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Abstract 

 

A robot's ability to follow a human in an unmapped indoor environment is fraught with 

challenges due to unknown obstacles, unexplored walls and unfamiliar corners and corridors. 

This research aimed to develop human-following robot algorithms that reduce the number 

of instances of loss of the human and to improve the robot's ability to self-recover in 

unknown environments. To this end, five algorithms and two human-following methods 

were developed and tested in a series of experiments with a mobile robot platform.  

Algorithms. The developed algorithms do not use any a-priori information about the 

environment (i.e., operate with no a-priori mapping) and do not require that the human have 

any particular carry-on item or specific clothing. 

The algorithms use depth methods to improve the occlusion detection process. They use a 

laser sensor to avoid obstacles during the following process in real time, adapt to the linear 

and angular velocities of the robot and remember the last position of the person to search the 

person if the person disappears by moving to the last known position of the person and 

turning in the direction that was calculated before loss. 

The following five algorithms were developed: real time Obstacles-Avoidance by laser 

(OA), Search-After-Disappear to search for the person after tracking has been lost (SAD), 

and three occlusion detection algorithms, namely, Depth-Occlusion-Detection (DO) using 

the depth information from the Kinect sensor (see below), Vision-Occlusion-Detection 

(VO) using the 2D information from the Kinect, and Combined-Occlusion-Detection (CO) 

using both depth information and 2D information. 

Sensors. Two sensors were used for detecting humans: 1) Kinect using OpenPTrack 

(http://openptrack.org/) that detects people standing on the ground by using histogram of 

oriented gradients (HOG ) and support vector machine (SVM) classifiers and 2) the on-board 

laser SICK300, which can detect the human's legs at 20 cm above the ground. 

Methods of following. Two main human-following methods were developed and evaluated. 

A Direct-Following (DF) method, in which the robot moves directly towards the person 

being detected, and a History-Following (HF) method that causes the robot to move to 

previous positions of the person. The evaluation of the methods comprised two stages: 

1) using only the Kinect to follow the human, denoted as non-adaptive methods, and 2) using 

both sensors to follow the person (if the Kinect loses the person, then the method uses the 

laser), denoted as adaptive methods. 



 
 

Robot platform. The algorithms were implemented on a Pioneer LXRobot mobile platform 

equipped with a Kinect and laser sensor.  

Experiments – methodology and results. To overcome the difficulties inherent in an 

unknown environment, real-time algorithms were developed and integrated in various 

combinations with the two main human-following methods (DF, HF). A series of 

experiments were conducted to derive best fit parameters and to evaluate the algorithms. 

Performance measures applied for the comparison were the number of instances of loss of 

the human, number of self-recoveries of the robot and the number of safety interventions, 

the distance between the robot and the human, the length of the robot path, reliability of the 

legs detector, reliability of occlusion detections, and the ratio of stable tracking (percent of 

stable tracking from the entire trial) of the Kinect and laser. 

The first two experiments were preliminary experiments to choose the robot following 

parameters. After implementing the Kinect V2 with a Pan Mechanism, an experiment was 

conducted to test the objective and subjective metric performances of three following angles 

(0, 30, 60°). The results indicated that there was no significant difference between 0° and 

30° following angles. The results for following at 60° were not sufficiently reliable. 

In an experiment aimed to compare the different occlusion detection algorithms, the DO 

yielded the best performance. An experiment to determine the best combination of the three 

algorithms (DO, OA, and SAD), once with the DF method and once with the HF method, 

indicated that combining the three algorithms yielded best performance. The final, and most 

important experiment, compared the two methods of human-following (DF and HF) with 

the combination of the three algorithms to same chosen methods with addition laser legs 

detector (denoted as adaptive methods) for use if necessary if the Kinect lost the participant. 

Conclusions. The results showed that adaptive methods that combine the Kinect and laser 

sensor to follow the person were better than non-adaptive methods (the algorithms that use 

only the Kinect to follow the person) and that direct-following methods are better than 

history-following methods. 
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1. Chapter One: Introduction 
 

1.1  Description of the Problem 

In robotics, algorithms for human-following robots have been the subject of intensive 

research (Jia et al. 2016; Li et al. 2015; Sahoo and Ari 2015; Jung et al. 2014; Karakaya et 

al. 2014.; Doisy et al. 2012; Machida et al. 2012; Motai et al. 2012), but one of the main 

problems, namely, the robot losing track of the person it is following, remains to be resolved 

(Ota et al. 2013). Additional problems are caused by occlusions, quick turning of the person, 

and crowded environments or they may occur when the target person is obscured by 

obstacles. There are many approaches in the literature to overcome these problems (Ota et 

al. 2013; Granata et al. 2011; Kim et al. 2010; Ma et al. 2008; Kmiotek and Ruichek 2008; 

Huang et al. 2007), but to date, none is completely satisfactory. One option is to provide the 

robot with a detailed map of the environment that can be used to avoid obstacles and to 

predict the next step in a corridor or at a corner. The disadvantages of this option are that 

requires a-priori information about the environment and that it lacks versatility. For the robot 

to avoid obstacles without having a-priori information, it must be equipped with a real-time 

obstacle-detection algorithm so that it can react immediately when an obstacle appears in its 

close vicinity. Another option uses a decision-making engine that selects from different 

following methods, such as direct following or path following, when the person disappears 

(Granata et al. 2011). An approach that uses vision-based face detection (Huang et al. 2007) 

could be used in the following system to restore tracking after target loss, but the 

disadvantage of this approach is that the person must face the robot. Yet another method to 

maintain following is for the person to carry a device for guiding the robot, like a dog-leash 

(Young et al. 2011), but once again, such a solution reduces the versatility of the robot and 

has the additional disadvantage that the person has to carry the device. 

Most human-following algorithms are programmed to follow a person directly from behind 

(Granata et al. 2011). However, if the robot 'realizes' that something is blocking its line of 

sight to the person, it can prevent the interruption in following by changing its tracking angle 

through increasing its line of sight with the person (wider angle). When a person starts to 

disappear, due to, say, rounding a corner, the robot must react to reduce the probability of 

losing the person. 
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1.2  Objectives 

This study aimed to develop human-following algorithms for robots that reduce the number 

of instances of the robot losing the human and that improve the robot's ability to self recover 

in environments that branch or have unexpected corners, obstacles or occlusions. In this 

thesis, the focus was directed to detecting corners and obstacles that interrupt the line of sight 

between the robot and the person by using a Kinect vision sensor and Kinect people 

recognition, such as Skeleton or OpenPTrack (Munaro et al. 2014). The study explored 

whether and how the use of vision and depth methods can contribute to improving detection 

in an occlusion situation. It also explored whether following the human at different angles 

to create a better line of sight between the robot and the person could reduce the probability 

of losing track of the person. To enable the robot to deal with obstacles during the following 

process, a real-time obstacle-detection algorithm was developed. The algorithms do not use 

any a-priori information about the environment (i.e., it operates without mapping) and do 

not rely on any special carry-on item or any specific clothing of the human. 

 

1.3  Thesis contributions 

This thesis introduces four algorithms and two human-following methods, which were 

developed to overcome the difficulties – due to unexpected obstacles, unexplored walls and 

unfamiliar corners and corridors – in following a human for robots operating in unmapped 

environments. Here, a brief summary is provided, with more detailed definitions and 

explanations being given later in the relevant sections of the thesis. 

Algorithms 

 Real-time obstacle detection and avoidance without a-priori information about the 

location of the obstacles or any kind of pre-built map of the environment. The algorithm 

declares an adaptive corridor in front and on the sides of the robot to narrow the scan 

area, which depends on the prevailing linear and angular velocities of the robot. As the 

robot turns, the corridor moves to the side of the turn to enable the robot to search for 

obstacles inside the turning radius. The angular velocity depends on the side and distance 

of the obstacle from the center of the robot.   

 Real-time occlusion detection using depth information of the pixels. The algorithm 

compares the depth value of the pixels (distance value of the pixels) inside the bounding 

box coordinates (BBCs) of a detected person to the distance of the whole person from 

the robot and searches for small values that indicate closer pixels (indicating an 

occlusion). It does not use the ground depth value but depends on the person’s distance 
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from the robot. The algorithm reduces false alarms and can detect both small and large 

occlusions and even a vertical occlusion like a wall.  

 Real-time occlusion detection using 2D images by transforming the pixels' coordinates 

of the depth image to a 2D (MONO) image. The algorithm finds contours of the whole 

person and any straight vertical lines that indicate an occlusion. 

 Search for the person after disappearance. The algorithm moves the robot to the person's 

last known position and turns the robot in the direction that is calculated according to the 

last few frames obtained before the person had disappeared. 

Following methods 

 Direct human-following method moves the robot directly to the position of the detected 

person. The method gives priority to sending the robot the linear and angular velocity to 

avoid any obstacles change. The robot can then change the following angle according to 

the occlusion-detection algorithm, which can work with robots equipped with Kinect 

and/or laser sensors. 

 History human-following method moves the robot directly to the historical position of 

the person being tracked. The method avoids big changes of the position of the person 

caused by the movements of the robot and the Kinect, avoids quick turns that cause the 

Kinect to lose the person and avoids problems with two sources of person detection 

(Kinect and laser). 

 

1.4  Thesis structure 

The thesis is organized as follows: Chapter 2 presents a review of the literature on human-

following methods by several sensors, robot navigation, detection of occlusions, and target 

loss. Chapter 3 presents the methodology, which starts with a description of the robot 

hardware and software and continues with a description of the sequence of experimental 

steps and all the experimental procedures. This chapter ends with a description of the 

implementation of the robot operating system (ROS) and analysis procedures. Chapter 4 

presents the description of the algorithms. Chapter 5 gives the results of the experiments and 

some discussion of the results. Chapter 6 presents conclusions and recommendations for 

future work. 

  



 
5 

 

2. Chapter Two: Literature Review 
 

2.1  Introduction 

Tracking of a person by a robot has been intensively investigated in recent years (Jia et al. 

2016; Sahoo and Ari 2015; Li et al. 2015; Karakaya et al. 2014.; Jung et al. 2014; Doisy et 

al. 2012; Machida et al. 2012; Motai et al. 2012), with the main thrust of the research being 

devoted to three challenging tasks related to person-tracking robots: (1) robot navigation, (2) 

tracking methods, and (3) problems associated with occlusions and target loss. Recently, 

research has focused on new tracking methods and on the fusion of several methods to 

investigate problems related to recovery after target loss or occlusions (Ota et al. 2013; 

Granata et al. 2011; Kmiotek and Ruichek 2008; Huang et al. 2007). 

 

2.2  Applications 

Robot tracking has been applied for many uses and applications, including, among many 

others: (1) Care robots in nursing, such as those providing medical help for the elderly, where 

the robot helps to carry medicines and treat the patients (Machida et al. 2012); (2) Robots 

for assisting workers to assemble large equipment (Karakaya et al. 2014); (3) Robots that 

help passengers to carry heavy luggage at airports and train stations (Li et al. 2013); 

(4) Smart shopping carts, such as the Kinect grocery cart, that follow the customer and scan 

his/her purchases in the supermarket or the mall; (5) Robots as walking assistants to support 

a person (Jia et al. 2016); (6) Museum guidance robots that follow a person and provide 

guidance and information (Karakaya et al. 2014); and (7) Robots designed to help the 

disabled (Jia et al. 2016).  

 

2.3  Tracking Methods  

2.3.1 Vision-Based Tracking 

Along the years, many algorithms have been developed for use with different sensors and 

methods that rely on smart environments (Najmaei and Kermani 2011). Most person 

detection and tracking methods use vision-based techniques (Jia et al. 2016; Sahoo and Ari 

2015; Y. Li et al. 2015; Yao et al. 2012; Motai et al. 2012; Ma et al. 2008), but such 

techniques have some inherent disadvantages, such as sensitivity to illumination changes 

(Liu et al. 2004) or problems with computing size or large processing. Two examples of 

vision-based algorithms are the particle filtering (PF) algorithm and the mean-shift algorithm 
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(Yao et al. 2012). Particle filters represent a distribution by a set of weighted samples called 

particles. Each particle is a guess representing one possible location of the object being 

tracked. This weighted distribution is updated along time by using a set of equations. The 

mean-shift algorithm creates a confidence map in a new image based on the color histogram 

of the object in the previous image, and applies mean-shift optimization to find the peak in 

a confidence map near the object's previous position. Each pixel of the new image is a 

probability, which is related to the probability of the pixel color occurring in the object in 

the previous image. An advanced mean-shift algorithm can be used for detection of a person 

by modeling a star skeleton of the human body and adding a combination of a block search 

algorithm for high-speed movement and a target loss recovery algorithm (Sahoo and Ari 

2015). Some vision-based methods are based on detection of the person's legs (Li et al. 

2015); for example, they divide the tracking into global tracking, which describes the motion 

of both feet as one element, and local tracking, which describes the relation between the two 

feet (Li et al. 2015). 

 

2.3.2 Laser-Based Tracking 

Rather than using vision-based techniques, several methods use laser sensors to 'find' the 

human (Karakaya et al. 2014; Jung et al. 2014; Alvarez-Santos et al. 2012; Kim et al. 2010; 

Sales et al. 2010; Ma et al. 2008), since the laser range finder (LRF) can provide more precise 

position information. A laser-based technique has the additional advantages that it requires 

fewer processing sources and is less influenced by lighting conditions (Kim et al. 2010). In 

addition, the laser is not influenced by colors or face detection. The main disadvantage of 

laser-based techniques lie in their ability to recognize only items in the line of sight, which 

is relatively a small area when compared to that covered by vision-based methods. 

 

2.3.3 Integration of Sensor-Based Tracking Techniques 

Several studies have described methods of integration of vision-based sensors and lasers, for 

example, such methods may use vision-based methods to extract the body and lasers to 

measure distance (Ma et al. 2008). In most applications, the LRF detects the legs of a person 

(Alvarez-Santos et al. 2012), but human legs can be confused with chair or table legs, so 

there is a need to compose a map of the environment by using a sensor fusion technique 

(Motai et al. 2012). In such a scenario, the laser can assist the robot to navigate and to avoid 

obstacles and not only to track the person.  
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A combination of depth images and thermal images has also been developed for detecting 

more than one person (Hadi et al. 2015). A depth image is fused with the region of interest 

(ROI) obtained from the thermal image to derive a person’s contour. Occlusions of the 

detected persons are resolved using BBCs. The algorithm has two stages: The first is a pre-

detection stage to obtain the BBC from the thermal image representing the region of humans. 

In the second stage, people are detected with contours of depth measurements, and an 

occlusions detector classifier is applied to detect people that are occluded.   

 

2.3.4 Depth-Camera-Based Tracking 

Yet another tracking method focuses on the use of time-of-flight (TOF) range cameras 

(Ikemura and Fujiyoshi 2011; Plagemann 2010; Plagemann and Koller 2010). Many 

algorithms have been proposed to address the problem of pose estimation and motion capture 

from range images, for example, a filtering algorithm to track human poses using a stream 

of depth images captured by a TOF camera (Plagemann 2010). There have been several 

works on detection of human parts using TOF cameras (Plagemann and Koller 2010). 

Examples include: (i) using a point detector to solve problems of detection and to identify 

body parts in depth images (Plagemann and Koller 2010) and (ii) using a window-based 

human detection method by comparing depth similarity features based on depth information 

(Ikemura and Fujiyoshi 2011). 

When there is a problem with low visibility conditions, such as in smoky environments, the 

vision-based sensors or lasers do not provide good solutions (Sales et al. 2010). In such a 

case, the use of LRF and sonar sensors is proposed in combination with a vision-based 

system that can determine the amount of smoke in the environment and then decide on the 

optimal combination of sensors for the particular conditions (Sales et al. 2010). 

 

2.3.5 Kinect-Based Tracking 

In June 2011, Microsoft released the Kinect software development kit (SDK). This SDK 

allows developers to write Kinect apps for the Kinect sensor. Kinect is an RGB-D sensor 

that provides depth images, allowing real-time object segmentation, which based on a 

distance gradient. The depth sensor, which includes an infrared laser projector in 

combination with a monochrome sensor, captures video data in 3D under any lighting 

conditions, and hence facilitates the development of more efficient human-tracking robots 

(Pucci et al. 2013). Indeed, Kinect may be regarded as a breakthrough in the field: it has 

https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/Active_pixel_sensor
https://en.wikipedia.org/wiki/Available_light
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made possible new approaches and techniques for person-tracking research (Machida et al. 

2012; Doisy et al. 2012; Ikemura and Fujiyoshi 2011). The 3D position information from 

the Kinect sensor enables the velocity and attitude of the mobile robot to be controlled 

directly. A Kalman filter can be used to reduce the noise and to estimate the human's motion 

(Machida et al. 2012). Another Kinect detection example, which detects humans using a 2-

D head contour model and a 3-D head surface model, was developed (Ikemura and Fujiyoshi 

2011). 

OpenPTrack is an open source algorithm based on the Robot-Operation-System "ROS" 

(Quigley et al. 2009) and Point Cloud Library (PCL) (Rusu and Cousins 2011). It detects 

people with the Kinect sensor using a histogram of oriented gradients (HOG) and a support 

vector machine (SVM) learning classifier for creating the confidence, based on a large 

training dataset, that the detected area is a person. In addition, an unscented Kalman filter 

(for nonlinear systems) is exploited to predict people's positions and velocities along the two 

ground plane axes (X,Y) (Munaro and Menegatti 2014). The algorithm provides many 

person-specific parameters, namely: the position of the person in the world, as 'seen' by 

Kinect, the coordinates of the bounding box around the person in the depth image, height of 

the person, distance to the person and more. The algorithm is able to track people at 30 Hz 

with minimum latency on the assumption that the plane on which people stand or walk is the 

ground, and therefore the number of Regions-Of-Interest "ROIs" that are candidates to 

contain people is reduced. After selecting a set of clusters from the point cloud, the algorithm 

processes a Histogram-of-Oriented-Gradients "HOG"-based people detector applied to the 

corresponding image patches (Munaro and Menegatti 2014), and finally it uses a SVM 

classifier for deciding on the confidence that the patch is a person. The main advantage of 

this algorithm is its ability to use both RGB and depth information for obtaining the best 

result when the RGB image is good, while using depth data alone if the RGB image is too 

dark. 

 

2.3.6 Different Detectors for Different Distances 

For close-range detection (up to 5-7 m), the real-time RGB-D based multiperson detection 

and tracking system of Jafari, Mitzel, and Leibe (2014) uses an extremely fast depth-based 

upper-body detector and for further distances it adds an appearance-based full-body HOG 

detector. The idea is to use the depth information for ROI extraction to detect people at close 

range, where depth measurements are reliable, while simultaneously extrapolating scene 

geometry information to constrain the search space for appearance-based people detection 
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in the far range. The system uses a template of an upper body to detect people by using depth 

information at close range; the system computes a distance matrix consisting of the 

Euclidean distances between the template and each normalized depth image segment. For 

detecting people at further distances, the system uses HOG alone on the ROIs, according to 

the ground plane. Finally, the detections are converted to ground plane coordinates and are 

associated into trajectories using an extended Kalman filter.   

 

2.3.7 Outdoor Tracking 

Most tracking systems or mobile robots have been designed to operate in indoor 

environments (Karakaya et al. 2014). Robotic systems designed to operate in outdoor 

environments, including person tracking and avoiding moving obstacles, in a crowded 

environment are very rare, because of the noise generated by the outdoor environment. 

Nonetheless, a robot capable of following a marathon runner has been developed; it uses a 

laser to detect the runner and to avoid obstacles (Jung et al. 2014). This robot, known as 

MSR (Marathoner Service Robot), is designed to carry water and equipment for the runner. 
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2.3.8 Examples of human tracking 

Examples of human-tracking algorithms for robots are given in the table below.  
 

Review Crowd/ 

single 

Obstacles Quick 

turn 

Object Variable 

speed 

Indoor/ 

outdoor 

Disadvantages Advantages Experiment Algorithm Sensor 

Machida et 

al. 2012 

single no No Bone 

model (all 
body) 

Yes Indoors Velocity less than 1 m/s. 

Light condition, Spatial 
resolution, Sample rate. 

Low price; depth help for 

clutter background 

Circular path vs zigzag Kalman filter Kinect 

Ikemura 

and 

Fujiyoshi 
2011 

Up to 2 

persons 

only 

tracking 

No Head and 

then the 

body 

Only 

tracking 

Indoors High dependency on 

accurate head detection. 

Easily adjust to new 

datasets; no training 

needed; the first layer 
reduces computational 

cost; does not assume 

person’s pose for accurate 
detection. 

Two persons indoors 

with many objects in 

the vicinity 

A 2D edge detector and a 

3D shape detector to utilize 

both the edge information 
and the relational depth 

change information in the 

depth image. 

Kinect 

Sahoo and 

Ari 2015 

Single Only 

tracking 

No Star 

skeleton 
(all body) 

Only 

tracking 

Outdoors Does not work for fast 

motion, prolonged 
occlusion or changing 

illumination. 

  Advanced mean-shift. RGB 

Li et al. 

2015 

Single No No Two feet No Indoors 

and 
outdoors 

Fails in noisy 

backgrounds; shift to 
another person. 

 Several human 

walking videos; 
evaluated against 

particle filtering. 

Particle filtering; global 

tracking (motion of both 
feet), and local tracking 

(relative motion of the two 

individual feet). 

RGB 

Jung et al. 

2014 

Crowd Yes Yes Torso Yes Outdoors Irregular terrain in the 

outdoor environment or 

significant noise from 
the outdoor 

environment. 

 Tracking speed and 

performance; static 

and moving obstacles 
avoidance. 

Support vector data 

description (SVDD); 

human detection algorithm 
and an avoidance 

algorithm. 

LRF 

(laser 

range 
finder) 

Ma et al. 

2008 

Crowd No Yes Torso for 

vision, legs 

for laser. 

Yes Indoors Another person with 

same clothes. 

Compares the vision to the 

distance from the laser. 

Difference distance; 

another person with 

the same clothes. 

Horizontal Projecting 

Probability Histogram 

(HPPH) of upper body with 

unscented particle filter 
(UPF) with laser for legs. 

RGB and 

LRF 

Motai et al. 

2012 

Single Yes (with 

laser) 

 -Yes

sharp 

OF   -turns
other KF 

Whole 

body 

No Indoors Crowd. Combination of Kalman-

Filter and Optical-Flow 

for quick turn 

Single person indoors, 

compared to only 

Kalman-Filter and 
only Optical-Flow. 

Kalman filter and optical 

flow. 

Infra-red 

and laser 

Sales et al. 

2010 

Single Yes No Legs No Indoors Laser is better than 

sonar. 

Low visibility 

environment. 

Only sonar, only laser, 

sonar TODA (time 
difference of arrival) 

Vision image to determine 

the degree of visibility of 
the environment. 

RGB, 

laser, 
Sonar 
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2.4  Navigation 

2.4.1 Overview 

To navigate in an environment, the human-tracking robot needs to know where all the 

obstacles are in that environment or to have a pre-built map of the environment that includes 

the obstacles. In addition, to navigate, the robot must be programmed with a method for 

following the person. 

   

2.4.2 Mapping the Environment 

Most person-tracking approaches in indoor environments are based on wireless networking, 

such as ultrasound and radio frequency (Garcia-Valverde et al. 2013). For indoor 

applications, the map of the environment allows safer and more efficient robot navigation, 

but often the robot must also take into consideration the movement of objects and other 

people. A study that compared robot navigation with and without a map of the environment 

showed how the map improved the robot's adaption to the distribution of obstacles (Doisy 

et al. 2012). A common method for navigation and building a map of the environment is 

simultaneous localization and mapping (SLAM), one of the most active research and 

development areas in mobile robotics (Schmidt et al. 2016). Statistical techniques are used 

to solve SLAM, with the most popular approximate solution being particle filter and 

extended Kalman filter (Norhidayah and Norida 2015). The main disadvantage of SLAM 

lies in its computational complexity, which increases significantly with the growing number 

of landmarks in the environment under exploration (Ding et al. 2015). 

 

2.4.3 Obstacle Detection 

The many different sensors employed for obstacle detection include sonar pairs, infra-red 

measurement sensors, point-to-point laser sensors, LIDAR (light detection and ranging or 

laser imaging detection and ranging), and Kinect (İ et al. 2012). One such system that 

combines LIDAR and Kinect uses the LIDAR for obstacle and heading direction and Kinect 

for eliminating depth data for the immediate environment (Karakaya et al. 2014.; İ et al. 

2012). 
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2.4.4 Methods of Following 

There are many methods for navigation and for tracking a person. The robot can track by a 

direction-following method, in which the robot is always pointing towards the person and 

moves directly to him. A robot can also track by path-following method, which tracks by 

adhering to the same path that the person walks. Another – albeit rarely applied – method is 

parallel-following, which depends on the prevailing state of the environment and on the 

position of the robot relative to the person (Morales et al. 2012). There are also hybrid 

methods that use combinations of the above methods (Granata et al. 2011). 

 

2.5  Occlusions and Target Loss 

A person-tracking robot requires tracking abilities that distinguish between people and 

objects (Jia et al. 2016; Kim et al. 2010; Ma et al. 2008). Such a robot is also required to 

overcome problems caused by occlusion, quick turning, and crowded environments, or those 

that occur when the target person is obscured by obstacles. The robot must also have the 

ability to recognize loss of tracking due to individuals walking between the mobile robot and 

the target person and to recover the tracking by using a legs detector (Kim et al. 2010). The 

development of an adaptive multi-feature mean-shift algorithm in a cluttered environment 

has been described by Jia et al. (2016) using the double-layer locating mechanism (DLLM). 

This mechanism takes the course location processing and fine location processing into 

consideration and is designed to estimate the position of the person by using a combination 

of data and an ID tag on the person, which can be detected by radio frequency antennas (Jia 

et al. 2016). For adapting to different moving targets using key characteristics, the robot 

constructs the target model at the beginning of the tracking process, then detects the human 

candidates in the scene and finds the target person by using multiple image cues, namely, 

color and edges (Ma et al. 2008). Other methods to solve the problems of occlusions and 

target loss were developed. Examples include: (i) Use a decision-making engine when the 

person disappeared by choosing a different method to follow the person, direct following or 

path following (Granata et al. 2011). (ii) Continuing to follow even when the sensor lost the 

target because of a corner (Ota et al. 2013). (iii) Using oriented bounding box (OBB) 

representation for object tracking (Kmiotek and Ruichek 2008). An approach that uses a 

vision-based technique for face detection (Huang et al. 2007) could be applied in a following 

system for successful reinitialization after target loss, but the person must be facing the robot. 

All of the above examples have been suggested and applied for addressing the problems of 

occlusions and target loss in the real world (vs in a sterile experimental environment). 
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3. Chapter Three: Methodology 
 

3.1  General 

Two main implementations of robot following (direct and history) were improved using five 

integrated algorithms that were developed in this research. All the developments were 

created in the ROS in C++. A series of seven experiments implemented on a Pioneer LX 

Robot were conducted to set up the parameters for the different algorithms and evaluate the 

algorithms' performances. 

 

3.2  Robot Hardware and Software 

All experiments were conducted with a Pioneer LX Robot equipped with front and rear sonic 

sensors, a SICK S300 laser scanner, a forward bumper panel and a RGB-D camera. In the 

first and second preliminary experiments, the Pioneer LX Robot was outfitted with a 

Microsoft Kinect V1 sensor that detects human Skeletons in order to assess the location and 

distance of the person from the robot (limited to a distance of 4 meters). All the other 

experiments used a Kinect V2 sensor, which had a better field of view, reaches a distance of 

10 meters and improved resolution (Figure 1). The Kinect V2 color RGB stream has a 

resolution of 19201080, a horizontal field of view of 84.1° and a vertical field of view of 

53.8°. The depth (D) stream has resolution of 512424, a depth range of 0.4 to 4.5 m, and a 

horizontal field of view of 70.6°. To facilitate human detection for a wide range of angles, 

the Kinect V2 was mounted on a Pan mechanism connected by an aluminum rod to the 

Pioneer LX robot (Figure 2). 

 

 

Figure 1- Comparison of the specifications of Kinect Version 1 and Kinect Version 2 
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Figure 2- Pioneer LXRobot with Kinect  

To run the implementations of robot following and the integrated algorithms, the system uses 

two computers (both Asus laptops with Intel core i7-4710HQ processors) in addition to the 

robot's integrated on-board computer (Intel D252 with 64-bit Dual Core 1.8 GHz) (Figure 

3). The first laptop is connected directly to the Kinect and the Pan Mechanism. It is 

responsible for running the OpenPTrack (Munaro et al. 2014) person-detection and Depth-

Occlusions-Detection algorithms (see Section 3.3) and for controlling the rotation of the Pan. 

The second computer is responsible for running the main person-following methods (Direct-

Following, History-Following; see Section 3.3), for operating the laser legs detector, for 

detecting obstacles in real time (Obstacles-Avoidance; see Section 3.3) and for the Search-

After-Disappear algorithm. This second computer also records the ROS information (values 

of the parameters that are calculated by the running algorithms) and the Rviz information 

(position of the robot and laser detection) by recording the screen during each trial. 

Commands are sent to the robot's onboard computer by a TP-LINK router with a wireless 

speed up to 300 Mbps. An explanation of how to start the methods of following with the 

integrated algorithms is described in Appendix A. The robot uses a SICK S300 scanning LRF, 

mounted approximately 20 cm above the ground to detect obstacles and human legs. The 

ultrasonic sensors and the bumper were not used in this project. 
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Figure 3- System hardware and software: computers, devices, sensors and algorithms 

 

3.3  Algorithms 

The following algorithms were developed for obstacle avoidance, search after disappear and 

occlusion detection (see Chapter 4 for details): 

 Obstacles-Avoidance (OA) – For the robot to have the ability to detect and avoid 

obstacles without a map of the environment or any previous knowledge of where the 

obstacles are located relative to the robot, a real-time obstacle avoidance algorithm was 

developed. This algorithm scans the environment with a laser at 10 Hz and searches for 

obstacles in real time. To narrow the search in front and on the sides of the robot, a 

corridor is declared. The robot reacts only to an obstacle identified within that corridor.  

 Search-after-Disappear (SAD) – To search for the person, the algorithm remembers the 

last distance of the person from the robot and subtracts between two values of the 

horizontal position of the person (the last one and four frames before) to define the 

direction of the robot's turn. The robot moves to the last position of the person and then 

turns in the direction determined by the algorithm. 



 
16 

 

Three different occlusion detection algorithms were developed:  

 Depth-Occlusions-Detection (DO) – The algorithm compares the depth value of pixels 

inside the BBCs of a detected person to the distance of the robot from the whole person 

and searches for small values, which indicate closer pixels. The number of pixels that 

are closer than the distance of the person is counted by using a threshold that reduces 

small distance measurement errors and avoids other body parts detected as closer pixels. 

