path following controller is described 

in polar coordinates (7.2). The fusion of both algorithms is implemented in Section 7.3. 

 

7.1 Autonomous Path Planning 

In this section, the objective is to design a controller which will allow the two-robot system 

to advance autonomously in an uncharted constrained environment which lacks GPS reception 

such as a narrow underground tunnel. To do so, each step of the system is considered as an 

optimal control problem, where the goal is to advance to a chosen target point in minimum time, 

under the surrounding constraints (which will be defined shortly). 

Assuming each robot is a differentially driven vehicle whose control inputs are (v,ω), 

defined respectively as the linear and angular velocities, the continues kinematic model of a 

single robot can be defined either by Cartesian or polar coordinates. After considering both 

representations, the Cartesian representation was chosen due to simpler representation of the 

constraints. 

7.1.1 The Model 

The continuous Cartesian kinematic model of a single robot: 

 

sin

cos

x v

y v





 

=

=

=

, (50) 

where (x,y) represent the Cartesian location of the robot and θ represents the heading angle. The 

global coordinate system is set as the initial position of the moving robot (x0,y0). The heading 

angle θ is measured with respect to the positive y axis, clockwise (see Figure 7.1). Notice that 

both the heading angle θ and the angular velocity ω directions are CW. 

The states of the system are: 

  
T

x y =x , (51) 

and the control signals are: 

  
T

v =u . (52) 
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Figure 7.1: The system. 

 
Table 7.1: List of state parameters and control inputs 

 

 

 

 

 

 

7.1.2 Implementation 

Since the system is not linear (see Eq. (50)), linear methods for control under constraints 

such as Model Predictive Control (MPC) or Interpolation Control (IC) are not practical. 

Therefore, we have decided to use FALCON.m - an optimal control tool for MATLAB, 

developed at the institute of Flight System Dynamics of Technische Universität München [43]. 

FALCON.m uses direct discretization methods in combination with gradient based numerical 

optimization and automatic analytic differentiation to solve mathematical optimal control 

problems. The numerical optimization is performed by IPOPT – Interior Point Optimizer, a 

software library for large scale nonlinear optimization of continuous systems [56]. 

 As an optimization problem, the objective is solving the problem while minimizing the 

cost function (2.7). The cost function is set as the final time tf where the robot arrives to its goal 

point: 

 min fJ t= . (53) 

State/control signal Units Description 

x [m] 
Cartesian location with respect to initial position. 

y [m] 

 [rad] Heading angle with respect to positive y axis. 

v [m/sec] Linear velocity 

 [rad/sec] Angular velocity 



- 48 - 

7.1.3 Defining Constraints 

a. Movement constraints 

Limiting the linear and angular velocities of the vehicle: 

 max

max max

0 v v

  

 

−  
, (54) 

where the linear velocity is constrained to be positive, meaning the vehicle can only advance 

forwards. 

b. Linear constraints due to shape of tunnel 

 

2 2

lb ub

lb ub

x x x

y y y

  

 

 

−  

, (55) 

where xlb, xub, ylb and yub are defined by the shape of the tunnel and the orientation of the robot 

is actually not constrained. If the object is advancing forwards, the orientation can be 

constrained as follows: 

 / 2 / 2    − −   + , (56) 

where  is some small angle in order to allow maneuvers (recall that  is defined with respect 

to the positive y axis, see Figure 7.1). 

c. Visibility by static vehicle constraint 

As defined previously, the two vehicles must remain in each other's range of 'sight', 

therefore: 

 
maxr r   , (57) 

where: 

 ( ) ( )
2 2

s sr x x y y= − + − , (58) 

where r is the distance between the stationary and the moving vehicle, rmax is the distance 

sensor’s maximal range and  is the minimal allowed distance between the moving vehicle and 

an obstacle (the stationary vehicle is also an obstacle). 

d. Initial and final positions 

The initial and final positions could be set either as equality or inequality constraints: 
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 0 0 0 0

2 2

T

T T

f f f f f

X

x y X x y 

=

   −     

, (59) 

meaning the final desired location is (xf,yf) whereas the orientation of the robot at the final point 

time is not constrained. 

e. Avoid obstacles 

The final constrains are defined by the obstacles in the environment. 

1. Ellipse obstacle 

The constraint due to an ellipse shaped obstacle with a center of (Cx,Cy), semi axes of a and 

b and orientation of ρ is defined as follows: 

( ) ( )( )
( )

( ) ( )( )
( )

2 2

2 2

cos sin sin cos
1

x y x yx C y C x C y C

a b

   

 

− + − − − −
+ 

+ +
,   (60) 

where the addition of  is set so the robot will not come closer than  to the obstacle. 

2. Rectangular obstacle 

The constraint due to a rectangular obstacle with a center of (Rx,Ry) and the dimensions of 

2p×2q is defined as follows: 

 

( ) ( ) ( ) ( )
2

y yx x
y R y Rx R x R

p q p q   

− −− −
+ + − 

+ + + +
, (61) 

where the addition of  is set so the robot will not come closer than  to the obstacle. As will be 

demonstrated ahead, the rectangular obstacle is useful for dealing with corners in the explored 

tunnel. 

 
Figure 7.2: Ellipse (left) and rectangular (right) obstacles. 
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7.1.4 Simulation Results 

This section presents the results of implementing the described control algorithm. First, 

single step scenarios were simulated (1) and then, a multi-step simulation is presented (2). In all 

figures, the two robots are marked by blue and green rectangles, black lines and ellipses 

represent borders and obstacles respectfully and the dashed black line represents the visibility 

constraint from the stationary robot. 

1. Single Step Scenarios 

This section presents the results of four different single step scenarios, validating the 

algorithm for different cases of borders and obstacles. 

 
Table 7.2: Constant values for all single step simulations. 

(x0,y0) (xs,ys) vmax max rmax  

(0 [m], 0 [m]) (8 [m], 6 [m]) 5 [m/sec] 8 [rad/sec] 10 [m] 0.5 [m] 

 

 

a. Straight tunnel no obstacle 

Table 7.3: Constant values for simulation (a). 

(xf,yf) xlb xub ylb yub 

(8 [m], 16 [m]) -2 [m] 10 [m] 0 [m] inf 

 

 
Figure 7.3: Simulation's (a) trajectory, constraints (left), state and control input values over 

time (right). 
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b. Straight tunnel with one ellipse obstacle 

Same constant values as simulation (a) (Table 7.3), additional ellipse obstacle (Eq. (60)). 

 
Table 7.4: Constant obstacle values for simulation (b). 

(Cx,Cy) a b  

(4 [m], 8 [m]) 3 [m] 1 [m]  rad] 

 

 
Figure 7.4: Simulation's (b) trajectory, constraints (left), state and control input values over 

time (right). 

 

c. Corner no obstacles 

In this case, since the borders of the tunnel are not linear, they cannot be defined in the form 

of Eq. (55)). Alternatively, a rectangular obstacle (square in this specific case) is used to define 

the corner constraint (Eq. (61)).  

 
Table 7.5: Constant values for simulation (c). 

(xf,yf) xlb xub ylb yub (Rx,Ry) p q 

(16 [m], 12 [m]) -2 [m] inf 0 [m] 20 [m] (15 [m], 5 [m]) 5 [m] 5 [m] 
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Figure 7.5: Simulation's (c) trajectory, constraints (left), state and control input values over 

time (right). 

 

d. Corner and one ellipse obstacle 

Same constant values as simulation (c) (Table 7.5), additional ellipse obstacle (Eq. (60)). 

 
Table 7.6: Constant obstacle values for simulation (d). 

(Cx,Cy) a b  

(5 [m], 8 [m]) 3 [m] 1 [m]  rad] 

 

 

 

Figure 7.6: Simulation's (d) trajectory, constraints (left), state and control input values over 

time (right). 
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2. Multi-Step Simulation 

Consider a long straight tunnel with many obstacles. The objective is that the robots 

autonomously advance in the tunnel in alternating steps while remaining in each other’s range 

of sight and avoiding obstacles. Each step is an optimization problem solved as previously 

presented. 

The considered tunnel is 30 meters long and 9 meters wide. The distance sensor’s maximal 

range is 5 meters (rmax=5 m); hence a minimum of 6 steps are needed to cross the tunnel. The 

obstacles size, location and orientation are random within defined boundaries. 

The flow chart of the process is described in Figure 7.7, the MATLAB codes are presented 

in Appendix [E] and Figure 7.8 presents the results of four successful simulations. Next, further 

details of each step in the process is presented. 

 

Figure 7.7: Multi-step algorithm flow chart. 

 

a. Create Map – setting the boundaries of the tunnel. 

b. Initialization – setting the initial positions of the robots for current step. 

c. Relevant Obstacles – first, we tried running the optimization with multiple (5) obstacles 

and it crashed due to data overflow. Therefore, we decided to use for each step only the 

nearby obstacles, a reasonable simplification since not all obstacles are visible to the 

robots at all time. In practice, at each step a random obstacle is defined within the scope 

of the current step (distance of rmax from stationary vehicle); The optimization is 

performed under the previous and the new obstacles constraints.  

d. Choose Final Position – The desired position for the traveling robot was determined as 

the point of most advancement in the y direction while maintaining the following 

conditions: 

• Distance from stationary robot (r) not larger than distance sensor’s range, hence          

r ≤ rmax. 
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• Not closer than ε from tunnel borders and obstacles. The condition of distance from 

obstacle is verified by Eq. (60). 

e. Optimization – finding the optimal trajectory for the current step from (x0,y0) to (xf,yf) 

while avoiding obstacles using the FALCON.m tool. 

 
Table 7.7: Constant values for all multi-step simulations. 

xlb xub ylb yub rmax ε vmax max 

-2 [m] 7 [m] 0 [m] 30 [m] 5 [m] 1 [m] 5 [m/sec] 8 [rad/sec] 

 

 

 
Figure 7.8: Four multi-step simulations’ results with the same conditions and random 

obstacles. 
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7.2 Path Following with Polar Coordinates 

This section presents a closed loop controller based on polar coordinates, designed to 

control the vehicles’ movement along a desired path within each step. Polar coordinates were 

chosen due to the polar nature of the system's measurements – distance and bearing angle. The 

controller is designed for a differentially driven vehicle whose control inputs are (v,), defined 

respectively as the linear and angular velocities (see Figure 7.9). 

 
Figure 7.9: Differentially driven vehicle model in polar coordinates. Pr – stationary vehicle 

and polar coordinate system origin, P0 – traveling vehicle's initial position, Pe – traveling 

vehicle's target point. 

The kinematic model of the vehicle, using polar coordinates is: 

 

cos

sin

cos

v

r

r v

v

r

 



  

=

=

= +

, (62) 

where the state of the vehicle is defined by (, r, ). The variables  and r define the 

vehicle's location whereas  defines its heading, measured from the perpendicular to the radius 

r (see Figure 7.9). The origin of the polar coordinate system is set to the position of the stationary 

vehicle Pr, and the initial position of the traveling vehicle P0 is set to =0, r=r0. The traveling 

vehicle's target point Pe is located at distance re from the origin and at angle e from its initial 
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position. The desired trajectory of the traveling vehicle (dashed grey line in Figure 7.9) is            

rd  = f ( ). 

