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Abstract

A robot's ability to follow a human in an unmapped indoor environment is fraught with
challenges due to unknown obstacles, unexplored walls and unfamiliar corners and corridors.
This research aimed to develop human-following robot algorithms that reduce the number
of instances of loss of the human and to improve the robot's ability to self-recover in
unknown environments. To this end, five algorithms and two human-following methods

were developed and tested in a series of experiments with a mobile robot platform.

Algorithms. The developed algorithms do not use any a-priori information about the
environment (i.e., operate with no a-priori mapping) and do not require that the human have
any particular carry-on item or specific clothing.

The algorithms use depth methods to improve the occlusion detection process. They use a
laser sensor to avoid obstacles during the following process in real time, adapt to the linear
and angular velocities of the robot and remember the last position of the person to search the
person if the person disappears by moving to the last known position of the person and

turning in the direction that was calculated before loss.

The following five algorithms were developed: real time Obstacles-Avoidance by laser
(OA), Search-After-Disappear to search for the person after tracking has been lost (SAD),
and three occlusion detection algorithms, namely, Depth-Occlusion-Detection (DO) using
the depth information from the Kinect sensor (see below), Vision-Occlusion-Detection
(VO) using the 2D information from the Kinect, and Combined-Occlusion-Detection (CO)

using both depth information and 2D information.

Sensors. Two sensors were used for detecting humans: 1) Kinect using OpenPTrack
(http://openptrack.org/) that detects people standing on the ground by using histogram of
oriented gradients (HOG ) and support vector machine (SVM) classifiers and 2) the on-board

laser SICK300, which can detect the human's legs at 20 cm above the ground.

Methods of following. Two main human-following methods were developed and evaluated.

A Direct-Following (DF) method, in which the robot moves directly towards the person
being detected, and a History-Following (HF) method that causes the robot to move to
previous positions of the person. The evaluation of the methods comprised two stages:
1) using only the Kinect to follow the human, denoted as non-adaptive methods, and 2) using
both sensors to follow the person (if the Kinect loses the person, then the method uses the

laser), denoted as adaptive methods.



Robot platform. The algorithms were implemented on a Pioneer LXRobot mobile platform

equipped with a Kinect and laser sensor.

Experiments — methodology and results. To overcome the difficulties inherent in an

unknown environment, real-time algorithms were developed and integrated in various
combinations with the two main human-following methods (DF, HF). A series of
experiments were conducted to derive best fit parameters and to evaluate the algorithms.
Performance measures applied for the comparison were the number of instances of loss of
the human, number of self-recoveries of the robot and the number of safety interventions,
the distance between the robot and the human, the length of the robot path, reliability of the
legs detector, reliability of occlusion detections, and the ratio of stable tracking (percent of

stable tracking from the entire trial) of the Kinect and laser.

The first two experiments were preliminary experiments to choose the robot following
parameters. After implementing the Kinect V2 with a Pan Mechanism, an experiment was
conducted to test the objective and subjective metric performances of three following angles
(0, 30, 60°). The results indicated that there was no significant difference between 0° and

30° following angles. The results for following at 60° were not sufficiently reliable.

In an experiment aimed to compare the different occlusion detection algorithms, the DO
yielded the best performance. An experiment to determine the best combination of the three
algorithms (DO, OA, and SAD), once with the DF method and once with the HF method,
indicated that combining the three algorithms yielded best performance. The final, and most
important experiment, compared the two methods of human-following (DF and HF) with
the combination of the three algorithms to same chosen methods with addition laser legs

detector (denoted as adaptive methods) for use if necessary if the Kinect lost the participant.

Conclusions. The results showed that adaptive methods that combine the Kinect and laser
sensor to follow the person were better than non-adaptive methods (the algorithms that use
only the Kinect to follow the person) and that direct-following methods are better than

history-following methods.
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1. Chapter One: Introduction

1.1 Description of the Problem

In robotics, algorithms for human-following robots have been the subject of intensive
research (Jia et al. 2016; Li et al. 2015; Sahoo and Ari 2015; Jung et al. 2014; Karakaya et
al. 2014.; Doisy et al. 2012; Machida et al. 2012; Motai et al. 2012), but one of the main
problems, namely, the robot losing track of the person it is following, remains to be resolved
(Ota et al. 2013). Additional problems are caused by occlusions, quick turning of the person,
and crowded environments or they may occur when the target person is obscured by
obstacles. There are many approaches in the literature to overcome these problems (Ota et
al. 2013; Granata et al. 2011; Kim et al. 2010; Ma et al. 2008; Kmiotek and Ruichek 2008;
Huang et al. 2007), but to date, none is completely satisfactory. One option is to provide the
robot with a detailed map of the environment that can be used to avoid obstacles and to
predict the next step in a corridor or at a corner. The disadvantages of this option are that
requires a-priori information about the environment and that it lacks versatility. For the robot
to avoid obstacles without having a-priori information, it must be equipped with a real-time
obstacle-detection algorithm so that it can react immediately when an obstacle appears in its
close vicinity. Another option uses a decision-making engine that selects from different
following methods, such as direct following or path following, when the person disappears
(Granata et al. 2011). An approach that uses vision-based face detection (Huang et al. 2007)
could be used in the following system to restore tracking after target loss, but the
disadvantage of this approach is that the person must face the robot. Yet another method to
maintain following is for the person to carry a device for guiding the robot, like a dog-leash
(Young et al. 2011), but once again, such a solution reduces the versatility of the robot and
has the additional disadvantage that the person has to carry the device.

Most human-following algorithms are programmed to follow a person directly from behind
(Granata et al. 2011). However, if the robot 'realizes' that something is blocking its line of
sight to the person, it can prevent the interruption in following by changing its tracking angle
through increasing its line of sight with the person (wider angle). When a person starts to
disappear, due to, say, rounding a corner, the robot must react to reduce the probability of

losing the person.



1.2 Objectives

This study aimed to develop human-following algorithms for robots that reduce the number
of instances of the robot losing the human and that improve the robot's ability to self recover
in environments that branch or have unexpected corners, obstacles or occlusions. In this
thesis, the focus was directed to detecting corners and obstacles that interrupt the line of sight
between the robot and the person by using a Kinect vision sensor and Kinect people
recognition, such as Skeleton or OpenPTrack (Munaro et al. 2014). The study explored
whether and how the use of vision and depth methods can contribute to improving detection
in an occlusion situation. It also explored whether following the human at different angles
to create a better line of sight between the robot and the person could reduce the probability
of losing track of the person. To enable the robot to deal with obstacles during the following
process, a real-time obstacle-detection algorithm was developed. The algorithms do not use
any a-priori information about the environment (i.e., it operates without mapping) and do

not rely on any special carry-on item or any specific clothing of the human.

1.3 Thesis contributions

This thesis introduces four algorithms and two human-following methods, which were
developed to overcome the difficulties — due to unexpected obstacles, unexplored walls and
unfamiliar corners and corridors — in following a human for robots operating in unmapped
environments. Here, a brief summary is provided, with more detailed definitions and

explanations being given later in the relevant sections of the thesis.
Algorithms

e Real-time obstacle detection and avoidance without a-priori information about the

location of the obstacles or any kind of pre-built map of the environment. The algorithm

declares an adaptive corridor in front and on the sides of the robot to narrow the scan
area, which depends on the prevailing linear and angular velocities of the robot. As the
robot turns, the corridor moves to the side of the turn to enable the robot to search for
obstacles inside the turning radius. The angular velocity depends on the side and distance
of the obstacle from the center of the robot.

e Real-time occlusion detection using depth information of the pixels. The algorithm

compares the depth value of the pixels (distance value of the pixels) inside the bounding
box coordinates (BBCs) of a detected person to the distance of the whole person from
the robot and searches for small values that indicate closer pixels (indicating an

occlusion). It does not use the ground depth value but depends on the person’s distance

3



from the robot. The algorithm reduces false alarms and can detect both small and large

occlusions and even a vertical occlusion like a wall.

e Real-time occlusion detection using 2D images by transforming the pixels' coordinates

of the depth image to a 2D (MONO) image. The algorithm finds contours of the whole

person and any straight vertical lines that indicate an occlusion.

e Search for the person after disappearance. The algorithm moves the robot to the person's

last known position and turns the robot in the direction that is calculated according to the

last few frames obtained before the person had disappeared.
Following methods

¢ Direct human-following method moves the robot directly to the position of the detected

person. The method gives priority to sending the robot the linear and angular velocity to
avoid any obstacles change. The robot can then change the following angle according to
the occlusion-detection algorithm, which can work with robots equipped with Kinect
and/or laser sensors.

e History human-following method moves the robot directly to the historical position of

the person being tracked. The method avoids big changes of the position of the person
caused by the movements of the robot and the Kinect, avoids quick turns that cause the
Kinect to lose the person and avoids problems with two sources of person detection
(Kinect and laser).

1.4 Thesis structure

The thesis is organized as follows: Chapter 2 presents a review of the literature on human-
following methods by several sensors, robot navigation, detection of occlusions, and target
loss. Chapter 3 presents the methodology, which starts with a description of the robot
hardware and software and continues with a description of the sequence of experimental
steps and all the experimental procedures. This chapter ends with a description of the
implementation of the robot operating system (ROS) and analysis procedures. Chapter 4
presents the description of the algorithms. Chapter 5 gives the results of the experiments and
some discussion of the results. Chapter 6 presents conclusions and recommendations for

future work.



2. Chapter Two: Literature Review

2.1 Introduction

Tracking of a person by a robot has been intensively investigated in recent years (Jia et al.
2016; Sahoo and Ari 2015; Li et al. 2015; Karakaya et al. 2014.; Jung et al. 2014; Doisy et
al. 2012; Machida et al. 2012; Motai et al. 2012), with the main thrust of the research being
devoted to three challenging tasks related to person-tracking robots: (1) robot navigation, (2)
tracking methods, and (3) problems associated with occlusions and target loss. Recently,
research has focused on new tracking methods and on the fusion of several methods to
investigate problems related to recovery after target loss or occlusions (Ota et al. 2013;
Granata et al. 2011; Kmiotek and Ruichek 2008; Huang et al. 2007).

2.2 Applications

Robot tracking has been applied for many uses and applications, including, among many
others: (1) Care robots in nursing, such as those providing medical help for the elderly, where
the robot helps to carry medicines and treat the patients (Machida et al. 2012); (2) Robots
for assisting workers to assemble large equipment (Karakaya et al. 2014); (3) Robots that
help passengers to carry heavy luggage at airports and train stations (Li et al. 2013);
(4) Smart shopping carts, such as the Kinect grocery cart, that follow the customer and scan
his/her purchases in the supermarket or the mall; (5) Robots as walking assistants to support
a person (Jia et al. 2016); (6) Museum guidance robots that follow a person and provide
guidance and information (Karakaya et al. 2014); and (7) Robots designed to help the
disabled (Jia et al. 2016).

2.3 Tracking Methods
2.3.1 Vision-Based Tracking

Along the years, many algorithms have been developed for use with different sensors and
methods that rely on smart environments (Najmaei and Kermani 2011). Most person
detection and tracking methods use vision-based techniques (Jia et al. 2016; Sahoo and Ari
2015; Y. Li et al. 2015; Yao et al. 2012; Motai et al. 2012; Ma et al. 2008), but such
techniques have some inherent disadvantages, such as sensitivity to illumination changes
(Liu et al. 2004) or problems with computing size or large processing. Two examples of

vision-based algorithms are the particle filtering (PF) algorithm and the mean-shift algorithm



(Yao et al. 2012). Particle filters represent a distribution by a set of weighted samples called
particles. Each particle is a guess representing one possible location of the object being
tracked. This weighted distribution is updated along time by using a set of equations. The
mean-shift algorithm creates a confidence map in a new image based on the color histogram
of the object in the previous image, and applies mean-shift optimization to find the peak in
a confidence map near the object's previous position. Each pixel of the new image is a
probability, which is related to the probability of the pixel color occurring in the object in
the previous image. An advanced mean-shift algorithm can be used for detection of a person
by modeling a star skeleton of the human body and adding a combination of a block search
algorithm for high-speed movement and a target loss recovery algorithm (Sahoo and Ari
2015). Some vision-based methods are based on detection of the person's legs (Li et al.
2015); for example, they divide the tracking into global tracking, which describes the motion
of both feet as one element, and local tracking, which describes the relation between the two
feet (Li et al. 2015).

2.3.2 Laser-Based Tracking

Rather than using vision-based techniques, several methods use laser sensors to ‘find' the
human (Karakaya et al. 2014; Jung et al. 2014; Alvarez-Santos et al. 2012; Kim et al. 2010;
Sales et al. 2010; Ma et al. 2008), since the laser range finder (LRF) can provide more precise
position information. A laser-based technique has the additional advantages that it requires
fewer processing sources and is less influenced by lighting conditions (Kim et al. 2010). In
addition, the laser is not influenced by colors or face detection. The main disadvantage of
laser-based techniques lie in their ability to recognize only items in the line of sight, which

is relatively a small area when compared to that covered by vision-based methods.

2.3.3 Integration of Sensor-Based Tracking Techniques

Several studies have described methods of integration of vision-based sensors and lasers, for
example, such methods may use vision-based methods to extract the body and lasers to
measure distance (Ma et al. 2008). In most applications, the LRF detects the legs of a person
(Alvarez-Santos et al. 2012), but human legs can be confused with chair or table legs, so
there is a need to compose a map of the environment by using a sensor fusion technique
(Motai et al. 2012). In such a scenario, the laser can assist the robot to navigate and to avoid

obstacles and not only to track the person.



A combination of depth images and thermal images has also been developed for detecting
more than one person (Hadi et al. 2015). A depth image is fused with the region of interest
(ROI) obtained from the thermal image to derive a person’s contour. Occlusions of the
detected persons are resolved using BBCs. The algorithm has two stages: The first is a pre-
detection stage to obtain the BBC from the thermal image representing the region of humans.
In the second stage, people are detected with contours of depth measurements, and an
occlusions detector classifier is applied to detect people that are occluded.

2.3.4 Depth-Camera-Based Tracking

Yet another tracking method focuses on the use of time-of-flight (TOF) range cameras
(Ikemura and Fujiyoshi 2011; Plagemann 2010; Plagemann and Koller 2010). Many
algorithms have been proposed to address the problem of pose estimation and motion capture
from range images, for example, a filtering algorithm to track human poses using a stream
of depth images captured by a TOF camera (Plagemann 2010). There have been several
works on detection of human parts using TOF cameras (Plagemann and Koller 2010).
Examples include: (i) using a point detector to solve problems of detection and to identify
body parts in depth images (Plagemann and Koller 2010) and (ii) using a window-based
human detection method by comparing depth similarity features based on depth information
(Ikemura and Fujiyoshi 2011).

When there is a problem with low visibility conditions, such as in smoky environments, the
vision-based sensors or lasers do not provide good solutions (Sales et al. 2010). In such a
case, the use of LRF and sonar sensors is proposed in combination with a vision-based
system that can determine the amount of smoke in the environment and then decide on the

optimal combination of sensors for the particular conditions (Sales et al. 2010).

2.3.5 Kinect-Based Tracking

In June 2011, Microsoft released the Kinect software development kit (SDK). This SDK
allows developers to write Kinect apps for the Kinect sensor. Kinect is an RGB-D sensor
that provides depth images, allowing real-time object segmentation, which based on a
distance gradient. The depth sensor, which includes an infrared laser projector in
combination with a monochrome sensor, captures video data in 3D under any lighting
conditions, and hence facilitates the development of more efficient human-tracking robots

(Pucci et al. 2013). Indeed, Kinect may be regarded as a breakthrough in the field: it has
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made possible new approaches and techniques for person-tracking research (Machida et al.
2012; Doisy et al. 2012; lkemura and Fujiyoshi 2011). The 3D position information from
the Kinect sensor enables the velocity and attitude of the mobile robot to be controlled
directly. A Kalman filter can be used to reduce the noise and to estimate the human's motion
(Machida et al. 2012). Another Kinect detection example, which detects humans using a 2-
D head contour model and a 3-D head surface model, was developed (Ikemura and Fujiyoshi
2011).

OpenPTrack is an open source algorithm based on the Robot-Operation-System "ROS"
(Quigley et al. 2009) and Point Cloud Library (PCL) (Rusu and Cousins 2011). It detects
people with the Kinect sensor using a histogram of oriented gradients (HOG) and a support
vector machine (SVM) learning classifier for creating the confidence, based on a large
training dataset, that the detected area is a person. In addition, an unscented Kalman filter
(for nonlinear systems) is exploited to predict people's positions and velocities along the two
ground plane axes (X,Y) (Munaro and Menegatti 2014). The algorithm provides many
person-specific parameters, namely: the position of the person in the world, as 'seen’ by
Kinect, the coordinates of the bounding box around the person in the depth image, height of
the person, distance to the person and more. The algorithm is able to track people at 30 Hz
with minimum latency on the assumption that the plane on which people stand or walk is the
ground, and therefore the number of Regions-Of-Interest "ROIs" that are candidates to
contain people is reduced. After selecting a set of clusters from the point cloud, the algorithm
processes a Histogram-of-Oriented-Gradients "HOG"-based people detector applied to the
corresponding image patches (Munaro and Menegatti 2014), and finally it uses a SVM
classifier for deciding on the confidence that the patch is a person. The main advantage of
this algorithm is its ability to use both RGB and depth information for obtaining the best
result when the RGB image is good, while using depth data alone if the RGB image is too
dark.

2.3.6 Different Detectors for Different Distances

For close-range detection (up to 5-7 m), the real-time RGB-D based multiperson detection
and tracking system of Jafari, Mitzel, and Leibe (2014) uses an extremely fast depth-based
upper-body detector and for further distances it adds an appearance-based full-body HOG
detector. The idea is to use the depth information for ROI extraction to detect people at close
range, where depth measurements are reliable, while simultaneously extrapolating scene

geometry information to constrain the search space for appearance-based people detection



in the far range. The system uses a template of an upper body to detect people by using depth
information at close range; the system computes a distance matrix consisting of the
Euclidean distances between the template and each normalized depth image segment. For
detecting people at further distances, the system uses HOG alone on the ROIs, according to
the ground plane. Finally, the detections are converted to ground plane coordinates and are
associated into trajectories using an extended Kalman filter.

2.3.7 Outdoor Tracking

Most tracking systems or mobile robots have been designed to operate in indoor
environments (Karakaya et al. 2014). Robotic systems designed to operate in outdoor
environments, including person tracking and avoiding moving obstacles, in a crowded
environment are very rare, because of the noise generated by the outdoor environment.
Nonetheless, a robot capable of following a marathon runner has been developed; it uses a
laser to detect the runner and to avoid obstacles (Jung et al. 2014). This robot, known as

MSR (Marathoner Service Robot), is designed to carry water and equipment for the runner.



2.3.8 Examples of human tracking

Examples of human-tracking algorithms for robots are given in the table below.

Kinect Kalman filter Circular path vs zigzag | Low price; depth help for Velocity less than 1 m/s. | Indoors Yes Bone No no single Machida et
clutter background Light condition, Spatial model (all al. 2012
resolution, Sample rate. body)

Kinect A 2D edge detector and a Two persons indoors Easily adjust to new High dependency on Indoors Only Head and No only Upto2 | Ikemura
3D shape detector to utilize | with many objects in datasets; no training accurate head detection. tracking | thenthe tracking persons | and
both the edge information the vicinity needed; the first layer body Fujiyoshi
and the relational depth reduces computational 2011
change information in the cost; does not assume
depth image. person’s pose for accurate

detection.

RGB Advanced mean-shift. Does not work for fast Outdoors | Only Star No Only Single Sahoo and
motion, prolonged tracking skeleton tracking Ari 2015
occlusion or changing (all body)
illumination.

RGB Particle filtering; global Several human Fails in noisy Indoors No Two feet No No Single Li etal.
tracking (motion of both walking videos; backgrounds; shift to and 2015
feet), and local tracking evaluated against another person. outdoors
(relative motion of the two particle filtering.
individual feet).

LRF Support vector data Tracking speed and Irregular terrain in the Outdoors | Yes Torso Yes Yes Crowd | Jungetal.

(laser description (SVDD); performance; static outdoor environment or 2014

range human detection algorithm | and moving obstacles significant noise from

finder) and an avoidance avoidance. the outdoor
algorithm. environment.

RGB and | Horizontal Projecting Difference distance; Compares the vision to the | Another person with Indoors Yes Torso for Yes No Crowd | Maetal.

LRF Probability Histogram another person with distance from the laser. same clothes. vision, legs 2008
(HPPH) of upper body with | the same clothes. for laser.
unscented particle filter
(UPF) with laser for legs.

Infra-red | Kalman filter and optical Single person indoors, | Combination of Kalman- Crowd. Indoors No Whole Yes- Yes (with | Single Motai et al.

and laser | flow. compared to only Filter and Optical-Flow body sharp laser) 2012

Kalman-Filter and for quick turn turns- OF
only Optical-Flow. other KF

RGB, Vision image to determine Only sonar, only laser, | Low visibility Laser is better than Indoors No Legs No Yes Single Sales et al.

laser, the degree of visibility of sonar TODA (time environment. sonar. 2010

Sonar the environment. difference of arrival)
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2.4 Navigation
2.4.1 Overview

To navigate in an environment, the human-tracking robot needs to know where all the
obstacles are in that environment or to have a pre-built map of the environment that includes
the obstacles. In addition, to navigate, the robot must be programmed with a method for

following the person.

2.4.2 Mapping the Environment

Most person-tracking approaches in indoor environments are based on wireless networking,
such as ultrasound and radio frequency (Garcia-Valverde et al. 2013). For indoor
applications, the map of the environment allows safer and more efficient robot navigation,
but often the robot must also take into consideration the movement of objects and other
people. A study that compared robot navigation with and without a map of the environment
showed how the map improved the robot's adaption to the distribution of obstacles (Doisy
et al. 2012). A common method for navigation and building a map of the environment is
simultaneous localization and mapping (SLAM), one of the most active research and
development areas in mobile robotics (Schmidt et al. 2016). Statistical techniques are used
to solve SLAM, with the most popular approximate solution being particle filter and
extended Kalman filter (Norhidayah and Norida 2015). The main disadvantage of SLAM
lies in its computational complexity, which increases significantly with the growing number

of landmarks in the environment under exploration (Ding et al. 2015).

2.4.3 Obstacle Detection

The many different sensors employed for obstacle detection include sonar pairs, infra-red
measurement sensors, point-to-point laser sensors, LIDAR (light detection and ranging or
laser imaging detection and ranging), and Kinect (I et al. 2012). One such system that
combines LIDAR and Kinect uses the LIDAR for obstacle and heading direction and Kinect
for eliminating depth data for the immediate environment (Karakaya et al. 2014.; | et al.
2012).
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2.4.4 Methods of Following

There are many methods for navigation and for tracking a person. The robot can track by a
direction-following method, in which the robot is always pointing towards the person and
moves directly to him. A robot can also track by path-following method, which tracks by
adhering to the same path that the person walks. Another — albeit rarely applied — method is
parallel-following, which depends on the prevailing state of the environment and on the
position of the robot relative to the person (Morales et al. 2012). There are also hybrid

methods that use combinations of the above methods (Granata et al. 2011).

2.5 Occlusions and Target Loss

A person-tracking robot requires tracking abilities that distinguish between people and
objects (Jia et al. 2016; Kim et al. 2010; Ma et al. 2008). Such a robot is also required to
overcome problems caused by occlusion, quick turning, and crowded environments, or those
that occur when the target person is obscured by obstacles. The robot must also have the
ability to recognize loss of tracking due to individuals walking between the mobile robot and
the target person and to recover the tracking by using a legs detector (Kim et al. 2010). The
development of an adaptive multi-feature mean-shift algorithm in a cluttered environment
has been described by Jia et al. (2016) using the double-layer locating mechanism (DLLM).
This mechanism takes the course location processing and fine location processing into
consideration and is designed to estimate the position of the person by using a combination
of data and an ID tag on the person, which can be detected by radio frequency antennas (Jia
et al. 2016). For adapting to different moving targets using key characteristics, the robot
constructs the target model at the beginning of the tracking process, then detects the human
candidates in the scene and finds the target person by using multiple image cues, namely,
color and edges (Ma et al. 2008). Other methods to solve the problems of occlusions and
target loss were developed. Examples include: (i) Use a decision-making engine when the
person disappeared by choosing a different method to follow the person, direct following or
path following (Granata et al. 2011). (ii) Continuing to follow even when the sensor lost the
target because of a corner (Ota et al. 2013). (iii) Using oriented bounding box (OBB)
representation for object tracking (Kmiotek and Ruichek 2008). An approach that uses a
vision-based technique for face detection (Huang et al. 2007) could be applied in a following
system for successful reinitialization after target loss, but the person must be facing the robot.
All of the above examples have been suggested and applied for addressing the problems of

occlusions and target loss in the real world (vs in a sterile experimental environment).
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3. Chapter Three: Methodology

3.1 General

Two main implementations of robot following (direct and history) were improved using five
integrated algorithms that were developed in this research. All the developments were
created in the ROS in C++. A series of seven experiments implemented on a Pioneer LX
Robot were conducted to set up the parameters for the different algorithms and evaluate the

algorithms' performances.

3.2 Robot Hardware and Software

All experiments were conducted with a Pioneer LX Robot equipped with front and rear sonic
sensors, a SICK S300 laser scanner, a forward bumper panel and a RGB-D camera. In the
first and second preliminary experiments, the Pioneer LX Robot was outfitted with a
Microsoft Kinect V1 sensor that detects human Skeletons in order to assess the location and
distance of the person from the robot (limited to a distance of 4 meters). All the other
experiments used a Kinect V2 sensor, which had a better field of view, reaches a distance of
10 meters and improved resolution (Figure 1). The Kinect V2 color RGB stream has a
resolution of 1920x1080, a horizontal field of view of 84.1° and a vertical field of view of
53.8°. The depth (D) stream has resolution of 512x424, a depth range of 0.4 to 4.5 m, and a
horizontal field of view of 70.6°. To facilitate human detection for a wide range of angles,
the Kinect V2 was mounted on a Pan mechanism connected by an aluminum rod to the

Pioneer LX robot (Figure 2).

Version 1 Version 2

Depth range 0.4m — 4.0m 0.4m — 4.5m
Color stream 640x480 1920x1080

Depth stream 320x240 512x424

Infrared stream None 512x424

Audio stream 4-mic array 16 kHz 4-mic array 48 kHz
usB 2.0 3.0

Hand Traking External tools Yes

Face Traking Yes Yes +Expressions
FOV 57°H43°V 70°H 60°V

Tilt Motorized Manual

Figure 1- Comparison of the specifications of Kinect Version 1 and Kinect Version 2
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<:| Kinect V2
: ! <:| Pan Mechanism

|1 Laser Range Finder

Figure 2- Pioneer LXRobot with Kinect

To run the implementations of robot following and the integrated algorithms, the system uses
two computers (both Asus laptops with Intel core i7-4710HQ processors) in addition to the
robot's integrated on-board computer (Intel D252 with 64-bit Dual Core 1.8 GHz) (Figure
3). The first laptop is connected directly to the Kinect and the Pan Mechanism. It is
responsible for running the OpenPTrack (Munaro et al. 2014) person-detection and Depth-
Occlusions-Detection algorithms (see Section 3.3) and for controlling the rotation of the Pan.
The second computer is responsible for running the main person-following methods (Direct-
Following, History-Following; see Section 3.3), for operating the laser legs detector, for
detecting obstacles in real time (Obstacles-Avoidance; see Section 3.3) and for the Search-
After-Disappear algorithm. This second computer also records the ROS information (values
of the parameters that are calculated by the running algorithms) and the Rviz information
(position of the robot and laser detection) by recording the screen during each trial.
Commands are sent to the robot's onboard computer by a TP-LINK router with a wireless
speed up to 300 Mbps. An explanation of how to start the methods of following with the
integrated algorithms is described in Appendix A. The robot uses a SICK S300 scanning LRF,
mounted approximately 20 cm above the ground to detect obstacles and human legs. The

ultrasonic sensors and the bumper were not used in this project.
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Lantop 2 Robot On-Board Lanton 1
apto — apto
ptop Computer ptop
I ]
Following TP-LINK Kinect
Method Router
Pan
Laser Legs SICK300 Mechanism
Detector
Obstacles Open_PTrack
Avoidance
Depth
Search After Occlusion
Disappear
ROS Console computer input =
device or algorithm input
Rviz

Figure 3- System hardware and software: computers, devices, sensors and algorithms

3.3 Algorithms

The following algorithms were developed for obstacle avoidance, search after disappear and

occlusion detection (see Chapter 4 for details):

e Obstacles-Avoidance (OA) — For the robot to have the ability to detect and avoid
obstacles without a map of the environment or any previous knowledge of where the
obstacles are located relative to the robot, a real-time obstacle avoidance algorithm was
developed. This algorithm scans the environment with a laser at 10 Hz and searches for
obstacles in real time. To narrow the search in front and on the sides of the robot, a
corridor is declared. The robot reacts only to an obstacle identified within that corridor.

e Search-after-Disappear (SAD) — To search for the person, the algorithm remembers the
last distance of the person from the robot and subtracts between two values of the
horizontal position of the person (the last one and four frames before) to define the
direction of the robot's turn. The robot moves to the last position of the person and then
turns in the direction determined by the algorithm.
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Three different occlusion detection algorithms were developed:

Depth-Occlusions-Detection (DO) — The algorithm compares the depth value of pixels
inside the BBCs of a detected person to the distance of the robot from the whole person
and searches for small values, which indicate closer pixels. The number of pixels that
are closer than the distance of the person is counted by using a threshold that reduces
small distance measurement errors and avoids other body parts detected as closer pixels.
Vision-Occlusions-Detection (VO) — The algorithm uses the ROI of a detected person
and fuses it with a MONO image (gray-scale) from the Kinect to detect occlusions in a
2D image. After basic image processing, the MONO image searches for straight vertical
lines to detect a wall occlusion.