 Vision-Occlusions-Detection (VO) – The algorithm uses the ROI of a detected person 

and fuses it with a MONO image (gray-scale) from the Kinect to detect occlusions in a 

2D image. After basic image processing, the MONO image searches for straight vertical 

lines to detect a wall occlusion. 

 Combined-Occlusions-Detection (CO) – This algorithm uses the DO algorithm when 

the person is close to the Kinect (at distances <5 m) and the VO algorithm when the 

person is far from the Kinect (at distances >5). 

Two main following methods were improved, implemented and compared for the human-

following robot: 

 Direct-Following (DF) – The method aims to synchronize all the data from the 

integrated algorithms, the laser leg detector and the Kinect. This method transforms and 

calculates the position of the person detected by the Kinect and by the laser, sends 

avoidance commands to the robot according to the OA, changes the following angle 

according to the DO, and implements the SAD algorithm.   

 History-Following (HF) - A semi path follower that moves the robot directly to the 

historical position of the person was developed. Like the DF, this method also 

synchronizes the data from the integrated algorithms, the laser leg detector and the Kinect 

detection. 

 

Figure 4- Human-following methods and connections of the algorithms  
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3.4  Experimental Design 

3.4.1 Description of the Steps 

 

Figure 5- Methodology sequence of steps 

The first two experiments were preliminary experiments that used the Kinect V1 Skeleton 

detection algorithm to choose and test the robot following parameters (see Sections 3.4.2 

and 3.4.3). These experiments were completed without a Pan mechanism to rotate the Kinect. 

From the third experiment onwards, the Pan mechanism was used. After implementing the 

Kinect V2 with a Pan Mechanism, an experiment was conducted with 24 participants to test 

objective and subjective metric performances for three different following angles (0, 30, 

60°). Occlusion detection algorithms were developed using depth and vision information 

from the Kinect. The algorithms were compared to identify the one that performs best. 

Another two integrated algorithms were then developed: one that detects obstacles by laser 

in real time and the other that searches for a person whenever tracking is lost. These three 

integrated algorithms (occlusions, obstacles, searching) were then tested once with the DF 
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method and once with the HF method to find the best combination in each method. The final 

and most important experiment compared the two methods of human following (DF and 

HF) with the best combination of integrated algorithms (from the results of the experiment 

described in Section 3.4.6 "Direct-Following experiment and History-Following 

experiment") to same chosen methods with the addition of a laser legs detector (denoted as 

adaptive methods) for use if necessary when the Kinect loses the participant. 

 

Figure 6- Experimental steps 

 

3.4.2 Preliminary Experiment: Identifying Testable Parameters on 

Kinect V1 without Pan-Tilt 

The aim of this preliminary experiment was select the operational parameters for the 

following variables:  

 Maximum robot speed (m/s) 

 Robot responsiveness while walking forward 

 Robot responsiveness while turning 

 Minimum distance of the robot from the target 

 Angle of following.  
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Since a Pan mechanism had not yet been installed and the Kinect was locked in place, the 

following angle was selected manually. The Kinect V1 has a horizontal field of view of 57° 

(0.49 rad in each direction). 

The following considerations were taken into account when choosing the parameters:  

 Selecting an angle parameter that is noticeably different from back-following  

 Selecting parameters that lead to the smoothest following possible, that is, with the 

least number of instances of losing the person and the smoothest robot movement  

 Selecting the minimum distance of the robot from the target that is comfortable and 

comparable to the robot’s distance from the 0.49 rad following (not so close that it 

interferes with personal space and tracking, but not so far that the person does not feel 

the difference).   

 

3.4.3 Preliminary Experiment: Testing Objective & Subjective Metric 

Performances of Two Angles on a No-Pan Kinect V1 

The aim of this experiment was to determine whether the angle at which the robot follows a 

person affects the human experience and the robot tracking performance. The Pioneer LX 

was outfitted with a Microsoft Kinect V1 (without a Pan) that detects human Skeletons with 

the aim to assess the location and distance from the robot of the person. Six subjects (3 

female, 3 male) completed a predetermined 25-m track under two conditions: (1) the robot 

followed directly behind the person (0° angle), denoted as back-following (2) the robot 

followed at a 17.19° angle (0.3 rad), denoted as side-following. In order to simulate a real 

world walking experience, which is rarely constant, linear or without distractions, the 

walking track included a stop and a turn (Figure 7), and subjects were asked to a play game 

on a smartphone as they walked. The order of the trials was alternated: 3 subjects started 

with back-following and 3 subjects started with side-following. After each trial (back-

following and side-following), subjects were given a questionnaire to assess their 

experience. In addition, at the end of the study, subjects answered a questionnaire comparing 

the two conditions. Both surveys were based on Likert-style questions (Appendix B), where 

the subject had to state how strongly s/he agreed/disagreed with a statement. Subjective and 

objective performance measures were collected. 
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Figure 7- Walking path- preliminary experiment 

To facilitate person following at various angles, a pre-existing human following algorithm 

was adjusted as follows: 

 In the “side-following” condition, the "turn acceleration” was set variable to 

“arctan(y/x)-0.3”, which returns a “0” value at 0.3 rad from the left and stops the 

robot turning at that point (influenced by the 0.8 responsiveness).  

 In the “back-following” condition, the "turn acceleration” was set variable to 

“arctan(y/x)”, which returns a “0” value at 0 rad (at the center of the Kinect 

camera) in order to ensure that the robot follows directly from behind.  

All the other procedures were the same in both following conditions. To make the side-

following more efficient, an extra cardboard part was added to the robot to create a wider 

angle of side-following. The addition of the cardboard “trunk” increased the following angle 

from the edge of the robot to the person to a 30° angle (Figure 8). 

The follow parameters were set:  

 The Kinect distance was 1 m; 

 The responsiveness measure was 0.8 both for turning and walking; 

 Maximum robot speed: 0.3 m/s (was slow because the Skeleton image without the 

Pan kept disappearing from the Kinect's field of view); 
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Figure 8- Addition of the cardboard "trunk" 

 

3.4.4 Testing Objective & Subjective Metric Performances of Three 

Angles on a Pan Kinect V2 

The aim of the experiment was to determine objective and subjective measures to evaluate 

the quality of following and the perceptions of the subjects toward the robot for three 

following angles (0° angle, 30° angle, and 60° angle) under two conditions: when the robot 

was carrying a valuable personal item (the participant's wallet) or not (Honig et al. 2016). 

The two conditions were compared on the assumption that increased personal relevance 

leads to an increase in the involvement felt by the person. This experiment used a mixed 

between and within-subject design. The wallet manipulation was the between subject 

variable: 12 participants were asked to place their wallets on the robot for the duration of the 

study and 13 participants were not. The following angle was the within-subject variable: each 

participant completed a straight predetermined 20-m walking path under three conditions 

while being followed by the robot: (1) the robot followed directly from behind (0° angle), 

(2) the robot followed at a 30° angle from the left, and (3) the robot followed at a 60° angle 

from the right. The order of the following angle was counterbalanced between participants. 

In order to simulate a real-world walking experience, which is rarely constant or without 

distractions, the walking track included two stops and participants were asked to play a game 

on a smartphone as they walked. Participants were instructed to walk at their natural walking 

pace and to stop at two predetermined locations and wait until the robot made a complete 

stop behind them. The following objective performance measures were selected: distance 
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and following angle between the robot and the subject, number of instances of loss of the 

person, and number of interventions. Interventions were classified into two types: 

interventions due to safety and interventions due to loss. Interventions due to safety were 

interventions resulting from the robot getting too close to an obstacle or a wall. Interventions 

due to loss were interventions that were a result of the robot losing track of the person and 

were made in order to steer the robot back toward the participant. 

 

3.4.5 Comparison of Occlusion Algorithms  

The aim of the experiment was to compare the occlusion detection algorithms. DO uses the 

depth stream of the Kinect, VO uses the MONO stream (gray scale) from the Kinect, and CO 

combines the two algorithms (DO below 5 meter, VO above 5 meter).  

The three algorithms – DO, VO, and CO – were tested and compared with six different 

distances of the robot to the person and six different person/wall occlusion distances from 

the Kinect (all in cm): 200/100; 350/200; 500/300; 600/400; 800/600; 400/300 (an occlusion 

other than a wall). Each distance was tested once for each algorithm.  

The DO can identify the size of the occlusion (large/small), the direction of the occlusion 

(left/right) and whether the occlusion is caused by a wall or not. The VO can identify only 

left or right straight vertical lines. When the person is partially hidden and stands without 

moving, the number of times the algorithm detects the right or left occlusions (large, small 

or combination of them for the DO algorithm) and the number of times the algorithm detects 

the wall be measured.  

 

3.4.6 Direct-Following and History-Following Experiments 

The aim of the experiments was to evaluate the performance of various combinations of 

integrated algorithms in the two main human-following methods and to compare the results.  

The two main methods of human-following (DF and HF) were developed and compared. 

Each method was tested with various combinations of the three integrated algorithms, OA 

(real time obstacle avoidance by laser), DO (depth-occlusion detection using the depth 

information from the Kinect) and SAD (search-after-disappear to search for the person after 

losing tracking).  

After preliminary testing, the maximum linear velocity of the robot was selected as 0.3 m/s 

for all trials, ensuring sufficient time for the robot to compute and react. The maximum 

angular velocity during following (not when detecting an obstacle) was chosen as 0.2π rad/s.  
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The experiment was conducted in the offices of the Center for Digital Innovation (CDI) in 

Beer-Sheva, Israel. The conditions of the experiment included a path of 18-m length with 

three stops (Figure 9). At the beginning of each trial, subjects were asked to stand in front 

of the robot to allow the robot to detect them. Once the robot had detected the subject, the 

subject was asked to walk slowly to point 1  (path marks in green), which was marked on 

the floor, and waits until the robot reaches the third of the six obstacles that had been placed 

in a line and connected to a demo wall to create a corner (Figure 9). When the subject moved 

from point 1 to point 2, s/he disappeared from the robot's line of sight, simulating how a 

person would disappear if s/he turned a corner in a hallway. The subject waits at point 2, 

also marked on the floor, until the robot began to move toward her/him. Once the robot had 

begun to move toward the subject, the subject moved slowly around three more obstacles 

and stopped at the last corner 3 (the last obstacle) to wait for the robot. Each subject 

completed this path five times with different combinations of algorithms (Table 1), order 

counterbalanced (three DF and two HF). Seven participants took part in this experiment. 

Table 1- Five combinations of trials 

Trial Following 

method 

Obstacle 

avoidance 

Depth 

occlusion 

Search after 

disappear 

1 History  X  

2 History    

3 Direct  X  

4 Direct    

5 Direct   X 
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 (a) 

 (b)      (c) 

Figure 9 - Direct-Following and History-Following experiment path. (a)-schematic 

description. (b)-photograph of end of the path. (c)-photograph of start of the path  

 

3.4.7 Adaptive Kinect-Laser vs. Non-Adaptive (for Direct Following and 

History Following) Experiment 

The two human-following methods (DF, HF) with the Kinect V2 with the best combination 

of integrated algorithms (from the previous experiment, Section 3.4.6, denoted as Non-

Adaptive methods) were compared to the same human-following methods with a laser legs 

detector, which was actuated when the Kinect lost the participant (denoted as Adaptive 

methods). This experiment also took place in the offices of the CDI in Beer-Sheva Israel and 
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included a 25-m length path with three obstacles, a wall, and a corner (Figure 10). At the 

beginning of the experiment, the subject was asked to stand in front of the robot so that the 

robot's Kinect and laser sensors could detect her/him. If the robot was not able to detect the 

legs of the subject because the width of her/his legs fell below the defined threshold for laser 

detection, the subject was asked to wear rain boots to 'widen' the legs. When the trial started, 

the subject walked slowly without stopping from the starting point through points 1 and 2 to 

point 3 (marked on the floor). Once subject arrived at point 3, s/he was asked to wait until 

the robot reached the first wall, and only then to complete the walking path. When the subject 

moved from point 3 to the end-point, s/he disappeared behind the wall to simulate the 

situation in which a person turns a corner in a hallway. Each subject completed this path four 

times with different combinations of algorithms (Table 2) and in a different order. Twenty-

four participants participated in this experiment. 

Table 2- Combinations of methods and algorithms Adaptive vs. Non-Adaptive experiment 

Trial Following 

method 

Obstacle 

avoidance 

Depth 

occlusion 

Search 

after 

disappear 

Laser 

legs' 

detector 

1 History    

2 History    X 

3 Direct    

4 Direct    X 
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(a)

(b) 

Figure 10- Adaptive vs. Non-Adaptive experimental paths. (a)-schematic description. (b)-

photograph 
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3.5  ROS implementation 

DF and HF methods and their integrated algorithms (DO, OA, and SAD) were implemented 

in ROS with the following nodes and topics, as shown in Figure 11. 

 

Figure 11- Nodes and topics flow-chart 

 

 RosAria is the robot's main node. According to the movement of the robot's 

wheels, it calculates the robot's position and sends it to 

Simple_follower_kinect2_pan_laser by /RosAria/pose. It sends the laser scan 

in two ways: 1) to the leg_detector by /RosAria/S3Series_1_laserscan and 2) to 

laser_obstacles_avoidance by /RosAria/S3Series_1_pointcloud. It is also 

responsible for the transformation of coordinated positions in the different 

sensors by /tf.  

 Twist_mux is the node that responsible for the subsequent commands to move 

the robot. It decides on the priority of the incoming nodes. It receives move 

commands from Simple_follower_kinect2_pan_laser and from joystick (via 

turtlebot_teleop_joystick). It can also receive commands from the safety node, 

which was not used in this case (safety is responsible for locking the robot's 
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wheels when the laser detects close obstacles). It publishes the move commands 

to RosAria by /cmd_vel. 

 Simple_follower_kinect2_pan_laser is the main node that includes the method 

of following (DF or HF) and if necessary uses the SAD integrated algorithm. It 

publishes on /follower/cmd_vel the linear and angular velocity commands to 

twist_mux. It receives the following information from seven different topics for 

analysis and synchronization:  

1. The position of the robot from RosAria by /RosAria/pose. 

2. The position of an obstacle related to the robot from 

laser_obstacles_avoidance by /obstacles/laserObstacles. 

3. The Boolean occlusion detection variables from image_converter by 

/occlusions/sideOcclusions. 

4. The position of the person by laser from leg_detector by 

/people_tracker_measurements. 

5. The position of the person by Kinect from tracker_node by /tracker/tracks. 

6. The position of the Pan related to the center of the robot from (Pan) 

serial_node by /Pan_Feedback. 

7. The position of the person from the center of the Kinect from 

orientation_control by /Pan_Error_Command. 

 Leg_detector is the node that detects the position of a person's legs with the laser. 

It receives the robot's laser scan determined by the laser sensor from RosAria by 

/RosAria/S3Series_1_laserscan and is responsible for the transformation 

between the laser measurements and the robot's position with /tf. It publishes the 

coordinates of the person related to the robot to 

Simple_follower_kinect2_pan_laser by /people_tracker_measurements.  

 Laser_obstacles_avoidance is the node that searches with the laser for obstacles 

near the robot. It receives the robot's laser scan from RosAria by 

/RosAria/S3Series_1_pointcloud, the linear and angular velocity of the robot 

from Twist_mux by /cmd_vel, and all the parameters to calculate the position of 

the person with laser and Kinect (such as the information that 

Simple_follower_kinect2_pan_laser receives). It publishes the linear and 

angular velocity that is required to avoid collision if there is an obstacle to 

Simple_follower_kinect2_pan_laser by /obstacles/laserObstacles.  

 Image_converter is the node that detects occlusions near the person with the 

Kinect Depth image. It receives the position of the person with the Kinect from 

tracker_node by /tracker/tracks and the Kinect depth image from 
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kinect2_head_kinect2_bridge by /kinect2_head_depth_rect/image. It publishes 

the Booleans of the size and side of an occlusion detection to 

Simple_follower_kinect2_pan_laser by /occlusions/sideOcclusions.  

 Orientation_control is the node that is responsible for moving the Pan 

mechanism and for sending angular positions. It receives the position of the 

person with the Kinect from tracker_node by /tracker/tracks and the position of 

the Pan related to the center of the robot from (Pan) serial_node by 

/Pan_Feedback. It publishes the angular velocity that the Pan needs in order to 

maintain the person in the center of the Kinect to (Pan) serial_node by 

/Pan_Error_Command. 

 

3.6  Analysis 

3.6.1 Performance Measures 

The performance measures described below were used:  

The following measures were counted manually during each trial:  

 Number of losses of the person 

 Number of self-recoveries and percent of self-recoveries out of total losses  

 Number of interventions due to losses and percent of these interventions out of total losses  

 Number of safety interventions  

 Number of Kinect collapses 

 Number of collisions with obstacles  

The following measures were calculated directly from the ROS procedures:  

 Number of laser detections of obstacles  

 Distance between the robot and the participant (average and standard deviation)  

 Length of the robot's path 

 Number of matches between the Kinect person-detection position and laser legs detector 

position that were <20 cm 

 Ratio between tracking and no tracking from the Kinect and from the laser separately.  

Each trial was recorded by Rviz and rqt_console to calculate: 

 The participant's walking velocity  

 The percent of false alarms for the position of the legs  

 The DO algorithm's true positive and false alarm (false positive) results  
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The velocity of the participant was calculated by dividing the total time of subject walking 

by the total path length s/he walked. The percent of legs false alarm detection was also 

calculated from the recording of the trial by counting the time of true legs detection and the 

time of false alarms. The true positives and false alarms of the DO algorithm were calculated 

by using the ROS information and the recording. The relative time according to the position 

of the robot related to the position of the participant was derived manually from the recording 

and compared to the actual ROS information.    

    

3.6.2 Statistical Analyses 

Statistical analyses included SPSS ANOVA with 0.05 confidence level. To test for a 

significant difference between more than two trials, a post-hoc pairwise comparison (Tukey 

test) was conducted (Table 3). All raw data and the statistical analyses are detailed in 

Appendix C. 

 

Table 3- Statistical analyses 

Experiment Section Hypothesis Statistical tests 

Comparison of 

occlusion 

algorithms  

3.4.5 Depth – preferable close 

distance;  

Vision – preferable far 

distance 

ANOVA and Pearson - 

confidence level of 0.05 

Direct-Following 

and History-

Following 

3.4.6 Combination of all the 

integrated algorithms in 

each method is the best 

ANOVA and Tukey - 

confidence level of 0.05 

Adaptive Kinect-

Laser Direct 

Following and 

History Following 

3.4.7 Adaptive methods are 

better than 

Direct methods; 

ANOVA and Tukey - 

confidence level of 0.05 
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4. Chapter Four: Algorithms 
4.1  Overview 

To summarize the previous chapters, two main methods for human-following were improved 

and implemented on the human-following robot: 

 Direct-Following (DF)  

 History-Following (HF)  

Three integrated occlusion detection algorithms were developed for these methods: 

 Depth-Occlusions-Detection (DO)  

 Vision-Occlusions-Detection (VO)  

 Combined-Occlusions-Detection (CO) 

Two integrated algorithms were developed for obstacle avoidance and search after 

disappearance: 

 Obstacle-Avoidance (OA)  

 Search-after-Disappear (SAD) 

All C++ codes are shown in Appendix D. 

Algorithm Innovations 

General 

 All the algorithms and following methods work without a-priori 

information about the environment or any kind of pre-built map 

of the environment 

Depth-

Occlusions 

(DO) 

 Real-time occlusion detection using depth information of the 

pixels 

 Compares the depth value of the pixels (distance value of the 

pixels) inside the BBC of a detected person to the distance of the 

whole person from the robot and searches for small values that 

indicate closer pixels (indicating an occlusion) 

 Reduces false alarms and can detect both small and large 

occlusions and even a vertical occlusion like a wall 

 Change the following angle to increase the line of sight 

Obstacles-

Avoidance 

(OA) 

 Real-time obstacle detection and avoidance  

 Declares an adaptive corridor in front and on the sides of the 

robot to narrow the scan area, which depends on the prevailing 

linear and angular velocities of the robot 

 Search for obstacles inside the turning radius 
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Search-

After-

Disappear 

(SAD) 

 Increase of the ability to refollowing 

 Moves the robot to the person's last known position and turns the 

robot in the direction that is calculated according to the last few 

frames obtained before the person had disappeared 

Direct-

Following 

(DF) 

 Moves the robot directly to the position of the detected person 

 Gives priority to sending the robot the linear and angular velocity 

to avoid any obstacles change 

History-

Following 

(HF) 

 Moves the robot directly to the historical position of the person 

being tracked 

 avoids big changes of the position of the person caused by the 

movements of the robot and the Kinect 

 avoids quick turns that cause the Kinect to lose the person 

 

4.2  Depth Occlusions Detection 

The DO detection algorithm compares the depth value of pixels inside the BBC of a 

detected person to the distance of the whole person from the robot and searches for small 

values that indicate closer pixels (indicating an occlusion). The number of pixels that are 

closer than the distance of the person from the robot is counted by adding a threshold to 

reduce small distance measurement errors and to avoid other body parts detected as closer 

pixels. 

In order to reduce false detections of a person, a valid tracking of a person is indicated only 

if there is the tracking passes three thresholds of confidence within minimum and maximum 

heights of the person (ConfidenceTheshold, HeightTheshold, 

HeightMaxTheshold).  

The OpenPTrack (Munaro et al. 2014) provides four parameters of the BBC around the 

detected person. The DO refers to them as: 𝑥𝑚𝑖𝑛 the X value of the top-left corner of the 

BBC, 𝑦𝑚𝑖𝑛 the Y value of the top-left corner of the BBC, 𝑥𝑚𝑎𝑥 the X value of the top-right 

corner of the BBC and 𝑦𝑚𝑎𝑥 the Y value of the bottom-right corner of the BBC. In addition, 

the center X value of the BBC is also calculated (𝑥𝑐 = (𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛)/2). 

Since the detection parameters are related to the size of the BBC, we incorporated two 

changes, as follows (Figure 12). First, to avoid the ground depth value and to reduce false 

alarms, the 1/8 lower part of the BBC was cut (𝑑𝑜𝑤𝑛𝑐𝑢𝑡 = 𝑟𝑜𝑢𝑛𝑑((𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)/8)). 

Second, to add dependency on the person’s distance from the robot from the width of the 

BBC, a margin was added to the BBC (𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑑𝑑 = 𝑟𝑜𝑢𝑛𝑑(10/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)). The margin 



 
33 

 

was added also to predict an occlusion process before it happens. After these changes, the 

new BBC was ready for the occlusions detection process. 

 

Figure 12- New BBC parameters (DO) 

Each depth pixel value was normalized to 0-255 and compared to the normalized distance 

of the person from the robot. To prevent small measurement errors, a depth constant 

threshold was added to detect depth values of closer pixels (𝐷𝐸𝑃𝑇𝐻𝑇𝐻𝑅𝐸𝐻𝑂𝐿𝐷 = 3.0). The 

values of the counters were increased for closer distances by adding a threshold of 3 (equal 

to a distance of 0.5 m). For the left side, the pixels lie between [𝑥𝑚𝑖𝑛 − 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑑𝑑 , 𝑥𝑐 −

5] (from the left side of the BBC adding a small margin to the center of the BBC without 

the last 5 columns). For the right side, the pixels lie between [𝑥𝑐 + 5 , 𝑥𝑚𝑎𝑥 + 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑑𝑑] 

(from the center of the BBC without 5 first columns to right side of the BBC, adding a small 

margin). For wall detection, all the values of the same column must contain a smaller depth 

value (indicating an occlusion from the top to the bottom of the BBC). 

To declare a small or large occlusion from the left or the right, the BBC must be covered by 

⅓ to a ½ of closer pixel values for small occlusions and >½ for large occlusions. 

𝑠𝑚𝑎𝑙𝑙𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑜𝑢𝑛𝑑((
𝑥𝑐 − 𝑥𝑚𝑖𝑛

3
) ∗ (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗

7

8
) 

𝑏𝑖𝑔𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑜𝑢𝑛𝑑((
𝑥𝑐 − 𝑥𝑚𝑖𝑛

2
) ∗ (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗

7

8
) 

In addition, for wall detection, the algorithm finds continuous occlusions from the left or 

right by finding entire columns in the BBC that have depth values that are closer than the 

person's distance to the robot. There are four counters, one for each side for small and large 

occlusions (𝑙𝑒𝑓𝑡𝑐𝑜𝑢𝑛𝑡, 𝑟𝑖𝑔ℎ𝑡𝑐𝑜𝑢𝑛𝑡), and one for each side for wall detection 
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(𝑙𝑒𝑓𝑡𝑊𝑎𝑙𝑙𝑐𝑜𝑢𝑛𝑡, 𝑟𝑖𝑔ℎ𝑡𝑊𝑎𝑙𝑙𝑐𝑜𝑢𝑛𝑡). Occlusion detection is published using six Boolean 

variables (three for the left side and three for the right side) for small, large and wall 

detections: (𝑠𝑚𝑎𝑙𝑙𝐿𝑒𝑓𝑡𝑡𝑟𝑢𝑒, 𝑏𝑖𝑔𝐿𝑒𝑓𝑡𝑡𝑟𝑢𝑒, 𝑤𝑎𝑙𝑙𝐿𝑒𝑓𝑡𝑡𝑟𝑢𝑒), 

(𝑠𝑚𝑎𝑙𝑙𝑅𝑖𝑔ℎ𝑡𝑡𝑟𝑢𝑒 , 𝑏𝑖𝑔𝑅𝑖𝑔ℎ𝑡𝑡𝑟𝑢𝑒 , 𝑤𝑎𝑙𝑙𝑅𝑖𝑔ℎ𝑡𝑡𝑟𝑢𝑒). 

A pseudo code is shown in Figure 13 and an example of the DO algorithm in Figure 14.

 

Figure 13 - DO pseudo code 



 
35 

 

 

Figure 14 - DO person detection with a half-BBC (from OpenPTrack) near a right wall 

(left). Person's Distance of 2.4 m with a small right occlusion and right wall detection 

without a left occlusion (right) 

 

4.3  Vision Occlusions Detection 

The VO algorithm uses the ROI of the detected person from a depth image and fuses it with 

a MONO image from the Kinect to detect occlusions in a 2D image. In the MONO image, 

after basic image processing routines, the algorithm searches for straight vertical lines to 

detect a wall occlusion. 

To reduce false detections from OpenPTrack, a tracking is indicated only if the tracking 

passes the same three thresholds as for the DO. The BBC parameters from OpenPTrack 

depend on the resolution of the Kinect depth image. The MONO image has a higher 

resolution; therefore, extra parameters were added to the original BBC parameters. Another 

problem with which the algorithm deals is the different horizontal fields of view between 

the MONO image and the depth image of the Kinect. Several steps were therefore 

undertaken to match the pixel coordinates of the depth image to the MONO image. These 

steps were needed because it is not simple to convert, resize and extract ROIs in the MONO 

image from the BBC parameters of the depth image due to the different resolutions [the 

resolution of the MONO image is twice that of the depth image (19201080), and the two 
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techniques have different horizontal fields of view—MONO 84.1° and depth 70.6°]. The 

first step was to subtract 105 pixels from each side of the MONO image to eliminate different 

right and left image borders. Then, the image was resized to the same resolution as that of 

the depth image (960540). Another problem caused by the differences in the horizontal 

field of view was an unequal X value between the 𝑥𝑐 value that was calculated from the BBC 

of the depth image and the real position of the person in the MONO image. This error 

increases as the distance increases due to the different convexities of the depth and MONO 

images. The best solution was to add pixels to the BBC from the left side of the ROI, 

depending on the distance from the center of the image of the X-axis (the center of the image 

is X=270) divided by 3: 

𝑚𝑜𝑛𝑜𝑋𝑚𝑖𝑛 = 𝑥𝑚𝑖𝑛 ∗ 2 + 𝑟𝑜𝑢𝑛𝑑((
270 − 𝑥𝑐

3
) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 2) 

For the right side, depending on the width of the original depth BBC and the new 𝑚𝑜𝑛𝑜𝑋𝑚𝑖𝑛 

that was calculated, a new right side was declared:  

𝑚𝑜𝑛𝑜𝑋𝑚𝑎𝑥 = 𝑚𝑜𝑛𝑜𝑋𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ∗ 1.4 

The right side of the ROI in the MONO image was expanded to cover the whole person by 

multiplying the width from the depth image by 1.4. 

For the Y-axis new coordinates, the same minimum was taken, namely, 𝑚𝑜𝑛𝑜𝑌𝑚𝑖𝑛 = 𝑦𝑚𝑖𝑛 

and for the maximum value, the height of the ROI was multiplied only by 1.3 to include the 

legs but not the ground:  

𝑚𝑜𝑛𝑜𝑌𝑚𝑎𝑥 = 𝑚𝑜𝑛𝑜𝑌𝑚𝑖𝑛 + (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗ 1.3 

OpenCV was used for the image processing on the ROI, with the following steps and 

parameters, which were empirically derived: Gaussian blur of size 33, Canny edge detector 

with a low threshold of 50 and high threshold of 300 with a Sobel 2 sized and an L1 norm, 

opening and then closing the pixels by 55. 

To find the contours of the whole person, the OpenCV findContours function was used. 

The function includes the contours vector of vector of points for saving the contours, with 

a retrieval mode that organizes the contours into a two-level hierarchy and compresses 

horizontal, vertical, and diagonal segments and leaves only their end points. To avoid small 

contours, the size of the contour was compared to the height of the ROI. Only if the contour 

was bigger than the whole height of the ROI multiplied by 1.5, was it noted as belonging to 

the ROI; otherwise, it was deleted from the vector contours.  
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Straight lines were derived using the OpenCV HoughLinesP function. The function 

includes vector lines that contain 4 arguments (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑, 𝑦𝑠𝑡𝑎𝑟𝑡, 𝑦𝑒𝑛𝑑) for each line, with 

a resolution of 1 pixel and 1°, with a minimum threshold of 50 and with a minimum line 

length of half of the ROI height. To prevent too many straight lines in the ROI, only vertical 

lines that were less than 1/10 size of the person’s box width were derived. If the edges of the 

straight line were inside the ROI from the left to the center minus 5, the line was defined as 

a left wall and if the edges of the straight line were inside the ROI from the center plus 5 to 

the right, it is defined as a right wall. 

The pseudo code of the algorithm is shown in Figure 15 and an example of the VO algorithm 

in Figure 16. 

