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Abstract

Grasping and manipulating objects in dense un-structured environments is challenging both for
humans and for robotic systems. One of the essential components of a successful grasp, is the
position and orientation (pose) of the wrist, from which the object is grasped. Determining such a
goal pose is an important part of reach-to-grasp motion planning. Grasp affordance densities are
spatial probability density functions that represent grasp success probability from wrist poses about
the object. To represent both position and orientation well, the density function must be based on
a mixture model which includes both cyclic and non-cyclic components. We developed a non-
parametric Bayesian estimation method suitable for a mixture of such combined density functions
composed of Gaussian and Von-Misses-Fisher functions. Non-Parametric Bayesian estimation
facilitates joint estimation of both mixture component, number and component parameters and is
less prone to being trapped in local minima, or to over-fitting the dataset, than maximum likelihood
based estimation methods. The developed method is incorporated in a reach-to-grasp motion
planning algorithm and is applied to motion analysis in patients with stroke. For reach-to-grasp
motion planning, we integrated the grasp affordance density estimation with bi-direction
Randomly exploring Random Tree (RRT) motion planning algorithm. The developed algorithm,
grasp affordance-RRT (GA-RRT) facilitates multiple goal configurations with a high grasp success
probability. The GA-RRT algorithm was tested in simulation for motion planning towards a mug
in five different environments with obstacles. In one of the environments, the algorithm did not
find suitable goal configurations, since it was very cluttered and required approach orientations
that were not included in the original data-base from which the density was estimated. In the other
four environments, 95% of trials led to successful grasps. The grasp affordance estimation method
was applied for estimating affordance densities of 15 patients with stroke and 13 healthy, aged-
matched controls. Subjects in both groups performed reach-to-grasp movements towards four
targets locations. A grasp affordance density was estimated for each group with data from all
targets combined. For both groups the estimated densities comprised two components, yet the
division of grasp configurations between the components in each density mixture, differed between
the groups. For the health group, the configurations of three target locations were allocated to one
density mixture component and one target was allocated to a separate component. For the stroke
group, subjects were divided between the components based on the effected arm, with which they
performed the motion. In addition, the variance of the density components was much higher for
the stroke group.

Key words: non-parametric Bayesian estimation, Grasp affordance density, Gaussian Mixture

Model, Von Mises-Fisher distribution, Grasping, Motion planning, Stroke.
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1. Introduction

1.1. Background

Grasping is a fundamental skill needed by both humans and robots for object manipulation,
and involves both hand and arm motion. For performing a required grasp, the arm must
reach a final wrist configuration in task space and the fingers must reach required contact
points on the object. Based on available degrees of freedom, arm and finger joint
configuration should also be determined. In the current research, we focus on grasp wrist
configurations in task space. Wrist configurations are composed of six parameters, where
three parameters represent the position (X, Y, Z) and three parameters represent the
orientation (o, 0, ¢). They can be represented in object-centered coordinates, which
facilitates defining grasp configurations based on gripper and object without regard to the

environment in which the object is placed.

Grapability maps have been used to store quality grades for object centered, grasp wrist
configurations (Eizicovits and Berman 2014). They can be used to generate grasp affordance
densities (Detry et al. 2009), which are spatial probability density functions that represent
grasp success probability for wrist configurations about the object. Grasp affordance
densities are typically mixture models composed of both, Gaussian and cyclic components,
used for representing position and orientation respectively (Detry et al. 2009). Previous
methods employed for estimating distribution parameters, include Expectation
Maximization (EM) (Granville, Fagg, and Southerland 2006) and Kernal Density Estimation
(KDE) (Detry et al. 2009). In contrast, the current work investigated the use of non-

parametric Bayesian estimation.

There are two main approaches for statistical inference, maximum likelihood (Frequentist)
and Bayesian. The Bayesian approach uses Bayes' theorem to combine observational data
with prior knowledge, not expressed in observations, (Press 2002). While, the frequentist
approach assumes that the sampled data is representative, and a subjective prior may cause
bias. One of the main advantages of the Bayesian approach are that data can be used as it

comes in. There is no requirement that every contingency be planned for ahead of time, very
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useful in machine learning and big Data methods(Orloff and Bloom 2014). In this work we

explore the Bayesian approach in the grasp affordance estimation method.

1.2. Goals and Innovation

This research presents a non-parametric Bayesian estimation method which generates grasp
affordance densities. The algorithm jointly estimates component parameters, mixture
weight, and the number of mixture components. The algorithm developed is suitable for
estimation of a mixture model composed of Von Mises-Fisher (VMF) and Gaussian
distributions components. It integrates two estimation algorithms, the Infinite Gaussian
Mixture Model (Rasmussen 2000) and Infinite VMF Mixture Model (Bangert 2010). The
development required adaptation of sampling algorithms due to numeric issues, adaptation
of priors and hyper parameters estimators, determination of parameter hierarchy levels and
normalization of Gaussian and VMF likelihood probabilities. The grasp affordance density
was incorporated in a robotic motion planning algorithm and used for analysis of motion in

patients with stroke.

We developed the Grasp Affordance Randomly exploring Random Tree (GA-RRT) algorithm
based on the Grasp Region Randomly exploring Random Tree (GR-RRT) algorithm (Reshef,
Eizicovits, and Berman 2014). The modifications included, the development and integration
of a suitable mixture model random sampling algorithm. The GA-RRT algorithm provides

high quality target configurations resulting in greater likelihood of successful grasps.

The analysis of motion of patients with stroke was done as part of the ENHANCE project. The
goal of ENHANCE is to establish and clinically validate effective upper limb interventions for
recovery of voluntary movement control after stroke. Human grasp configurations of both
healthy subjects and patients with stroke were evaluated. Two separate grasp affordance
densities were generated, one for each group for motion towards four targets. Analysis of
the grasp affordance densities included comparison of the number of clusters, composition
of clusters and variance within clusters. By analyzing these measures, we can learn about the
number of grasp types and the difference between them. For both groups the estimated
densities comprised two components, yet the division of grasp configurations between the

components in each density mixture, differed between the groups. For the control group, the
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configurations of three target locations were allocated to one density mixture component
and one target was allocated to a separate component. For the stroke group, subjects were
divided between the components based on the effected arm, with which they performed the

motion. In addition, the variance within the components was much higher for the stroke
group.
1.3. Research scope and limitations

The current research revolves around the Bayesian distribution estimation method, testing
its limits, using it for modifying a path planning method evaluated in simulation, and for the
analysis of the motion of patients with stroke. One direction for future research involves
further examination of the estimation algorithm by examining optimization of currently,
constant, hyper parameters, and providing the option of using previous grasp affordance
densities as the prior. For the path planning algorithm, further examination with hardware
and comparison to other existing algorithms. For the motion of patients with stroke,
examining the post treatment and follow-up data of patients and analyze the progress made
throughout the treatment is left to future research, as the ENHANCE project s still in-process

and the data is not yet available.

1.4. Thesis outline

This thesis is organized as follows: chapter 2 presents a literature review of the basic
concepts and methods, various distribution estimation algorithms are explained, existing,
commonly used, motion planning algorithms are presented, and impairment in grasping of
patients with stroke is explained. Chapter 3 includes a detailed description of the algorithm
developed, and the results of synthetic data used for validation. In chapter 4, an
implementation of the algorithm in robotic path planning is presented and analyzed. Finally,
in chapter 5, an implementation of the algorithm on post stroke grasp data is presented and

analyzed.



14

2. Literature review

2.1. Overview

This chapter includes the review of different concepts and methods, related to non-
parametric Bayesian estimation of grasp affordance densities and the use of such affordance
estimation in robotic motion planning and human motion analysis. Theoretical statistical
foundations are presented in section 2.1. These include cyclic distributions, mixture models,
and three algorithms used for estimating grasp affordance densities which are reviewed and
compared. Section 2.2 briefly presents Rapidly exploring Random Trees (RRT) motion
planning algorithms. Section 2.3 describes reach-to-grasp characteristics in healthy subjects

and in patients with stroke.

2.2. Theoretical foundations
2.2.1. Cyclic distribution functions

There are various practical situations in which observations include orientations, e.g. the
orientation from which to grasp an object. In such cases spherical statistics is required for
handling the angular data. Cyclic distributions are a tool offered by spherical statistics for

expressing the periodic characteristics of angles.

Using quaternion representation is common in cyclic distributions. Quaternions are used to
express an orientation of a point in 3D space around an axis. They are composed of four
components (qo, 91,92, 43), Where g, represents a scalar and (g4, g2, q3) represent a vector.
Quaternions and Euler angles both represent orientation, however using quaternions has
several advantages, such as easier conversion to orientation matrices and avoidance of and
gimbal lock. In addition, when using quaternions, the order of orientation doesn’t need to be
specified like in Euler angles. The functional linkage between Euler angles and quaternions
is:

qo = Cos (%), q, = sin (%) cos(By), q, = sin (%) cos(ﬁy), qs = sin (%) cos(f,)

Where «a is orientation angle (the value in radians of the angle of orientation), and

cos(By), cos(By) and cos(B,) are the direction cosines locating the axis of orientation.
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2.2.1.1. Von-Mises Fisher (VMF) distribution

The Von Mises - Fisher (VMF) distribution is a commonly used cyclic distribution, as it is the
equivalent of the Gaussian distribution in the cyclic world (Figure 2.1). The VMF distribution

has two parameters: y, the expected value, and kappa, the concentration of the data.

