

Ben-Gurion University of the Negev

Faculty of Engineering Sciences

Department of Industrial Engineering and

Management

Development of algorithms for a

human-following robot equipped

with Kinect vision and laser sensors

in an unknown indoor environment

with obstacles and corners

Thesis submitted in partial fulfillment of the requirements

for the M.Sc. degree

By

Dror Katz

Under the supervision of: Prof. Yael Edan

July 2016

Beer-Sheva

Ben-Gurion University of the Negev

Faculty of Engineering Sciences

Department of Industrial Engineering and

Management

Development of algorithms for a

human-following robot equipped

with Kinect vision and laser sensors

in an unknown indoor environment

with obstacles and corners

Thesis submitted in partial fulfillment of the requirements

for the M.Sc. degree

Dror Katz

Under the supervision of: Prof. Yael Edan

Author: Dror Katz ___

Supervisor: Prof. Yael Edan _______________________________________

Chairman of Graduate Studies Committee: Dr. Yisrael Parmet ____________

July 2016

Acknowledgments

This research would not have been possible without the support of many people.

I wish to express by deepest gratitude to my advisor, Prof. Yael Edan. Thanks for the

support, guidance, assistance and helpful advices. I learned a lot from you.

I wish to thank CDI (Boaz, Ziv and Avihai), for letting me use their spaces and equipment

as much as I needed.

Special thanks to all the wonderful people of the BGU industrial engineering department

that were involved during the research, always with a huge smile and help to solve problem

during the progress. Shanee Honig, Moshe Bardea, Shai Givati, Prof. Tal Oron Gilad,

Dr. Guillaume Doisy, Polina Kurtser and Inez Mureinik.

At last and most important, I wish to thank my wife Maayan, my family and friends, for their

moral support through the entire process of writing this thesis.

This research was supported by the Ministry of Science, Technology & Space, Israel, Grant

47897, “Follow me”, the Helmsley Charitable Trust through the Agricultural, Biological

and Cognitive (ABC) Robotics Center, and the Rabbi W. Gunther Plaut Chair in

Manufacturing Engineering, all at Ben-Gurion University of the Negev.

Abstract

A robot's ability to follow a human in an unmapped indoor environment is fraught with

challenges due to unknown obstacles, unexplored walls and unfamiliar corners and corridors.

This research aimed to develop human-following robot algorithms that reduce the number

of instances of loss of the human and to improve the robot's ability to self-recover in

unknown environments. To this end, five algorithms and two human-following methods

were developed and tested in a series of experiments with a mobile robot platform.

Algorithms. The developed algorithms do not use any a-priori information about the

environment (i.e., operate with no a-priori mapping) and do not require that the human have

any particular carry-on item or specific clothing.

The algorithms use depth methods to improve the occlusion detection process. They use a

laser sensor to avoid obstacles during the following process in real time, adapt to the linear

and angular velocities of the robot and remember the last position of the person to search the

person if the person disappears by moving to the last known position of the person and

turning in the direction that was calculated before loss.

The following five algorithms were developed: real time Obstacles-Avoidance by laser

(OA), Search-After-Disappear to search for the person after tracking has been lost (SAD),

and three occlusion detection algorithms, namely, Depth-Occlusion-Detection (DO) using

the depth information from the Kinect sensor (see below), Vision-Occlusion-Detection

(VO) using the 2D information from the Kinect, and Combined-Occlusion-Detection (CO)

using both depth information and 2D information.

Sensors. Two sensors were used for detecting humans: 1) Kinect using OpenPTrack

(http://openptrack.org/) that detects people standing on the ground by using histogram of

oriented gradients (HOG) and support vector machine (SVM) classifiers and 2) the on-board

laser SICK300, which can detect the human's legs at 20 cm above the ground.

Methods of following. Two main human-following methods were developed and evaluated.

A Direct-Following (DF) method, in which the robot moves directly towards the person

being detected, and a History-Following (HF) method that causes the robot to move to

previous positions of the person. The evaluation of the methods comprised two stages:

1) using only the Kinect to follow the human, denoted as non-adaptive methods, and 2) using

both sensors to follow the person (if the Kinect loses the person, then the method uses the

laser), denoted as adaptive methods.

Robot platform. The algorithms were implemented on a Pioneer LXRobot mobile platform

equipped with a Kinect and laser sensor.

Experiments – methodology and results. To overcome the difficulties inherent in an

unknown environment, real-time algorithms were developed and integrated in various

combinations with the two main human-following methods (DF, HF). A series of

experiments were conducted to derive best fit parameters and to evaluate the algorithms.

Performance measures applied for the comparison were the number of instances of loss of

the human, number of self-recoveries of the robot and the number of safety interventions,

the distance between the robot and the human, the length of the robot path, reliability of the

legs detector, reliability of occlusion detections, and the ratio of stable tracking (percent of

stable tracking from the entire trial) of the Kinect and laser.

The first two experiments were preliminary experiments to choose the robot following

parameters. After implementing the Kinect V2 with a Pan Mechanism, an experiment was

conducted to test the objective and subjective metric performances of three following angles

(0, 30, 60°). The results indicated that there was no significant difference between 0° and

30° following angles. The results for following at 60° were not sufficiently reliable.

In an experiment aimed to compare the different occlusion detection algorithms, the DO

yielded the best performance. An experiment to determine the best combination of the three

algorithms (DO, OA, and SAD), once with the DF method and once with the HF method,

indicated that combining the three algorithms yielded best performance. The final, and most

important experiment, compared the two methods of human-following (DF and HF) with

the combination of the three algorithms to same chosen methods with addition laser legs

detector (denoted as adaptive methods) for use if necessary if the Kinect lost the participant.

Conclusions. The results showed that adaptive methods that combine the Kinect and laser

sensor to follow the person were better than non-adaptive methods (the algorithms that use

only the Kinect to follow the person) and that direct-following methods are better than

history-following methods.