Combined-Occlusions-Detection (CO) — This algorithm uses the DO algorithm when
the person is close to the Kinect (at distances <5 m) and the VO algorithm when the

person is far from the Kinect (at distances >5).

Two main following methods were improved, implemented and compared for the human-

following robot:

Direct-Following (DF) — The method aims to synchronize all the data from the
integrated algorithms, the laser leg detector and the Kinect. This method transforms and
calculates the position of the person detected by the Kinect and by the laser, sends
avoidance commands to the robot according to the OA, changes the following angle
according to the DO, and implements the SAD algorithm.

History-Following (HF) - A semi path follower that moves the robot directly to the
historical position of the person was developed. Like the DF, this method also
synchronizes the data from the integrated algorithms, the laser leg detector and the Kinect

detection.

Adaptive

Non-Adaptive

Direct-Following History-Following

[S=—=="\

Obstacle Occlusion Search After
Avoidance Detection Disappear

—

Depth| |Vision| |Combine

Figure 4- Human-following methods and connections of the algorithms
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3.4 Experimental Design

3.4.1 Description of the Steps

4 ™
2 Experiments Results , Algorithms
=
v
Identifying testable
parameters
No-Pan Choose thetusable
: . parameters
v Kinect V1 Testing objective &
subjective metric
performances of
two angles The angle affects
' the robot tracking
; y performances
Testing objective & Direct-Following
subjective metric 0 and 30 degrees
z [ performances of Comparison Pan rotation
E three angles : between 0 and 30
v | following angle on
Comparison of objectives Depth-Occlusion
i performance
d occlusion - Yision-Occlusion
= Zlzouidins _ Chose the best Combined-Occlusion
¥ Kinect V2 occlusion detection
Direct Following algorithm Obstacle-Avoidance
Experiment and Search-after-Disappear
~ History Following Chose the best
i History-Followin
Experiments combination of H &
' | integrated
Adaptive Kinect- algorithm in each Adaptive
Laser Direct and method Direct-Following
5] . .
E History Following : Adaptive
. Experiment ' Chose the best History-Following
adaptive or not
method
- J

Figure 5- Methodology sequence of steps

The first two experiments were preliminary experiments that used the Kinect V1 Skeleton
detection algorithm to choose and test the robot following parameters (see Sections 3.4.2
and 3.4.3). These experiments were completed without a Pan mechanism to rotate the Kinect.
From the third experiment onwards, the Pan mechanism was used. After implementing the
Kinect V2 with a Pan Mechanism, an experiment was conducted with 24 participants to test
objective and subjective metric performances for three different following angles (0, 30,
60°). Occlusion detection algorithms were developed using depth and vision information
from the Kinect. The algorithms were compared to identify the one that performs best.
Another two integrated algorithms were then developed: one that detects obstacles by laser
in real time and the other that searches for a person whenever tracking is lost. These three
integrated algorithms (occlusions, obstacles, searching) were then tested once with the DF
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method and once with the HF method to find the best combination in each method. The final
and most important experiment compared the two methods of human following (DF and
HF) with the best combination of integrated algorithms (from the results of the experiment
described in Section 3.4.6 "Direct-Following experiment and History-Following
experiment™) to same chosen methods with the addition of a laser legs detector (denoted as
adaptive methods) for use if necessary when the Kinect loses the participant.

4 N\

section

3.4.2

Experiments for selecting of parameters 3.4.3

3.4.4

Comparison of occlusion detection

. 3.4.5
algorithms

Direct Following Experiment and
History Following Experiment

— " 30406

Adaptive Kinect-Laser Direct and
History Following Experiment

— 3.4.7

Figure 6- Experimental steps

3.4.2 Preliminary Experiment: Identifying Testable Parameters on
Kinect V1 without Pan-Tilt

The aim of this preliminary experiment was select the operational parameters for the
following variables:

e Maximum robot speed (m/s)

e Robot responsiveness while walking forward

e Robot responsiveness while turning

e Minimum distance of the robot from the target

e Angle of following.
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Since a Pan mechanism had not yet been installed and the Kinect was locked in place, the
following angle was selected manually. The Kinect V1 has a horizontal field of view of 57°
(0.49 rad in each direction).

The following considerations were taken into account when choosing the parameters:

e Selecting an angle parameter that is noticeably different from back-following

e Selecting parameters that lead to the smoothest following possible, that is, with the
least number of instances of losing the person and the smoothest robot movement

e Selecting the minimum distance of the robot from the target that is comfortable and
comparable to the robot’s distance from the 0.49 rad following (not so close that it
interferes with personal space and tracking, but not so far that the person does not feel
the difference).

3.4.3 Preliminary Experiment: Testing Objective & Subjective Metric
Performances of Two Angles on a No-Pan Kinect V1
The aim of this experiment was to determine whether the angle at which the robot follows a
person affects the human experience and the robot tracking performance. The Pioneer LX
was outfitted with a Microsoft Kinect V1 (without a Pan) that detects human Skeletons with
the aim to assess the location and distance from the robot of the person. Six subjects (3
female, 3 male) completed a predetermined 25-m track under two conditions: (1) the robot
followed directly behind the person (0° angle), denoted as back-following (2) the robot
followed at a 17.19° angle (0.3 rad), denoted as side-following. In order to simulate a real
world walking experience, which is rarely constant, linear or without distractions, the
walking track included a stop and a turn (Figure 7), and subjects were asked to a play game
on a smartphone as they walked. The order of the trials was alternated: 3 subjects started
with back-following and 3 subjects started with side-following. After each trial (back-
following and side-following), subjects were given a questionnaire to assess their
experience. In addition, at the end of the study, subjects answered a questionnaire comparing
the two conditions. Both surveys were based on Likert-style questions (Appendix B), where
the subject had to state how strongly s/he agreed/disagreed with a statement. Subjective and

objective performance measures were collected.

19



1500cm

/7
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Figure 7- Walking path- preliminary experiment

To facilitate person following at various angles, a pre-existing human following algorithm

was adjusted as follows:

e In the “side-following” condition, the "turn acceleration” was set variable to
“arctan(y/x)-0.3”, which returns a “0” value at 0.3 rad from the left and stops the
robot turning at that point (influenced by the 0.8 responsiveness).

e Inthe “back-following” condition, the "turn acceleration” was set variable to
“arctan(y/x)”, which returns a “0” value at 0 rad (at the center of the Kinect
camera) in order to ensure that the robot follows directly from behind.

All the other procedures were the same in both following conditions. To make the side-
following more efficient, an extra cardboard part was added to the robot to create a wider
angle of side-following. The addition of the cardboard “trunk” increased the following angle

from the edge of the robot to the person to a 30° angle (Figure 8).

The follow parameters were set:
e The Kinect distance was 1 m;
e The responsiveness measure was 0.8 both for turning and walking;
e Maximum robot speed: 0.3 m/s (was slow because the Skeleton image without the

Pan kept disappearing from the Kinect's field of view);
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Figure 8- Addition of the cardboard "trunk"

3.4.4 Testing Objective & Subjective Metric Performances of Three
Angles on a Pan Kinect V2
The aim of the experiment was to determine objective and subjective measures to evaluate
the quality of following and the perceptions of the subjects toward the robot for three
following angles (0° angle, 30° angle, and 60° angle) under two conditions: when the robot
was carrying a valuable personal item (the participant's wallet) or not (Honig et al. 2016).
The two conditions were compared on the assumption that increased personal relevance
leads to an increase in the involvement felt by the person. This experiment used a mixed
between and within-subject design. The wallet manipulation was the between subject
variable: 12 participants were asked to place their wallets on the robot for the duration of the
study and 13 participants were not. The following angle was the within-subject variable: each
participant completed a straight predetermined 20-m walking path under three conditions
while being followed by the robot: (1) the robot followed directly from behind (0° angle),
(2) the robot followed at a 30° angle from the left, and (3) the robot followed at a 60° angle
from the right. The order of the following angle was counterbalanced between participants.
In order to simulate a real-world walking experience, which is rarely constant or without
distractions, the walking track included two stops and participants were asked to play a game
on a smartphone as they walked. Participants were instructed to walk at their natural walking
pace and to stop at two predetermined locations and wait until the robot made a complete
stop behind them. The following objective performance measures were selected: distance
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and following angle between the robot and the subject, number of instances of loss of the
person, and number of interventions. Interventions were classified into two types:
interventions due to safety and interventions due to loss. Interventions due to safety were
interventions resulting from the robot getting too close to an obstacle or a wall. Interventions
due to loss were interventions that were a result of the robot losing track of the person and
were made in order to steer the robot back toward the participant.

3.4.5 Comparison of Occlusion Algorithms

The aim of the experiment was to compare the occlusion detection algorithms. DO uses the
depth stream of the Kinect, VO uses the MONO stream (gray scale) from the Kinect, and CO
combines the two algorithms (DO below 5 meter, VO above 5 meter).

The three algorithms — DO, VO, and CO - were tested and compared with six different
distances of the robot to the person and six different person/wall occlusion distances from
the Kinect (all in cm): 200/100; 350/200; 500/300; 600/400; 800/600; 400/300 (an occlusion

other than a wall). Each distance was tested once for each algorithm.

The DO can identify the size of the occlusion (large/small), the direction of the occlusion
(left/right) and whether the occlusion is caused by a wall or not. The VO can identify only
left or right straight vertical lines. When the person is partially hidden and stands without
moving, the number of times the algorithm detects the right or left occlusions (large, small
or combination of them for the DO algorithm) and the number of times the algorithm detects
the wall be measured.

3.4.6 Direct-Following and History-Following Experiments

The aim of the experiments was to evaluate the performance of various combinations of

integrated algorithms in the two main human-following methods and to compare the results.

The two main methods of human-following (DF and HF) were developed and compared.
Each method was tested with various combinations of the three integrated algorithms, OA
(real time obstacle avoidance by laser), DO (depth-occlusion detection using the depth
information from the Kinect) and SAD (search-after-disappear to search for the person after

losing tracking).

After preliminary testing, the maximum linear velocity of the robot was selected as 0.3 m/s
for all trials, ensuring sufficient time for the robot to compute and react. The maximum

angular velocity during following (not when detecting an obstacle) was chosen as 0.2 rad/s.
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The experiment was conducted in the offices of the Center for Digital Innovation (CDI) in
Beer-Sheva, Israel. The conditions of the experiment included a path of 18-m length with
three stops (Figure 9). At the beginning of each trial, subjects were asked to stand in front
of the robot to allow the robot to detect them. Once the robot had detected the subject, the
subject was asked to walk slowly to point 1 (path marks in green), which was marked on
the floor, and waits until the robot reaches the third of the six obstacles that had been placed
in a line and connected to a demo wall to create a corner (Figure 9). When the subject moved
from point 1 to point 2, s/he disappeared from the robot's line of sight, simulating how a
person would disappear if s/he turned a corner in a hallway. The subject waits at point 2,
also marked on the floor, until the robot began to move toward her/him. Once the robot had
begun to move toward the subject, the subject moved slowly around three more obstacles
and stopped at the last corner 3 (the last obstacle) to wait for the robot. Each subject
completed this path five times with different combinations of algorithms (Table 1), order
counterbalanced (three DF and two HF). Seven participants took part in this experiment.

Table 1- Five combinations of trials

1 History N, X v
2 History v N v
3 Direct \ X \
4 Direct \ \ \
5 Direct \ v X
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Robot start

(b) ()

Figure 9 - Direct-Following and History-Following experiment path. (a)-schematic
description. (b)-photograph of end of the path. (c)-photograph of start of the path

3.4.7 Adaptive Kinect-Laser vs. Non-Adaptive (for Direct Following and
History Following) Experiment
The two human-following methods (DF, HF) with the Kinect V2 with the best combination
of integrated algorithms (from the previous experiment, Section 3.4.6, denoted as Non-
Adaptive methods) were compared to the same human-following methods with a laser legs
detector, which was actuated when the Kinect lost the participant (denoted as Adaptive
methods). This experiment also took place in the offices of the CDI in Beer-Sheva Israel and
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included a 25-m length path with three obstacles, a wall, and a corner (Figure 10). At the
beginning of the experiment, the subject was asked to stand in front of the robot so that the
robot's Kinect and laser sensors could detect her/him. If the robot was not able to detect the
legs of the subject because the width of her/his legs fell below the defined threshold for laser
detection, the subject was asked to wear rain boots to 'widen' the legs. When the trial started,
the subject walked slowly without stopping from the starting point through points 1 and 2 to
point 3 (marked on the floor). Once subject arrived at point 3, s/he was asked to wait until
the robot reached the first wall, and only then to complete the walking path. When the subject
moved from point 3 to the end-point, s/he disappeared behind the wall to simulate the
situation in which a person turns a corner in a hallway. Each subject completed this path four
times with different combinations of algorithms (Table 2) and in a different order. Twenty-

four participants participated in this experiment.

Table 2- Combinations of methods and algorithms Adaptive vs. Non-Adaptive experiment

Trial Following  Obstacle Depth Search Laser

method avoidance  occlusion after legs'

disappear  detector

1 History N, N, v N,
2 History N, N, v X
3 Direct v v v \
4 Direct v v v X
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1 /‘/o 2 1 meter X 1 meter

0 =9
Start o Subject Point

s Subject Path

End

Robot Start

(b)

Figure 10- Adaptive vs. Non-Adaptive experimental paths. (a)-schematic description. (b)-
photograph
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3.5 ROS implementation

DF and HF methods and their integrated algorithms (DO, OA, and SAD) were implemented

in ROS with the following nodes and topics, as shown in Figure 11.

r
l semd_vel |
| RosAria ——— joystick
sRosAriapose
RosAriasS3Sertes /RosAriasS3Series
_1_pomtcloud _ 1 Jaserscan
Aoflowers
cmd_vel .
I : ———— Twist_mux

L aser_()b S taC]eS sobstaclessdaserObstacles . Simpl e_fﬁ llOW er_

avoidance * kinect2_pan_laser

p speople_tracker_ . '

4 b 4 4 measurements 4 4 4
Y
Leg detector
_ APan_Fecdback
APan_Frror_ Command| KlneCtz —he ad—
o kinect2_bridge
JAracker/tacks .
socclusionsssideOcchisions ‘
—_—————— skinect2_head_depth
— — Tracker_node _rectimage
| sPan_Fecdback ‘ ‘ C 'o;;;m;mc; .
Paﬂ > Orientation /chker/tmc.{:c\ _ lma e Converter
‘ _control ge_
.

Figure 11- Nodes and topics flow-chart

RosAria is the robot's main node. According to the movement of the robot's
wheels, it calculates the robot's position and sends it to
Simple_follower_kinect2_pan_laser by /RosAria/pose. It sends the laser scan
in two ways: 1) to the leg_detector by /RosAria/S3Series_1_laserscan and 2) to
laser_obstacles _avoidance by /RosAria/S3Series_1 pointcloud. It is also
responsible for the transformation of coordinated positions in the different
sensors by /tf.

Twist_mux is the node that responsible for the subsequent commands to move
the robot. It decides on the priority of the incoming nodes. It receives move
commands from Simple_follower_kinect2_pan_laser and from joystick (via
turtlebot_teleop_joystick). It can also receive commands from the safety node,
which was not used in this case (safety is responsible for locking the robot's
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wheels when the laser detects close obstacles). It publishes the move commands
to RosAria by /cmd_vel.
Simple_follower_kinect2_pan_laser is the main node that includes the method
of following (DF or HF) and if necessary uses the SAD integrated algorithm. It
publishes on /follower/cmd_vel the linear and angular velocity commands to
twist_mux. It receives the following information from seven different topics for
analysis and synchronization:
1. The position of the robot from RosAria by /RosAria/pose.
2. The position of an obstacle related to the robot from
laser_obstacles_avoidance by /obstacles/laserObstacles.
3. The Boolean occlusion detection variables from image_converter by
/occlusions/sideOcclusions.
4. The position of the person by laser from leg detector by
/people_tracker_measurements.
5. The position of the person by Kinect from tracker_node by /tracker/tracks.
6. The position of the Pan related to the center of the robot from (Pan)
serial_node by /Pan_Feedback.
7. The position of the person from the center of the Kinect from
orientation_control by /Pan_Error_Command.
Leg_detector is the node that detects the position of a person's legs with the laser.
It receives the robot's laser scan determined by the laser sensor from RosAria by
/RosAria/S3Series_1 laserscan and is responsible for the transformation
between the laser measurements and the robot's position with /tf. It publishes the
coordinates of the person related to the robot to
Simple_follower_kinect2_pan_laser by /people_tracker_measurements.
Laser_obstacles_avoidance is the node that searches with the laser for obstacles
near the robot. It receives the robot's laser scan from RosAria by
/RosAria/S3Series_1_pointcloud, the linear and angular velocity of the robot
from Twist_mux by /cmd_vel, and all the parameters to calculate the position of
the person with laser and Kinect (such as the information that
Simple_follower_kinect2_pan_laser receives). It publishes the linear and
angular velocity that is required to avoid collision if there is an obstacle to
Simple_follower_kinect2_pan_laser by /obstacles/laserObstacles.
Image_converter is the node that detects occlusions near the person with the
Kinect Depth image. It receives the position of the person with the Kinect from
tracker_node by /tracker/tracks and the Kinect depth image from
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kinect2_head_Kkinect2_bridge by /kinect2_head_depth_rect/image. It publishes
the Booleans of the size and side of an occlusion detection to
Simple_follower_kinect2_pan_laser by /occlusions/sideOcclusions.

Orientation_control is the node that is responsible for moving the Pan
mechanism and for sending angular positions. It receives the position of the
person with the Kinect from tracker_node by /tracker/tracks and the position of
the Pan related to the center of the robot from (Pan) serial_node by
/Pan_Feedback. It publishes the angular velocity that the Pan needs in order to
maintain the person in the center of the Kinect to (Pan) serial _node by

/Pan_Error_Command.

3.6 Analysis

3.6.1 Performance Measures

The performance measures described below were used:

The following measures were counted manually during each trial:

e Number of losses of the person

Number of self-recoveries and percent of self-recoveries out of total losses

Number of interventions due to losses and percent of these interventions out of total losses
Number of safety interventions

Number of Kinect collapses

Number of collisions with obstacles

The following measures were calculated directly from the ROS procedures:

Number of laser detections of obstacles

Distance between the robot and the participant (average and standard deviation)

Length of the robot's path

Number of matches between the Kinect person-detection position and laser legs detector

position that were <20 cm

¢ Ratio between tracking and no tracking from the Kinect and from the laser separately.

Each trial was recorded by Rviz and rqgt_console to calculate:

e The participant's walking velocity

e The percent of false alarms for the position of the legs

e The DO algorithm's true positive and false alarm (false positive) results
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The velocity of the participant was calculated by dividing the total time of subject walking
by the total path length s/he walked. The percent of legs false alarm detection was also
calculated from the recording of the trial by counting the time of true legs detection and the
time of false alarms. The true positives and false alarms of the DO algorithm were calculated
by using the ROS information and the recording. The relative time according to the position
of the robot related to the position of the participant was derived manually from the recording
and compared to the actual ROS information.

3.6.2 Statistical Analyses
Statistical analyses included SPSS ANOVA with 0.05 confidence level. To test for a

significant difference between more than two trials, a post-hoc pairwise comparison (Tukey

test) was conducted (Table 3). All raw data and the statistical analyses are detailed in

Appendix C.

Table 3- Statistical analyses
Comparison of 3.45 Depth — preferable close ~ ANOVA and Pearson -
occlusion distance; confidence level of 0.05
algorithms Vision — preferable far

distance

Direct-Following 3.4.6 Combination of all the ANOVA and Tukey -
and History- integrated algorithms in ~ confidence level of 0.05
Following each method is the best
Adaptive Kinect- 3.4.7  Adaptive methods are ANOVA and Tukey -
Laser Direct better than confidence level of 0.05
Following and Direct methods;

History Following

30



4. Chapter Four: Algorithms
4.1 Overview

To summarize the previous chapters, two main methods for human-following were improved
and implemented on the human-following robot:

e Direct-Following (DF)

e History-Following (HF)

Three integrated occlusion detection algorithms were developed for these methods:
e Depth-Occlusions-Detection (DO)
e Vision-Occlusions-Detection (VO)

e Combined-Occlusions-Detection (CO)

Two integrated algorithms were developed for obstacle avoidance and search after
disappearance:

e Obstacle-Avoidance (OA)

e Search-after-Disappear (SAD)

All C++ codes are shown in Appendix D.

e All the algorithms and following methods work without a-priori
General information about the environment or any kind of pre-built map
of the environment
e Real-time occlusion detection using depth information of the
pixels

e Compares the depth value of the pixels (distance value of the

Depth- pixels) inside the BBC of a detected person to the distance of the
Occlusions whole person from the robot and searches for small values that
(DO) indicate closer pixels (indicating an occlusion)

e Reduces false alarms and can detect both small and large
occlusions and even a vertical occlusion like a wall
e Change the following angle to increase the line of sight

e Real-time obstacle detection and avoidance

Obstacles- o Declares an adaptive corridor in front and on the sides of the
Avoidance robot to narrow the scan area, which depends on the prevailing
(OA) linear and angular velocities of the robot

e Search for obstacles inside the turning radius
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Search- e Increase of the ability to refollowing

After- e Moves the robot to the person's last known position and turns the
Disappear robot in the direction that is calculated according to the last few
(SAD) frames obtained before the person had disappeared
Direct- e Moves the robot directly to the position of the detected person
Following e Gives priority to sending the robot the linear and angular velocity
(DF) to avoid any obstacles change

e Moves the robot directly to the historical position of the person

History- being tracked
Following e avoids big changes of the position of the person caused by the
(HF) movements of the robot and the Kinect

e avoids quick turns that cause the Kinect to lose the person

4.2 Depth Occlusions Detection
The DO detection algorithm compares the depth value of pixels inside the BBC of a

detected person to the distance of the whole person from the robot and searches for small
values that indicate closer pixels (indicating an occlusion). The number of pixels that are
closer than the distance of the person from the robot is counted by adding a threshold to
reduce small distance measurement errors and to avoid other body parts detected as closer

pixels.

In order to reduce false detections of a person, a valid tracking of a person is indicated only
if there is the tracking passes three thresholds of confidence within minimum and maximum
heights of the person (ConfidenceTheshold, HeightTheshold,
HeightMaxTheshold).

The OpenPTrack (Munaro et al. 2014) provides four parameters of the BBC around the
detected person. The DO refers to them as: x,,;,, the X value of the top-left corner of the
BBC, y,.in the Y value of the top-left corner of the BBC, x,,,4,, the X value of the top-right
corner of the BBC and y,,,,, the Y value of the bottom-right corner of the BBC. In addition,

the center X value of the BBC is also calculated (x, = (Xpax + Xmin)/2)-

Since the detection parameters are related to the size of the BBC, we incorporated two
changes, as follows (Figure 12). First, to avoid the ground depth value and to reduce false
alarms, the 1/8 lower part of the BBC was cut (down,,; = round((Vmax — Ymin)/8))-
Second, to add dependency on the person’s distance from the robot from the width of the

BBC, a margin was added to the BBC (margin,;q = round(10/distance)). The margin
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was added also to predict an occlusion process before it happens. After these changes, the
new BBC was ready for the occlusions detection process.

(X min » Ymin ) Xc (XmaXs Ymin )
- 2 &

margin

new BBC

dn::wncu

L
(X min » Ymax) (Xmax . Ymax)

Figure 12- New BBC parameters (DO)

Each depth pixel value was normalized to 0-255 and compared to the normalized distance
of the person from the robot. To prevent small measurement errors, a depth constant
threshold was added to detect depth values of closer pixels (DEPTHryrenop = 3-0). The
values of the counters were increased for closer distances by adding a threshold of 3 (equal
to a distance of 0.5 m). For the left side, the pixels lie between [x,,;, — marginggqa ,» xc —
57 (from the left side of the BBC adding a small margin to the center of the BBC without
the last 5 columns). For the right side, the pixels lie between [x. + 5, X;0r + margingqql
(from the center of the BBC without 5 first columns to right side of the BBC, adding a small
margin). For wall detection, all the values of the same column must contain a smaller depth
value (indicating an occlusion from the top to the bottom of the BBC).

To declare a small or large occlusion from the left or the right, the BBC must be covered by

Y to a V4 of closer pixel values for small occlusions and >%: for large occlusions.

X — Xpmi 7
smallOcclusionesijrignt = round((%) * (Vmax — Ymin) * g)

. . x - x i 7
blgocczuswnleft/right = Tound((%) * (ymax - ymin) * g)

In addition, for wall detection, the algorithm finds continuous occlusions from the left or
right by finding entire columns in the BBC that have depth values that are closer than the
person's distance to the robot. There are four counters, one for each side for small and large

occlusions  (leftcount: Tightcount), and one for each side for wall detection
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(leftWall oyne, rightWall .pne). Occlusion detection is published using six Boolean

variables (three for the left side and three for the right side) for small, large and wall

detections: (smallLeftye, bigleftiye, wallLefti ,e),

(smallRightye, bigRight e, WwallRight ye)-

A pseudo code is shown in Figure 13 and an example of the DO algorithm in Figure 14.

moOoOo o>

DO Pseudo code:

Input: the parameters and BBC of a detect person (with thresholds)
Add margin to the BBC from left and right depend on the distance
Ignore the 1/8 lower part of the BBC

Left side (the same idea with right side): Initialize countLeft=0;
For each left side pixel of the new BBC:

Initialize each column countLeftWall=0;

b Compare the distance to the depth value
1i1. If the value is smaller (threshold) than countLeftt++ and
countLeftWall++
Conditions:
If countlLeftWall= number of rows in the new BBC, than LeftWall=true
3. If countLeft between smalllLeftOcclusions and biglLeftOcclusions than
smallleftOcclusions=true
1 b b2 If countlLeft bigger than bigLeftOcclusions than

biglLeftOcclusions=true

Output: 6 occlusions Booleans (smallRightOcclusions, smalllLeftOcclusions,
bigRightOcclusions, bigleftOcclusions, RightWall, LefttWall)

Figure 13 - DO pseudo code
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LeftOcclusions: false 3349
Rightwall: 1

loftuall B
RightOcclusions: small 5078
U SONUTDLN. Z501 . 007508
LeftOcclusions: false 3294
'\\\‘lllﬂﬂkk. -

LeftwWall: ©
RiahtOcclusions: small 5150
personDepth: 2397.595459
LETTAVLL LU LV . - A% 1 ))13
Qightn'alll 1

LeftWall: ©
RightOcclusions: small 5451
personDepth: 2399.185791
LeftOcclusions: false 3463
Rightwall: 1

LeftWall: o
RightOcclusions: small 5763
personDepth: 2397.556641
LeftOcclusions: false 3376
Rightwall: 1

LeftWall: ©
RightOcclusions: small 6134
personDepth: 2397.556641
LeftOcclusions: false 3406
Rightwall: 1

LeftWall:

Figure 14 - DO person detection with a half-BBC (from OpenPTrack) near a right wall
(left). Person's Distance of 2.4 m with a small right occlusion and right wall detection
without a left occlusion (right)

4.3 Vision Occlusions Detection

The VO algorithm uses the ROI of the detected person from a depth image and fuses it with
a MONO image from the Kinect to detect occlusions in a 2D image. In the MONO image,
after basic image processing routines, the algorithm searches for straight vertical lines to

detect a wall occlusion.

To reduce false detections from OpenPTrack, a tracking is indicated only if the tracking
passes the same three thresholds as for the DO. The BBC parameters from OpenPTrack
depend on the resolution of the Kinect depth image. The MONO image has a higher
resolution; therefore, extra parameters were added to the original BBC parameters. Another
problem with which the algorithm deals is the different horizontal fields of view between
the MONO image and the depth image of the Kinect. Several steps were therefore
undertaken to match the pixel coordinates of the depth image to the MONO image. These
steps were needed because it is not simple to convert, resize and extract ROIs in the MONO
image from the BBC parameters of the depth image due to the different resolutions [the

resolution of the MONO image is twice that of the depth image (1920x1080), and the two
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techniques have different horizontal fields of view—MONO 84.1° and depth 70.6°]. The
first step was to subtract 105 pixels from each side of the MONO image to eliminate different
right and left image borders. Then, the image was resized to the same resolution as that of
the depth image (960x540). Another problem caused by the differences in the horizontal
field of view was an unequal X value between the x, value that was calculated from the BBC
of the depth image and the real position of the person in the MONO image. This error
increases as the distance increases due to the different convexities of the depth and MONO
images. The best solution was to add pixels to the BBC from the left side of the ROI,
depending on the distance from the center of the image of the X-axis (the center of the image
is X=270) divided by 3:

270 — x, _
monoXmin = Xmin * 2 + round((T> — distance * 2)

For the right side, depending on the width of the original depth BBC and the new monoX,,;,,

that was calculated, a new right side was declared:
monoXax = monoXpmin + (Xmax — Xmin) * 1.4

The right side of the ROI in the MONO image was expanded to cover the whole person by
multiplying the width from the depth image by 1.4.