A p-dimensional unit random vector X (||X|| = 1) with a p-variate VMF distribution, has a

probability density function (pdf):

f(x|w, kappa) = c,(kappa)e kappasp” x )

Where ||u|| = 1,kappa = 0 , and c,(kappa) the

normalizing constant is given by:

P,
Cy(kappa) = —5 2= (2)
(2m)2 Ip _1(kappa)
2

As kappa decreases the pdf becomes more similar to a

uniform pdf (Dhillon and Sra 2003).

2.2.2. Mixture models Figure 2.1: VMF distribution in 3D space
A mixture model is a probabilistic model used for representing subpopulations within an
overall population. Mixture models are used to make statistical inferences about the
properties of the sub-populations, given observations on the pooled population, this without
sub-population identity information (Everitt 1981). The mixture model assumes the
existence of M densities, where each density is allocated a weight value, and the sum of all
weights adds to 1 (Reynolds 2008). When fitting a mixture model to data, the mixture weight
and component parameters are determined (Reynolds 2008). The Gaussian Mixture Model
(GMM) is a broadly used model in which all M densities are Gaussian. GMM has been used in
many fields, e.g., for modeling vocal-tract related spectral features in a speaker recognition
system (Reynolds 2008), human skin colors for security checks (Yang and Ahuja 1998),
acoustic units for speech recognition (Torbati, Picone, and Sobel 2013). An example for the

probabilistic mixture model follows:


https://en.wikipedia.org/wiki/Probabilistic_model
https://en.wikipedia.org/wiki/Subpopulation
https://en.wikipedia.org/wiki/Statistical_inference
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g(x]0) = ¥ wiP,(x|6;) (3)

Where x represents the independent identically distributed samples, 8;, are the parameters
of cluster;'s distribution and w; represents the weight of mixture 'i'. Parameters of mixture
models cannot be directly estimated using the classical maximum likelihood estimators,
there are several ways to estimate the parameters of a mixture model: Expectation
Maximization (EM) (Reynolds 2008), Kernel Distribution Estimation (KDE), and non-

parametric Bayesian Estimation.

2.2.2.1. Expectation Maximization (EM)

The EM algorithm is an iterative method for finding maximum likelihood or maximum
posteriori estimates of parameters, where the model depends on latent variables. EM
operates in two phases. First, E-Step, computes the probability of given samples to belong to
the different clusters. Second, set the parameters of the clusters (6) to maximize the log

likelihood function (equation 5) (Xu and Jordan 1996):

EQ(®) =ELog(| [ PGl ) = EQ) Log(p(xl 0)))

(5)
Where 6 indicates the estimated parameters and x represents a d dimensional sample. The

EM algorithm will attempt to optimize the expression E(l(6)) repeating the two phases
described above until reaching convergence or a-priori determined number of repetitions.
Using the EM algorithm, to estimate a Gaussian distribution follows (Xu, Jordan, and Hinton
1994). The E step, computes:

Wj(k)p(x(i) |,uj(i), Ej(i))
ZQ/I=1 Wt(k)P(x(i)Wt(i)'Zt(l))

h® @) =

(6)

The M step, finds a new estimate for parameters 6 = {w;, i, X;} using equations 7-9.

I

(k+1) —
W. —]
J N

()
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k) . i
(k+1) —lpﬂhf( @x®

g 22, @)
(8)
yern - Bt PO D 2y
im b (@)
9)

Where w; indicates the weight of component'j', the mean vectors are represented by y;, and
the covariance matrices ) ;. In the EM algorithm, the number of components is set a-priori.
To find the most suitable model, given the number of components is not known, the
algorithm is repeated several times with a different number of clusters. The best model is
determined using statistical criterion indicator. Two common statistical criterions are the

Bayesian information criterion (BIC) and the Integrated Completed Likelihood (ICL).

The Bayesian Information Criterion (BIC) was developed as an approximation to the log
marginal likelihood of a model, and therefore, the difference between two BIC estimates may
be a good approximation to the natural log of the Bayes factor (Posada and Buckley 2004).
Choosing the model with the smallest BIC is equivalent to selecting the model with the

maximum posterior probability. The BIC is formally defined as
BIC = k = In(n) — 2In(L)

(10)
Where L is the maximized value of the likelihood function of the model M i.e. L = p(x|8, M)
where 8 are the parameter values that maximize the likelihood function, x is the observed
data, n is the sample size and k is the number of free parameters to be estimated. The BIC
criterion suffers from three main limitations: the approximation is only valid for sample
size n much larger than the number of parameters, k in the model, the BIC cannot handle
complex collections of models, as in the variable selection problem in high-dimension and it

often over estimates the number of clusters (Posada and Buckley 2004).

Like the BIC, Integrated Completed Likelihood (ICL) prefers models which explain the
training data and punish complexity. The ICL criterion, gives an answer to the tendency of

BIC to overestimate the number of clusters. This is done by replacing the maximum a


https://en.wikipedia.org/wiki/Free_parameter
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posteriori probability estimator of a sample x; to belong to a cluster k with the missing

cluster indicators z;;, (Itti, Koch, and Niebur 2010):

_ {1 — ifargmax(8) = k
Zig = )
0 — otherwise
(10)
2.2.2.2. Kernel Density Estimation

Kernel Density Estimation (KDE) estimates non-parametric models. A non-parametric
model, does not assume a fixed number of parameters. As the number of samples grows the
number of parameters grows. In parametric models, the goal is to model the data in the best
way, given a known number of clusters. For example, in Figure 2.2A, a parametric model is
presented, the model attempts to fit one cluster to all observations in the best way possible.
In non-Parametric models (Figure 2.2B), each sample can be represented by a cluster. Some
samples will merge (after smoothing) to represent one cluster. Theoretically, enabling the

model to have a cluster per sample (Detry et al. 2009).

A B

Parametric Nonparametric

Figure 2.2: Parametric Vs Non-Parametric Visualization
2.2.2.3. Bayesian estimation
Bayesian estimation is based on Bayes' rule:

P(D|H)P(H)

P(HID) = =75

(11D
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Where H and D are events and P(D)#0. An additional interpretation is available, where H is
a hypothesis and D is data which may give evidence for or against H. The prior P(H) is the
probability that H is true before the data is considered. The posterior P(H|D) is the
probability that H is true after the data is considered. The likelihood P(D|H) is the evidence
about H provided by the data D. P(D) is the total probability of the data considering all
possible hypotheses (Orloff and Bloom 2014). In most experiments, the prior probabilities
on hypotheses are not known. Thus, priors can be determined using trial and error or

maximum likelihood methods.

Each observation is composed of some pattern (in distribution estimation the parameters of
the distribution is the pattern and their values are the hypothesis (H)) plus an independent
noise. Assuming the observations are independent and identically distributed (IID) is
required, however in this case it is clear the observations are not IID, they are conditionally
independent (Gelman et al. 2014). Conditional independence means that given the
parameter information the data is independent, identically distributed and exchangeable
(changing the order in which the data was entered does not change the joint distribution).

Conditional independence is sufficient according to de Finety (de Finetti 1995)

The prior P(H) is previous information we have or assume about the model. In case there is
no prior knowledge, it is common to either guess or use the likelihood. Conjugate priors are
commonly used when estimating distributions as using them generates analytical equations
(Murphy 2007). For example, the weight parameters of a mixture model are distributed
multinomial as they are positive numbers which add to one therefore their conjugate prior
is the Dirichlet distribution where a and G, represent the priors in the Dirichlet distribution

(Ferguson 2014).
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2.2.2.4. Comparison of model estimation methods

The EM estimation requires prior information regarding both the type of distribution as well
as the number of components examined. When using the EM algorithm, we are prone to over-
fitting as an optimization to the data is performed. Additionally, initial values influence the
results and we may encounter local minima. Granville and Fagg (Granville, Fagg, and
Southerland 2006), generated grasp affordance densities using EM estimation along with
model selection criteria for mixture-model parameter estimation, trying to identify

representative components.

KDE, on the other hand, is an algorithm which initially represents each sample with a cluster,
causing high dimensionality. Thus, attempting to compute an analytical equation to model
the distribution is very complicated, time consuming and often, impossible (Shalizi 2016).
Detry, (Detry et al. 2009) applied kernel-density estimation methods for vision based grasp

learning successfully.

When using the non-parametric Bayesian estimation, the number of clusters is among the
estimated parameters and need not be set a-priori. Additionally, the use of conjugate priors
derives, easily computed, analytical equations (describing the distribution). Furthermore,

the parameters are drawn at each iteration, thus marginalizing over all possibilities.
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2.3.

A non-parametric Bayesian estimation method for infinite GMMs was suggested by

A Non-Parametric Bayesian estimation method for GMMs

Rasmussen (2000). It has been successfully implemented for examining neuron signals.