Table of Contents
Abbreviations .. 1

1. Chapter One: Introduction .. 2

 1.1 Description of the Problem .. 2

 1.2 Objectives .. 3

 1.3 Thesis contributions ... 3

 1.4 Thesis structure .. 4

2. Chapter Two: Literature Review .. 5

 2.1 Introduction .. 5

 2.2 Applications ... 5

 2.3 Tracking Methods .. 5

 2.4 Navigation .. 11

 2.5 Occlusions and Target Loss ... 12

3. Chapter Three: Methodology .. 13

 3.1 General ... 13

 3.2 Robot Hardware and Software ... 13

 3.3 Algorithms ... 15

 3.4 Experimental Design .. 17

 3.5 ROS implementation .. 27

 3.6 Analysis.. 28

4. Chapter Four: Algorithms ... 31

 4.1 Overview .. 31

 4.2 Depth Occlusions Detection... 32

 4.3 Vision Occlusions Detection .. 35

 4.4 Combination of Depth and Vision Occlusions Detection .. 38

 4.5 Obstacle Avoidance ... 38

 4.6 Search-after-Disappear... 39

 4.7 Kinect Orientation Control – Pan Mechanism ... 39

 4.8 Direct-Following Method .. 42

 4.9 History-Following Method .. 44

 4.10 Adaptive Following Methods (Kinect and Laser) .. 47

5. Chapter Five: Results and Discussion ... 49

 5.1 Overview .. 49

 5.2 Preliminary Experiment: Identifying Testable Parameters on a No-Pan Kinect V1 49

 5.3 Preliminary experiment: Testing Objective & Subjective Performances of 2 Angles 50

 5.4 Testing Objective & Subjective Metric Performances of 3 Angles on a Pan Kinect V2 54

 5.5 Comparison of Occlusion Algorithms ... 55

 5.6 Direct-Following Experiment .. 56

 5.7 History Following Experiment... 56

 5.8 Adaptive Kinect-Laser vs. Non-Adaptive (Direct and History-Following) Experiment 62

6. Chapter Six: Conclusions and Future Work .. 71

 6.1 Conclusions .. 71

 6.2 Research limitations ... 71

 6.3 Future Work ... 72

7. References .. 73

8. Appendices

 Appendix A- An explanation of how to start the following methods and integrated algorithms . 75

 Appendix B- Likert-Style Questions for Section 3.4.3 ... 77

 Appendix C- Statistical Analysis .. 78

 Appendix D- C++ codes ... 106

List of Figures
Figure 1- Comparison of the specifications of Kinect Version 1 and Kinect Version 2 13

Figure 2- Pioneer LXRobot with Kinect ... 14

Figure 3- System hardware and software: computers, devices, sensors and algorithms................... 15

Figure 4- Human-following methods and connections of the algorithms ... 16

Figure 5- Methodology sequence of steps .. 17

Figure 6- Experimental steps .. 18

Figure 7- Walking path ... 20

Figure 8- Addition of the cardboard "trunk" ... 21

Figure 9 - Direct-Following and History-Following steps .. 24

Figure 10- Adaptive vs. Non-Adaptive experiment path .. 26

Figure 11- Nodes and topics flow-chart .. 27

Figure 12- New BBC parameters .. 33

Figure 13 - DO pseudo code ... 34

Figure 14 - DO person detection with a half-BBC (from OpenPTrack) near a right wall (left).

Person's Distance of 2.4 m with a small right occlusion and right wall detection without a left

occlusion (right) .. 35

Figure 15 - VO pseudo code ... 37

Figure 16 - green VO person contour with red straight line of a wall (left). MONO image with a

half hidden person with wall from the right (center). Right wall detection (right) 38

Figure 17 - Obstacles corridor examples .. 40

Figure 18 - Laser to world coordinates ... 45

Figure 19 - Kinect to world coordinates ... 46

Figure 20 - Flowchart of the decision making Kinect- and laser-detection algorithm 48

Figure 21 - Examples of losing tracking at distances > 4 m and at close distances 51

Figure 22 - Losses reasons (back-following vs. side-following) .. 51

Figure 23 - Means and variance degrees (back-following vs. side-following) 52

Figure 24- An example of Direct-Following with search and occlusion algorithms from RVIZ 58

Figure 25 - Example of History-Following with search and occlusion algorithms from RVIZ 59

Figure 26 - Five trials total path length of the robot ... 61

Figure 27 - Means for groups in homogeneous subsets .. 66

Figure 28- Trials examples for the adaptive and non-adaptive experiment 69

Figure 29- Descriptive Direct vs History .. 88

Figure 30- Descriptive Adaptive vs Non-Adaptive .. 92

Figure 31- Descriptive Direct vs History .. 95

Figure 32- Descriptive Gender (Males vs females) .. 96

Figure 33- Descriptive Subjects (24) .. 98

List of Tables

Table 1- Five combinations of trials ... 23

Table 2- Combinations of methods and algorithms .. 25

Table 3- Statistical analyses .. 30

Table 4- Properties of Kinect vs laser detector ... 48

Table 5- The set of usable parameters tested for the variables ... 49

Table 6 - Following angle results (back-following vs. side-following) .. 52

Table 7- Subjective results of the performances of two angles experiment 54

Table 8- Cumulative results for objective measures for quality of walk .. 55

Table 9- results of comparison occlusion algorithms experiment .. 56

Table 10 - Results for Direct-Following experiment .. 57

Table 11- Results for History-Following experiment ... 59

Table 12- Statistic comparison between 3 DF trials vs 2 HF trials .. 60

Table 13 - Results for the comparison between 3 DF trials vs 2 HF trials 60

Table 14 - Results for five trials.. 61

Table 15 – Statistic comparison between Adaptive Kinect-laser methods vs Non-adaptive Kinect

methods ... 62

Table 16- Direct-Following (adaptive and non-adaptive methods) vs History-Following (adaptive

and non-adaptive methods) ... 63

Table 17- Statistical comparison between males vs females .. 64

Table 18- Statistical comparison between the four trials .. 65

Table 19- The summarized results of the adaptive and non-adaptive (DF and HF) experiment