For the Y-axis new coordinates, the same minimum was taken, namely, monoY,,;;, = Vimin
and for the maximum value, the height of the ROI was multiplied only by 1.3 to include the

legs but not the ground:
monoYp,qx = monoYmin + Vmax — Ymin) * 1.3

OpenCV was used for the image processing on the ROI, with the following steps and
parameters, which were empirically derived: Gaussian blur of size 3x3, Canny edge detector
with a low threshold of 50 and high threshold of 300 with a Sobel 2 sized and an L1 norm,
opening and then closing the pixels by 5x5.

To find the contours of the whole person, the OpenCV findContours function was used.
The function includes the contours vector of vector of points for saving the contours, with
a retrieval mode that organizes the contours into a two-level hierarchy and compresses
horizontal, vertical, and diagonal segments and leaves only their end points. To avoid small
contours, the size of the contour was compared to the height of the ROI. Only if the contour
was bigger than the whole height of the ROl multiplied by 1.5, was it noted as belonging to

the ROI; otherwise, it was deleted from the vector contours.
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Straight lines were derived using the OpenCV HoughLinesP function. The function
includes vector 1ines that contain 4 arguments (Xg¢art» Xend> Vstart Yena) TOr €ach line, with
a resolution of 1 pixel and 1°, with a minimum threshold of 50 and with a minimum line
length of half of the ROI height. To prevent too many straight lines in the ROI, only vertical
lines that were less than 1/10 size of the person’s box width were derived. If the edges of the
straight line were inside the ROI from the left to the center minus 5, the line was defined as
a left wall and if the edges of the straight line were inside the ROI from the center plus 5 to

the right, it is defined as a right wall.

The pseudo code of the algorithm is shown in Figure 15 and an example of the VO algorithm

in Figure 16.

VO Pseudo code:

A. Input: the parameters and BBC of a detect person (with thresholds)

B. Convert, resize and extract ROI coordinates in MONO from the original BBC

C. Gaussian Blur (3*3), Canny edge detector, dilate (5*5), erode (5*5)

D. Find contours that are bigger than 1.5 the height of the ROI

E. Find near vertical straight lines (0.1 width of the ROI) that are bigger
than half of the ROI

F. Wall detection:

i. If the xStart and xEnd values of the line are inside the ROI between
the left to the center than LeftWall=true
& 8 If the xStart and xEnd values of the line are inside the ROI between

the center to the right than RightWall=true
G. Output: 2 occlusions Booleans (LeftWall, RightWall)

Figure 15 - VO pseudo code
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RigntWatL: ¥
xcenter: 266.000080
Leftuall: ©
Rightmall: &
xcenter: 266.000080
LeftWall: ©
Rightwall: o
xcenter: 206.000000
LeftHall: ©
Rightwall: o
xeenter: 266.000080
Lefthall: &
Rxgh1hﬁll: &
xcenter 2 266 .000000
Lefedall: @
Rightmall: &
xcenter: 266.000000
Lefthall: ©
RightWall: o
xcenter : 266 .000000
LeftHalis ©
Rightwall: o
Center: 266 .000080
Leftiall: 8

Rightmall: 1

Figure 16 - green VO person contour with red straight line of a wall (left). MONO image
with a half hidden person with wall from the right (center). Right wall detection (right)

4.4 Combination of Depth and Vision Occlusions Detection

The CO algorithm uses the DO algorithm when the person is close to the Kinect (at distances
<5 m) and the VO algorithm when the person is far from the Kinect (at distances >5 m). This
decision is based on the premise that for close distances the DO will perform better than the
VO and as well as the CO and for far distances the VO will perform better than the DO and
as well as the CO.

4.5 Obstacle Avoidance

To detect and avoid obstacles without a map of the environment or any pre-knowledge of
where the obstacles related to the robot are situated, an integrated algorithm that scans the
environment with a laser at 10 Hz and searches for obstacles in real time was developed. The
laser measures a large number of points in the environment and outputs a point cloud (Rusu
and Cousins 2011) as a data file that contains 480 points (X, pstacte[i], Yobstacie[L]) TOr every
0.5°. The point cloud represents the set of points that the laser device has measured, as

described below.

First, the integrated algorithm declares a corridor in front and on the sides of the robot to
narrow the scan area. If an obstacle is situated inside this corridor, then the robot reacts
accordingly and avoids a collision. If the distance between the robot and the person being
followed is smaller than the corridor distance, then it is implied that the person is transparent
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and hence the obstacles detection algorithm is ignored to prevent confusion between the
person and the obstacle.

The corridor that may contain obstacles depends on the linear and angular velocity of the
robot (Figure 17). For the X-axis (in front of the robot), the minimum distance to search for
obstacles is ming;s; = 0.8, irrespective of the robot's linear velocity. In other words, if there
IS a point that the laser detects that is <0.8 m in front of the robot, the robot declares it as an
obstacle, independent of robot's velocity. At greater distances (>0.8 m), the declaration of
obstacles depends on the linear velocity of the robot multiplied by K, ;. = 3. For example,
if the linear velocity of the robot is 0.4 m/s, then an obstacle can be found up to 0.4x3=1.2 m
in front of the robot. In addition, all the obstacles detected by the laser or Kinect sensors that
are near the detected person, namely, in a 1 m radius of the person (RADIUSpggsony = 1.0),
are ignored. To search in the negative X-axis if the robot is turning, the absolute value of the
angular velocity is used. If the angular velocity is large, the algorithm searches for larger

negative values of X.

If ((xobstacieli] < Kppist * linearye;) U (Xobstacieli] < mingise)) N (Xopstactelil >

—langular,|) N ((\/(xobstacle [i] - xperson)z + Vobstacteli] — Yperson)z) >
RADIUSpsson)

For the Y-axis (the sides of the robot), the obstacle must lie between the width =
0.5 multiplied by 1 + angular,,; and —width multiplied by 1 — angular,,;. If the
angular velocity is zero, then the corridor lies between 0.5 and -0.5, but if the robot is turning
and the angular velocity is not zero, then the corridor moves to the side of the turn in order
to search for obstacles inside the turning radius. As for the X-axis, the technique to ignore

obstacles near the person is used.

If ((yobstacle [l] < width * (1 + angularvel)) n(yobstacle [l] > —width * (1 -

angularye;)))
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Figure 17 - Obstacles corridor examples. (a)-robot moves only forward.
(b)-robot turns right.

The next step is to choose the closest obstacle to the robot inside the corridor. For each point

that is declared an obstacle inside the corridor, the distance of the point to the robot is

calculated as: dist,psiacie[i] = v/ Xobstacte [1]? + Yobstacte[i]%- The closet point coordinates

are passed to the next step and declared as an obstacle.
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The final step is to calculate and publish the robot's linear and angular velocity to the robot
so that it can avoid the closet obstacle. For the linear velocity, after many trials with different
linear velocity values, a 0.2 m/s was chosen. For the angular velocity, the decision depends
on the position of the obstacles in the Y-axis related to the robot (from the left side of the
robot or from the right side). If the obstacle is to the robot's left, a command to turn right is
issued (negative angular velocity). The size of the angular velocity depends on the distance
from the width value (0.5) divided by 2. If the obstacle's Y coordinate is at the center of
the robot (i.e., equal to zero), then the angular velocity is large. If the obstacle is at the robot's
left, then:

an.gularcommand = _(Width - yclosest)/z-

If the obstacle is at the robot's right, a command to turn left is issued (positive angular
velocity). The size of the angular velocity depends on the distance from the —width value
(-0.5) divided by 2. If the obstacle's Y coordinate is at the center of the robot (i.e., equal to

zero), then the angular velocity is large. If the obstacle is to the robot's right, then:

an.gularcommand = (_Width + yclosest)/z-

4.6 Search-after-Disappear

In the SAD algorithm, the robot remembers the last position of the person and subtracts
between two values of yyinect: Namely, the last one and the value from four frames
previously. A positive yiinece iMmplies that the person is on the right side of the robot, and a
negative yrinect, that the person is on the left side. The value of the subtraction is defined as
the direction of turning of the robot in order to search for the person. After performing these
calculations, the robot moves to the last position of the person with constant linear velocity
of 0.3 m/s for a duration that depends on the distance of the last detection. When it reaches
this last position, it turns in the direction that it had calculated from the last four frames of

detection.

4.7 Kinect Orientation Control — Pan Mechanism
The Pan mechanism moves to maintain the person being detected in the center of the Kinect.
Two levels of code were employed. The high-level code is an ordinary ROS implementation
with topics, publishers and subscribers. The low-level code, developed by Doisy and co-
workers, controls the movement commands of the Pan (Doisy et al. 2012).
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The high-level code "Kinect_orientation_control” uses OpenPTrack to detect people with
three thresholds (confidence, height and max height). The code subscribes from two
topics: OpenPTrack parameters using /tracker/tracks and the angle of the Pan related to the
center of the robot using /Pan_Feedback that is published from the low-level code. The code
publishes the angle error of the Pan to the low-level code to angle the Pan to maintain the
person in the center of the Kinect using /Pan_Error_Command. After receiving the

parameters of the person from OpenPTrack and passing the thresholds, the code calculates

the angle of the person from the center of the Kinect as tan™" (2X2¢<t) of the person. The Y-

Xkinect

axis is from left to right of the Kinect (zero means the center of the Kinect) and the X-axis
is the depth (distance from the Kinect). The angle of the person from the center of the Kinect
is passed to the low-level code to move the Pan until the angle is zero (y equal to zero). If
no person is detected for more than three seconds, the command that passes to the low-level
code is half of the angle of the Pan related to the center of the robot in the opposite direction
(error_command.data=-0.5*AngleErrorPan;); this command causes the Pan to

return to the center of the robot.

The low-level code subscribes from two topics: 1) the move command from the high-level
code using /Pan_Error_Command and 2) a topic that sends true or false to the Pan for the
actual move command, using /Start_Stop_Pan. It publishes the angle of the Pan related to

the center of the robot using /Pan_Feedback to the high-level code.

The parameters for the movement of the Pan were empirically selected in a series of trials.
On the one hand, the Pan must move fast enough not to lose the person. On the other hand,
it must not move too fast to overshoot the person and move back and forth all the time
because of fast movements (like a harmonic motion). The best parameters were derived to
0.5 max speed of movement to avoid overshooting. Additionally, a small threshold of 0.01
rad was added to prevent small movements of the robot when the Pan is near the center of
the robot.

4.8 Direct-Following Method

This method of human-following by a robot causes the robot to move directly to the position
of the detected person. This method transforms and calculates the position of the person
obtained by the Kinect and by the laser, sends commands to the robot according to the OA,
changes the following angle according to the occlusions detection algorithms (DO, VO, CO),

and compares the results with and without SAD.
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The integrated OA algorithm receives the Boolean values for slowing down and obstacle
detection and it also receives the values for the linear and angular velocities of the robot
directly from the OA algorithm. The first priority of sending the robot it's linear and
angular velocities to enable it to avoid any obstacles is implemented in all sections of this
main method. If the OA detects an obstacle, then the robot moves according to the position
of the obstacle in order to avoid it. Only when the OA detects that the path is clear, does the
method continue to send the commands to the robot to follow the person. During the
movements of the robot relative to the obstacle, the Kinect with the Pan mechanism and the
laser leg detector continue to follow the person without sending commands to the robot to

move. If OA is not running, then the method notes that there are no obstacles.

For the integrated occlusions detection algorithms (DO, VO, CO), The DF method receives
all the Boolean values for large and small occlusions from the right and the left. It changes
the following angle to 15° for small occlusions, and to 30° for large occlusions. When the
occlusions detection algorithms are not running, the following angle equals zero (the robot

moves directly to the person being detected).

The integrated SAD algorithm compares the last position of the person before losing her/him
with several frames before to realize the person's drift. To achieve this, the X- and Y-axes
of the person detected by the Kinect must be transformed to the robot's position. From the
Kinect detection, the transformation uses three variables that are related to the position of
the person vis-a-vis the robot, namely, a; = the angle in radians of the person related to the
center of the Kinect, a,= the position of the Pan related to the center of the robot in radians,
D, = the distance of the person from the Kinect. If there is a person detected by the Kinect

(OpenPTrack), then her/his position in relation to that of the robot is defined as:
Xkinect = Dk * cos(ay + ap)

Ykinect = Dy * sin(ay + ap)

For DF, the method uses many parameters, variables and constants. To calculate the distance
(D) and angle (a) of the person in relation to the robot, the DF method uses the position of
the person as obtained from the Kinect and from the laser detector. It sends velocity
commands with upper bounds of maxg,e.q = 0.3 and max,,, = 0.2, and with linear and
angular speed controller K p;s = 0.2, Kyangie = 0.5, respectively. A constant of the
distance from the person Dy 4rcer = 1.2 is also included. The last parameter that depends
on the integrated occlusions detection algorithm (DO, VO, CO) is the value of the a;oj1owing

that by default equals zero if no occlusion has been detected.
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— 2 2
Dkinect/laser - \/xkinect/laser +ykinect/laser

_ -1 ykinect/laser
akinect/laser = tan
xkinect/laser

anQUIarcommand = max((akinect/laser + afollowing) * KpAngle 'maxturn)

llnearcommand = maX((Dkinect/laser - DTARGET) * pDistance lmaxspeed

The method first uses the Kinect detection, but if it loses tracking, it then changes to the laser
detection algorithm. If there is no detection by both sensors, it uses the SAD integrated
algorithm. This method can even work with only one source of person detection (Kinect or
laser). A method that works with both of the sources together will be described in Section
4.10 'Adaptive Following Methods'.

4.9 History-Following Method

The robot is able to avoid obstacles without detecting them by moving in the same path that
the person walks; of course, as long as the person does not jump over an obstacle. A semi
path follower that uses the history positions of the person and moves the robot directly to
these historical points was developed. The X- and Y-axes of the detected person obtained
from the Kinect or the from the laser detector were transformed to world coordinates and
related to the position of the robot in the world. This transformation was done without a map
of the environment and it can lose stability after a while due to robot slips. To calculate the
position of the person in relation to the world, the position and orientation of the robot in

relation to the world was obtained from RosAria (X,opot, Vrobots Orobot)-

For the laser calculation (Figure 18), the method first calculates the distance D;,q., and

angle a4, Of the person in relation to the robot according to the laser:

— 2 2
Dlaser - \/xlaser + Viaser

Viaser

Augser = t
Xlaser

Then, it transforms the position of the person to the world coordinates:

Xiaserpath = Xrobot T COS(Orobot + alaser) * Digser

Yiaserpath = Yrobot + Sln(orobot + alaser) * Dlaser
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Figure 18 - Laser to world coordinates

For the Kinect calculation (Figure 19), the method uses three parameters:
a,=AngleSmallError, the person related to the center of the Kinect (from
/Pan_Error_Command); a,=AngleErrorPan, the position of the Pan related to the center
of the robot (from /Pan_Feedback); and D,= msg->tracks[i].distance, the distance of

the person from the Kinect (from /tracker/tracks).

The transformation of the person's position to the world coordinates is given by:
XkinectPath = Xrobot + COS(Orobot +ag + ap) * Dy

YkinectPath = Yrobot T Sin(orobot +a, + ap) * Dy
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Figure 19 - Kinect to world coordinates
For using the history position, a vector of X values and Y values was inserted into the HF
method to calculate the position of the person (xpq¢n, Yparn). The laser has an average
frequency of 8 Hz, and the Kinect has an average frequency of 15 Hz. In order for the robot
to use the same history points of the detected person, the 32" point from the laser and the
60™ point from the Kinect were taken each time to calculate the history position of the person
(4 seconds of history). To calculate the angle (asou0w) and the distance of following

(Dfonow), these history points are used with the position and orientation of the robot, as

follows:

Yfollow — :VTobot>

— -1
afollow = Orobot + tan <xf I — Xrobot
ollow robo

Dfollow = \/(xfollow - xrobot)2 + (yfollow - yrobot)z

To avoid problems near the forward and backward of the robot caused by large differences
when switching between positive and negative angle values, a positive transformation was

added to the value of the angles.

If the absolute value between the orientation of the robot and the angle of the history
following person to the robot is >n (3.14, half of a circle), then depending on whether the
angle is positive or negative, the angle changes with 2xx (a circle) to avoid a large change

near those values. In other words, the values for a0, lie between [-n, +].
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The velocity commands are executed in a manner similar to the DF method, but are related
to the history point and the real time position of the person to prevent the robot from getting

too close to the actual position of the person.

The angular velocity of the robot depends on K, 4,4,.=0.5 (the twist speed controller) and

on the angle of following:

176’lOCityangular = —Afollow * Bpangle
If Diinect/iaser > Drarger, then the actual measurement of the distance from the Kinect or

from the laser to the person exceeds the distance that the robot needs to maintain following.
In such a case, the robot must to move in such a way as to reduce the distance from the

person, as follows:

velocitymear = (Dfollow - DTARGET) * Rppistance

Otherwise, velocity;ineqr = 0

This equation implies that if the distance of the robot from the target (constant 1.2 m) exceeds
the distance of the robot to the history point, then the robot's linear speed will be zero,

indicating that the person is too close.

To prevent large changes in the position of the person caused by the movements of the
robot and the Kinect, a threshold of comparing the following samples was added and if the
distance between two followers samples of person's position is >1 m , the last sample will

be ignored.

To avoid quick turns that cause the Pan to lose the person, the angular velocity of the robot

was limited to 0.5 rad/s (like the maximum speed of the Pan).

To avoid problems related to two sources of person detection, the method uses first the
Kinect detection, and if it loses tracking, then it changes to laser detection. If there is no
detection by both sensors, the method can use the SAD integrated algorithm. This method
can work even with only one source of person detection (Kinect or laser). A method that
works with both of the sources together is described In Section 4.10 ‘Adaptive Following
Methods.'

4.10 Adaptive Following Methods (Kinect and Laser)

This adaptive method refers to DF and HF as an extension to the methods that are described
above (Direct-Following Section 4.8 and History-Following Section 4.9). To use two

sources of person detection, the method must implement a decision-making routine to select
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which source to use for the following algorithm. An additional parameter was created to
compare the person's position determined by the laser detector in the world coordinates with
that determined by the Kinect. If the distance between these two measurements is >20 cm,
then the method declares a "Match,” which implies the same person is detected from both

sources. Each sensor has inherent advantages and disadvantages as indicated in Table 4:

Table 4- Properties of Kinect vs. laser detector

Horizontal FOV (degrees) 84.1 RGB, 70.6 Depth 240
Vertical FOV (degrees) 53.8 RGB, 60 Depth Only 2D view (20 cm high)
Distance (meters) 1-10 RGB, 0.5-4.5 Depth 0-30
Reliability Depends (confidence level) Less reliable

Based on empirical investigations, the decision-making routine gives priority to the Kinect
(Figure 20) to calculate the following parameters. If after 3 s of "no" Kinect detection, the
routine changes to the laser detector to calculate the following parameters until the Kinect

recovers. If both sensors do not detect the person, then the routine uses the SAD algorithm.

Kinect no Laser

Detection Detection
yes no| yes
yes Search
After
Disappear

Human Following

Figure 20 - Flowchart of the adaptive decision making Kinect- and laser-detection
algorithm
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5. Chapter Five: Results and Discussion

5.1 Overview

The results of all the experiments are detailed in this chapter. The two preliminary
experiments with Kinect V1 are described in Sections 5.2 and 5.3. The experiment that
compares the different following angles used with Kinect V2 is described in Section 5.4.
The comparison between the three occlusion detection algorithms is described in Section
5.5. The direct-following and history-following experiments that evaluate and compare the
performances of various combinations of integrated algorithms in the two main human-
following methods are described in Sections 5.6 and 5.7. The adaptive Kinect-laser vs non-
adaptive (for direct following and history following) experiment is described in Section 5.8.

5.2 Preliminary Experiment: Identifying Testable Parameters on a
No-Pan Kinect V1

A series of parameters were tested to evaluate the Kinect parameters (Table 5).

Table 5- The set of usable parameters tested for the variables

1 1.2 1.2 2 0.5 Loses the person
(due to large angle)
1 1.2 1.2 2 0.4 Loses the person
(due to large angle)
1 1.2 1.2 2 0.3 Loses the person
(due to high velocity)
1 0.8 1.2 2 0.3  Causes the robot to vibrate and loses the
person (due to high velocity)
1 0.8 0.8 2 0.3  Causes the robot to vibrate and loses the
person (due to high velocity)
0.5 0.5 0.5 2 0.3  Slow near the person; some loss of the person
(due to high velocity and far distance)
0.3 0.8 0.8 2 0.3  Good tracking
but far distance from the person
0.3 0.8 0.8 1 0.3  Good tracking

and good distance from the person

The robot lost the person in the first and second trials due to the large tracking angle (0.5
and 0.4 rad, respectively). In the third trial, the robot lost the person due to its high linear
velocity (responsiveness of 1.2). After the responsiveness of the linear velocity (which
depends on the distance between the robot and the person) was decreased to 0.8, the robot

lost the person due to vibration caused by the angular responsiveness of 1.2. If the
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responsiveness is too slow (0.5 for both linear and angular velocities) and the maximum
speed of the robot is also slow (0.5 m/s), the robot loses the person due to the far distance.
After obtaining good stable tracking at 0.3 rad from the side, with responsiveness of 0.8 for
both linear and angular velocities and a maximum speed of 0.3 m/s, the minimum distance

from the person can decreased to 1 m instead of 2 m.

Based on the above experiments, the final selected parameters were:

e 0.3 rad for angle following
e 1 m for minimum distance between a person and the Kinect camera
e 0.8 responsiveness both for turning and distance

e 0.3 m/s as maximum speed of the robot

5.3 Preliminary experiment: Testing Objective & Subjective Metric
Performances of Two Angles on a No-Pan Kinect V1

The following objective results were obtained:

e If the robot lost the person, it continued its current movement until it either found the
person and then continued to follow the person or it detected an obstacle and stopped.
This occurred in both ways.

e The maximum distance before losing the person was 4 m (see Figure 21 for an example
of losing the tracking at distances >4 m).

e Since the robot lacks a vertical tilt, it tended to lose track of tall people when they were
too close to it (see Figure 21 for an example of losing tracking at close distance).

e The robot detected shadows on the wall as additional people due to the lighting
conditions and to reflections. This happened mostly at side-following because of the
small distance between the robot and the wall (Figure 22).

e In 93% of instances of losing the person, the robot recovered by itself (26/28) (Figure
22).

e The average following angle was a bit larger than programmed (Figure 23, Table 6):

o Back-following 0.76° (supposed to be 0°)
o Side-following 18.25° (supposed to be 17.19°)
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Figure 23 - Means and variance degrees (back-following vs. side-following)

Table 6 - Following angle results (back-following vs. side-following)

subject side-following  side-following back-following back-following
All path without turn All path Without turn
1 14.21 18.59 -3.4 0.93
2 13.72 17.96 -3.93 0.03
3 13.64 17.66 -1.25 0.46
4 13.72 17.61 -3.46 0.9
5 14.42 19.25 -1.48 0.98
6 13.94 18.42 -3.91 1.23
average 13.94 18.25 -2.91 0.76
covariance 0.10 0.40 1.48 0.19
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The subjective results of the experiments are summarized in Table 7. The main findings

were:

e There were significant differences in the subjective assessments of ‘following quality’,
'robot responsiveness' and ‘comfort with speed.’

e The robot lost the person more frequently in back following (by 33% more losses in
back-following) than in side-following. This is because people tended to walk faster (and
noticed the robot's presence less) and created a much larger distance between them and
the robot.

e Subjects felt that the robot moved too slowly and they thus lowered their speed to adapt
to the robot; yet to 4/6 subjects the robot felt slower in back-following than side-
following.

e The subjects reported that they adapted their walking speed and behavior to the robot to
a greater extent for back-following.

e 4/6 of subjects felt less threatened with the following distance of the robot in back-
following.

e Subjects were slightly less stressed by the robot in the back-following condition.

e The task was perceived as non-stressful. The robot was perceived to be friendly and not
dangerous, scary, annoying or stressful.

e There was no conclusive self-reported preference between back-following and side-
following.

e There were no perceived differences in the quality of following.

e The comfort of the subjects with the responsiveness of the robot was the same for both

back and side-following.
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Table 7- Subjective results of the performances of two angles experiment

Gender F M F M M F

Subject # 1 2 3 4 5 6

Person stressed by task 112 |1 (1|13 1.5
Person stressed by robot 2 2 1 1 1 1 1.33
Person adapted behavior based on robot 3 4 5 3 3 4 3.66
Robot adapted behavior based on person 4 3 3 4 4 4 3.66
Walking was independent of robot 1 2 1 2 2 2 1.66
Person was comfortable with speed of robot 1 4 3 3 2 5 3
Robot moved too slowly 51415 |4|5|1 4
Person was satisfied with the quality of following 2 4 5 3 3 5 3.66
Person felt safe regarding the distance of the robot 5 5 5 4 5 5 4.83
Person lowered speed to adapt to the speed of the robot 5 5 5 4 5 4 4.66
Following at angle

Gender FM F M M F

Subject # 1 2 3 4 5 6

Person stressed by task 1 1 1 2 1 2 1.33
Person stressed by robot 2 3 1 2 1 3 2
Person adapted behavior based on robot 2 2 1 4 4 4 2.83
Robot adapted behavior based on person 4 3 5 4 4 4 4
Walking was independent of robot 2 3 2 2 2 1 2
Person was comfortable with speed of robot 314 5|3| 2|5 3.66
Robot moved too slowly 4 3 1 4 4 2 3
Person was satisfied with the quality of following 4 4 5 3 2 4 3.66
Person felt safe regarding the distance of the robot 3 3 5 4 4 3 3.66
Person lowered speed to adapt to the speed of the robot 512 5|4 |5 |5 4.33
Subject # 1 2 3 4 5 6

Person felt a difference in the difference betweenthe 2trials 4 4 3 2 4 4 3.5
Opinion of Robot (the robot is..)

Friendly 3 3 3 2 5 4 3.33
Disturbing 2 3 1 4 3 1 2.33
Considerate 1 4 3 3 1 4 2.66
Dangerous 2 1 1 2 1 1 1.33
Scary 1 2 1 2 1 2 15
Annoying 3|2 1|3| 3|1 2.16
Stressful 3 1 1 2 2 2 1.83

5.4 Testing Objective & Subjective Metric Performances of Three
Angles on a Pan Kinect V2

Obijective indicators used to assess the quality of following (Table 8) indicated while that the
mean following angle at 0° following and 30° following were consistently close to the
intended angles (2.31° and 28.26°, respectively), the implementation of 60° following was
unsuccessful (mean = 26.11°, STD = 7.315). This lack of success may be attributed to the

different methods of following and problems that were caused due to the implementation of
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the 60° of following. There was no significant difference across trials in the following
distance (0° and 30°) (Honig et al., 2016). The mean following distance for men was 17.2
cm greater (by 8%) than that for women. The number of times the robot lost track of the
participants (defined as 'losses' in Table 8), and the mean number of interventions due to loss
or for safety reasons increased with the following angle, but these differences were not
statistically significant (sig. = 0.206, sig. = 0.205, sig. = 0.297, respectively).

Table 8- Cumulative results for objective measures for quality of walk

Distance 2.36x0.69 2.29+0.59 2.2+0.57
Angle 2.31+£10.41 -28.26+11.04 26.11+12.73
Number of losses 0.36+0.75 0.72+0.62 1.16+0.28
Number of 0.32+0.62 0.44+0.82 0.96x0.97
interventions due
to loss
Number of 0.08+0.27 0.24%0.43 0.52+0.71

interventions due

to safety

5.5 Comparison of Occlusion Algorithms

The results (Table 9) show that the algorithm that uses depth information (DO) yielded
better average true detection (92.7%=8.75%) than the algorithms that use grey level images
(VO) (40.5%£23%) and their combination (CO) (63%+11.25%) in corrent implementation
for all scenarios and distances, including very far distances (8 m). DO exhibited high
sensitivity and specificity as compared to VO (sig. = 0.000) and CO (sig. = 0.000). DO
yielded the best detection results, followed by the CO algorithm, and the worst algorithm
was VO (sig. = 0.000, F = 25.748). DO vyielded the least false alarms and misses
(9.7%+8.75%), less than CO (36.9%+11.25%) but not statistically significantly different,
and the worst results were obtained for VO (59.4%+23%) (sig. = 0.173, F = 1.98). These
results indicate the reliable measurements of the Kinect Depth stream that are used in the
DO algorithm developed to derive a compatible threshold to reduce false distance
measurements and closer body parts mistakes. The low performance of VO, namely, the high
number of false occlusions detected showed that the detection of straight lines was not
adequate.
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Table 9- results of comparison occlusion algorithms experiment

DO 0.88+0.17 0.12+0.17 0.083+0.09 0.916+0.09
(occlusions)
CoO 0.895+0.12 0.105+0.12 0.552+0.06 0.447+0.06
(occlusions)
DO (wall) 1+0 0+0 0.088+0.09 0.912+0.09
VO (wall) 0.695+0.31 0.305+0.31 0.883+0.15 0.116+0.15
CO (wall) 0.94+0.08 0.06+0.08 0.76+0.19 0.24+0.19

*The best results are highlighted in yellow

The results indicate that CO detection was almost half of DO detection at distances <5 m
(Pearson: sig. = 0.01, r (43) = 0.706) and almost half of VO at distances >5 m (Pearson: sig.
=0.01, r (22) = 0.535). VO produced a high number of false negatives. Unexpectedly, DO
was found to be better than VO and CO even at far distances.