The position error (in the direction of r) of the traveling vehicle with respect to the desired 

trajectory is: 

 ( ) ( ) ( ) ( ) ( )r de t r t r r t f = − = − . (63) 

The time derivative of the position error is:  

 .

( )
cos

( ) sin ( )re t r f f v
r


   

 
 = − = − 

   (64) 

We define the heading error of the traveling vehicle with respect to the desired trajectory as: 

 ( )
cos

sin ( )e t f
r




 = − . (65) 

where |r|> and  >0. This definition represents the heading error because if the vehicle is on 

the desired path, the desired advancement direction is: 

 ( )
( ) sin

'
cos

d

d

df
f r

d

 


 
= = . (66) 

In other words, if e=0 then (t)=d, the vehicle is in the desired direction. Deriving Eq. 

(65) by time yields:  

2

2

2

2 2

2

2 2
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   

  
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  
  = − + + + +  

  

 = − +
2

2

2 2

2 2

sin cos cos sin
( ) ( ) cos

cos cos sin cos sin
2 ( ) ( ) ( ) cos

v f v f
r rr

f f v f
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  

. (67) 

Similar to the design method presented in [55], by choosing the input of the angular velocity as: 

 ,

2 2

2 2

cos cos sin cos
( ) 2 ( )

( )sin cos

r
f f u v

f r rr r

   
  

  

 
 = − − + 

 +     (68) 

with the signal u(t) to be designed, the following second order chain model is achieved: 

 re e v

e uv





=

=
. (69) 
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The proper choice of u(t) should compel the errors to converge to zero. Using a standard 

full state feedback method (2.4.1): 

 
1 2( ) ru t k e k e= − − , (70) 

leads to the following closed loop system in a state space representation (2.4): 

 

1 2

0 1
,

r

e Aev

e
e A

e k k

=

   
= =   

− −  

. (71) 

The constants k1,k2 should be chosen so that the matrix A  is stable, under the assumption 

that v>0. Choosing a larger k1 will cause faster convergence of the location but slower 

convergence of the heading angle, and vice versa. A stable matrix A  and v>0 can be shown to 

ensure stability of the closed loop by using the following Lyapunov function (2.5): 

 , 0TV e Pe P=  , (72) 

which is a positive definite matrix. Its derivative is always negative: 

 
( ) 0

T T T T T

T T

V e Pe e Pe ve A Pe e PAev

e A P PA ev Qv

= + = +

= + = − 
. (73) 

Alternatively, the system can also be expressed using the path variable 'p' instead of the 

time 't': 

 
0 1 0

0 0 1

r r re de dt e dp
u

e de dt e dt  

         
= = +          

         

. (74) 

By multiplying both sides of the equation by dt/dp, we obtain: 

 
 1 2

' ( )

0 1 0
, , ,

0 0 1

e A BK e

A B K k k u Ke

= −

   
= = = = −   

   

, (75) 

and the state variable derivatives are by the path variable 'p'.  

The standard full state feedback structure of the dynamic system in state space 

representation allows for the use of standard methods to determine the control values [k1,k2], 

such as pole placement or linear-quadratic regulator (LQR). It should be noted that performance 

is obtained relative to the path variable 'p' instead of the time 't'.  

After planning appropriate control variables 1k and 2k , the angular velocity that should be 

applied: 
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( )
2 2

1 1 2 22 2

cos cos sin cos
( ) 2

( )sin cos

r
f f k e k e v

f r r r r

   
  

  

 
 = − − − − 

 +  
. (76) 

It could be seen that the input signal reaches singularity when: 

 ( )sin cos 0f r   + = . (77) 

To understand the physical meaning of this phrase, it could be written as follows: 

 ( )
( )cossin

sin cos sin cos 0
cos cos

rr

r r

f r r r r
 

    
 

−
 + = + = = , (78) 

hence, this singularity accrues when the angle between the heading of the vehicle and the desired 

path is 2 . In this scenario, the direction of the required angular velocity is undefined since 

the convergence towards the desired path can be reached by turning left or right equally. 

 

7.2.1 Straight Line Path Following and Convergence 

At this point, the assumption is that at each step, the vehicle is given a target point. If there 

are no obstacles in the explored area, an optional solution is to advance in a straight line to the 

target point; this section presents the implementation of the path following algorithm presented 

above while the desired path is a straight line. 

 
Figure 7.10: Straight Line advancement strategy. Pr is the stationary observing vehicle’s 

position, P0 is the moving vehicle’s initial position and Pe is the moving vehicle’s target point. 

The measurements of the moving vehicle are obtained with respect to point Pr, according 

to polar coordinates; therefore, the desired path will be represented according to a polar frame 
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which origin is at Pr and the angle 0 =  represents the moving vehicle’s initial position, as 

seen in Figure 7.10. The given data of the problem are 0 , ,e er r , where 0r  describes the initial 

position and ,e er  describe the final desired position. The desired path is a straight line, but it 

needs to be described in polar coordinates i.e. ( )=dr f . 

From the given data, the length of the desired path d can be calculated using the law of 

cosines: 

 2 2

0 02 cose e ed r r r r = + − . (79) 

The angle χ (see Figure 7.10) can be calculated using the law of sines: 

 
sin

arcsin
sin sin

e e e

e

r rd

d




 
= → = . (80) 

The law of sines can be used again to calculate the desired path: 

 
( ) ( )

( )0 0
0

sin
( ) sin csc

sin sin 180 sin

d
d

r r r
r f r


   
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= → = = = +

− − +
. (81) 

In order to implement the previously presented controller, the first and second derivatives 

of ( )f  are needed: 

 
( ) ( )

( ) ( ) ( )( )
0

2 2

0

( ) sin csc cot

( ) sin csc cot csc

f r

f r

     

       

 = − + +

 = + + + +
. (82) 

 

7.2.2 Simulation 

Our control method was simulated using MATLAB Simulink program with a control rate 

of 104 loops per meter, see Appendix [D]. The values of the variables used in the simulation are 

presented in Table 7.8. If the maximum desired overshoot is 10% (2.6), then the damping 

coefficient is: 

 
2

exp 0.1 0.6
1

pM





 
 = − = → 
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. (83) 

Demanding convergence after half of the path with a tolerance of 5%: 

  
( )ln 0.05 1 10

(5%)
2

s n

n

P d
d




−
= = → = . (84) 

The characteristic equation (2.6) of the system (Eq. (75)) is: 



- 60 - 

 ( ) 2

2 1s s k s k = + + . (85) 

By comparing to the standard characteristic equation (Eq. (10)), the control values should be: 

 
1 22

100 12
,k k

d d
= =  . (86) 

The simulation results are presented in Figure 7.11. Figure 7.11 (left) shows that in the first 

case, the robot accurately followed the trajectory with a very small error which was 4 orders 

smaller than the length of the trajectory. In the second case (Figure 7.11, right), where the robot 

was initially positioned with an incorrect heading of nearly 90 degrees, the solution converged 

to the desired trajectory (5% angular error), within half of the trajectory and the overshoot was 

smaller than 10% as desired. 

 
Table 7.8: Simulation Variables 

Variables (xr,yr) (x0,y0) (re,e) v 

Values (0,0) (-15,0) (21.2,45) 1 [m/sec] 

 

 

 

Figure 7.11: Simulation results. Top: the traveling robot's path (green solid line), while the 

observing robot measures relative location and orientation (blue dashed line). Bottom: 

corresponding location and angle errors relative to the desired path. Left: initial orientation of 

0°, right: initial orientation of -90°+ε. 
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7.3 Path Planning and Following 

This section presents the fusion and implementation of the two presented algorithms. In 

Section 7.1, we found the optimal trajectory for each step in a constrained environment. The 

outputs of the algorithm are a set of (xd,yd,θd) points representing the robot's optimal trajectory 

and the required open-loop control inputs (vd,ωd). Given continues measurements of the distance 

and bearing with respect to the stationary robot, the presented closed-loop controller (7.2) could 

be used to follow the optimal path, giving the system the ability to self-adjust depending on the  

outputs and measurements (rather than implementing the path planning algorithm directly as an 

open-loop controller). It should be mentioned, that this implementation requires that the robots 

stay in each other's range of 'sight' and any obstacle between them must be adequately low. 

 
Figure 7.12: Path following in polar coordinates. Pr is the stationary observing vehicle’s 

position, P0 is the moving vehicle’s initial position and Pc is the moving vehicle’s current position. 

 

In order to implement the closed-loop controller presented in Section 7.2, the desired path 

must be represented as rd = f ( ), while the origin of the polar coordinate system is set to the 

position of the stationary vehicle (xs,ys). Representing the optimal trajectory (xd,yd) in polar 

coordinates (rd,αd): 

 ( ) ( )
2 2

d d s d sr x x y y= − + − , (87) 

and the angle is derived from the law of cosines: 
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 In Eq. (88), r0 is the initial distance of the moving vehicle: 

 ( ) ( )
2 2

0 0 0s sr x x y y= − + − , (89) 

and dc is the current distance of the moving vehicle from its initial position:  

 ( ) ( )
2 2

0 0c d dd x x y y= − + − . (90) 

Notice that we use only the location (xd,yd) and not the orientation θd obtained by the 

optimal path algorithm. 

In order to implement the closed-loop controller, the desired trajectory must be described 

as a continues function rather than a set of points. We used a 4-th order polynomial curve fitting: 

  ( ) 4 3 2

1 2 3 4 5dr p p p p p    = + + + + , (91) 

making the first and second derivatives: 

 ( ) 3 2

1 2 3 4' 4 3 2dr p p p p   = + + + , (92) 

 ( ) 2

1 2 3'' 12 6 2dr p p p  = + + . (93) 

 

 

7.3.1 Simulation 

We used the closed-loop polar coordinate controller on the optimal trajectories obtained 

from the four single step scenarios presented in Section 7.1.4 (1). The linear velocity was set to 

be the constant maximal velocity v=5 m/sec. We used the control values designed in Section 

7.2.2 (Eq. (86)), which should result in maximum overshoot of 10% and convergence after half 

of the path with a tolerance of 5%. 

The following figures present the actual trajectory (solid green line) as well as the desired 

optimal trajectory (black dotted line). Additionally, location and angle errors relative to the 

desired path are presented, as well as control input values. 

  



- 63 - 

a. Straight tunnel no obstacle 

 
Figure 7.13: Simulation's (a) trajectory and constraints (left), location and angle errors 

relative to the desired path (top right), and control input values (bottom right). 

 

b. Straight tunnel with one ellipse obstacle 

 
Figure 7.14: Simulation's (b) trajectory and constraints (left), location and angle errors 

relative to the desired path (top right), and control input values (bottom right). 
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c. Corner no obstacles 

 
Figure 7.15: Simulation's (c) trajectory and constraints (left), location and angle errors 

relative to the desired path (top right), and control input values (bottom right). 

 

d. Corner and one ellipse obstacle 

In the last case the optimal trajectory was not as well fitted by a 4-th order polynomial 

function, thus a 6-th order polynomial was used and the derivatives were changed respectively. 