ranking .. 70

Table 20 - Raw data occlusion's algorithms comparison .. 79

Table 21- ANOVA occlusion's algorithms comparison ... 80

Table 22- Tukey HSD occlusion's algorithms comparison ... 80

Table 23- Total_True occlusion's algorithms comparison .. 81

Table 24- True_Wall occlusion's algorithms comparison ... 81

Table 25- Total_False occlusion's algorithms comparison ... 81

Table 26- PEARSON correlations occlusion's algorithms comparison .. 82

Table 27- Raw data Direct-Following and History-Following ... 83

Table 28- ANOVA Ratio_Track_Kinect Direct-Following ... 83

Table 29- Tukey HSD Ratio_Track_Kinect Direct-Following ... 84

Table 30- Ratio_Track_Kinect Direct-Following ... 84

Table 31- Descriptive Total_Loss Direct-Following .. 84

Table 32- ANOVA Subject's_average_velocity Direct-Following ... 85

Table 33- Tukey HSD Subject's_average_velocity Direct-Following .. 85

Table 34- ANOVA Total_path_distance History-Following .. 86

Table 35- Homogeneity of Variances Direct vs History ... 86

Table 36- ANOVA Direct vs History ... 87

Table 37- Homogeneity of Variances Total_path_distance- 5 trials .. 88

Table 38- ANOVA Total_path_distance- 5 trials ... 89

Table 39- Tukey HSD Total_path_distance- 5 trials .. 89

Table 40- Total_path_distance- 5 trials .. 89

Table 41- Raw data Adaptive vs Non-Adaptive (Direct and History) .. 90

Table 42- Homogeneity of Variances Adaptive vs Non-Adaptive ... 91

Table 43- ANOVA Adaptive vs Non-Adaptive .. 91

Table 44- ANOVA Direct vs History ... 93

Table 45- Homogeneity of Variances Gender (Males vs females) ... 95

Table 46- ANOVA Gender (Males vs females) .. 95

Table 47- Homogeneity of Variances Subjects (24) ... 96

Table 48- ANOVA Subjects (24).. 96

Table 49- Tukey HSD Subjects (24) ... 97

Table 50- Homogeneity of Variances Trials (4) ... 98

Table 51- ANOVA Trials (4) .. 99

Table 52- Tukey HSD Trials (4) ... 100

Table 53- Total_Loss Trials (4) .. 101

Table 54- Safety_Intervention Trials (4) .. 102

Table 55- Average_Distance Trials (4) ... 102

Table 56- Ratio_Track_Kinect Trials (4) .. 103

Table 57- False_Depth_Occlusion Trials (4) .. 103

Table 58- Depth_Occlusion Trials (4) .. 104

Table 59- Subject's_Velocity Trials (4) .. 104

Table 60- Robot's_Distance Trials (4) .. 105

This thesis is in part based on the following publications:

Conference Publications:

Honig, Katz, Oron-Gilad, Edan. 2016. " The Influence of Following Angle on Performance

Metrics of a Human-Following Robot" in ROMAN.

Journal Papers to be submitted:

Katz, Edan. 2016. "Kinect and laser based algorithms for a human-following robot

operating in unknown indoor environments" (in preparation).

1

Abbreviations

General

BBC bounding box coordinates

CDI Center for Digital Innovation

DLLM double-layer locating mechanism

HOG histogram of oriented gradients

LRF laser range finder

OBB oriented bounding box

PCL point cloud library

ROI regions of interest

ROS robot operating system

SDK software development kit

sig. level of significance

SLAM simultaneous localization and mapping

STD standard deviation

SVM support vector machine

Algorithms

CO Combined-Occlusions-Detection

DO Depth-Occlusions-Detection

OA Obstacle Avoidance

SAD Search-after-Disappear

VO Vision-Occlusions-Detection

Methods

DF Direct-Following

HF History-Following

https://en.wikipedia.org/wiki/Software_development_kit

2

1. Chapter One: Introduction

1.1 Description of the Problem

In robotics, algorithms for human-following robots have been the subject of intensive

research (Jia et al. 2016; Li et al. 2015; Sahoo and Ari 2015; Jung et al. 2014; Karakaya et

al. 2014.; Doisy et al. 2012; Machida et al. 2012; Motai et al. 2012), but one of the main

problems, namely, the robot losing track of the person it is following, remains to be resolved

(Ota et al. 2013). Additional problems are caused by occlusions, quick turning of the person,

and crowded environments or they may occur when the target person is obscured by

obstacles. There are many approaches in the literature to overcome these problems (Ota et

al. 2013; Granata et al. 2011; Kim et al. 2010; Ma et al. 2008; Kmiotek and Ruichek 2008;

Huang et al. 2007), but to date, none is completely satisfactory. One option is to provide the

robot with a detailed map of the environment that can be used to avoid obstacles and to

predict the next step in a corridor or at a corner. The disadvantages of this option are that

requires a-priori information about the environment and that it lacks versatility. For the robot

to avoid obstacles without having a-priori information, it must be equipped with a real-time

obstacle-detection algorithm so that it can react immediately when an obstacle appears in its

close vicinity. Another option uses a decision-making engine that selects from different

following methods, such as direct following or path following, when the person disappears

(Granata et al. 2011). An approach that uses vision-based face detection (Huang et al. 2007)

could be used in the following system to restore tracking after target loss, but the

disadvantage of this approach is that the person must face the robot. Yet another method to

maintain following is for the person to carry a device for guiding the robot, like a dog-leash

(Young et al. 2011), but once again, such a solution reduces the versatility of the robot and

has the additional disadvantage that the person has to carry the device.

Most human-following algorithms are programmed to follow a person directly from behind

(Granata et al. 2011). However, if the robot 'realizes' that something is blocking its line of

sight to the person, it can prevent the interruption in following by changing its tracking angle

through increasing its line of sight with the person (wider angle). When a person starts to

disappear, due to, say, rounding a corner, the robot must react to reduce the probability of

losing the person.

3

1.2 Objectives

This study aimed to develop human-following algorithms for robots that reduce the number

of instances of the robot losing the human and that improve the robot's ability to self recover

in environments that branch or have unexpected corners, obstacles or occlusions. In this

thesis, the focus was directed to detecting corners and obstacles that interrupt the line of sight

between the robot and the person by using a Kinect vision sensor and Kinect people

recognition, such as Skeleton or OpenPTrack (Munaro et al. 2014). The study explored

whether and how the use of vision and depth methods can contribute to improving detection

in an occlusion situation. It also explored whether following the human at different angles

to create a better line of sight between the robot and the person could reduce the probability

of losing track of the person. To enable the robot to deal with obstacles during the following

process, a real-time obstacle-detection algorithm was developed. The algorithms do not use

any a-priori information about the environment (i.e., it operates without mapping) and do

not rely on any special carry-on item or any specific clothing of the human.

1.3 Thesis contributions

This thesis introduces four algorithms and two human-following methods, which were

developed to overcome the difficulties – due to unexpected obstacles, unexplored walls and

unfamiliar corners and corridors – in following a human for robots operating in unmapped

environments. Here, a brief summary is provided, with more detailed definitions and

explanations being given later in the relevant sections of the thesis.

Algorithms

 Real-time obstacle detection and avoidance without a-priori information about the

location of the obstacles or any kind of pre-built map of the environment. The algorithm

declares an adaptive corridor in front and on the sides of the robot to narrow the scan

area, which depends on the prevailing linear and angular velocities of the robot. As the

robot turns, the corridor moves to the side of the turn to enable the robot to search for

obstacles inside the turning radius. The angular velocity depends on the side and distance

of the obstacle from the center of the robot.