5.6 Direct-Following Experiment

The main results obtained were:

e The results presented in Table 10 indicate that the trials with the two search algorithms
(trials 1 and 2) gave better results than the trial without the search algorithm (trial 3) in
terms of the percentage of self-recoveries and intervene-recovers out of the total number
of losses (with a search algorithm, all losses were self-recovered; without the search
algorithm, all the losses required intervention for 100% recovery). The only significant
difference between the three trials was in the ratio of stable tracking of the person to no
tracking of the person (sig. = 0.047, f = 3.633). The results for average ratio of stable
tracking of the person to no tracking of the person for the trials with the two search
algorithms were better by 21% (trials 1 and 2, mean+STD = 0.983+0.016) than for the
trial with no search algorithm (trial 3, mean£STD = 0.81+0.165). Post-hoc pairwise
comparisons (Tukey test) showed a difference that was almost significant between trial 3
and trials 1 and 2 (sig. = 0.075, p = 0.078, respectively), with a homogeneity of variances
of 0.11.

¢ For the seven subjects, there were differences in the total number of losses: trials with the
search algorithms yielded 60% less losses than those without a search algorithm (search
0.4+0.489; without search 1+1.264) but the homogeneity of variances of 0.01 indicates
that this difference was not significant. It was also found, as expected, that each subject

walked at a unique average velocity.
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e There was no significant difference between the two search algorithms. The only
difference between trial 1 and trial 2 was that trial 1 was conducted with the DO
algorithm, and trial 2, without.

e The order in which the trials were conducted during the experiment did not influence the
results.

e In this experiment the best algorithm was the combination of SAD and DO (trial 2 -
Figure 24) because the combination gave significantly better results — by 21% — than the
DO algorithm alone (without the search algorithm) for average ratio of stable tracking of
the person to no tracking of the person; this result was similar to that of the first trial,
which used only the search algorithm without the DO algorithm (Table 10).

Table 10 - Results for Direct-Following experiment

Trial Type Total Total Ratio Total loss Ratio Total Robot
loss loss with self- with intervent safety distance
self recovery intervent  to total intervent

recovery  to total loss
loss

1 Search 2 2 100 0 0 3 13.28

2 Search+ 4 4 100 0 0 1 12.74
occlusion

3 Occlusion 8 0 0 8 100 3 13.85

Trial Velocity Depth False Ratio Distance STD Total
of the occlusion alarm track to distance obstacles
subject depth no-track hit
occlusion
1 0.54 0.98 3.14 0.83 2
2 0.56 0.84 0.46 0.98 2.99 0.71 2
3 0.52 0.79 0.49 0.81 3.29 0.86 1

*Yellow fill indicates the best results (although not statistically significant)
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Figure 24- An example of Direct-Following with search and occlusion algorithms from
RVIZ (Blue-subject, Red-robot)

5.7 History Following Experiment

The results in Table 11 indicate that there was only one significant difference between the
two HF algorithms, namely, the difference in the total path length of the robot during the
experiment (sig. = 0.02, f = 15.765). The algorithm that gave the longer path — by 22% —
was the DO algorithm used in the second trial (without DO 16.085+1.604; with DO
19.157+1.007). In addition, there was no significant difference in the number of losses or in
the ratio of stable tracking to no tracking of the person. There was a difference in the percent
of self-recoveries—200% more self-recoveries with the DO algorithm (7.14% self-

recoveries for no DO algorithm vs 21.43% self-recoveries with the DO algorithm).

As in the DF experiment (Section 5.6), each subject had a unique average velocity, as

expected, and the order of the trials during the experiment did not influence the results.

A reasonable explanation for the difference in the length of the path is that this parameter
depends on the movements of the robot during recognizing an occlusion of the person (by
DO algorithm) and changing the following angle to change the line of sight between the
robot and the person (which increases the length of the path). In addition, the percent of self-
recoveries after loss was three times higher when using the DO algorithm; this finding
implies that it is better to use the DO algorithm in an unknown environment. Hence, the best

algorithm in this experiment was shown to be the DO algorithm (Table 11 and Figure 25).
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Table 11- Results for History-Following experiment

1 Search 8 1 125 7 87.5 2 16.08
2 Search+ 9 3 33.3 6 66.6 4 19.16
occlusion
1 0.50 0.81 3.29 0.92 1
2 0.48 0.80 0.51 0.82 3.50 0.91 1

*yellow fill indicates statistically significant result.

<__- angle's changing

Figure 25 - Example of History-Following with search and occlusion algorithms from
RVIZ (Blue-subject, Red-robot)

A comparison of the three trials of the DF experiment (Section 5.5) and the two trials of the
HF experiment (Table 12) shows that direct following is better than history following (the
opposite than expected) due to large calculation processing in HF. Losses for DF were 45%
less than those for HF (sig. = 0.077, not significant). Out of the total losses, the percentage
of intervene-recoveries was lower by 70% in the DF (sig. = 0.003). The tracking ratio is 13%
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better in the DF (sig. = 0.022) and the path distance of the robot was shorter by 25% (sig. =
0.000). In addition, the velocity of the subject was faster by 10% in the DF (sig. = 0.071, not

significant).

Table 12- Statistic comparison between 3 DF trials vs 2 HF trials

Variable 3 Direct trials 2 History trials

MeanxSTD MeanxSTD
Number of total losses 0.67+0.856 1.21+0.893 3.332 0.077

Percent of intervene-recover out of 0.1905+0.402 0.6429+0.412 10.404 0.003
total loss

Tracking ratio (Kinect) 0.9257+0.129  0.8157+0.136 5.804 0.022
Average velocity of the subject (m/s)  0.5419+0.081 0.4877+0.083 3.484 0.071

Total path length of the robot (m) 13.29+1.989 17.6214+2.114  37.868 0.000
*Yellow fill indicates that the difference is significant at the 0.05 level.

The results indicate influence of the different following methods (DF vs HF) on the results
(Table 13). The next experiment must include a larger number of participants in order to

obtain statistically significant results.

Table 13 - Results for the comparison between 3 DF trials vs 2 HF trials

Trial Type Total Total Ratio Total loss Ratio Total Robot
loss loss with self- with intervent safety distance
self recovery intervent  to total intervent

recovery  to total loss
loss

1 Direct 2 66.66 2.67 S8 nSiE) 13.29

2 History  8.50 2 22.90 6.50 77.05 3 17.62

Trial Velocity Depth False Ratio Distance STD Total
of the occlusion alarm track to distance obstacles
subject depth no-track hit
occlusion
1 0.81 0.47 0.93 3.14 0.80 1.67
2 0.49 0.80 0.51 0.82 3.39 0.92 1

*Green indicates the best results (although not significant), and yellow indicates
results with statistical significance at the 0.05 level.

The main significant difference between the five trials lies in the total path length of the

robot (Figure 26 and Table 14), with homogeneity of variances of 0.74 (sig. = 0.000, f =
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14.614). The shortest path (trial 2- DF with SAD and DO) was shorter by 33% than the
longest path (trial 5- HF with SAD and DO).

total path distance of the robot
Tukey HSD?
oo % trial Subset for alpha = 0.05

27
© é N 1 2 3
= él . 12.7429
o
|§| 132771 | 132771

total path distance of the robot

2 7
1 7
3 7 13.8500 13.8500
4 7 16.0857
00 2 7 19.1371
Sig. 787 053 1.000

Means for groups in homogeneous subsets are displayed.

3 4 5
trial a. Uses Harmonic Mean Sample Size = 7.000.

Figure 26 - Five trials total path length of the robot

Table 14 - Results for five trials

Total Ratio Total loss Ratio Total Robot
loss with self- with intervent safety distance
self recovery intervent  to total intervent
recovery  to total loss
loss
1 Direct 2 2 100 0 0 3 13.28
search
2 Direct 4 4 100 0 0 1 12.74
search+
occlusion
3 Direct 8 0 0 8 100 3 13.85
occlusion
4 History 8 1 12.5 7 87.5 2 16.08
search
5 History 9 3 33.3 6 66.6 4 19.16
search+
occlusion

Trial Velocity Depth FA Ratio Distance STD Total
of the  occlusion  depth track to distance  obstacles
subject occlusion no-track hit
1 0.54 0.98 3.14 0.83 2
2 0.56 0.84 0.46 0.98 2.99 0.71 2
3 0.52 0.79 0.49 0.81 3.29 0.86 1
4 0.50 0.81 3.29 0.92 1
5 0.48 0.80 0.51 0.82 3.50 0.91 1
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5.8 Adaptive Kinect-Laser Method vs. Non-Adaptive Kinect Method
(for Direct-Following and History-Following) Experiment
The comparison of the adaptive Kinect-laser methods with the non-adaptive Kinect
methods indicates better performance of the adaptive methods (Table 15):

Table 15 — Statistic comparison between Adaptive Kinect-laser methods vs Non-adaptive
Kinect methods

Number of total losses** 1.25+0.812 2.27+1.18 13.395 0.000
**0.982+0.54 **0.592+0.49

Percent of intervene-recover out of 0.225+0.362 0.651+0.364 32.897 0.000
total losses

Number of safety interventions 0.79+0.713 1.33+0.781 12.588 0.001

STD of the distance between robot 0.785%0.261 0.905+0.306 4266 0.042
and subject (m)

Percent of false depth occlusions 0.237+0.114 0.296+0.147 4866  0.03

Percent of depth occlusions 0.774+0.130 0.715+0.122 5132 0.026

*Yellow fill indicates that the difference is significant at the 0.05 level.

**The total number of losses has a homogeneity of variances of 0.008. Therefore, a transformation
of 1/X was performed, resulting in a homogeneity of variances of 0.561.

The percent of 'intervene-recovers' out of total losses was lower in the adaptive Kinect-laser
methods by 65% (adaptive Kinect-laser average 0.225+0.362 vs. non-adaptive average
0.651+0.364) due to the ability of the robot to ‘reconnect’ with the person by using the laser
sensor when the Kinect had lost the person. For the same reason, the number of interventions
resulting from the robot getting too close to a wall was lower in the adaptive Kinect-laser
methods by 41% (adaptive Kinect-laser average 0.79+0.713; non-adaptive average
1.33+0.781). In addition, the STD of the distance between the robot and the subject was
smaller in the adaptive Kinect-laser methods by 13% (adaptive Kinect-laser average
0.785£0.261; non-adaptive average 0.905+0.306) due to fewer losses and more steady
following with less variation in the distances. Perhaps, this is also the reason for better
occlusion detection and less false occlusion detection in the adaptive Kinect-laser methods

by 8% and 20%, respectively.
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The comparison between the two following methods (DF adaptive and non-adaptive

methods vs HF adaptive and non-adaptive methods) shows better results for the DF (Table

16):

Table 16- Direct-Following (adaptive and non-adaptive methods) vs History-Following
(adaptive and non-adaptive methods)

Number of total losses 1.35%1.101 2.17+1.018 14.097  0.000
Number of intervene-recover 0.77+1.057 1.38+1.064 7.789  0.006
Number of laser obstacles found 37.29+19.64 50.69+23.46 9.2 0.03
Percent false alarm detection of legs 0.189+0.302 0.435+0.295 7.98 0.007
Tracking ratio for Kinect 0.935+0.081 0.88+0.094 9.174  0.003
Percent of false depth occlusion 0.225+0.125 0.309+0.131  10.373  0.002
Velocity of the subject 0.404+0.092 0.336+0.079 14.82  0.000
Total path length of the robot 19.298+1.80 23.607+2.08  64.718 0.000
Number of matchings for the position of 32.08+22.11 15.5£13.99 9.641 0.003
the subject by Kinect and laser detector

Tracking ratio for laser detector 0.596+0.264 0.318+0.186  17.689  0.000

*Yellow fill indicates difference is significant at the 0.05 level.

Higher — by 6% and 47%, respectively — stable tracking ratios were obtained with the Kinect
and laser sensors for the DF methods (adaptive and non-adaptive). A reasonable explanation
for this finding is that the robot always turns directly to the subject in DF methods, which
means that if the robot loses the person, the Pan returns the Kinect to the center of the robot
where the person is most likely to be and the line of sight of the laser sensor is aimed in front
of the robot. In contrast, in the HF (adaptive and non-adaptive) methods, the robot does not
move directly to the person but rather to the person's historical position. In other words, most
of the time the person is not in front of the robot. For the same reason, the number of
interventions due to losses was lower, by 44%, in DF (adaptive and non-adaptive) methods
than in HF (adaptive and non-adaptive) methods due to the direction of the sensors when the
robot loses the person and to the inferior ability of the robot to self-recover when the sensors
are not directed to the person (in front of the robot). This reasoning also explains the lower
— by 38% — number of total losses for DF (adaptive and non-adaptive) methods. In addition,

less stable tracking can cause more false occlusion detections due to false person detection.
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The average distance between the robot and the subject was not significantly different
(homogeneity of variances of 0.012; DF 3.051+0.545; HF 3.696+0.370 with sig. = 0.000,
f = 45.905). The percent of false alarms of legs detection was higher in HF (adaptive and
non-adaptive) by 56% and showed a positive correlation to the distance. Longer distances
could cause a higher probability of false alarms, since it becomes more difficult for the laser
sensor to find the person's legs as the distance increases. The velocity of the subject could
be faster when the robot is closer and slower when the robot is further away (since the person
may have to wait for the robot). The number of matchings between the position of the subject
by the Kinect and by the laser sensor was higher when both sensors give stable and reliable

tracking, which also depends on the distance.

The total path length of the robot was shorter — by 18% — in DF (adaptive and non-adaptive),
as expected. In DF (adaptive and non-adaptive), the robot moves directly to the subject by
taking short cuts, while in HF (adaptive and non-adaptive) the robot moves to the historical
position of the subject without any short cuts. The difference may explain why the number
of laser obstacles in HF (adaptive and non-adaptive) was higher by 36%, since the robot

follows the subject's historical position when the subject moves near an obstacle.

In addition, people preferred the DF than HF due to the robot's response (location and

continuity of movement).

A comparison between the heights of the male and female participants showed that the men
were significantly taller than the women by 4% and the standard deviation (STD) of the
distance between the robot and the subject (Table 17) of the men were significantly higher

than the women by 3%.

Table 17- Statistical comparison between males vs females

Height of the subject 1.635+0.626 1.593+0.060 10.95 0.001
STD of the distance between robot and 0.792+0.279 0.921+0.289  4.836  0.03
subject

*Yellow indicates difference is significant at the 0.05 level.

There was no difference in the tracking ratio or the average distance between the robot and
the subject that can explain the different STDs. The only reasonable explanation lies in the
fluctuations in the velocity of the subject. The velocity calculation was based only the
average velocity during the entire trial and not the fluctuation of the velocity during the trial.
If males, for instance, walked at a "more"” constant velocity than females, then the STD

distance of males are smaller by 14% than females.

64



For the 24 participants, the only significant difference between the men and the women was
that in their height, as expected (sig. = 0.000, f = 22.775).

The order of the trials during the experiment did not influence on the results.

A comparison between the four trials (HF-Adaptive, HF-Non-Adaptive, DF-Adaptive, DF-

Non-Adaptive) shows differences (Table 18). The means for groups in homogeneous

subsets are displayed in

Table 18- Statistical comparison between the four trials

Figure 27.

Number of total losses 1.67+0.761
Number of safety 0.88+ 0.797
interventions

Average distance 3.614+0.39
between robot and

subject

Tracking ratio with 0.872+0.11,
Kinect

Percent of false depth 0.285+0.10
occlusion

Percent of depth 0.729+0.15
occlusions detected

Velocity of the subject 0.327+0.07

Total path length of the 23.40+2.10
robot

1.46+0.721

3.778+0.33

0.888+0.06

0.333+0.15

0.750+0.06

0.346+0.08

0.83+ 0.637

0.71+0.624

2.985+0.50

0.950+0.05

0.189+0.10

0.818+0.07

0.404+0.09

18.60+1.72

1.88+0.899
1.21+0.833

3.118+0.58

0.919+0.09
0.260+0.13
0.4040.09

19.99+1.62

19.39

4.838

16.21

3.664

5.43

5.360

5.051

43.52

0.000

0.004

0.000

0.015

0.002

0.002

0.003

0.000

*Yellow highlighting indicates the best results and black highlighting, the worst, with difference

being significant at the 0.05 level.
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Total Loss Safety Intervention Average Distance
Tukey HSDA Tukey HSD? Tukey HSD?
trial Subset for alpha = 0.05 trial Subset for alpha = 0.05 trial Subset for alpha = 0.05
N 1 2 3 N 1 2 N 1 2
3 24 8333 3 24 i 3 24 2.9850
1 24 1.6667 1 24 88 4 24 3.1183
4 24 1.8750 4 24 1.21 1.21 1 24 36142
2 24 2.6667 2 24 146 2 24 37788
Sig. 1.000 825 1.000 Sig. 102 655 Sig. 754 612
Ratio Track Kinect False Depth Occlusion Depth Occlusion
Tukey HSD? Tukey HSD? Tukey HSD?
trial Subset for alpha = 0.05 trial Subset for alpha = 0.05 trial Subset for alpha = 0.05
N 1 2 N 1 2 N 1 2
1 24 87221 3 24 1895 4 24 6812
2 24 88842 88842 4 24 2604 2604 1 24 7292 7292
4 24 91958 91958 1 24 2854 2 24 7500 7500
3 24 95000 2 24 3333 3 24 8188
Sig. 252 081 Sig. 216 194 Sig. 206 056
Subject's Velocity Robot's Distance
Tukey HSD? Tukey HSD®
trial Subset for alpha = 0.05 trial Subset for alpha = 0.05
N 1 2 N 1 2
1 24 3271 3 24| 1856055
2 24 3458 3458 4 24 199912
3 24 4042 1 24 23.4055
1 24 4042 2 24 23.8097
Sig. 877 099 Sig. 062 882

Figure 27-Means for groups in homogeneous subsets

The Kinect tracking ratio was highest in the DF-adaptive Kinect-laser mode as compared to
the ratio for the other modes (DF-non-adaptive by 3%; HF-adaptive by 9%; HF-non-
adaptive by 7%). There was a significant difference only between the best and the worst
results (DF-adaptive 0.95+0.05 vs HF-adaptive 0.872+0.11, with sig. = 0.015). A reasonable
explanation for this finding is that the robot always turns directly to the subject in DF
(adaptive and non-adaptive) methods, which means that if it loses the person, the Pan returns
the Kinect to the center of the robot where the person is most likely to be. In contrast, in the
HF (adaptive and non-adaptive) methods the robot does not move directly to the person but
rather to the person's historical position. In other words, most of the time, the person is not
in front of the robot. The results of false occlusion detection separates the DF-adaptive (once
again the best result) to the HF-adaptive and the HF-non-adaptive with sig. = 0.002.
Surprisingly, detection of real occlusions did not correlate with the false occlusions

detections. The only significant difference is between DF-adaptive with the best result
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(0.818+0.07) that is higher by 20% than the DF-non-adaptive (0.681+0.15, with sig. =
0.001).

The average distance between the robot and the subject in both DF methods (DF-adaptive
2.985+0.5; DF-non-adaptive 3.118+0.58) was shorter by 17% than that in both the HF
methods (HF-adaptive 3.614+0.39; HF-non-adaptive 3.778+0.33, with sig. = 0.000). The
explanation of this significant difference lies in the differences between DF and HF, as
explained above. This distance difference can also explain the velocity of the subject with
significant differences between the DF (adaptive and non-adaptive) methods that are faster
by 20% than the HF-adaptive. The velocity of the subject can be faster when the robot is

closer and slower when the robot is farther (if waits for the robot).

There was a significant difference in the average number of interventions due to safety
reasons between the DF and HF methods, with adaptive Kinect-laser methods of following
having 46% less safety interventions (DF-adaptive 0.71+0.624; HF-adaptive 0.88+0.797)
than the HF-non-adaptive mode (1.46+0.721), with sig. = 0.004 and sig. = 0.04, respectively.
The reason for this difference lies in the stability of the tracking, i.e., the adaptive-following
methods use two sensors, and in the smaller number of losses — by 72% — in the adaptive-
following methods than in the non-adaptive-following methods. The average number of
losses was significantly different between trials. The DF-adaptive mode gave fewer losses
(0.833+0.637) than the HF-adaptive (1.666+0.761), the DF-non-adaptive (1.875+0.899) and
the HF-non-adaptive (2.666+1.007) by 50% (sig. = 0.005), 56% (sig. = 0.000) and 69% (sig.
= 0.000), respectively.

The total path length of the robot was shorter by 18% in the DF (adaptive and non-adaptive)
trials than in the HF (adaptive and non-adaptive) trials, as expected. There was a significant
difference between the DF methods (DF-adaptive 18.605+1.72; DF-non-adaptive
19.991+1.62) and the HF methods (HF-adaptive 23.405%+2.1; HF-non-adaptive
23.809+2.08), with sig. = 0.000. In the DF (adaptive and non-adaptive) methods, the robot
moves directly to the subject with taking short cuts, as necessary, while in HF (adaptive and
non-adaptive) methods the robot moves to the historical position of the subject without

taking short cuts. Examples of trials are shown in Figure 28, where

1. DF-adaptive - loss near the third obstacle; robot maintains stable tracking around the
corner; Markers of Kinect and laser position

2. DF-adaptive - "short-cut™ at the third obstacle; loss of tracking around the corner and
self-recovery; Markers of Kinect and laser position

3. DF-non-adaptive - "short-cut™ at the third obstacle; stable tracking, even around the
corner
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DF-non-adaptive - "short-cut" at the third obstacle; loss around the corner and self-
recovery

HF-adaptive - stable tracking even around the corner; Markers of Kinect and laser
position

HF-adaptive - two losses near the walls, another loss around the corner and self-
recovery; Markers of Kinect and laser position

HF-non-adaptive - two losses near the third obstacle; robot maintained stable tracking
around the corner

HF-non-adaptive - "short-cut™ at the third obstacle and loss of tracking, some losses near
the walls and around the corner with self-recovery
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1- Direct Adaptive 2- Direct Adaptive

8- History Adaptive

7- History

L

Figure 28- Trials examples for the adaptive and non-adaptive experiment (Yellow-subject,
Red-robot)

.-Green point with 2 small red points represent the position of the person by laser sensor
E-small turquoise point represents the position of the person by Kinect

--Straight blue line represents a wall

.-Blue circle represents an obstacle
I Red line represents a stable robot following path
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The summarized results for all the performance measures that were tested in the experiments
are shown in Table 19. According to the results, the best trial was DF-adaptive (the best in
all performance measures), followed by HF-adaptive, DF-non-adaptive and HF-non-
adaptive, in that order.

Table 19- The summarized results of the adaptive and non-adaptive (DF and HF)
experiment ranking

Total Loss 1.67 2.67 0.83 1.88
Total loss with self- recovery 0.88 0.71 0.71 0.46
Ratio self- recovery to total loss 52.50 26.56  85.00 24.44
Total loss with intervent 0.79 1.96 0.13 1.42
Ratio intervent to total loss 47.50 7344  15.00 75.56
Total safety intervent 0.88 1.46 0.71 1.21
Obstacles hit 0.17 0.33 0.00 0.38
Laser obstacles 50.42 50.96  39.38 35.21
Match 15.50 32.08
Total Kinect fall 2 3 3 2
Robot distance 23.45 Ky  18.69 20.16
Velocity of the subject 0.33 0.35 0.40 0.40
Depth occlusion 0.73 0.75 0.82 0.68
False alarm depth occlusion 0.29 0.33 0.19 0.26
Ratio track to no-track Kinect 0.87 0.89 0.95 0.92
Ratio track to no-track Laser 0.32 0.60
Legs false alarm 0.44 0.19
Distance between robot to subject 3.61 3.78 2.99 3.12
STD distance 0.90 0.97 0.67 0.84

*Yellow fill indicates the best results and black fill, the worst, with significant difference at the
0.05 level.
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6. Chapter Six: Conclusions and Future Work

6.1 Conclusions

In this thesis, different algorithms and following methods were developed and tested for a
human-following robot operating in unknown environments. The algorithms were developed
for a robot operating without any a-priori information about the environment and without
any special carry-on item and for people not wearing any specific items of clothing. The aim
was to reduce the number of robot's losses of the person being detected and improve the
robot's ability to self recover in unknown environments. The algorithms were implemented

on a Pioneer LXRobot mobile platform equipped with a Kinect and laser sensor.

The algorithms use depth methods to improve the occlusion detection process. It uses the
laser to avoid obstacles during the following process in real time, adapts to the linear and
angular velocities of the robot and it remembers the last position of the person to search the
person after disappear by moving to the person last position and turns to the direction, that

was calculated.
The main conclusions from this research were:

e The best occlusions detection algorithm is the DO, which uses the depth information
from the Kinect.

e For both following methods (DF and HF), the best performance was achieved by
integrating three algorithms—DO, OA, and SAD.

e Adaptive methods that combine the laser sensor with the Kinect for DF and HF
methods are better than the methods that do not use the laser (non-adaptive), and DF
methods are better than HF methods. The final ranking of algorithms is:

DF with laser— HF with laser— DF without laser— HF without laser.

6.2 Research limitations

This research has some limitations:

e The experiments were performed on only one person at a time and not in crowded
environments (without the ability to distinguish between people).

e The obstacles and the entire room of the experiment was pre-tested and adapted to
reduce false alarms of legs detection due to chair and table legs.

e Indoor environments with manually adapting light conditions depends on the sun

reflection.
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The subjects and the robot moved slowly to test the robot's following parameters that
depend on large computing complexity.

6.3 Future Work

The algorithms and following methods presented in this thesis were tested in real-time on a

mobile robot for human-following in unknown environments. There are several suggestions

for future research:

In this research, the CO uses the DO (depth) algorithm when the person is close to
the Kinect and the VO (vision) algorithm when the person is far from the Kinect. A
better combined algorithm can be developed by using both of the sensors in parallel
for comparing the results of each algorithm by defining a combined decision
parameter for occlusion detection.

When the occlusion detection algorithm detects an occlusion process, it changes the
robot's following angle to 15° (small occlusion or wall occlusion) or 30° (large
occlusions). Adjusting the angle according to the size of the occlusion can result in
improved performance (instead of the current simple selection between two fixed
angles).

Future research should focus on the use of dynamic maps, using SLAM to help the
robot navigate and orientate in previously visited environments.

Implementing ability of distinguish between people by using people parameters like
height and width, or clothes parameters like color and shape to distinguish between
people and then to search for the particular person being followed after loss.
Developing following angle above 30° (like side by side following).

For obstacles detection, the vertical search field of view should be increased by using
the Kinect; the currently used technique is based on legs detection by a laser sensor,
which has a very narrow search field of view (20 cm above the ground).

Improve the run time during HF by adding more parallel computers and increase the

computing size.
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Appendix A- An explanation of how to start the following
methods and integrated algorithms

Connect to LXRobot Wifi

Computer 1 on the robot and Computer 2 not plugged to the robot

Computer 2- Open new terminal:

= ssh robot@robot-desktop (password: robot)
= cd ~/workspace/ros/catkin
= roslaunch start_base.launch

Computer 1- connect the kinect and the pan to computer 1 (on the robot)

Computer 1- open a terminal:

= export ROS_MASTER_URI=http://robot-desktop:11311

= cd ~/workspace/ros/catkin/devel/lib/kinect2_bridge

= sudo ./kinect2_bridge (ignore error)

= roslaunch tracking detection_and_tracking_kinect2.launch

Computer 1- open a terminal:

= export ROS_MASTER_URI=http://robot-desktop:11311
= rosrun rosserial_python serial_node.py _port:=/dev/ttyUSBO0
_baud:=250000

Computer 1- open a terminal:

= export ROS_MASTER_URI=http://robot-desktop:11311
= rostopic pub /Start_Stop_Pan std_msgs/Bool true

Computer 1- open a terminal:

= export ROS_MASTER_URI=http://robot-desktop:11311
= rosrun Kinect_orientation_control kinect_orientation_control_node

The main following method can works with "leg_detector”, with Kinect detection
("Open_PTrack™) and even with both of them (priority to the Kinect and than the Laser
Leg-Detector).