 
Figure 7.16: Simulation's (d) trajectory and constraints (left), location and angle errors 

relative to the desired path (top right), and control input values (bottom right). 
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As seen in Figure 7.13, Figure 7.14 and Figure 7.15, the robot successfully followed the 

desired path with very low location and angle errors for simulations (a)-(c). The top right figures 

show that the solution converged to the desired trajectory (5% error), with a settling distance 

that is under half of the trajectory and the overshoot was smaller than 10% as desired. Simulation 

(d) was also successful, though required very high angular velocity (Figure 7.16 bottom right), 

since the closed-loop controller is designed for geometric following of a path and not a 

trajectory, i.e. velocity constraints are not considered. 

Comparing the required control signals in both methods, the closed-loop resulted in 

smoother angular velocity as opposed to the open-loop (see Figure 7.3, Figure 7.4, Figure 7.5 

and Figure 7.6 bottom right), which resulted in abruptly switching control signals between the 

upper and lower bounds, resembling the 'bang-bang' control method [57]. On the other hand, as 

opposed to the closed-loop solution, in the path planning algorithm the control inputs are 

constrained; Figure 7.16 bottom right shows that not constraining the angular velocity could 

result in high and possibly not practicable values. It should be reminded, that the linear velocity 

was set to a constant 5 m/sec and the angular velocity depends directly on the linear velocity 

(Eq. (76)). Therefore, the problem of high angular velocity values could be addressed by 

lowering the linear velocity appropriately once the angular velocity reaches its upper boundary. 

This method has the clear advantage of a closed-loop controller as opposed to an open-loop 

controller, giving the system the ability to overcome disturbances. Though it should be 

reminded, that this method requires continues measuring throughout each step, or partial 

measurement combined with estimation; for example, measuring the position of the moving 

vehicle by the static vehicle and estimating its orientation, meaning only the static vehicle 

performs measurements. Implementing the open loop algorithm on its own (Section 7.1), 

requires that measurements will be obtained only at the end of each step. 
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8 Conclusions 

In this paper we presented a simple, low cost method for precise multi-robot self-

localization that relies on distance and bearing measurements. The system can be deployed in 

indoor areas where GPS signals are unavailable, and visibility is relatively low. The key 

advantage of this method is that it reduces the errors resulting from the inaccuracies of 

evaluating the orientation of the robots. We developed an analytical solution for the position of 

the robots and a numerical simulation to account for the statistical sensors' errors. We show that 

the total relative error (cumulative error divided by travelled distance) is on the same order of 

magnitude as the sensors' relative errors (error divided by distance), and that the angular error 

has a larger impact on the location errors than the distance error, thus making it important to use 

a relatively accurate bearing sensor. 

Given that the sensor measurement contains statistical errors, we ran a Monte Carlo 

Simulation (MCS) and determined the spatial distribution of the measured/estimated location of 

the robot with the given sensors' random errors (10,000 simulations for each case). To reduce 

the MCS computation time, we developed an approximated error evaluation method based on 

first order linear approximation. This method was 200 times faster than the direct method.  

We then used the MCS to compare between different paths and advancing methods. We 

found that the chosen path governed the size of the location error, whereas the different 

advancing methods had little influence on the total error. For a given equal number of steps and 

total travelled distance, the smallest error is in the square path, followed by the 'S' shaped path 

and the largest error is with the straight path. Overall, using our localization algorithm, it is best 

to increase the size of the steps and decrease their number in order to reduce the bearing errors 

and increase the accuracy of the localization. 

Next we present a two-robot system used to further validate our algorithm by real-world 

experiments. We performed experiments in four different paths, calculated the standard 

deviation and mean error values and compared the results to the Monte Carlo simulation. The 

results show that the method is very accurate with errors of about 1-3% of the total distance 

traveled. 

Finally, we developed a path planning algorithm and a closed-loop path following 

controller, allowing the two robots to autonomously advance in an uncharted constrained area. 

In the path planning algorithm cartesian coordinates are used due to simpler representation of 

the path and obstacle constraints whereas in the path following algorithm polar coordinates are 
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used due to the polar nature of the system's measurements. The path planning algorithm finds 

the optimal (shortest) trajectory at each step while avoiding obstacles and remaining visible to 

the stationary robot. Following the optimal path is obtained by using a closed-loop controller; 

we found that our path following algorithm quickly converges to the desired path even when 

the initial error is large.  

Besides its advantages, the method presented in this research does require a line of sight 

between the two cooperating robots and that one of the robots must remain fully static during 

each step. Another limitation is that the method is currently limited to 2D localization. However, 

we expect that it can be generalized to 3D problems by adding another relative bearing 

measurement between the robots. Additionally, the presented algorithm can be further 

developed to a multi-robot system (three or more robots), enabling to reduce the cumulative 

error by a proper estimation algorithm.  

As to the control algorithm, we believe the presented path planning algorithm can be further 

developed to fit more complex constraints. For example, more complex shaped obstacles can 

be approximated as a combination of the presented ellipse and rectangle obstacles, or curvy 

tunnel boundaries could be defined by ellipse obstacles, similar to the shown case of a rectangle 

obstacle used to define a straight corner. Additionally, the visibility by the static vehicle 

constraint could be formulated so that obstacles are also taken into consideration, ensuring the 

two robots always remain in each other's range of sight, even in the presents of high obstacles. 
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10 Appendices 

[A] ANALYTICAL STANDARD DEVIATION AND COMPARISON TO SIMULATION 

In this appendix we develop an analytical approximation of the standard deviation of the 

location error as a function of the standard deviations of the sensor accuracy. The approximated 

location and orientation of the vehicles is cumulative, meaning that it is affected by all the 

previous error measurements of the distance and bearing. The measurement error of the first 

step (see Eq. (35)) is: 
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At the second step it becomes: 
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And in the third step: 
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Generalizing the total error at step n, the error En in the directions x,y and the orientation 

 is: 
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where the sensor error Δi at step i is: 
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T
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and the matrix Bi_n is calculated using: 
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where: 
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and: 
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Using Eq. (97), and under the assumption of random uncorrelated sensor measurement 

errors Δi  (i.e. covariance of any two measurements is zero), 
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the variance of the total measurement error is: 
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The standard deviation in the x and y directions, respectively x and y are (Eq. (43)-(45)):  
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where: 
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And the standard deviation of the orientation  is (Eq. (42)): 

 2n  =   . (107) 

 

The validation of Eq. (104)-(106) is presented in Table 10.1 where a comparison is made 

between the total standard deviation values  calculated using the MCS (10,000 simulations) 

and the analytical expression. The results show that the largest relative difference between the 

two methods is 0.79%. 

 
Table 10.1: Total standard deviation values using 10,000 simulations, analytic calculation and 

relative difference, 200 meters 'S' path. 

Sensor 

variables 

Parallel Alternating Following 

Simulation Analytic 
Relative 

diff. 
Simulation Analytic 

Relative 

diff. 
Simulation Analytic 

Relative 

diff. 

d=1%  

=0.1 
1.073 m  1.075 m 0.23% 1.137 m  1.134 m 0.27% 1.198 m  1.204 m 0.55% 

d=5%  

=0.1 
3.353 m 3.372 m 0.58% 3.887 m 3.857 m 0.79% 4.023 m 4.010 m 0.32% 

d=2%  

=0.5 
4.465 m 4.468 m  0.080% 4.484 m 4.499 m 0.32% 4.864 m 4.843 m 0.45% 

d=5%  

=1 
9.173 m 9.148 m 0.27% 9.233 m 9.276 m 0.46% 10.01 m 9.965 m 0.43% 
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[B] MATLAB CODES FOR MONTE CARLO SIMULATION 

MATLAB codes used to obtain the results presented in Section 5. 

1. Main 

function slam 

% Calculates errors between desired location and real location (with Jacobi 

errors) for N possible random errors 

% Car2 takes first step and then alternate 

% Car1 initial position [0,0,0] 

  

global N; % how many dots, number of errors for each step 

N=10000; 

global NUM_OF_DIFF3; 

NUM_OF_DIFF3=1; 

global NUM_OF_DIFF2; 

NUM_OF_DIFF2=1; 

global delta_range delta_angle 

delta_range = 0.02; 

delta_angle = 0.5*pi/180; 

global steps; 

colormap bone 

  

% 2 straight lines 10 steps 100m 

Car1 = [ 0 0 0;  0 20 0;  0 40 0;  0 60 0;  0 80 0;  0 100 0]; 

Car2 = [10 0 0; 10 10 0; 10 30 0; 10 50 0; 10 70 0; 10  90 0]; 

  

map(Car1,Car2) 

steps = path_to_steps(Car1,Car2); 

  

n=size(steps,2); % number of steps 

sum_1=1; %number of steps 

sum_2=1; 

orientation=0; % the orientation angle 

car11=zeros(3,N); % matrix of X Y of cars with real errors 

car22=zeros(3,N); 

Ae = eye(3); 

Ae=repmat(Ae,1,N); % Rotation matrix for error calculation 

AA=eye(3); % Rotation matrix for no error calculation 

car1_Jerrors=zeros(2,N); % matrix of X Y of cars with jacobian  

car2_Jerrors=zeros(2,N); 

errorBar1=zeros(1,n); 

sigma_1_his=zeros(1,n); 

sigma_2_his=zeros(1,n); 

sigma_tot=zeros(1,n); 

angles=zeros(1,n); 

 

% N random errors for each step 

Deltas_cars = rand_n; 

[Jacob,xi,yi] = Jacob_multipication(Deltas_cars); 

 

% calculating the variance directly from Jacobian 

stds = var_direct_calc; 

sigma_x_direct = stds(1,:); 

sigma_y_direct = stds(2,:); 

sigma_t_direct = stds(3,:); 

 

%----------------------INITIALIZE------------------------------------ 

car = steps(1,:); 
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alpha_s = steps(2,:)*pi/180; 

R = steps(3,:); 

alpha_t = steps(4,:)*pi/180; 

phi = alpha_s+pi-alpha_t; 

prev_phi = zeros(1,N); 

  

figure 

  

for i=1:n %for each step 

%-----------------------WITH ERRORS (REAL LOCATION)------------------ 

    r = Deltas_cars(NUM_OF_DIFF3,:); % N radius errors for current step 

    a1 = Deltas_cars(NUM_OF_DIFF3+1,:); % N angle errors for current step 

    a2 = Deltas_cars(NUM_OF_DIFF3+2,:); % N angle errors for current step 

    j = 1; 

    if car(i)==1 

       sum_1=sum_1+1; 

       for k=1:N 

           [car11(:,k),A] = 

error11(steps,Ae(:,j:j+2),a1(k),a2(k),r(k),i,prev_phi(k)); 

           Ae(:,j:j+2) = A; % for next step 

           j=j+3; 

       end 

       prev_phi = car11(3,:); % for next step 

    else 

       sum_2=sum_2+1; 

       for k=1:N 

           [car22(:,k),A] = 

error11(steps,Ae(:,j:j+2),a1(k),a2(k),r(k),i,prev_phi(k)); 

           Ae(:,j:j+2) = A; % for next step 

           j=j+3; 

       end 

       prev_phi = car22(3,:); % for next step        

    end 

%---------------------ORIGIN (NO ERRORS)----------------------------- 

    % The current rotation matrix 

    A_curent=[cos(phi(i)) -sin(phi(i)) R(i)*cos(alpha_s(i));  

              sin(phi(i))  cos(phi(i)) R(i)*sin(alpha_s(i)); 