 Real-time occlusion detection using depth information of the pixels. The algorithm

compares the depth value of the pixels (distance value of the pixels) inside the bounding

box coordinates (BBCs) of a detected person to the distance of the whole person from

the robot and searches for small values that indicate closer pixels (indicating an

occlusion). It does not use the ground depth value but depends on the person’s distance

4

from the robot. The algorithm reduces false alarms and can detect both small and large

occlusions and even a vertical occlusion like a wall.

 Real-time occlusion detection using 2D images by transforming the pixels' coordinates

of the depth image to a 2D (MONO) image. The algorithm finds contours of the whole

person and any straight vertical lines that indicate an occlusion.

 Search for the person after disappearance. The algorithm moves the robot to the person's

last known position and turns the robot in the direction that is calculated according to the

last few frames obtained before the person had disappeared.

Following methods

 Direct human-following method moves the robot directly to the position of the detected

person. The method gives priority to sending the robot the linear and angular velocity to

avoid any obstacles change. The robot can then change the following angle according to

the occlusion-detection algorithm, which can work with robots equipped with Kinect

and/or laser sensors.

 History human-following method moves the robot directly to the historical position of

the person being tracked. The method avoids big changes of the position of the person

caused by the movements of the robot and the Kinect, avoids quick turns that cause the

Kinect to lose the person and avoids problems with two sources of person detection

(Kinect and laser).

1.4 Thesis structure

The thesis is organized as follows: Chapter 2 presents a review of the literature on human-

following methods by several sensors, robot navigation, detection of occlusions, and target

loss. Chapter 3 presents the methodology, which starts with a description of the robot

hardware and software and continues with a description of the sequence of experimental

steps and all the experimental procedures. This chapter ends with a description of the

implementation of the robot operating system (ROS) and analysis procedures. Chapter 4

presents the description of the algorithms. Chapter 5 gives the results of the experiments and

some discussion of the results. Chapter 6 presents conclusions and recommendations for

future work.

5

2. Chapter Two: Literature Review

2.1 Introduction

Tracking of a person by a robot has been intensively investigated in recent years (Jia et al.

2016; Sahoo and Ari 2015; Li et al. 2015; Karakaya et al. 2014.; Jung et al. 2014; Doisy et

al. 2012; Machida et al. 2012; Motai et al. 2012), with the main thrust of the research being

devoted to three challenging tasks related to person-tracking robots: (1) robot navigation, (2)

tracking methods, and (3) problems associated with occlusions and target loss. Recently,

research has focused on new tracking methods and on the fusion of several methods to

investigate problems related to recovery after target loss or occlusions (Ota et al. 2013;

Granata et al. 2011; Kmiotek and Ruichek 2008; Huang et al. 2007).

2.2 Applications

Robot tracking has been applied for many uses and applications, including, among many

others: (1) Care robots in nursing, such as those providing medical help for the elderly, where

the robot helps to carry medicines and treat the patients (Machida et al. 2012); (2) Robots

for assisting workers to assemble large equipment (Karakaya et al. 2014); (3) Robots that

help passengers to carry heavy luggage at airports and train stations (Li et al. 2013);

(4) Smart shopping carts, such as the Kinect grocery cart, that follow the customer and scan

his/her purchases in the supermarket or the mall; (5) Robots as walking assistants to support

a person (Jia et al. 2016); (6) Museum guidance robots that follow a person and provide

guidance and information (Karakaya et al. 2014); and (7) Robots designed to help the

disabled (Jia et al. 2016).

2.3 Tracking Methods

2.3.1 Vision-Based Tracking

Along the years, many algorithms have been developed for use with different sensors and

methods that rely on smart environments (Najmaei and Kermani 2011). Most person

detection and tracking methods use vision-based techniques (Jia et al. 2016; Sahoo and Ari

2015; Y. Li et al. 2015; Yao et al. 2012; Motai et al. 2012; Ma et al. 2008), but such

techniques have some inherent disadvantages, such as sensitivity to illumination changes

(Liu et al. 2004) or problems with computing size or large processing. Two examples of

vision-based algorithms are the particle filtering (PF) algorithm and the mean-shift algorithm

6

(Yao et al. 2012). Particle filters represent a distribution by a set of weighted samples called

particles. Each particle is a guess representing one possible location of the object being

tracked. This weighted distribution is updated along time by using a set of equations. The

mean-shift algorithm creates a confidence map in a new image based on the color histogram

of the object in the previous image, and applies mean-shift optimization to find the peak in

a confidence map near the object's previous position. Each pixel of the new image is a

probability, which is related to the probability of the pixel color occurring in the object in

the previous image. An advanced mean-shift algorithm can be used for detection of a person

by modeling a star skeleton of the human body and adding a combination of a block search

algorithm for high-speed movement and a target loss recovery algorithm (Sahoo and Ari

2015). Some vision-based methods are based on detection of the person's legs (Li et al.

2015); for example, they divide the tracking into global tracking, which describes the motion

of both feet as one element, and local tracking, which describes the relation between the two

feet (Li et al. 2015).

2.3.2 Laser-Based Tracking

Rather than using vision-based techniques, several methods use laser sensors to 'find' the

human (Karakaya et al. 2014; Jung et al. 2014; Alvarez-Santos et al. 2012; Kim et al. 2010;

Sales et al. 2010; Ma et al. 2008), since the laser range finder (LRF) can provide more precise

position information. A laser-based technique has the additional advantages that it requires

fewer processing sources and is less influenced by lighting conditions (Kim et al. 2010). In

addition, the laser is not influenced by colors or face detection. The main disadvantage of

laser-based techniques lie in their ability to recognize only items in the line of sight, which

is relatively a small area when compared to that covered by vision-based methods.

2.3.3 Integration of Sensor-Based Tracking Techniques

Several studies have described methods of integration of vision-based sensors and lasers, for

example, such methods may use vision-based methods to extract the body and lasers to

measure distance (Ma et al. 2008). In most applications, the LRF detects the legs of a person

(Alvarez-Santos et al. 2012), but human legs can be confused with chair or table legs, so

there is a need to compose a map of the environment by using a sensor fusion technique

(Motai et al. 2012). In such a scenario, the laser can assist the robot to navigate and to avoid

obstacles and not only to track the person.

7

A combination of depth images and thermal images has also been developed for detecting

more than one person (Hadi et al. 2015). A depth image is fused with the region of interest

(ROI) obtained from the thermal image to derive a person’s contour. Occlusions of the

detected persons are resolved using BBCs. The algorithm has two stages: The first is a pre-

detection stage to obtain the BBC from the thermal image representing the region of humans.

In the second stage, people are detected with contours of depth measurements, and an

occlusions detector classifier is applied to detect people that are occluded.