The algorithm works as follows (Figure 2.3), first, priors are
generated using maximum likelihood estimators. During
algorithm initiation, the priors are calculated given that all
observations belong to a single cluster. Second, the
parameters and hyper parameters of clusters are sampled,
using the conditional posterior distributions and the Gibbs
sampler. The Gibbs sampler is a technique for generating
random variables from a marginal distribution indirectly,
without having to calculate the density (Casella and George

1992).

Once the parameters and hyper parameters of each cluster
are sampled, a new cluster is sampled for each observation.
This is also done using the Gibbs sampler, where the
conditional posterior distributions depend on the
parameters of the cluster the observation was last allocated
to. The clusters sampled for each observation now pose an
alternative for the current cluster the observation is

allocated.

The probability for each observation to originate from an
existing cluster or a new cluster is estimated using the

Dirichlet Process Posterior:

Initiate Parameters using the
data

.

Gibbs Sampler: for model
Paramters and hyper parameters

v

Sample a new alternative cluster
for each observation

!

Calculate likelthood of
allocation to cluster (per
observation)

l

Draw allocation of observation
(C1) to existing or alternative
cluster

Reallocation of data to clusters

|

e

Yes

estimation- flow chart

Figure 2.3: Non-parametric Bayesian
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Where 6 represents the parameters of a specific cluster, n is the number of samples and x
represents the observations. The estimation in equation 12 will be used and inserted into
equation 13. We can now sample using equation 13, the probability that the data point has
originated from an already existing cluster (first expression in equation 13), and the
probability that it is a new cluster (the second expression in the equation). Once a new
cluster is proposed the probability of each data point to belong to the new cluster
(likelihood) is calculated. The new cluster is now proposed to all data observations, the
decision to belong to the new cluster does not depend solely on the likelihood, the likelihood
is used as input to the multinomial distribution. At each iteration, for each data point a
multinomial allocation is drawn and the allocation to cluster is determined (C; indicates the
cluster allocation for observation i). To conclude, at different iterations a data point may be

affiliated with one cluster and at the following iteration it may belong to another.

Each iteration generates a valid estimation of the distribution model. However, to reach
convergence and stable allocation of observations, many iterations need to be executed. To
reduce complexity and computation time, at each iteration only one new cluster can be

proposed to all observations (Mandel 2005).

2.4. Robotic reach-to-grasp motion

To successfully grasp and manipulate an object, a robot must bring its end-effector to a pose
(position and orientation) from which a high-quality grasp can be formed. When the object
to be grasped is known, grasps (end-effector configurations) can be synthesized a-priori.
When the object location with respect to the manipulator is additionally known, manipulator
grasp poses and configurations can additionally be computed a-priori. A collision-free path

to a grasp configuration can be computed a-priori only in a known, static environment.
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The path planning problem is the robot's attempt to plan the arrival to its target position
while avoiding obstacles along the way. Given a starting position, a target position and
obstacles a path planning algorithm attempts to find a continues path while avoiding
collisions. The common procedures for motion planning are executed in iterations, in each
iteration, an attempt is made to advance towards the target position. If the attempt is

successful, then it will be made otherwise another move will be examined.

There are many algorithms for motion planning available. Many motion planning algorithms
resembles the problem to sampling and searching t possibilities trees. Such as the Rapid

Exploring Random Tree (RRT) and its variants (Lavalle 2006).

RRT is used frequently due to its efficiency and ability to deal with constraints. RRT belongs
to the Rapidly Exploring Dense Trees (RDT) family and differs from other sample and search
algorithms in its ability to gradually improve its space coverage. The tree will eventually,

densely cover the space (Lavalle 2006).

RRT algorithm attempts to find a free-collision path from the origin (q,) to the goal (qg0q1)
using a sequence of random samples (where q; is the i*" sample). In each iteration q; is
connected to the graph (at point gq,,) via the shortest path. If q,, is a vertex, then it connects
an edge between the two (q;and q,,). Otherwise if q,, is an edge, a;'s connection to the graph

will generate two new vertices (the second one being the point on the edge where a;was

—
o
%o a(i)

Figure 2.4: Adding a new node to an existing graph (Lavalle 2006)

connected) (Figure 2.4).

When the path between a; and g, is not feasible due to the presence of an obstacle, an edge
will be made from g, to g, (g5 being the last point possible before hitting the obstacle). The
closeness of g; to the obstacle depends on both the algorithm chosen to check for collision

as well as the algorithm chosen to find the nearest point (exact or approximate) (Figure 2.5).
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Figure 2.5: Dealing with an obstacle to prevent collision

Single tree search uses the algorithm above to expand the tree from q,. In each iteration, the

algorithm will either select a;or q4,4; and check whether it is possible to connect the RRT to

the q40q:- The selection between a; and q404; can be implemented in different ways.

The balanced, bidirectional search method usually outperforms the single tree search. The
search produces two RRT trees. The first tree (T,;) begins at the origin g, and the second tree

(T,) begins at q404;- After several iterations T, and T}, are swapped, hence the allocation

(Ty,T,) is not permanent.

The Grasp Region Rapid exploring Random Trees' (GR-RRT) (Reshef, Eizicovits, and Berman
2014) purpose is to incorporate quality of the target configurations into the RRT motion
planning algorithm. Thus, allowing more intelligent sampling. The algorithm includes two

phases, the offline grasp region determination (GR) and the online planning (Figure 2.6).

The offline GR determination primarily produces graspiblity maps for the required objects.
Eventually the configurations are divided into two groups the successful configurations and
the not successful configurations this is done using an empirical threshold. The GR is the
area encompassing all successful configuration. GR-RRT uses the EM algorithm with BIC
criteria to estimate the distributions (Schwarz 1978). The parameters estimated are then

delivered to the planner to allow him to sample accordingly.

The online planning phase can now use the offline information (grasp affordance densities)
and plan an intelligent path. To insure only successful configurations are selected whenever

an out of GR bounds configuration is selected, it is discarded, and new sampling occurs.



Object & Gripper Enviornment
Characteristics Sensory Perception
v ‘ ‘ v
Graspability Map ‘ L Gaussian Mixture L’. Best model .7,‘ Grasp-Region = ,.  Planning with
fomoalon | Modelft | selection | specification GR-RRT
Offline GR Determination Online Planning

Figure 2.6: GR-RRT algorithm

This algorithm, though slightly more time consuming, produces significantly better results
both in path selection and in target configuration selection (Reshef, Eizicovits, and Berman

2014).

2.5. Reach-to-grasp motion of patients with stroke

A stroke can cause temporary or permanent disabilities, depending on how long the brain
lacks blood flow and which part was affected. One of the common complications are paralysis
or loss of muscle movement. A post stroke patient may become paralyzed on one side of his
body, or lose control of certain muscles, such as those on one side of the face or one arm.
(Thrasher et al. 2008). Most post stroke patients experience impairment of arm movement,
(Lin 2008, Carr and Shepherd 1998) as a result of the impairment, patients often avoid using
the affected arm and compensate the impairment using the other arm or trunk (Michaelsen
Dannenbaum, and Levin 2005). The reach to grasp act is often impaired in patients with

stroke.

Reaching a specific endpoint arm position can be repeated in different ways. A subject may
execute varying movement speeds or one constant speed to different distances (Liebermann
et al. 2010). During unimpaired execution of motion, there is a variance in path selection i.e.
speed and route, however, after re-executing a similar motion numerous times, movements
may follow specific, least effort paths. Patients with stroke demonstrate temporal
inefficiency in preplanning and executing movements and rely heavily on feedback control
of reaching and grasping (Lin 2008). Liebermann (Liebermann et al. 2010) compared the

number of sub movements when reaching to grasp a target in healthy and post stroke
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subjects, and concluded that post stroke patients showed more sub movements. Lieberman

also noticed jerkier movements for patients with stroke.

The orientation adopted by a grasping hand is known to depend on the shape and orientation
of the object to be grasped (Desmurget, Prablanc, and Prablanc 1997). In addition, recent
studies have demonstrated that it also depends on the spatial characteristics of the task such
as the location of the object and initial hand position. It is suggested that not only object
location and hand initial position affect variation in hand orientation, but also the movement

direction (Bennis and Levin 2003).

Patients with stroke often have weaknesses in distal muscles used to stabilize the wrist,
decreased grip strength and lack of fine finger control. These impairments may lead to the
development of alternative grasping strategies such as anchoring the fingers on the object to

achieve a passive grasp (Roby-Brami et al. 1997).
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3. Non-parametric Bayesian estimation of grasp affordance

3.1. Overview

In this chapter, the non-parametric Bayesian estimation of grasp affordance algorithm
developed is presented in section 3.2. Various tests conducted to examine the limitations and

abilities of the algorithm are presented in section 3.3.

3.2. Non- parametric Bayesian estimation algorithm description

The algorithm developed integrates Rasmussen's estimation method, Infinite Gaussian
Mixture Model (IGMM) (Rasmussen 2000) and Bangart's VMF estimation method (Bangert
2010). The new combined estimation algorithm (Figure 3.1) is suitable for finding
parameters of a combined infinite mixture model, where several degrees of freedom (DOF)
are Gaussian and several are VMF. Such a combined mixture model is suitable for
representing grasp configurations, in which the three position DOF are modelled using
Gaussian distribution components and the three orientation DOF are modelled using VMF
distribution components. In Figure 3.1, The bold box indicates an addition to the algorithm

and the broken line boxes indicates a stage modification.