              0         0              1]; 

    AA=AA*A_curent; 

    orientation=orientation+phi(i); 

    if orientation >= 2*pi 

        orientation = orientation - 2*pi; 

    end 

    if car(i)==1 

        orientation1=orientation; 

        Car1(sum_1,1)=AA(1,3); 

        Car1(sum_1,2)=AA(2,3); 

        Car1(sum_1,3)=orientation1; 

    else 

        orientation2=orientation; 

        Car2(sum_2,1)=AA(1,3); 

        Car2(sum_2,2)=AA(2,3); 

        Car2(sum_2,3)=orientation2; 

    end 

%-----------------------JACOBI--------------------------------------- 

% calculating real locations by equation: 

% [real location] = [desired location] + [J]*[delta] 

    JacobiError = Jacob(NUM_OF_DIFF2:NUM_OF_DIFF2+1,:); % Jacobian*delta 

    if car(i)==1 

       car1_Jerrors(1,:) = xi(i) + JacobiError(1,:); 

       car1_Jerrors(2,:) = yi(i) + JacobiError(2,:);            

    else 
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       car2_Jerrors(1,:) = xi(i) + JacobiError(1,:); 

       car2_Jerrors(2,:) = yi(i) + JacobiError(2,:);  

    end 

%--------------------------DIFFERENCES-------------------------- 

    if car(i)==1 

       cc_J = [mean(car1_Jerrors(1,:)), mean(car1_Jerrors(2,:))]; 

       cc_R = [mean(car11(1,:)), mean(car11(2,:))]; 

    else 

       cc_J = [mean(car2_Jerrors(1,:)), mean(car2_Jerrors(2,:))]; 

       cc_R = [mean(car22(1,:)), mean(car22(2,:))]; 

    end 

    % comparing locations of Jacobi calc and direct calc 

    if car(i)==1 

       error_x1 = mean(abs(car1_Jerrors(1,:)-car11(1,:))); 

       error_y1 = mean(abs(car1_Jerrors(2,:)-car11(2,:))); 

    else 

       error_x1 = mean(abs(car2_Jerrors(1,:)-car22(1,:))); 

       error_y1 = mean(abs(car2_Jerrors(2,:)-car22(2,:))); 

    end            

    errorBar1(i) = sqrt(error_x1^2+error_y1^2); % radius error 

%-------------------------------------------------------------     

    % calculating distance std (Jacobi) 

    if car(i)==1 

        for j=1:N 

            % distance squared 

            disX(j) = (car1_Jerrors(1,j)-cc_J(1))^2; 

            disY(j) = (car1_Jerrors(2,j)-cc_J(2))^2; 

        end 

    else 

        for j=1:N 

            disX(j) = (car2_Jerrors(1,j)-cc_J(1))^2; 

            disY(j) = (car2_Jerrors(2,j)-cc_J(2))^2; 

        end 

    end 

    sigma_x_jacobi(i) = sqrt(sum(disX(:))/(N-1)); 

    sigma_y_jacobi(i) = sqrt(sum(disY(:))/(N-1));     

    dis = disX + disY; 

    sigma_d_jacobi(i) = sqrt(sum(dis(:))/(N-1)); % variance eq. 

% % %-----------------------PLOT--------------------------------- 

%     map of desired location of cars + histogram 

    if car(i)==1 

        [X,Y,C] = histogram2(car1_Jerrors(1,:),car1_Jerrors(2,:)); 

        if i==1 || i==2 || i==8 || i==14 || i==20 || i==25        

 image('XData',X,'YData',Y,'CData',C,'CDataMapping','scaled'); 

            hold on 

        end 

    else 

        [X,Y,C] = histogram2(car2_Jerrors(1,:),car2_Jerrors(2,:)); 

        if i==1 || i==2 || i==8 || i==14 || i==20 || i==25           

 image('XData',X,'YData',Y,'CData',C,'CDataMapping','scaled'); 

            hold on 

        end 

        hold on 

    end 

    c = plot(cc_J(1),cc_J(2),'*m'); % plotting Jacobian centroid 

    d = plot(cc_R(1),cc_R(2),'xr'); % plotting direct calc centroid 

    hold on 

    axis equal; 

% % %------------------------------------------------------------ 

%     calculating std values and plot ellipse 

    if car(i)==1 
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       [sigma_1_his(i),sigma_2_his(i),angle] = 

error_ellipse(car1_Jerrors',i); 

    else 

       [sigma_1_his(i),sigma_2_his(i),angle] = 

error_ellipse(car2_Jerrors',i); 

    end 

     

    sigma_tot(i) = sqrt(sigma_1_his(i)^2 + sigma_2_his(i)^2); 

    angles(i) = angle*180/pi; % rad to deg 

     

    NUM_OF_DIFF3=NUM_OF_DIFF3+3; 

    NUM_OF_DIFF2=NUM_OF_DIFF2+2; 

end 

  

a=plot(Car1(:,1),Car1(:,2),'s-b'); % connecting the path 

b=plot(Car2(:,1),Car2(:,2),'s-g'); 

axis equal; 

grid on; 

xlabel('x[m]'); 

ylabel('y[m]'); 

legend([c d],'Approx. centroid','Exact centroid'); 

hold off 

  

figure 

bar([sigma_tot', sigma_1_his', sigma_2_his']); 

grid on 

% title('From histogram'); 

xlabel('Step Number'); 

ylabel('Standard deviations [m]'); 

legend('\sigma_{tot}','\sigma_1','\sigma_2'); 

 

 

2.  Map of Robot Positions 

function map(Car1,Car2) 

%the function's input- mat for each car: x;y;teta(deg NOT rad) 

%the function's output- figure of mapping with orientations 

 

lengtha=size(Car1,1); 

lengthb=size(Car2,1); 

plot(Car1(:,1),Car1(:,2),'b',Car2(:,1),Car2(:,2),'g','LineWidth',1);  

L = 4; 

W = 2; 

  

for i=1:lengtha %patch for the car and orientation 

    origin1=[Car1(i,1);Car1(i,2);0]; %the specific x,y of the car 

    coord=[Car1(i,1)-W Car1(i,1)+W Car1(i,1)+W Car1(i,1)-W; 

           Car1(i,2)-L Car1(i,2)-L Car1(i,2)+L Car1(i,2)+L; 

           0 0 0 0]; 

    %the coords of the polygon car 

    vectors=coord-[origin1,origin1,origin1,origin1]; 

    %vectors of the polygon, from origin to the coords 

    rotvectors=rotz(Car1(i,3))*vectors; 

    %rotating the vectors according to the angle in deg  

    newcoord=rotvectors+[origin1,origin1,origin1,origin1]; 

    %finding the new coords of the polygon after the rotation 

    ax1=patch(newcoord(1,:),newcoord(2,:),[51 202 255]/255); 

    hold on 

end 

for i=1:lengthb 
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    origin2=[Car2(i,1);Car2(i,2);0]; 

    coord=[Car2(i,1)-W Car2(i,1)+W Car2(i,1)+W Car2(i,1)-W; 

           Car2(i,2)-L Car2(i,2)-L Car2(i,2)+L Car2(i,2)+L; 

           0 0 0 0]; 

    vectors=coord-[origin2,origin2,origin2,origin2]; 

    rotvectors=rotz(Car2(i,3))*vectors; 

    newcoord=rotvectors+[origin2,origin2,origin2,origin2]; 

    ax2=patch(newcoord(1,:),newcoord(2,:),[169 218 116]/255); 

    hold on 

end 

 

axis equal %otherwise the polygons are deformed 

grid on 

box on 

legend([ax1,ax2],'Vehicle 1','Vehicle 2','Location','northoutside'); 

xlabel('X[m]'); 

ylabel('Y[m]'); 

end 

 

 

3.  Path to Steps 

function steps = path_to_steps(Car1,Car2) 

% take path of 2 cars [X,Y,theta] and create steps matrix: 

% [moving car index, angle from stationary car, distance, angle from 

traveling car] 

% angles in deg 

  

n = size(Car1,1) + size(Car2,1) - 2; % number of steps (first 2 initial 

positions) 

steps = zeros(4,n); 

moving_car = 2; % Car2 takes first step 

sum1 = 1;  

sum2 = 1; 

for i = 1:n 

    if moving_car == 1 

        sum1 = sum1 + 1; 

        steps(1,i) = 1; 

        x_dis = Car1(sum1,1)-Car2(sum2,1); 

        y_dis = Car1(sum1,2)-Car2(sum2,2); 

        angle = atan2(y_dis,x_dis)*180/pi; % angle between cars if both 

have 0 orientation 

        steps(2,i) = angle - Car2(sum2,3); % angle - orientation Car2 

        steps(4,i) = angle + 180 - Car1(sum1,3); 

        steps(3,i) = sqrt(x_dis^2 + y_dis^2); 

        moving_car = 2; % for next step 

    else 

        sum2 = sum2 + 1; 

        steps(1,i) = 2; 

        x_dis = Car2(sum2,1)-Car1(sum1,1); 

        y_dis = Car2(sum2,2)-Car1(sum1,2); 

        angle = atan2(y_dis,x_dis)*180/pi; 

        steps(2,i) = angle - Car1(sum1,3); 

        steps(4,i) = angle + 180 - Car2(sum2,3); 

        steps(3,i) = sqrt(x_dis^2 + y_dis^2); 

        moving_car = 1;  

    end 

end 

end 
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4.  Random Measurement Errors 

function Deltas_cars = rand_n 

% returns a matrix [3*n,N] of N random errors for each step with normal 

distribution 

% angles in rad 

  

global delta_range delta_angle 

global N steps 

n=size(steps,2); % number of steps 

R=steps(3,:); % vector of all radiuses for each step 

Deltas_cars=zeros(2*n,N); 

j=1; 

rng('shuffle');%in order to initialize the generator and get different 

random numbers 

% randn returns random numbers normally with variance 1 and mean 0 

for i=1:n 

    Deltas_cars(j,:) = delta_range*R(i)*randn(1,N); % delta r 

    Deltas_cars(j+1,:) = delta_angle*randn(1,N); % delta alpha_s 

    Deltas_cars(j+2,:) = delta_angle*randn(1,N); % delta alpha_t 

    j=j+3; 

end 

end 

 

 

5.  Location Errors via Jacobi Mathod 

function [Jacobi,X,Y] = Jacob_multipication(Deltas_cars) 

% calculates the Jacobi matrix for current steps  

% + multiplication of Jacobi matrix and errors 

% + parametric location of car (X,Y) 

% Jacobi(2*n,N) contains multiplication of Jacobi and errors 

% each 2 lines for each step - (x,y) errors 

  

N = size(Deltas_cars,2); 

global steps; 

n = size(steps,2); % number of steps 

  

Jacobi = zeros(2*n,N); 

X = zeros(n,1); Y = zeros(n,1); 

x = 0;      y = 0; 

J_old = 0; 

j = 1; k = 1; 

theta_prev = 0; 

D_ai = 0; 