2.3.4 Depth-Camera-Based Tracking

Yet another tracking method focuses on the use of time-of-flight (TOF) range cameras

(Ikemura and Fujiyoshi 2011; Plagemann 2010; Plagemann and Koller 2010). Many

algorithms have been proposed to address the problem of pose estimation and motion capture

from range images, for example, a filtering algorithm to track human poses using a stream

of depth images captured by a TOF camera (Plagemann 2010). There have been several

works on detection of human parts using TOF cameras (Plagemann and Koller 2010).

Examples include: (i) using a point detector to solve problems of detection and to identify

body parts in depth images (Plagemann and Koller 2010) and (ii) using a window-based

human detection method by comparing depth similarity features based on depth information

(Ikemura and Fujiyoshi 2011).

When there is a problem with low visibility conditions, such as in smoky environments, the

vision-based sensors or lasers do not provide good solutions (Sales et al. 2010). In such a

case, the use of LRF and sonar sensors is proposed in combination with a vision-based

system that can determine the amount of smoke in the environment and then decide on the

optimal combination of sensors for the particular conditions (Sales et al. 2010).

2.3.5 Kinect-Based Tracking

In June 2011, Microsoft released the Kinect software development kit (SDK). This SDK

allows developers to write Kinect apps for the Kinect sensor. Kinect is an RGB-D sensor

that provides depth images, allowing real-time object segmentation, which based on a

distance gradient. The depth sensor, which includes an infrared laser projector in

combination with a monochrome sensor, captures video data in 3D under any lighting

conditions, and hence facilitates the development of more efficient human-tracking robots

(Pucci et al. 2013). Indeed, Kinect may be regarded as a breakthrough in the field: it has

https://en.wikipedia.org/wiki/Software_development_kit
https://en.wikipedia.org/wiki/Infrared
https://en.wikipedia.org/wiki/Laser
https://en.wikipedia.org/wiki/Active_pixel_sensor
https://en.wikipedia.org/wiki/Available_light

8

made possible new approaches and techniques for person-tracking research (Machida et al.

2012; Doisy et al. 2012; Ikemura and Fujiyoshi 2011). The 3D position information from

the Kinect sensor enables the velocity and attitude of the mobile robot to be controlled

directly. A Kalman filter can be used to reduce the noise and to estimate the human's motion

(Machida et al. 2012). Another Kinect detection example, which detects humans using a 2-

D head contour model and a 3-D head surface model, was developed (Ikemura and Fujiyoshi

2011).

OpenPTrack is an open source algorithm based on the Robot-Operation-System "ROS"

(Quigley et al. 2009) and Point Cloud Library (PCL) (Rusu and Cousins 2011). It detects

people with the Kinect sensor using a histogram of oriented gradients (HOG) and a support

vector machine (SVM) learning classifier for creating the confidence, based on a large

training dataset, that the detected area is a person. In addition, an unscented Kalman filter

(for nonlinear systems) is exploited to predict people's positions and velocities along the two

ground plane axes (X,Y) (Munaro and Menegatti 2014). The algorithm provides many

person-specific parameters, namely: the position of the person in the world, as 'seen' by

Kinect, the coordinates of the bounding box around the person in the depth image, height of

the person, distance to the person and more. The algorithm is able to track people at 30 Hz

with minimum latency on the assumption that the plane on which people stand or walk is the

ground, and therefore the number of Regions-Of-Interest "ROIs" that are candidates to

contain people is reduced. After selecting a set of clusters from the point cloud, the algorithm

processes a Histogram-of-Oriented-Gradients "HOG"-based people detector applied to the

corresponding image patches (Munaro and Menegatti 2014), and finally it uses a SVM

classifier for deciding on the confidence that the patch is a person. The main advantage of

this algorithm is its ability to use both RGB and depth information for obtaining the best

result when the RGB image is good, while using depth data alone if the RGB image is too

dark.

2.3.6 Different Detectors for Different Distances

For close-range detection (up to 5-7 m), the real-time RGB-D based multiperson detection

and tracking system of Jafari, Mitzel, and Leibe (2014) uses an extremely fast depth-based

upper-body detector and for further distances it adds an appearance-based full-body HOG

detector. The idea is to use the depth information for ROI extraction to detect people at close

range, where depth measurements are reliable, while simultaneously extrapolating scene

geometry information to constrain the search space for appearance-based people detection

9

in the far range. The system uses a template of an upper body to detect people by using depth

information at close range; the system computes a distance matrix consisting of the

Euclidean distances between the template and each normalized depth image segment. For

detecting people at further distances, the system uses HOG alone on the ROIs, according to

the ground plane. Finally, the detections are converted to ground plane coordinates and are

associated into trajectories using an extended Kalman filter.

2.3.7 Outdoor Tracking

Most tracking systems or mobile robots have been designed to operate in indoor

environments (Karakaya et al. 2014). Robotic systems designed to operate in outdoor

environments, including person tracking and avoiding moving obstacles, in a crowded

environment are very rare, because of the noise generated by the outdoor environment.

Nonetheless, a robot capable of following a marathon runner has been developed; it uses a

laser to detect the runner and to avoid obstacles (Jung et al. 2014). This robot, known as

MSR (Marathoner Service Robot), is designed to carry water and equipment for the runner.

10

2.3.8 Examples of human tracking

Examples of human-tracking algorithms for robots are given in the table below.

Review Crowd/

single

Obstacles Quick

turn

Object Variable

speed

Indoor/

outdoor

Disadvantages Advantages Experiment Algorithm Sensor

Machida et

al. 2012

single no No Bone

model (all
body)

Yes Indoors Velocity less than 1 m/s.

Light condition, Spatial
resolution, Sample rate.

Low price; depth help for

clutter background

Circular path vs zigzag Kalman filter Kinect

Ikemura

and

Fujiyoshi
2011

Up to 2

persons

only

tracking

No Head and

then the

body

Only

tracking

Indoors High dependency on

accurate head detection.

Easily adjust to new

datasets; no training

needed; the first layer
reduces computational

cost; does not assume

person’s pose for accurate
detection.

Two persons indoors

with many objects in

the vicinity

A 2D edge detector and a

3D shape detector to utilize

both the edge information
and the relational depth

change information in the

depth image.

Kinect

Sahoo and

Ari 2015

Single Only

tracking

No Star

skeleton
(all body)

Only

tracking

Outdoors Does not work for fast

motion, prolonged
occlusion or changing

illumination.

 Advanced mean-shift. RGB

Li et al.

2015

Single No No Two feet No Indoors

and
outdoors

Fails in noisy

backgrounds; shift to
another person.