Computer 2- For "legs detector"- in new terminal:

» cd workspace/ros/catkin/src/launchers
= roslaunch start_leg_detector.launch
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Computer 2- For obstacles avoidance, search for obstacles with the laser in real time- in
new terminal:

= rosrun obstacles laser_obstacles_avoidance
Computer 1- For occlusion detection, declares an occlusion using the depth information of
the Kinect during person detection- in new terminal:

= rosrun occlusions depth_occlusions

There are 4 main methods codes for robot following with integrated unknown
environments algorithms. Each one of them can works by himself.
In new terminal run one of the following lines:

computer 2- in new terminal:

direct following with search algorithm when the person disappear:

= rosrun people_follower simple_follower_kinect2_pan_laser

direct following without search algorithm when the person disappear:

= rosrun people_follower
simple_follower_kinect2_pan_laser_without_search

history following with search algorithm when the person disappear:

= rosrun people_follower path_follower

history following without search algorithm when the person disappear:

= rosrun people_follower path_follower_without_search
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Appendix B- Likert-Style Questions for Section 3.4.3

After each trial (back-following and side-following):

Stressed by the task

Stressed by the robot

Person adapted behavior based on robot

Robot adapted behavior based on person

Walking was independent of robot

Walking was comfortable with speed of robot

Robot moved too slowly

Person was satisfied with the quality of following

Person felt safe regarding the distance of the robot

I lowered my speed to adapt to the speed of the robot

R

NINDNNINININININININ

WWWWWwWwWwwwww

I R R R R R RIS

gjorjorjorjorjorjorjororol

Final questionnaire to compare the two trials and the opinion on the robot:

| felt a difference between the two trials

1|

2

In which trial did you feel more comfortable?

1

Why

Opinion of the Robot (the robot is..)

Friendly

Disturbing

Considerate

Dangerous

Scary

Annoying

Stressful

NI

NININININININ

WwWwWwwwwlw

RIS

ogrjorjorjorjorol ol
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Appendix C- Statistical Analysis

For the analysis of the results for the comparison between occlusion detection algorithms
(section 5.4), the Direct-Following experiment (section 5.5), the History-Following
experiment (section 5.6) and the Adaptive vs Non-Adaptive Direct-Following and History-
Following experiment (section 5.7) there is a necessity to compare the means of the groups.
The comparisons are performed using one-way ANOVA (analysis of variance) and Tukey's
HSD test. The ANOVA analysis employs an F-test to determine whether there is a significant
difference between two or more of the means. Tukey's HSD is a post hoc multiple
comparison test, performed after the F-test determines that the means are not equal. The
Tukey's HSD test separates and ranks the groups demanding 95% confidence level (a=0.05)

for the entire comparison.

D.1 Occlusion's algorithms comparison
Raw data:

Table 20 - Raw data occlusion's algorithms comparison

type distance ftrue_occlusion true wall true_small true_big [false_occlusion false_wall false_small false_big
depth 2 0.97 1 0.12 0.85 0 0 0 0
rgb 1.98 0 0

depthrgb ~ 2.07 0.49 0.5 0.04 0.44 0 0 0 0
depth 3.63 0.94 0.92 0.14 0.79 0.44 0 0.44 0
rgb 4.05 0 0.67

depthrgb  4.18 0.45 0.44 0.05 0.41 0.29 0 0.29 0
depth 4.9 0.72 0.73 0.03 0.68 0.28 0 0.05 0.23
rgb 4.89 0.11 0.1

depthrgb~ 4.71 0.35 0.35 0.01 0.34 0.13 0 0.02 0.11
depth 5.81 0.92 0.91 0.12 0.8 0 0 0 0
rgb 5.79 0 0.79

depthrgb 5.7 0.02 0.18
depth 7.95 1 1 0.03 0.97 0 0 0 0
rgh 7.94 0.42 0.27

depthrgb ~ 7.83 0.13 0.18
depth 4.33 0.95 0 0.7 0.25 0 0 0 0
rgb 3.94 0.17 0

depthrgb  4.29 0.5 0 0.24 0.26 0 0 0 0
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Statistical analysis (ANOVA and Tukey):

Table 21- ANOVA occlusion's algorithms comparison

ANOVA
Sum of Squares df Mean Square F Sig.
total_true Between Groups 1.722 2 .861 25.748 .000
Within Groups .502 15 .033
Total 2.224 17
trueWall Between Groups 1.415 2 .708 9.764 .002
Within Groups 1.087 15 .072
Total 2.502 17
total_false Between Groups 147 2 .073 1.980 173
Within Groups .556 15 .037
Total .703 17
Table 22- Tukey HSD occlusion's algorithms comparison
Multiple Comparisons
Tukey HSD
Dependent Variable (1) algorithm  (J) algorithm Mean 95% Confidence Interval
Difference (I-J) | Std. Error Sig. Lower Bound Upper Bound
total_true do vo 72167 .10559 .000 4474 .9959
co .56083" .10559 .000 .2866 .8351
vo do - 72167 .10559 .000 -.9959 -4474
co -.16083 .10559 .308 -.4351 1134
co do -.56083" .10559 .000 -.8351 -.2866
vo .16083 .10559 .308 -1134 4351
truewall do vo 64333 .15543 .002 .2396 1.0471
co .53000" .15543 .010 .1263 .9337
vo do -.64333" .15543 .002 -1.0471 -.2396
co -.11333 .15543 750 -.5171 .2904
co do -.53000 .15543 .010 -.9337 -.1263
vo .11333 .15543 750 -.2904 5171
total_false do VO -.20667 11118 .185 -.4955 .0821
co -.03500 11118 947 -.3238 .2538
vo do .20667 11118 .185 -.0821 4955
co 17167 11118 .299 -1171 4605
co do .03500 11118 947 -.2538 .3238
Vo -.17167 11118 .299 -.4605 1171

*. The mean difference is significant at the 0.05 level.
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Table 23- Total_True occlusion's algorithms comparison

total_true
Tukey HSD? N
algorithm Subset for alpha = 0.05
N 1 2 s
Vo 6 1167 .
co 6 .2775 .—‘:‘ “l
do 6 sas3|
Sig. .308 1.000
Means for groups in homogeneous subsets are "]
displayed.

T T T
do vo co

a. Uses Harmonic Mean Sample Size = 6.000.

algorithm

Table 24- True_Wall occlusion's algorithms comparison

truewall
Tukey HSD?
algorithm Subset for alpha = 0.05 ]
N 1 2 o

\Ye} 6 1167

co 6 2300 ; ‘]

do 6 .7600 ) ol

Sig. .750 1.000
Means for groups in homogeneous subsets are “
displayed. : ' :
a. Uses Harmonic Mean Sample Size = 6.000. B algorithm

Table 25- Total_False occlusion's algorithms comparison
total_false
Tukey HSD?
algorithm Subset for alpha ]
=0.05
N 1 o

do 6 .0600 9

co 6 .0950 g‘ o

Vo 6 .2667 y

Sig. .185
Means for groups in homogeneous subsets N ]
are displayed. H
a. Uses Harmonic Mean Sample Size = o0 A e T
6.000. algorithm

Correlations (Pearson):

The Pearson product-moment correlation coefficient is a measure of the linear correlation
between two variables X and Y, giving a value between +1 and -1 inclusive, where 1 is total

positive correlation, 0 is no correlation and -1 is total negative correlation.
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Table 26- PEARSON correlations occlusion's algorithms comparison

Correlations

Correlations

do_result [ co result co_result | vo_result
do_result  Pearson Correlation 1 .706™ | | co_result  Pearson Correlation 1 .535™
Sig. (2-tailed) -000 Sig. (2-tailed) .009
N 45 45 N 44 23
co_result  Pearson Correlation 706" 1] |vo_result  Pearson Correlation 535" 1
Sig. (2-tailed) .000 Sig. (2-tailed) .009
N 45 45 N 23 23

**_Correlation is significant at the 0.01 level (2-tailed).

**_Correlation is significant at the 0.01 level (2-tailed).

82



D.2 Direct Following and History Following Experiments

Raw data:
Table 27- Raw data Direct-Following and History-Following
loss with ratio false avarage
. ., direct0 loss with safety obstacles avarage std alarm depth  velocity robot
subject trial . order total loss  self . B . R . . track/no . .
/historyl intervension intervension hit distance distance depth  occlusion ofthe distance
recover track R
occlusion person
1 1 1 0 1 0 0 0 0 1 3.2 0.78 0.99 - - 0.55 14.34
2 1 2 0 2 1 1 0 0 0 2.96 0.74 0.95 0.3 0.8 0.61 10.51
3 1 3 0 3 1 0 1 0 0 2.98 0.47 0.72 0.6 0.7 0.53 16.94
4 1 4 1 4 1 0 1 0 0 3.52 0.85 0.72 - - 0.45 18.19
5 1 5 1 5 1 0 1 0 0 3.63 0.75 0.82 0.6 0.7 0.48 19.54
6 2 1 0 3 0 0 0 0 1 3.23 0.92 1 - - 0.6 11.78
7 2 2 0 5 1 1 0 0 1 2.84 0.69 0.98 0.6 0.7 0.67 10.79
8 2 3 0 4 2 0 2 1 0 3.14 0.91 0.73 0.6 0.8 0.58 11.95
9 2 4 1 2 1 0 1 1 0 3.07 0.77 0.8 - - 0.66 15.7
10 2 5 1 1 2 1 1 1 0 3.76 0.86 0.61 0.6 0.7 0.58 20.41
11 3 1 0 4 1 1 0 0 0 3.04 0.88 0.98 - - 0.57 13.53
12 3 2 0 3 0 0 0 0 0 3.23 0.84 1 0.5 0.9 0.56 12.39
13 3 3 0 5 0 0 0 0 1 3.47 0.79 0.99 0.5 0.8 0.59 14
14 3 4 1 1 3 0 3 0 0 3.52 0.73 0.54 - - 0.51 16.65
15 3 5 1 2 1 0 1 1 0 3.67 0.82 0.8 0.6 0.8 0.58 18.56
16 4 1 0 2 0 0 0 1 0 271 0.64 1 - - 0.41 16.39
17 4 2 0 3 1 1 0 0 0 2.7 0.82 1 0.5 0.9 0.42 12.87
18 4 3 0 1 0 0 0 0 0 281 0.69 1 0.4 0.8 0.42 14
19 4 4 1 5 0 0 0 0 0 3.14 1.33 1 - - - 12.99
20 4 5 1 4 0 0 0 0 0 3.38 0.93 1 0.3 0.9 0.39 19.11
21 5 1 0 3 0 0 0 0 0 245 0.72 0.99 - - 0.45 12.63
22 5 2 0 1 0 0 0 0 0 2.74 0.54 0.99 0.3 0.8 0.48 13.63
23 5 3 0 2 0 0 0 0 0 2.96 0.73 0.98 0.3 0.8 0.42 13.94
24 5 4 1 4 0 0 0 0 1 3.17 1 1 - - 0.39 15.51
25 5 5 1 5 1 0 1 1 0 2.83 1.18 0.91 04 0.9 0.38 17.23
26 6 1 0 5 1 1 0 2 0 4.01 121 0.96 - - 0.56 12.22
27 6 2 0 4 0 0 0 1 0 3.17 0.6 1 0.5 0.9 0.52 17.02
28 6 3 0 3 3 0 3 1 0 2.8 0.65 0.7 0.5 0.8 0.54 10.26
29 6 4 1 2 2 1 1 0 0 3.27 0.96 0.84 - - 0.47 17.84
30 6 5 1 1 2 1 1 0 0 3.74 1.03 0.81 0.5 0.8 0.43 20.29
31 7 1 0 3 0 0 0 0 0 3.33 0.67 0.97 - - 0.66 12.05
32 7 2 0 4 1 1 0 0 1 3.27 0.73 0.96 0.5 0.9 0.65 11.99
33 7 3 0 5 2 0 2 1 0 4.9 1.8 0.55 0.5 0.8 0.59 15.86
34 7 4 1 1 1 0 1 1 0 3.33 0.77 0.77 - - 0.5 15.72
35 7 5 1 2 2 1 1 1 1 3.47 0.83 0.8 0.6 0.8 0.52 18.96
Statistical analysis Direct Following Experiment (ANOVA and Tukey):
Table 28- ANOVA Ratio_Track _Kinect Direct-Following
ANOVA
Ratio_Track Kinect
Sum of Squares df Mean Square F Sig.

Between Groups 1406.000 2 703.000 3.633 .047

Within Groups 3483.143 18 193.508

Total 4889.143 20
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Table 29- Tukey HSD Ratio_Track Kinect Direct-Following

Multiple Comparisons
Ratio_Track_Kinect

Tukey HSD
() trial ~ (J) trial Mean 95% Confidence Interval
Difference (I-J) | Std. Error Sig. Lower Bound Upper Bound
1 2 .14286 7.43559 1.000 -18.8340 19.1197
3 17.42857 7.43559 .075 -1.5483 36.4054
2 1 -.14286 7.43559 1.000 -19.1197 18.8340
3 17.28571 7.43559 .078 -1.6911 36.2626
3 1 -17.42857 7.43559 .075 -36.4054 1.5483
2 -17.28571 7.43559 .078 -36.2626 1.6911
Table 30- Ratio_Track_Kinect Direct-Following
Ratio_Track_Kinect
Tukey HSD?
trial Subset for
alpha = 0.05
N l 100.007]
3 7 g1.0000| % .|
£
7 98.2857| 3
1 7 98.4286 | ¢ “
Sig. o075 %
Means for groups in homogeneous
subsets are displayed. >
a. Uses Harmonic Mean Sample Size o . . .
=7.000. trial
Table 31- Descriptive Total_Loss Direct-Following
Descriptives
total loss
95% Confidence Interval for Mean
N Mean Std. Deviation | Std. Error Lower Bound Upper Bound Minimum | Maximum
no search 7 1.14 1.215 459 .02 2.27 0 3
search 14 43 514 137 13 73 0 1
Total 21 67 .856 .187 .28 1.06 0 3
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total loss

-

T T
nosearch search

use search algorytm

Table 32- ANOVA Subject's_average velocity Direct-Following

ANOVA
average velocity of the subject
Sum of Squares df Mean Square F Sig.
Between Groups 119 6 .020 19.860 .000
Within Groups .014 14 .001
Total 133 20

Table 33- Tukey HSD Subject's_average_velocity Direct-Following

average velocity of the subject

Tukey HSD?
subject Subset for alpha = 0.05
N 1 2 3

4 3 4167
5 3 .4500
6 3 .5400
1 3 .5633 .5633
3 3 5733 5733
2 3 .6167 .6167
7 3 .6333
Sig. .844 107 164

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.
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Statistical analysis History Following Experiment (ANOVA and Tukey):
Table 34- ANOVA Total_path_distance History-Following

ANOVA
total path distance of the robot
Sum of Squares df Mean Square F Sig.
Between Groups 33.018 1 33.018 15.765 .002
Within Groups 25.133 12 2.094
Total 58.150 13

25.007]
20.00-] %

15.007

10.007

total path distance of the robot

.00°

T T
no occlusion occlusion

use occlusion algorytm

Statistical analysis Direct vs History Following Experiment (ANOVA and Tukey):

Levene's test:

Levene's test is an inferential statistic used to assess the equality of variances for a variable
calculated for two or more groups. It tests the null hypothesis that the population variances
are equal. If the resulting p-value is less than significance level of 0.05, the obtained
differences in sample variances are unlikely to have occurred based on random sampling

from a population with equal variances.

Table 35- Homogeneity of Variances Direct vs History

Test of Homogeneity of Variances

Levene Statistic dfl df2 Sig.
total loss .001 1 33 .973
percent of intervent recover .395 1 33 .534
from total loss
ratio track .001 1 33 973
o track
total path distance of the .076 1 33 .785
robot
average velocity of the .000 1 32 .989
subject
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Table 36- ANOVA Direct vs History

ANOVA
Sum of Squares df Mean Square F Sig.

total loss Between Groups 2.519 1 2.519 3.322 .077

Within Groups 25.024 33 .758

Total 27.543 34
percent of intervent recover  Between Groups 1.719 1 1.719 10.404 .003
from total loss Within Groups 5.452 33 .165

Total 7.171 34
ratio track Between Groups .102 1 .102 5.804 .022
o track Within Groups 578 33 .018

Total .679 34
total path distance of the Between Groups 157.595 1 157.595 37.868 .000
robot Within Groups 137.337 33 4.162

Total 294.931 34
avarage velocity of the Between Groups .024 1 .024 3.484 .071
subject Within Groups 217 32 .007

Total .240 33
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Figure 29- Descriptive Direct vs History

Statistical analysis 5 trials of Direct (2) and History (3) Following Experiment (ANOVA

and Tukey):

Table 37- Homogeneity of Variances Total_path_distance- 5 trials

Test of Homogeneity of Variances

total path distance of the robot

Levene Statistic

dfl df2 Sig.

494

4 30 .740
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Table 38- ANOVA Total_path_distance- 5 trials

ANOVA
total path distance of the robot
Sum of Squares df Mean Square F Sig.
Between Groups 194.904 4 48.726 14.614 .000
Within Groups 100.027 30 3.334
Total 294.931 34

Table 39- Tukey HSD Total path_distance- 5 trials

Multiple Comparisons

total path distance of the robot

Tukey HSD
(1) trial  (J) trial Mean 95% Confidence Interval
Difference (I-J) | Std. Error Sig. Lower Bound Upper Bound
1 2 .53429 .97603 .981 -2.2968 3.3654
3 -.57286 .97603 976 -3.4039 2.2582
4 -2.80857 .97603 .053 -5.6397 .0225
5 -5.88000" .97603 .000 -8.7111 -3.0489
2 1 -.53429 .97603 .981 -3.3654 2.2968
3 -1.10714 .97603 787 -3.9382 1.7239
4 -3.34286" .97603 .014 -6.1739 -.5118
5 -6.41429" .97603 .000 -9.2454 -3.5832
3 1 .57286 .97603 976 -2.2582 3.4039
2 1.10714 .97603 787 -1.7239 3.9382
4 -2.23571 .97603 176 -5.0668 .5954
5 -5.30714" .97603 .000 -8.1382 -2.4761
4 1 2.80857 .97603 .053 -.0225 5.6397
2 3.34286" .97603 .014 .5118 6.1739
3 2.23571 .97603 176 -.5954 5.0668
5 -3.07143" .97603 .028 -5.9025 -.2403
5 1 5.88000" .97603 .000 3.0489 8.7111
2 6.41429" .97603 .000 3.5832 9.2454
3 5.30714" .97603 .000 2.4761 8.1382
4 3.07143" .97603 .028 .2403 5.9025

*. The mean difference is significant at the 0.05 level.

Table 40- Total _path_distance- 5 trials

total path distance of the robot

Tukey HSD?
trial Subset for alpha = 0.05

N 2 3 2
2 7 12.7429 é
1 7 13.2771 13.2771 g
3 7 13.8500 13.8500 E
4 7 16.0857 é
5 7 191571
Sig. .787 .053 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 7.000.

25.007]

20.00

15.00

10.007

5.007

trial
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D.3 Adaptive Kinect-Laser Direct and History Following Experiment

Raw data:

Table 41- Raw data Adaptive vs Non-Adaptive (Direct and History)

legs
gender \obss » false ratio ratio false avarage
subject Omale/1fe trial directd  without0 order total  with loss with safety  obstacles height laser arage  std alarm  track/no track/no  alarm depth  velocity robot kinect
male Ihistoryl /withLaserl loss self intervension intervension hit obstacles distance distance (percent track track depth occlusion ofthe distance fall
recover from laser kinect occlusion person
ratio)
1 1 0 1 1 1 1 2 1 1 3 1 17 62 7 3.97 0.84 0.95 0.132 0.983 0.25 0.8 0.45 29.246
2 1 0 2 1 0 2 1 0 1 0 0 1.66 1 4.35 0.94 0.812 0.15 0.8 0.5 31.383 1
3 1 0 3 0 1 3 1 1 0 2 0 169 67 4 3.61 0.75 0.4 0.52 0.94 0.1 0.8 0.6 18.614
4 1 0 4 0 0 4 2 2 0 2 0 167 48 3.67 0.81 0.95 0.25 0.75 0.6 20.681
5 2 1 1 1 1 1 2 2 0 1 0 153 57 0 3.59 0.81 1 0.03 0.95 0.25 0.75 0.3 28.677
6 2 1 2 1 0 2 1 0 1 1 0 155 43 4.02 1.06 0.94 0.3 0.7 0.3 31.831
7 2 1 3 0 1 4 1 1 0 1 0 161 51 0 4.45 147 1 0.57 0.98 0.35 0.65 0.4 25.073
8 2 1 4 0 0 3 2 0 2 1 1 154 38 35 107 0.95 0.25 0.8 0.4 25.521
9 3 0 1 1 1 1 2 2 0 0 1 17 56 0 3.69 1.05 1 0.04 0.96 0.4 0.8 0.3 20.767
10 3 0 2 1 0 3 1 0 1 2 0 171 35 34 1.05 0.79 04 0.9 03 28.623 1
11 3 0 3 0 1 2 1 1 0 1 0 1.69 30 0 33 0.56 0 0.96 0.45 0.9 0.5 18.967
12 3 0 4 0 0 4 1 0 1 1 0 166 0 4.05 107 0.92 0.4 0.8 0.5 18.165
13 4 1 1 1 1 1 2 0 2 2 0 147 62 4 3.76 0.93 0.95 0.14 0.95 0.3 0.75 0.4 23.545
14 4 1 2 1 0 3 3 1 2 3 0 156 92 4.1 0.95 0.82 0.5 0.8 0.4 27.568
15 4 1 3 0 1 4 2 2 0 1 0 15 19 0 331 0.79 1 0.1 0.92 0.2 0.9 0.5 18.416
16 4 1 4 0 0 2 2 0 2 2 0 15 20 3.6 126 0.94 0.2 0.9 0.5 21213
17 5 1 1 1 1 1 2 1 1 2 1 162 35 22 3.68 0.95 04 03 0.93 0.2 0.9 0.2 20.277
18 5 1 2 1 0 4 3 0 3 3 0 161 36 4.34 1.09 0.9 0.5 0.8 0.4 19.866
19 5 1 3 0 1 2 2 0 2 1 0 164 41 2 3.83 0.54 0.4 0.46 0.75 0.05 0.8 0.5 16.775 1
20 5 1 4 0 0 3 0 0 0 0 0 1.63 39 3.46 0.74 1 0.25 0.7 0.5 17.881
21 6 0 1 1 1 1 2 1 1 0 0 1.62 59 9 3.76 0.97 0.4 0.37 0.87 0.3 0.8 0.3 22.046
22 6 0 2 1 0 4 3 1 2 2 1 161 71 3.68 0.69 0.94 0.4 0.8 0.3 22.582
23 6 0 3 0 1 3 1 1 0 0 0 161 89 15 3.56 0.8 0.1 0.24 0.97 0.2 0.9 0.4 21.833 1
24 6 0 4 0 0 2 0 0 0 0 0 162 38 319 1.05 0.98 0.5 0.5 0.4 21.977
25 7 0 1 1 1 2 2 2 0 0 0 171 71 49 3.38 0.73 05 0.53 0.86 0.3 0.8 0.2 26.562
26 7 0 2 1 0 1 3 1 2 2 0 169 71 4.06 135 0.91 0.2 0.7 0.2 27.789
27 7 0 3 0 1 3 1 1 0 2 0 171 52 37 2.88 0.97 0 0.82 0.97 0.1 0.8 03 17.009
28 7 0 4 0 0 4 2 0 2 3 0 174 14 2.05 0.33 0.85 0.1 0.1 0.3 24.368
29 8 0 1 1 1 2 3 1 2 0 0 1.65 76 7 4.86 131 0.2 0.26 0.45 0.4 01 0.4 26.67 1
30 8 0 2 1 0 1 2 1 1 1 0 167 73 3.94 115 0.92 0.2 0.6 0.4 22.404
31 8 0 3 0 1 4 0 0 0 1 0 168 50 34 2,95 0.51 01 0.71 0.99 0.15 0.8 0.4 17.448
32 8 0 4 0 0 3 2 0 2 1 1 168 57 2.82 0.44 0.83 0.35 0.8 0.4 18.308
33 9 1 1 1 1 2 1 1 0 1 0 17 0 15 3.67 0.88 0.4 0.75 0.93 0.25 0.8 0.3 23.591
34 9 1 2 1 0 3 4 1 3 2 1 17 54 371 0.94 0.83 0.2 0.8 0.3 20.255
35 9 1 3 0 1 1 0 0 0 0 0 1.66 30 41 3.01 0.66 0.1 043 0.98 0.1 0.9 0.3 18.718
36 9 1 4 0 0 4 3 0 3 2 0 162 16 441 0.78 0.59 0.7 0.6 0.3 21452 1
37 10 0 1 1 1 2 3 1 2 1 0 157 20 7 3.52 0.64 05 0.66 0.85 0.2 0.7 0.3 25.893
38 10 0 2 1 0 3 4 2 2 1 0 161 19 391 1.05 0.94 04 0.8 0.3 27.867
39 10 0 3 0 1 4 0 0 0 0 0 1.62 10 60 278 0.47 0.1 0.86 1 0.1 0.9 0.4 19.315
40 10 0 4 0 0 1 4 1 3 1 0 162 49 3.68 111 0.84 0.3 0.8 0.4 18.252
41 1 0 1 1 1 2 2 1 1 1 0 1.63 58 3 37 128 0.6 0.48 0.73 0.2 0.5 0.4 27.176
42 1 0 2 1 0 4 3 1 2 1 0 159 47 4.05 0.83 0.96 0.3 0.7 0.4 25.282
43 1 0 3 0 1 1 0 0 0 1 0 16 71 56 2.65 0.54 06 0.75 0.99 0.2 0.8 0.4 19.902
44 11 0 4 0 0 3 0 0 0 2 0 16 85 3.21 0.89 0.99 0.2 0.7 0.4 22.059
45 12 0 1 1 1 2 1 1 0 2 0 164 78 35 343 0.88 0 0.27 0.96 0.2 0.8 0.3 20.045
46 12 0 2 1 0 4 4 1 3 2 1 163 84 337 1.05 0.77 0.7 0.7 03 20.097
47 12 0 3 0 1 3 0 0 0 0 0 1.66 23 74 242 0.38 0 0.96 0.99 0.15 0.7 0.3 20.969
48 12 0 4 0 0 1 3 1 2 1 0 1.66 23 2.36 0.63 0.92 0.2 0.6 0.3 20.622
49 13 1 1 1 1 3 0 0 0 1 0 155 59 40 331 0.97 0.05 0.29 0.95 0.2 0.7 0.3 21.345
50 13 1 2 1 0 1 4 0 4 1 0 1.56 74 3.77 0.78 0.87 0.4 0.8 0.3 21.261
51 13 1 3 0 1 2 0 0 0 0 0 156 8 106 2.39 0.28 0 0.89 1 0.1 0.9 0.3 19.841
52 13 1 4 0 0 4 3 1 2 2 0 157 45 3.17 107 0.96 0.3 0.7 0.3 19.334
53 14 0 1 1 1 3 1 0 1 0 0 167 33 2 3.57 101 05 0.28 0.81 0.3 0.8 0.4 21.117 1
54 14 0 2 1 0 1 2 0 2 1 0 16 21 371 0.66 0.82 0.6 0.8 0.4 21.992
55 14 0 3 [ 1 4 1 1 0 1 0 1.65 65 38 311 1.04 0 0.56 0.87 0.2 0.9 0.4 17.382
56 14 0 4 0 0 2 0 0 0 0 1 162 26 243 0.3 1 0.2 0.6 0.4 19.219
57 15 0 1 1 1 3 2 0 2 1 0 161 53 7 39 0.9 0.5 0.22 0.71 03 0.8 0.4 20.954
58 15 0 2 1 0 2 3 1 2 2 1 157 58 3.98 107 0.97 0.3 0.8 0.4 21.751
59 15 0 3 0 1 1 1 1 0 1 0 16 27 42 292 0.83 0 0.65 1 0.3 0.8 0.4 18.464
60 15 0 4 0 0 4 0 0 0 0 0 161 45 2.99 0.52 1 0.2 0.7 0.4 20.397
61 16 0 1 1 1 3 1 1 0 0 0 152 46 12 3.23 0.64 03 0.18 0.98 0.2 0.7 0.3 23.084
62 16 0 2 1 0 2 2 1 1 1 1 15 40 3.66 0.81 0.93 0.1 0.7 0.3 23.706
63 16 0 3 0 1 4 1 1 0 1 0 152 27 4 2.88 0.55 03 0.47 0.95 0.3 0.9 0.4 16.641
64 16 0 4 0 0 1 1 1 0 1 1 1.53 35 291 0.49 0.98 0.3 0.8 0.5 17.589
65 17 1 1 1 1 3 2 1 1 1 0 168 37 23 36 0.75 0.2 0.28 0.9 0.2 0.8 0.4 20.751
66 17 1 2 1 0 4 3 2 1 1 1 169 24 3.67 113 0.93 0.2 0.8 0.4 22149
67 17 1 3 0 1 1 1 1 0 1 0 17 30 8 271 0.78 0 0.69 0.97 03 0.8 05 17.123
68 17 1 4 0 0 2 2 0 2 1 2 1.63 53 2.85 0.8 0.7 0.3 0.8 0.5 19.541 1
69 18 1 1 1 1 3 1 1 0 1 0 154 50 13 3.49 0.83 0.2 0.22 0.85 0.5 0.8 0.4 20.491
70 18 1 2 1 0 4 2 1 1 1 1 151 58 353 0.75 0.92 0.4 0.8 0.4 20.621
71 18 1 3 0 1 2 1 1 0 0 0 155 66 57 28 0.8 0 0.44 0.99 0.3 0.8 0.5 19.604
72 18 1 4 0 0 1 3 1 2 2 0 153 21 3.28 112 0.98 0.3 0.7 0.5 18.881
73 19 1 1 1 1 4 2 0 2 0 1 167 38 10 3.29 0.97 05 0.51 0.77 0.5 0.7 0.4 21.231
74 19 1 2 1 0 1 3 0 3 1 0 153 40 3.93 162 0.86 0.3 0.7 0.5 24.526 1
75 19 1 3 0 1 2 2 1 1 0 0 162 26 13 2.96 0.29 0.1 0.59 0.87 0.1 0.8 0.5 16.883 1
76 19 1 4 0 0 3 3 1 2 1 0 1.63 45 322 0.97 0.96 0.2 0.6 0.5 19.928
7 20 0 1 1 1 4 2 0 2 1 0 16 0 7 3.75 0.89 04 0.35 0.9 04 0.7 03 21.507
78 20 0 2 1 0 1 3 1 2 1 0 157 75 372 1.03 0.91 0.4 0.7 0.4 24.001
7 20 0 3 0 1 3 1 1 0 0 0 158 1 31 241 0.39 0 0.99 0.97 0.05 0.8 0.4 16.991
80 20 0 4 0 0 2 3 1 2 1 1 153 50 3.26 115 0.95 0.2 0.7 0.4 17.623
81 21 0 1 1 1 4 2 1 1 1 0 161 114 15 371 1.09 0.4 0.24 0.81 0.2 0.6 0.3 24.414
82 21 0 2 1 0 2 4 1 3 2 0 155 70 3.95 0.91 0.82 0.3 0.7 0.3 23.686
83 21 0 3 0 1 1 1 1 0 1 0 16 39 41 2.65 0.76 0 0.76 0.89 0.05 0.7 0.4 19.723
84 21 0 4 0 0 3 3 1 2 1 2 1.62 35 2.38 0.58 0.91 0.05 0.7 0.3 19.804
85 22 0 1 1 1 4 0 0 0 0 0 175 19 41 313 0.52 03 0.53 0.99 0.1 0.8 0.2 25919
86 22 0 2 1 0 2 1 1 0 1 1 174 49 2.83 0.33 0.99 0.05 0.7 0.2 22.836
87 22 0 3 0 1 3 0 0 0 1 0 175 34 69 225 0.45 0.1 0.96 0.96 0.2 0.7 0.2 16.421
88 22 0 4 0 0 1 1 1 0 0 0 177 16 198 0.3 0.97 0.1 0.6 0.2 19.867
89 23 1 1 1 1 4 2 2 0 1 0 157 58 31 27 0.65 0.2 0.47 0.92 0.3 0.8 0.2 21.694
90 23 1 2 1 0 3 2 0 2 1 0 155 48 353 0.8 0.93 0.3 0.7 0.2 26.115
91 23 1 3 0 1 1 1 1 0 1 0 156 29 36 2.88 101 0.05 0.59 0.96 0.2 0.8 0.3 18.877
92 23 1 4 0 0 2 2 0 2 2 0 16 29 3.25 1.66 0.93 0.2 0.7 0.3 20.395
93 24 1 1 1 1 4 1 1 0 1 0 165 69 13 4.05 1.09 0 0.12 0.92 0.4 0.8 0.4 25.708
94 24 1 2 1 0 3 3 0 3 2 0 16 30 348 12 0.84 0.4 0.7 0.4 2224
95 24 1 3 0 1 2 1 1 0 0 0 16 50 2 293 0.51 0 0.31 0.93 03 0.9 0.4 17.546
96 24 1 4 0 0 1 3 0 3 2 0 1.62 18 312 1.09 0.97 0.2 0.7 0.4 20.711
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Statistical analysis Adaptive (with Laser) vs Non-Adaptive (without Laser) Following
Experiment (ANOVA and Tukey):