% desired positions data  

alpha_s = steps(2,:)*pi/180; % to rad 

R = steps(3,:); 

alpha_t = steps(4,:)*pi/180; 

phi = alpha_s+pi-alpha_t; 

  

for i=1:n 

    ri = R(i); % current radius 

    D_ri = Deltas_cars(k,:); 

    D_ai = D_ai + Deltas_cars(k+1,:); 

    S = sin(theta_prev+alpha_s(i)); 

    C = cos(theta_prev+alpha_s(i)); 

    J_times_delta = [-ri*S*D_ai + D_ri*C; 

                      ri*C*D_ai + D_ri*S]; 

    X(i) = x + ri*C; Y(i) = y + ri*S; % desired positions 

    x    = X(i);     y    = Y(i);  % for next step 
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    Jacobi(j:j+1,:) = J_old + J_times_delta; 

    % for next step 

    J_old = Jacobi(j:j+1,:);  

    theta_prev = theta_prev + phi(i);  

    D_ai = D_ai - Deltas_cars(k+2,:); 

    j=j+2; 

    k=k+3;  

end 

end 

 

 

6.  Analytic Standard Deviation Calculation 

function stds = var_direct_calc 

% calculating the variance directly from Jacobian calc 

  

global steps delta_range delta_angle 

n = size(steps,2); % number of steps 

alpha_s = steps(2,:)*pi/180; 

R = steps(3,:); 

alpha_t = steps(4,:)*pi/180; 

phi = alpha_s+pi-alpha_t; 

var_r = delta_range^2; 

var_a = delta_angle^2; 

std_x = zeros(1,n); 

std_y = zeros(1,n); 

% first step 

A = [cos(alpha_s(1)) -R(1)*sin(alpha_s(1)) 0; 

     sin(alpha_s(1))  R(1)*cos(alpha_s(1)) 0; 

     0                1                   -1]; 

std_x(1) = sqrt(R(1)^2*A(1,1)^2*var_r + (A(1,2)^2 + A(1,3)^2)*var_a); 

std_y(1) = sqrt(R(1)^2*A(2,1)^2*var_r + (A(2,2)^2 + A(2,3)^2)*var_a); 

allA = zeros(3,3*n); % matrix of n A matrices 

allA(:,1:3) = A; % allA = [A 0 0 ... 0] 

prev_phi = phi(1); % for next step 

  

for i = 2:n 

    A = [cos(prev_phi+alpha_s(i)) -R(i)*sin(prev_phi+alpha_s(i)) 0; 

         sin(prev_phi+alpha_s(i))  R(i)*cos(prev_phi+alpha_s(i)) 0; 

         0                         1                            -1]; 

 B = [0 -R(i)*sin(prev_phi+alpha_s(i)) R(i)*sin(prev_phi+alpha_s(i)); 

     0  R(i)*cos(prev_phi+alpha_s(i)) -R(i)*cos(prev_phi+alpha_s(i)); 

     0  0                                                         0]; 

   % inserting A and B matrices to general allA matrix 

     k = 1; 

     for j = 1:i-1 % adding matrix B 

         allA(:,k:k+2) = allA(:,k:k+2) + B; 

         k = k + 3; 

     end 

     allA(:,3*i-2:3*i) = A; 

     % calculating stds 

     k = 1; 

     A_rx = 0; A_ax = 0; A_ry = 0; A_ay = 0; 

     for j = 1:i 

         A_rx = A_rx + (R(j)*allA(1,k))^2; 

         A_ax = A_ax + allA(1,k+1)^2 + allA(1,k+2)^2; 

         A_ry = A_ry + (R(j)*allA(2,k))^2; 

         A_ay = A_ay + allA(2,k+1)^2 + allA(2,k+2)^2; 

         k = k + 3; 

     end 

     std_x(i) = sqrt(A_rx*var_r + A_ax*var_a); 
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     std_y(i) = sqrt(A_ry*var_r + A_ay*var_a);      

     prev_phi = prev_phi + phi(i); % for next step 

end 

std_d = sqrt(std_x.^2 + std_y.^2); 

stds = [std_x; std_y; std_d]; 

end 

 

 

7.  Location via Exact Method 

function [Car,A] = error11(steps,Ae,a1,a2,r,i,prev_phi) 

% calcs location  with errors by exact method 

% f(R+delta_R , teta+delta_teta) 

Car=[0;0;0]; % X Y theta 

  

alpha_s = steps(2,i)*pi/180 + a1; 

R = steps(3,i) + r; 

alpha_t = steps(4,i)*pi/180 + a2; 

phi = alpha_s+pi-alpha_t; 

% The current rotation matrix  

A_current = [cos(phi) -sin(phi) R*cos(alpha_s);  

             sin(phi)  cos(phi) R*sin(alpha_s); 

             0         0        1]; 

A = Ae*A_current; % The overall rotation matrix 

  

Car(1) = A(1,3); 

Car(2) = A(2,3); 

Car(3) = prev_phi + phi; 

  

end 

 

8.  2D Histogram 

function [X,Y,C] = histogram2(x,y) 

% plot the distribution of random errors for each step; 

% locations of dots (x,y) 

% X,Y - axis, C - distribution matrix 

% Copyright (c) by R. Moddemeijer, Date: 2001/02/05 09:54:29 

colormap bone 

  

minx = min(x); maxx = max(x); 

deltax = (maxx-minx)/(length(x)-1); 

ncellx = 2*ceil(length(x)^(1/3)); 

miny = min(y); maxy = max(y); 

deltay = (maxy-miny)/(length(y)-1); 

ncelly = ncellx; 

  

lowerx = minx - deltax/2; 

upperx = maxx + deltax/2; 

lowery = miny - deltay/2; 

uppery = maxy + deltay/2; 

  

result(1:ncellx,1:ncelly)=0; 

  

xx=round( (x-lowerx)/(upperx-lowerx)*ncellx + 1/2 ); 

yy=round( (y-lowery)/(uppery-lowery)*ncelly + 1/2 ); 

  

for n=1:length(xx) 

  indexx=xx(n); 
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  indexy=yy(n); 

  if indexx >= 1 && indexx <= ncellx && indexy >= 1 && indexy <= ncelly 

    result(indexx,indexy)=result(indexx,indexy)+1; 

  end 

end 

  

L =  max(max(result)); 

C = (L - result)./L; % reverse the matrix and normalize to fit colormap 

(values between 0&1) 

X = [minx maxx]; % x axis 

Y = [miny maxy]; % y axis 

  

end 

 

 

9.  Error Ellipse 

function [sigma_x,sigma_y,angle] = error_ellipse(data,i) 

% data = JacobiError matrix [J]*[delta], size: [N,2] 

% plots the ellipse's main axes and returns stds and rotation angle 

% Copyright Vincent Spruyt 

% http://www.visiondummy.com/2014/04/draw-error-ellipse-representing-

covariance-matrix/ 

 

% Calculate the eigenvectors and eigenvalues 

covariance = cov(data); 

[eigenvec, eigenval ] = eig(covariance); 

% Get the index of the largest eigenvector 

[largest_eigenvec_ind_c, ~] = find(eigenval == max(max(eigenval))); 

largest_eigenvec = eigenvec(:, largest_eigenvec_ind_c); 

% Get the largest eigenvalue 

largest_eigenval = max(max(eigenval)); 

% Get the smallest eigenvector and eigenvalue 

if(largest_eigenvec_ind_c == 1) 

    smallest_eigenval = max(eigenval(:,2)); 

    smallest_eigenvec = eigenvec(:,2); 

else 

    smallest_eigenval = max(eigenval(:,1)); 

    smallest_eigenvec = eigenvec(1,:); 

end 

  

% Calculate the angle between the x-axis and the largest eigenvector 

angle = atan2(largest_eigenvec(2), largest_eigenvec(1)); 

 

% This angle is between -pi and pi. 

% Let's shift it such that the angle is between 0 and 2pi 

if(angle < 0) 

    angle = angle + 2*pi; 

end 

% To keep angles between -pi/2 and pi/2 

if angle > pi/2 && angle < pi % second Quadrant 

    angle = angle - pi; 

end 

if angle > pi && angle < 3*pi/2 % third Quadrant 

   angle = angle - pi; 

end 

if angle > 3*pi/2 && angle < 2*pi % forth Quadrant 

   angle = angle - 2*pi; 

end 

  

% Get the coordinates of the data mean 



- 83 - 

avg = mean(data); 

X0=avg(1); 

Y0=avg(2); 

  

%% drawing error ellipses 

if i == 1 || i == 2 || i == 8 || i == 14 || i == 20 || i == 25 

    % Get the 68%~sigma% confidence interval error ellipse 

    chisquare_val = 2.408; % for 70% 

    theta_grid = linspace(0,2*pi); 

    a=sqrt(chisquare_val*largest_eigenval); 

    b=sqrt(chisquare_val*smallest_eigenval); 

    % the ellipse in x and y coordinates  

    ellipse_x_r  = a*cos( theta_grid ); 

    ellipse_y_r  = b*sin( theta_grid ); 

    % Define a rotation matrix 

    R = [ cos(angle) sin(angle); -sin(angle) cos(angle) ]; 

    %let's rotate the ellipse to some angle phi 

    r_ellipse = [ellipse_x_r;ellipse_y_r]' * R; 

    % plotting confidence ellipses 

    plot(r_ellipse(:,1) + X0,r_ellipse(:,2) + Y0,'Color',[0 0.4 

1],'LineWidth',3) % blue 

    hold on; 

     

    %% Plot the eigenvectors 

    quiver(X0, Y0, largest_eigenvec(1) *sqrt(chisquare_val* 

largest_eigenval),  largest_eigenvec(2)*sqrt(chisquare_val* 

largest_eigenval), '-m', 'LineWidth',3); 

    quiver(X0, Y0, 

smallest_eigenvec(1)*sqrt(chisquare_val*smallest_eigenval), 

smallest_eigenvec(2)*sqrt(chisquare_val*smallest_eigenval), '-m', 

'LineWidth',3); 

     

    % Get the 95%~2*sigma% confidence interval error ellipse 

    chisquare_val = 5.991; 

    theta_grid = linspace(0,2*pi); 

    a=sqrt(chisquare_val*largest_eigenval); 

    b=sqrt(chisquare_val*smallest_eigenval); 

    % the ellipse in x and y coordinates  

    ellipse_x_r  = a*cos( theta_grid ); 

    ellipse_y_r  = b*sin( theta_grid ); 

    % Define a rotation matrix 

    R = [ cos(angle) sin(angle); -sin(angle) cos(angle) ]; 

    % let's rotate the ellipse to some angle phi 

    r_ellipse = [ellipse_x_r;ellipse_y_r]' * R; 

    % plotting confidence ellipses 

    plot(r_ellipse(:,1) + X0,r_ellipse(:,2) + Y0,'--','Color',[0.4 0 

0.8],'LineWidth',3) % purple 

end 

sigma_x = sqrt(largest_eigenval); 

sigma_y = sqrt(smallest_eigenval); 

end 
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[C] MATLAB CODES FOR EXPERIMENT RESULTS ANALYSIS 

MATLAB codes used to obtain the results presented in Section 0. All presented codes refer 

to the straight parallel path, similar codes were used for the other three paths. 