Draw allocation of
observation (Ci) to existing

or alterna 7 o

Initiate Parameters
using the data '
N S

i Gibbs Sampler: for

—% i No
" model Paramters and ; If new component?
i hyper parameters |

—
_—
Graspibility
map

........................

--- Smmemsee- Yes
Reallocation of data to ‘

: . clusters
t__.each observation __
Y
Calculate likelihood of| | —2 @
allocation to cluster Yes
er observation p
(P . ) { Save Grasp s
- p

Normalize and combine affordanece densities affordance

VMF and GMM @ densities
L likelihoods

Figure 3.1: Non-parametric Bayesian estimation algorithm - flow chart



28

The algorithm starts with an initiation stage, an assumption that all data points are allocated
to one cluster is made (Rasmussen 2000). The parameters are initiated using maximum
likelihood estimators given the original data. The original VMF estimation method set the
hyper parameters to constants, we attempted to modify the estimation of the hyper
parameters. However due to numeric problems we only changed the hyper parameters (m,t)
to be initiated using maximum likelihood estimators, and left the hyper parameters (a,b)

constant.

For the Von Misses-Fisher distribution, kappa, the concentration parameter is estimated

3
> (Banerjee 2005) Where d is the number of dimensions and r = }}; x;.

: — Fd-T
using: kappa = .

-7
The VMF mean parameter (u.,.) is initiated using fi = % where r = )}; x;. The hyper-
parameters for the mean parameter (m,t) are initiated using maximum likelihood, where m
(expected direction parameter) is equal to /i and t (concentration parameter) is equal to the
initiation of the parameter kappa. For the Gaussian parameters the initiation of the location

was done following Rasmussen's work (Rasmussen 2000).

The conjugate prior distributions are presented in table 1. The parameters of a specific

clusteri (u;, g;, kappa;, ,ucyci) are estimated using the data observations allocated to the i'th

cluster. Differently, the hyper parameters, are estimated using all data observations
regardless of the allocation to clusters.

TABLE 1 : Parameters and hyper parameters' distributions

Parameter Distribution chosen for parameters Distribution chosen for estimation of

hyper - parameters

Infinite GMM
p- Mean Normal (A, 7~1) Where A is the mean | p(1)~Normal (,uy,af) where u,, is the
parameter parameter and r is precision mean of all observations and o is the
parameter variance of all observations

inverse variance of all observations

p(r)~Gamma (1,0, %) where g, % is the
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S- Precision

Gamma (B,w~1) Where w is the mean

p(w)~Gamma (1,05) where gy is the

number of clusters and « is a scalar

parameter parameter and 3 is shape parameter | variance of all observations
p(f)~Inverse Gamma (1,1)
Infinite VMF
Ueyc- Mean Von Misses Fisher (m, t) m =Maximum likelihood (,ucycy)
parameter Where m is the mean parameter and t where :ucycy is the cyclic mean of all
is concentration parameter )
observations
t =Maximum likelihood (kappa,)
where kappa,, is the concentration
parameter of all observations
Kappa- - —tk___aptkb a =Constant
pp f(tk; a,b) o< {— Sinh(fk)} e where
Concentration |, _, ma b =Constant
a'and 'b' are scalar parameters
parameter a5b>0
Mixing Parameter
C-Discrete Diriclet (i ...~) Where k is the p(a~')~Gamma (1,1)
Indicator

The posterior conditional distributions (equations 14-19) follow Bangart and Rasmussen's

work with adaptations (Bangert 2010, Rasmussen 2000). Similarly to the initiation stage, In

Bangart's algorithm (Bangert 2010) the hyper parameters of VMF distribution(m,t, a, b)

remain constant throughout all estimation iterations. Thus, the same modification explained

in initiation was performed for the hyper parameter estimation.
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Translation parameters and hyper parameters (Rasmussen 2000)

Yinisi+Ar 1
p(u; Sj,l,r)~N0rmal( ]n]_jsjjw ’njs,-+r> (14)
by 05+ Bl 1
p(Aluy, o, e, ¥)~Normal ( . ,G;2+kr> (15)
p(rlu, ..., g, A)~Gamma(k + 1, [— (05 + Zfoa (i = D) (16)
1 2,71
p(sjle,y, w, Bw)~Gamma(B + 1, [ (WB + Tiei= (i =) )] ) (17)
1 _ _
pWIs1, ., Sk B)~Gamma(kB + 1, [z (057 + BLjo1 5)1 ™) (18)
B\ 1 (BY T o
p(BIsy, ) Spy W)X (E) exp(ﬁ) (E) 2 H(sjw)zexp (19)

Where y; represents the three position parameters of data sample 'i', n; is the number of
observations allocated to cluster 'j' and 'k’ indicates the number of clusters, the rest of the
parameters are presented in table 1. The latter density is not of standard form, but it can be
shown that p(B|s4, ..., Sk, W) is log-concave, so we may generate independent samples from

the distribution for log () using Adaptive Rejection Sampling (ARS) technique.

Orientation parameters (Bangert 2010):

T a+n]-
(T |a b, {xlEk} #])OC ({m} exp(T]- * (b + Ziek.ucyczxi)) (20)
T
|moto+Tk Ziek Xil Moto+Tj Niek X;
p('ujl{xie’(}' T mo, fo)e amsinh(|moto+Tj Tiek Xil) exp( (lmoto+TjZiekxi|) *) (21)

Where x; is the orientation parameters of data sample 'i', the rest of the parameters are
presented in table 1. The kappa parameter's posterior conditional distribution is a complex
function (equation 20), requiring a suitable sampling method such as slice sampling
algorithm (Neal 2003). Still, when encountering a cluster with many observation samples,
numeric problems occur. Therefore, when the algorithm encounters a cluster with many

observations, the algorithm randomly selects a portion of observations from the cluster.



31

Mixing parameters:

Components with more than one data sample allocated

Gaussian:  p(c; = jle_y, w55, a)xp(c; = jle_;, Dpile_i wj, ;) (22)
VMF p(c; = jle—uw, 55 a)xp(c; = jle—y, a)p(xilc—y, w;, kappay) (23)
All other components combined:

Gaussian p(c; # ¢y foralli #i'|c_;,a) fp(yi|uj,sj)p(uj,sj|/1, T, B, w)du;ds; (24)
VMF: p(c; # ¢y foralli #i'|c_;,a) fp(xi|uj,kappa)p(uj,kappaj|a, b, t,m)du;dkappa;

(25)
where the subscript '-i ' indicates all indexes except 'i', x; is the orientation parameters of
data sample 'i', y; is the position parameters of data sample 'i'. The rest of the parameters
are presented in table 1. The estimation of the parameters for the translation and orientation
(equations 14-21) were done independently. However, determining the observation
allocation to a cluster and whether a new cluster arouse, considers both translation and
orientation parameters. To combine the Gaussian and VMF probabilities we normalized the
probabilities and gave weights to both translation and orientation probabilities. This stage
is illustrated in the bold box in Figure 3.1. Once a new cluster is proposed, reallocation of the
data occurs, and a new iteration begins. Only clusters which represent more than one sample

remain in the following iteration.

3.3. Validation experiment

To validate the algorithm an examination of each, position and orientation, based estimation
were tested alone and combined. Data sets with different levels of overlap between clusters

were examined to understand the abilities and limitations of the algorithm.

3.2.1. Data

Four different sets of synthetic data were generated, the first set of synthetic data generated

was from distinctly different clusters both in orientation and in position. The first data set
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was used for validation and three types of estimations were carried, estimation by position
only, estimation by orientation only and estimation integrating both position and
orientation. The second data set, tested the algorithm's performance when an overlap in
position existed and a distinct separation in orientation (OP). The third data set tested the
algorithm given an overlap in orientation and a distinct separation in position (00). Lastly,
the fourth data set tested the algorithm given an overlap in both position and orientation

(OPO).

500 samples were generated from each data set (data set parameters presented in appendix
1) using the random mixture model sampling algorithm specified in section 4.2.1 and then

used as input to the non-parametric Bayesian algorithm specified in section 3.2.

3.3.2. Experimental protocol

15000 iterations were performed using the grasp affordance density algorithm, hyper
parameters of the VMF concentration parameter, kappa, are constants, and set to a=5, b=4.7
the values were determined following Bangart (Bangert 2010). And the hyper parameter of
the Dirichlet distribution is drawn from an inverse gamma distribution G~(1,1). The
likelihoods (VMF and Gaussian) determining the allocation of a sample to cluster were given
equal weights (0.5,0.5). Sampling kappa using the slice sampling algorithm (VMF
concentration parameter) was done based on one hundred randomly selected samples with
a burning in value of 5. The final iteration of the algorithm is used as the selected model
where clusters which weigh less than 5% are discarded. To compare the goodness of fit

visual graphs are generated and examined.