 

Figure 15 - VO pseudo code 
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Figure 16 - green VO person contour with red straight line of a wall (left). MONO image 

with a half hidden person with wall from the right (center). Right wall detection (right) 

 

4.4  Combination of Depth and Vision Occlusions Detection 

The CO algorithm uses the DO algorithm when the person is close to the Kinect (at distances 

<5 m) and the VO algorithm when the person is far from the Kinect (at distances >5 m). This 

decision is based on the premise that for close distances the DO will perform better than the 

VO and as well as the CO and for far distances the VO will perform better than the DO and 

as well as the CO.  

 

4.5  Obstacle Avoidance 

To detect and avoid obstacles without a map of the environment or any pre-knowledge of 

where the obstacles related to the robot are situated, an integrated algorithm that scans the 

environment with a laser at 10 Hz and searches for obstacles in real time was developed. The 

laser measures a large number of points in the environment and outputs a point cloud (Rusu 

and Cousins 2011) as a data file that contains 480 points (𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖], 𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖]) for every 

0.5°. The point cloud represents the set of points that the laser device has measured, as 

described below. 

First, the integrated algorithm declares a corridor in front and on the sides of the robot to 

narrow the scan area. If an obstacle is situated inside this corridor, then the robot reacts 

accordingly and avoids a collision. If the distance between the robot and the person being 

followed is smaller than the corridor distance, then it is implied that the person is transparent 
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and hence the obstacles detection algorithm is ignored to prevent confusion between the 

person and the obstacle. 

The corridor that may contain obstacles depends on the linear and angular velocity of the 

robot (Figure 17). For the X-axis (in front of the robot), the minimum distance to search for 

obstacles is 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 = 0.8, irrespective of the robot's linear velocity. In other words, if there 

is a point that the laser detects that is <0.8 m in front of the robot, the robot declares it as an 

obstacle, independent of robot's velocity. At greater distances (>0.8 m), the declaration of 

obstacles depends on the linear velocity of the robot multiplied by 𝐾𝑝𝐷𝑖𝑠𝑡 = 3. For example, 

if the linear velocity of the robot is 0.4 m/s, then an obstacle can be found up to 0.43=1.2 m 

in front of the robot. In addition, all the obstacles detected by the laser or Kinect sensors that 

are near the detected person, namely, in a 1 m radius of the person (𝑅𝐴𝐷𝐼𝑈𝑆𝑃𝐸𝑅𝑆𝑂𝑁 = 1.0), 

are ignored. To search in the negative X-axis if the robot is turning, the absolute value of the 

angular velocity is used. If the angular velocity is large, the algorithm searches for larger 

negative values of X. 

If ((𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] < 𝐾𝑝𝐷𝑖𝑠𝑡 ∗ 𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙) ⋃  (𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] < 𝑚𝑖𝑛𝑑𝑖𝑠𝑡)) ⋂  (𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] >

−|𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙|) ⋂  ((√(𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] − 𝑥𝑝𝑒𝑟𝑠𝑜𝑛)2 + (𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] − 𝑦𝑝𝑒𝑟𝑠𝑜𝑛)2) >

𝑅𝐴𝐷𝐼𝑈𝑆𝑃𝐸𝑅𝑆𝑂𝑁) 

For the Y-axis (the sides of the robot), the obstacle must lie between the 𝑤𝑖𝑑𝑡ℎ =

0.5  multiplied by 1 + 𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙 and −𝑤𝑖𝑑𝑡ℎ multiplied by 1 − 𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙. If the 

angular velocity is zero, then the corridor lies between 0.5 and -0.5, but if the robot is turning 

and the angular velocity is not zero, then the corridor moves to the side of the turn in order 

to search for obstacles inside the turning radius. As for the X-axis, the technique to ignore 

obstacles near the person is used.  

If ((𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] < 𝑤𝑖𝑑𝑡ℎ ∗ (1 + 𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙)) ⋂(𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] > −𝑤𝑖𝑑𝑡ℎ ∗ (1 −

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙))) 
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(a) 

(b) 

Figure 17 - Obstacles corridor examples. (a)-robot moves only forward.                          

(b)-robot turns right. 

The next step is to choose the closest obstacle to the robot inside the corridor. For each point 

that is declared an obstacle inside the corridor, the distance of the point to the robot is 

calculated as: 𝑑𝑖𝑠𝑡𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] = √𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖]2 + 𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖]2. The closet point coordinates 

are passed to the next step and declared as an obstacle.       
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The final step is to calculate and publish the robot's linear and angular velocity to the robot 

so that it can avoid the closet obstacle. For the linear velocity, after many trials with different 

linear velocity values, a 0.2 m/s was chosen. For the angular velocity, the decision depends 

on the position of the obstacles in the Y-axis related to the robot (from the left side of the 

robot or from the right side). If the obstacle is to the robot's left, a command to turn right is 

issued (negative angular velocity). The size of the angular velocity depends on the distance 

from the 𝒘𝒊𝒅𝒕𝒉 value (0.5) divided by 2. If the obstacle's Y coordinate is at the center of 

the robot (i.e., equal to zero), then the angular velocity is large. If the obstacle is at the robot's 

left, then: 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = −(𝑤𝑖𝑑𝑡ℎ − 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡)/2. 

If the obstacle is at the robot's right, a command to turn left is issued (positive angular 

velocity). The size of the angular velocity depends on the distance from the −𝑤𝑖𝑑𝑡ℎ value 

(-0.5) divided by 2. If the obstacle's Y coordinate is at the center of the robot (i.e., equal to 

zero), then the angular velocity is large. If the obstacle is to the robot's right, then: 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = (−𝑤𝑖𝑑𝑡ℎ + 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡)/2. 

 

4.6  Search-after-Disappear 

In the SAD algorithm, the robot remembers the last position of the person and subtracts 

between two values of 𝑦𝑘𝑖𝑛𝑒𝑐𝑡, namely, the last one and the value from four frames 

previously. A positive 𝑦𝑘𝑖𝑛𝑒𝑐𝑡 implies that the person is on the right side of the robot, and a 

negative 𝑦𝑘𝑖𝑛𝑒𝑐𝑡, that the person is on the left side. The value of the subtraction is defined as 

the direction of turning of the robot in order to search for the person. After performing these 

calculations, the robot moves to the last position of the person with constant linear velocity 

of 0.3 m/s for a duration that depends on the distance of the last detection. When it reaches 

this last position, it turns in the direction that it had calculated from the last four frames of 

detection. 

 

4.7  Kinect Orientation Control – Pan Mechanism 

The Pan mechanism moves to maintain the person being detected in the center of the Kinect. 

Two levels of code were employed. The high-level code is an ordinary ROS implementation 

with topics, publishers and subscribers. The low-level code, developed by Doisy and co-

workers, controls the movement commands of the Pan (Doisy et al. 2012). 
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The high-level code "Kinect_orientation_control" uses OpenPTrack to detect people with 

three thresholds (confidence, height and max height). The code subscribes from two 

topics: OpenPTrack parameters using /tracker/tracks and the angle of the Pan related to the 

center of the robot using /Pan_Feedback that is published from the low-level code. The code 

publishes the angle error of the Pan to the low-level code to angle the Pan to maintain the 

person in the center of the Kinect using /Pan_Error_Command. After receiving the 

parameters of the person from OpenPTrack and passing the thresholds, the code calculates 

the angle of the person from the center of the Kinect as tan−1(
𝑦𝑘𝑖𝑛𝑒𝑐𝑡

𝑥𝑘𝑖𝑛𝑒𝑐𝑡
) of the person. The Y-

axis is from left to right of the Kinect (zero means the center of the Kinect) and the X-axis 

is the depth (distance from the Kinect). The angle of the person from the center of the Kinect 

is passed to the low-level code to move the Pan until the angle is zero (y equal to zero). If 

no person is detected for more than three seconds, the command that passes to the low-level 

code is half of the angle of the Pan related to the center of the robot in the opposite direction 

(error_command.data=-0.5*AngleErrorPan;); this command causes the Pan to 

return to the center of the robot. 

The low-level code subscribes from two topics: 1) the move command from the high-level 

code using /Pan_Error_Command and 2) a topic that sends true or false to the Pan for the 

actual move command, using /Start_Stop_Pan. It publishes the angle of the Pan related to 

the center of the robot using /Pan_Feedback to the high-level code. 

The parameters for the movement of the Pan were empirically selected in a series of trials. 

On the one hand, the Pan must move fast enough not to lose the person. On the other hand, 

it must not move too fast to overshoot the person and move back and forth all the time 

because of fast movements (like a harmonic motion). The best parameters were derived to 

0.5 max speed of movement to avoid overshooting. Additionally, a small threshold of 0.01 

rad was added to prevent small movements of the robot when the Pan is near the center of 

the robot.   

  

4.8  Direct-Following Method 

This method of human-following by a robot causes the robot to move directly to the position 

of the detected person. This method transforms and calculates the position of the person 

obtained by the Kinect and by the laser, sends commands to the robot according to the OA, 

changes the following angle according to the occlusions detection algorithms (DO, VO, CO), 

and compares the results with and without SAD. 
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The integrated OA algorithm receives the Boolean values for slowing down and obstacle 

detection and it also receives the values for the linear and angular velocities of the robot 

directly from the OA algorithm. The first priority of sending the robot it's linear and 

angular velocities to enable it to avoid any obstacles is implemented in all sections of this 

main method. If the OA detects an obstacle, then the robot moves according to the position 

of the obstacle in order to avoid it. Only when the OA detects that the path is clear, does the 

method continue to send the commands to the robot to follow the person. During the 

movements of the robot relative to the obstacle, the Kinect with the Pan mechanism and the 

laser leg detector continue to follow the person without sending commands to the robot to 

move. If OA is not running, then the method notes that there are no obstacles.  

For the integrated occlusions detection algorithms (DO, VO, CO), The DF method receives 

all the Boolean values for large and small occlusions from the right and the left. It changes 

the following angle to 15° for small occlusions, and to 30° for large occlusions. When the 

occlusions detection algorithms are not running, the following angle equals zero (the robot 

moves directly to the person being detected). 

The integrated SAD algorithm compares the last position of the person before losing her/him 

with several frames before to realize the person's drift. To achieve this, the X- and Y-axes 

of the person detected by the Kinect must be transformed to the robot's position. From the 

Kinect detection, the transformation uses three variables that are related to the position of 

the person vis-à-vis the robot, namely, 𝑎𝑘= the angle in radians of the person related to the 

center of the Kinect, 𝑎𝑝= the position of the Pan related to the center of the robot in radians, 

𝐷𝑘= the distance of the person from the Kinect. If there is a person detected by the Kinect 

(OpenPTrack), then her/his position in relation to that of the robot is defined as:  

𝑥𝑘𝑖𝑛𝑒𝑐𝑡 = 𝐷𝑘 ∗ cos(𝑎𝑘 + 𝑎𝑝) 

𝑦𝑘𝑖𝑛𝑒𝑐𝑡 = 𝐷𝑘 ∗ sin(𝑎𝑘 + 𝑎𝑝) 

For DF, the method uses many parameters, variables and constants. To calculate the distance 

(𝐷) and angle (𝑎) of the person in relation to the robot, the DF method uses the position of 

the person as obtained from the Kinect and from the laser detector. It sends velocity 

commands with upper bounds of 𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑 = 0.3 and 𝑚𝑎𝑥𝑡𝑢𝑟𝑛 = 0.2, and with linear and 

angular speed controller 𝐾𝑝𝐷𝑖𝑠𝑡 = 0.2, 𝐾𝑝𝐴𝑛𝑔𝑙𝑒 = 0.5, respectively. A constant of the 

distance from the person 𝐷𝑇𝐴𝑅𝐺𝐸𝑇 = 1.2 is also included. The last parameter that depends 

on the integrated occlusions detection algorithm (DO, VO, CO) is the value of the 𝑎𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 

that by default equals zero if no occlusion has been detected. 
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𝐷𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 = √𝑥𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟
2 + 𝑦𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟

2 

𝑎𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 = tan−1
𝑦𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟

𝑥𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟
 

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = max ((𝑎𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 + 𝑎𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔) ∗ 𝐾𝑝𝐴𝑛𝑔𝑙𝑒 , 𝑚𝑎𝑥𝑡𝑢𝑟𝑛) 

𝑙𝑖𝑛𝑒𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = max ((𝐷𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 − 𝐷𝑇𝐴𝑅𝐺𝐸𝑇) ∗ 𝐾𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  , 𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑 

The method first uses the Kinect detection, but if it loses tracking, it then changes to the laser 

detection algorithm. If there is no detection by both sensors, it uses the SAD integrated 

algorithm. This method can even work with only one source of person detection (Kinect or 

laser). A method that works with both of the sources together will be described in Section 

4.10 'Adaptive Following Methods'.  

 

4.9  History-Following Method 

The robot is able to avoid obstacles without detecting them by moving in the same path that 

the person walks; of course, as long as the person does not jump over an obstacle. A semi 

path follower that uses the history positions of the person and moves the robot directly to 

these historical points was developed. The X- and Y-axes of the detected person obtained 

from the Kinect or the from the laser detector were transformed to world coordinates and 

related to the position of the robot in the world. This transformation was done without a map 

of the environment and it can lose stability after a while due to robot slips. To calculate the 

position of the person in relation to the world, the position and orientation of the robot in 

relation to the world was obtained from RosAria (𝑥𝑟𝑜𝑏𝑜𝑡, 𝑦𝑟𝑜𝑏𝑜𝑡 , 𝑜𝑟𝑜𝑏𝑜𝑡).  

For the laser calculation (Figure 18), the method first calculates the distance 𝐷𝑙𝑎𝑠𝑒𝑟 and 

angle 𝑎𝑙𝑎𝑠𝑒𝑟 of the person in relation to the robot according to the laser:  

𝐷𝑙𝑎𝑠𝑒𝑟 = √𝑥𝑙𝑎𝑠𝑒𝑟
2 + 𝑦𝑙𝑎𝑠𝑒𝑟

2 

𝑎𝑙𝑎𝑠𝑒𝑟 = tan
𝑦𝑙𝑎𝑠𝑒𝑟

𝑥𝑙𝑎𝑠𝑒𝑟
 

Then, it transforms the position of the person to the world coordinates: 

𝑥𝑙𝑎𝑠𝑒𝑟𝑃𝑎𝑡ℎ = 𝑥𝑟𝑜𝑏𝑜𝑡 + cos(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑙𝑎𝑠𝑒𝑟) ∗ 𝐷𝑙𝑎𝑠𝑒𝑟 

𝑦𝑙𝑎𝑠𝑒𝑟𝑃𝑎𝑡ℎ = 𝑦𝑟𝑜𝑏𝑜𝑡 + sin(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑙𝑎𝑠𝑒𝑟) ∗ 𝐷𝑙𝑎𝑠𝑒𝑟 
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Figure 18 - Laser to world coordinates 

For the Kinect calculation (Figure 19), the method uses three parameters: 

𝑎𝑘=AngleSmallError, the person related to the center of the Kinect (from 

/Pan_Error_Command); 𝑎𝑝=AngleErrorPan, the position of the Pan related to the center 

of the robot (from /Pan_Feedback); and 𝐷𝑘= msg->tracks[i].distance, the distance of 

the person from the Kinect (from /tracker/tracks).  

The transformation of the person's position to the world coordinates is given by: 

𝑥𝑘𝑖𝑛𝑒𝑐𝑡𝑃𝑎𝑡ℎ = 𝑥𝑟𝑜𝑏𝑜𝑡 + cos(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑘 + 𝑎𝑝) ∗ 𝐷𝑘 

𝑦𝑘𝑖𝑛𝑒𝑐𝑡𝑃𝑎𝑡ℎ = 𝑦𝑟𝑜𝑏𝑜𝑡 + sin(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑘 + 𝑎𝑝) ∗ 𝐷𝑘 
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Figure 19 - Kinect to world coordinates 

For using the history position, a vector of X values and Y values was inserted into the HF 

method to calculate the position of the person (𝑥𝑝𝑎𝑡ℎ, 𝑦𝑝𝑎𝑡ℎ). The laser has an average 

frequency of 8 Hz, and the Kinect has an average frequency of 15 Hz. In order for the robot 

to use the same history points of the detected person, the 32nd point from the laser and the 

60th point from the Kinect were taken each time to calculate the history position of the person 

(4 seconds of history). To calculate the angle (𝑎𝑓𝑜𝑙𝑙𝑜𝑤) and the distance of following 

(𝐷𝑓𝑜𝑙𝑙𝑜𝑤), these history points are used with the position and orientation of the robot, as 

follows: 

𝑎𝑓𝑜𝑙𝑙𝑜𝑤 = 𝑜𝑟𝑜𝑏𝑜𝑡 + tan−1 (
𝑦𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑦𝑟𝑜𝑏𝑜𝑡

𝑥𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑥𝑟𝑜𝑏𝑜𝑡
) 

𝐷𝑓𝑜𝑙𝑙𝑜𝑤 = √(𝑥𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑥𝑟𝑜𝑏𝑜𝑡)2 + (𝑦𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑦𝑟𝑜𝑏𝑜𝑡)2 

To avoid problems near the forward and backward of the robot caused by large differences 

when switching between positive and negative angle values, a positive transformation was 

added to the value of the angles. 

If the absolute value between the orientation of the robot and the angle of the history 

following person to the robot is >π (3.14, half of a circle), then depending on whether the 

angle is positive or negative, the angle changes with 2π (a circle) to avoid a large change 

near those values. In other words, the values for 𝑎𝑓𝑜𝑙𝑙𝑜𝑤 lie between [-π, +π].  
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The velocity commands are executed in a manner similar to the DF method, but are related 

to the history point and the real time position of the person to prevent the robot from getting 

too close to the actual position of the person. 

The angular velocity of the robot depends on 𝐾𝑝𝐴𝑛𝑔𝑙𝑒=0.5 (the twist speed controller) and 

on the angle of following: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = −𝑎𝑓𝑜𝑙𝑙𝑜𝑤 ∗ 𝐾𝑝𝐴𝑛𝑔𝑙𝑒 

If 𝐷𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 > 𝐷𝑇𝐴𝑅𝐺𝐸𝑇 , then the actual measurement of the distance from the Kinect or 

from the laser to the person exceeds the distance that the robot needs to maintain following. 

In such a case, the robot must to move in such a way as to reduce the distance from the 

person, as follows: 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑙𝑖𝑛𝑒𝑎𝑟 = (𝐷𝑓𝑜𝑙𝑙𝑜𝑤 − 𝐷𝑇𝐴𝑅𝐺𝐸𝑇) ∗ 𝐾𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Otherwise, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑙𝑖𝑛𝑒𝑎𝑟 = 0 

This equation implies that if the distance of the robot from the target (constant 1.2 m) exceeds 

the distance of the robot to the history point, then the robot's linear speed will be zero, 

indicating that the person is too close. 

To prevent large changes in the position of the person caused by the movements of the 

robot and the Kinect, a threshold of comparing the following samples was added and if the 

distance between two followers samples of person's position is >1 m , the last sample will 

be ignored. 

To avoid quick turns that cause the Pan to lose the person, the angular velocity of the robot 

was limited to 0.5 rad/s (like the maximum speed of the Pan). 

To avoid problems related to two sources of person detection, the method uses first the 

Kinect detection, and if it loses tracking, then it changes to laser detection. If there is no 

detection by both sensors, the method can use the SAD integrated algorithm. This method 

can work even with only one source of person detection (Kinect or laser). A method that 

works with both of the sources together is described In Section 4.10 'Adaptive Following 

Methods.'  

 

4.10 Adaptive Following Methods (Kinect and Laser) 

This adaptive method refers to DF and HF as an extension to the methods that are described 

above (Direct-Following Section 4.8 and History-Following Section 4.9). To use two 

sources of person detection, the method must implement a decision-making routine to select 
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which source to use for the following algorithm. An additional parameter was created to 

compare the person's position determined by the laser detector in the world coordinates with 

that determined by the Kinect. If the distance between these two measurements is >20 cm, 

then the method declares a "Match," which implies the same person is detected from both 

sources. Each sensor has inherent advantages and disadvantages as indicated in Table 4: 

Table 4- Properties of Kinect vs. laser detector 

 Kinect V2 Laser 

Horizontal FOV (degrees) 84.1 RGB, 70.6 Depth 240 

Vertical FOV (degrees) 53.8 RGB, 60 Depth Only 2D view (20 cm high) 

Distance (meters) 1-10 RGB, 0.5-4.5 Depth 0-30 

Reliability Depends (confidence level) Less reliable 

 

Based on empirical investigations, the decision-making routine gives priority to the Kinect 

(Figure 20) to calculate the following parameters. If after 3 s of "no" Kinect detection, the 

routine changes to the laser detector to calculate the following parameters until the Kinect 

recovers. If both sensors do not detect the person, then the routine uses the SAD algorithm.  

 

 

Figure 20 - Flowchart of the adaptive decision making Kinect- and laser-detection 

algorithm 
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5. Chapter Five: Results and Discussion 
 

5.1  Overview 

The results of all the experiments are detailed in this chapter. The two preliminary 

experiments with Kinect V1 are described in Sections 5.2 and 5.3. The experiment that 

compares the different following angles used with Kinect V2 is described in Section 5.4. 

The comparison between the three occlusion detection algorithms is described in Section 

5.5. The direct-following and history-following experiments that evaluate and compare the 

performances of various combinations of integrated algorithms in the two main human-

following methods are described in Sections 5.6 and 5.7. The adaptive Kinect-laser vs non-

adaptive (for direct following and history following) experiment is described in Section 5.8.  

   

5.2 Preliminary Experiment: Identifying Testable Parameters on a  

No-Pan Kinect V1 

A series of parameters were tested to evaluate the Kinect parameters (Table 5). 

 

Table 5- The set of usable parameters tested for the variables 

Max 

speed 

(m/s) 

Respon-

siveness 

distance 

Respon-

siveness 

turn 

Minimum 

distance to 

person (m) 

Angle 

(rad) 

Results/Opinion 

1 1.2 1.2 2 0.5 Loses the person  

(due to large angle) 

1 1.2 1.2 2 0.4 Loses the person  

(due to large angle) 

1 1.2 1.2 2 0.3 Loses the person  

(due to high velocity) 

1 0.8 1.2 2 0.3 Causes the robot to vibrate and loses the 

person (due to high velocity) 

1 0.8 0.8 2 0.3 Causes the robot to vibrate and loses the 

person (due to high velocity) 

0.5 0.5 0.5 2 0.3 Slow near the person; some loss of the person 

(due to high velocity and far distance) 

0.3 0.8 0.8 2 0.3 Good tracking  

but far distance from the person 

0.3 0.8 0.8 1 0.3 Good tracking  

and good distance from the person 

 

The robot lost the person in the first and second trials due to the large tracking angle (0.5 

and 0.4 rad, respectively). In the third trial, the robot lost the person due to its high linear 

velocity (responsiveness of 1.2). After the responsiveness of the linear velocity (which 

depends on the distance between the robot and the person) was decreased to 0.8, the robot 

lost the person due to vibration caused by the angular responsiveness of 1.2. If the 
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responsiveness is too slow (0.5 for both linear and angular velocities) and the maximum 

speed of the robot is also slow (0.5 m/s), the robot loses the person due to the far distance. 

After obtaining good stable tracking at 0.3 rad from the side, with responsiveness of 0.8 for 

both linear and angular velocities and a maximum speed of 0.3 m/s, the minimum distance 

from the person can decreased to 1 m instead of 2 m. 

  

Based on the above experiments, the final selected parameters were:   

 0.3 rad for angle following  

 1 m for minimum distance between a person and the Kinect camera  

 0.8 responsiveness both for turning and distance  

 0.3 m/s as maximum speed of the robot   

 

5.3 Preliminary experiment: Testing Objective & Subjective Metric 

Performances of Two Angles on a No-Pan Kinect V1 

The following objective results were obtained:  

 If the robot lost the person, it continued its current movement until it either found the 

person and then continued to follow the person or it detected an obstacle and stopped. 

This occurred in both ways.  

 The maximum distance before losing the person was 4 m (see Figure 21 for an example 

of losing the tracking at distances >4 m).  

 Since the robot lacks a vertical tilt, it tended to lose track of tall people when they were 

too close to it (see Figure 21 for an example of losing tracking at close distance).  

 The robot detected shadows on the wall as additional people due to the lighting 

conditions and to reflections. This happened mostly at side-following because of the 

small distance between the robot and the wall (Figure 22). 

 In 93% of instances of losing the person, the robot recovered by itself (26/28) (Figure 

22).  

 The average following angle was a bit larger than programmed (Figure 23, Table 6): 

o Back-following 0.76° (supposed to be 0°)  

o Side-following 18.25° (supposed to be 17.19°) 
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Figure 21 - Examples of losing tracking at distances > 4 m and at close distances    

(Kinect V1) 

 

 

Figure 22 - Losses reasons (back-following vs. side-following) 
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Figure 23 - Means and variance degrees (back-following vs. side-following) 

 

Table 6 - Following angle results (back-following vs. side-following) 

subject side-following 

All path 

side-following 

without turn 

back-following 

All path 

back-following 

Without turn 

1 14.21 18.59 -3.4 0.93 

2 13.72 17.96 -3.93 0.03 

3 13.64 17.66 -1.25 0.46 

4 13.72 17.61 -3.46 0.9 

5 14.42 19.25 -1.48 0.98 

6 13.94 18.42 -3.91 1.23 

average 13.94 18.25 -2.91 0.76 

covariance 0.10 0.40 1.48 0.19 
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The subjective results of the experiments are summarized in Table 7. The main findings 

were:  

 

 There were significant differences in the subjective assessments of 'following quality', 

'robot responsiveness' and 'comfort with speed.'  

 The robot lost the person more frequently in back following (by 33% more losses in 

back-following) than in side-following. This is because people tended to walk faster (and 

noticed the robot's presence less) and created a much larger distance between them and 

the robot.  

 Subjects felt that the robot moved too slowly and they thus lowered their speed to adapt 

to the robot; yet to 4/6 subjects the robot felt slower in back-following than side-

following.  

 The subjects reported that they adapted their walking speed and behavior to the robot to 

a greater extent for back-following. 

 4/6 of subjects felt less threatened with the following distance of the robot in back-

following.  

 Subjects were slightly less stressed by the robot in the back-following condition.  

 The task was perceived as non-stressful. The robot was perceived to be friendly and not 

dangerous, scary, annoying or stressful.  

 There was no conclusive self-reported preference between back-following and side-

following. 

 There were no perceived differences in the quality of following. 

 The comfort of the subjects with the responsiveness of the robot was the same for both 

back and side-following. 
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Table 7- Subjective results of the performances of two angles experiment 

Following behind 

      

Average 

Gender F M F M M F 
 

Subject # 1 2 3 4 5 6 
 

Person stressed by task 1 2 1 1 1 3 1.5 

Person stressed by robot 2 2 1 1 1 1 1.33 

Person adapted behavior based on robot 3 4 5 3 3 4 3.66 

Robot adapted behavior based on person 4 3 3 4 4 4 3.66 

Walking was independent of robot 1 2 1 2 2 2 1.66 

Person was comfortable with speed of robot 1 4 3 3 2 5 3 

Robot moved too slowly 5 4 5 4 5 1 4 

Person was satisfied with the quality of following 2 4 5 3 3 5 3.66 

Person felt safe regarding the distance of the robot 5 5 5 4 5 5 4.83 

Person lowered speed to adapt to the speed of the robot 5 5 5 4 5 4 4.66 

Following at angle 

      

Average 

Gender F M F M M F 
 

Subject # 1 2 3 4 5 6  

Person stressed by task 1 1 1 2 1 2 1.33 

Person stressed by robot 2 3 1 2 1 3 2 

Person adapted behavior based on robot 2 2 1 4 4 4 2.83 

Robot adapted behavior based on person 4 3 5 4 4 4 4 

Walking was independent of robot 2 3 2 2 2 1 2 

Person was comfortable with speed of robot 3 4 5 3 2 5 3.66 

Robot moved too slowly 4 3 1 4 4 2 3 

Person was satisfied with the quality of following 4 4 5 3 2 4 3.66 

Person felt safe regarding the distance of the robot 3 3 5 4 4 3 3.66 

Person lowered speed to adapt to the speed of the robot 5 2 5 4 5 5 4.33 

Comparison 

       

Subject # 1 2 3 4 5 6 
 

Person felt a difference in the difference between the 2 trials 4 4 3 2 4 4 3.5 

Opinion of Robot (the robot is..) 

       

Friendly 3 3 3 2 5 4 3.33 

Disturbing 2 3 1 4 3 1 2.33 

Considerate 1 4 3 3 1 4 2.66 

Dangerous 2 1 1 2 1 1 1.33 

Scary 1 2 1 2 1 2 1.5 

Annoying 3 2 1 3 3 1 2.16 

Stressful 3 1 1 2 2 2 1.83 

 

5.4 Testing Objective & Subjective Metric Performances of Three 

Angles on a Pan Kinect V2 

Objective indicators used to assess the quality of following (Table 8) indicated while that the 

mean following angle at 0° following and 30° following were consistently close to the 

intended angles (2.31° and 28.26°, respectively), the implementation of 60° following was 

unsuccessful (mean = 26.11°, STD = 7.315). This lack of success may be attributed to the 

different methods of following and problems that were caused due to the implementation of 
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the  60° of following. There was no significant difference across trials in the following 

distance (0° and 30°) (Honig et al., 2016). The mean following distance for men was 17.2 

cm greater (by 8%) than that for women. The number of times the robot lost track of the 

participants (defined as 'losses' in Table 8), and the mean number of interventions due to loss 

or for safety reasons increased with the following angle, but these differences were not 

statistically significant (sig. = 0.206, sig. = 0.205, sig. = 0.297, respectively). 

Table 8- Cumulative results for objective measures for quality of walk  

 0° 30° 60° 

Distance 2.36±0.69 2.29±0.59 2.2±0.57 

Angle 2.31±10.41 -28.26±11.04 26.11±12.73 

Number of losses 0.36±0.75 0.72±0.62 1.16±0.28 

Number of 

interventions due 

to loss 

0.32±0.62 0.44±0.82 0.96±0.97 

Number of 

interventions due 

to safety 

0.08±0.27 0.24±0.43 0.52±0.71 

 

5.5 Comparison of Occlusion Algorithms  

The results (Table 9) show that the algorithm that uses depth information (DO) yielded 

better average true detection (92.7%±8.75%) than the algorithms that use grey level images 

(VO) (40.5%±23%) and their combination (CO) (63%±11.25%) in corrent implementation 

for all scenarios and distances, including very far distances (8 m). DO exhibited high 

sensitivity and specificity as compared to VO (sig. = 0.000) and CO (sig. = 0.000). DO 

yielded the best detection results, followed by the CO algorithm, and the worst algorithm 

was VO (sig. = 0.000, F = 25.748). DO yielded the least false alarms and misses 

(9.7%±8.75%), less than CO (36.9%±11.25%) but not statistically significantly different, 

and the worst results were obtained for VO (59.4%±23%) (sig. = 0.173, F = 1.98). These 

results indicate the reliable measurements of the Kinect Depth stream that are used in the 

DO algorithm developed to derive a compatible threshold to reduce false distance 

measurements and closer body parts mistakes. The low performance of VO, namely, the high 

number of false occlusions detected showed that the detection of straight lines was not 

adequate. 
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Table 9- results of comparison occlusion algorithms experiment 

 True 

Negative 

False 

Positive 

False 

Negative 

True 

Positive 

DO 

(occlusions) 

0.88±0.17 0.12±0.17 0.083±0.09 0.916±0.09 

CO 

(occlusions) 

0.895±0.12 0.105±0.12 0.552±0.06 0.447±0.06 

DO (wall) 1±0 0±0 0.088±0.09 0.912±0.09 

VO (wall) 0.695±0.31 0.305±0.31 0.883±0.15 0.116±0.15 

CO (wall) 0.94±0.08 0.06±0.08 0.76±0.19 0.24±0.19 

*The best results are highlighted in yellow 

 

The results indicate that CO detection was almost half of DO detection at distances <5 m 

(Pearson: sig. = 0.01, r (43) = 0.706) and almost half of VO at distances >5 m (Pearson: sig. 