1.  Create Excel File 

% create excel file 

path = 'straight parallel'; 

exp = ' exp5'; 

title = {'x center','y center','ML'}; 

sheet = 1; 

  

car = 'L'; 

fileName = strcat(path,exp,car,'.xlsx'); 

xlswrite(fileName,title,sheet,'A1'); 

for i = 0:10 

    img = strcat(car,num2str(i),'.jpg'); 

    toExcel(fileName,img,i) 

end 

  

car = 'R'; 

fileName = strcat(path,exp,car,'.xlsx'); 

xlswrite(fileName,title,sheet,'A1'); 

for i = 0:10 

    img = strcat(car,num2str(i),'.jpg'); 

    toExcel(fileName,img,i) 

end 

 

2.  Write Image Data to Excel 

function toExcel(fileName,img,i) 

% write to excel coordinates of center of ball (in pixels) X 

% and length of height (in pixels) ML 

  

X = findCenter(img,i); % [x,y] 2 values 

ML = findDis(img); % 1 value 

line = num2str(i+2); 

range = strcat('A',line); 

sheet = 1; 

xlswrite(fileName,[X ML],sheet,range); 

  

end 

  
 

3.  Find Center 

function X = findCenter(img,i) 

% find x center of tennis ball in image I 

% NL = number of pixels of diameter 

  

RGB = imread(img); 

  

huelow = 45; % hue value of ball color 

huehigh = 100; 

satlow = 25; 
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sathigh = 200; 

if mod(i,2) == 0 % even 

    radiusRange = [75 100]; 

else             % uneven 

    radiusRange = [15 25]; 

end 

  

%% filter 

% filter by hue (color of ball) 

I = rgb2hsv(RGB); % hsv 

% Create mask based on hue value 

BW = ((I(:,:,1) >= huelow/256 & I(:,:,1) <= huehigh/256) & ... 

      (I(:,:,2) >= satlow/256 & I(:,:,2) <= sathigh/256)); 

% Initialize output masked image based on input image 

maskedRGBImage = RGB; 

% Set background pixels where BW is false to zero 

maskedRGBImage(repmat(~BW,[1 1 3])) = 0; 

  

%% find center 

sens = 0.9; 

radii = []; 

while isempty(radii) % no center found 

    [centers,radii] = 

imfindcircles(maskedRGBImage,radiusRange,'Sensitivity',sens); 

    sens = sens + 0.01; 

end 

figure; imshow(maskedRGBImage); title(img); hold on 

scatter(centers(1,1),centers(1,2),'*r') 

X = centers(1,:); 

  

end 

 

4.  Plot Results and Calculate Standard Deviation and Mean Error Values 

% 5 experiments 

clear 

CarR = zeros(6,3,5); 

CarL = zeros(6,3,5); 

  

CarRreal = [0 0 0; 0 1.5 0; 0 3 0; 0 4.5 0; 0 6 0; 0 7.5 0]; 

CarLreal = [-1.5 0 0; -1.5 1.5 0; -1.5 3 0; -1.5 4.5 0; -1.5 6 0; -1.5 7.5 

0]; 

  

title = {'7.5 m Straight Path','Parallel Advancment'}; 

map(CarLreal,CarRreal,title); hold on; axis equal; 

  

for i = 1:5 

    [CarR(:,:,i),CarL(:,:,i)] = singleExp(i+1); % 2 to 6 

    scatter(CarL(:,1,i),CarL(:,2,i),50,[51 202 255]/255,'s','filled'); % 

blue 

    plot(CarL(:,1,i),CarL(:,2,i),'Color',[51 202 255]/255); 

    scatter(CarR(:,1,i),CarR(:,2,i),50,[169 218 116]/255,'s','filled'); % 

green 

    plot(CarR(:,1,i),CarR(:,2,i),'Color',[169 218 116]/255); 

    drawnow 

end 

  

%% calc errors 

% mean error, mean of both cars last step 

disX_R = mean(CarR(end,1,:)-CarRreal(end,1)); 
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disY_R = mean(CarR(end,2,:)-CarRreal(end,2)); 

disR = sqrt(disX_R^2 + disY_R^2); 

disX_L = mean(CarL(end,1,:)-CarLreal(end,1)); 

disY_L = mean(CarL(end,2,:)-CarLreal(end,2)); 

disL = sqrt(disX_L^2 + disY_L^2); 

  

disX = (disX_R + disX_L)/2; 

disY = (disY_R + disY_L)/2; 

dis  = (disR   + disL)/2; 

  

% std, mean of both cars last step 

sigmaX_R = std(CarR(end,1,:)); 

sigmaY_R = std(CarR(end,2,:)); 

sigmaX_L = std(CarL(end,1,:)); 

sigmaY_L = std(CarL(end,2,:)); 

  

sigmaX = sqrt((sigmaX_R^2 + sigmaX_L^2)/2); 

sigmaY = sqrt((sigmaY_R^2 + sigmaY_L^2)/2); 

sigmaD = sqrt(sigmaY^2 + sigmaY^2); 

  

% orientation error and std 

% angles [-180 180] so around 0 will be +- small numbers 

CarR(:,3,:) = wrapTo180(CarR(:,3,:)); 

CarL(:,3,:) = wrapTo180(CarL(:,3,:)); 

  

orienR = mean(CarR(end,3,:)-CarRreal(end,3)); 

orienL = mean(CarL(end,3,:)-CarLreal(end,3)); 

orien_error = (orienR + orienL)/2; 

  

sigma_theta_R = std(CarR(end,3,:)); 

sigma_theta_L = std(CarL(end,3,:)); 

sigma_theta = sqrt((sigma_theta_R^2 + sigma_theta_L^2)/2); 

  

% to excel 

fileName = 'straight parallel errors'; 

sheet = 1; 

title = {'sigma_d','sigma_x','sigma_y',... 

         'mean error','mean error x','mean error y',... 

         'sigma_theta','mean error theta'}; 

xlswrite(fileName,title,        sheet,'A1'); 

xlswrite(fileName,sigmaD,       sheet,'A2'); 

xlswrite(fileName,sigmaX,       sheet,'B2'); 

xlswrite(fileName,sigmaY,       sheet,'C2'); 

xlswrite(fileName,dis,          sheet,'D2'); 

xlswrite(fileName,disX,         sheet,'E2'); 

xlswrite(fileName,disY,         sheet,'F2'); 

xlswrite(fileName,sigma_theta,  sheet,'G2'); 

xlswrite(fileName,orien_error,  sheet,'H2'); 

  

%% simulation 

delta_range = 0.01; 

delta_angle = 0.3*pi/180; 

steps = path_to_steps(CarRreal,CarLreal); % car1 = CarR, car2 = CarL 

Deltas_cars = rand_n(steps,delta_range,delta_angle); 

[stds,mean_error] = jacobi_method(steps,Deltas_cars,delta_angle); 

  

  



- 87 - 

5.  Single Experiment 

function [CarR,CarL] = singleExp(num) 

  

CarR = [0 0 0]; 

path = 'straight parallel exp'; 

  

fileName = strcat(path,num2str(num),'R.xlsx'); 

[rR,alphaR] = ImagePros(fileName); 

fileName = strcat(path,num2str(num),'L.xlsx'); 

[rL,alphaL] = ImagePros(fileName); 

  

r = (rL + rR)/2; 

ThetaL = findTheta('L',0); % [deg] 

ThetaR = findTheta('R',0); % [deg] 

alpha_s = ThetaR + alphaR(1); 

alpha_t = ThetaL + alphaL(1); 

x = r(1)*cos(alpha_s*pi/180); 

y = r(1)*sin(alpha_s*pi/180); 

theta = alpha_s + 180 - alpha_t; 

CarL = [x y theta]; 

  

moving = 'L'; % first car to move 

A_last = eye(3); 

theta = 0; 

sumL = 1; sumR = 1; 

  

for i = 1:10 

    ThetaL = findTheta('L',i); % [deg] 

    ThetaR = findTheta('R',i); % [deg] 

    if moving == 'L' 

        alpha_s = ThetaR + alphaR(i+1); 

        alpha_t = ThetaL + alphaL(i+1); 

    else 

        alpha_s = ThetaL + alphaL(i+1); 

        alpha_t = ThetaR + alphaR(i+1); 

    end 

    phi = (alpha_s + 180 - alpha_t); 

A_new = [cos(phi*pi/180) -sin(phi*pi/180) r(i+1)*cos(alpha_s*pi/180); 

         sin(phi*pi/180)  cos(phi*pi/180) r(i+1)*sin(alpha_s*pi/180); 

         0                0               1                        ]; 

    A = A_last*A_new; 

    x = A(1,3); y = A(2,3); theta = wrapTo360(theta + phi); 

    if moving == 'L' 

        sumL = sumL + 1; 

        CarL(sumL,:) = [x y theta]; 

        moving = 'R'; % for next step 

    else 

        sumR = sumR + 1; 

        CarR(sumR,:) = [x y theta]; 

        moving = 'L'; % for next step 

    end 

    A_last = A; % for next step 

end 
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6.  Calculate Distance and Bearing from Image 

function [r,alpha] = ImagePros(fileName) 

% calc distance and orientation from other robot for each step 

  

global N M FoV_x FoV_y 

FoV_x = 40*pi/180; % camera's field of view in x direction[rad] 

FoV_y = 70*pi/180; % camera's field of view in y direction[rad] 

L = 21/100; % length from turret (top surface) to top of ball [m] 

N = 1080; % number of pixels in horizontal direction 

M = 1920; % number of pixels in vertical direction 

  

xCenter = xlsread(fileName,'A:A'); % x center of ball 

x = N/2 - xCenter; 

alpha = atan(x./(N/2)*tan(FoV_x/2))*180/pi; % [deg] without correction of 

theta 

ML = xlsread(fileName,'C:C'); 

alphaL = (ML/M)*FoV_y; % [rad] 

r = L./tan(alphaL); 

  

end 

  

  



- 89 - 

 

[D] SIMULINK MODEL PATH FOLLOWING ALGORITHM 

Simulink model and MATLAB codes used to obtain the results presented in Section 7.2. 

   
Figure 10.1: Block diagram of model. 

 
Figure 10.2: Vehicle 1 block diagram, describing the vehicle’s kinematics in Cartesian 

coordinates. 
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Figure 10.3: Measurements block diagram, describing the vehicle’s location in polar 

coordinates, with respect to the stationary vehicle. 

 

 
Figure 10.4: Stop Condition block diagram. 
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Figure 10.5: Controller block diagram, calculates the required angular velocity for path 

following. 

 

1.  Controller Function 

function [w,e1,e2] = fcn(v,r,alfa,phi, x_0, y_0, x_r, y_r, x_e, y_e) 

  

r_0 = sqrt((x_0-x_r)^2+(y_0-y_r)^2); 

r_e = sqrt((x_e-x_r)^2+(y_e-y_r)^2); 

L = sqrt((x_0-x_e)^2+(y_0-y_e)^2); 

alfa_e = acos((r_0^2+r_e^2-L^2)/(2*r_0*r_e)); 

chi = asin(r_e*sin(alfa_e)/L); 

  

r_d = r_0*sin(chi)/sin(alfa+chi); 

dr_d = -r_0*sin(chi)*csc(alfa+chi)*cot(alfa+chi); 

ddr_d = r_0*sin(chi)*csc(alfa+chi)*(cot(alfa+chi)^2+csc(alfa+chi)^2); 

  

e1 = r - r_d; 

e2 = sin(phi) - (dr_d*cos(phi)/r); 

% pole placement 

k1 = 100/(L^2); 

k2 = 12/L; 

u = -k1*e1 -k2*e2; 

  

w = (r/(dr_d*sin(phi)+r*cos(phi)))*... 