3.3.3. Results

3.3.3.1. Validation Set: Distinct separation of both orientation and position

For estimation by position only, the algorithm converged after about 3500 samples. The
affordance densities established, includes three clusters (Figure 3.2-3.3, table 2). The
position expected value is 0.57 + 0.01 cm away from the ground truth. The weights of the
cluster are (0.33,0.338,0.332) compared with (0.33,0.33,0.33) and the variance is also very
similar (Appendix 1). Though the allocation of data did not consider the orientation

components the estimated expected value of the orientation is very close to the ground truth
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and is only 0.65 + 0.14 degrees apart. The concentration of the orientation data is lower than

the concentration of the ground truth (Appendix 1).

A Convergence B Mixture Model - Positions
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Figure 3.2: Position only- mixture model
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Figure 3.3: Position only - distribution by component

The ellipsoid represents the cluster which the algorithm found fit where the center of the ellipsoid represents
The expected value and the circumference is one standard deviation away from the center

TABLE 2: Position only- parameters per cluster

Cluster 1 2 3
Weight 0.33 0.338 0.332
Position
u [100.03,99.85,100.08] [0.95,0.98,1.07] [199.9,199.84,199.94]
1.2,-0.02,0.04 0.95,0.01,0.10 1.05,0.04,0.07
-0.02,1.05,0.09 0.01,0.96,0.06 0.04,1.14,0.12
0.04,0.09,0.97 0.1,0.06,1.21 0.07,0.12,1.01
Orientation
Kappa 107.88 100.75 94.42
Heye [0,1,-0.01,0] [0,-0.01,0.71,0.71] [0.01,0.72,0.7,0]
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For estimation by orientation only, the algorithm converged after about 3000 samples. The
affordance densities established, includes three clusters (Figure 3.4-3.5, table 3). The
orientation expected value is 0.81 * 0.41 degrees away from the ground truth, the weights
of the cluster are (0.33,0.338,0.332) compared with (0.33,0.33,0.33) and the concentration
of the orientation data is lower than the concentration of the ground truth (Appendix 1).
Though the allocation of data did not consider the position components the position
expected value is very close to the ground truth and is only 0.21 *+ 0.13 cm apart. and the

variance is also very similar (Appendix 1).
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Figure 3.4: Orientation only- mixture model and convergence
The black lines represent the direction (expected value) of the cluster
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Figure 3.5: Orientation only - distribution by component

TABLE 3: Orientation only-parameters per component

Cluster 1 2 3
Weight 0.338 0.33 0.332
Position
u [0.88,0.87,1.11] [99.96,99.98,100.08] [200.04,199.99,200.07]
1.06,0.19,0.02 1.08,0.09,0.03 0.89,0.02,0.16
0.19,0.93,-0.03 0.09,0.84,0.09 0.02,1.01,0
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0.02,-0.03,1.47 0.03,0.09,1.3 0.16,0,1.17
Orientation
Kappa 118.39 74.09 81.11
Heye [-0.01,0,0.7,0.71] [0,1,0.01,0.01] [-0.01,0.71,0.7,0.02]

Estimation given both position and orientation integrated, the algorithm converged after
about 200 iterations. The affordance densities established, includes three clusters (Figure
3.6-3.7, table 4). The position expected value is 0.27 + 0.09 cm away from the ground truth,
the weights of the cluster are (0.33,0.338,0.332) compared with (0.33,0.33,0.33) and the
variance is also very similar (Appendix 1). The orientation expected value is very close to the
ground truth and is only 0.89 + 0.24 degrees apart. The concentration of the orientation data

is lower than the concentration of the ground truth (Appendix 1).
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Figure 3.6: integrated algorithm- Convergence and mixture model

Quaternions and positions are colored according to the cluster they are allocated to. The black lines
in figure C represent the direction (expected value) of the cluster.
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Figure 3.7: Integrated algorithm- distribution by component

The ellipsoid represents the cluster which the algorithm found fit where the center of the ellipsoid
represents the expected value and the circumference is one standard deviation away from the center
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Cluster 1 2 .3
Weight 0.338 0.332 0.33
Position
[0.94,0.95,1.12] [200.07,199.89,200.2] [100.21,100, 100]
1.17,0.13,0.07 1.17,16,0.19 1.4,0.12,0.05
0.13,1.08,0.09 0.16,1.09,0.23 0.12,0.92,-0.01
0.07,0.09,1.21 0.19,0.23,1.32 0.05,-0.01,1.03
Orientation
Kappa 98.75 108.3 101.56
Heyc [0.005,-0.013,0.718,0.696] [-0.006,0.716,0.698,-0.007] [-0.001,1,-0.01, 0.007]

TABLE 4: Integrated algorithm - parameters per component

3.3.3.2. Overlap Position dataset (OP): Distinct separation of orientation and overlap in
position

The samples generated are demonstrated in Figure 3.8, the model parameters used to

generate the samples are presented in Appendix 1.
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Figure 3.8: Position overlap - samples generated

Estimation given both position and orientation integrated, the algorithm converged after
about 300 iterations. The affordance densities established, includes three clusters (Figure
3.9-3.10, table 5). The position expected value is 0.66 + 0.23 cm away from the ground truth,
the weights of the cluster are (0.322,0.39,0.288) compared with (0.33,0.33,0.33) and the
variance is also very similar (Appendix 1). The orientation estimated expected value is very
close to the ground truth and is only 3.24 * 1.9 degrees apart. The concentration of the

orientation data is lower than the concentration of the ground truth (Appendix 1).
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Figure 3.9: Translation overlap- convergence and mixture model-

Quaternions and positions are colored according to the cluster they are allocated to. The black lines in figure
C represent the direction (expected value) of the cluster.
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Figure 3.10: Translation overlap - distribution by component

The ellipsoid represents the cluster which the algorithm found fit where the center of the ellipsoid
represents. The expected value and the circumference is one standard deviation away from the center



TABLE 5: Position overlap -parameters per component
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Cluster 1 2 3
Weight 0.322 0.39 0.288
Position
11 [2.67,3.25,3.11] [6.24,5.85,6.03] [-0.16,-0.42,-0.3]
3.73,0.1,0.12 2.78,-0.01,0.39 2.95,-0.32,0.06
0.1,3.11,0.13 -0.01,2.57,0.12 -0.32,2.97,0.39
0.17,0.13,2.99 0.39,0.12,2.6 0.06,0.39,4.18
Orientation
Kappa 45.2 42.16 49.74
Heye [0.737,0.474,-0.235,0.4190] [0.86,0.361,0.34,-0.12] [0.469,0.195,-0.845,-0.169]

3.3.3.3. Overlap Orientation dataset (00): Distinct separation of position and overlap in

orientation

The samples generated are demonstrated in Figure 3.11 the model parameters used to

generate the samples are presented in Appendix 1.

Samples generated - Positions

Samples generated - Orientations

X [cm]

Figure 3.11 Orientation overlap- samples generated

The algorithm converged after 300 iterations. The affordance densities established, includes

three clusters (Figure 3.12-3.13, table 6). The position expected value is 0.19 * 0.04 cm away

from the ground truth, the weights of the cluster are (0.348,0.364,0.288) compared with

(0.33,0.33,0.33) and the variance is also very similar (Appendix 1). The orientation

estimated expected value is very close to the ground truth and is only 2.62 + 1.88 degrees

apart. The concentration of the orientation data is lower than the concentration of the

ground truth (Appendix 1).
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Figure 3.12: Orientation overlap - convergence and mixture model

quaternions and positions are colored according to the cluster they are allocated to. The black lines in figure C represent the
direction (expected value) of the cluster.
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The ellipsoid represents the cluster which the algorithm found fit where the center of the ellipsoid represents.

The expected value and the circumference is one standard deviation away from the center



40

TABLE 6: Orientation overlap- parameters per component

Cluster 1 2 3
Weight 0.348 0.364 0.288
Position
11 [ 10.06,10.09,10.07] [20.05,19.9,20.06] [ 1.02,1.04,1.08]
1.03,0.25,0.15 1.27,0.08,0.12 1.53,0.48,0.57
0.25,1.16,0.21 0.08,0.95,0.21 0.48,1.29,0.56
0.15,0.21,1.32 0.12,0.21,1.21 0.57,0.56,1.44
Orientation
Kappa 31.25 30.09 28.43
Heye [-0.036,-0.999,0.007,0.0170] [ 0.838,0.342,-0.383,0.185] [0.687,-0.726,-0.024,0.012]

3.3.3.4. Overlap in Position and Orientation dataset (OTR)

The samples generated are demonstrated in Figure 3.14 the model parameters used to

generate the samples are presented in Appendix 1.