= 0.01, r (22) = 0.535). VO produced a high number of false negatives. Unexpectedly, DO 

was found to be better than VO and CO even at far distances.  

 

5.6 Direct-Following Experiment 

The main results obtained were: 

 The results presented in Table 10 indicate that the trials with the two search algorithms 

(trials 1 and 2) gave better results than the trial without the search algorithm (trial 3) in 

terms of the percentage of self-recoveries and intervene-recovers out of the total number 

of losses (with a search algorithm, all losses were self-recovered; without the search 

algorithm, all the losses required intervention for 100% recovery). The only significant 

difference between the three trials was in the ratio of stable tracking of the person to no 

tracking of the person (sig. = 0.047, f = 3.633). The results for average ratio of stable 

tracking of the person to no tracking of the person for the trials with the two search 

algorithms were better by 21% (trials 1 and 2, mean±STD = 0.983±0.016) than for the 

trial with no search algorithm (trial 3, mean±STD = 0.81±0.165). Post-hoc pairwise 

comparisons (Tukey test) showed a difference that was almost significant between trial 3 

and trials 1 and 2 (sig. = 0.075, p = 0.078, respectively), with a homogeneity of variances 

of 0.11. 

 For the seven subjects, there were differences in the total number of losses: trials with the 

search algorithms yielded 60% less losses than those without a search algorithm (search 

0.4±0.489; without search 1±1.264) but the homogeneity of variances of 0.01 indicates 

that this difference was not significant. It was also found, as expected, that each subject 

walked at a unique average velocity. 
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 There was no significant difference between the two search algorithms. The only 

difference between trial 1 and trial 2 was that trial 1 was conducted with the DO 

algorithm, and trial 2, without.  

 The order in which the trials were conducted during the experiment did not influence the 

results. 

 In this experiment the best algorithm was the combination of SAD and DO (trial 2 -  

Figure 24) because the combination gave significantly better results – by 21% – than the 

DO algorithm alone (without the search algorithm) for average ratio of stable tracking of 

the person to no tracking of the person; this result was similar to that of the first trial, 

which used only the search algorithm without the DO algorithm (Table 10). 

Table 10 - Results for Direct-Following experiment 

Trial Type Total 

loss 

Total 

loss with 

self 

recovery 

Ratio 

self- 

recovery 

to total 

loss 

Total loss 

with 

intervent 

Ratio 

intervent 

to total 

loss 

Total 

safety 

intervent 

Robot 

distance 

1 Search 2 2 100 0 0 3 13.28 

2 Search+ 

occlusion 

4 4 100 0 0 1 12.74 

3 Occlusion 8 0 0 8 100 3 13.85 

 

Trial Velocity 

of the 

subject 

Depth 

occlusion 

False 

alarm 

depth 

occlusion 

Ratio 

track to 

no-track 

Distance STD 

distance 

Total 

obstacles 

hit 

1 0.54   0.98 3.14 0.83 2 

2 0.56 0.84 0.46 0.98 2.99 0.71 2 

3 0.52 0.79 0.49 0.81 3.29 0.86 1 

*Yellow fill indicates the best results (although not statistically significant) 
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Figure 24- An example of Direct-Following with search and occlusion algorithms from 

RVIZ (Blue-subject, Red-robot) 

 

5.7  History Following Experiment 

The results in Table 11 indicate that there was only one significant difference between the 

two HF algorithms, namely, the difference in the total path length of the robot during the 

experiment (sig. = 0.02, f = 15.765). The algorithm that gave the longer path – by 22% – 

was the DO algorithm used in the second trial (without DO 16.085±1.604; with DO 

19.157±1.007). In addition, there was no significant difference in the number of losses or in 

the ratio of stable tracking to no tracking of the person. There was a difference in the percent 

of self-recoveries—200% more self-recoveries with the DO algorithm (7.14% self-

recoveries for no DO algorithm vs 21.43% self-recoveries with the DO algorithm).  

As in the DF experiment (Section 5.6), each subject had a unique average velocity, as 

expected, and the order of the trials during the experiment did not influence the results. 

A reasonable explanation for the difference in the length of the path is that this parameter 

depends on the movements of the robot during recognizing an occlusion of the person (by 

DO algorithm) and changing the following angle to change the line of sight between the 

robot and the person (which increases the length of the path). In addition, the percent of self-

recoveries after loss was three times higher when using the DO algorithm; this finding 

implies that it is better to use the DO algorithm in an unknown environment. Hence, the best 

algorithm in this experiment was shown to be the DO algorithm (Table 11 and Figure 25). 
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Table 11- Results for History-Following experiment  

Trial Type Total 

loss 

Total 

loss with 

self 

recovery 

Ratio 

self- 

recovery 

to total 

loss 

Total loss 

with 

intervent 

Ratio 

intervent 

to total 

loss 

Total 

safety 

intervent 

Robot 

distance 

1 Search 8 1 12.5 7 87.5 2 16.08 

2 Search+ 

occlusion 

9 3 33.3 6 66.6 4 19.16 

 

Trial Velocity 

of the 

subject 

Depth 

occlusion 

False 

alarm 

depth 

occlusion 

Ratio 

track to 

no-track 

Distance STD 

distance 

Total 

obstacles 

hit 

1 0.50   0.81 3.29 0.92 1 

2 0.48 0.80 0.51 0.82 3.50 0.91 1 

*yellow fill indicates statistically significant result. 

 

Figure 25 - Example of History-Following with search and occlusion algorithms from 

RVIZ (Blue-subject, Red-robot) 

A comparison of the three trials of the DF experiment (Section 5.5) and the two trials of the 

HF experiment (Table 12) shows that direct following is better than history following (the 

opposite than expected) due to large calculation processing in HF. Losses for DF were 45% 

less than those for HF (sig. = 0.077, not significant). Out of the total losses, the percentage 

of intervene-recoveries was lower by 70% in the DF (sig. = 0.003). The tracking ratio is 13% 
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better in the DF (sig. = 0.022) and the path distance of the robot was shorter by 25% (sig. = 

0.000). In addition, the velocity of the subject was faster by 10% in the DF (sig. = 0.071, not 

significant). 

Table 12- Statistic comparison between 3 DF trials vs 2 HF trials  

Variable 3 Direct trials   

Mean±STD 

2 History trials 

Mean±STD 

F Sig. 

Number of total losses 0.67±0.856 1.21±0.893 3.332 0.077 

Percent of intervene-recover out of 

total loss 

0.1905±0.402 0.6429±0.412 10.404 0.003 

Tracking ratio (Kinect) 0.9257±0.129 0.8157±0.136 5.804 0.022 

Average velocity of the subject (m/s) 0.5419±0.081 0.4877±0.083 3.484 0.071 

Total path length of the robot (m) 13.29±1.989 17.6214±2.114 37.868 0.000 

*Yellow fill indicates that the difference is significant at the 0.05 level. 

The results indicate influence of the different following methods (DF vs HF) on the results 

(Table 13). The next experiment must include a larger number of participants in order to 

obtain statistically significant results. 

Table 13 - Results for the comparison between 3 DF trials vs 2 HF trials 

Trial Type Total 

loss 

Total 

loss with 

self 

recovery 

Ratio 

self- 

recovery 

to total 

loss 

Total loss 

with 

intervent 

Ratio 

intervent 

to total 

loss 

Total 

safety 

intervent 

Robot 

distance 

1 Direct 4.67 2 66.66 2.67 33.33 2.33 13.29 

2 History 8.50 2 22.90 6.50 77.05 3 17.62 

 

Trial Velocity 

of the 

subject 

Depth 

occlusion 

False 

alarm 

depth 

occlusion 

Ratio 

track to 

no-track 

Distance STD 

distance 

Total 

obstacles 

hit 

1 0.54 0.81 0.47 0.93 3.14 0.80 1.67 

2 0.49 0.80 0.51 0.82 3.39 0.92 1 

*Green indicates the best results (although not significant), and yellow indicates 

results with statistical significance at the 0.05 level. 

 

The main significant difference between the five trials lies in the total path length of the 

robot (Figure 26 and Table 14), with homogeneity of variances of 0.74 (sig. = 0.000, f = 
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14.614). The shortest path (trial 2- DF with SAD and DO) was shorter by 33% than the 

longest path (trial 5- HF with SAD and DO).  

 
Figure 26 - Five trials total path length of the robot 

Table 14 - Results for five trials 

Trial Type Total 

loss 

Total 

loss with 

self 

recovery 

Ratio 

self- 

recovery 

to total 

loss 

Total loss 

with 

intervent 

Ratio 

intervent 

to total 

loss 

Total 

safety 

intervent 

Robot 

distance 

1 Direct 

search 
2 2 100 0 0 3 13.28 

2 Direct 

search+ 

occlusion 

4 4 100 0 0 1 12.74 

3 Direct 

occlusion 
8 0 0 8 100 3 13.85 

4 History 

search 
8 1 12.5 7 87.5 2 16.08 

5 History 

search+ 

occlusion 

9 3 33.3 6 66.6 4 19.16 

 

Trial Velocity 

of the 

subject 

Depth 

occlusion 

FA 

depth 

occlusion 

Ratio 

track to 

no-track 

Distance STD 

distance 

Total 

obstacles 

hit 

1 0.54   0.98 3.14 0.83 2 

2 0.56 0.84 0.46 0.98 2.99 0.71 2 

3 0.52 0.79 0.49 0.81 3.29 0.86 1 

4 0.50   0.81 3.29 0.92 1 

5 0.48 0.80 0.51 0.82 3.50 0.91 1 
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5.8 Adaptive Kinect-Laser Method vs. Non-Adaptive Kinect Method 

(for Direct-Following and History-Following) Experiment 

The comparison of the adaptive Kinect-laser methods with the non-adaptive Kinect 

methods indicates better performance of the adaptive methods (Table 15):  

Table 15 – Statistic comparison between Adaptive Kinect-laser methods vs Non-adaptive 

Kinect methods 

Variable Adaptive 

Method 

Mean±STD 

Non-Adaptive 

Method 

Mean±STD 

F Sig. 

Number of total losses** 1.25±0.812 

**0.982±0.54 

2.27±1.18 

**0.592±0.49 

13.395 0.000 

Percent of intervene-recover out of 

total losses 

0.225±0.362 0.651±0.364 32.897 0.000 

Number of safety interventions 0.79±0.713 1.33±0.781 12.588 0.001 

STD of the distance between robot 

and subject (m) 

0.785±0.261 0.905±0.306 4.266 0.042 

Percent of false depth occlusions 0.237±0.114 0.296±0.147 4.866 0.03 

Percent of depth occlusions 0.774±0.130 0.715±0.122 5.132 0.026 

*Yellow fill indicates that the difference is significant at the 0.05 level. 

**The total number of losses has a homogeneity of variances of 0.008. Therefore, a transformation 

of 1/X was performed, resulting in a homogeneity of variances of 0.561. 

 

The percent of 'intervene-recovers' out of total losses was lower in the adaptive Kinect-laser 

methods by 65% (adaptive Kinect-laser average 0.225±0.362 vs. non-adaptive average 

0.651±0.364) due to the ability of the robot to 'reconnect' with the person by using the laser 

sensor when the Kinect had lost the person. For the same reason, the number of interventions 

resulting from the robot getting too close to a wall was lower in the adaptive Kinect-laser 

methods by 41% (adaptive Kinect-laser average 0.79±0.713; non-adaptive average 

1.33±0.781). In addition, the STD of the distance between the robot and the subject was 

smaller in the adaptive Kinect-laser methods by 13% (adaptive Kinect-laser average 

0.785±0.261; non-adaptive average 0.905±0.306) due to fewer losses and more steady 

following with less variation in the distances. Perhaps, this is also the reason for better 

occlusion detection and less false occlusion detection in the adaptive Kinect-laser methods 

by 8% and 20%, respectively.  
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The comparison between the two following methods (DF adaptive and non-adaptive 

methods vs HF adaptive and non-adaptive methods) shows better results for the DF (Table 

16):  

Table 16- Direct-Following (adaptive and non-adaptive methods) vs History-Following 

(adaptive and non-adaptive methods) 

Variable Direct 

Following 

Mean±STD 

History 

Following 

Mean±STD 

F Sig. 

Number of total losses 1.35±1.101 2.17±1.018 14.097 0.000 

Number of intervene-recover   0.77±1.057 1.38±1.064 7.789 0.006 

Number of laser obstacles found 37.29±19.64 50.69±23.46 9.2 0.03 

Percent false alarm detection of legs 0.189±0.302 0.435±0.295 7.98 0.007 

Tracking ratio for Kinect 0.935±0.081 0.88±0.094 9.174 0.003 

Percent of false depth occlusion 0.225±0.125 0.309±0.131 10.373 0.002 

Velocity of the subject 0.404±0.092 0.336±0.079 14.82 0.000 

Total path length of the robot 19.298±1.80 23.607±2.08 64.718 0.000 

Number of matchings for the position of 

the subject by Kinect and laser detector 

32.08±22.11 15.5±13.99 9.641 0.003 

Tracking ratio for laser detector 0.596±0.264 0.318±0.186 17.689 0.000 

*Yellow fill indicates difference is significant at the 0.05 level. 

Higher – by 6% and 47%, respectively – stable tracking ratios were obtained with the Kinect 

and laser sensors for the DF methods (adaptive and non-adaptive). A reasonable explanation 

for this finding is that the robot always turns directly to the subject in DF methods, which 

means that if the robot loses the person, the Pan returns the Kinect to the center of the robot 

where the person is most likely to be and the line of sight of the laser sensor is aimed in front 

of the robot. In contrast, in the HF (adaptive and non-adaptive) methods, the robot does not 

move directly to the person but rather to the person's historical position. In other words, most 

of the time the person is not in front of the robot. For the same reason, the number of 

interventions due to losses was lower, by 44%, in DF (adaptive and non-adaptive) methods 

than in HF (adaptive and non-adaptive) methods due to the direction of the sensors when the 

robot loses the person and to the inferior ability of the robot to self-recover when the sensors 

are not directed to the person (in front of the robot). This reasoning also explains the lower 

– by 38% – number of total losses for DF (adaptive and non-adaptive) methods. In addition, 

less stable tracking can cause more false occlusion detections due to false person detection. 
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The average distance between the robot and the subject was not significantly different 

(homogeneity of variances of 0.012; DF 3.051±0.545; HF 3.696±0.370 with sig. = 0.000,    

f = 45.905). The percent of false alarms of legs detection was higher in HF (adaptive and 

non-adaptive) by 56% and showed a positive correlation to the distance. Longer distances 

could cause a higher probability of false alarms, since it becomes more difficult for the laser 

sensor to find the person's legs as the distance increases. The velocity of the subject could 

be faster when the robot is closer and slower when the robot is further away (since the person 

may have to wait for the robot). The number of matchings between the position of the subject 

by the Kinect and by the laser sensor was higher when both sensors give stable and reliable 

tracking, which also depends on the distance. 

The total path length of the robot was shorter – by 18% – in DF (adaptive and non-adaptive), 

as expected. In DF (adaptive and non-adaptive), the robot moves directly to the subject by 

taking short cuts, while in HF (adaptive and non-adaptive) the robot moves to the historical 

position of the subject without any short cuts. The difference may explain why the number 

of laser obstacles in HF (adaptive and non-adaptive) was higher by 36%, since the robot 

follows the subject's historical position when the subject moves near an obstacle. 

In addition, people preferred the DF than HF due to the robot's response (location and 

continuity of movement). 

A comparison between the heights of the male and female participants showed that the men 

were significantly taller than the women by 4% and the standard deviation (STD) of the 

distance between the robot and the subject (Table 17) of the men were significantly higher 

than the women by 3%. 

Table 17- Statistical comparison between males vs females  

Variable Males     

Mean±STD 

Females 

Mean±STD 

F Sig. 

Height of the subject 1.635±0.626 1.593±0.060 10.95 0.001 

STD of the distance between robot and 

subject 

0.792±0.279 0.921±0.289 4.836 0.03 

*Yellow indicates difference is significant at the 0.05 level. 

There was no difference in the tracking ratio or the average distance between the robot and 

the subject that can explain the different STDs. The only reasonable explanation lies in the 

fluctuations in the velocity of the subject. The velocity calculation was based only the 

average velocity during the entire trial and not the fluctuation of the velocity during the trial. 

If males, for instance, walked at a "more" constant velocity than females, then the STD 

distance of males are smaller by 14% than females. 
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For the 24 participants, the only significant difference between the men and the women was 

that in their height, as expected (sig. = 0.000, f = 22.775).  

The order of the trials during the experiment did not influence on the results. 

 

A comparison between the four trials (HF-Adaptive, HF-Non-Adaptive, DF-Adaptive, DF-

Non-Adaptive) shows differences (Table 18). The means for groups in homogeneous 

subsets are displayed in  

Figure 27. 

Table 18- Statistical comparison between the four trials 

Variable HF-

Adaptive 

Method 

Mean± STD 

HF-Non-

Adaptive 

Mean± STD 

DF-

Adaptive  

Mean± STD 

DF-Non-

Adaptive 

Mean± STD 

F Sig. 

Number of total losses 1.67±0.761 2.67±1.007 0.83± 0.637 1.88±0.899 19.39 0.000 

Number of safety 

interventions 

0.88± 0.797 1.46±0.721 0.71±0.624 1.21±0.833 4.838 0.004 

Average distance 

between robot and 

subject 

3.614±0.39 3.778±0.33 2.985±0.50 3.118±0.58 16.21 0.000 

Tracking ratio with 

Kinect 

0.872±0.11 0.888±0.06 0.950±0.05 0.919±0.09 3.664 0.015 

Percent of false depth 

occlusion 

0.285±0.10 0.333±0.15 0.189±0.10 0.260±0.13 5.43 0.002 

Percent of depth 

occlusions detected 

0.729±0.15 0.750±0.06 0.818±0.07 0.681±0.15 5.360 0.002 

Velocity of the subject 0.327±0.07 0.346±0.08 0.404±0.09 0.404±0.09 5.051 0.003 

Total path length of the 

robot 

23.40±2.10 23.80±2.08 18.60±1.72 19.99±1.62 43.52 0.000 

*Yellow highlighting indicates the best results and black highlighting, the worst, with difference 

being significant at the 0.05 level. 



 
66 

 

 

Figure 27-Means for groups in homogeneous subsets 

The Kinect tracking ratio was highest in the DF-adaptive Kinect-laser mode as compared to 

the ratio for the other modes (DF-non-adaptive by 3%; HF-adaptive by 9%; HF-non-

adaptive by 7%). There was a significant difference only between the best and the worst 

results (DF-adaptive 0.95±0.05 vs HF-adaptive 0.872±0.11, with sig. = 0.015). A reasonable 

explanation for this finding is that the robot always turns directly to the subject in DF 

(adaptive and non-adaptive) methods, which means that if it loses the person, the Pan returns 

the Kinect to the center of the robot where the person is most likely to be. In contrast, in the 

HF (adaptive and non-adaptive) methods the robot does not move directly to the person but 

rather to the person's historical position. In other words, most of the time, the person is not 

in front of the robot. The results of false occlusion detection separates the DF-adaptive (once 

again the best result) to the HF-adaptive and the HF-non-adaptive with sig. = 0.002. 

Surprisingly, detection of real occlusions did not correlate with the false occlusions 

detections. The only significant difference is between DF-adaptive with the best result 
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(0.818±0.07) that is higher by 20% than the DF-non-adaptive (0.681±0.15, with sig. = 

0.001). 

The average distance between the robot and the subject in both DF methods (DF-adaptive 

2.985±0.5; DF-non-adaptive 3.118±0.58) was shorter by 17% than that in both the HF 

methods (HF-adaptive 3.614±0.39; HF-non-adaptive 3.778±0.33, with sig. = 0.000). The 

explanation of this significant difference lies in the differences between DF and HF, as 

explained above. This distance difference can also explain the velocity of the subject with 

significant differences between the DF (adaptive and non-adaptive) methods that are faster 

by 20% than the HF-adaptive. The velocity of the subject can be faster when the robot is 

closer and slower when the robot is farther (if waits for the robot).  

There was a significant difference in the average number of interventions due to safety 

reasons between the DF and HF methods, with adaptive Kinect-laser methods of following 

having 46% less safety interventions (DF-adaptive 0.71±0.624; HF-adaptive 0.88±0.797) 

than the HF-non-adaptive mode (1.46±0.721), with sig. = 0.004 and sig. = 0.04, respectively. 

The reason for this difference lies in the stability of the tracking, i.e., the adaptive-following 

methods use two sensors, and in the smaller number of losses – by 72% – in the adaptive-

following methods than in the non-adaptive-following methods. The average number of 

losses was significantly different between trials. The DF-adaptive mode gave fewer losses 

(0.833±0.637) than the HF-adaptive (1.666±0.761), the DF-non-adaptive (1.875±0.899) and 

the HF-non-adaptive (2.666±1.007) by 50% (sig. = 0.005), 56% (sig. = 0.000) and 69% (sig. 

= 0.000), respectively. 

The total path length of the robot was shorter by 18% in the DF (adaptive and non-adaptive) 

trials than in the HF (adaptive and non-adaptive) trials, as expected. There was a significant 

difference between the DF methods (DF-adaptive 18.605±1.72; DF-non-adaptive 

19.991±1.62) and the HF methods (HF-adaptive 23.405±2.1; HF-non-adaptive 

23.809±2.08), with sig. = 0.000. In the DF (adaptive and non-adaptive) methods, the robot 

moves directly to the subject with taking short cuts, as necessary, while in HF (adaptive and 

non-adaptive) methods the robot moves to the historical position of the subject without 

taking short cuts. Examples of trials are shown in Figure 28, where  

1. DF-adaptive - loss near the third obstacle; robot maintains stable tracking around the 

corner; Markers of Kinect and laser position 

2. DF-adaptive - "short-cut" at the third obstacle; loss of tracking around the corner and 

self-recovery; Markers of Kinect and laser position 

3. DF-non-adaptive - "short-cut" at the third obstacle; stable tracking, even around the 

corner 
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4. DF-non-adaptive - "short-cut" at the third obstacle; loss around the corner and self-

recovery 

5. HF-adaptive - stable tracking even around the corner; Markers of Kinect and laser 

position 

6. HF-adaptive - two losses near the walls, another loss around the corner and self-

recovery; Markers of Kinect and laser position 

7. HF-non-adaptive - two losses near the third obstacle; robot maintained stable tracking 

around the corner 

8. HF-non-adaptive - "short-cut" at the third obstacle and loss of tracking, some losses near 

the walls and around the corner with self-recovery 
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Figure 28- Trials examples for the adaptive and non-adaptive experiment (Yellow-subject, 

Red-robot) 

 

-Green point with 2 small red points represent the position of the person by laser sensor 

-Small turquoise point represents the position of the person by Kinect 

-Straight blue line represents a wall 

-Blue circle represents an obstacle 

-Red line represents a stable robot following path 
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The summarized results for all the performance measures that were tested in the experiments 

are shown in Table 19. According to the results, the best trial was DF-adaptive (the best in 

all performance measures), followed by HF-adaptive, DF-non-adaptive and HF-non-

adaptive, in that order. 

Table 19- The summarized results of the adaptive and non-adaptive (DF and HF) 

experiment ranking   

 History 

Adaptive 

History Direct 

Adaptive 

Direct 

Total Loss 1.67 2.67 0.83 1.88 

Total loss with self- recovery 0.88 0.71 0.71 0.46 

Ratio self- recovery to total loss 52.50 26.56 85.00 24.44 

Total loss with intervent 0.79 1.96 0.13 1.42 

Ratio intervent to total loss 47.50 73.44 15.00 75.56 

Total safety intervent 0.88 1.46 0.71 1.21 

Obstacles hit 0.17 0.33 0.00 0.38 

Laser obstacles 50.42 50.96 39.38 35.21 

Match 15.50  32.08  

Total Kinect fall 2 3 3 2 

Robot distance 23.45 24.18 18.69 20.16 

Velocity of the subject 0.33 0.35 0.40 0.40 

Depth occlusion 0.73 0.75 0.82 0.68 

False alarm depth occlusion 0.29 0.33 0.19 0.26 

Ratio track to no-track Kinect 0.87 0.89 0.95 0.92 

Ratio track to no-track Laser 0.32  0.60  

Legs false alarm 0.44  0.19  

Distance between robot to subject 3.61 3.78 2.99 3.12 

STD distance 0.90 0.97 0.67 0.84 

*Yellow fill indicates the best results and black fill, the worst, with significant difference at the 

0.05 level. 
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6. Chapter Six: Conclusions and Future Work 
 

6.1   Conclusions 

In this thesis, different algorithms and following methods were developed and tested for a 

human-following robot operating in unknown environments. The algorithms were developed 

for a robot operating without any a-priori information about the environment and without 

any special carry-on item and for people not wearing any specific items of clothing. The aim 

was to reduce the number of robot's losses of the person being detected and improve the 

robot's ability to self recover in unknown environments. The algorithms were implemented 

on a Pioneer LXRobot mobile platform equipped with a Kinect and laser sensor.  

The algorithms use depth methods to improve the occlusion detection process. It uses the 

laser to avoid obstacles during the following process in real time, adapts to the linear and 

angular velocities of the robot and it remembers the last position of the person to search the 

person after disappear by moving to the person last position and turns to the direction, that 

was calculated. 

The main conclusions from this research were: 

 The best occlusions detection algorithm is the DO, which uses the depth information 

from the Kinect.  

 For both following methods (DF and HF), the best performance was achieved by 

integrating three algorithms—DO, OA, and SAD.  

 Adaptive methods that combine the laser sensor with the Kinect for DF and HF 

methods are better than the methods that do not use the laser (non-adaptive), and DF 

methods are better than HF methods. The final ranking of algorithms is:  

DF with laser→ HF with laser→ DF without laser→ HF without laser. 

 

6.2 Research limitations 

This research has some limitations: 

 The experiments were performed on only one person at a time and not in crowded 

environments (without the ability to distinguish between people). 

 The obstacles and the entire room of the experiment was pre-tested and adapted to 

reduce false alarms of legs detection due to chair and table legs. 

 Indoor environments with manually adapting light conditions depends on the sun 

reflection. 
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 The subjects and the robot moved slowly to test the robot's following parameters that 

depend on large computing complexity.   

   

6.3 Future Work 

The algorithms and following methods presented in this thesis were tested in real-time on a 

mobile robot for human-following in unknown environments. There are several suggestions 

for future research: 

 In this research, the CO uses the DO (depth) algorithm when the person is close to 

the Kinect and the VO (vision) algorithm when the person is far from the Kinect. A 

better combined algorithm can be developed by using both of the sensors in parallel 

for comparing the results of each algorithm by defining a combined decision 

parameter for occlusion detection. 

 When the occlusion detection algorithm detects an occlusion process, it changes the 

robot's following angle to 15° (small occlusion or wall occlusion) or 30° (large 

occlusions). Adjusting the angle according to the size of the occlusion can result in 

improved performance (instead of the current simple selection between two fixed 

angles). 

 Future research should focus on the use of dynamic maps, using SLAM to help the 

robot navigate and orientate in previously visited environments.  

 Implementing ability of distinguish between people by using people parameters like 

height and width, or clothes parameters like color and shape to distinguish between 

people and then to search for the particular person being followed after loss. 

 Developing following angle above 30° (like side by side following). 

 For obstacles detection, the vertical search field of view should be increased by using 

the Kinect; the currently used technique is based on legs detection by a laser sensor, 

which has a very narrow search field of view (20 cm above the ground). 

 Improve the run time during HF by adding more parallel computers and increase the 

computing size. 
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Appendix A- An explanation of how to start the following 

methods and integrated algorithms 

Connect to LXRobot Wifi 

Computer 1 on the robot and Computer 2 not plugged to the robot 

Computer 2- Open new terminal: 

 ssh robot@robot-desktop (password: robot) 

 cd ~/workspace/ros/catkin 

 roslaunch start_base.launch 

Computer 1- connect the kinect and the pan to computer 1 (on the robot) 

Computer 1- open a terminal: 

 export ROS_MASTER_URI=http://robot-desktop:11311 

 cd ~/workspace/ros/catkin/devel/lib/kinect2_bridge 
 sudo ./kinect2_bridge (ignore error) 

 roslaunch tracking detection_and_tracking_kinect2.launch 

Computer 1- open a terminal: 

 export ROS_MASTER_URI=http://robot-desktop:11311 

 rosrun rosserial_python serial_node.py _port:=/dev/ttyUSB0 

_baud:=250000 

Computer 1- open a terminal: 

 export ROS_MASTER_URI=http://robot-desktop:11311 

 rostopic pub /Start_Stop_Pan std_msgs/Bool true 

Computer 1- open a terminal: 

 export ROS_MASTER_URI=http://robot-desktop:11311 

 rosrun kinect_orientation_control kinect_orientation_control_node 

The main following method can works with "leg_detector", with Kinect detection 

("Open_PTrack") and even with both of them (priority to the Kinect and than the Laser 

Leg-Detector). 

 

Computer 2- For "legs detector"- in new terminal: 

 cd workspace/ros/catkin/src/launchers 

 roslaunch start_leg_detector.launch 

http://robot-desktop:11311/
http://robot-desktop:11311/
http://robot-desktop:11311/
http://robot-desktop:11311/
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Computer 2- For obstacles avoidance, search for obstacles with the laser in real time- in 

new terminal: 

 rosrun obstacles laser_obstacles_avoidance 

Computer 1- For occlusion detection, declares an occlusion using the depth information of 

the Kinect during person detection- in new terminal: 

 rosrun occlusions depth_occlusions 

There are 4 main methods codes for robot following with integrated unknown 

environments algorithms. Each one of them can works by himself. 