 Several human

walking videos;
evaluated against

particle filtering.

Particle filtering; global

tracking (motion of both
feet), and local tracking

(relative motion of the two

individual feet).

RGB

Jung et al.

2014

Crowd Yes Yes Torso Yes Outdoors Irregular terrain in the

outdoor environment or

significant noise from
the outdoor

environment.

 Tracking speed and

performance; static

and moving obstacles
avoidance.

Support vector data

description (SVDD);

human detection algorithm
and an avoidance

algorithm.

LRF

(laser

range
finder)

Ma et al.

2008

Crowd No Yes Torso for

vision, legs

for laser.

Yes Indoors Another person with

same clothes.

Compares the vision to the

distance from the laser.

Difference distance;

another person with

the same clothes.

Horizontal Projecting

Probability Histogram

(HPPH) of upper body with

unscented particle filter
(UPF) with laser for legs.

RGB and

LRF

Motai et al.

2012

Single Yes (with

laser)

 -Yes

sharp

OF -turns
other KF

Whole

body

No Indoors Crowd. Combination of Kalman-

Filter and Optical-Flow

for quick turn

Single person indoors,

compared to only

Kalman-Filter and
only Optical-Flow.

Kalman filter and optical

flow.

Infra-red

and laser

Sales et al.

2010

Single Yes No Legs No Indoors Laser is better than

sonar.

Low visibility

environment.

Only sonar, only laser,

sonar TODA (time
difference of arrival)

Vision image to determine

the degree of visibility of
the environment.

RGB,

laser,
Sonar

11

2.4 Navigation

2.4.1 Overview

To navigate in an environment, the human-tracking robot needs to know where all the

obstacles are in that environment or to have a pre-built map of the environment that includes

the obstacles. In addition, to navigate, the robot must be programmed with a method for

following the person.

2.4.2 Mapping the Environment

Most person-tracking approaches in indoor environments are based on wireless networking,

such as ultrasound and radio frequency (Garcia-Valverde et al. 2013). For indoor

applications, the map of the environment allows safer and more efficient robot navigation,

but often the robot must also take into consideration the movement of objects and other

people. A study that compared robot navigation with and without a map of the environment

showed how the map improved the robot's adaption to the distribution of obstacles (Doisy

et al. 2012). A common method for navigation and building a map of the environment is

simultaneous localization and mapping (SLAM), one of the most active research and

development areas in mobile robotics (Schmidt et al. 2016). Statistical techniques are used

to solve SLAM, with the most popular approximate solution being particle filter and

extended Kalman filter (Norhidayah and Norida 2015). The main disadvantage of SLAM

lies in its computational complexity, which increases significantly with the growing number

of landmarks in the environment under exploration (Ding et al. 2015).

2.4.3 Obstacle Detection

The many different sensors employed for obstacle detection include sonar pairs, infra-red

measurement sensors, point-to-point laser sensors, LIDAR (light detection and ranging or

laser imaging detection and ranging), and Kinect (İ et al. 2012). One such system that

combines LIDAR and Kinect uses the LIDAR for obstacle and heading direction and Kinect

for eliminating depth data for the immediate environment (Karakaya et al. 2014.; İ et al.

2012).

12

2.4.4 Methods of Following

There are many methods for navigation and for tracking a person. The robot can track by a

direction-following method, in which the robot is always pointing towards the person and

moves directly to him. A robot can also track by path-following method, which tracks by

adhering to the same path that the person walks. Another – albeit rarely applied – method is

parallel-following, which depends on the prevailing state of the environment and on the

position of the robot relative to the person (Morales et al. 2012). There are also hybrid

methods that use combinations of the above methods (Granata et al. 2011).

2.5 Occlusions and Target Loss

A person-tracking robot requires tracking abilities that distinguish between people and

objects (Jia et al. 2016; Kim et al. 2010; Ma et al. 2008). Such a robot is also required to

overcome problems caused by occlusion, quick turning, and crowded environments, or those

that occur when the target person is obscured by obstacles. The robot must also have the

ability to recognize loss of tracking due to individuals walking between the mobile robot and

the target person and to recover the tracking by using a legs detector (Kim et al. 2010). The

development of an adaptive multi-feature mean-shift algorithm in a cluttered environment

has been described by Jia et al. (2016) using the double-layer locating mechanism (DLLM).

This mechanism takes the course location processing and fine location processing into

consideration and is designed to estimate the position of the person by using a combination

of data and an ID tag on the person, which can be detected by radio frequency antennas (Jia

et al. 2016). For adapting to different moving targets using key characteristics, the robot

constructs the target model at the beginning of the tracking process, then detects the human

candidates in the scene and finds the target person by using multiple image cues, namely,

color and edges (Ma et al. 2008). Other methods to solve the problems of occlusions and

target loss were developed. Examples include: (i) Use a decision-making engine when the

person disappeared by choosing a different method to follow the person, direct following or

path following (Granata et al. 2011). (ii) Continuing to follow even when the sensor lost the

target because of a corner (Ota et al. 2013). (iii) Using oriented bounding box (OBB)

representation for object tracking (Kmiotek and Ruichek 2008). An approach that uses a

vision-based technique for face detection (Huang et al. 2007) could be applied in a following

system for successful reinitialization after target loss, but the person must be facing the robot.

All of the above examples have been suggested and applied for addressing the problems of

occlusions and target loss in the real world (vs in a sterile experimental environment).

13

3. Chapter Three: Methodology

3.1 General

Two main implementations of robot following (direct and history) were improved using five

integrated algorithms that were developed in this research. All the developments were

created in the ROS in C++. A series of seven experiments implemented on a Pioneer LX

Robot were conducted to set up the parameters for the different algorithms and evaluate the

algorithms' performances.

3.2 Robot Hardware and Software

All experiments were conducted with a Pioneer LX Robot equipped with front and rear sonic

sensors, a SICK S300 laser scanner, a forward bumper panel and a RGB-D camera. In the

first and second preliminary experiments, the Pioneer LX Robot was outfitted with a

Microsoft Kinect V1 sensor that detects human Skeletons in order to assess the location and

distance of the person from the robot (limited to a distance of 4 meters). All the other

experiments used a Kinect V2 sensor, which had a better field of view, reaches a distance of

10 meters and improved resolution (Figure 1). The Kinect V2 color RGB stream has a

resolution of 19201080, a horizontal field of view of 84.1° and a vertical field of view of

53.8°. The depth (D) stream has resolution of 512424, a depth range of 0.4 to 4.5 m, and a

horizontal field of view of 70.6°. To facilitate human detection for a wide range of angles,

the Kinect V2 was mounted on a Pan mechanism connected by an aluminum rod to the

Pioneer LX robot (Figure 2).