Samples generated - Positions
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Figure 3.14: Total overlap - samples generated

The algorithm converged after about 300 iterations (Figure 3.15A) however the convergence

was not distinct, and the algorithm's number of clusters varied between 2-3 clusters. The

affordance densities established, includes three clusters (Figure 3.15-3.16, table 7). The

position expected value is 2.62 *+ 2.36 cm away from the ground truth, the weights of the

cluster are (0.41,0.13,0.46) compared with (0.33,0.33,0.33) and the variance is also very

similar (Appendix 1). The orientation estimated expected value (of clusters 1,3) is very close

to the ground truth and is only 2.08 * 0.97 degrees apart and for cluster two, 78 degrees

apart. The concentration of the orientation data is lower than the concentration of the

ground truth (Appendix 1)
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Figure 3.15: Total overlap-convergence and mixture model-

Quaternions and positions are colored according to the cluster they are allocated to. The black lines in figure C
represent the direction (expected value) of the cluster. The ellipsoids in figure B represents the cluster which
the algorithm found fit, where the center of the ellipsoid represents The expected value and the circumference
is one standard deviation away from the center.
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Figure 3.16: Total overlap- distribution by component

The ellipsoid represents the cluster which the algorithm found fit where the center of the
ellipsoid represents the expected value and the circumference is one standard deviation
away from the center.
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TABLE 7: Total overlap- parameters per component

Cluster 1 2 3
Weight 0.41 0.126 0.464
Position
1l [2.2,2.3,1.95] [ 0.22,-0.06,0.18 ] [4.3,4.26,4.26 ]
S 6.4,2.75,3.12 6.18,0.82,2.75 8.17,4.05,4.68
2.75,5.72,2.69 0.82,5.22,0.56 4.05,6.98,4.71
3.12,2.69,6.1 2.75,0.56,4.2 4.68,4.71,8.47
Orientation

Kappa 6.47 15.3 3.44

Heye [ 0.353,-0.935,-0.026, - [ 0.658,-0.751,-0.026,-0.037] [ 0.939,-0.198,-
0.0220] 0.275,0.061]

3.3.4. Discussion

The estimated models resemble the ground truth but with higher dispersion in the
orientation components (kappa). A relatively small overlap between clusters in orientation
parameters, significantly impacts the algorithm's ability to distinct between clusters and
estimate its true values. A plausible explanation is that the variance in position does not
correspond to the variance in orientation. The space characteristics are different for these
two distributions, a Gaussian distribution parameter is defined between [-*,~] and a VMF

parameter distribution is defined between [-180,180].

As for the convergence, it occurs very early i.e. before iteration 1000 in all cases. Thus, even
though Rasmussen (Rasmussen 2000) suggested to use 30000 iterations we decided to use
15000 iterations. Furthermore, to avoid a large amount of small, unstable clusters, clusters
with a weight of 5% and less are discarded. In table 8 the parameters chosen to initiate the
algorithm in the following applications, robotic reach to grasp motion planning and analysis

of reach to grasp motion of patients with stroke, are presented.
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TABLE 8: Parameter initiation

Parameter Value
Number of iterations 15000

a- Hyper parameter VMF 5

b- Hyper parameter VMF 4.7

a- Hyper parameter Dirichlet G 1~ (1,1)
VMF likelihood weight 0.5

GMM likelihood weight 0.5

Slice sampling burning in value 5

Number of randomly selected observations | 100

for slice sampling
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4. Robotic reach-to-grasp motion planning

4.1. Overview

The grasps affordance densities used in the GR-RRT algorithm, were modeled by a six-
dimensional Gaussian mixture model, and were found separately for each region using EM
(Reshef, Eizicovits, and Berman 2014). The division of data between the regions, along with
the use of a non-cyclic distribution for estimation of orientation led to models with a high
number of components. This complicated the sampling stage during path planning and led
to poor generalization. We replaced these models with densities functions modeled using
Gaussian functions for positions and VMF functions for orientation, and applied non-
parametric Bayesian estimation for model parameter estimation as illustrated in chapter 3.
This new method is termed grasp affordance-RRT (GA-RRT). The rest of this chapter is
organized as follows: section 4.2 describes the GA-RRT algorithm including the mixture
model random sampling algorithm developed. Section 4.3 describes an experiment for

testing the GA-RRT algorithm. Results are presented in section 4.4 and a discussion is

presented in section 4.5

4.2. GA-RRT algorithm e

Object and gripper engine

N
Bi-directional RRT
Like the GR-RRT algorithm the GA-RRT

characteristics

algorithm has two phases, a-priori offline <Toute found

or numbers of iterations

estimation phase (Figure 3.1) and a run-time reached

planning phase (Figure 4.1). The grasp
—

Sampling of cluster and a

affordance density is derived using non- ,
goal pose candidate

parametric Bayesian estimation based on

Grasp affordance
densities
_f Goal pose projection to J

graspability maps in the offline estimation L workspace

phase. During the run-time planning phase, a {IK nd collision detection]

collision-free path is found using the bi-

configuration feasible

directional RRT algorithm, where goal

fi i led f h Yes
configurations are sampled from the grasp [ Additional goal ]7
affordance density. configuration

Figure 4.1: Run time planning phase flow chart
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The sampling algorithm has two stages (pseudo code below). First, a cluster is sampled with
selection probability based on its weight. Second, a configuration is sampled from the
selected cluster, where the location and orientation are sampled separately. The location is
sampled from the GMM using mvnrnd, the built-in function for sampling GMMs in Matlab™,
The orientation is sampled from the VMF mixture model using the random Mises-Fiser
sampling algorithm (Jung 2009). To ensure only high quality grasp configurations are used,
samples which are far from the mean for both orientation and position are discarded and
sampling is re-iterated. For the position, samples within 3¢ range are kept. Orientation is
represented by a quaternion (qq,qq,q,, q3). The distance from the mean is evaluated

separately for the direction vector and for rotation angle (qo). Only samples where both are

within range are kept.
3xkappa g p

Algorithm random configuration sampling
(i, i, kappai,ucyci] = getClusterDist ()

The function getClusterDist (), draws a cluster ID, randomly according to cluster weight
and sets the parameter values according to the parameters of the selected cluster

Do [xyz]= mvnrnd(y;, o;)
While(y; — 30; > xyz or y; + 30; < xyz)

Do[quaternion]=vmfrnd( kappa;, ,ucycl,)

Heye, * quaternion|1: 3]

0 = arccos(

*

< @or

|quatern10n[1: 3] ||

ﬂcycl

-1
> 0 or
3xkappa 3xkappa

> quaternion[0] or

While (

< quaternion[0])

3xkappa 3xkappa

Return sample=[xyz,quaternion]
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4.3. Experiment

4.3.1. Object and Environment

A mug with multiple grasping regions and a jaw gripper were modeled in simulation (Figure
4.2-4.3). The simulated environment was modeled based on the Telerobotics lab, the
Industrial Engineering Dept. at the Ben-Gurion University (Figure 4.4). It comprised a six
DOF manipulator (UP6, MOTOMAN, Japan) with a two-jaw gripper (HGPL-25-60-A, FESTO,
Germany), a table placed within the robot’s reach, and wooden blocks that served as
obstacles. Five compositions of the blocks and the object location were created for each
object (Figure 4.5). (Eizicovits and Berman 2014). A graspibility map containing 1500 grasps
was generated for the gripper and mug by a robotic expert, (Figure 4.6). The grasps included
three general types of grasps, one grasping the mug handle, and two grasps types grasping
the mug body. The estimation algorithm and simulation were executed with MATLAB

(Version 2016A, Mathworks, USA) using an Intel® i7-5500U, 2.4GHz CPU, with 8GB 2.4GHz
RAM running Windows 10.
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Figure 4.2: Mug's dimensions Figure 4.3: Grippers dimensions
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Figure 4.6: Grasp configurations generated by expert

4.3.2. Experimental protocol

Distribution estimation parameters were initiated according to table 8. The probability of
choosing to add a configuration over expanding the RRT tree, Psample, was set to 0.15. Planning
was executed 20 times per environment composition (compositions one to five). The
maximum number of iterations was set to 20,000. Each resulting path was smoothed using
a path smoothing method based on vertices removal (Reshef and Berman 2013). The

configuration used for analysis is the Tool Centre Point (TCP).

4.3.3. Analysis

Algorithm performance was evaluated in terms of computation time, path quality, and grasp

success. Path quality was quantified by the final path length in the configuration space, using
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two normalized distance measures: Euclidean distance, ND. (equation 26) and City-block

distance, NDc (equation 27).

_ ZV:z \/Zjﬂ(xi,j = Xig,j )2

ND -1 (26)

T \/ijl(xi,j_xv,j)z

Where X; ; (in deg) is the position of the i vertex in the j# dimension of the configuration

space, V is the total number of vertices in the path, and J is the total number of manipulator
joints (six in our experiment).

Z\ilzz ZLJ Xij = Xiaj |

NDcb = -1 (27)

J
Zj:ll Xi,j - XV,j |

Both measures are normalized to start at zero, for the shortest possible path. The Euclidean
distance, NDe, reflects the distance with respect to the minimal movement length and thus is
related to shortest mission execution time. While the City-block distance, NDc», reflects
distance with respect to minimal movement of each joint, and thus is related to a minimal

motor effort.

A considerable number of paths were along the line-of-sight to the target pose (both ND. and
NDc» are 0), thus the analysis of path quality was divided into two categories. Grasps where

the Euclidean distance was equal to the line-of-sight and others.

Grasp success was evaluated by projecting the sampled pose back onto the graspability map.
The grasp was determined as successful (‘1’) in case of a grasp of quality grade of 0.7 or

above, and as unsuccessful (‘0’) otherwise.