In new terminal run one of the following lines: 

computer 2- in new terminal: 

 

 direct following with search algorithm when the person disappear: 

 rosrun people_follower simple_follower_kinect2_pan_laser 

 direct following without search algorithm when the person disappear: 

 rosrun people_follower 

simple_follower_kinect2_pan_laser_without_search 

 history following with search algorithm when the person disappear: 

 rosrun people_follower path_follower 

 history following without search algorithm when the person disappear: 

 rosrun people_follower path_follower_without_search 
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Appendix B- Likert-Style Questions for Section 3.4.3 
 

After each trial (back-following and side-following): 

Stressed by the task 1 2 3 4 5 

Stressed by the robot 1 2 3 4 5 

Person adapted behavior based on robot 1 2 3 4 5 

Robot adapted behavior based on person 1 2 3 4 5 

Walking was independent of robot 1 2 3 4 5 

Walking was comfortable with speed of robot 1 2 3 4 5 

Robot moved too slowly 1 2 3 4 5 

Person was satisfied with the quality of following 1 2 3 4 5 

Person felt safe regarding the distance of the robot 1 2 3 4 5 

I lowered my speed to adapt to the speed of the robot 1 2 3 4 5 

 

 

Final questionnaire to compare the two trials and the opinion on the robot: 

I felt a difference between the two trials 1 2 3 4 5 

In which trial did you feel more comfortable?  1 2 

Why  

Opinion of the Robot (the robot is..) 

Friendly 1 2 3 4 5 

Disturbing 1 2 3 4 5 

Considerate 1 2 3 4 5 

Dangerous 1 2 3 4 5 

Scary 1 2 3 4 5 

Annoying 1 2 3 4 5 

Stressful 1 2 3 4 5 
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Appendix C- Statistical Analysis 
For the analysis of the results for the comparison between occlusion detection algorithms 

(section 5.4), the Direct-Following experiment (section 5.5), the History-Following 

experiment (section 5.6) and the Adaptive vs Non-Adaptive Direct-Following and History-

Following experiment (section 5.7) there is a necessity to compare the means of the groups. 

The comparisons are performed using one-way ANOVA (analysis of variance) and Tukey's 

HSD test. The ANOVA analysis employs an F-test to determine whether there is a significant 

difference between two or more of the means. Tukey's HSD is a post hoc multiple 

comparison test, performed after the F-test determines that the means are not equal. The 

Tukey's HSD test separates and ranks the groups demanding 95% confidence level (α=0.05) 

for the entire comparison.  

D.1 Occlusion's algorithms comparison 

Raw data: 

Table 20 - Raw data occlusion's algorithms comparison 

 

 

 

 

 

 

 

 

 

 

 

false_bigfalse_smallfalse_wallfalse_occlusiontrue_bigtrue_smalltrue_walltrue_occlusiondistancetype

00000.850.1210.972depth

001.98rgb

00000.440.040.50.492.07depthrgb

00.4400.440.790.140.920.943.63depth

0.6704.05rgb

00.2900.290.410.050.440.454.18depthrgb

0.230.0500.280.680.030.730.724.9depth

0.10.114.89rgb

0.110.0200.130.340.010.350.354.71depthrgb

00000.80.120.910.925.81depth

0.7905.79rgb

0.180.025.7depthrgb

00000.970.03117.95depth

0.270.427.94rgb

0.180.137.83depthrgb

00000.250.700.954.33depth

00.173.94rgb

00000.260.2400.54.29depthrgb
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Statistical analysis (ANOVA and Tukey): 

Table 21- ANOVA occlusion's algorithms comparison 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

total_true Between Groups 1.722 2 .861 25.748 .000 

Within Groups .502 15 .033   
Total 2.224 17    

trueWall Between Groups 1.415 2 .708 9.764 .002 

Within Groups 1.087 15 .072   
Total 2.502 17    

total_false Between Groups .147 2 .073 1.980 .173 

Within Groups .556 15 .037   
Total .703 17    

 

Table 22- Tukey HSD occlusion's algorithms comparison 

 
 

 

 

 

 

 

 

 

Multiple Comparisons 

Tukey HSD 

Dependent Variable (I) algorithm (J) algorithm Mean 

Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

dimension1 

total_true 

dimension2 

do 

dimension3 

vo .72167* .10559 .000 .4474 .9959 

co .56083* .10559 .000 .2866 .8351 

vo 

dimension3 

do -.72167* .10559 .000 -.9959 -.4474 

co -.16083 .10559 .308 -.4351 .1134 

co 

dimension3 

do -.56083* .10559 .000 -.8351 -.2866 

vo .16083 .10559 .308 -.1134 .4351 

trueWall 

dimension2 

do 

dimension3 

vo .64333* .15543 .002 .2396 1.0471 

co .53000* .15543 .010 .1263 .9337 

vo 

dimension3 

do -.64333* .15543 .002 -1.0471 -.2396 

co -.11333 .15543 .750 -.5171 .2904 

co 

dimension3 

do -.53000* .15543 .010 -.9337 -.1263 

vo .11333 .15543 .750 -.2904 .5171 

total_false 

dimension2 

do 

dimension3 

vo -.20667 .11118 .185 -.4955 .0821 

co -.03500 .11118 .947 -.3238 .2538 

vo 

dimension3 

do .20667 .11118 .185 -.0821 .4955 

co .17167 .11118 .299 -.1171 .4605 

co 

dimension3 

do .03500 .11118 .947 -.2538 .3238 

vo -.17167 .11118 .299 -.4605 .1171 

*. The mean difference is significant at the 0.05 level. 
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Table 23- Total_True occlusion's algorithms comparison 

 
Table 24- True_Wall occlusion's algorithms comparison 

 
Table 25- Total_False occlusion's algorithms comparison 

 
 

Correlations (Pearson): 

The Pearson product-moment correlation coefficient is a measure of the linear correlation 

between two variables X and Y, giving a value between +1 and -1 inclusive, where 1 is total 

positive correlation, 0 is no correlation and -1 is total negative correlation. 

total_true 

Tukey HSDa 

algorithm 

N 

Subset for alpha = 0.05 

1 2 

dimension1 

vo 6 .1167  

co 6 .2775  

do 6  .8383 

Sig.  .308 1.000 

Means for groups in homogeneous subsets are 

displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 

 

trueWall 

Tukey HSDa 

algorithm 

N 

Subset for alpha = 0.05 

1 2 

dimension1 

vo 6 .1167  

co 6 .2300  

do 6  .7600 

Sig.  .750 1.000 

Means for groups in homogeneous subsets are 

displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 

 

total_false 

Tukey HSDa 

algorithm 

N 

Subset for alpha 

= 0.05 

1 

dimension1 

do 6 .0600 

co 6 .0950 

vo 6 .2667 

Sig.  .185 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

6.000. 
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Table 26- PEARSON correlations occlusion's algorithms comparison 

 

 

 

  

Correlations 

 do_result co_result 

do_result Pearson Correlation 1 .706** 

Sig. (2-tailed)  .000 

N 45 45 

co_result Pearson Correlation .706** 1 

Sig. (2-tailed) .000  

N 45 45 

**. Correlation is significant at the 0.01 level (2-tailed). 

 

Correlations 

 co_result vo_result 

co_result Pearson Correlation 1 .535** 

Sig. (2-tailed)  .009 

N 44 23 

vo_result Pearson Correlation .535** 1 

Sig. (2-tailed) .009  

N 23 23 

**. Correlation is significant at the 0.01 level (2-tailed). 
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D.2 Direct Following and History Following Experiments  

Raw data: 

Table 27- Raw data Direct-Following and History-Following 

 

 

Statistical analysis Direct Following Experiment (ANOVA and Tukey): 

Table 28- ANOVA Ratio_Track_Kinect Direct-Following 

ANOVA 

Ratio_Track_Kinect 

 Sum of Squares df Mean Square F Sig. 

Between Groups 1406.000 2 703.000 3.633 .047 
Within Groups 3483.143 18 193.508   
Total 4889.143 20    

 

 

 

 

 

 

 

 

 

 

robot 

distance

avarage 

velocity 

of the 

person

depth 

occlusion

false 

alarm 

depth 

occlusion

ratio 

track/no 

track

std 

distance

avarage 

distance

obstacles 

hit

safety 

intervension

loss with 

intervension

loss with 

self 

recover

total lossorder
direct0 

/history1
trialsubject

14.340.55--0.990.783.21000010111

10.510.610.80.30.950.742.960001120212

16.940.530.70.60.720.472.980010130313

18.190.45--0.720.853.520010141414

19.540.480.70.60.820.753.630010151515

11.780.6--10.923.231000030126

10.790.670.70.60.980.692.841001150227

11.950.580.80.60.730.913.140120240328

15.70.66--0.80.773.070110121429

20.410.580.70.60.610.863.7601112115210

13.530.57--0.980.883.0400011401311

12.390.560.90.510.843.2300000302312

140.590.80.50.990.793.4710000503313

16.650.51--0.540.733.5200303114314

18.560.580.80.60.80.823.6701101215315

16.390.41--10.642.7101000201416

12.870.420.90.510.822.700011302417

140.420.80.410.692.8100000103418

12.99---11.333.1400000514419

19.110.390.90.310.933.3800000415420

12.630.45--0.990.722.4500000301521

13.630.480.80.30.990.542.7400000102522

13.940.420.80.30.980.732.9600000203523

15.510.39--113.1710000414524

17.230.380.90.40.911.182.8301101515525

12.220.56--0.961.214.0102011501626

17.020.520.90.510.63.1701000402627

10.260.540.80.50.70.652.801303303628

17.840.47--0.840.963.2700112214629

20.290.430.80.50.811.033.7400112115630

12.050.66--0.970.673.3300000301731

11.990.650.90.50.960.733.2710011402732

15.860.590.80.50.551.84.901202503733

15.720.5--0.770.773.3301101114734

18.960.520.80.60.80.833.4711112215735
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Table 29- Tukey HSD Ratio_Track_Kinect Direct-Following 

Multiple Comparisons 

Ratio_Track_Kinect 
Tukey HSD 

(I) trial (J) trial Mean 
Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

d

i
m

e
n

s
i

o

n
2 

1 

 
 

 

 

 

 

2 .14286 7.43559 1.000 -18.8340 19.1197 

3 
 

 

 

 

 

17.42857 7.43559 .075 -1.5483 36.4054 

2 
 

1 -.14286 7.43559 1.000 -19.1197 18.8340 

3 17.28571 7.43559 .078 -1.6911 36.2626 

3 
 

1 -17.42857 7.43559 .075 -36.4054 1.5483 

2 -17.28571 7.43559 .078 -36.2626 1.6911 

 

Table 30- Ratio_Track_Kinect Direct-Following 

 

Table 31- Descriptive Total_Loss Direct-Following 

 

Ratio_Track_Kinect 

Tukey HSDa 

trial 

N 

Subset for 

alpha = 0.05 

1 

3 7 81.0000 

2 7 98.2857 

1 7 98.4286 

Sig.  .075 

Means for groups in homogeneous 

subsets are displayed. 

a. Uses Harmonic Mean Sample Size 

= 7.000. 

 

Descriptives 

total loss 

 
N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum Lower Bound Upper Bound 

no search 7 1.14 1.215 .459 .02 2.27 0 3 

search 14 .43 .514 .137 .13 .73 0 1 

Total 21 .67 .856 .187 .28 1.06 0 3 
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Table 32- ANOVA Subject's_average_velocity Direct-Following 

ANOVA 

average velocity of the subject 

 Sum of Squares df Mean Square F Sig. 

Between Groups .119 6 .020 19.860 .000 
Within Groups .014 14 .001   
Total .133 20    

 

Table 33- Tukey HSD Subject's_average_velocity Direct-Following 

average velocity of the subject 

Tukey HSDa 

subject 

N 

Subset for alpha = 0.05 

1 2 3 

di
me

nsi
on

1 

4 3 .4167   
5 3 .4500   
6 3  .5400  
1 3  .5633 .5633 

3 3  .5733 .5733 

2 3  .6167 .6167 

7 3   .6333 

Sig.  .844 .107 .164 

Means for groups in homogeneous subsets are displayed. 
a. Uses Harmonic Mean Sample Size = 3.000. 
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Statistical analysis History Following Experiment (ANOVA and Tukey): 

Table 34- ANOVA Total_path_distance History-Following 

ANOVA 

total path distance of the robot 

 Sum of Squares df Mean Square F Sig. 

Between Groups 33.018 1 33.018 15.765 .002 
Within Groups 25.133 12 2.094   
Total 58.150 13    

 

Statistical analysis Direct vs History Following Experiment (ANOVA and Tukey): 

Levene's test: 

Levene's test is an inferential statistic used to assess the equality of variances for a variable 

calculated for two or more groups. It tests the null hypothesis that the population variances 

are equal. If the resulting p-value is less than significance level of 0.05, the obtained 

differences in sample variances are unlikely to have occurred based on random sampling 

from a population with equal variances. 

Table 35- Homogeneity of Variances Direct vs History 

Test of Homogeneity of Variances 

 Levene Statistic df1 df2 Sig. 

total loss .001 1 33 .973 
percent of intervent recover 
from total loss 

.395 1 33 .534 

ratio track 
o track 

.001 1 33 .973 

total path distance of the 
robot 

.076 1 33 .785 

average velocity of the 
subject 

.000 1 32 .989 
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Table 36- ANOVA Direct vs History 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

total loss Between Groups 2.519 1 2.519 3.322 .077 

Within Groups 25.024 33 .758   

Total 27.543 34    

percent of intervent recover 

from total loss 

Between Groups 1.719 1 1.719 10.404 .003 

Within Groups 5.452 33 .165   

Total 7.171 34    

ratio track 

o track 

Between Groups .102 1 .102 5.804 .022 

Within Groups .578 33 .018   

Total .679 34    

total path distance of the 

robot 

Between Groups 157.595 1 157.595 37.868 .000 

Within Groups 137.337 33 4.162   

Total 294.931 34    

avarage velocity of the 

subject 

Between Groups .024 1 .024 3.484 .071 

Within Groups .217 32 .007   

Total .240 33    
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Figure 29- Descriptive Direct vs History 

Statistical analysis 5 trials of Direct (2) and History (3) Following Experiment (ANOVA 

and Tukey): 

Table 37- Homogeneity of Variances Total_path_distance- 5 trials 

Test of Homogeneity of Variances 

total path distance of the robot 

Levene Statistic df1 df2 Sig. 

.494 4 30 .740 
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Table 38- ANOVA Total_path_distance- 5 trials 

ANOVA 

total path distance of the robot 

 Sum of Squares df Mean Square F Sig. 

Between Groups 194.904 4 48.726 14.614 .000 
Within Groups 100.027 30 3.334   
Total 294.931 34    

 

Table 39- Tukey HSD Total_path_distance- 5 trials 

Multiple Comparisons 

total path distance of the robot 
Tukey HSD 

(I) trial (J) trial Mean 
Difference (I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

d
i

m
e

n

s
i

o
n

2 

1 

 

2 .53429 .97603 .981 -2.2968 3.3654 

3 -.57286 .97603 .976 -3.4039 2.2582 

4 -2.80857 .97603 .053 -5.6397 .0225 

5 -5.88000* .97603 .000 -8.7111 -3.0489 

2 

 

1 -.53429 .97603 .981 -3.3654 2.2968 

3 -1.10714 .97603 .787 -3.9382 1.7239 

4 -3.34286* .97603 .014 -6.1739 -.5118 

5 -6.41429* .97603 .000 -9.2454 -3.5832 

3 

 

1 .57286 .97603 .976 -2.2582 3.4039 

2 1.10714 .97603 .787 -1.7239 3.9382 

4 -2.23571 .97603 .176 -5.0668 .5954 

5 -5.30714* .97603 .000 -8.1382 -2.4761 

4 

 

1 2.80857 .97603 .053 -.0225 5.6397 

2 3.34286* .97603 .014 .5118 6.1739 

3 2.23571 .97603 .176 -.5954 5.0668 

5 -3.07143* .97603 .028 -5.9025 -.2403 

5 

 

1 5.88000* .97603 .000 3.0489 8.7111 

2 6.41429* .97603 .000 3.5832 9.2454 

3 5.30714* .97603 .000 2.4761 8.1382 

4 3.07143* .97603 .028 .2403 5.9025 

*. The mean difference is significant at the 0.05 level. 

 

Table 40- Total_path_distance- 5 trials 

 

 

 

total path distance of the robot 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 3 

2 7 12.7429   

1 7 13.2771 13.2771  

3 7 13.8500 13.8500  

4 7  16.0857  

5 7   19.1571 

Sig.  .787 .053 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 7.000. 
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D.3 Adaptive Kinect-Laser Direct and History Following Experiment 

Raw data: 

Table 41- Raw data Adaptive vs Non-Adaptive (Direct and History) 

 

 

kinect 

 fall

robot 

distance

avarage 

velocity 

of the 

person

depth 

occlusion

false 

alarm 

depth 

occlusion

ratio 

track/no 

track 

kinect

ratio 

track/no 

track 

laser

legs 

false 

alarm 

(percent 

from 

ratio)

std 

distance

avarage 

distance
matce

laser 

obstacles
height

obstacles 

 hit

safety 

intervension

loss with 

intervension

loss 

with 

self 

recover

total 

loss
order

without0 

/withLaser1

direct0 

/history1
trial

gender 

0male/1fe

male

subject

29.2460.450.80.250.9830.1320.950.843.977621.7131121111011

131.3830.50.80.150.8120.944.35111.66001012012012

18.6140.60.80.10.940.520.40.753.614671.69020113103013

20.6810.60.750.250.950.813.67481.67020224004014

28.6770.30.750.250.950.0310.813.590571.53010221111125

31.8310.30.70.30.941.064.02431.55011012012126

25.0730.40.650.350.980.5711.474.450511.61010114103127

25.5210.40.80.250.951.073.5381.54112023004128

20.7670.30.80.40.960.0411.053.690561.7100221111039

128.6230.30.90.40.791.053.4351.710210130120310

18.9670.50.90.450.9600.563.30301.690101121030311

18.1650.50.80.40.921.074.0501.660110140040312

23.5450.40.750.30.950.140.950.933.764621.470220211111413

27.5680.40.80.50.820.954.1921.560321330121414

18.4160.50.90.20.920.110.793.310191.50102241031415

21.2130.50.90.20.941.263.6201.50220220041416

20.2770.20.90.20.930.30.40.953.6822351.621211211111517

19.8660.40.80.50.91.094.34361.610330340121518

116.7750.50.80.050.750.460.40.543.832411.640120221031519

17.8810.50.70.2510.743.46391.630000030041520

22.0460.30.80.30.870.370.40.973.769591.620011211110621

22.5820.30.80.40.940.693.68711.611221340120622

121.8330.40.90.20.970.240.10.83.5615891.610001131030623

21.9770.40.50.50.981.053.19381.620000020040624

26.5620.20.80.30.860.530.50.733.3849711.710002221110725

27.7890.20.70.20.911.354.06711.690221310120726

17.0090.30.80.10.970.8200.972.8837521.710201131030727

24.3680.30.10.10.850.332.05141.740320240040728

126.670.40.10.40.450.260.21.314.867761.650021321110829

22.4040.40.60.20.921.153.94731.670111210120830

17.4480.40.80.150.990.710.10.512.9534501.680100041030831

18.3080.40.80.350.830.442.82571.681120230040832

23.5910.30.80.250.930.750.40.883.671501.70101121111933

20.2550.30.80.20.830.943.71541.71231430121934

18.7180.30.90.10.980.430.10.663.0141301.660000011031935

121.4520.30.60.70.590.784.41161.620230340041936

25.8930.30.70.20.850.660.50.643.527201.5701213211101037

27.8670.30.80.40.941.053.91191.6101224301201038

19.3150.40.90.110.860.10.472.7860101.6200000410301039

18.2520.40.80.30.841.113.68491.6201314100401040

27.1760.40.50.20.730.480.61.283.73581.6301112211101141

25.2820.40.70.30.960.834.05471.5901213401201142

19.9020.40.80.20.990.750.60.542.6556711.601000110301143

22.0590.40.70.20.990.893.21851.602000300401144

20.0450.30.80.20.960.2700.883.4335781.6402011211101245

20.0970.30.70.70.771.053.37841.6312314401201246

20.9690.30.70.150.990.9600.382.4274231.6600000310301247

20.6220.30.60.20.920.632.36231.6601213100401248

21.3450.30.70.20.950.290.050.973.3140591.5501000311111349

21.2610.30.80.40.870.783.77741.5601404101211350

19.8410.30.90.110.8900.282.3910681.5600000210311351

19.3340.30.70.30.961.073.17451.5702213400411352

121.1170.40.80.30.810.280.51.013.572331.6700101311101453

21.9920.40.80.60.820.663.71211.601202101201454

17.3820.40.90.20.870.5601.043.1138651.6501011410301455

19.2190.40.60.210.32.43261.6210000200401456

20.9540.40.80.30.710.220.50.93.97531.6101202311101557

21.7510.40.80.30.971.073.98581.5712213201201558

18.4640.40.80.310.6500.832.9242271.601011110301559

20.3970.40.70.210.522.99451.6100000400401560

23.0840.30.70.20.980.180.30.643.2312461.5200011311101661

23.7060.30.70.10.930.813.66401.511112201201662

16.6410.40.90.30.950.470.30.552.884271.5201011410301663

17.5890.50.80.30.980.492.91351.5311011100401664

20.7510.40.80.20.90.280.20.753.623371.6801112311111765

22.1490.40.80.20.931.133.67241.6911123401211766

17.1230.50.80.30.970.6900.782.718301.701011110311767

119.5410.50.80.30.70.82.85531.6321202200411768

20.4910.40.80.50.850.220.20.833.4913501.5401011311111869

20.6210.40.80.40.920.753.53581.5111112401211870

19.6040.50.80.30.990.4400.82.857661.5500011210311871

18.8810.50.70.30.981.123.28211.5302213100411872

21.2310.40.70.50.770.510.50.973.2910381.6710202411111973

124.5260.50.70.30.861.623.93401.5301303101211974

116.8830.50.80.10.870.590.10.292.9613261.6200112210311975

19.9280.50.60.20.960.973.22451.6301213300411976

21.5070.30.70.40.90.350.40.893.75701.601202411102077

24.0010.40.70.40.911.033.72751.5701213101202078

16.9910.40.80.050.970.9900.392.4131111.5800011310302079

17.6230.40.70.20.951.153.26501.5311213200402080

24.4140.30.60.20.810.240.41.093.71151141.6101112411102181

23.6860.30.70.30.820.913.95701.5502314201202182

19.7230.40.70.050.890.7600.762.6541391.601011110302183

19.8040.30.70.050.910.582.38351.6221213300402184

25.9190.20.80.10.990.530.30.523.1341191.7500000411102285

22.8360.20.70.050.990.332.83491.7411011201202286

16.4210.20.70.20.960.960.10.452.2569341.7501000310302287

19.8670.20.60.10.970.31.98161.7700011100402288

21.6940.20.80.30.920.470.20.652.731581.5701022411112389

26.1150.20.70.30.930.83.53481.5501202301212390

18.8770.30.80.20.960.590.051.012.8836291.5601011110312391

20.3950.30.70.20.931.663.25291.602202200412392

25.7080.40.80.40.920.1201.094.0513691.6501011411112493

22.240.40.70.40.841.23.48301.602303301212494

17.5460.40.90.30.930.3100.512.932501.600011210312495

20.7110.40.70.20.971.093.12181.6202303100412496
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Statistical analysis Adaptive (with Laser) vs Non-Adaptive (without Laser) Following 

Experiment (ANOVA and Tukey): 

Table 42- Homogeneity of Variances Adaptive vs Non-Adaptive 

Test of Homogeneity of Variances 

 Levene Statistic df1 df2 Sig. 

checkTotalLoss .340 1 94 .561 
percent_intervent .422 1 94 .518 
safety_intervension 1.121 1 94 .292 
std_distance .942 1 94 .334 
false_depth_occlusion 1.002 1 94 .319 
depth_occlusion .010 1 94 .921 

 

Table 43- ANOVA Adaptive vs Non-Adaptive 

ANOVA 

 
Sum of 
Squares df Mean Square F Sig. 

checkTotalLoss Between Groups 3.650 1 3.650 13.395 .000 

Within Groups 25.618 94 .273   

Total 29.268 95    

percent_intervent Between Groups 4.348 1 4.348 32.897 .000 

Within Groups 12.423 94 .132   

Total 16.771 95    

safety_intervension Between Groups 7.042 1 7.042 12.588 .001 

Within Groups 52.583 94 .559   

Total 59.625 95    

std_distance Between Groups .346 1 .346 4.266 .042 

Within Groups 7.616 94 .081   

Total 7.962 95    

false_depth_occlusion Between Groups .085 1 .085 4.866 .030 

Within Groups 1.635 94 .017   

Total 1.719 95    

depth_occlusion Between Groups .082 1 .082 5.132 .026 

Within Groups 1.496 94 .016   

Total 1.577 95    
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Figure 30- Descriptive Adaptive vs Non-Adaptive 
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Statistical analysis Direct vs History Following Experiment (ANOVA and Tukey): 

Table 44- ANOVA Direct vs History 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

checkTotalLoss Between Groups 3.650 1 3.650 13.395 .000 

Within Groups 25.618 94 .273   

Total 29.268 95    

percent_intervent Between Groups 4.348 1 4.348 32.897 .000 

Within Groups 12.423 94 .132   

Total 16.771 95    

safety_intervension Between Groups 7.042 1 7.042 12.588 .001 

Within Groups 52.583 94 .559   

Total 59.625 95    

std_distance Between Groups .346 1 .346 4.266 .042 

Within Groups 7.616 94 .081   

Total 7.962 95    

false_depth_occlusion Between Groups .085 1 .085 4.866 .030 

Within Groups 1.635 94 .017   

Total 1.719 95    

depth_occlusion Between Groups .082 1 .082 5.132 .026 

Within Groups 1.496 94 .016   

Total 1.577 95    
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Figure 31- Descriptive Direct vs History 

 

 

Statistical analysis Gender (Males vs Females) Following Experiment (ANOVA and 

Tukey): 

Table 45- Homogeneity of Variances Gender (Males vs females) 

Test of Homogeneity of Variances 

 Levene Statistic df1 df2 Sig. 

height .015 1 94 .901 
std_distance .447 1 94 .505 

 

Table 46- ANOVA Gender (Males vs females) 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

height Between Groups .042 1 .042 10.950 .001 

Within Groups .361 94 .004   
Total .403 95    

std_distance Between Groups .390 1 .390 4.836 .030 

Within Groups 7.572 94 .081   
Total 7.962 95    
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Figure 32- Descriptive Gender (Males vs females) 

Statistical analysis Subjects (24) Following Experiment (ANOVA and Tukey): 

Table 47- Homogeneity of Variances Subjects (24) 

Test of Homogeneity of Variances 

height 

Levene Statistic df1 df2 Sig. 

1.456 23 72 .116 

 

Table 48- ANOVA Subjects (24) 

ANOVA 

height 

 Sum of Squares df Mean Square F Sig. 

Between Groups .354 23 .015 22.775 .000 
Within Groups .049 72 .001   
Total .403 95    
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Table 49- Tukey HSD Subjects (24) 

 

 

height 

Tukey HSDa 

subject 

N 

Subset for alpha = 0.05 

1 2 3 4 5 6 7 8 9 10 

di

me

nsi

on

1 

4 4 1.5075          

16 4 1.5175          

18 4 1.5325 1.5325         

2 4 1.5575 1.5575 1.5575        

13 4 1.5600 1.5600 1.5600        

23 4 1.5700 1.5700 1.5700 1.5700       

20 4 1.5700 1.5700 1.5700 1.5700       

21 4  1.5950 1.5950 1.5950 1.5950      

15 4  1.5975 1.5975 1.5975 1.5975      

11 4   1.6050 1.6050 1.6050 1.6050     

10 4   1.6050 1.6050 1.6050 1.6050     

19 4   1.6125 1.6125 1.6125 1.6125 1.6125    

6 4   1.6150 1.6150 1.6150 1.6150 1.6150    

24 4   1.6175 1.6175 1.6175 1.6175 1.6175    

5 4   1.6250 1.6250 1.6250 1.6250 1.6250 1.6250   

14 4    1.6350 1.6350 1.6350 1.6350 1.6350   

12 4     1.6475 1.6475 1.6475 1.6475 1.6475  

8 4      1.6700 1.6700 1.6700 1.6700  

9 4      1.6700 1.6700 1.6700 1.6700  

17 4       1.6750 1.6750 1.6750  

1 4       1.6800 1.6800 1.6800  

3 4        1.6900 1.6900 1.6900 

7 4         1.7125 1.7125 

22 4          1.7525 

Sig.  .136 .097 .068 .097 .415 .097 .068 .097 .097 .136 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 4.000. 

 



 
98 

 

 

Figure 33- Descriptive Subjects (24) 

 

Statistical analysis Trials (4) Following Experiment (ANOVA and Tukey): 

Table 50- Homogeneity of Variances Trials (4) 

Test of Homogeneity of Variances 

 Levene Statistic df1 df2 Sig. 

TotalLosses 2.506 3 92 .064 
safety_intervension .505 3 92 .680 
average_distance 1.937 3 92 .129 
ratio_track_kinect 2.366 3 92 .076 
false_depth_occlusion 1.110 3 92 .349 
depth_occlusion 1.335 3 92 .268 
velocity_subject .147 3 92 .931 
RobotDistance 1.722 3 92 .168 
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Table 51- ANOVA Trials (4) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA 

 Sum of Squares df Mean Square F Sig. 