Table 42- Homogeneity of Variances Adaptive vs Non-Adaptive

Test of Homogeneity of Variances

Levene Statistic | dfl df2 Sig.
checkTotalLoss .340 1 94 .561
percent_intervent 422 1 94 .518
safety_intervension 1.121 1 94 .292
std_distance .942 1 94 334
false_depth_occlusion 1.002 1 94 .319
depth occlusion .010 1 94 .921

Table 43- ANOVA Adaptive vs Non-Adaptive

ANOVA
Sum of
Squares df Mean Square F Sig.
checkTotalLoss Between Groups 3.650 1 3.650 13.395 .000
Within Groups 25.618 94 273
Total 29.268 95
percent_intervent Between Groups 4.348 1 4.348 32.897 .000
Within Groups 12.423 94 132
Total 16.771 95
safety_intervension  Between Groups 7.042 1 7.042 12.588 .001
Within Groups 52.583 94 .559
Total 59.625 95
std_distance Between Groups .346 1 .346 4.266 .042
Within Groups 7.616 94 .081
Total 7.962 95
false_depth_occlusion Between Groups .085 1 .085 4.866 .030
Within Groups 1.635 94 .017
Total 1.719 95
depth_occlusion Between Groups .082 1 .082 5.132 .026
Within Groups 1.496 94 .016
Total 1.577 95
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Figure 30- Descriptive Adaptive vs Non-Adaptive
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Statistical analysis Direct vs History Following Experiment (ANOVA and Tukey):

Table 44- ANOVA Direct vs History

ANOVA
Sum of Squares df Mean Square F Sig.
checkTotalLoss Between Groups 3.650 1 3.650 13.395 .000
Within Groups 25.618 94 .273
Total 29.268 95
percent_intervent Between Groups 4.348 1 4.348 32.897 .000
Within Groups 12.423 94 132
Total 16.771 95
safety_intervension Between Groups 7.042 1 7.042 12.588 .001
Within Groups 52.583 94 .559
Total 59.625 95
std_distance Between Groups .346 1 .346 4.266 .042
Within Groups 7.616 94 .081
Total 7.962 95
false_depth_occlusion Between Groups .085 1 .085 4.866 .030
Within Groups 1.635 94 .017
Total 1.719 95
depth_occlusion Between Groups .082 1 .082 5.132 .026
Within Groups 1.496 94 .016
Total 1.577 95
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Statistical analysis Gender (Males vs Females) Following Experiment (ANOVA and

Tukey):
Table 45- Homogeneity of Variances Gender (Males vs females)
Test of Homogeneity of Variances
Levene Statistic dfl df2 Sig.
height .015 1 94 .901
std_distance 447 1 94 .505
Table 46- ANOVA Gender (Males vs females)
ANOVA
Sum of Squares df Mean Square F Sig.
height Between Groups .042 1 .042 10.950 .001
Within Groups .361 94 .004
Total .403 95
std_distance = Between Groups .390 1 .390 4.836 .030
Within Groups 7.572 94 .081
Total 7.962 95
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Figure 32- Descriptive Gender (Males vs females)

Statistical analysis Subjects (24) Following Experiment (ANOVA and Tukey):

Table 47- Homogeneity of Variances Subjects (24)

Test of Homogeneity of Variances

height

Levene Statistic

dfl

df2

Sig.

1.456

23

72

116

Table 48- ANOVA Subjects (24)

ANOVA
height
Sum of Squares df Mean Square F Sig.
Between Groups .354 23 .015 22.775 .000
Within Groups .049 72 .001
Total .403 95
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Table 49- Tukey HSD Subjects (24)

height
Tukey HSD?
subject Subset for alpha = 0.05
1 2 3 4 5 6 7 8 9 10

4 4 1.5075
16 4 1.5175
18 4 1.5325 1.5325
2 4 1.5575 1.5575 1.5575
13 4 1.5600 1.5600 1.5600
23 4 1.5700 1.5700 1.5700 1.5700
20 4 1.5700 1.5700 1.5700 1.5700
21 4 1.5950 1.5950 1.5950 1.5950
15 4 1.5975 1.5975 1.5975 1.5975
11 4 1.6050 1.6050 1.6050 1.6050
10 4 1.6050 1.6050 1.6050 1.6050
19 4 1.6125 1.6125 1.6125 1.6125 1.6125
6 4 1.6150 1.6150 1.6150 1.6150 1.6150
24 4 1.6175 1.6175 1.6175 1.6175 1.6175
5 4 1.6250 1.6250 1.6250 1.6250 1.6250 1.6250
14 4 1.6350 1.6350 1.6350 1.6350 1.6350
12 4 1.6475 1.6475 1.6475 1.6475 1.6475
8 4 1.6700 1.6700 1.6700 1.6700
9 4 1.6700 1.6700 1.6700 1.6700
17 4 1.6750 1.6750 1.6750
1 4 1.6800 1.6800 1.6800
3 4 1.6900 1.6900 1.6900
7 4 1.7125 1.7125
22 4 1.7525
Sig. .136 .097 .068 .097 415 .097 .068 .097 .097 .136

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 4.000.
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Statistical analysis Trials (4) Following Experiment (ANOVA and Tukey):

Table 50- Homogeneity of Variances Trials (4)

Test of Homogeneity of Variances

25

Levene Statistic dfl df2 Sig.
TotalLosses 2.506 3 92 .064
safety_intervension .505 3 92 .680
average_distance 1.937 3 92 .129
ratio_track_kinect 2.366 3 92 .076
false_depth_occlusion 1.110 3 92 .349
depth_occlusion 1.335 3 92 .268
velocity_subject 147 3 92 931
RobotDistance 1.722 3 92 .168
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Table 51- ANOVA Trials (4)

ANOVA
Sum of Squares df Mean Square F Sig.
TotalLosses Between Groups 40.865 3 13.622 19.392 .000
Within Groups 64.625 92 .702
Total 105.490 95
safety_intervension Between Groups 8.125 3 2.708 4.838 .004
Within Groups 51.500 92 .560
Total 59.625 95
average_distance Between Groups 10.517 3 3.506 16.211 .000
Within Groups 19.894 92 .216
Total 30.410 95
ratio_track_kinect Between Groups .085 3 .028 3.664 .015
Within Groups 716 92 .008
Total .801 95
false_depth_occlusion Between Groups .259 3 .086 5.430 .002
Within Groups 1.461 92 .016
Total 1.719 95
depth_occlusion Between Groups .235 3 .078 5.360 .002
Within Groups 1.343 92 .015
Total 1.577 95
velocity_subject Between Groups 114 3 .038 5.051 .003
Within Groups .694 92 .008
Total .808 95
RobotDistance Between Groups 470.677 3 156.892 43.520 .000
Within Groups 331.668 92 3.605
Total 802.345 95
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Table 52- Tukey HSD Trials (4)

Multiple Comparisons

Tukey HSD |
[Dependent variable () trial  (J) trial  IMean Difference 95% Confidence Interval
(1-J) Std. Error Sig. Lower Bound Upper Boun
TotalLosses 1 2 -1.00000" 24194 .000 -1.6331 -.3669
3 .83333" 24194 .005 .2003 1.4664
4 -.20833 .24194 .825 -.8414 4247
2 1 1.00000" 24194 .000 .3669 1.6331
-3 1.83333" 24194 .000 1.2003 2.4664
4 .79167" 24194 .008 .1586 1.4247
3 1 -.83333" 24194 .005 -1.4664 -.2003
2 -1.83333" 24194 .000 -2.4664 -1.2003
4 -1.04167" 24194 .000 -1.6747 -.4086
4 1 .20833 24194 .825 -.4247 .8414
2 - 79167 24194 .008 -1.4247 -.1586
3 1.04167" .24194 .000 .4086 1.6747
safety_intervension 1 2 -.583" .216 .040 -1.15 -.02
3 .167 216 .867 -.40 .73
4 -.333 216 416 -.90 .23
2 1 .583" 216 .040 .02 1.15
3 750 216 .004 .18 1.32
4 .250 216 .655 -.32 .82
3 1 -.167 216 .867 -73 .40
2 - 750" 216 .004 -1.32 -.18
4 -.500 216 .102 -1.07 .07
4 1 .333 216 416 -.23 .90
2 -.250 216 .655 -.82 .32
3 .500 216 .102 -.07 1.07
average_distance 1 2 -.16458 13424 .612 -.5158 .1867
3 .62917" 13424 .000 2779 .9804
4 .49583" 13424 .002 .1446 .8471
2 1 .16458 13424 .612 -.1867 .5158
3 .79375" 13424 .000 4425 1.1450
4 .66042" .13424 .000 .3092 1.0117
3 1 -.62917" 13424 .000 -.9804 -.2779
2 -.79375" 13424 .000 -1.1450 -.4425
4 -.13333 .13424 .754 -.4846 .2179
4 1 -.49583" 13424 .002 -.8471 -.1446
2 -.66042" 13424 .000 -1.0117 -.3092
3 .13333 13424 754 -.2179 .4846
Jratio_track_kinect 1 2 -.016208 .025459 .920 -.08282 .05041
3 -.077792" .025459 .015 -.14441 -.01118
4 -.047375 .025459 .252 -.11399 .01924
2 1 .016208 .025459 .920 -.05041 .08282
3 -.061583 .025459 .081 -.12820 .00503
4 -.031167 .025459 .613 -.09778 .03545
3 1 .077792" .025459 .015 .01118 14441
2 .061583 .025459 .081 -.00503 .12820
4 .030417 .025459 .632 -.03620 .09703
4 1 .047375 .025459 .252 -.01924 .11399
2 .031167 .025459 .613 -.03545 .09778
3 -.030417 .025459 .632 -.09703 .03620
Ifalse_depth_occlusion 1 2 -.04792 .03637 .554 -.1431 .0473
3 .09583" .03637 .048 .0007 .1910
‘ 4 .02500 .03637 .902 -.0702 .1202
2 1 .04792 .03637 .554 -.0473 .1431
3 .14375" .03637 .001 .0486 .2389
4 .07292 .03637 194 -.0223 .1681
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3 1 -.09583" .03637 .048 -.1910 -.0007
2 -.14375" .03637 .001 -.2389 -.0486
4 -.07083 .03637 .216 -.1660 .0243
4 1 -.02500 .03637 .902 -.1202 .0702
2 -.07292 .03637 194 -.1681 .0223
3 .07083 .03637 .216 -.0243 .1660
depth_occlusion 1 2 -.02083 .03487 .933 -.1121 .0704
3 -.08958 .03487 .056 -.1808 .0017
4 .04792 .03487 519 -.0433 .1392
2 1 .02083 .03487 .933 -.0704 1121
3 -.06875 .03487 .206 -.1600 .0225
; 4 .06875 .03487 .206 -.0225 .1600
3 1 .08958 .03487 .056 -.0017 .1808
2 .06875 .03487 .206 -.0225 .1600
4 .13750" .03487 .001 .0462 .2288
4 1 -.04792 .03487 519 -.1392 .0433
2 -.06875 .03487 .206 -.1600 .0225
3 -.13750" .03487 .001 -.2288 -.0462
velocity _subject 1 2 -.01875 .02507 877 -.0843 .0468
3 -.07708" .02507 .014 -.1427 -.0115
4 -.07708" .02507 .014 -.1427 -.0115
2 1 .01875 .02507 877 -.0468 .0843
3 -.05833 .02507 .099 -.1239 .0073
4 -.05833 .02507 .099 -.1239 .0073
3 1 .07708" .02507 .014 .0115 1427
2 .05833 .02507 .099 -.0073 .1239
4 .00000 .02507 1.000 -.0656 .0656
4 1 .07708" .02507 .014 .0115 1427
2 .05833 .02507 .099 -.0073 .1239
3 .00000 .02507 1.000 -.0656 .0656
|RobotDistance 1 2 -.40421 54811 .882 -1.8384 1.0300
3 4.80000" .54811 .000 3.3658 6.2342
4 3.41433" .54811 .000 1.9801 4.8485
2 1 40421 .54811 .882 -1.0300 1.8384
3 5.20421" 54811 .000 3.7700 6.6384
4 3.81854" .54811 .000 2.3844 5.2527
3 1 -4.80000" 54811 .000 -6.2342 -3.3658
2 -5.20421" .54811 .000 -6.6384 -3.7700
4 -1.38567 54811 .062 -2.8199 .0485
4 1 -3.41433" .54811 .000 -4.8485 -1.9801
2 -3.81854" 54811 .000 -5.2527 -2.3844
3 1.38567 .54811 .062 -.0485 2.8199

*. The mean difference is significant at the 0.05 level.

TotalLosses

Table 53- Total_Loss Trials (4)

Tukey HSD?

trial Subset for alpha = 0.05 o]
1 2 3 2

3 24 .8333 é

1 24 1.6667 L

4 24 1.8750

2 24 2.6667 Lo0]

Sig. 1.000 .825 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 24.000.

trial
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Table 54- Safety Intervention Trials (4)

safety_intervension

Tukey HSD?
trial Subset for alpha = 0.05
N 1 2 i .
3 24 71
1 24 .88
4 24 1.21 1.21 g g
2 24 1.46 é
Sig. .102 .655 3;?'

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

trial

24.000.
Table 55- Average Distance Trials (4)
average_distance
Tukey HSD?
trial Subset for alpha = 0.05
1 2 N )
3 24 2.9850 )
4 24 3.1183 o é
1 24 36142 E %
2 24 s7res| 3
Sig. 754 e12] & o]

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

trial
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Table 56- Ratio_Track_Kinect Trials (4)

ratio_track kinect

Tukey HSD?
trial Subset for alpha = 0.05
N 1 2

1 24 .87221

2 24 .88842 .88842
4 24 .91958 .91958
3 24 .95000
Sig. .252 .081

Means for groups in homogeneous subsets
are displayed.

a. Uses Harmonic Mean Sample Size =
24.000.

ratio_track_kinect

1.000-

6007

4007

200

:

trial

Table 57- False_Depth_Occlusion Trials (4)

false_depth_occlusion

Tukey HSD?
trial Subset for alpha = 0.05
N 1 2

3 24 .1896

4 24 .2604 .2604
1 24 .2854
2 24 .3333
Sig. .216 .194

Means for groups in homogeneous subsets
are displayed.

a. Uses Harmonic Mean Sample Size =
24.000.

occlusion

pth_

false_de

trial
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Table 58- Depth_Occlusion Trials (4)

depth_occlusion

Tukey HSD?
trial Subset for alpha = 0.05
N 1 2

4 24 .6812

1 24 .7292 .7292
2 24 .7500 .7500
3 24 .8188
Sig. .206 .056

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

Table 59- Subject's_Velocity Trials (4)

24.000.
velocity_subject
Tukey HSD?
trial Subset for alpha = 0.05
N 1 2
1 24 3271
2 24 .3458 .3458
3 24 4042
4 24 4042
Sig. 877 .099

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

depth_occlusion

velocity_subject

1.007

trial

trial
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Table 60- Robot's_Distance Trials (4)

RobotDistance

Tukey HSD?

trial Subset for alpha = 0.05
N 1 2

3 24 18.6055

4 24 19.9912

1 24 23.4055

2 24 23.8097

Sig. .062 882

Means for groups in homogeneous subsets
are displayed.
a. Uses Harmonic Mean Sample Size =

24.000.

30.00

3

RobotDistance

10.00

@Q%é

trial
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Appendix D- C++ codes
1. Depth Occlusions Detection

#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "math.h"
#include "std_msgs/String.h" #include "std_msgs/Float32.h"™  #include "nav_msgs/Odometry.h"

#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h"
#include "opt_msgs/TrackArray.h" #include <ros/console.h>

#include <cv_bridge/cv_bridge.h> #include <sensor_msgs/image_encodings.h>
#include "opt_msgs/DetectionArray.h" #include <occlusions/sideOcclusions.h>

#include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp>
occlusions::sideOcclusions bool_msg; //6 boolians variables
double AgeThreshold=0; //how "old" is the ID
double ConfidenceTheshold=1.1; //from the SVM+HOG classifier- confidence for a real person
double HeightTheshold=1.4; //height in meter of the person (minimum)
double HeightMaxTheshold=2.0; //height in meter of the person (maximum)
namespace enc = sensor_msgs::image_encodings;
static const std::string OPENCV_WINDOW = "Image window";
class ImageConverter
{

ros: :NodeHandle n;

image_transport::ImageTransport it_;

image_transport: :Subscriber image_sub;

image_transport::Publisher image_pub;

ros::Subscriber person_sub = n.subscribe("/tracker/tracks", 10,
&ImageConverter::boxCallback, this); //get the track parameters

ros::Publisher side=
(n.advertise<occlusions::sideOcclusions>("occlusions/sideOcclusions”,10)); //the 6 boolians

double xmin=0; //left side of the BBC (Bounding Box Coordinates)
double ymin=0; //top side of the BBC

double xmax=0; //right side of the BBC

double ymax=0; //bottom side of the BBC

double distance; //from Open_PTrack trackers- distance in meters to the detect person
double confidence; //from Open_PTrack- the SVM+HOG classifier- confidence for a real person

double age; //from Open_PTrack trackers

double height; //from Open_PTrack trackers

double xc; //center of the BBC

float depth; //pixel depth value at xc,yc

float personDepth; //distance*1000

double depthTheshold=3.0; //threshold for detect closer pixels from the personDepth

bool validTrack; //good track

int nbOfTracks; //number of ID tracks

float normalize; //normalize the depth value
public:

ImageConverter()

it _(n){

image_sub = it_.subscribe("/kinect2_head/depth_rect/image", 10,
&ImageConverter::imageCallback, this); //depth image (same as Open_PTrack uses)
image_pub = it_.advertise("/image_converter/output_video", 1);
cv::namedWindow(OPENCV_WINDOW) ; }
~ImageConverter()
{cv::destroyWindow(OPENCV_WINDOW);}

void boxCallback(const opt_msgs::TrackArray::ConstPtr& msg){ //get all the tracks parameters
validTrack=false;
nbOfTracks=msg->tracks.size();
if (nbOfTracks>0) {
for(int i=0;i<nbOfTracks && !validTrack;i++){
//oldest track which is older than the age threshold, above the confidence
threshold, above the height threshold and under max height threshold
if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){
xmin=msg->tracks[i].box_2D.Xx; //left side of the BBC (Bounding Box Coordinates)
ymin=msg->tracks[i].box_2D.y; //top side of the BBC
xmax=xmin+msg->tracks[i].box_2D.width; //right side of the BBC
ymax=ymin+msg->tracks[i].box_2D.height; //bottom side of the BBC

distance=msg->tracks[i].distance; //Open_PTrack-distance in meters to a person
confidence=msg->tracks[i].confidence; //0pen_PTrack- from the SVM+HOG classifier
height=msg->tracks[i].height; //from Open_PTrack trackers
age=msg->tracks[i].age; //from Open_PTrack trackers
validTrack=true;
¥
¥
}
¥
void imageCallback(const sensor_msgs::ImageConstPtr& msg) //working on the depth image
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{cv_bridge::CvImagePtr cv_ptr;
try
{cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::TYPE_16UC1);}  //now
cv_ptr is the matrix
catch (cv_bridge::Exception& e)
{ROS_ERROR("cv_bridge exception: %s", e.what());

return;}
image_pub.publish(cv_ptr->toImageMsg()); // Output modified video stream
xc=(xmin+xmax)/2; //center of the BBC
personDepth=distance*1000; //to avoid an error from calculate the depth only

from one pixel, it's better to calculate from the all distance from the person and multipile by
1000 to get milimeters

depth=personDepth*255/pow(2,16); //to normalize to 255
//left and right detections

int downCut= round((ymax-ymin)/8); //cut lower part of a person to reduce floor alarm

int smallOcclusions= round(((xc-xmin)/3)*(ymax-ymin)*7/8); //detect small occlusion

int bigOcclusions= round(((xc-xmin)/2)*(ymax-ymin)*7/8); //detect big occlusion

int marginAdd= round(10/distance); //add margin depend on distance

int countLeft= 0;

int countRight= 0;

bool smalllLeftOcclusions= false; //detect occlusion from the left side of the robot
bool biglLeftOcclusions= false; //detect occlusion from the left side of the robot
bool LeftWall= false; //detect a "tall" occlusion from the left side of the

robot, like a wall for all the y axis of the person bounding box
int countLeftWall= 0;
bool smallRightOcclusions= false; //detect occlusion from the right side of the robot
bool bigRightOcclusions= false; //detect occlusion from the right side of the robot
bool RightWall= false; //detect a "tall" occlusion from the right side of the
robot, like a wall for all the y axis of the person bounding box
int countRightWall= ©;
//left side
for (short int i=xmin-marginAdd;i<xc-5;i++){ //over each colom from the left with
margin up to the center minus 5
countLeftWall= 0;
for (short int j=ymin;j<ymax-downCut;j++){ //over all the specific colom from up
to down without the lower part to avoid the floor
normalize=cv_ptr->image.at<short int>(cv::Point(i,j)); //get the pixel depth value
normalize=normalize*255/pow(2,16); //normalize the depth value to ©-255
if (normalize<(depth-depthTheshold)){ //closer than the personDepth
countLeft++;
countLeftWall++;
if (countLeftWall==ymax-downCut-ymin){LeftWall=true;} //if the all colom is
closer than this is a wall

}
¥
}
//right
for (short int i=xc+5;i<xmax+marginAdd;i++){ //over each colom from the center plus 5

up to the right with margin
countRightWall= 0;
for (short int j=ymin;j<ymax-downCut;j++){ //over all the specific colom from up to
down without the lower part to avoid the floor
normalize=cv_ptr->image.at<short int>(cv::Point(i,j)); //get the pixel depth value
normalize=normalize*255/pow(2,16); //normalize the depth value to ©-255
if (normalize<(depth-depthTheshold)){ //closer than the personDepth
countRight++;
countRightWall++;
if (countRightWall==ymax-downCut-ymin){RightWall=true;} //if the all colom is
closer than this is a wall

}
}

}
if (countLeft>smallOcclusions&&countLeft<bigOcclusions){ //if number of pixels from the
left are between smallLeftOcclusions and biglLeftOcclusions this is a smalllLeft
smalllLeftOcclusions=true;}
else if (countLeft>bigOcclusions){ //if number of pixels from the left are more than
bigleftOcclusions this is a bigleft
bigLeftOcclusions=true;}
if (countRight>smallOcclusions&&countRight<bigOcclusions){ //if number of pixels from
the right are between smallRightOcclusions and bigRightOcclusions this is a smallRight
smallRightOcclusions=true;}
else 1if (countRight>bigOcclusions){ //if number of pixels from the right are more
than bigRightOcclusions this is a bigRight
bigRightOcclusions=true;}
//publish the boolians variables
bool_msg.bigleft=bigleftOcclusions;
bool_msg.smallLeft=smallLeftOcclusions;
bool_msg.wallLeft=LeftWall;
bool_msg.bigRight=bigRightOcclusions;
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bool_msg.smallRight=smallRightOcclusions;
bool_msg.wallRight=RightWall;
side.publish(bool_msg);
}

¥

int main(int argc, char **argv){
ros::init(argc, argv, "image_converter");
ImageConverter ic;
ros: :NodeHandle n;
ros::spin();
return 0;

2. Vision Occlusions Detection

#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "math.h"
#include "std_msgs/String.h" #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h"

#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h"

#include <ros/console.h> #include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h> #include <sensor_msgs/image_encodings.h>
#include "opt_msgs/DetectionArray.h" #include <occlusions/sideOcclusions.h>

#include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp>
#define PI 3.14159265

occlusions::sideOcclusions bool_msg; //6 boolians variables

double AgeThreshold=0; //how "old" is the ID

double ConfidenceTheshold=1.1; //from the SVM+HOG classifier- confidence for a real person
double HeightTheshold=1.4; //height in meter of the person (minimum)
double HeightMaxTheshold=2.0; //height in meter of the person (maximum)

namespace enc = sensor_msgs::image_encodings;
using namespace cv; using namespace std;
static const std::string OPENCV_WINDOW = "Image window";

class ImageConverter
{

ros: :NodeHandle n;

image_transport::ImageTransport it_;

image_transport: :Subscriber image_sub;

image_transport: :Publisher image_pub;

ros::Subscriber person_sub = n.subscribe("/tracker/tracks", 10,
&ImageConverter::boxCallback, this); //get the track parameters

ros::Publisher side=
(n.advertise<occlusions::sideOcclusions>("occlusions/sideOcclusions”,10));// the 6 boolians

double xmin=0; //left side of the BBC from the DEPTH image

double ymin=0; //top side of the BBC from the DEPTH image

double xmax=0; //right side of the BBC from the DEPTH image

double ymax=0; //bottom side of the BBC from the DEPTH image

double xcenter; //the center of the box in x axis at the DEPTH image
double distance; //Open_PTrack- distance in meters to the detect person
double confidence; //Open PTrack- from the SVM+HOG classifier

double age; //from Open_PTrack trackers

double height; //from Open_PTrack trackers

double rgbxmin=0; //left side of the BBC from the MONO image
double rgbymin=0; //top side of the BBC from the MONO image
double rgbxmax=0; //right side of the BBC from the MONO image
double rgbymax=0; //bottom side of the BBC from the MONO image

double xcBox; //the center of the box in the ROI

bool validTrack; //good track

int nbOfTracks; //number of ID tracks

bool LeftWall= false; //detect left wall

bool RightWall= false; //detect right wall
public:

ImageConverter()

: it_(n)

{image_sub = it_.subscribe("/kinect2_head/mono_rect/image", 10,
&ImageConverter::imageCallback, this); //get the mono_rect image (gray image)
image_pub = it_.advertise("/image_converter/output_video", 1);
cv: :namedWindow(OPENCV_WINDOW) ;}
~ImageConverter()
{cv::destroyWindow(OPENCV_WINDOW);}

void boxCallback(const opt_msgs::TrackArray::ConstPtr& msg){//get all the tracks parameters
validTrack=false;
nbOfTracks=msg->tracks.size();
if (nbOfTracks>0) {
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for(int i=0;i<nbOfTracks && !validTrack;i++){
//oldest track which is older than the age threshold, above the confidence threshold, above the
height threshold and under max height threshold
if ((msg->tracks[i].age>AgeThreshold) && (msg-

>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){

xmin=msg->tracks[i].box_2D.x; //left side of the BBC from the DEPTH image

ymin=msg->tracks[i].box_2D.y; //top side of the BBC from the DEPTH image

xmax=xmin+msg->tracks[i].box_2D.width; //right side of the BBC from the DEPTH image

ymax=ymin+msg->tracks[i].box_2D.height; //bottom side of the BBC from the DEPTH image

distance=msg->tracks[i].distance; //0pen_PTrack- distance in meters to a person
confidence=msg->tracks[i].confidence; //Open_PTrack- from the SVM+HOG classifier
height=msg->tracks[i].height; //from Open_PTrack trackers
age=msg->tracks[i].age; //from Open_PTrack trackers
validTrack=true;
}
}
¥

}

void imageCallback(const sensor_msgs::ImageConstPtr& msg) //working on the depth image
{cv_bridge::CvImagePtr cv_ptr;
try
{cv_ptr = cv_bridge::toCvCopy(msg);} //now cv_ptr is the matrix of the image
catch (cv_bridge::Exception& e)
{ROS_ERROR("cv_bridge exception: %s", e.what());
return;}
cv::Mat deleteMargin= cv::Mat::zeros(1080,1710,0);
deleteMargin = cv_ptr->image(Rect(104,0,1710,1080)).clone(); //because a different FOV
between depth and RGB i delete the 105 pixels from each side to reduce the FOV different
cv::Size size(960,540); //size of the depth image
cv::resize(deleteMargin,deleteMargin,size); //resize the gray mono image to the depth image
size because the resolotion of mono_rect is twice the resolotion of depth_rect
xcenter=(xmin+xmax)/2; //the center of the box in x axis at the DEPTH image
rgbxmin=xmin*2+round( ((270-xcenter)/3)-distance*2); //left side of the BBC from the MONO
image with react to the center of the image and distance because different FOV

rgbxmax=rgbxmin+(xmax-xmin)*1.4; //right side of the BBC from the MONO image with
more width to cover the all person
rgbymin=ymin; //top side of the BBC from the MONO image
rgbymax=rgbymin+(ymax-ymin)*1.3; //bottom side of the BBC from the
MONO image with more for the legs but not the ground
int marginAdd= round(50/distance); //add margin depend on distance

LeftWall= false; //detect a "tall" vertical occlusion from the left side of the robot
RightWall= false; //detect a "tall" vertical occlusion from the right side of the robot
xcBox=((xmax-xmin)*1.4+marginAdd*2)/2; //the center of the box in the ROI
cv::Mat temp= cv::Mat::zeros(540,960,0); //temp with the maximum size of the MONO image
int top = (int) (©.01*temp.rows); //for add borders to the image
int bottom = (int) (©.01*temp.rows);
int left = (int) (©.01*temp.cols);
int right = (int) (@.01*temp.cols);
if(rgbxmin-marginAdd*2 >= © && rgbymin >= 0 && rgbxmax+marginAdd < deleteMargin.cols && rgbymax
< deleteMargin.rows && (xmax-xmin)*1.4+marginAdd>0 && (ymax-ymin)*1.3>0){
temp = deleteMargin(Rect(rgbxmin-marginAdd, rgbymin, (xmax-xmin)*1.4+marginAdd, (ymax-
ymin)*1.3)).clone();} //take only the BBC with the person with margin depend on distance
cv::GaussianBlur(temp, temp, cv::Size(3,3), 0); //gaussian blur 3*3
cv::Canny(temp, temp, 50.0, 300.0, 3, false); //canny edge detector
cv::Mat elementl= cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,5), cv::Point(-1,-

1)); // 5*5 open element

cv::Mat element2= cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,5), cv::Point(-1,-
1)); // 5*5 close element

cv::dilate(temp, temp, elementl); //open the pixels

cv::erode(temp, temp, element2); //close the pixels

cv::Mat temp2=temp;
cv::cvtColor(temp2, temp2, cv::COLOR_GRAY2BGR); //color mat for show
copyMakeBorder( temp2, temp2, top, bottom, left, right, BORDER_CONSTANT,
cv::Scalar(255,255,255) ); //add white borders to help detect contours
std::vector<std::vector<cv::Point> > contours; //vector of vector points- contours
cv::findContours(temp, contours,CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE);//find contours
for (int i=0; i<contours.size(); i++){
if(contours[i].size()>(rgbymax-rgbymin)*1.5){ //only if the contour is bigger
than the whole height of the ROI multipile 1.5
cv::drawContours(temp2,contours,i,cv::Scalar(0,255,0),8,8);} //draw green
else {contours.pop_back();}//delete small contours from vector "contours"
}
cv::vector<Vec4i> lines;//"lines" contain 4 values for xStart,yStart,xEnd,yEnd
HoughLinesP(temp, lines, 1, CV_PI / 180, 50, (rgbymax-rgbymin)*@8.5, 0 ); //find
straight lines with Hough that are bigger than the half height of the ROI
for (size t i = @; i < lines.size(); i++)
{cv::Vecd4i 1 = lines[i];
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if (abs(l[@]-1[2])<(rgbxmax-rgbxmin)/10) { //for only vertical lines depend on the
width of the person box divide by 10 (only 1/10 size of the width)
line(temp2, Point(1l[@], 1[1]), Point(1[2], 1[3]), Scalar(e, @, 255), 10, 4);
//draw red line
//left
if (((1[@]>0) && (1[@]<xcBox-5)) || ((1[2]>0) && (1[2]<xcBox-5))){ //if the
edges of the straight line is inside the ROI from the left to the center minus 5
LeftWall=true;}
//right
if (((1[@]>xcBox+5) && (1[0@]<temp.cols)) || ((1[2]>xcBox+5) &&
(1[2]<temp.cols))){ //if the edges of the straight line is inside the ROI from the center plus
5 to the right
RightWall=true;}

else {lines.pop_back();}//delete all the other lines from the vector "lines"
}
rectangle(temp2,cv::Point(rgbxmin,rgbymin),cv::Point(rgbxmax,rgbymax),cv::Scalar(0,255,0), 10);
cv::imshow(OPENCV_WINDOW, temp2); // Update GUI Window
cv::waitKey(3);
image_pub.publish(cv_ptr->toImageMsg());// Output modified video stream
bool_msg.walllLeft=LeftWall;
bool_msg.wallRight=RightWall;
side.publish(bool_msg);
}
s

int main(int argc, char **argv){
ros::init(argc, argv, "image_converter");
ImageConverter ic;
ros: :NodeHandle n;
ros::spin();
return 0;

3. Combination of Depth and Vision Occlusions Detection

Union of Depth and Vision Occlusion Detection codes according to the distance of the

person.

double changeDepthToRGB=5.0; //which distance to change between depth to RGB (meters)

double distance; //0Open_PTrack- distance in meters to the detect person
if(distance<changeDepthToRGB){ //all the code from Depth Occlusion Detection }
if(distance>changeDepthToRGB){ //all the code from Vision Occlusion Detection }

4. Obstacles Avoidance

#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "std_msgs/String.h"
#include "std_msgs/Float64.h" #include "std_msgs/Float32.h"  #include "std_msgs/Bool.h"

#include "geometry_msgs/Twist.h" #include "geometry_msgs/Point32.h"

#include "sensor_msgs/PointCloud.h" #include <tf/transform_listener.h>

#include "pcl_ros/point_cloud.h" #include "pcl_ros/transforms.h"

#include <obstacles/laserObstacles.h> #include <people_msgs/PositionMeasurementArray.h>

#include "opt_msgs/TrackArray.h"
obstacles::laserObstacles ob_msg; //publise two Booleans and velocity command

class LaserObstacles
{

ros: :NodeHandle n;

tf::TransformListener tf_listener;

ros::Subscriber cmdVel = n.subscribe("/cmd_vel", 10, &LaserObstacles::velocityCallback,
this);

ros::Subscriber sub_laser = n.subscribe("/RosAria/S3Series_1 pointcloud", 10,
&LaserObstacles::LaserCallback,this); //get the laser point

ros::Subscriber sub_people= n.subscribe("/people_tracker_measurements", 10,
&LaserObstacles::LaserLegsCallback, this); //get the leg detector point of the person

ros::Subscriber sub_people_kinect= n.subscribe("/tracker/tracks", 10,
&LaserObstacles::KinectCallback, this); //get the kinect point of the person

ros::Subscriber sub2= n.subscribe("/Pan_Feedback", 10, &LaserObstacles::panCallback, this);

ros::Subscriber sub3= n.subscribe("/Pan_Error_Command", 10,
&LaserObstacles::smallErrorCallback, this);

ros: :Publisher pub=(n.advertise<obstacles::laserObstacles>
("/obstacles/laserObstacles",10));

double KpDistanceCheck=3; //Kp for distance depend on linear velocity
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double DistanceCheck=0.8; // minimum distance in front of the robot

double WidthCheck= 0.5; //for each side

double DistanceSlowDownCheck= 1.5; //distance from an obstacle to slow down

double angularVelocity; //angular velocity of the robot

double linearVelocity; //linear velocity of the robot

double xLaserPerson; double ylLaserPerson; double xKinectPerson; double yKinectPerson;
double radiusPerson=1.0; //radius around a person that clear from obstacles

double AngleErrorPan=0; //the angle of the Pan related to the center of the robot
bool smallError=false; //declare a small error to avoid small movements of the Pan
double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan
double AngleSmallkError=0; //the angle of the person related to the center of the kinect

void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg)
{AngleSmallError=msg->data;
if ((abs(AngleSmallError)<smallErrorThreshold)&&
(abs(AngleErrorPan)<0.01)){smallError=true;}
else {smallError=false;}}

void panCallback(const std_msgs::Float32::ConstPtr& msg)
{AngleErrorPan=msg->data;}

void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg)
{int nbOfTracksLaser=msg->people.size();
if (nbOfTracksLaser>9) { //Extract coordinates of first detected person from laser
for(int i=0; i<nbOfTracksLaser;i++){
xLaserPerson=msg->people[i].pos.x; yLaserPerson=msg->people[i].pos.y;}}
else{ xLaserPerson=xKinectPerson; ylLaserPerson=yKinectPerson;}}

void KinectCallback(const opt_msgs::TrackArray::ConstPtr& msg)
{int nbOfTracksKinect=msg->tracks.size();
if (nbOfTracksKinect>@) { //Extract coordinates of first detected person from Kinect
for(int i=0; i<nbOfTracksKinect;i++){
xKinectPerson=((msg->tracks[i].distance)*cos(AngleSmallError+AngleErrorPan));
yKinectPerson=((msg->tracks[i].distance)*sin(AngleSmallError+AngleErrorPan));}}}

void LaserCallback(const sensor_msgs::PointCloud::ConstPtr& msg)
{sensor_msgs: :PointCloud pc_out;
bool obstacle=false; //true if an obstacle was found
bool SlowDown=false; //true if an obstacle was found in slowdown distance
double angularCommand; double linearCommand; //velocity to avoid obstacle
double XclosestObstacle=100.0; double YclosestObstacle=100.0;
double DclosestObstacle=100.0; /X, Y, distance- 100 when there is no obstacle
tf_listener.waitForTransform("/laser_frame", (*msg).header.frame_id, (*msg).header.stamp,
ros::Duration(5.0));
tf_listener.transformPointCloud("/laser_frame", *msg, pc_out);
for (int i=0; i<pc_out.points.size() ;i++)
{if (((pc_out.points[i].x < KpDistanceCheck*linearVelocity) || (pc_out.points[i].x <
DistanceCheck)) && (pc_out.points[i].x >-abs(angularVelocity)) &&
( ((sgrt(pow(pc_out.points[i].x-xLaserPerson,2)+pow(pc_out.points[i].y-
yLaserPerson,2))>radiusPerson) && (xLaserPerson!=0.0))| |
((sgrt(pow(pc_out.points[i].x-xKinectPerson,2)+pow(pc_out.points[i].y-
yKinectPerson,2))>radiusPerson) && (xKinectPerson!=0.0)) )) //an obstacle inside the
DistanceCheck and more than radiusPerson from a detected legs or detected person from the Kinect
{if ((pc_out.points[i].y < WidthCheck*(1+angularVelocity)) && (pc_out.points[i].y > -
WidthCheck*(1-angularVelocity))){ //2 conditions: 1. y smaller than positive WidthCheck
multipile the power of the turn of the robot; 2.y bigger than negative WidthCheck multipile the
power of the turn of the robot;
double pointDistance =sqrt(pow(pc_out.points[i].x,2)+pow(pc_out.points[i].y,2));
//to get the closet obstacle
if (pointDistance<DclosestObstacle){ XclosestObstacle=pc_out.points[i].x;
YclosestObstacle=pc_out.points[i].y; DclosestObstacle=pointDistance;}
obstacle=true;}

¥
if (((XclosestObstacle < KpDistanceCheck*linearVelocity) || (XclosestObstacle <
DistanceCheck)) && (XclosestObstacle >-abs(angularVelocity)) &&
( ((sgrt(pow(XclosestObstacle-xLaserPerson,2)+pow(YclosestObstacle-
yLaserPerson,2))>radiusPerson) && (xLaserPerson!=0.0))||
((sqrt(pow(XclosestObstacle-xKinectPerson,2)+pow(YclosestObstacle-
yKinectPerson,2))>radiusPerson) && (xKinectPerson!=0.0)) )){ //the closest obstacle inside the
DistanceCheck and more than radiusPerson from a detected legs or detected person from the Kinect
linearCommand=0.2; //linear velocity near an obstacle
if (YclosestObstacle>=0){angularCommand=-(WidthCheck-YclosestObstacle)/2;} //if obstacle
from the left than turn right (positive angular velocity)
else {angularCommand=(WidthCheck+YclosestObstacle)/2;}} //if obstacle from the right than
turn left (negative angular velocity)
else if(linearVelocity>0.3){
linearCommand=0.3; //if the linear velocity above 0.3 than slowdown to ©.3
angularCommand=angularVelocity; SlowDown=true;}
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else {linearCommand=1linearVelocity;} //if linear velocity below 0.3- keep same velocity
ob_msg.detect_obstacles=obstacle; //publish the variables
ob_msg.slow_down=SlowDown;
ob_msg.angular_velocity= angularCommand;
ob_msg.linear_velocity= linearCommand;
pub.publish(ob_msg);}

void velocityCallback(const geometry_msgs::Twist::ConstPtr& msg)
{angularVelocity=msg->angular.z; linearVelocity=msg->linear.x;}//the robot's velocity

s

int main(int argc, char **argv)
{
ros::init(argc, argv, "laser_obstacles_avoidance");
LaserObstacles LO;
ros: :NodeHandle n;
ros::spin();
return 0;

5. Search After Disappear
Implemented in 7.Direct Following Method and 8.History Following Method

6. Kinect Orientation Control — Pan Mechanism

#include "ros/ros.h" #include <std_msgs/Float64.h> #include <std_msgs/Float32.h>
#include "std_msgs/String.h" #include "opt_msgs/TrackArray.h"

#include "sensor_msgs/JointState.h” #include <ros/console.h> #include "math.h"
#include "trajectory_msgs/JointTrajectory.h™ #include "nav_msgs/Odometry.h"
#include "trajectory_msgs/JointTrajectoryPoint.h"

class PanMove

{
ros: :NodeHandle n;
ros::Time lastTrackTime; //last time that a person was detected
ros::Subscriber subl;
ros::Publisher pub;
ros::Subscriber sub2;
double ConfidenceTheshold=1.1; //the SVM+HOG classifier- confidence for a real person
double HeightTheshold=1.4; //height in meter of the person (minimum)
double HeightMaxTheshold=2.0; //height in meter of the person (maximum)
int TrackedID=0; //init the track ID to zero
std_msgs::Float32 error_command;
double AngleErrorPan; //the angle of the Pan related to the center of robot
bool validTrack=false; //true if there is a valid track
double AngleError=0; //the angle of the person related to the center of the Kinect
bool TrackInitialized=false; //init there is no track

public:

PanMove()
{subl = n.subscribe("/tracker/tracks", 10, &PanMove::personCallback, this); //Open_PTrack
pub = n.advertise<std_msgs::Float32>("/Pan_Error_Command", 1);//AngleError
sub2 = n.subscribe("/Pan_Feedback", 10, &PanMove::panCallback, this);} //AngleErrorPan

void panCallback(const std_msgs::Float32::ConstPtr& msg)
{AngleErrorPan=msg->data;} //get the angle of the Pan related to the center of robot

void personCallback(const opt_msgs::TrackArray::ConstPtr& msg)

{validTrack=false;
AngleError=0;
int nbOfTracks=msg->tracks.size(); //Get the number of tracks in the TrackArray
if (nbOfTracks>0) { //If at least 1 track, proceed

if (!TrackInitialized){

for(int i=0;i<nbOfTracks;i++){

if ((msg->tracks[i].confidence>ConfidenceTheshold) && (msg-

>tracks[i].height>HeightTheshold) && (msg->tracks[i].height<HeightMaxTheshold)){ //oldest track

which is older than the age threshold, above the confidence threshold, above the height
threshold and under max height threshold

TrackedID=msg->tracks[i].id;

TrackInitialized=true;}

}
}
if (!TrackInitialized){ROS_INFO("No valid track found");}
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else
{for(int i=0;i<nbOfTracks && !validTrack;i++){
if (msg->tracks[i].id==TrackedID){
AngleError=atan2(msg->tracks[i].y,msg->tracks[i].x);//calculate
ROS_INFO("Error: %f", AngleError); validTrack=true; //stop for loop
lastTrackTime=ros::Time: :now();}

¥
}
ROS_INFO("valid %d" , validTrack);
error_command.data=AngleError; //get the angle error of the person to send for twist
if (!validTrack){ //no valid track
error_command.data=-0.5*AngleErrorPan; //get opposite half of the angle of the pan (the
pan will return slowly to the center of the robot)
if ((ros::Time::now()-lastTrackTime)>ros::Duration(3)) //more than 3 seconds without
a valid track
{TrackInitialized=false;
ROS_INFO("3 sec since last track seen, try to find it");}

pub.publish(error_command); //publish the command to the Pan to twist
}
s

int main(int argc, char **argv){
ros::init(argc, argv, "orientation_control");
PanMove pm;
ros: :NodeHandle n;
ros::spin();
return 0;

7. Direct Following Method

#include "std_msgs/String.h" #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h"
#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h"

#include "opt_msgs/TrackArray.h" #include <ros/console.h>

#include "people_msgs/PositionMeasurementArray.h" #include <obstacles/laserObstacles.h>
#include "people_msgs/PositionMeasurement.h" #include <occlusions/sideOcclusions.h>
#include "visualization_msgs/Marker.h" #include "visualization_msgs/MarkerArray.h"
#include <pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h>

#include <pcl/PCLPointCloud2.h> #include <pcl/conversions.h> #define PI 3.14159265
geometry_msgs::Twist cmd_vel;

class kinect2_pan_laser

{
ros: :NodeHandle n; ros::Subscriber subl; ros::Subscriber sub2; ros::Subscriber sub3;
ros::Subscriber sub4; ros::Subscriber sub5; ros::Subscriber sub6; ros::Subscriber sub7;
ros::Publisher cmd_vel_pub; ros::Publisher vis_publ; ros::Publisher vis_pub2;
ros::Publisher vis_pub3;

double KpAngle=0.5; //the twist controller

double KpAngleOcclusion=0.2; //for changing the following angle while occlusion
double KpDistance=0.2; //the distance controller

double DistanceTarget=1.2; //the minimum distance from the person

double MaxSpeed=0.3; //the maximum linear speed

double MaxTurn=0.2; //the maximum angular speed

double AgeThreshold=0; //the "age" of the person (time that been detected)
double ConfidenceTheshold=1.1; //SVM+HOG classifier- confidence for a real person
double HeightTheshold=1.4; //height in meter of the person (minimum)

double HeightMaxTheshold=2.0; //height in meter of the person (maximum)

double AngleErrorPan=0; //the angle of the Pan related to the center of the robot

bool smallError=false; //declare a small error to avoid small movements of the Pan

double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan

double AngleSmallError=0;//the angle of the person related to the Kinect center

double xLaserPerson; double ylLaserPerson; //position of the person from the laser

double followingAngle=0; //15 deg= 0.2618 ,30 deg= ©0.5236 rad, 60 deg= 1.0472 rad

bool kinectLaserMatch=false; //the positions in both sensors correlate under 20 cm

int nbOfTracksKinect=0; //number of people detection by the kinect

double xRobot;double yRobot;double orientationRobot;//robot pose and orientation

bool BiglLeft; bool SmallLeft; bool WalllLeft; //occlusions from the left side

bool BigRight; bool SmallRight; bool WallRight; //occlusions from the right side

bool laser_obstacle_flag; //true if an obstacle was found

bool slow_down_flag; //true if an obstacle was found in slowdown distance

double laser_angular_velocity=0; double laser_linear_velocity=0; //init the
velocities from obstacles avoidance algorithm to zero

double distanceKinect; //the distance of the person by the kinect

double DistanceError; //error between the Kinect distance and distanceTarget

double tempDistanceKinect; //temp distance to for Search After Disappear algorithm
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double xPath; double yPath; //position of a person by Kinect related to the world
double xLastl; double ylLastl; //last position of a person by Kinect before loss
double ylast2; //Y coordinates of a person by Kinect 4 frames before loss

double yDirection; //the direction of person's disappear (substract Y coordinates)
double tempDistance; //last distance of a person by Kinect before loss

bool validTrackKinect=false; //true if there is a valid track by kinect

double angular_command=0; //angular velocity to avoid obstacle

bool validTrackLaser=false; //true if there is a valid track by laser

double tempDistanceLaser; //last distance of a person by laser before loss
double DistanceErrorLaser; //error between the laser distance and distanceTarget
int nbOfTracksLaser=0; //number of people detection by the laser

double AngleErrorFollow; //angle of last position of a person by kinect to robot
double AngleErrorLaser; //angle of position of a person by laser to robot

double xperson; double yperson; //position of a person by Kinect related to robot
double AngleErrorKinect; //angle of position of a person by kinect to robot
double age; //"age" of the person by Kinect (time that been detected)

double height; //height of the person by kinect

double confidence; //SVM+HOG classifier- confidence for a real person

double error; //error distance between the two sensor that detect a person

bool kinectTrack=false; //true if there is a valid track by kinect

bool laserTrack=false; //true if there is a valid track by laser
std::vector<double> YpathPoints; //vector of Y coordinates of a person by kinect

public:
kinect2_pan_laser()

subl= n.subscribe("/tracker/tracks", 10, &kinect2_pan_laser::personCallback, this);
//the kinect parameters of the person

sub2= n.subscribe("/Pan_Feedback", 10, &kinect2_pan_laser::panCallback, this);
//the angle of the pan from the center of the robot

sub3= n.subscribe("/Pan_Error_Command", 10, &kinect2_pan_laser::smallErrorCallback,
this); //the angle of a person from the center of the kinect

sub4= n.subscribe("/people_tracker_measurements", 10,
&kinect2_pan_laser::LaserLegsCallback, this); //the laser parameters of a person

sub5= n.subscribe("/occlusions/sideOcclusions”, 10,
&kinect2_pan_laser::occlusionKinectCallback, this); //occlusions from depth Occlusion

sub6= n.subscribe("/obstacles/laserObstacles"”, 10,
&kinect2_pan_laser::LaserObstaclesCallback, this); //obstacles from Obstacles Avoidance

sub7= n.subscribe("/RosAria/pose", 10, &kinect2_pan_laser::poseCallback, this);
//position of the robot in the world

cmd_vel pub = ros::Publisher(n.advertise<geometry msgs::Twist> ("follower/cmd_vel",
2)); //publish the velocities to the robot

vis_publ = ros::Publisher(n.advertise<visualization_msgs: :Marker>(
"/visualization_marker_array", 1 )); //for laser legs (green)

vis_pub2 = ros::Publisher(n.advertise<visualization_msgs: :Marker>(
"/visualization_marker_array", 1 )); //for Kinect person detected (blue)

vis_pub3 = ros::Publisher(n.advertise<visualization_msgs: :Marker>(
"/visualization_marker_array", 1 )); //for robot position (red)

}

void poseCallback(const nav_msgs::0dometry::ConstPtr& msg)
{xRobot=msg->pose.pose.position.x; yRobot=msg->pose.pose.position.y; //robot's position
tf::Pose pose; tf::poseMsgToTF(msg->pose.pose, pose);
orientationRobot= tf::getYaw(pose.getRotation()); //get radiand rotation (@ front, 3.14
back, left positive, right negative)
ROS_INFO("xRobot: %f", xRobot); //print the values of the parameters

ROS_INFO("yRobot: %f", yRobot); ROS_INFO("BigLeft: %d", BiglLeft);
ROS_INFO("SmallLeft: %d", SmalllLeft); ROS_INFO("WallLeft: %d", WalllLeft);
ROS_INFO("BigRight: %d", BigRight); ROS_INFO("SmallRight: %d", SmallRight);

ROS_INFO("WallRight: %d", WallRight); ROS_INFO("Height: %f", height);
ROS_INFO("laser_obstacle_flag: %d", laser_obstacle_flag);

ROS_INFO("xLaser: %f", xLaserPerson); ROS_INFO("yLaser: %f", ylLaserPerson);
ROS_INFO("match: %d", kinectLaserMatch); ROS_INFO("Confidence: %f", confidence);
ROS_INFO("distanceKinect: %f", distanceKinect);

ROS_INFO("AngleErrorPan: %f", (AngleErrorPan*180)/PI);

ROS_INFO("xKinect: %f", xperson); ROS_INFO("yKinect: %f", yperson);
ROS_INFO("xPath: ©"); ROS_INFO("yPath: ©"); ROS_INFO("tempDistance: %f", tempDistance);
ROS_INFO("xFollow: 0"); ROS_INFO("yFollow: ©");

ROS_INFO("kinectTrack: %d", kinectTrack); ROS_INFO("laserTrack: %d", laserTrack);
for(int 1=0;i<100000;i++){ //robot's position marker
visualization_msgs::Marker marker; marker.header.frame_id = "odom";
marker.header.stamp = ros::Time();marker.ns = "robotPose"; marker.id = i;
marker.type = visualization_msgs::Marker::SPHERE;
marker.action = visualization_msgs::Marker::ADD;
marker.lifetime=ros::Duration(100.0);
marker.pose.position.x = xRobot; marker.pose.position.y =
marker.pose.position.z = 9; marker.pose.orientation.x = 0.
marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.90;
marker.pose.orientation.w = 1.0; marker.scale.x = 0.2; marker.scale.y = 0.2;

yRobot;
9;



marker.scale.z = 0.2; marker.color.a = 1.0; marker.color.r = 1.0;
marker.color.g = 0.0; marker.color.b = 0.0; vis_pub3.publish( marker );}

}

void occlusionKinectCallback(const occlusions::sideOcclusions::ConstPtr& msg)
{BigLeft= msg->bigLeft; //get all the Depth Occlusion algorithm parameters
SmallLeft= msg->smallLeft; WalllLeft= msg->walllLeft; BigRight= msg->bigRight;
SmallRight= msg->smallRight; WallRight= msg->wallRight;
if (BigLeft && !BigRight && !SmallRight){followingAngle=-0.5236;} //change the following
angle according to the occlusion
if (SmallLeft && !Bigleft && !BigRight && !SmallRight){followingAngle=-0.2618;}
if (WallLeft && !WallRight){followingAngle=-0.2618;}
if (BigRight && !BiglLeft && !SmalllLeft){followingAngle=0.5236;}
if (SmallRight && !BigRight && !BiglLeft && !SmalllLeft){followingAngle=0.2618;}
if (WallRight && !WalllLeft){followingAngle=60.2618;}

}

void LaserObstaclesCallback(const obstacles::laserObstacles::ConstPtr& msg)
{laser_obstacle_flag=msg->detect_obstacles;//get Obstacle Avoidance algorithm parameters
laser_angular_velocity=msg->angular_velocity;laser_linear_velocity=msg->linear_velocity;
slow_down_flag=msg->slow_down;
if (laser_obstacle_flag){
cmd_vel.angular.z = laser_angular_velocity; //turn to avoid obstacles
cmd_vel.linear.x = laser_linear_velocity; cmd_vel_pub.publish(cmd_vel);}