4.4. Results

The algorithm converged very fast after about 100 samples. The affordance densities
established, includes three clusters (Figure 4.7-4.8, table 9). The estimated model represents

the data comprehensively and demonstrates the three grasp types which were expected.
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TABLE 9: Mug-Parameters per component

Cluster 1 2 3
Weight 0.44 0.31 0.25
Position
1l [0.07,0.07,-1.45] [0.02,-6.98,1.74] [0.48,0.54,0.36]
0.54,0.18,0.09 0.06,0.06,0.03 0.33,0.07,0.11
0.18,0.15,0.01 0.06,0.06,0.03 0.07,0.03,0.02
0.09,0.01,0.65 0.03,0.03,0.62 0.11,0.02,1.96
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Orientation

Kappa

235

336

276.8

Heyce

[-0.004, 0.005,-0.71,0.704]

[0.707,-0.708,0,0]

[-0.002,-1,-0.002, 0.006]

For environment 5, the algorithm did not find a target point on the mug. In the remainder of

the results we will refer to the environments which found at least one target point either

successful or not (environments 1,2,3,4).

Average planning time was 4.97+4.6 seconds (Table 10). Path quality: out of the generated

paths, 50% were along the line-of-sight to the target pose. In environment composition one

(no obstacles) and three (an obstacle in front of the object) all paths were along the line-of-

sight. The average values for both distance measures, NDe and NDsc, were 0.665 and 0.666

respectively (Table 10), which means that for both distance measures the average path

required 66%-67% more effort to execute than the lower bound. For grasp success, the

average grasp success rate was 95% (Table 10). Examples of grasps per environment are

shown in Figures 4.9-4.12.

TABLE 10: Average results per environment

Environment Euclidean City-block Time grasp quality grade Grasp
distance, ND. | distance, ND,, | (seconds) success”
1 0 0 2.38 0.720 95
2 0 0 1.6 0.723 90
3 0.619 0.650 7.21 0.732 95
4 0.711 0.682 8.66 0.809 100
5
Not line-of-sight 0.665 0.666
path average

*Grasp success calculated assuming quality cutoff for successful grasps.
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4.5. Discussion

The estimated model converged fast (after less than 100 iterations), and represents the data
comprehensively. Furthermore, the integration introduced by the sampling algorithm
performed as expected, and produced configurations that grasped the mug successfully. For
one environments, no feasible target poses were found by the algorithm, as all grasps were
discarded, due to obstacles, in the path planning stage. This one environment, was very
cluttered and required approach orientations that were not included in the original data-
base from which the density was estimated. Having a richer graspibility map could help the
algorithm in such environments. While in some cases manually defining grasp pose regions
may be feasible (Berenson et al. 2009), it is not necessarily representative of the complete
distribution of poses that afford high quality grasps. For the environments which a grasp was

obtained, the GA-RRT demonstrates a high grasp success rate (95%).

The current work presented an alternative Bayesian based estimation path planning
algorithm. Future work should test the GA-RRT algorithm with a richer graspibility map

based on additional demonstrations.



53

5. Analysis of reach-to-grasp motion of patients with stroke

5.1. Overview

The study was part of the ENHANCE project (Enhancing brain plasticity for sensorimotor
recovery in spastic hemiparesis). The ENHANCE project aims to test the effectiveness of a
personalized rehabilitation training program on recovery of voluntary motion of patients
with stroke. The training program is based on combination of, motion adaptation to patient
capabilities, brain stimulation, and virtual reality. Patient progress is monitored based on
clinical and kinematic measurements. The kinematic measurements are based on reach-to-
grasp movements performed towards four targets. The current work analyzes wrist
configurations at the end of the reach-to-grasp motion. Motion data of patients with stroke
was collected prior to the rehabilitation training and after the training (in post training and
follow-up sessions). The current work is based only on data recorded before the training, as
the post and follow-up trials are sealed until the end of the project. Motion of healthy, control
subjects were recorded to from a baseline for comparison. The rest of this chapter is
organized as follows: section 5.2 describes the experiment. Results are presented in section

5.3 and discussed in section 5.4.

5.2. Method
5.2.1. Subjects

Participants included 15 subjects with stroke at the subacute stage, 0 to 6 months post stroke
of which 6 are left handed (9 males, age 57.4+11 years). And 13 healthy age-matched
controls, all right handed (9 males, age 60.46+8.68 years), with no other neurological,
sensorimotor, or orthopedic impairments. Subjects with stroke were included in the
experiment if they have a first ever stroke in the middle cerebral artery area territory, aged
25-75 years, in the sub-acute stage of the stroke (three weeks to six months post stroke),
have arm paresis, able to perform voluntary elbow flexion extension movement of at least
30 degrees, have elbow spasticity and are able to provide informed consent. Subjects were
excluded due to clinical issues such as orthopedic problem or pain, major cognitive deficits,
history of psychiatric disorders or under medicine treatment. Demographic data of the

subjects is presented in Appendix 2.
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5.2.2. Environment

Subjects sat on a chair with feet supported and their hand resting alongside body (elbow
extended to 180 degrees). The chair had a back support that did not restrict trunk
movements. Four targets (standard hollow cones about 10 mm radius x 30 mm height) were
placed on the table in front of the subject (Figure 5.1). Two target locations were in the mid-
sagittal plane, one at 2/3rd of arm’s length (Target 1 - Near Center target (NC)) and one at
arm’s length (Target 2 - Far Center target(FC)). Target 3 - Far Left (FL) and Target 4 - Far
Right target (FR) targets were placed at arm’s length, about 20-30 cm to the left, depending

on and within reaching distance, respectively (Figure 5.2).

Movements were recorded with a wireless electromagnetic tracking system G4™ Polhemus
(Figure 5.3). The reported root mean square static accuracy of this system is 0.08 inches for
position and 0.50 degrees for orientation when used within 1 meter of the source. Each
sensor has 6 degrees-of-freedom and is tracked at 120Hz. Five sensors (denoted M1-M5)
were used to track the position of the upper limb, shoulder girdle, and trunk in real-time.
Sensors were placed on the metacarpi-phalangeal (MCP) joint of the index finger (M1), on
the dorsal surface of the forearm (1/3 of the length of the forearm proximal to the head of
the ulna), on the lateral surface of the upper arm at about the middle of the upper-arm (M3),
on the mid-point of the superior-lateral border of the acromion (M4), and on the mid-
sternum (M5). All experiment recordings were saved as MicrosoftExcel™ files using

Matlab™,

X Polhemus
cube

I'm

—Y

Figure 5.1: Cones for grasp Figure 5.2 : Experimental setup  Figure 5.3 : G4 tracking system
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5.2.3. Experimental Protocol

Each procedure started with calibration of the sensors for the markers locations on the
subject’s body, which included seven movement types: elbow flexion-extension, elbow
supination-pronation, wrist flexion-extension, wrist abduction-adduction, shoulder flexion-
extension, shoulder pronation-supination, and shoulder abduction-adduction. A static
calibration was performed for the 4 targets positions and for the chair. Subjects were
instructed to perform a reach to grasp to the targets, based on a visual signaling. They were
requested to rest between the sets and allowed to rest when needed between trials. Two sets
of 40 trials (10 trials per target, fixed random order) were recorded for a total of 80

movements per subject. The order of the sets was counter-balanced between subjects.

5.2.4. Analysis

Movements were determined as erroneous in several cases: there was a recording failure,
the experimenter noted during task execution that the subject did not wait after grasping the
cone, the target was misplaced, the experimenter determined that the subject did not

perform the task well, or the error was identified during segmentation.

Movement trajectories were filtered using a Butterworth filter with 6 Hz cutoff frequency.
The filtered profiles were used for determination of motion onset and offset. Tangential
velocity was computed by differentiating position samples. Motion onset and offset were
defined as the times at which the wrist (forward arm sensor) tangential velocity exceeded
and remained above, or decreased and remained below 10% peak wrist tangential velocity.
Hand closure was defined as the time at which the hand angular velocity decreased below
1% the hand peak angular velocity. The threshold was iteratively increased by 1% in case a
hand closure was not identified. The segmentation was performed semi-autonomously. An
automatic procedure was developed for initial segmentation and the segmentation results

were all manually screened (Figure 5.4).
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Figure 5.4: Segmentation analysis graph

The wrist configurations, were based on the recording of the distal arm sensor (sensor 2).
For each subject, the configurations for all targets were translated to a unified, target
centered coordinate frame origin, based on target location, recorded during the calibration

phase.

Two data sets were formed, one for each group (stroke and healthy). A grasp affordance was
estimated for each group based on the method detailed in chapter 3. The parameters were

defined according to table 8.

5.3. Results

Out of 996 reach-to-grasp movements of healthy subjects, 941 were used (94.5%) and 55
erroneous movements were discarded. The number of movements per target are NC=237,
FC=239, FL=234 and FR=231. Out of 863 reach-to-grasp movements of patients with stroke,
829 were used (96.1%) and 34 erroneous movements were discarded. The number of

movements per target are NC=204, FC=210, FL=211 and FR= 204.