TotalLosses Between Groups 40.865 3 13.622 19.392 .000 

Within Groups 64.625 92 .702   

Total 105.490 95    

safety_intervension Between Groups 8.125 3 2.708 4.838 .004 

Within Groups 51.500 92 .560   

Total 59.625 95    

average_distance Between Groups 10.517 3 3.506 16.211 .000 

Within Groups 19.894 92 .216   

Total 30.410 95    

ratio_track_kinect Between Groups .085 3 .028 3.664 .015 

Within Groups .716 92 .008   

Total .801 95    

false_depth_occlusion Between Groups .259 3 .086 5.430 .002 

Within Groups 1.461 92 .016   

Total 1.719 95    

depth_occlusion Between Groups .235 3 .078 5.360 .002 

Within Groups 1.343 92 .015   

Total 1.577 95    

velocity_subject Between Groups .114 3 .038 5.051 .003 

Within Groups .694 92 .008   

Total .808 95    

RobotDistance Between Groups 470.677 3 156.892 43.520 .000 

Within Groups 331.668 92 3.605   

Total 802.345 95    

 



 
100 

 

 

 

Table 52- Tukey HSD Trials (4) 

Multiple Comparisons 

Tukey HSD 

Dependent Variable (I) trial (J) trial Mean Difference 
(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

TotalLosses 

di

me
nsi

on
2 

1 
dim
ens

ion
3 

2 -1.00000* .24194 .000 -1.6331 -.3669 

3 .83333* .24194 .005 .2003 1.4664 

4 -.20833 .24194 .825 -.8414 .4247 

2 
dim

ens

ion
3 

1 1.00000* .24194 .000 .3669 1.6331 

3 1.83333* .24194 .000 1.2003 2.4664 

4 .79167* .24194 .008 .1586 1.4247 

3 
dim

ens
ion

3 

1 -.83333* .24194 .005 -1.4664 -.2003 

2 -1.83333* .24194 .000 -2.4664 -1.2003 

4 -1.04167* .24194 .000 -1.6747 -.4086 

4 
dim
ens

ion

3 

1 .20833 .24194 .825 -.4247 .8414 

2 -.79167* .24194 .008 -1.4247 -.1586 

3 1.04167* .24194 .000 .4086 1.6747 

safety_intervension 

di
me

nsi
on

2 

1 
dim

ens
ion

3 

2 -.583* .216 .040 -1.15 -.02 

3 .167 .216 .867 -.40 .73 

4 -.333 .216 .416 -.90 .23 

2 
dim
ens

ion
3 

1 .583* .216 .040 .02 1.15 

3 .750* .216 .004 .18 1.32 

4 .250 .216 .655 -.32 .82 

3 
dim

ens

ion
3 

1 -.167 .216 .867 -.73 .40 

2 -.750* .216 .004 -1.32 -.18 

4 -.500 .216 .102 -1.07 .07 

4 
dim

ens
ion

3 

1 .333 .216 .416 -.23 .90 

2 -.250 .216 .655 -.82 .32 

3 .500 .216 .102 -.07 1.07 

average_distance 

di
me

nsi
on

2 

1 
dim
ens

ion

3 

2 -.16458 .13424 .612 -.5158 .1867 

3 .62917* .13424 .000 .2779 .9804 

4 .49583* .13424 .002 .1446 .8471 

2 
dim
ens

ion
3 

1 .16458 .13424 .612 -.1867 .5158 

3 .79375* .13424 .000 .4425 1.1450 

4 .66042* .13424 .000 .3092 1.0117 

3 
dim

ens
ion

3 

1 -.62917* .13424 .000 -.9804 -.2779 

2 -.79375* .13424 .000 -1.1450 -.4425 

4 -.13333 .13424 .754 -.4846 .2179 

4 
dim

ens
ion

3 

1 -.49583* .13424 .002 -.8471 -.1446 

2 -.66042* .13424 .000 -1.0117 -.3092 

3 .13333 .13424 .754 -.2179 .4846 

ratio_track_kinect 

di
me

nsi
on

2 

1 
dim
ens

ion
3 

2 -.016208 .025459 .920 -.08282 .05041 

3 -.077792* .025459 .015 -.14441 -.01118 

4 -.047375 .025459 .252 -.11399 .01924 

2 
dim

ens

ion
3 

1 .016208 .025459 .920 -.05041 .08282 

3 -.061583 .025459 .081 -.12820 .00503 

4 -.031167 .025459 .613 -.09778 .03545 

3 
dim

ens
ion

3 

1 .077792* .025459 .015 .01118 .14441 

2 .061583 .025459 .081 -.00503 .12820 

4 .030417 .025459 .632 -.03620 .09703 

4 
dim

ens
ion

3 

1 .047375 .025459 .252 -.01924 .11399 

2 .031167 .025459 .613 -.03545 .09778 

3 -.030417 .025459 .632 -.09703 .03620 

false_depth_occlusion 

di
me

nsi
on

2 

1 
dim
ens

ion
3 

2 -.04792 .03637 .554 -.1431 .0473 

3 .09583* .03637 .048 .0007 .1910 

4 .02500 .03637 .902 -.0702 .1202 

2 
dim

ens

ion
3 

1 .04792 .03637 .554 -.0473 .1431 

3 .14375* .03637 .001 .0486 .2389 

4 .07292 .03637 .194 -.0223 .1681 
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3 
dim

ens

ion
3 

1 -.09583* .03637 .048 -.1910 -.0007 

2 -.14375* .03637 .001 -.2389 -.0486 

4 -.07083 .03637 .216 -.1660 .0243 

4 
dim

ens
ion

3 

1 -.02500 .03637 .902 -.1202 .0702 

2 -.07292 .03637 .194 -.1681 .0223 

3 .07083 .03637 .216 -.0243 .1660 

depth_occlusion 

di
me

nsi
on

2 

1 
dim
ens

ion

3 

2 -.02083 .03487 .933 -.1121 .0704 

3 -.08958 .03487 .056 -.1808 .0017 

4 .04792 .03487 .519 -.0433 .1392 

2 
dim
ens

ion
3 

1 .02083 .03487 .933 -.0704 .1121 

3 -.06875 .03487 .206 -.1600 .0225 

4 .06875 .03487 .206 -.0225 .1600 

3 
dim

ens

ion
3 

1 .08958 .03487 .056 -.0017 .1808 

2 .06875 .03487 .206 -.0225 .1600 

4 .13750* .03487 .001 .0462 .2288 

4 
dim

ens
ion

3 

1 -.04792 .03487 .519 -.1392 .0433 

2 -.06875 .03487 .206 -.1600 .0225 

3 -.13750* .03487 .001 -.2288 -.0462 

velocity_subject 

di
me

nsi
on

2 

1 
dim
ens

ion

3 

2 -.01875 .02507 .877 -.0843 .0468 

3 -.07708* .02507 .014 -.1427 -.0115 

4 -.07708* .02507 .014 -.1427 -.0115 

2 
dim
ens

ion
3 

1 .01875 .02507 .877 -.0468 .0843 

3 -.05833 .02507 .099 -.1239 .0073 

4 -.05833 .02507 .099 -.1239 .0073 

3 
dim

ens
ion

3 

1 .07708* .02507 .014 .0115 .1427 

2 .05833 .02507 .099 -.0073 .1239 

4 .00000 .02507 1.000 -.0656 .0656 

4 
dim

ens
ion

3 

1 .07708* .02507 .014 .0115 .1427 

2 .05833 .02507 .099 -.0073 .1239 

3 .00000 .02507 1.000 -.0656 .0656 

RobotDistance 

di

me

nsi
on

2 

1 
dim

ens
ion

3 

2 -.40421 .54811 .882 -1.8384 1.0300 

3 4.80000* .54811 .000 3.3658 6.2342 

4 3.41433* .54811 .000 1.9801 4.8485 

2 
dim
ens

ion

3 

1 .40421 .54811 .882 -1.0300 1.8384 

3 5.20421* .54811 .000 3.7700 6.6384 

4 3.81854* .54811 .000 2.3844 5.2527 

3 
dim
ens

ion
3 

1 -4.80000* .54811 .000 -6.2342 -3.3658 

2 -5.20421* .54811 .000 -6.6384 -3.7700 

4 -1.38567 .54811 .062 -2.8199 .0485 

4 
dim

ens
ion

3 

1 -3.41433* .54811 .000 -4.8485 -1.9801 

2 -3.81854* .54811 .000 -5.2527 -2.3844 

3 1.38567 .54811 .062 -.0485 2.8199 

*. The mean difference is significant at the 0.05 level. 
 

Table 53- Total_Loss Trials (4) 

 

 

TotalLosses 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 3 

3 24 .8333   

1 24  1.6667  

4 24  1.8750  

2 24   2.6667 

Sig.  1.000 .825 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 24.000. 
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Table 54- Safety_Intervention Trials (4) 

 

Table 55- Average_Distance Trials (4) 

 

 

 

 

 

 

 

 

 

 

 

 

safety_intervension 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 

3 24 .71  

1 24 .88  

4 24 1.21 1.21 

2 24  1.46 

Sig.  .102 .655 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

24.000. 

 

average_distance 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 

3 24 2.9850  

4 24 3.1183  

1 24  3.6142 

2 24  3.7788 

Sig.  .754 .612 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

24.000. 
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Table 56- Ratio_Track_Kinect Trials (4) 

 

Table 57- False_Depth_Occlusion Trials (4) 

 

 

 

 

 

 

 

 

 

 

 

ratio_track_kinect 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 

1 24 .87221  

2 24 .88842 .88842 

4 24 .91958 .91958 

3 24  .95000 

Sig.  .252 .081 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

24.000. 

 

false_depth_occlusion 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 

3 24 .1896  

4 24 .2604 .2604 

1 24  .2854 

2 24  .3333 

Sig.  .216 .194 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

24.000. 
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Table 58- Depth_Occlusion Trials (4) 

 

 

Table 59- Subject's_Velocity Trials (4) 

 

 

 

 

 

 

 

 

 

 

depth_occlusion 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 

4 24 .6812  

1 24 .7292 .7292 

2 24 .7500 .7500 

3 24  .8188 

Sig.  .206 .056 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

24.000. 

 

velocity_subject 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 

1 24 .3271  

2 24 .3458 .3458 

3 24  .4042 

4 24  .4042 

Sig.  .877 .099 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

24.000. 
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Table 60- Robot's_Distance Trials (4) 

 

 

 

 

 

 

  

RobotDistance 

Tukey HSDa 

trial 

N 

Subset for alpha = 0.05 

1 2 

3 24 18.6055  

4 24 19.9912  

1 24  23.4055 

2 24  23.8097 

Sig.  .062 .882 

Means for groups in homogeneous subsets 

are displayed. 

a. Uses Harmonic Mean Sample Size = 

24.000. 
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Appendix D- C++ codes 
1. Depth Occlusions Detection 

#include <stdio.h>  #include <stdlib.h> #include "ros/ros.h" #include "math.h" 
#include "std_msgs/String.h" #include "std_msgs/Float32.h"   #include "nav_msgs/Odometry.h" 
#include "geometry_msgs/Twist.h"        #include "sensor_msgs/LaserScan.h" 
#include "opt_msgs/TrackArray.h"        #include <ros/console.h>  
#include <cv_bridge/cv_bridge.h>        #include <sensor_msgs/image_encodings.h> 
#include "opt_msgs/DetectionArray.h"    #include <occlusions/sideOcclusions.h> 
#include <opencv2/imgproc/imgproc.hpp>  #include <opencv2/highgui/highgui.hpp> 
occlusions::sideOcclusions bool_msg;  //6 boolians variables  
double AgeThreshold=0;  //how "old" is the ID 
double ConfidenceTheshold=1.1; //from the SVM+HOG classifier- confidence for a real person 
double HeightTheshold=1.4;     //height in meter of the person (minimum) 
double HeightMaxTheshold=2.0;  //height in meter of the person (maximum) 
namespace enc = sensor_msgs::image_encodings; 
static const std::string OPENCV_WINDOW = "Image window"; 
class ImageConverter 
{ 
    ros::NodeHandle n; 
    image_transport::ImageTransport it_; 
    image_transport::Subscriber image_sub; 
    image_transport::Publisher image_pub; 
    ros::Subscriber person_sub = n.subscribe("/tracker/tracks", 10, 
&ImageConverter::boxCallback, this);  //get the track parameters 
    ros::Publisher side= 
(n.advertise<occlusions::sideOcclusions>("occlusions/sideOcclusions",10)); //the 6 boolians 
    double xmin=0;     //left side of the BBC (Bounding Box Coordinates) 
    double ymin=0;     //top side of the BBC 
    double xmax=0;     //right side of the BBC 
    double ymax=0;     //bottom side of the BBC 
    double distance;   //from Open_PTrack trackers- distance in meters to the detect person 
    double confidence; //from Open_PTrack- the SVM+HOG classifier- confidence for a real person 
    double age;        //from Open_PTrack trackers 
    double height;     //from Open_PTrack trackers 
    double xc;        //center of the BBC 
    float depth;     //pixel depth value at xc,yc 
    float personDepth;        //distance*1000 
    double depthTheshold=3.0; //threshold for detect closer pixels from the personDepth  
    bool validTrack;          //good track 
    int nbOfTracks;           //number of ID tracks 
    float normalize;          //normalize the depth value 
 
public: 
    ImageConverter() 
      : it_(n){ 
      image_sub = it_.subscribe("/kinect2_head/depth_rect/image", 10, 
&ImageConverter::imageCallback, this); //depth image (same as Open_PTrack uses) 
      image_pub = it_.advertise("/image_converter/output_video", 1); 
      cv::namedWindow(OPENCV_WINDOW);} 
    ~ImageConverter() 
      {cv::destroyWindow(OPENCV_WINDOW);} 
 
void boxCallback(const opt_msgs::TrackArray::ConstPtr& msg){ //get all the tracks parameters  
    validTrack=false; 
    nbOfTracks=msg->tracks.size(); 
     if (nbOfTracks>0) { 
         for(int i=0;i<nbOfTracks && !validTrack;i++){ 
             //oldest track which is older than the age threshold, above the confidence  
threshold, above the height threshold and under max height threshold 
             if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){ 
    xmin=msg->tracks[i].box_2D.x;             //left side of the BBC (Bounding Box Coordinates) 
    ymin=msg->tracks[i].box_2D.y;             //top side of the BBC 
    xmax=xmin+msg->tracks[i].box_2D.width;    //right side of the BBC 
    ymax=ymin+msg->tracks[i].box_2D.height;   //bottom side of the BBC 
    distance=msg->tracks[i].distance;         //Open_PTrack-distance in meters to a person 
    confidence=msg->tracks[i].confidence;     //Open_PTrack- from the SVM+HOG classifier 
    height=msg->tracks[i].height;             //from Open_PTrack trackers 
    age=msg->tracks[i].age;                   //from Open_PTrack trackers 
validTrack=true; 
            } 
        } 
    } 
} 
 
void imageCallback(const sensor_msgs::ImageConstPtr& msg)     //working on the depth image 
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    {cv_bridge::CvImagePtr cv_ptr; 
    try 
      {cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::TYPE_16UC1);}   //now 
cv_ptr is the matrix 
    catch (cv_bridge::Exception& e) 
      {ROS_ERROR("cv_bridge exception: %s", e.what()); 
      return;} 
    image_pub.publish(cv_ptr->toImageMsg()); // Output modified video stream 
    xc=(xmin+xmax)/2;                        //center of the BBC 
    personDepth=distance*1000;               //to avoid an error from calculate the depth only 
from one pixel, it's better to calculate from the all distance from the person and multipile by 
1000 to get milimeters 
    depth=personDepth*255/pow(2,16);         //to normalize to 255 
//left and right detections 
    int downCut= round((ymax-ymin)/8); //cut lower part of a person to reduce floor alarm 
    int smallOcclusions= round(((xc-xmin)/3)*(ymax-ymin)*7/8);  //detect small occlusion 
    int bigOcclusions= round(((xc-xmin)/2)*(ymax-ymin)*7/8);    //detect big occlusion 
    int marginAdd= round(10/distance);                   //add margin depend on distance 
    int countLeft= 0; 
    int countRight= 0; 
    bool smallLeftOcclusions= false;    //detect occlusion from the left side of the robot 
    bool bigLeftOcclusions= false;      //detect occlusion from the left side of the robot 
    bool LeftWall= false;               //detect a "tall" occlusion from the left side of the 
robot, like a wall for all the y axis of the person bounding box 
    int countLeftWall= 0; 
    bool smallRightOcclusions= false;   //detect occlusion from the right side of the robot  
    bool bigRightOcclusions= false;     //detect occlusion from the right side of the robot  
    bool RightWall= false;              //detect a "tall" occlusion from the right side of the 
robot, like a wall for all the y axis of the person bounding box 
    int countRightWall= 0; 
   //left side 
        for (short int i=xmin-marginAdd;i<xc-5;i++){     //over each colom from the left with 
margin up to the center minus 5 
            countLeftWall= 0; 
            for (short int j=ymin;j<ymax-downCut;j++){   //over all the specific colom from up 
to down without the lower part to avoid the floor 
        normalize=cv_ptr->image.at<short int>(cv::Point(i,j)); //get the pixel depth value  
        normalize=normalize*255/pow(2,16);  //normalize the depth value to 0-255 
                if (normalize<(depth-depthTheshold)){      //closer than the personDepth 
                   countLeft++; 
                   countLeftWall++; 
                   if (countLeftWall==ymax-downCut-ymin){LeftWall=true;}   //if the all colom is 
closer than this is a wall 
               } 
        } 
    } 
   //right 
        for (short int i=xc+5;i<xmax+marginAdd;i++){    //over each colom from the center plus 5 
up to the right with margin 
            countRightWall= 0; 
            for (short int j=ymin;j<ymax-downCut;j++){  //over all the specific colom from up to 
down without the lower part to avoid the floor 
        normalize=cv_ptr->image.at<short int>(cv::Point(i,j)); //get the pixel depth value  
        normalize=normalize*255/pow(2,16);  //normalize the depth value to 0-255 
                if (normalize<(depth-depthTheshold)){      //closer than the personDepth 
                   countRight++; 
                   countRightWall++; 
                   if (countRightWall==ymax-downCut-ymin){RightWall=true;} //if the all colom is 
closer than this is a wall 
               } 
        } 
    } 
        if (countLeft>smallOcclusions&&countLeft<bigOcclusions){  //if number of pixels from the 
left are between smallLeftOcclusions and bigLeftOcclusions this is a smallLeft 
            smallLeftOcclusions=true;} 
        else  if (countLeft>bigOcclusions){   //if number of pixels from the left are more than 
bigLeftOcclusions this is a bigLeft 
            bigLeftOcclusions=true;} 
        if (countRight>smallOcclusions&&countRight<bigOcclusions){  //if number of pixels from 
the right are between smallRightOcclusions and bigRightOcclusions this is a smallRight 
            smallRightOcclusions=true;} 
        else  if (countRight>bigOcclusions){     //if number of pixels from the right are more 
than bigRightOcclusions this is a bigRight 
            bigRightOcclusions=true;} 
  //publish the boolians variables 
    bool_msg.bigLeft=bigLeftOcclusions; 
    bool_msg.smallLeft=smallLeftOcclusions; 
    bool_msg.wallLeft=LeftWall; 
    bool_msg.bigRight=bigRightOcclusions; 
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    bool_msg.smallRight=smallRightOcclusions; 
    bool_msg.wallRight=RightWall; 
    side.publish(bool_msg); 
    } 
}; 
 
int main(int argc, char **argv){ 
    ros::init(argc, argv, "image_converter"); 
    ImageConverter ic; 
    ros::NodeHandle n; 
     ros::spin(); 
      return 0; 
} 

 

2. Vision Occlusions Detection 

 
#include <stdio.h> #include <stdlib.h>  #include "ros/ros.h" #include "math.h" 
#include "std_msgs/String.h"  #include "std_msgs/Float32.h"  #include "nav_msgs/Odometry.h" 
#include "geometry_msgs/Twist.h"        #include "sensor_msgs/LaserScan.h"  
#include <ros/console.h>                #include <image_transport/image_transport.h> 
#include <cv_bridge/cv_bridge.h>        #include <sensor_msgs/image_encodings.h> 
#include "opt_msgs/DetectionArray.h"    #include <occlusions/sideOcclusions.h> 
#include <opencv2/imgproc/imgproc.hpp>  #include <opencv2/highgui/highgui.hpp> 
#define PI 3.14159265 
occlusions::sideOcclusions bool_msg;            //6 boolians variables  
double AgeThreshold=0;                          //how "old" is the ID 
double ConfidenceTheshold=1.1; //from the SVM+HOG classifier- confidence for a real person 
double HeightTheshold=1.4;                      //height in meter of the person (minimum) 
double HeightMaxTheshold=2.0;                   //height in meter of the person (maximum) 
namespace enc = sensor_msgs::image_encodings; 
using namespace cv;  using namespace std; 
static const std::string OPENCV_WINDOW = "Image window"; 
 
class ImageConverter 
{ 
    ros::NodeHandle n; 
    image_transport::ImageTransport it_; 
    image_transport::Subscriber image_sub; 
    image_transport::Publisher image_pub; 
    ros::Subscriber person_sub = n.subscribe("/tracker/tracks", 10, 
&ImageConverter::boxCallback, this);  //get the track parameters 
    ros::Publisher side= 
(n.advertise<occlusions::sideOcclusions>("occlusions/sideOcclusions",10));// the 6 boolians 
    double xmin=0;      //left side of the BBC from the DEPTH image 
    double ymin=0;      //top side of the BBC from the DEPTH image 
    double xmax=0;      //right side of the BBC from the DEPTH image 
    double ymax=0;      //bottom side of the BBC from the DEPTH image 
    double xcenter;     //the center of the box in x axis at the DEPTH image 
    double distance;    //Open_PTrack- distance in meters to the detect person 
    double confidence;  //Open_PTrack- from the SVM+HOG classifier 
    double age;         //from Open_PTrack trackers 
    double height;      //from Open_PTrack trackers 
    double rgbxmin=0;  //left side of the BBC from the MONO image 
    double rgbymin=0;  //top side of the BBC from the MONO image 
    double rgbxmax=0;  //right side of the BBC from the MONO image 
    double rgbymax=0;  //bottom side of the BBC from the MONO image 
    double xcBox;      //the center of the box in the ROI 
    bool validTrack;           //good track 
    int nbOfTracks;            //number of ID tracks 
    bool LeftWall= false;      //detect left wall 
    bool RightWall= false;     //detect right wall 
 
public: 
    ImageConverter() 
      : it_(n) 
      {image_sub = it_.subscribe("/kinect2_head/mono_rect/image", 10, 
&ImageConverter::imageCallback, this);  //get the mono_rect image (gray image) 
      image_pub = it_.advertise("/image_converter/output_video", 1); 
      cv::namedWindow(OPENCV_WINDOW);} 
    ~ImageConverter() 
      {cv::destroyWindow(OPENCV_WINDOW);} 
 
void boxCallback(const opt_msgs::TrackArray::ConstPtr& msg){//get all the tracks parameters  
    validTrack=false; 
    nbOfTracks=msg->tracks.size(); 
     if (nbOfTracks>0) { 
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         for(int i=0;i<nbOfTracks && !validTrack;i++){ 
//oldest track which is older than the age threshold, above the confidence threshold, above the 
height threshold and under max height threshold 
             if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){ 
    xmin=msg->tracks[i].box_2D.x;           //left side of the BBC from the DEPTH image 
    ymin=msg->tracks[i].box_2D.y;           //top side of the BBC from the DEPTH image 
    xmax=xmin+msg->tracks[i].box_2D.width;  //right side of the BBC from the DEPTH image 
    ymax=ymin+msg->tracks[i].box_2D.height; //bottom side of the BBC from the DEPTH image 
    distance=msg->tracks[i].distance;       //Open_PTrack- distance in meters to a person 
    confidence=msg->tracks[i].confidence;   //Open_PTrack- from the SVM+HOG classifier 
    height=msg->tracks[i].height;           //from Open_PTrack trackers 
    age=msg->tracks[i].age;                 //from Open_PTrack trackers 
validTrack=true; 
            } 
        } 
    } 
} 
 
void imageCallback(const sensor_msgs::ImageConstPtr& msg) //working on the depth image 
    {cv_bridge::CvImagePtr cv_ptr; 
    try 
        {cv_ptr = cv_bridge::toCvCopy(msg);} //now cv_ptr is the matrix of the image 
    catch (cv_bridge::Exception& e) 
        {ROS_ERROR("cv_bridge exception: %s", e.what()); 
        return;} 
    cv::Mat deleteMargin= cv::Mat::zeros(1080,1710,0); 
    deleteMargin = cv_ptr->image(Rect(104,0,1710,1080)).clone(); //because a different FOV 
between depth and RGB i delete the 105 pixels from each side to reduce the FOV different 
    cv::Size size(960,540);                      //size of the depth image 
    cv::resize(deleteMargin,deleteMargin,size);  //resize the gray mono image to the depth image 
size because the resolotion of mono_rect is twice the resolotion of depth_rect 
       xcenter=(xmin+xmax)/2;  //the center of the box in x axis at the DEPTH image 
       rgbxmin=xmin*2+round(((270-xcenter)/3)-distance*2);  //left side of the BBC from the MONO 
image with react to the center of the image and distance because different FOV  
       rgbxmax=rgbxmin+(xmax-xmin)*1.4;     //right side of the BBC from the MONO image with 
more width to cover the all person 
       rgbymin=ymin;                        //top side of the BBC from the MONO image 
       rgbymax=rgbymin+(ymax-ymin)*1.3;                     //bottom side of the BBC from the 
MONO image with more for the legs but not the ground 
    int marginAdd= round(50/distance);        //add margin depend on distance 
    LeftWall= false;  //detect a "tall" vertical occlusion from the left side of the robot  
    RightWall= false; //detect a "tall" vertical occlusion from the right side of the robot  
    xcBox=((xmax-xmin)*1.4+marginAdd*2)/2;    //the center of the box in the ROI 
    cv::Mat temp= cv::Mat::zeros(540,960,0); //temp with the maximum size of the MONO image 
    int top = (int) (0.01*temp.rows);         //for add borders to the image 
    int bottom = (int) (0.01*temp.rows); 
    int left = (int) (0.01*temp.cols); 
    int right = (int) (0.01*temp.cols); 
 if(rgbxmin-marginAdd*2 >= 0 && rgbymin >= 0 && rgbxmax+marginAdd < deleteMargin.cols && rgbymax 
< deleteMargin.rows && (xmax-xmin)*1.4+marginAdd>0 && (ymax-ymin)*1.3>0){ 
    temp = deleteMargin(Rect(rgbxmin-marginAdd,rgbymin,(xmax-xmin)*1.4+marginAdd,(ymax-
ymin)*1.3)).clone();}  //take only the BBC with the person with margin depend on distance 
    cv::GaussianBlur(temp, temp, cv::Size(3,3), 0);  //gaussian blur 3*3                                             
    cv::Canny(temp, temp, 50.0, 300.0, 3, false);    //canny edge detector                                                    
    cv::Mat element1= cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,5), cv::Point(-1,-
1));       // 5*5 open element 
    cv::Mat element2= cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,5), cv::Point(-1,-
1));       // 5*5 close element 
    cv::dilate(temp, temp, element1);                  //open the pixels                                                               
    cv::erode(temp, temp, element2);                   //close the pixels                                                                
    cv::Mat temp2=temp; 
    cv::cvtColor(temp2, temp2, cv::COLOR_GRAY2BGR);    //color mat for show                                                  
    copyMakeBorder( temp2, temp2, top, bottom, left, right, BORDER_CONSTANT, 
cv::Scalar(255,255,255) ); //add white borders to help detect contours 
        std::vector<std::vector<cv::Point> > contours; //vector of vector points- contours                                                
        cv::findContours(temp,contours,CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE);//find contours                             
            for (int i=0; i<contours.size(); i++){ 
                if(contours[i].size()>(rgbymax-rgbymin)*1.5){ //only if the contour is bigger 
than the whole height of the ROI multipile 1.5                                           
                cv::drawContours(temp2,contours,i,cv::Scalar(0,255,0),8,8);} //draw green                              
                else {contours.pop_back();}//delete small contours from vector "contours"                                                             
            } 
        cv::vector<Vec4i> lines;//"lines" contain 4 values for xStart,yStart,xEnd,yEnd                                                                        
          HoughLinesP(temp, lines, 1, CV_PI / 180, 50, (rgbymax-rgbymin)*0.5, 0 ); //find 
straight lines with Hough that are bigger than the half height of the ROI       
          for (size_t i = 0; i < lines.size(); i++) 
              {cv::Vec4i l = lines[i]; 
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              if (abs(l[0]-l[2])<(rgbxmax-rgbxmin)/10) { //for only vertical lines depend on the 
width of the person box divide by 10 (only 1/10 size of the width)                                               
                  line(temp2, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0, 0, 255), 10, 4);         
//draw red line 
                  //left 
                  if (((l[0]>0) && (l[0]<xcBox-5)) || ((l[2]>0) && (l[2]<xcBox-5))){   //if the 
edges of the straight line is inside the ROI from the left to the center minus 5  
                      LeftWall=true;} 
                  //right 
                  if (((l[0]>xcBox+5) && (l[0]<temp.cols)) || ((l[2]>xcBox+5) && 
(l[2]<temp.cols))){   //if the edges of the straight line is inside the ROI from the center plus 
5 to the right 
                      RightWall=true;} 
              } 
              else {lines.pop_back();}//delete all the other lines from the vector "lines"                                                                 
          } 
rectangle(temp2,cv::Point(rgbxmin,rgbymin),cv::Point(rgbxmax,rgbymax),cv::Scalar(0,255,0), 10); 
          cv::imshow(OPENCV_WINDOW, temp2); // Update GUI Window 
          cv::waitKey(3); 
          image_pub.publish(cv_ptr->toImageMsg());// Output modified video stream 
    bool_msg.wallLeft=LeftWall; 
    bool_msg.wallRight=RightWall; 
    side.publish(bool_msg); 
    } 
}; 
 
int main(int argc, char **argv){ 
    ros::init(argc, argv, "image_converter"); 
    ImageConverter ic; 
    ros::NodeHandle n; 
     ros::spin(); 
      return 0; 
} 

 

3. Combination of Depth and Vision Occlusions Detection 

Union of Depth and Vision Occlusion Detection codes according to the distance of the 

person.  

    double changeDepthToRGB=5.0; //which distance to change between depth to RGB (meters) 
    double distance;        //Open_PTrack- distance in meters to the detect person 
if(distance<changeDepthToRGB){   //all the code from Depth Occlusion Detection  } 
if(distance>changeDepthToRGB){   //all the code from Vision Occlusion Detection  } 

 