Figure 1- Comparison of the specifications of Kinect Version 1 and Kinect Version 2

14

Figure 2- Pioneer LXRobot with Kinect

To run the implementations of robot following and the integrated algorithms, the system uses

two computers (both Asus laptops with Intel core i7-4710HQ processors) in addition to the

robot's integrated on-board computer (Intel D252 with 64-bit Dual Core 1.8 GHz) (Figure

3). The first laptop is connected directly to the Kinect and the Pan Mechanism. It is

responsible for running the OpenPTrack (Munaro et al. 2014) person-detection and Depth-

Occlusions-Detection algorithms (see Section 3.3) and for controlling the rotation of the Pan.

The second computer is responsible for running the main person-following methods (Direct-

Following, History-Following; see Section 3.3), for operating the laser legs detector, for

detecting obstacles in real time (Obstacles-Avoidance; see Section 3.3) and for the Search-

After-Disappear algorithm. This second computer also records the ROS information (values

of the parameters that are calculated by the running algorithms) and the Rviz information

(position of the robot and laser detection) by recording the screen during each trial.

Commands are sent to the robot's onboard computer by a TP-LINK router with a wireless

speed up to 300 Mbps. An explanation of how to start the methods of following with the

integrated algorithms is described in Appendix A. The robot uses a SICK S300 scanning LRF,

mounted approximately 20 cm above the ground to detect obstacles and human legs. The

ultrasonic sensors and the bumper were not used in this project.

15

Figure 3- System hardware and software: computers, devices, sensors and algorithms

3.3 Algorithms

The following algorithms were developed for obstacle avoidance, search after disappear and

occlusion detection (see Chapter 4 for details):

 Obstacles-Avoidance (OA) – For the robot to have the ability to detect and avoid

obstacles without a map of the environment or any previous knowledge of where the

obstacles are located relative to the robot, a real-time obstacle avoidance algorithm was

developed. This algorithm scans the environment with a laser at 10 Hz and searches for

obstacles in real time. To narrow the search in front and on the sides of the robot, a

corridor is declared. The robot reacts only to an obstacle identified within that corridor.

 Search-after-Disappear (SAD) – To search for the person, the algorithm remembers the

last distance of the person from the robot and subtracts between two values of the

horizontal position of the person (the last one and four frames before) to define the

direction of the robot's turn. The robot moves to the last position of the person and then

turns in the direction determined by the algorithm.

16

Three different occlusion detection algorithms were developed:

 Depth-Occlusions-Detection (DO) – The algorithm compares the depth value of pixels

inside the BBCs of a detected person to the distance of the robot from the whole person

and searches for small values, which indicate closer pixels. The number of pixels that

are closer than the distance of the person is counted by using a threshold that reduces

small distance measurement errors and avoids other body parts detected as closer pixels.

 Vision-Occlusions-Detection (VO) – The algorithm uses the ROI of a detected person

and fuses it with a MONO image (gray-scale) from the Kinect to detect occlusions in a

2D image. After basic image processing, the MONO image searches for straight vertical

lines to detect a wall occlusion.

 Combined-Occlusions-Detection (CO) – This algorithm uses the DO algorithm when

the person is close to the Kinect (at distances <5 m) and the VO algorithm when the

person is far from the Kinect (at distances >5).

Two main following methods were improved, implemented and compared for the human-

following robot:

 Direct-Following (DF) – The method aims to synchronize all the data from the

integrated algorithms, the laser leg detector and the Kinect. This method transforms and

calculates the position of the person detected by the Kinect and by the laser, sends

avoidance commands to the robot according to the OA, changes the following angle

according to the DO, and implements the SAD algorithm.

 History-Following (HF) - A semi path follower that moves the robot directly to the

historical position of the person was developed. Like the DF, this method also

synchronizes the data from the integrated algorithms, the laser leg detector and the Kinect

detection.

Figure 4- Human-following methods and connections of the algorithms

17

3.4 Experimental Design

3.4.1 Description of the Steps

Figure 5- Methodology sequence of steps

The first two experiments were preliminary experiments that used the Kinect V1 Skeleton

detection algorithm to choose and test the robot following parameters (see Sections 3.4.2

and 3.4.3). These experiments were completed without a Pan mechanism to rotate the Kinect.

From the third experiment onwards, the Pan mechanism was used. After implementing the

Kinect V2 with a Pan Mechanism, an experiment was conducted with 24 participants to test

objective and subjective metric performances for three different following angles (0, 30,

60°). Occlusion detection algorithms were developed using depth and vision information

from the Kinect. The algorithms were compared to identify the one that performs best.

Another two integrated algorithms were then developed: one that detects obstacles by laser

in real time and the other that searches for a person whenever tracking is lost. These three

integrated algorithms (occlusions, obstacles, searching) were then tested once with the DF

18

method and once with the HF method to find the best combination in each method. The final

and most important experiment compared the two methods of human following (DF and

HF) with the best combination of integrated algorithms (from the results of the experiment

described in Section 3.4.6 "Direct-Following experiment and History-Following

experiment") to same chosen methods with the addition of a laser legs detector (denoted as

adaptive methods) for use if necessary when the Kinect loses the participant.

Figure 6- Experimental steps

3.4.2 Preliminary Experiment: Identifying Testable Parameters on

Kinect V1 without Pan-Tilt

The aim of this preliminary experiment was select the operational parameters for the

following variables:

 Maximum robot speed (m/s)

 Robot responsiveness while walking forward

 Robot responsiveness while turning

 Minimum distance of the robot from the target

 Angle of following.

19

Since a Pan mechanism had not yet been installed and the Kinect was locked in place, the

following angle was selected manually. The Kinect V1 has a horizontal field of view of 57°

(0.49 rad in each direction).

The following considerations were taken into account when choosing the parameters:

 Selecting an angle parameter that is noticeably different from back-following

 Selecting parameters that lead to the smoothest following possible, that is, with the

least number of instances of losing the person and the smoothest robot movement

 Selecting the minimum distance of the robot from the target that is comfortable and

comparable to the robot’s distance from the 0.49 rad following (not so close that it

interferes with personal space and tracking, but not so far that the person does not feel

the difference).