5.3.1. Grasp affordance density of healthy subjects

The algorithm converged very fast after about 100 samples. The affordance densities
established, includes two clusters (Figure 5.5-5.7, table 11). The two cluster positions are
very close with a Euclidian distance of 2.6 inches. The orientation distinctly differs between
the clusters, the mean vectors are 43.3 degrees apart. The composition of clusters by target

is presented in Figure 5.7.

/ I
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Figure 5.5: Healthey subjects- convergence and mixture model

Quaternions and positions are colored according to the cluster they are allocated to. The red colored data points above
form a cluster weighing less than 5%.
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Figure 5.6: Healthy subjects- distributions by cluster

The center of the ellipsoid represents the expected value and the circumference is one
standard deviation away from the center.
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Figure 5.7: Healthy subjects- Component composition by target
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TABLE 11: Healthy subjects- mixture model parameters

Cluster 1 2
Weight 0.215 0.782
Position
1 [-2.86,1.18,-4.74] [-0.82,2.71,-5.01]
0.33,0.18,-0.29 1.05,-0.06,-0.32
0.18,0.26,0.07 -0.06,0.43,0.42
-0.29,0.07,2.03 -0.32,0.42,2.33
Orientation
Kappa 99.74 57.52
Heyc [0.881,0.164,0.266,0.3550] [0.89,-0.166,0.114,0.409]

5.3.2. Grasp affordance density of patients with stroke

The algorithm converged after about 2000 iterations (Figure 5.8A). The convergence graph

displays only clusters with a weight larger than 5%. The affordance densities established,

includes two clusters (Figure 5.8-5.10, table 12). The two cluster positions are with a

Euclidian distance of 5.1 inches. The orientation distinctly differs between the clusters, the

mean vectors are 156.5 degrees apart. The composition of clusters by target is presented in

Figure 5.10. Each subjects' dominant cluster and affected side are presented in table 13.

A Convergence

B Mixture Model - Positions

Z [em]

# of represented componenets

5000

10000
Monte Carlo Iteration

Y [cm] »w X [em]

C

Mixture Model- Orientations

Figure 5.8: Patients with stroke- convergence and mixture model

Quaternions and positions are colored according to the cluster they are allocated to. The red colored data points
above form a cluster weighing less than 5%.
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The center of the ellipsoid represents the expected value and the circumference is one
standard deviation away from the center
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Figure 5.10: Patients with stroke- Component composition by target

TABLE 12: Patients with stroke- mixture model parameters

Cluster 1 2
Weight 0.53 0.46
Position
1l [-0.66, 2.44, -3.79] [0.18,0.91,-0.04]
4.65,-0.9,-0.79 4.23,0.43,2.86
-0.9,2.94,2.18 0.43,6.85,8.11
-0.79,2.18,5.58 2.86,8.11, 20.83
Orientation
Kappa 21.22 9
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Meye [0.876,-0.17,0.047,0.45] [0.964,0.045,0.071,-0.252]

TABLE 17: The dominant cluster of patients with stoke

Subject Cluster 1 Cluster 2 Dominant | Affected Side
Cluster (R-right, L-left)
1 65 10 1 R
2 3 57 2 L
3 31 7 1 R
4 4 68 2 L
5 33 2 1 R
6 0 44 2 L
7 1 79 2 L
8 55 9 1 R
9 0 10 2 L
10 2 78 2 L
11 42 1 1 R
12 69 10 1 R
13 38 2 1 R
14 48 1 1 R
15 47 4 1 R

5.4. Discussion

The affordance models of both the healthy subjects and patients with stroke are both
composed of two clusters. However, the division of configurations between clusters is very

different in the two models.

For the healthy group, the position Euclidian distance between the clusters of 2.6 inches, and

orientation expected value difference of 43.3 degrees demonstrate a division between the
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clusters, hence, different grasp types. Grasp wrist configuration to three targets (FL, NC and
FC) were allocated to the same cluster of the affordance density. The subjects used different
configurations to the fourth target, (FR), and these were allocated to the second cluster of
the affordance density. The division of clusters by target indicates there are different motion
profiles executed towards different targets, this could be due to the different trajectory
profiles. The variance in the data, both for orientation and position, is relatively small
(concluded based on naked-eye observation (Figure 5.5) because calculating the exact
variance of the data will not incorporate division to clusters and may be misleading). The
small variance expected is reflected in the estimated model, cluster one: (62=0.3, 03%:0.3,
o7 =2.03, kappa=99.7) cluster two: (o7 =1, 0} =0.4, 6 =2.3, kappa=57.5). Making it

relatively easy for the algorithm to distinguish between the different grasps.

The affordance density of the stroke group was also composed of two clusters, (position
Euclidian distance of 5.1 inches and orientation expected value difference of 156.5 degrees
indicate a distinct division between the clusters. However, unlike in the healthy affordance
density, the clusters are not divided by targets. Both clusters were composed of all targets'
samples (FL, NC, FC and FR). Instead subjects were divided between clusters based on the
hand with which they performed the movement (their effected arm). The variance in the
data, both for orientation and position, is relatively high (naked-eye observation, Figure 5.8).
the high variance expected is reflected in the estimated model, cluster one: (057=4.7, 6/,=2.9,
o7 =5.6,kappa=21.2), cluster two: (07=4.2, 0,=6.9, 67 =20.8, kappa=9). It seems the stroke

group had the same grasp type regardless of the target's location.
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Appendix 1: Synthetic data sets

The synthetic data sets were generated using the random mixture model sampling algorithm
developed (4.2.1). The synthetic validation set - distinct separation in both orientation and
position was generated using table A.1. The synthetic overlap in position dataset (OP) was
generated using table A.2. The synthetic overlap in orientation dataset (0O0) was generated

using table A.3 and synthetic overlap in position and orientation dataset (OPO) was

generated using table A.4

TABLE A.1: Total separation- original model

Cluster 1 2 3
Weight 0.33 0.33 0.33
Position
u [200,200,200] [100,100,100] [1,1,1]
1,0.1,0.1 1,0.1,0.1 1,0.1,0.1
0.1,1,0.1 0.1,1,0.1 0.1,1,0.1
0.1,0.1,1 0.1,0.1,1 0.1,0.1,1
Orientation
Kappa 200 200 200
Heye [0,0.707,0.707,0] [0,1,0,0] [0,0,0.707,0.707]
TABLE A.2: Position overlap-original model
Cluster 1 2 3
Weight 0.33 0.33 0.33
Position
1l [0,0,0] [3,3,3] [6,6,6]
S 3,0.1,0.1 3,0.1,0.1 3,0.1,0.1
0.1,3,0.1 0.1,3,0.1 0.1,3,0.1
0.1,0.1,3 0.1,0.1,3 0.1,0.1,3
Orientation
Kappa 200 200 200
Heye [0.462,0.191,-0.845,-0.191] | [0.733,0.462,-0.191,0.462] | [0.854,0.354,0.354,-0.1460]




67

TABLE A.3: Orientation overlap- original model

Cluster 1 2 3
Weight 0.33 0.33 0.33
Position
U [1,1,1] [10,10,10] [20,20,20]
1,0.1,0.1 1,0.1,0.1 1,0.1,0.1
0.1,1,0.1 0.1,1,0.1 0.1,1,0.1
0.1,0.1,1 0.1,0.1,1 0.1,0.1,1
Orientation
Kappa 50 50 50
Heye [0.707,-0.707, 0, 0] [0,-1,0,0] [0.854,0.354,-0.354,0.146]
TABLE A.4: Total overlap- original model
Cluster 1 2 3
Weight 0.33 0.33 0.33
Position
1 [0,0,0] [3,3,3] [6,6,6]
3,0.1,0.1 3,0.1,0.1 3,0.1,0.1
0.1,3,0.1 0.1,3,0.1 0.1,3,0.1
0.1,0.1,3 0.1,0.1,3 0.1,0.1,3
Orientation
Kappa 50 50 50
Heye [0.707,-0.707, 0, 0] [0,-1,0,0] [0.854,0.354,-0.354,0.146]
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Appendix 2: Demographic data

Demographic data of subjects with stroke and healthy control subjects are presented in

table A.5 and table A.6 respectively.

TABLE A.5: Subject with stroke- demographic data

Age (Years) | Country Gender | Effected Side
(R-Right, L-Left)
1 59 IL F R
2 46 IL M R
3 62 IL M R
4 66 CA M L
5 46 IL M R
6 38 CA M L
7 50 CA F L
8 77 IL M R
9 54 IN M R
10 71 IN M R
11 50 IN M L
12 62 IL F R
13 59 IN F R
14 48 IN F L
15 57 IL F R
Mean 57.4
SD 10.9




TABLE A.6: Healthy subjects- demographic data
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Age (Years) | Country Gender | Hand used
(R-Right, L-Left)
1 57 IL M R
2 57 IL F R
3 50 IL M R
4 52 IL M R
5 65 IL F R
6 72 IL F R
7 54 IL M R
8 55 IL M R
9 50 IL M R
10 66 IL F R
11 76 IL M R
12 62 IL M R
13 70 CA M R
Mean 60.4

SD 8.5
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