4. Obstacles Avoidance 

 
#include <stdio.h>  #include <stdlib.h>  #include "ros/ros.h"  #include "std_msgs/String.h" 
#include "std_msgs/Float64.h"  #include "std_msgs/Float32.h"   #include "std_msgs/Bool.h" 
#include "geometry_msgs/Twist.h"         #include "geometry_msgs/Point32.h" 
#include "sensor_msgs/PointCloud.h"      #include <tf/transform_listener.h> 
#include "pcl_ros/point_cloud.h"         #include "pcl_ros/transforms.h" 
#include <obstacles/laserObstacles.h>    #include <people_msgs/PositionMeasurementArray.h> 
#include "opt_msgs/TrackArray.h" 
obstacles::laserObstacles ob_msg;  //publise two Booleans and velocity command 
 
class LaserObstacles 
{ 
    ros::NodeHandle n; 
    tf::TransformListener tf_listener; 
    ros::Subscriber cmdVel = n.subscribe("/cmd_vel", 10, &LaserObstacles::velocityCallback, 
this); 
    ros::Subscriber sub_laser = n.subscribe("/RosAria/S3Series_1_pointcloud", 10, 
&LaserObstacles::LaserCallback,this);  //get the laser point 
    ros::Subscriber sub_people= n.subscribe("/people_tracker_measurements", 10, 
&LaserObstacles::LaserLegsCallback, this);  //get the leg detector point of the person 
    ros::Subscriber sub_people_kinect= n.subscribe("/tracker/tracks", 10, 
&LaserObstacles::KinectCallback, this);  //get the kinect point of the person 
    ros::Subscriber sub2= n.subscribe("/Pan_Feedback", 10, &LaserObstacles::panCallback, this); 
    ros::Subscriber sub3= n.subscribe("/Pan_Error_Command", 10, 
&LaserObstacles::smallErrorCallback, this); 
    ros::Publisher pub=(n.advertise<obstacles::laserObstacles> 
("/obstacles/laserObstacles",10)); 
    double KpDistanceCheck=3; //Kp for distance depend on linear velocity 
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    double DistanceCheck=0.8;  // minimum distance in front of the robot 
    double WidthCheck= 0.5;  //for each side 
    double DistanceSlowDownCheck= 1.5;  //distance from an obstacle to slow down 
    double angularVelocity;   //angular velocity of the robot 
    double linearVelocity;    //linear velocity of the robot 
    double xLaserPerson;  double yLaserPerson;  double xKinectPerson; double yKinectPerson;       
    double radiusPerson=1.0;  //radius around a person that clear from obstacles 
    double AngleErrorPan=0;   //the angle of the Pan related to the center of the robot 
    bool smallError=false;    //declare a small error to avoid small movements of the Pan 
    double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan 
    double AngleSmallError=0; //the angle of the person related to the center of the kinect 
 
void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg) 
     {AngleSmallError=msg->data; 
     if ((abs(AngleSmallError)<smallErrorThreshold)&& 
(abs(AngleErrorPan)<0.01)){smallError=true;} 
     else {smallError=false;}} 
 
void panCallback(const std_msgs::Float32::ConstPtr& msg) 
    {AngleErrorPan=msg->data;} 
 
void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg) 
    {int nbOfTracksLaser=msg->people.size(); 
    if (nbOfTracksLaser>0) { //Extract coordinates of first detected person from laser  
        for(int i=0; i<nbOfTracksLaser;i++){ 
        xLaserPerson=msg->people[i].pos.x; yLaserPerson=msg->people[i].pos.y;}} 
    else{ xLaserPerson=xKinectPerson;  yLaserPerson=yKinectPerson;}} 
 
void KinectCallback(const opt_msgs::TrackArray::ConstPtr& msg) 
    {int nbOfTracksKinect=msg->tracks.size(); 
    if (nbOfTracksKinect>0) { //Extract coordinates of first detected person from Kinect 
        for(int i=0; i<nbOfTracksKinect;i++){ 
        xKinectPerson=((msg->tracks[i].distance)*cos(AngleSmallError+AngleErrorPan)); 
        yKinectPerson=((msg->tracks[i].distance)*sin(AngleSmallError+AngleErrorPan));}}} 
 
void LaserCallback(const sensor_msgs::PointCloud::ConstPtr& msg) 
  {sensor_msgs::PointCloud pc_out; 
  bool obstacle=false;  //true if an obstacle was found 
  bool SlowDown=false;  //true if an obstacle was found in slowdown distance 
  double angularCommand;  double linearCommand; //velocity to avoid obstacle 
  double XclosestObstacle=100.0;  double YclosestObstacle=100.0; 
  double DclosestObstacle=100.0;   /X, Y, distance- 100 when there is no obstacle 
  tf_listener.waitForTransform("/laser_frame", (*msg).header.frame_id, (*msg).header.stamp, 
ros::Duration(5.0)); 
  tf_listener.transformPointCloud("/laser_frame", *msg, pc_out); 
  for (int i=0; i<pc_out.points.size() ;i++) 
      {if (((pc_out.points[i].x < KpDistanceCheck*linearVelocity) || (pc_out.points[i].x < 
DistanceCheck)) && (pc_out.points[i].x >-abs(angularVelocity))  && 
              ( ((sqrt(pow(pc_out.points[i].x-xLaserPerson,2)+pow(pc_out.points[i].y-
yLaserPerson,2))>radiusPerson) && (xLaserPerson!=0.0))|| 
               ((sqrt(pow(pc_out.points[i].x-xKinectPerson,2)+pow(pc_out.points[i].y-
yKinectPerson,2))>radiusPerson) && (xKinectPerson!=0.0)) )) //an obstacle inside the 
DistanceCheck and more than radiusPerson from a detected legs or detected person from the Kinect 
          {if ((pc_out.points[i].y < WidthCheck*(1+angularVelocity)) && (pc_out.points[i].y > -
WidthCheck*(1-angularVelocity))){ //2 conditions: 1. y smaller than positive WidthCheck 
multipile the power of the turn of the robot; 2.y bigger than negative WidthCheck multipile the 
power of the turn of the robot; 
            double pointDistance =sqrt(pow(pc_out.points[i].x,2)+pow(pc_out.points[i].y,2)); 
//to get the closet obstacle 
            if (pointDistance<DclosestObstacle){  XclosestObstacle=pc_out.points[i].x; 
                YclosestObstacle=pc_out.points[i].y;  DclosestObstacle=pointDistance;} 
          obstacle=true;} 
      } 
  } 
        if (((XclosestObstacle < KpDistanceCheck*linearVelocity) || (XclosestObstacle < 
DistanceCheck)) && (XclosestObstacle >-abs(angularVelocity))  && 
                ( ((sqrt(pow(XclosestObstacle-xLaserPerson,2)+pow(YclosestObstacle-
yLaserPerson,2))>radiusPerson) && (xLaserPerson!=0.0))|| 
                 ((sqrt(pow(XclosestObstacle-xKinectPerson,2)+pow(YclosestObstacle-
yKinectPerson,2))>radiusPerson) && (xKinectPerson!=0.0)) )){ //the closest obstacle inside the 
DistanceCheck and more than radiusPerson from a detected legs or detected person from the Kinect 
      linearCommand=0.2;  //linear velocity near an obstacle 
      if (YclosestObstacle>=0){angularCommand=-(WidthCheck-YclosestObstacle)/2;} //if obstacle 
from the left than turn right (positive angular velocity) 
      else {angularCommand=(WidthCheck+YclosestObstacle)/2;}} //if obstacle from the right than 
turn left (negative angular velocity) 
    else if(linearVelocity>0.3){ 
        linearCommand=0.3;  //if the linear velocity above 0.3 than slowdown to 0.3 
        angularCommand=angularVelocity;   SlowDown=true;} 
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    else {linearCommand=linearVelocity;} //if linear velocity below 0.3- keep same velocity 
        ob_msg.detect_obstacles=obstacle; //publish the variables 
        ob_msg.slow_down=SlowDown; 
        ob_msg.angular_velocity= angularCommand; 
        ob_msg.linear_velocity= linearCommand; 
        pub.publish(ob_msg);} 
 
void velocityCallback(const geometry_msgs::Twist::ConstPtr& msg) 
    {angularVelocity=msg->angular.z; linearVelocity=msg->linear.x;}//the robot's velocity 
}; 
 
int main(int argc, char **argv) 
{ 
  ros::init(argc, argv, "laser_obstacles_avoidance"); 
  LaserObstacles LO; 
  ros::NodeHandle n; 
  ros::spin(); 
  return 0; 
} 

 

5. Search After Disappear  

Implemented in 7.Direct Following Method and 8.History Following Method  

6. Kinect Orientation Control – Pan Mechanism 

 
#include "ros/ros.h"  #include <std_msgs/Float64.h>  #include <std_msgs/Float32.h> 
#include "std_msgs/String.h"         #include "opt_msgs/TrackArray.h" 
#include "sensor_msgs/JointState.h"  #include <ros/console.h>  #include "math.h" 
#include "trajectory_msgs/JointTrajectory.h"  #include "nav_msgs/Odometry.h" 
#include "trajectory_msgs/JointTrajectoryPoint.h" 
 
class PanMove 
{ 
    ros::NodeHandle n; 
    ros::Time lastTrackTime;  //last time that a person was detected  
    ros::Subscriber sub1; 
    ros::Publisher pub; 
    ros::Subscriber sub2; 
    double ConfidenceTheshold=1.1; //the SVM+HOG classifier- confidence for a real person 
    double HeightTheshold=1.4;               //height in meter of the person (minimum) 
    double HeightMaxTheshold=2.0;            //height in meter of the person (maximum) 
    int TrackedID=0;                         //init the track ID to zero 
    std_msgs::Float32 error_command; 
    double AngleErrorPan;  //the angle of the Pan related to the center of robot 
    bool validTrack=false; //true if there is a valid track 
    double AngleError=0;   //the angle of the person related to the center of the Kinect 
    bool TrackInitialized=false; //init there is no track 
 
public: 
    PanMove() 
     {sub1 = n.subscribe("/tracker/tracks", 10, &PanMove::personCallback, this); //Open_PTrack  
     pub = n.advertise<std_msgs::Float32>("/Pan_Error_Command", 1);//AngleError 
     sub2 = n.subscribe("/Pan_Feedback", 10, &PanMove::panCallback, this);} //AngleErrorPan 
 
void panCallback(const std_msgs::Float32::ConstPtr& msg) 
    {AngleErrorPan=msg->data;} //get the angle of the Pan related to the center of robot 
 
void personCallback(const opt_msgs::TrackArray::ConstPtr& msg) 
    {validTrack=false; 
    AngleError=0; 
    int nbOfTracks=msg->tracks.size();    //Get the number of tracks in the TrackArray 
    if (nbOfTracks>0) { //If at least 1 track, proceed 
        if (!TrackInitialized){ 
        for(int i=0;i<nbOfTracks;i++){ 
            if ((msg->tracks[i].confidence>ConfidenceTheshold) && (msg-
>tracks[i].height>HeightTheshold) && (msg->tracks[i].height<HeightMaxTheshold)){ //oldest track 
which is older than the age threshold, above the confidence threshold, above the height 
threshold and under max height threshold 
                TrackedID=msg->tracks[i].id; 
                TrackInitialized=true;} 
              } 
        } 
        if (!TrackInitialized){ROS_INFO("No valid track found");} 
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        else 
            {for(int i=0;i<nbOfTracks && !validTrack;i++){ 
                if (msg->tracks[i].id==TrackedID){ 
                    AngleError=atan2(msg->tracks[i].y,msg->tracks[i].x);//calculate 
                    ROS_INFO("Error: %f", AngleError); validTrack=true; //stop for loop 
                    lastTrackTime=ros::Time::now();} 
            } 
        } 
    } 
    ROS_INFO("valid %d" , validTrack); 
    error_command.data=AngleError; //get the angle error of the person to send for twist 
    if (!validTrack){ //no valid track 
       error_command.data=-0.5*AngleErrorPan; //get opposite half of the angle of the pan (the 
pan will return slowly to the center of the robot) 
            if ((ros::Time::now()-lastTrackTime)>ros::Duration(3)) //more than 3 seconds without 
a valid track 
                    {TrackInitialized=false; 
                    ROS_INFO("3 sec since last track seen, try to find it");} 
        } 
    pub.publish(error_command); //publish the command to the Pan to twist 
    } 
}; 
 
int main(int argc, char **argv){ 
     ros::init(argc, argv, "orientation_control"); 
     PanMove pm; 
     ros::NodeHandle n; 
     ros::spin(); 
     return 0; 
} 

 

7. Direct Following Method 

#include "std_msgs/String.h"  #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h" 
#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h" 
#include "opt_msgs/TrackArray.h" #include <ros/console.h> 
#include "people_msgs/PositionMeasurementArray.h" #include <obstacles/laserObstacles.h> 
#include "people_msgs/PositionMeasurement.h" #include <occlusions/sideOcclusions.h> 
#include "visualization_msgs/Marker.h" #include "visualization_msgs/MarkerArray.h" 
#include <pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h> 
#include <pcl/PCLPointCloud2.h> #include <pcl/conversions.h> #define PI 3.14159265 
geometry_msgs::Twist cmd_vel; 
 
class kinect2_pan_laser 
{ 
    ros::NodeHandle n;  ros::Subscriber sub1; ros::Subscriber sub2; ros::Subscriber sub3; 
    ros::Subscriber sub4; ros::Subscriber sub5; ros::Subscriber sub6; ros::Subscriber sub7; 
    ros::Publisher cmd_vel_pub; ros::Publisher vis_pub1; ros::Publisher vis_pub2; 
    ros::Publisher vis_pub3; 
         double KpAngle=0.5;          //the twist controller 
         double KpAngleOcclusion=0.2; //for changing the following angle while occlusion 
         double KpDistance=0.2;       //the distance controller 
         double DistanceTarget=1.2;   //the minimum distance from the person 
         double MaxSpeed=0.3;         //the maximum linear speed 
         double MaxTurn=0.2;          //the maximum angular speed 
         double AgeThreshold=0;         //the "age" of the person (time that been detected) 
         double ConfidenceTheshold=1.1; //SVM+HOG classifier- confidence for a real person 
         double HeightTheshold=1.4;     //height in meter of the person (minimum) 
         double HeightMaxTheshold=2.0;  //height in meter of the person (maximum) 
         double AngleErrorPan=0; //the angle of the Pan related to the center of the robot 
         bool smallError=false; //declare a small error to avoid small movements of the Pan 
         double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan 
         double AngleSmallError=0;//the angle of the person related to the Kinect center 
         double xLaserPerson; double yLaserPerson; //position of the person from the laser 
         double followingAngle=0;  //15 deg= 0.2618 ,30 deg= 0.5236 rad, 60 deg= 1.0472 rad 
         bool kinectLaserMatch=false; //the positions in both sensors correlate under 20 cm 
         int nbOfTracksKinect=0; //number of people detection by the kinect 
         double xRobot;double yRobot;double orientationRobot;//robot pose and orientation  
         bool BigLeft; bool SmallLeft; bool WallLeft; //occlusions from the left side  
         bool BigRight; bool SmallRight; bool WallRight; //occlusions from the right side 
         bool laser_obstacle_flag; //true if an obstacle was found 
         bool slow_down_flag; //true if an obstacle was found in slowdown distance 
         double laser_angular_velocity=0; double laser_linear_velocity=0; //init the      
velocities from obstacles avoidance algorithm to zero 
         double distanceKinect;  //the distance of the person by the kinect 
         double DistanceError; //error between the Kinect distance and distanceTarget 
         double tempDistanceKinect; //temp distance to for Search After Disappear algorithm 
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         double xPath; double yPath; //position of a person by Kinect related to the world 
         double xLast1; double yLast1; //last position of a person by Kinect before loss 
         double yLast2; //Y coordinates of a person by Kinect 4 frames before loss 
         double yDirection; //the direction of person's disappear (substract Y coordinates) 
         double tempDistance; //last distance of a person by Kinect before loss 
         bool validTrackKinect=false; //true if there is a valid track by kinect 
         double angular_command=0; //angular velocity to avoid obstacle 
         bool validTrackLaser=false;  //true if there is a valid track by laser 
         double tempDistanceLaser;  //last distance of a person by laser before loss 
         double DistanceErrorLaser; //error between the laser distance and distanceTarget 
         int nbOfTracksLaser=0; //number of people detection by the laser 
         double AngleErrorFollow; //angle of last position of a person by kinect to robot 
         double AngleErrorLaser;  //angle of position of a person by laser to robot 
         double xperson;  double yperson; //position of a person by Kinect related to robot 
         double AngleErrorKinect; //angle of position of a person by kinect to robot 
         double age;  //"age" of the person by Kinect (time that been detected) 
         double height;  //height of the person by kinect 
         double confidence;  //SVM+HOG classifier- confidence for a real person 
         double error; //error distance between the two sensor that detect a person 
         bool kinectTrack=false; //true if there is a valid track by kinect 
         bool laserTrack=false;  //true if there is a valid track by laser 
         std::vector<double> YpathPoints; //vector of Y coordinates of a person by kinect 
 
public: 
      kinect2_pan_laser() 
      { 
         sub1= n.subscribe("/tracker/tracks", 10, &kinect2_pan_laser::personCallback, this); 
//the kinect parameters of the person 
         sub2= n.subscribe("/Pan_Feedback", 10, &kinect2_pan_laser::panCallback, this);                 
//the angle of the pan from the center of the robot 
         sub3= n.subscribe("/Pan_Error_Command", 10, &kinect2_pan_laser::smallErrorCallback, 
this); //the angle of a person from the center of the kinect 
         sub4= n.subscribe("/people_tracker_measurements", 10, 
&kinect2_pan_laser::LaserLegsCallback, this); //the laser parameters of a person 
         sub5= n.subscribe("/occlusions/sideOcclusions", 10, 
&kinect2_pan_laser::occlusionKinectCallback, this);  //occlusions from depth Occlusion  
         sub6= n.subscribe("/obstacles/laserObstacles", 10, 
&kinect2_pan_laser::LaserObstaclesCallback, this);    //obstacles from Obstacles Avoidance 
         sub7= n.subscribe("/RosAria/pose", 10, &kinect2_pan_laser::poseCallback, this);  
//position of the robot in the world 
         cmd_vel_pub = ros::Publisher(n.advertise<geometry_msgs::Twist> ("follower/cmd_vel", 
2)); //publish the velocities to the robot 
         vis_pub1 = ros::Publisher(n.advertise<visualization_msgs::Marker>( 
"/visualization_marker_array", 1 ));  //for laser legs (green) 
         vis_pub2 = ros::Publisher(n.advertise<visualization_msgs::Marker>( 
"/visualization_marker_array", 1 ));  //for Kinect person detected (blue) 
         vis_pub3 = ros::Publisher(n.advertise<visualization_msgs::Marker>( 
"/visualization_marker_array", 1 ));  //for robot position (red) 
      } 
 
void poseCallback(const nav_msgs::Odometry::ConstPtr& msg) 
    {xRobot=msg->pose.pose.position.x; yRobot=msg->pose.pose.position.y; //robot's position 
    tf::Pose pose;  tf::poseMsgToTF(msg->pose.pose, pose); 
    orientationRobot= tf::getYaw(pose.getRotation());  //get radiand rotation (0 front, 3.14 
back, left positive, right negative) 
    ROS_INFO("xRobot: %f", xRobot);  //print the values of the parameters 
    ROS_INFO("yRobot: %f", yRobot);          ROS_INFO("BigLeft: %d", BigLeft); 
    ROS_INFO("SmallLeft: %d", SmallLeft);    ROS_INFO("WallLeft: %d", WallLeft); 
    ROS_INFO("BigRight: %d", BigRight);      ROS_INFO("SmallRight: %d", SmallRight); 
    ROS_INFO("WallRight: %d", WallRight);    ROS_INFO("Height: %f", height); 
    ROS_INFO("laser_obstacle_flag: %d", laser_obstacle_flag); 
    ROS_INFO("xLaser: %f", xLaserPerson);    ROS_INFO("yLaser: %f", yLaserPerson); 
    ROS_INFO("match: %d", kinectLaserMatch); ROS_INFO("Confidence: %f", confidence); 
    ROS_INFO("distanceKinect: %f", distanceKinect); 
    ROS_INFO("AngleErrorPan: %f", (AngleErrorPan*180)/PI); 
    ROS_INFO("xKinect: %f", xperson);        ROS_INFO("yKinect: %f", yperson); 
    ROS_INFO("xPath: 0"); ROS_INFO("yPath: 0"); ROS_INFO("tempDistance: %f", tempDistance); 
    ROS_INFO("xFollow: 0");                  ROS_INFO("yFollow: 0"); 
    ROS_INFO("kinectTrack: %d", kinectTrack);   ROS_INFO("laserTrack: %d", laserTrack); 
            for(int i=0;i<100000;i++){  //robot's position marker 
            visualization_msgs::Marker marker; marker.header.frame_id = "odom"; 
            marker.header.stamp = ros::Time();marker.ns = "robotPose"; marker.id = i; 
            marker.type = visualization_msgs::Marker::SPHERE; 
            marker.action = visualization_msgs::Marker::ADD; 
            marker.lifetime=ros::Duration(100.0); 
            marker.pose.position.x = xRobot; marker.pose.position.y = yRobot; 
            marker.pose.position.z = 0; marker.pose.orientation.x = 0.0; 
            marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.0; 
            marker.pose.orientation.w = 1.0; marker.scale.x = 0.2; marker.scale.y = 0.2; 
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            marker.scale.z = 0.2; marker.color.a = 1.0; marker.color.r = 1.0; 
            marker.color.g = 0.0; marker.color.b = 0.0; vis_pub3.publish( marker );} 
} 
 
void occlusionKinectCallback(const occlusions::sideOcclusions::ConstPtr& msg) 
   {BigLeft= msg->bigLeft;  //get all the Depth Occlusion algorithm parameters 
   SmallLeft= msg->smallLeft;  WallLeft= msg->wallLeft;  BigRight= msg->bigRight; 
   SmallRight= msg->smallRight;  WallRight= msg->wallRight; 
   if (BigLeft && !BigRight && !SmallRight){followingAngle=-0.5236;}  //change the following 
angle according to the occlusion 
   if (SmallLeft && !BigLeft && !BigRight && !SmallRight){followingAngle=-0.2618;} 
   if (WallLeft && !WallRight){followingAngle=-0.2618;} 
   if (BigRight && !BigLeft && !SmallLeft){followingAngle=0.5236;}  
   if (SmallRight && !BigRight && !BigLeft && !SmallLeft){followingAngle=0.2618;} 
   if (WallRight && !WallLeft){followingAngle=0.2618;} 
} 
 
void LaserObstaclesCallback(const obstacles::laserObstacles::ConstPtr& msg) 
   {laser_obstacle_flag=msg->detect_obstacles;//get Obstacle Avoidance algorithm parameters 
   laser_angular_velocity=msg->angular_velocity;laser_linear_velocity=msg->linear_velocity; 
    slow_down_flag=msg->slow_down; 
    if (laser_obstacle_flag){ 
    cmd_vel.angular.z = laser_angular_velocity;  //turn to avoid obstacles 
    cmd_vel.linear.x = laser_linear_velocity; cmd_vel_pub.publish(cmd_vel);} 
} 
 
void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg) 
     {AngleSmallError=msg->data; //get the angle of the person related to the kinect 
     if ((abs(AngleSmallError)<smallErrorThreshold)&& 
(abs(AngleErrorPan)<0.01)){smallError=true;}; //avoid small movements of the Pan 
     else {smallError=false;} 
} 
 
void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg) 
  {validTrackLaser=false; 
   nbOfTracksLaser=msg->people.size();//number of people detection by the laser 
   if (nbOfTracksLaser>0) { 
       xLaserPerson=msg->people[0].pos.x; //position of first detected person by laser 
       yLaserPerson=msg->people[0].pos.y; 
        if (nbOfTracksKinect==0) { //if there is no Kinect detection 
       AngleErrorLaser=atan2(yLaserPerson,xLaserPerson); //Calculate angle error by laser 
       DistanceErrorLaser=sqrt(pow(xLaserPerson,2)+pow(yLaserPerson,2)); //distance error 
       if(!laser_obstacle_flag){ //no obstacle 
           angular_command=AngleErrorLaser*KpAngle;  //angular velocity depends on the twist 
controller and the angle error by laser 
           if(angular_command>MaxTurn){angular_command=MaxTurn;}  //limit maximum speed 
           if(angular_command<-MaxTurn){angular_command=-MaxTurn;} 
           cmd_vel.angular.z = angular_command; 
           double linearspeedLaser=(DistanceErrorLaser-DistanceTarget)*KpDistance; //linear 
velocity depends on the distance error, the distanceTarget and the distance controller 
           if (linearspeedLaser>MaxSpeed) {linearspeedLaser=MaxSpeed;}//limit maximum speed 
           if (linearspeedLaser<0){linearspeedLaser=0;} 
           cmd_vel.linear.x = linearspeedLaser; cmd_vel_pub.publish(cmd_vel);} 
     } 
        validTrackLaser=true;  laserTrack=true; 
        visualization_msgs::Marker marker;  //person's position by laser marker 
        marker.header.frame_id = "base_link";  marker.header.stamp = ros::Time(); 
        marker.ns = "laser";                   marker.id = 0;  
        marker.action = visualization_msgs::Marker::ADD; 
        marker.pose.position.x = xLaserPerson; marker.pose.position.y = yLaserPerson; 
        marker.pose.position.z = 0;            marker.pose.orientation.x = 0.0; 
        marker.pose.orientation.y = 0.0;       marker.pose.orientation.z = 0.0; 
        marker.pose.orientation.w = AngleErrorLaser; 
        marker.scale.x = 0.1;      marker.scale.y = 0.1;     marker.scale.z = 0.1; 
        marker.color.a = 1.0;      marker.color.r = 0.0;     marker.color.g = 1.0; 
        marker.color.b = 0.0;                  vis_pub1.publish( marker );} 
   else if(!validTrackKinect){laserTrack=false;} 
} 
 
void panCallback(const std_msgs::Float32::ConstPtr& msg) 
{ AngleErrorPan=msg->data;}  //get the angle of the Pan related to the robot 
 
void personCallback(const opt_msgs::TrackArray::ConstPtr& msg) 
    {validTrackKinect=false; 
    nbOfTracksKinect=msg->tracks.size();    //get the number of people by kinect 
    if (nbOfTracksKinect>0) {   //if at least 1 track, proceed 
        for(int i=0;i<nbOfTracksKinect && !validTrackKinect;i++){  
            if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
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>tracks[i].height<HeightMaxTheshold)){ //oldest track which older than age threshold, above the 
confidence threshold, above the height threshold and under max height threshold 
                distanceKinect=msg->tracks[i].distance; //person's distance from the kinect  
                xperson=((msg->tracks[i].distance)*cos(AngleSmallError+AngleErrorPan));  
                yperson=((msg->tracks[i].distance)*sin(AngleSmallError+AngleErrorPan));                
//position of the person related to the robot 
                AngleErrorKinect=atan2(yperson,xperson); //angle of a person to robot 
                age=msg->tracks[i].age; //"age" of a person (time that been detected) 
                height=msg->tracks[i].height; //height of the person by kinect 
                confidence=msg->tracks[i].confidence; //confidence for a real person 
                YpathPoints.insert(YpathPoints.begin(),yperson); //insert the Y coordinate  
                if (YpathPoints.size()>5){ 
                    yLast1=YpathPoints.at(4); yLast2=YpathPoints.at(1); xLast1=xperson; 
                    tempDistanceKinect=distanceKinect; //get the last person's distance 
                    yDirection=yLast2-yLast1; //substract to get the direction 
                    YpathPoints.pop_back();} //clear space for more Y coordinate 
                error= sqrt(pow(xperson-xLaserPerson,2)+pow(yperson-yLaserPerson,2));  
//calculate the x and y error between the kinect and the laser 
                if (error<0.2){kinectLaserMatch=true;} //true if under 20 cm deviation 
                else{kinectLaserMatch=false;} 
                DistanceError=distanceKinect-DistanceTarget; //Calculate distance error 
                if (!laser_obstacle_flag){ //no obstacle 
                    angular_command= AngleErrorKinect*KpAngle; //angular velocity depends on the 
twist controller and the angle error by kinect 
                 if(abs(followingAngle)>0.1 && abs(AngleErrorKinect)<0.2) {angular_command = 
(AngleErrorKinect+followingAngle)*KpAngleOcclusion;} //angular velocity also depends on the 
following angle if it bigger than absolute value of 0.1   
                 if(angular_command>MaxTurn){angular_command=MaxTurn;}//limit maximum speed 
                 if(angular_command<-MaxTurn){angular_command=-MaxTurn;} 
                    cmd_vel.angular.z = angular_command; 
                 if (DistanceError>0.05){//threshold for small distance error of 0.05 meter 
                    double command_speed=DistanceError*KpDistance; //linear velocity depends on 
the distance error  and the distance controller 
                  if (command_speed>MaxSpeed){command_speed=MaxSpeed;}//limit maximum speed 
                  if (command_speed<0){command_speed=0;} //Avoid going backward 
                    cmd_vel.linear.x = command_speed;} 
                validTrackKinect=true; cmd_vel_pub.publish(cmd_vel);} 
        } 
    } 
    kinectTrack=true; 
            visualization_msgs::Marker marker; //person's position by kinect marker 
            marker.header.frame_id = "base_link";   marker.header.stamp = ros::Time(); 
            marker.ns = "kinect";                   marker.id = 0; 
            marker.type = visualization_msgs::Marker::SPHERE; 
            marker.action = visualization_msgs::Marker::ADD; 
            marker.pose.position.x = xperson;       marker.pose.position.y = yperson; 
            marker.pose.position.z = 0;             marker.pose.orientation.x = 0.0; 
            marker.pose.orientation.y = 0.0;        marker.pose.orientation.z = 0.0; 
            marker.pose.orientation.w = AngleErrorKinect; marker.scale.x = 0.1; 
            marker.scale.y = 0.1;     marker.scale.z = 0.1;    marker.color.a = 1.0; 
            marker.color.r = 0.0;     marker.color.g = 1.0;    marker.color.b = 1.0; 
            vis_pub2.publish( marker );} 
  else if(!validTrackLaser){kinectTrack=false;//no track in both sensors (kinect and laser) 
            xPath= xRobot+cos(orientationRobot+AngleErrorKinect)*tempDistanceKinect; 
            yPath= yRobot+sin(orientationRobot+AngleErrorKinect)*tempDistanceKinect; //last 
person's position related to the world  
            AngleErrorFollow=-atan2(yPath-yRobot,(xPath-xRobot))+orientationRobot; //angle 
related to the world 
                if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI] 
                if(AngleErrorFollow<0){AngleErrorFollow=AngleErrorFollow+2*PI;} 
                    else{AngleErrorFollow=AngleErrorFollow-2*PI;} 
                } 
                tempDistance=sqrt(pow(xPath-xRobot,2)+pow(yPath-yRobot,2)); //person's distance 
from the last position to the robot 
                if (!laser_obstacle_flag){  //no obstacle 
                    ros::Time start= ros::Time::now();                    
                    while((ros::Time::now()-start<ros::Duration(round(tempDistance/0.3))) && 
(!validTrackKinect) && (!laser_obstacle_flag)){ //no Kinect track, while time is shorter than 
the distance of the last position divided by contast linear velocity of 0.3 
                    if (!laser_obstacle_flag) 
                        {cmd_vel.linear.x = 0.3; cmd_vel.angular.z=0.0;} //move straight 
                    else{cmd_vel.angular.z = laser_angular_velocity; //avoid obstacle 
                        cmd_vel.linear.x = laser_linear_velocity;} 
                    } 
                    cmd_vel.linear.x = 0.0;//robot reach to the last position of the person 
                    if(!validTrackKinect){ //if no Kinect track 
                    if(yDirection>0){cmd_vel.angular.z=0.2;}//robot turns to last direction 
                    else{cmd_vel.angular.z=-0.2;} 
                    } 
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                cmd_vel_pub.publish(cmd_vel);} 
        } 
   } 
}; 
 
int main(int argc, char **argv){ 
    ros::init(argc, argv, "simple_follower_kinect2_pan_laser"); 
    kinect2_pan_laser kpl; 
    ros::NodeHandle n; 
    ros::spin(); 
    return 0; 
} 