}

void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg)
{AngleSmallError=msg->data; //get the angle of the person related to the kinect
if ((abs(AngleSmallError)<smallErrorThreshold)&&

(abs(AngleErrorPan)<0.01)){smallError=true;}; //avoid small movements of the Pan
else {smallError=false;}

}

void LaserlLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg)
{validTrackLaser=false;
nbOfTracksLaser=msg->people.size();//number of people detection by the laser
if (nbOfTracksLaser>0) {
xLaserPerson=msg->people[0].pos.x; //position of first detected person by laser
yLaserPerson=msg->people[0].pos.y;
if (nbOfTracksKinect==0) { //if there is no Kinect detection
AngleErrorlLaser=atan2(yLaserPerson,xLaserPerson); //Calculate angle error by laser
DistanceErrorLaser=sqrt(pow(xLaserPerson,2)+pow(yLaserPerson,2)); //distance error
if(!laser_obstacle_flag){ //no obstacle
angular_command=AngleErrorLaser*KpAngle; //angular velocity depends on the twist
controller and the angle error by laser
if(angular_command>MaxTurn){angular_command=MaxTurn;} //limit maximum speed
if(angular_command<-MaxTurn){angular_command=-MaxTurn;}
cmd_vel.angular.z = angular_command;
double linearspeedLaser=(DistanceErrorLaser-DistanceTarget)*KpDistance; //linear
velocity depends on the distance error, the distanceTarget and the distance controller
if (linearspeedLaser>MaxSpeed) {linearspeedLaser=MaxSpeed;}//limit maximum speed
if (linearspeedLaser<@){linearspeedLaser=0;}
cmd_vel.linear.x = linearspeedLaser; cmd_vel_pub.publish(cmd_vel);}

validTrackLaser=true; laserTrack=true;

visualization_msgs::Marker marker; //person's position by laser marker
marker.header.frame_id = "base_link"; marker.header.stamp = ros::Time();
marker.ns = "laser"; marker.id = 0;

marker.action = visualization_msgs::Marker::ADD;

marker.pose.position.x = xLaserPerson; marker.pose.position.y = ylLaserPerson;

marker.pose.position.z = 0; marker.pose.orientation.x = 0.0;
marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.0;
marker.pose.orientation.w = AngleErrorLaser;

marker.scale.x = 0.1; marker.scale.y = 0.1; marker.scale.z = 0.1;
marker.color.a = 1.0; marker.color.r = 0.0; marker.color.g = 1.0;
marker.color.b = 0.0; vis_publ.publish( marker );}

else if(!validTrackKinect){laserTrack=false;}

}

void panCallback(const std_msgs::Float32::ConstPtr& msg)
{ AngleErrorPan=msg->data;} //get the angle of the Pan related to the robot

void personCallback(const opt_msgs::TrackArray::ConstPtr& msg)
{validTrackKinect=false;
nbOfTracksKinect=msg->tracks.size(); //get the number of people by kinect
if (nbOfTracksKinect>e) { //if at least 1 track, proceed
for(int i=0;i<nbOfTracksKinect && !validTrackKinect;i++){
if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-

115



>tracks[i].height<HeightMaxTheshold)){ //oldest track which older than age threshold, above the
confidence threshold, above the height threshold and under max height threshold

distanceKinect=msg->tracks[i].distance; //person's distance from the kinect
xperson=((msg->tracks[i].distance)*cos(AngleSmallError+AngleErrorPan));
yperson=((msg->tracks[i].distance)*sin(AngleSmallError+AngleErrorPan));

//position of the pe

AngleErrorKinect=atan2(yperson,xperson); //angle of a person to robot
age=msg->tracks[i].age; //"age" of a person (time that been detected)

rson related to the robot

height=msg->tracks[i].height; //height of the person by kinect

confidence=msg->tracks[i].confidence; //confidence for a real person
YpathPoints.insert(YpathPoints.begin(),yperson); //insert the Y coordinate

if (

//calculate the x an

if (error<@.2){kinectLaserMatch=true;} //true if under 20 cm deviation

YpathPoints.size()>5){

yLastl=YpathPoints.at(4); yLast2=YpathPoints.at(1); xLastl=xperson;
tempDistanceKinect=distanceKinect; //get the last person's distance

yDirection=ylLast2-ylLastl; //substract to get the direction

YpathPoints.pop_back();} //clear space for more Y coordinate
error= sqrt(pow(xperson-xLaserPerson,2)+pow(yperson-yLaserPerson,2));

d y error between the kinect and the laser

else{kinectLaserMatch=false;}

DistanceError=distanceKinect-DistanceTarget; //Calculate distance error

if (

twist controller and

if(abs(followingAngle)>0.1 && abs(AngleErrorKinect)<©.2) {angular_command =
(AngleErrorKinect+followingAngle)*KpAngleOcclusion;} //angular velocity also depends on the

following angle if i

if(angular_command>MaxTurn){angular_command=MaxTurn;}//limit maximum speed

if(

if (DistanceError>0.05){//threshold for small distance error of 0.05 meter

the distance error

if (command_speed>MaxSpeed){command_speed=MaxSpeed;}//limit maximum speed

llaser_obstacle_flag){ //no obstacle

angular_command= AngleErrorKinect*KpAngle; //angular velocity depends on the

the angle error by kinect

t bigger than absolute value of 0.1

angular_command<-MaxTurn){angular_command=-MaxTurn;}
cmd_vel.angular.z = angular_command;

double command_speed=DistanceError*KpDistance; //linear velocity depends on

and the distance controller

if (command_speed<®){command_speed=0;} //Avoid going backward

vali

¥
}

kinectTrack=true

cmd_vel.linear.x = command_speed;}
dTrackKinect=true; cmd_vel_pub.publish(cmd_vel);}

El

visualization_msgs::Marker marker; //person's position by kinect marker

marker.h
marker.n
marker.t
marker.a
marker.p
marker.p
marker.p
marker.p
marker.s
marker.c
vis_pub2

else if(!validTrackLaser){kinectTrack=false;//no track in both sensors (kinect and laser)

eader.frame_id = "base_link"; marker.header.stamp = ros::Time();
s = "kinect"; marker.id = 9;
ype = visualization_msgs::Marker: :SPHERE;

ction = visualization_msgs::Marker::ADD;
ose.position.x = xperson;

Bl

ose.position.z = 0; marker.pose.orientation.x
ose.orientation.y = 0.0; marker.pose.orientation.z
ose.orientation.w = AngleErrorKinect; marker.scale.x = 0.1;
cale.y = 0.1; marker.scale.z = 0.1; marker.color.a
olor.r = 0.0; marker.color.g = 1.0; marker.color.b
.publish( marker );}

0.0
0.0

1.0
1.0

marker.pose.position.y = yperson;

Bl
Bl

El

El

xPath= xRobot+cos(orientationRobot+AngleErrorKinect)*tempDistanceKinect;

yPath= yRobot+sin(orientationRobot+AngleErrorKinect)*tempDistanceKinect; //last

person's position re

AngleErrorFollow=-atan2(yPath-yRobot, (xPath-xRobot))+orientationRobot; //angle

related to the world

if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI]

lated to the world

if(AngleErrorFollow<®){AngleErrorFollow=AngleErrorFollow+2*PI;}

}

else{AngleErrorFollow=AngleErrorFollow-2*PI;}

tempDistance=sqrt(pow(xPath-xRobot,2)+pow(yPath-yRobot,2)); //person's distance

from the last positi
if (

(!validTrackKinect)
the distance of the

on to the robot
Ilaser_obstacle_flag){ //no obstacle
ros::Time start= ros::Time::now();

while((ros::Time: :now()-start<ros::Duration(round(tempDistance/0.3))) &&
&& (!laser_obstacle_flag)){ //no Kinect track, while time is shorter than

last position divided by contast linear velocity of 0.3
if (!laser_obstacle_flag)

{cmd_vel.linear.x = 0.3; cmd_vel.angular.z=0.0;} //move straight
laser_angular_velocity; //avoid obstacle

else{cmd_vel.angular.z

cmd_vel.linear.x = laser_linear_velocity;}

cmd_vel.linear.x = 0.0;//robot reach to the last position of the person

if(!validTrackKinect){ //if no Kinect track

if(yDirection>@){cmd_vel.angular.z=0.2;}//robot turns to last direction

else{cmd_vel.angular.z=-0.2;}

}
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}
¥

s
int main(
ros::
kinec
ros::
ros::
retur

}

8. H

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
geometry_|

class kin
ros:
ros:
ros:
ros:

velocitie

cmd_vel pub.publish(cmd_vel);}

int argc, char **argv){

init(argc, argv, "simple_follower_kinect2_pan_laser");
t2_pan_laser kpl;

NodeHandle n;

spin();

n o;

istory Following Method

<stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "math.h"
"std_msgs/String.h" #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h"
"geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h”
"opt_msgs/TrackArray.h" #include <ros/console.h>
"people_msgs/PositionMeasurementArray.h" #include <occlusions/sideOcclusions.h>
"people_msgs/PositionMeasurement.h" #include <obstacles/laserObstacles.h>
"visualization_msgs/Marker.h" #include "visualization_msgs/MarkerArray.h"
<pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h>
<pcl/PCLPointCloud2.h> #include <pcl/conversions.h>
<pcl_ros/transforms.h> #include <opencv2/imgproc/imgproc.hpp>
<opencv2/highgui/highgui.hpp> #tdefine PI 3.14159265

msgs::Twist cmd_vel;

ect2_pan_laser

:NodeHandle n; ros::Subscriber subl; ros::Subscriber sub2; ros::Subscriber sub3;
:Subscriber sub4; ros::Subscriber sub5; ros::Subscriber sub6; ros::Subscriber sub7;
:Publisher vis_publ; ros::Publisher vis_pub2; ros::Publisher vis_pub3;

:Publisher cmd_vel_pub;

double KpAngle=0.5; //the twist controller

double KpAngleOcclusion=0.2; //for changing the following angle while occlusion
double KpDistance=0.2; //the distance controller

double DistanceTarget=1.2; //the minimum distance from the person

double MaxSpeed=0.3; //the maximum linear speed

double MaxTurn=0.2; //the maximum angular speed

double AgeThreshold=0; //the "age" of the person (time that been detected)

double ConfidenceTheshold=1.1;//SVM+HOG classifier- confidence for a real person
double HeightTheshold=1.4; //height in meter of the person (minimum)

double HeightMaxTheshold=2; //height in meter of the person (maximum)

double AngleErrorPan=0;//the angle of the Pan related to the center of the robot
bool smallError=false; //declare a small error to avoid small movements of the Pan
double smallkErrorThreshold=0.01; //threshold for avoid small movements of the Pan
double AngleSmallError=0; //the angle of the person related to the Kinect center
double xLaserPerson; double ylLaserPerson; //position of the person from the laser
double linearspeedlLaser; //linear speed that depends on the distance by laser
double DistanceErrorLaser; //the distance of the person by the laser

double DistanceErrorKinect; //the distance of the person by the kinect

double linearspeedKinect; //linear speed that depends on the distance by kinect
double xRobot;double yRobot;double orientationRobot;//robot's pose and orientation
double xperson; double yperson; //position of a person by Kinect related to robot
double xPath; double yPath; //position of a person by Kinect related to the world
double distanceKinect; //the distance of the person by the kinect

double xFollow; double yFollow;//person's historical position by Kinect

double AngleErrorFollow; //angle of an historical position of a person by kinect
double DistanceErrorFollow; //distance of an historical position of a person
double followingAngle=0; //15 deg= 0.2618 ,30 deg= 0.5236 rad, 60 deg= 1.0472 rad
bool kinectLaserMatch=false; //the positions in both sensors correlate under 20 cm
int nbOfTracksKinect=0; //number of people detection by the kinect

bool BiglLeft; bool SmalllLeft; bool WalllLeft; //occlusions from the left side

bool BigRight; bool SmallRight; bool WallRight; //occlusions from the right side
bool laser_obstacle_flag; //true if an obstacle was found

bool slow_down_flag; //true if an obstacle was found in slowdown distance

double laser_angular_velocity=0; double laser_linear_velocity=0; //init the

s from obstacles avoidance algorithm to zero

double AngleErrorLaser; //angle of position of a person by laser to robot

double AngleErrorKinect; //angle of position of a person by kinect to robot

double error; //error distance between the two sensor that detect a person

double age; //"age" of the person by Kinect (time that been detected)

double height; //height of the person by kinect

double confidence; //SVM+HOG classifier- confidence for a real person

bool kinectTrack=false; //true if there is a valid track by kinect

bool laserTrack=false; //true if there is a valid track by laser
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std::vector<double> XpathPoints; //vector of X coordinates of a person
std::vector<double> YpathPoints; //vector of VY coordinates of a person
std::vector<double> AngleErrorPanHistory;//vector of angle of the Pan to the robot

public:
kinect2_pan_laser()

{

subl= n.subscribe("/tracker/tracks", 10, &kinect2_pan_laser::personCallback, this);
//the kinect parameters of the person

sub2= n.subscribe("/Pan_Feedback", 10, &kinect2_pan_laser::panCallback, this);
//the angle of the pan from the center of the robot

sub3= n.subscribe("/Pan_Error_Command", 10, &kinect2_pan_laser::smallErrorCallback,
this);//angle of a person from the kinect's center

sub4= n.subscribe("/people_tracker_measurements", 10,
&kinect2_pan_laser::LaserLegsCallback, this); //the laser parameters of a person

sub5= n.subscribe("/occlusions/sideOcclusions”, 10,
&kinect2_pan_laser::occlusionKinectCallback, this); //occlusions from depth occlusion

sub6= n.subscribe("/obstacles/laserObstacles"”, 10,
&kinect2_pan_laser::LaserObstaclesCallback, this); //obstacles from obstacle avoidance

Sub7= n.subscribe("/RosAria/pose", 10, &kinect2_pan_laser::poseCallback, this);
//position of the robot in the world

vis_publ = ros::Publisher(n.advertise<visualization_msgs: :Marker>(
"/visualization_marker_array", 1 )); //for laser legs (green)

vis_pub2 = ros::Publisher(n.advertise<visualization_msgs: :Marker>(
"/visualization_marker_array", 1 )); //for Kinect person detected (blue)

vis_pub3 = ros::Publisher(n.advertise<visualization_msgs: :Marker>(
"/visualization_marker_array", 1 )); //for robot position (red), when using rviz set the fixed
frame to odom

cmd_vel_pub = ros::Publisher(n.advertise<geometry msgs::Twist> ("follower/cmd_vel",
2));

}

void poseCallback(const nav_msgs::0dometry::ConstPtr& msg)
{xRobot=msg->pose.pose.position.x; yRobot=msg->pose.pose.position.y; //robot's position
tf::Pose pose; tf::poseMsgToTF(msg->pose.pose, pose);
orientationRobot= tf::getYaw(pose.getRotation()); //get radian rotation (@ front, 3.14 back,
left positive, right negative)
ROS_INFO("xRobot: %f", xRobot); //print the values of the parameters
ROS_INFO("yRobot: %f", yRobot); ROS_INFO("BigLeft: %d", BiglLeft);
ROS_INFO("SmallLeft: %d", SmallLeft); ROS_INFO("WallLeft: %d", WalllLeft);
ROS_INFO("BigRight: %d", BigRight); ROS_INFO("SmallRight: %d", SmallRight);
ROS_INFO("WallRight: %d", WallRight);
ROS_INFO("laser_obstacle_flag: %d", laser_obstacle_ flag);
ROS_INFO("xLaser: %f", xLaserPerson); ROS_INFO("yLaser: %f", ylLaserPerson);
ROS_INFO("match: %d", kinectLaserMatch); ROS_INFO("Confidence: %f", confidence);
ROS_INFO("Height: %f", height); ROS_INFO("distanceKinect: %f", distanceKinect);
ROS_INFO("AngleErrorPan: %f", (AngleErrorPan*180)/ PI); ROS_INFO("xKinect: %f", xperson);

ROS_INFO("yKinect: %f", yperson); ROS_INFO("xPath: %f", xPath);
ROS_INFO("yPath: %f", yPath); ROS_INFO("xFollow: %f", xFollow);
ROS_INFO("yFollow: %f", yFollow); ROS_INFO("tempDistance: 0");

ROS_INFO("kinectTrack: %d", kinectTrack); ROS_INFO("laserTrack: %d", laserTrack);
for(int i=0;i<100000;i++){ //robot's position marker

visualization_msgs: :Marker marker; marker.header.frame_id = "odom";
marker.header.stamp = ros::Time(); marker.ns = "robotPose";

marker.id = i; marker.type = visualization_msgs::Marker: :SPHERE;
marker.action = visualization_msgs::Marker::ADD; marker.pose.position.x = xRobot;
marker.pose.position.y = yRobot; marker.pose.position.z = 9;
marker.pose.orientation.x = 0.0; marker.pose.orientation.y = 0.0;
marker.pose.orientation.z = 0.9; marker.pose.orientation.w = 1.0;
marker.scale.x = 0.2; marker.scale.y = 0.2; marker.scale.z = 0.2;
marker.color.a = 1.0; marker.color.r = 1.0; marker.color.g = 0.0;

marker.color.b = 0.0; vis_pub3.publish( marker );}

}

void occlusionKinectCallback(const occlusions::sideOcclusions::ConstPtr& msg)
{BigLeft= msg->bigLeft; //get all the Depth Occlusion algorithm parameters
SmallLeft= msg->smalllLeft; WallLeft= msg->walllLeft; BigRight= msg->bigRight;
SmallRight= msg->smallRight; WallRight= msg->wallRight;
if (BigLeft && !BigRight && !SmallRight){followingAngle=-0.5236;} //change the following
angle according to the occlusion
if (SmallLeft && !BigLeft && !BigRight && !SmallRight){followingAngle=-0.2618;}
if (WallLeft && !WallRight){followingAngle=-0.2618;}
if (BigRight && !BigLeft && !SmalllLeft){followingAngle=0.5236;}
if (SmallRight && !BigRight && !BiglLeft && !SmalllLeft){followingAngle=0.2618;}
if (WallRight && !WalllLeft){followingAngle=0.2618;}

}

void LaserObstaclesCallback(const obstacles::laserObstacles::ConstPtr& msg)
{laser_obstacle_flag=msg->detect_obstacles;//get Obstacle Avoidance algorithm parameters

118



laser_angular_velocity=msg->angular_velocity;laser_linear_velocity=msg->linear_velocity;
slow_down_flag=msg->slow_down;

if

(laser_obstacle_flag){

cmd_vel.angular.z = laser_angular_velocity; //turn to avoid obstacles
cmd_vel.linear.x = laser_linear_velocity; cmd_vel_pub.publish(cmd_vel);}

}

void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg)
{AngleSmallError=msg->data; //get the angle of the person related to the kinect
if ((abs(AngleSmallError)<smallErrorThreshold)&&
(abs(AngleErrorPan)<0.01)){smallError=true;} //avoid small movements of the Pan
else {smallError=false;}

}

void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg)
{bool validTrackLaser=false;

int

nbOfTracksLaser=msg->people.size();();//number of people detection by the laser

if (nbOfTracksLaser>0) {

xLaserPerson=msg->people[0].pos.x; //position of first detected person by laser
yLaserPerson=msg->people[0].pos.y;

if (nbOfTracksKinect==0) { //if there is no Kinect detecti
AngleErrorLaser=atan2(yLaserPerson,xLaserPerson); //Calculate angle error by laser
DistanceErrorLaser=sqrt(pow(xLaserPerson,2)+pow(yLaserPerson,2)); //distance error
xPath= xRobot+cos(orientationRobot+AngleErrorLaser)*DistanceErrorLaser; //person's

position related to the world

yPath= yRobot+sin(orientationRobot+AngleErrorLaser)*DistanceErrorLaser;
XpathPoints.insert(XpathPoints.begin(),xPath); //insert the X coordinate
YpathPoints.insert(YpathPoints.begin(),yPath); //insert the Y coordinate
if (XpathPoints.size()>31){ //30 equal to 4 second history (8 Hz)
xFollow=XpathPoints.at(30); //get the 4 seconds historical position (8 Hz)
yFollow=YpathPoints.at(390);

XpathPoints.pop_back();//clear space for more coordinates
YpathPoints.pop_back();

if(!laser_obstacle_flag){ //no obstacle

AngleErrorFollow=atan2(yFollow-yRobot, (xFollow-xRobot))+orientationRobot; //angle

related to the world

if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI]
if(AngleErrorFollow<0){AngleErrorFollow=AngleErrorFollow+2*PI;}
else{AngleErrorFollow=AngleErrorFollow-2*PI;}
¥
double angular_command;
angular_command=-AngleErrorFollow*KpAngle; //angular velocity depends on the twist

controller and the angle error by laser

to the

DistanceTarget)*KpDistance;} //as long as the distance is bigger than distanceTarget, linear

if(angular_command>MaxTurn){angular_command=MaxTurn;} //limit maximum speed
if(angular_command<-MaxTurn){angular_command=-MaxTurn;}
cmd_vel.angular.z = angular_command;

DistanceErrorFollow=sqrt(pow(xFollow-xRobot,2)+pow(yFollow-yRobot,2)); //distance related

world
if (DistanceErrorLaser>DistanceTarget){ linearspeedLaser=(DistanceErrorFollow-

velocity depends on the distance error and the distance controller

else{linearspeedLaser=0;}

if (linearspeedLaser>MaxSpeed) {linearspeedlLaser=MaxSpeed;} //limit maximum speed

if (linearspeedLaser<®) {linearspeedlLaser=0;} //avoid going backward
cmd_vel.linear.x = linearspeedLaser;}

cmd_vel_pub.publish(cmd_vel);

validTrackLaser=true; laserTrack=true;
visualization_msgs: :Marker marker; //person's position by laser marker
marker.header.frame_id = "base_link";marker.header.stamp = ros::Time();
marker.ns = "laser"; marker.id = ©; marker.pose.position.x = xLaserPerson;
marker.type = visualization_msgs: :Marker: :SPHERE;
marker.action = visualization_msgs::Marker::ADD;
marker.pose.position.y = ylLaserPerson; marker.pose.position.z = 9;
marker.pose.orientation.x = 0.0; marker.pose.orientation.y = 0.0;
marker.pose.orientation.z = 0.0;

marker.pose.orientation.w = AngleErrorLaser; marker.scale.x = 0.1;
marker.scale.y = 0.1; marker.scale.z = 0.1; marker.color.a = 1.0;
marker.color.r = 0.0; marker.color.g = 1.0; marker.color.b = 0.0;

vis_publ.publish( marker );}

else{laserTrack=false;}

}

void panCallback(const std_msgs::Float32::ConstPtr& msg)
{AngleErrorPan=msg->data; //get the angle of the Pan related to the robot
AngleErrorPanHistory.insert(AngleErrorPanHistory.begin(),AngleErrorPan); //insert angle
the Pan to the robot
if(AngleErrorPanHistory.size()>3){

of
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if(abs(AngleErrorPan)>2.0){AngleErrorPan=AngleErrorPanHistory.at(2);} //avoid angles
above absolute value of 2 radians

AngleErrorPanHistory.pop_back();}
¥

void personCallback(const opt_msgs::TrackArray::ConstPtr& msg)
{bool validTrack=false;
nbOfTracksKinect=msg->tracks.size();//get the number of people by kinect
if (nbOfTracksKinect>@) { //if at least 1 track, proceed
for(int i=0;i<nbOfTracksKinect && !validTrack;i++){
if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){ //oldest track which older than age threshold, above the
confidence threshold, above the height threshold and under max height threshold
distanceKinect=msg->tracks[i].distance; //person's distance from the kinect
xperson=((distanceKinect)*cos(AngleSmallError+AngleErrorPan));
yperson=((distanceKinect)*sin(AngleSmallError+AngleErrorPan)); //position of the
person related to the robot
AngleErrorKinect=atan2(yperson,xperson); //angle of a person to robot
age=msg->tracks[i].age; //"age" of a person (time that been detected)
height=msg->tracks[i].height; //height of the person by kinect
confidence=msg->tracks[i].confidence; //confidence for a real person
xPath= xRobot+cos(orientationRobot+AngleErrorKinect)*distanceKinect;
yPath= yRobot+sin(orientationRobot+AngleErrorKinect)*distanceKinect; //person's
position related to the world
XpathPoints.insert(XpathPoints.begin(),xPath); //insert the X coordinate
YpathPoints.insert(YpathPoints.begin(),yPath); //insert the Y coordinate
if (XpathPoints.size()>81){ //80 equal to 4 second history (20 Hz)
if(sqrt(pow(XpathPoints.at(80)-XpathPoints.at(79),2)+pow(YpathPoints.at(80)-
YpathPoints.at(79),2))<1.0){ //avoid big false position change, the position of a person can not
be change more than 1 meter at 1 frame
XFollow=XpathPoints.at(80); //get the 4 seconds historical position (20 Hz)
yFollow=YpathPoints.at(80);

XpathPoints.pop_back(); //clear space for more coordinates
YpathPoints.pop_back();
error= sqrt(pow(xperson-xLaserPerson,2)+pow(yperson-yLaserPerson,2));
//calculate the x and y error between the kinect and the laser
if (error<9.2) {kinectLaserMatch=true;} //true if under 20 cm deviation
else{kinectLaserMatch=false;}
DistanceErrorKinect=msg->tracks[i].distance;//person’'s distance from kinect
if (!laser_obstacle_flag){ //no obstacle
AngleErrorFollow=-atan2(yFollow-yRobot, (xFollow-xRobot))+orientationRobot;
//angle related to the world
if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI]
if(AngleErrorFollow<®){AngleErrorFollow=AngleErrorFollow+2*PI;}
else{AngleErrorFollow=AngleErrorFollow-2*PI;}
¥
double angular_command;
if(abs(followingAngle)<@.1){angular_command = (-
AngleErrorFollow+followingAngle)*KpAngle;} //angular velocity also depends on the following
angle if it bigger than absolute value of 0.1
else {angular_command =-AngleErrorFollow*KpAngleOcclusion;} //angular
velocity depends on the twist occlusion controller and the angle error by kinect
if(angular_command>MaxTurn){angular_command=MaxTurn;}//limit speed
if(angular_command<-MaxTurn){angular_command=-MaxTurn;}
cmd_vel.angular.z = angular_command;
DistanceErrorFollow=sqrt(pow(xFollow-xRobot,2)+pow(yFollow-yRobot,2));
//person's distance from the robot
if (DistanceErrorKinect>DistanceTarget){ //as long as distance is bigger than
distanceTarget, linear velocity depends on distance error and distance controller
linearspeedKinect=(DistanceErrorFollow-DistanceTarget)*KpDistance;}
else{linearspeedKinect=0;}
if (linearspeedKinect>MaxSpeed) {linearspeedKinect=MaxSpeed;}//limit speed
if (linearspeedKinect<® || DistanceErrorKinect<0.05 ) //avoid going backward and
when reach to 5 cm threshold of disyanceTarget
{linearspeedKinect=0;}
cmd_vel.linear.x = linearspeedKinect;
validTrack=true; cmd_vel pub.publish(cmd_vel);}
}
}

kinectTrack=true;
visualization_msgs: :Marker marker; //person's position by kinect marker
marker.header.frame_id = "base_link";
marker.header.stamp = ros::Time() ;marker.ns = "kinect"; marker.id = 0;
marker.type = visualization_msgs::Marker::SPHERE;
marker.action = visualization_msgs::Marker: :ADD;
marker.pose.position.x = xperson; marker.pose.position.y = yperson;
marker.pose.position.z = 9; marker.pose.orientation.x = 0.9;
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marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.0;

)
marker.pose.orientation.w = AngleErrorKinect; marker.scale.x = 0.1;
marker.scale.y = 0.1; marker.scale.z = 0.1; marker.color.a = 1.0;
marker.color.r = 0.0; marker.color.g = 1.0; marker.color.b = 1.0;

vis_pub2.publish( marker );}
}
else { kinectTrack=false;
if (!laser_obstacle_flag && !laserTrack){ //no obstacle and no Kinect track
ros::Time start= ros::Time::now();
while((ros::Time: :now()-start<ros::Duration(round(tempDistance/0.3))) &&
('kinectTrack) && (!laser_obstacle_flag)){ //no Kinect track, while time is shorter than the
distance of the last position divided by contast linear velocity of 0.3
if (!laser_obstacle_flag)
{cmd_vel.linear.x = 0.3; cmd_vel.angular.z=0.0;} //move straight
else{cmd_vel.angular.z = laser_angular_velocity; //avoid obstacle
cmd_vel.linear.x = laser_linear_velocity;}

cmd_vel.linear.x = 0.0; //robot reach to the last position of the person

if(!'kinectTrack){ //if no Kinect track
if(yDirection>@){cmd_vel.angular.z=0.2;}//robot turns to last direction
else{cmd_vel.angular.z=-0.2;}

cmd_vel_pub.publish(cmd_vel);}
}
¥
s

int main(int argc, char **argv){
ros::init(argc, argv, "simple_follower_kinect2_pan_laser");
kinect2_pan_laser kpl;
ros: :NodeHandle n;
ros::spin();
return 0;

9. Adaptive Following Method (Kinect and Laser)

Implemented in 7.Direct Following Method and 8.History Following Method
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