    ((ddr_d*cos(phi)^2/r^2)-(2*dr_d*cos(phi)*sin(phi)/r^2)-

(cos(phi)^2/r)+u)*v; 

  

end 
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2.  Path Following 

function 

path_following_no_video(x,y,theta,x_0,y_0,theta_0,x_r,y_r,r_e,alfa_e,e1,e2) 

 

% size of vehicle 

L = 0.8; 

W = 0.4; 

  

figure; 

% plot stationary car 

theta_r = 90; % deg 

origin = [x_r;y_r;0]; 

coord = [x_r-L x_r+L x_r+L x_r-L; 

         y_r-W y_r-W y_r+W y_r+W; 

         0 0 0 0]; 

vectors = coord - [origin,origin,origin,origin]; 

rotvectors = rotz(theta_r)*vectors; 

newcoord = rotvectors + [origin,origin,origin,origin]; 

patch(newcoord(1,:),newcoord(2,:),[51 202 255]/255); 

hold on 

  

% plot actual locations 

xx = x.signals.values; 

yy = y.signals.values; 

plot(xx,yy,'Color',[169 218 116]/255,'LineWidth',3); 

  

% plot desired path 

alfa_e = alfa_e*pi/180; 

alfa_0 = atan2((y_0-y_r),(x_0-x_r)) + 2*pi; 

if alfa_0 < 0 

    alfa_0 = alfa_0 + 2*pi; 

end 

 

theta_e = alfa_0 - alfa_e; 

x_e = x_r + r_e*cos(theta_e); 

y_e = y_r + r_e*sin(theta_e); 

line([x_0 x_e],[y_0 y_e],'color','k','LineStyle','-.','LineWidth',1); 

scatter(x_e,y_e,'r','filled'); % target point 

grid on 

xlabel('X[m]'); ylabel('Y[m]'); 

  

% plot end position (from function 'map') 

theta_e_real = theta.signals.values(end); 

x_e_real = xx(end); 

y_e_real = yy(end); 

origin = [x_e_real;y_e_real;0]; 

coord = [x_e_real-L x_e_real+L x_e_real+L x_e_real-L; 

         y_e_real-W y_e_real-W y_e_real+W y_e_real+W; 

         0 0 0 0]; 

vectors = coord - [origin,origin,origin,origin]; 

rotvectors = rotz(theta_e_real)*vectors; 

newcoord = rotvectors + [origin,origin,origin,origin]; 

patch(newcoord(1,:),newcoord(2,:),[169 218 116]/255); 

 

% plot initial position 

origin = [x_0;y_0;0]; 

coord = [x_0-L x_0+L x_0+L x_0-L; 

         y_0-W y_0-W y_0+W y_0+W; 

         0 0 0 0]; 

vectors = coord - [origin,origin,origin,origin]; 
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rotvectors = rotz(theta_0)*vectors; 

newcoord = rotvectors + [origin,origin,origin,origin]; 

patch(newcoord(1,:),newcoord(2,:),[169 218 116]/255); 

 

% plot observation 

line([x_r x_e_real],[y_r y_e_real],'color','b','LineStyle','--

','LineWidth',2); 

hold on 

axis equal; 

box on 

  

figure; 

E1 = e1.signals.values(:); 

E2 = e2.signals.values(:); 

s = e1.time; 

a = plot(s,E1,'-',s,E2,'--'); 

a(1).Color = [204 4 109]/255; a(1).LineWidth = 2; 

a(2).Color = [102 0 204]/255; a(2).LineWidth = 2; 

legend('location error [m]','angle error [rad]'); 

xlabel('Traveled Distance'); 

ylabel('Error'); 

grid on; 

  

end 
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[E] MATLAB CODES FOR PATH PLANNING SIMULATION 

1.  Main Function for Multi-Step Simulation 

% main 

% straight tunnel with 5 obstacles 

close all 

clear 

  

global eps rmax xmin xmax ymin ymax 

eps = 1; 

rmax = 5; % max distance between cars 

  

[xlimit,ylimit] = create_map; 

  

% initial positions 

x_0 = 0; y_0 = 0; theta_0 = 0; 

x_s = 5; y_s = 0; 

Car1 = [x_s y_s theta_0]; mapSingle(Car1,[ 51 202 255]/255); % blue 

Car2 = [x_0 y_0 theta_0]; mapSingle(Car2,[169 218 116]/255); % green 

F(1) = getframe(gcf); % for video 

  

% new obstacle 

obstacles = singleObs(x_s,y_s,x_0,y_0); 

F(2) = getframe(gcf); 

  

% plot r constraints 

t = 0:0.01:2*pi; 

x = x_s + rmax*cos(t); 

y = y_s + rmax*sin(t); 

r = plot(x,y,'--k'); hold on 

F(3) = getframe(gcf); 

  

% choose final position 

[x_f,y_f] = finalPos(xlimit,obstacles,x_s,y_s); 

plot(x_f,y_f,'rx','MarkerSize',8,'LineWidth',2); 

F(4) = getframe(gcf); 

  

% initialization 

car = 2; % moving car 

color = [169 218 116]/255; % green 

sum1 = 1; sum2 = 1; 

f = 4; 

  

for i = 1:6 % 6 steps 

    %% optimize trajectory 

    Car = 

optimize(x_s,y_s,x_0,y_0,theta_0,x_f,y_f,obstacles,xlimit,ylimit); 

     

    %% plot path 

    n = size(Car,1); 

    a = 0; % stop condition 

    j = 1; % 1 to n 

    k = 1; % frames count 

    h = animatedline('Color',color,'LineWidth',2); 

    axis([xmin xmax ymin ymax]) 

    while a~=1 

        if j == n % go through all points 

           a = 1; % stop 

        end 

        addpoints(h,Car(j,1),Car(j,2)); 
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        drawnow limitrate 

        F(f+k) = getframe(gcf); 

        k = k + 1; 

        j = j + 5; % draw only every 5 points 

    end 

    delete(r); % delete r constraint 

    Car = Car(end,:); % only last position 

    mapSingle(Car,color); % plot square 

  

    %% update locations 

    rng('shuffle'); % in order to initialize the generator and get 

different random numbers 

    if car == 1 && i ~= 6 

        sum1 = sum1 + 1; 

        Car1(sum1,:) = Car; 

        % for next step 

        car = 2; color = [169 218 116]/255; % green 

        x_s = Car1(sum1,1); y_s = Car1(sum1,2); 

        x_0 = Car2(sum2,1); y_0 = Car2(sum2,2); theta_0 = Car2(sum2,3); 

        % current and new obstacle 

        obstacles = [obstacles(end,:); singleObs(x_s,y_s,x_0,y_0)]; 

        F(f+k) = getframe(gcf); 

        % plot r constraints 

        t = 0:0.01:2*pi; 

        x = x_s + rmax*cos(t); 

        y = y_s + rmax*sin(t); 

        r = plot(x,y,'--k'); hold on 

        F(f+k+1) = getframe(gcf); 

        % choose final position 

        [x_f,y_f] = finalPos(xlimit,ylimit,obstacles,x_s,y_s); 

        X = plot(x_f,y_f,'rx','MarkerSize',8,'LineWidth',2); hold on 

        F(f+k+2) = getframe(gcf); 

    elseif car == 2 && i ~= 6 

        sum2 = sum2 + 1; 

        Car2(sum2,:) = Car; 

        % for next step 

        car = 1; color = [51 202 255]/255; % blue 

        x_s = Car2(sum2,1); y_s = Car2(sum2,2); 

        x_0 = Car1(sum1,1); y_0 = Car1(sum1,2); theta_0 = Car1(sum1,3); 

        % current and new obstacle 

        obstacles = [obstacles(end,:); singleObs(x_s,y_s,x_0,y_0)]; 

        F(f+k) = getframe(gcf); 

        % plot r constraints 

        t = 0:0.01:2*pi; 

        x = x_s + rmax*cos(t); 

        y = y_s + rmax*sin(t); 

        r = plot(x,y,'--k'); hold on 

        F(f+k+1) = getframe(gcf); 

        % choose final position         

        [x_f,y_f] = finalPos(xlimit,ylimit,obstacles,x_s,y_s); 

        X = plot(x_f,y_f,'rx','MarkerSize',8,'LineWidth',2); hold on 

        F(f+k+2) = getframe(gcf); 

    end 

    f = length(F); 

end 

  

delete(r); delete(X); 

  

video = VideoWriter('Control under Constraints.avi','Uncompressed AVI'); 

open(video) 

writeVideo(video,F) 

close(video) 
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2.  Create Map 

function [xlimit,ylimit] = create_map 

% tunnel limits: xlimit = [xlb, xub], ylimit = [ylb,yub] 

  

%% straight tunnel with obstacles 

global xmin xmax ymin ymax 

  

n = 1000; 

xmin = -2; xmax = 7; 

xlimit = [xmin,xmax]; 

ymin = -2; ymax = 30; 

ylimit = [ymin,ymax]; 

figure(1); 

plot(xmin*ones(1,n),linspace(ymin,ymax,n),'-k','lineWidth',4); 

hold on; axis equal; ylim([ymin,ymax]); 

plot(xmax*ones(1,n),linspace(ymin,ymax,n),'-k','lineWidth',4); 

  

end 

 

 

3.  Plot Car 

function p = mapSingle(Car,color) 

%the function's input- vector for each car: x;y;teta(deg NOT rad)  

%the function's output- figure of mapping with orientations 

  

global xmin xmax ymin ymax 

  

L = 0.8; 

W = 0.4; 

  

origin=[Car(1);Car(2);0]; %the specific x,y of the car 

coord=[Car(1)-W Car(1)+W Car(1)+W Car(1)-W; 

       Car(2)-L Car(2)-L Car(2)+L Car(2)+L; 

       0 0 0 0]; 

%the coords of the polygon car 

vectors=coord-[origin,origin,origin,origin]; 

%vectors of the polygon, from origin to the coords 

rotvectors=rotz(-Car(3)*180/pi)*vectors; 

%rotating the vectors according to the angle in deg  

newcoord=rotvectors+[origin,origin,origin,origin]; 

%finding the new coords of the polygon after the rotation 

p = patch(newcoord(1,:),newcoord(2,:),color); 

  

axis equal % otherwise the polygons are deformed 

axis([xmin xmax ymin ymax]) 

grid on 

hold on 

  

end 
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4.  Single Obstacle 

function obstacle = singleObs(x_s,y_s,x_0,y_0) 

% obstacle: [Cx,Cy,a,b,phi] 

% within current step size (rmax from stationary car) 