 

8. History Following Method 

#include <stdio.h>     #include <stdlib.h>     #include "ros/ros.h"     #include "math.h" 
#include "std_msgs/String.h"  #include "std_msgs/Float32.h"  #include "nav_msgs/Odometry.h" 
#include "geometry_msgs/Twist.h"                  #include "sensor_msgs/LaserScan.h" 
#include "opt_msgs/TrackArray.h"                  #include <ros/console.h> 
#include "people_msgs/PositionMeasurementArray.h" #include <occlusions/sideOcclusions.h> 
#include "people_msgs/PositionMeasurement.h"      #include <obstacles/laserObstacles.h> 
#include "visualization_msgs/Marker.h"       #include "visualization_msgs/MarkerArray.h" 
#include <pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h> 
#include <pcl/PCLPointCloud2.h>              #include <pcl/conversions.h> 
#include <pcl_ros/transforms.h>              #include <opencv2/imgproc/imgproc.hpp> 
#include <opencv2/highgui/highgui.hpp>       #define PI 3.14159265 
geometry_msgs::Twist cmd_vel; 
 
class kinect2_pan_laser 
{ 
    ros::NodeHandle n; ros::Subscriber sub1; ros::Subscriber sub2; ros::Subscriber sub3; 
    ros::Subscriber sub4; ros::Subscriber sub5; ros::Subscriber sub6; ros::Subscriber sub7; 
    ros::Publisher vis_pub1; ros::Publisher vis_pub2; ros::Publisher vis_pub3; 
    ros::Publisher cmd_vel_pub; 
         double KpAngle=0.5;          //the twist controller 
         double KpAngleOcclusion=0.2; //for changing the following angle while occlusion 
         double KpDistance=0.2;       //the distance controller 
         double DistanceTarget=1.2;   //the minimum distance from the person 
         double MaxSpeed=0.3; //the maximum linear speed 
         double MaxTurn=0.2;         //the maximum angular speed 
         double AgeThreshold=0;         //the "age" of the person (time that been detected) 
         double ConfidenceTheshold=1.1;//SVM+HOG classifier- confidence for a real person 
         double HeightTheshold=1.4;    //height in meter of the person (minimum) 
         double HeightMaxTheshold=2;   //height in meter of the person (maximum) 
         double AngleErrorPan=0;//the angle of the Pan related to the center of the robot 
         bool smallError=false; //declare a small error to avoid small movements of the Pan 
         double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan 
         double AngleSmallError=0; //the angle of the person related to the Kinect center 
         double xLaserPerson;  double yLaserPerson; //position of the person from the laser 
         double linearspeedLaser;  //linear speed that depends on the distance by laser 
         double DistanceErrorLaser; //the distance of the person by the laser 
         double DistanceErrorKinect; //the distance of the person by the kinect 
         double linearspeedKinect; //linear speed that depends on the distance by kinect 
         double xRobot;double yRobot;double orientationRobot;//robot's pose and orientation 
         double xperson; double yperson; //position of a person by Kinect related to robot 
         double xPath; double yPath; //position of a person by Kinect related to the world 
         double distanceKinect; //the distance of the person by the kinect 
         double xFollow; double yFollow;//person's historical position by Kinect  
         double AngleErrorFollow; //angle of an historical position of a person by kinect 
         double DistanceErrorFollow; //distance of an historical position of a person 
         double followingAngle=0;  //15 deg= 0.2618 ,30 deg= 0.5236 rad, 60 deg= 1.0472 rad 
         bool kinectLaserMatch=false; //the positions in both sensors correlate under 20 cm 
         int nbOfTracksKinect=0; //number of people detection by the kinect 
         bool BigLeft; bool SmallLeft; bool WallLeft; //occlusions from the left side 
         bool BigRight; bool SmallRight; bool WallRight; //occlusions from the right side 
         bool laser_obstacle_flag; //true if an obstacle was found 
         bool slow_down_flag; //true if an obstacle was found in slowdown distance 
         double laser_angular_velocity=0; double laser_linear_velocity=0; //init the      
velocities from obstacles avoidance algorithm to zero 
         double AngleErrorLaser; //angle of position of a person by laser to robot 
         double AngleErrorKinect; //angle of position of a person by kinect to robot 
         double error; //error distance between the two sensor that detect a person 
         double age; //"age" of the person by Kinect (time that been detected) 
         double height; //height of the person by kinect 
         double confidence; //SVM+HOG classifier- confidence for a real person 
         bool kinectTrack=false; //true if there is a valid track by kinect 
         bool laserTrack=false; //true if there is a valid track by laser 
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         std::vector<double> XpathPoints; //vector of X coordinates of a person 
         std::vector<double> YpathPoints; //vector of Y coordinates of a person 
         std::vector<double> AngleErrorPanHistory;//vector of angle of the Pan to the robot 
 
public: 
      kinect2_pan_laser() 
      { 
         sub1= n.subscribe("/tracker/tracks", 10, &kinect2_pan_laser::personCallback, this); 
//the kinect parameters of the person 
         sub2= n.subscribe("/Pan_Feedback", 10, &kinect2_pan_laser::panCallback, this);               
//the angle of the pan from the center of the robot 
         sub3= n.subscribe("/Pan_Error_Command", 10, &kinect2_pan_laser::smallErrorCallback, 
this);//angle of a person from the kinect's center  
         sub4= n.subscribe("/people_tracker_measurements", 10, 
&kinect2_pan_laser::LaserLegsCallback, this);   //the laser parameters of a person 
         sub5= n.subscribe("/occlusions/sideOcclusions", 10, 
&kinect2_pan_laser::occlusionKinectCallback, this);  //occlusions from depth occlusion 
         sub6= n.subscribe("/obstacles/laserObstacles", 10, 
&kinect2_pan_laser::LaserObstaclesCallback, this);    //obstacles from obstacle avoidance 
         Sub7= n.subscribe("/RosAria/pose", 10, &kinect2_pan_laser::poseCallback, this);  
//position of the robot in the world 
         vis_pub1 = ros::Publisher(n.advertise<visualization_msgs::Marker>( 
"/visualization_marker_array", 1 ));  //for laser legs (green) 
         vis_pub2 = ros::Publisher(n.advertise<visualization_msgs::Marker>( 
"/visualization_marker_array", 1 ));  //for Kinect person detected (blue) 
         vis_pub3 = ros::Publisher(n.advertise<visualization_msgs::Marker>( 
"/visualization_marker_array", 1 ));  //for robot position (red), when using rviz set the fixed 
frame to odom 
         cmd_vel_pub = ros::Publisher(n.advertise<geometry_msgs::Twist> ("follower/cmd_vel", 
2)); 
      } 
 
void poseCallback(const nav_msgs::Odometry::ConstPtr& msg) 
  {xRobot=msg->pose.pose.position.x; yRobot=msg->pose.pose.position.y; //robot's position 
  tf::Pose pose; tf::poseMsgToTF(msg->pose.pose, pose); 
  orientationRobot= tf::getYaw(pose.getRotation());  //get radian rotation (0 front, 3.14 back, 
left positive, right negative) 
  ROS_INFO("xRobot: %f", xRobot); //print the values of the parameters 
  ROS_INFO("yRobot: %f", yRobot);       ROS_INFO("BigLeft: %d", BigLeft); 
  ROS_INFO("SmallLeft: %d", SmallLeft); ROS_INFO("WallLeft: %d", WallLeft); 
  ROS_INFO("BigRight: %d", BigRight);   ROS_INFO("SmallRight: %d", SmallRight); 
  ROS_INFO("WallRight: %d", WallRight); 
  ROS_INFO("laser_obstacle_flag: %d", laser_obstacle_flag); 
  ROS_INFO("xLaser: %f", xLaserPerson);    ROS_INFO("yLaser: %f", yLaserPerson); 
  ROS_INFO("match: %d", kinectLaserMatch); ROS_INFO("Confidence: %f", confidence); 
  ROS_INFO("Height: %f", height); ROS_INFO("distanceKinect: %f", distanceKinect); 
  ROS_INFO("AngleErrorPan: %f", (AngleErrorPan*180)/ PI); ROS_INFO("xKinect: %f", xperson); 
  ROS_INFO("yKinect: %f", yperson);                       ROS_INFO("xPath: %f", xPath); 
  ROS_INFO("yPath: %f", yPath);                           ROS_INFO("xFollow: %f", xFollow); 
  ROS_INFO("yFollow: %f", yFollow);                       ROS_INFO("tempDistance: 0"); 
  ROS_INFO("kinectTrack: %d", kinectTrack);  ROS_INFO("laserTrack: %d", laserTrack); 
          for(int i=0;i<100000;i++){ //robot's position marker 
          visualization_msgs::Marker marker;     marker.header.frame_id = "odom"; 
          marker.header.stamp = ros::Time();     marker.ns = "robotPose"; 
          marker.id = i;           marker.type = visualization_msgs::Marker::SPHERE; 
          marker.action = visualization_msgs::Marker::ADD; marker.pose.position.x = xRobot; 
          marker.pose.position.y = yRobot;                 marker.pose.position.z = 0; 
          marker.pose.orientation.x = 0.0;                 marker.pose.orientation.y = 0.0; 
          marker.pose.orientation.z = 0.0;                 marker.pose.orientation.w = 1.0; 
          marker.scale.x = 0.2; marker.scale.y = 0.2;      marker.scale.z = 0.2; 
          marker.color.a = 1.0;  marker.color.r = 1.0;     marker.color.g = 0.0; 
          marker.color.b = 0.0;                            vis_pub3.publish( marker );} 
} 
 
void occlusionKinectCallback(const occlusions::sideOcclusions::ConstPtr& msg) 
   {BigLeft= msg->bigLeft; //get all the Depth Occlusion algorithm parameters 
   SmallLeft= msg->smallLeft; WallLeft= msg->wallLeft; BigRight= msg->bigRight; 
   SmallRight= msg->smallRight; WallRight= msg->wallRight; 
   if (BigLeft && !BigRight && !SmallRight){followingAngle=-0.5236;} //change the following 
angle according to the occlusion 
   if (SmallLeft && !BigLeft && !BigRight && !SmallRight){followingAngle=-0.2618;} 
   if (WallLeft && !WallRight){followingAngle=-0.2618;} 
   if (BigRight && !BigLeft && !SmallLeft){followingAngle=0.5236;} 
   if (SmallRight && !BigRight && !BigLeft && !SmallLeft){followingAngle=0.2618;} 
   if (WallRight && !WallLeft){followingAngle=0.2618;} 
} 
 
void LaserObstaclesCallback(const obstacles::laserObstacles::ConstPtr& msg) 
   {laser_obstacle_flag=msg->detect_obstacles;//get Obstacle Avoidance algorithm parameters 
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   laser_angular_velocity=msg->angular_velocity;laser_linear_velocity=msg->linear_velocity; 
    slow_down_flag=msg->slow_down; 
    if (laser_obstacle_flag){ 
    cmd_vel.angular.z = laser_angular_velocity;  //turn to avoid obstacles 
    cmd_vel.linear.x = laser_linear_velocity; cmd_vel_pub.publish(cmd_vel);} 
} 
 
void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg) 
     {AngleSmallError=msg->data; //get the angle of the person related to the kinect 
     if ((abs(AngleSmallError)<smallErrorThreshold)&& 
(abs(AngleErrorPan)<0.01)){smallError=true;} //avoid small movements of the Pan 
     else {smallError=false;} 
} 
 
void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg) 
    {bool validTrackLaser=false; 
   int nbOfTracksLaser=msg->people.size();();//number of people detection by the laser 
   if (nbOfTracksLaser>0) { 
       xLaserPerson=msg->people[0].pos.x; //position of first detected person by laser 
       yLaserPerson=msg->people[0].pos.y; 
        if (nbOfTracksKinect==0) { //if there is no Kinect detecti 
       AngleErrorLaser=atan2(yLaserPerson,xLaserPerson); //Calculate angle error by laser 
       DistanceErrorLaser=sqrt(pow(xLaserPerson,2)+pow(yLaserPerson,2)); //distance error 
       xPath= xRobot+cos(orientationRobot+AngleErrorLaser)*DistanceErrorLaser; //person's 
position related to the world 
       yPath= yRobot+sin(orientationRobot+AngleErrorLaser)*DistanceErrorLaser; 
       XpathPoints.insert(XpathPoints.begin(),xPath); //insert the X coordinate 
       YpathPoints.insert(YpathPoints.begin(),yPath); //insert the Y coordinate 
       if (XpathPoints.size()>31){ //30 equal to 4 second history (8 Hz) 
       xFollow=XpathPoints.at(30); //get the 4 seconds historical position (8 Hz) 
       yFollow=YpathPoints.at(30); 
       XpathPoints.pop_back();//clear space for more coordinates 
       YpathPoints.pop_back(); 
       if(!laser_obstacle_flag){ //no obstacle 
           AngleErrorFollow=atan2(yFollow-yRobot,(xFollow-xRobot))+orientationRobot; //angle 
related to the world 
           if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI] 
               if(AngleErrorFollow<0){AngleErrorFollow=AngleErrorFollow+2*PI;} 
               else{AngleErrorFollow=AngleErrorFollow-2*PI;} 
           } 
       double angular_command; 
       angular_command=-AngleErrorFollow*KpAngle; //angular velocity depends on the twist 
controller and the angle error by laser 
       if(angular_command>MaxTurn){angular_command=MaxTurn;} //limit maximum speed 
       if(angular_command<-MaxTurn){angular_command=-MaxTurn;} 
       cmd_vel.angular.z = angular_command; 
       DistanceErrorFollow=sqrt(pow(xFollow-xRobot,2)+pow(yFollow-yRobot,2)); //distance related 
to the world 
       if (DistanceErrorLaser>DistanceTarget){ linearspeedLaser=(DistanceErrorFollow-
DistanceTarget)*KpDistance;} //as long as the distance is bigger than distanceTarget, linear 
velocity depends on the distance error and the distance controller 
       else{linearspeedLaser=0;} 
       if (linearspeedLaser>MaxSpeed) {linearspeedLaser=MaxSpeed;} //limit maximum speed 
       if (linearspeedLaser<0) {linearspeedLaser=0;} //avoid going backward 
        cmd_vel.linear.x = linearspeedLaser;} 
      } 
     cmd_vel_pub.publish(cmd_vel); 
     } 
        validTrackLaser=true; laserTrack=true; 
                visualization_msgs::Marker marker; //person's position by laser marker 
                marker.header.frame_id = "base_link";marker.header.stamp = ros::Time(); 
                marker.ns = "laser"; marker.id = 0;  marker.pose.position.x = xLaserPerson; 
                marker.type = visualization_msgs::Marker::SPHERE; 
                marker.action = visualization_msgs::Marker::ADD; 
                marker.pose.position.y = yLaserPerson;     marker.pose.position.z = 0; 
                marker.pose.orientation.x = 0.0;           marker.pose.orientation.y = 0.0; 
                marker.pose.orientation.z = 0.0; 
                marker.pose.orientation.w = AngleErrorLaser;   marker.scale.x = 0.1; 
                marker.scale.y = 0.1; marker.scale.z = 0.1;    marker.color.a = 1.0; 
                marker.color.r = 0.0; marker.color.g = 1.0;    marker.color.b = 0.0; 
                vis_pub1.publish( marker );} 
   else{laserTrack=false;} 
} 
 
void panCallback(const std_msgs::Float32::ConstPtr& msg) 
    {AngleErrorPan=msg->data;  //get the angle of the Pan related to the robot 
    AngleErrorPanHistory.insert(AngleErrorPanHistory.begin(),AngleErrorPan); //insert angle of 
the Pan to the robot 
    if(AngleErrorPanHistory.size()>3){ 
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        if(abs(AngleErrorPan)>2.0){AngleErrorPan=AngleErrorPanHistory.at(2);} //avoid angles 
above absolute value of 2 radians 
        AngleErrorPanHistory.pop_back();} 
} 
 
void personCallback(const opt_msgs::TrackArray::ConstPtr& msg) 
    {bool validTrack=false; 
    nbOfTracksKinect=msg->tracks.size();//get the number of people by kinect 
    if (nbOfTracksKinect>0) { //if at least 1 track, proceed 
        for(int i=0;i<nbOfTracksKinect && !validTrack;i++){ 
            if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){ //oldest track which older than age threshold, above the 
confidence threshold, above the height threshold and under max height threshold 
                distanceKinect=msg->tracks[i].distance; //person's distance from the kinect 
                xperson=((distanceKinect)*cos(AngleSmallError+AngleErrorPan)); 
                yperson=((distanceKinect)*sin(AngleSmallError+AngleErrorPan)); //position of the 
person related to the robot 
                AngleErrorKinect=atan2(yperson,xperson); //angle of a person to robot 
                age=msg->tracks[i].age; //"age" of a person (time that been detected) 
                height=msg->tracks[i].height; //height of the person by kinect 
                confidence=msg->tracks[i].confidence; //confidence for a real person 
              xPath= xRobot+cos(orientationRobot+AngleErrorKinect)*distanceKinect; 
              yPath= yRobot+sin(orientationRobot+AngleErrorKinect)*distanceKinect; //person's 
position related to the world 
                XpathPoints.insert(XpathPoints.begin(),xPath); //insert the X coordinate 
                YpathPoints.insert(YpathPoints.begin(),yPath); //insert the Y coordinate 
                if (XpathPoints.size()>81){ //80 equal to 4 second history (20 Hz) 
                    if(sqrt(pow(XpathPoints.at(80)-XpathPoints.at(79),2)+pow(YpathPoints.at(80)-
YpathPoints.at(79),2))<1.0){ //avoid big false position change, the position of a person can not 
be change more than 1 meter at 1 frame 
                xFollow=XpathPoints.at(80); //get the 4 seconds historical position (20 Hz) 
                yFollow=YpathPoints.at(80); 
                    } 
                XpathPoints.pop_back();  //clear space for more coordinates 
                YpathPoints.pop_back(); 
                error= sqrt(pow(xperson-xLaserPerson,2)+pow(yperson-yLaserPerson,2));  
//calculate the x and y error between the kinect and the laser 
                if (error<0.2) {kinectLaserMatch=true;} //true if under 20 cm deviation 
                else{kinectLaserMatch=false;} 
                DistanceErrorKinect=msg->tracks[i].distance;//person's distance from kinect 
                if (!laser_obstacle_flag){ //no obstacle 
                    AngleErrorFollow=-atan2(yFollow-yRobot,(xFollow-xRobot))+orientationRobot;  
//angle related to the world 
                    if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI] 
                 if(AngleErrorFollow<0){AngleErrorFollow=AngleErrorFollow+2*PI;} 
                        else{AngleErrorFollow=AngleErrorFollow-2*PI;} 
                    } 
                    double angular_command; 
                    if(abs(followingAngle)<0.1){angular_command = (-
AngleErrorFollow+followingAngle)*KpAngle;} //angular velocity also depends on the following 
angle if it bigger than absolute value of 0.1   
                    else {angular_command =-AngleErrorFollow*KpAngleOcclusion;} //angular 
velocity depends on the twist occlusion controller and the angle error by kinect 
                        if(angular_command>MaxTurn){angular_command=MaxTurn;}//limit speed 
                        if(angular_command<-MaxTurn){angular_command=-MaxTurn;} 
                    cmd_vel.angular.z = angular_command; 
                DistanceErrorFollow=sqrt(pow(xFollow-xRobot,2)+pow(yFollow-yRobot,2)); 
//person's distance from the robot 
                if (DistanceErrorKinect>DistanceTarget){ //as long as distance is bigger than 
distanceTarget, linear velocity depends on distance error and distance controller 
linearspeedKinect=(DistanceErrorFollow-DistanceTarget)*KpDistance;} 
                else{linearspeedKinect=0;} 
                if (linearspeedKinect>MaxSpeed) {linearspeedKinect=MaxSpeed;}//limit speed 
                if (linearspeedKinect<0 || DistanceErrorKinect<0.05 ) //avoid going backward and 
when reach to 5 cm threshold of disyanceTarget 
                    {linearspeedKinect=0;} 
                 cmd_vel.linear.x = linearspeedKinect; 
                 validTrack=true; cmd_vel_pub.publish(cmd_vel);} 
                } 
            } 
            kinectTrack=true; 
                    visualization_msgs::Marker marker; //person's position by kinect marker 
                    marker.header.frame_id = "base_link"; 
                    marker.header.stamp = ros::Time() ;marker.ns = "kinect"; marker.id = 0; 
                    marker.type = visualization_msgs::Marker::SPHERE; 
                    marker.action = visualization_msgs::Marker::ADD; 
                    marker.pose.position.x = xperson;   marker.pose.position.y = yperson; 
                    marker.pose.position.z = 0;         marker.pose.orientation.x = 0.0; 
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                    marker.pose.orientation.y = 0.0;    marker.pose.orientation.z = 0.0; 
                    marker.pose.orientation.w = AngleErrorKinect;   marker.scale.x = 0.1; 
                    marker.scale.y = 0.1; marker.scale.z = 0.1;     marker.color.a = 1.0; 
                    marker.color.r = 0.0; marker.color.g = 1.0;     marker.color.b = 1.0; 
                    vis_pub2.publish( marker );} 
    } 
    else { kinectTrack=false; 
    if (!laser_obstacle_flag && !laserTrack){ //no obstacle and no Kinect track 
            ros::Time start= ros::Time::now(); 
            while((ros::Time::now()-start<ros::Duration(round(tempDistance/0.3))) && 
(!kinectTrack) && (!laser_obstacle_flag)){ //no Kinect track, while time is shorter than the 
distance of the last position divided by contast linear velocity of 0.3 
            if (!laser_obstacle_flag) 
                {cmd_vel.linear.x = 0.3; cmd_vel.angular.z=0.0;} //move straight 
            else{cmd_vel.angular.z = laser_angular_velocity; //avoid obstacle 
                cmd_vel.linear.x = laser_linear_velocity;} 
            } 
            cmd_vel.linear.x = 0.0; //robot reach to the last position of the person 
            if(!kinectTrack){ //if no Kinect track 
                    if(yDirection>0){cmd_vel.angular.z=0.2;}//robot turns to last direction 
                    else{cmd_vel.angular.z=-0.2;} 
        cmd_vel_pub.publish(cmd_vel);} 
    } 
  } 
}; 
 
int main(int argc, char **argv){ 
    ros::init(argc, argv, "simple_follower_kinect2_pan_laser"); 
    kinect2_pan_laser kpl; 
    ros::NodeHandle n; 
    ros::spin(); 
    return 0; 
} 

 

9. Adaptive Following Method (Kinect and Laser)   

Implemented in 7.Direct Following Method and 8.History Following Method  

 



 

 

שני הניסויים הראשונים היו ניסויים ראשוניים כדי לבחור את פרמטרי העקיבה של הרובוט. לאחר שילוב 

(, נערך ניסוי לבחינת תוצאות Pan)הגרסה החדשה של הקינקט( עם מנגנון סיבוב הקינקט ) V2קינקט 

(. התוצאות הצביעו על כך 60, 30°, °0°יות שונות )אובייקטיביות וסובייקטיביות של עקיבה בשלוש זוו

. התוצאות °30)ישירות מאחורי האדם( לבין עקיבה בזווית  °0שאין הבדל משמעותי בין עקיבה בזווית 

 לא היו אמינות מספיק. °60עבור עקיבה בזווית 

ניב את ה זיהוי הסתרות עומקבניסוי שמטרתו להשוות בין אלגוריתמי זיהוי ההסתרות השונים, 

הימנעות הביצועים הטובים ביותר. בניסוי כדי לקבוע את השילוב הטוב ביותר של שלוש האלגוריתמים )

ופעם  העקיבה הישירה(, פעם אחת עם שיטת חיפוש אחרי העלמותו זיהוי הסתרות עומק, ממכשולים

הטובים ביותר. , עולה כי השילוב של שלושת האלגוריתמים נתן את הביצועים העקיבה ההיסטוריתעם 

( עם עקיבה היסטוריתו עקיבה ישירההניסוי האחרון והחשוב ביותר, השווה בין שתי שיטות העקיבה )

( חיפוש אחרי העלמותו זיהוי הסתרות עומק, הימנעות ממכשוליםשילוב של שלושת האלגוריתמים )

שיטת מסתגלת  לאותן שיטות עקיבה עם אותם אלגוריתמים בתוספת לייזר לגילוי רגליים )נקראת

 אדפטיבית( לשימוש במידת הצורך אם הקינקט מאבד את האדם.

. התוצאות הראו כי השיטות המסתגלות )אדפטיביות( המשלבות את חיישן הקינקט וחיישן מסקנות

הלייזר לעקיבה אחרי האדם היו יותר טובות מהשיטות הלא מסתגלות )רק עם חיישן הקינקט לעקיבה 

 .עקיבה היסטוריתעדיפה על ה עקיבה ישיראחר האדם( ו

 

  



 

 תקציר

יכולתו של הרובוט לעקוב אחר אדם בסביבה פנימית לא ממופה טומן בחובו אתגרים בשל מכשולים לא 

ידועים, קירות לא חקורים, פינות לא מוכרות ומסדרונות. מטרת המחקר הנוכחי היא לפתח אלגוריתמי 

מספר מקרי אובדן העקיבה אחר האדם כדי לשפר עקיבה אחרי אדם באמצעות רובוט אשר מפחיתים את 

את יכולת הרובוט להתאוששות עצמאית בסביבה לא ידועה. לשם כך, חמישה אלגוריתמים ושתי שיטות 

 עקיבה פותחו ונבדקו בסדרת ניסויים על פלטפורמת רובוט נייד.

ועלים ללא . האלגוריתמים שפותחו לא משתמשים במידע מקדים על הסביבה )למשל, פאלגוריתמים

 מיפוי מקדים( ואינם דורשים מהאדם לשאת פריט ספציפי או בגדים ספציפיים.

האלגוריתם משתמש בשיטות המבוססות על ראיית עומק כדי לשפר את תהליך זיהוי ההסתרה. 

האלגוריתם משתמש בחיישן לייזר כדי להימנע ממכשולים במהלך העקיבה בזמן אמת, בהתאם למהירות 

יתית של הרובוט וזוכר את המיקום האחרון של האדם כדי לחפש אותו אם נעלם על ידי הלינארית והזוו

 תזוזת הרובוט למיקום האחרון של האדם ופנייה לכיוון שחושב לפני ההעלמות.

בזמן אמת  (Obstacles-Avoidance- OA)הימנעות ממכשולים חמשת האלגוריתמים שפותחו: 

( לאחר איבוד עקיבה Search-After-Disappear- SAD)חיפוש אחרי העלמות באמצעות לייזר, 

-Depth-Occlusion) זיהוי הסתרת עומקוהעלמות האדם, ושלושה אלגוריתמי זיהוי הסתרות, 

Detection- DO ,זיהוי הסתרת ראיה( באמצעות מידע על מרחק הפיקסלים של הקינקט (Vision-

Occlusion-Detection- VOזיהוי הסתרה משולב ינקט ו( באמצעות מידע דו ממדי של הק

(Combined-Occlusion-Detection- CO.באמצעות שני הסנסורים של הקינקט שתוארו ) 

 OpenPTrack( קינקט באמצעות 1. שני חיישנים שימשו לזיהוי בני אדם: חיישנים

)http://openptrack.org/(  המזהה אנשים העומדים על הקרקע באמצעות היסטוגרמה של אוריינטציה

 support vector( ומכונת ווקטורים תומכים )histogram of oriented gradients- HOGהדרגתית )

machine- SVM .)2 הלייזר המובנה על הרובוט )SICK300אשר יכול לזהות את הרגליים של האדם ב ,-

 רקע.סנטימטר מעל פני הק 20

(, DF -Following-Direct) עקיבה ישירה. שתי שיטות עקיבה עיקריות פותחו והוערכו. שיטות עקיבה

( אשר History-Following- HF)עקיבה היסטורית אשר גורמת לרובוט לנוע ישירות לכיוון האדם ו

בוצעה בשני גורמת לרובוט לנוע למיקומים היסטוריים )קודמים( של האדם. ההערכה של שיטות העקיבה 

( עקיבה באמצעות זיהוי האדם רק על ידי הקינקט, נקראת שיטה לא מסתגלת )לא אדפטיבית(. 1אופנים: 

( עקיבה באמצעות זיהוי האדם על ידי שני החיישנים )קינקט ולייזר(. כאשר הקינקט מאבד עקיבה אז 2

 דפטיבית(.שיטת העקיבה עוברת לחיישן הלייזר לזיהוי האדם, נקראת שיטה מסתגלת )א

מצוידת  Pioneer LXRobot. האלגוריתמים יושמו על פלטפורמת רובוט ניידת פלטפורמת הרובוט

 בקינקט וחיישן לייזר.

. כדי להתגבר על הקשיים הכרוכים בסביבה לא מוכרת, אלגוריתמים הפועלים שיטות ותוצאות -ניסויים

עקיבה ישירה ועקיבה בה הראשיות )בזמן אמת פותחו ושולבו בצירופים שונים עם שתי שיטות העקי

(. סדרת ניסויים נערכה לטובת בחירת הפרמטרים הטובים ביותר והערכה של ביצועי היסטורית

האלגוריתמים. מדדי הביצוע שנבחרו לצורך השוואת הביצועים היו מספר מקרי איבוד העקיבה אחר 

התערבות המפעיל, מספר  האדם, מספר הפעמים בהן העקיבה התחדשה בעצמה על ידי הרובוט ללא

התערבויות המפעיל לטובת חידוש עקיבה ומספר התערבויות המפעיל לצורכי בטיחות, המרחק בין 

הרובוט לבין האדם, אורך נתיב הרובוט, האמינות של זיהוי הרגליים, האמינות של גילוי ההסתרות, 

ופן יציב אחר האדם מסך זמן והיחס של עקיבה יציבה לעומת אי עקיבה )אחוז הזמן בו החיישן עקב בא

 הניסוי כולו( של הקינקט ושל הלייזר.

  

http://openptrack.org/


 

  



 

 אוניברסיטת בן גוריון בנגב
 הפקולטה למדעי ההנדסה
 המחלקה לתעשיה וניהול
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