  

global xmin xmax rmax 

rng('shuffle'); % in order to initialize the generator and get different 

random numbers 

minRadi = 0.5; maxRadi = 2; 

c = 0; % for stop condition 

tol = 5; 

while c~=1 % continue until obstacle is not to close to both cars 

    a  = minRadi + (maxRadi-minRadi)*rand; 

    b  = minRadi + (maxRadi-minRadi)*rand; 

    Cx =    xmin + (xmax-xmin)*rand; 

    Cy =    y_s  +        rmax*rand; 

    phi = 2*pi*rand; 

    theta = 0:0.01:2*pi; 

    obstacle = [Cx, Cy, a, b, phi]; 

    % check if obstacle is too close to cars 

    if isClose2Obs(x_0,y_0,obstacle,tol) == 0 || 

isClose2Obs(x_s,y_s,obstacle,tol) == 0 

        c = 1; % stop, good obstacle  

    end 

end  

% plot obstacle 

xellipse = Cx + a*cos(theta+phi); 

yellipse = Cy + b*sin(theta); 

patch(xellipse,yellipse,'k'); 

hold on 

  

end 
 

 

5.  Is Close to Obstacle 

function c = isClose2Obs(x,y,obstacles,tol) 

% check of point is at least eps away from all obstacles 

% too close --> c = 1, not close --> c = 0 

% obstacles: [Cx,Cy,a,b,phi] each 5x1 vector for 5 obstacles 

  

numObs = size(obstacles,1); 

c = 0; % point is not near obstacle 

for i = 1:numObs 

    Cx  = obstacles(i,1); Cy = obstacles(i,2); 

    a   = obstacles(i,3); b  = obstacles(i,4); 

    phi = obstacles(i,5); 

    X = (x-Cx)*cos(phi) + (y-Cy)*sin(phi); 

    Y = (x-Cx)*sin(phi) - (y-Cy)*cos(phi); 

    % check if point is inside obstacle ellipse (+tol) 

    if (X^2)/((a+tol)^2) + (Y^2)/((b+tol)^2) <= 1 

       c = 1; % inside 

    end 

end 

end  
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6.  Final Position 

function [x_f,y_f] = finalPos(xlimit,obstacles,x_s,y_s) 

% choose final position for current phase by the following algorithm: y_e = 

ymax while r<=rmax and not colliding with obstacles 

  

global eps rmax 

  

t = 0:0.01:2*pi; 

% all positions that are rmax from stationary car 

xrmax = x_s + rmax*cos(t); 

yrmax = y_s + rmax*sin(t); 

% delete positions that are outside of tunnel boundaries or in obstacles 

(and don't come closer than eps) 

s = length(t); 

i = 1; 

tol = 2; 

while s ~= 0 

    % outside of tunnel boundaries 

    if xrmax(i) < xlimit(1)+eps || xrmax(i) > xlimit(2)-eps 

        xrmax(i) = []; 

        yrmax(i) = []; 

    % check if point is at least tol away from all obstacles 

    elseif isClose2Obs(xrmax(i),yrmax(i),obstacles,tol) == 1 % too close 

        xrmax(i) = []; 

        yrmax(i) = []; 

    else 

        i = i + 1; % if point not erased, continue to next 

    end 

    s = s - 1; % for stop condition 

end 

  

[y_f,ind] = max(yrmax); 

x_f = xrmax(ind); 

  

end 

 

 

7.  Optimize 

function Car = 

optimize(x_s,y_s,x_0,y_0,theta_0,x_f,y_f,obstacles,xlimit,ylimit) 

% straight tunnel with 5 ellipse obstacle 

% (x_s,y_s) - stationary car position 

% (x_0,y_0,theta_0) - initial position moving car 

% (x_f,y_f) - final desired position moving car 

  

global eps 

Vmax = 5; 

Wmax = pi/8; 

  

%% Define States Controls and Parameter 

States = [... 

    falcon.State('x',xlimit(1)+eps, xlimit(2)-eps, 1/abs(xlimit(2)-

xlimit(1)));... 

    falcon.State('y', ylimit(1), ylimit(2), 1/abs(ylimit(2)-ylimit(1)));... 

    falcon.State('theta',-pi/2-Wmax,pi/2+Wmax,1)]; % go only forwards 

Controls = [... 

    falcon.Control('V',     0,  Vmax, 1);... 

    falcon.Control('W', -Wmax,  Wmax, 1)]; 
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tf = falcon.Parameter('FinalTime', 20, 0, 100, 0.1); 

  

%% Define Optimal Control Problem 

problem = falcon.Problem('Car'); 

% Specify Discretization 

tau = linspace(0,1,1001); 

% Path Constraint 

pathconstraints = [... 

    falcon.Constraint('r_lb', -inf, 0);... 

    falcon.Constraint('r_ub', -inf, 0)]; 

numObs = size(obstacles,1); 

for i = 1:numObs 

    name = strcat('obstacle',num2str(i)); 

pathconstraints = [pathconstraints; falcon.Constraint(name,-inf, 0)]; 

end 

  

% Path constraint builder 

path = 

falcon.PathConstraintBuilder('CarPCon',[],States,[],[],@source_path); 

path.addConstantInput('x_s', [1,1]); 

path.addConstantInput('y_s', [1,1]); 

path.addConstantInput('obstacles', [numObs,5]); 

path.Build(); 

  

%% Add a new Phase 

phase = problem.addNewPhase(@source_car, States, tau, 0, tf); 

phase.addNewControlGrid(Controls, tau); 

% Set Boundary Condition 

phase.setInitialBoundaries([x_0; y_0; theta_0]); 

phase.setFinalBoundaries([x_f; y_f; -pi*2],[x_f; y_f; 2*pi]); 

% Set initial guess 

initGuess = [linspace(0,x_f, length(tau)); 

             linspace(0,y_f, length(tau)); 

             linspace(0,pi/2,length(tau))]; 

phase.StateGrid.setValues(tau,initGuess); 

% apply Path Constraint 

pathc = phase.addNewPathConstraint(@CarPCon, pathconstraints, tau); 

pathc.addConstants(x_s); 

pathc.addConstants(y_s); 

pathc.addConstants(obstacles); 

% Add Cost Function 

problem.addNewParameterCost(tf); 

  

% Prepare problem for solving 

problem.Bake(); 

 

%% Solve problem 

solver = falcon.solver.ipopt(problem); 

solver.Options.MajorIterLimit = 1000; 

solver.Options.MajorFeasTol   = 1e-5; 

solver.Options.MajorOptTol    = 1e-5;  

solver.Solve(); 

  

%% Plot 

Car = [phase.StateGrid.Values(1,:)' phase.StateGrid.Values(2,:)' 

phase.StateGrid.Values(3,:)']; 

 

end 
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8.  Source Car 

function states_dot = source_car(states, controls) 

 

% Extract states 

theta = states(3); 

  

% Extract controls 

V = controls(1); 

W = controls(2); 

  

% implement state derivatives here 

x_dot      = V*sin(theta); 

y_dot      = V*cos(theta); 

theta_dot  = W; 

states_dot = [x_dot; y_dot; theta_dot]; 

  

end 

 

 

9.  Source Path 

function [constraints] = source_path(states, x_s, y_s, obstacles)  

  

global eps rmax  

  

% Extract states 

x = states(1); 

y = states(2); 

  

% implement constraint values here 

% r constraint 

r = sqrt((x-x_s)^2+(y-y_s)^2); 

r_lb = eps - r; 

r_ub = r - rmax; 

constraints = [r_lb; r_ub]; 

% ellipse obstacle 

numObs = size(obstacles,1); 

for i = 1:numObs 

    % Extract parameters 

    Cx  = obstacles(i,1); 

    Cy  = obstacles(i,2); 

    a   = obstacles(i,3); 

    b   = obstacles(i,4); 

    phi = obstacles(i,5); 

    % ellipse obstacle 

    X = (x-Cx)*cos(phi) + (y-Cy)*sin(phi); 

    Y = (x-Cx)*sin(phi) - (y-Cy)*cos(phi); 

    obstacle = 1 - (X^2)/((a+eps)^2) - (Y^2)/((b+eps)^2); 

    constraints = [constraints; obstacle]; 

end 

end 

 



 2019ספטמבר 

 תקציר

ממדי -תזה זו מציגה מערכת חדשנית של שני רובוטים המשתפים פעולה לקבלת מיקום עצמי דו

תרון המרכזי של שיטה זו מצוי ביכולת של בדיוק גבוה, תוך שימוש בחיישנים פשוטים יחסית. הי

 המערכת למדוד את האוריינטציה של הרובוטים באופן מדויק ובכך להפחית את השגיאות המצטברות

. כל אחד מהרובוטים מצויד בצריח מסתובב ועליו מצלמה אשר משמשת למעקב אחר במדידת המיקום

ינקודר למדידת זווית הצריח. בכל צעד, ביניהם, וא יםהרובוט השני ומדידת המיקום והמרחק היחסי

יחסי של הרובוט הנייד )באופן ומודד את המיקום ה השני נותר נייחרובוט אחד מתקדם בעוד הרובוט 

מתמשך או בסיום הצעד(, בשימוש מדידת זווית הצריח והמרחק הנמדד באמצעות המצלמה. 

לו לכיוון הרובוט הסטטי ומדידת מחושבת באמצעות סיבוב הצריח שהאוריינטציה של הרובוט הנייד 

זווית הצריח. באמצעות איחוד המידע הנמדד משני הרובוטים, המיקום והאוריינטציה של הרובוט 

 הנייד מתקבלים באופן מדויק.

בנוסף, מוצג מודל אנליטי של מיקום הרובוטים כפונקציה של המידע מהחיישנים. לאחר מכן, מוצג 

ים באמצעות סימולציית מונטה קרלו, בהנחה כי מדידות החיישנים שערוך סטטיסטי של מיקום הרובוט

 אמת של המערכת והשוואה לתוצאות הסימולציה.בזמן  כוללות שגיאות רנדומליות. כמו כן, מוצג ניסוי  

אלגוריתם תכנון מסלול ובקר בחוג סגור בשביל ששני הרובוטים יתקדמו בצורה אוטונומית, 

ואותות הבקרה הן   ק והאוריינטציה ביחס לרובוט הנייחבתזה זו, בהנחה כי המדידות הן המרח  מוצגים

אלגוריתם תכנון המסלול כולל בחירת נקודת יעד מהירות קווית ומהירות סיבובית של הרובוט הנייד. 

עבור הרובוט הנייד בכל צעד ומציאת המסלול האופטימלי תוך התחמקות ממכשולים בסביבה כמו 

על בחירה קודמת של נקודות יעד בסביבה   רות, חפצים או הרובוט הנייח. חוג הבקרה הסגור מתבססקי

המאפיינים מסלולים ביניהן כלומר, כל צעד הינו בעיית עקיבה אחר מסלול. בשל  כן בחירה של  הנחקרת ו

 בקורדינטות פולריות. תוכנן בקרהה, חוג של המדידות הפולריים

תחומי בגישה חופשית -, עיתון אינטרנטי רבIEEE Access-אחרונה במחקר זה התקבל לפרסום ל

להנדסת מכונות  35-של מוסד מהנדסי חשמל ואלקטרוניקה. בנוסף, מחקר זה הוצג בכנס הישראלי ה

(ICME 2018) לרובוטיקה  6-ובכנס הישראלי ה(ICR 2019). 
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