3.4.3 Preliminary Experiment: Testing Objective & Subjective Metric

Performances of Two Angles on a No-Pan Kinect V1

The aim of this experiment was to determine whether the angle at which the robot follows a

person affects the human experience and the robot tracking performance. The Pioneer LX

was outfitted with a Microsoft Kinect V1 (without a Pan) that detects human Skeletons with

the aim to assess the location and distance from the robot of the person. Six subjects (3

female, 3 male) completed a predetermined 25-m track under two conditions: (1) the robot

followed directly behind the person (0° angle), denoted as back-following (2) the robot

followed at a 17.19° angle (0.3 rad), denoted as side-following. In order to simulate a real

world walking experience, which is rarely constant, linear or without distractions, the

walking track included a stop and a turn (Figure 7), and subjects were asked to a play game

on a smartphone as they walked. The order of the trials was alternated: 3 subjects started

with back-following and 3 subjects started with side-following. After each trial (back-

following and side-following), subjects were given a questionnaire to assess their

experience. In addition, at the end of the study, subjects answered a questionnaire comparing

the two conditions. Both surveys were based on Likert-style questions (Appendix B), where

the subject had to state how strongly s/he agreed/disagreed with a statement. Subjective and

objective performance measures were collected.

20

Figure 7- Walking path- preliminary experiment

To facilitate person following at various angles, a pre-existing human following algorithm

was adjusted as follows:

 In the “side-following” condition, the "turn acceleration” was set variable to

“arctan(y/x)-0.3”, which returns a “0” value at 0.3 rad from the left and stops the

robot turning at that point (influenced by the 0.8 responsiveness).

 In the “back-following” condition, the "turn acceleration” was set variable to

“arctan(y/x)”, which returns a “0” value at 0 rad (at the center of the Kinect

camera) in order to ensure that the robot follows directly from behind.

All the other procedures were the same in both following conditions. To make the side-

following more efficient, an extra cardboard part was added to the robot to create a wider

angle of side-following. The addition of the cardboard “trunk” increased the following angle

from the edge of the robot to the person to a 30° angle (Figure 8).

The follow parameters were set:

 The Kinect distance was 1 m;

 The responsiveness measure was 0.8 both for turning and walking;

 Maximum robot speed: 0.3 m/s (was slow because the Skeleton image without the

Pan kept disappearing from the Kinect's field of view);

21

Figure 8- Addition of the cardboard "trunk"

3.4.4 Testing Objective & Subjective Metric Performances of Three

Angles on a Pan Kinect V2

The aim of the experiment was to determine objective and subjective measures to evaluate

the quality of following and the perceptions of the subjects toward the robot for three

following angles (0° angle, 30° angle, and 60° angle) under two conditions: when the robot

was carrying a valuable personal item (the participant's wallet) or not (Honig et al. 2016).

The two conditions were compared on the assumption that increased personal relevance

leads to an increase in the involvement felt by the person. This experiment used a mixed

between and within-subject design. The wallet manipulation was the between subject

variable: 12 participants were asked to place their wallets on the robot for the duration of the

study and 13 participants were not. The following angle was the within-subject variable: each

participant completed a straight predetermined 20-m walking path under three conditions

while being followed by the robot: (1) the robot followed directly from behind (0° angle),

(2) the robot followed at a 30° angle from the left, and (3) the robot followed at a 60° angle

from the right. The order of the following angle was counterbalanced between participants.

In order to simulate a real-world walking experience, which is rarely constant or without

distractions, the walking track included two stops and participants were asked to play a game

on a smartphone as they walked. Participants were instructed to walk at their natural walking

pace and to stop at two predetermined locations and wait until the robot made a complete

stop behind them. The following objective performance measures were selected: distance

22

and following angle between the robot and the subject, number of instances of loss of the

person, and number of interventions. Interventions were classified into two types:

interventions due to safety and interventions due to loss. Interventions due to safety were

interventions resulting from the robot getting too close to an obstacle or a wall. Interventions

due to loss were interventions that were a result of the robot losing track of the person and

were made in order to steer the robot back toward the participant.

3.4.5 Comparison of Occlusion Algorithms

The aim of the experiment was to compare the occlusion detection algorithms. DO uses the

depth stream of the Kinect, VO uses the MONO stream (gray scale) from the Kinect, and CO

combines the two algorithms (DO below 5 meter, VO above 5 meter).

The three algorithms – DO, VO, and CO – were tested and compared with six different

distances of the robot to the person and six different person/wall occlusion distances from

the Kinect (all in cm): 200/100; 350/200; 500/300; 600/400; 800/600; 400/300 (an occlusion

other than a wall). Each distance was tested once for each algorithm.

The DO can identify the size of the occlusion (large/small), the direction of the occlusion

(left/right) and whether the occlusion is caused by a wall or not. The VO can identify only

left or right straight vertical lines. When the person is partially hidden and stands without

moving, the number of times the algorithm detects the right or left occlusions (large, small

or combination of them for the DO algorithm) and the number of times the algorithm detects

the wall be measured.

3.4.6 Direct-Following and History-Following Experiments

The aim of the experiments was to evaluate the performance of various combinations of

integrated algorithms in the two main human-following methods and to compare the results.

The two main methods of human-following (DF and HF) were developed and compared.

Each method was tested with various combinations of the three integrated algorithms, OA

(real time obstacle avoidance by laser), DO (depth-occlusion detection using the depth

information from the Kinect) and SAD (search-after-disappear to search for the person after

losing tracking).

After preliminary testing, the maximum linear velocity of the robot was selected as 0.3 m/s

for all trials, ensuring sufficient time for the robot to compute and react. The maximum

angular velocity during following (not when detecting an obstacle) was chosen as 0.2π rad/s.

23

The experiment was conducted in the offices of the Center for Digital Innovation (CDI) in

Beer-Sheva, Israel. The conditions of the experiment included a path of 18-m length with

three stops (Figure 9). At the beginning of each trial, subjects were asked to stand in front

of the robot to allow the robot to detect them. Once the robot had detected the subject, the

subject was asked to walk slowly to point 1 (path marks in green), which was marked on

the floor, and waits until the robot reaches the third of the six obstacles that had been placed

in a line and connected to a demo wall to create a corner (Figure 9). When the subject moved

from point 1 to point 2, s/he disappeared from the robot's line of sight, simulating how a

person would disappear if s/he turned a corner in a hallway. The subject waits at point 2,

also marked on the floor, until the robot began to move toward her/him. Once the robot had

begun to move toward the subject, the subject moved slowly around three more obstacles

and stopped at the last corner 3 (the last obstacle) to wait for the robot. Each subject

completed this path five times with different combinations of algorithms (Table 1), order

counterbalanced (three DF and two HF). Seven participants took part in this experiment.

Table 1- Five combinations of trials

Trial Following

method

Obstacle

avoidance

Depth

occlusion

Search after

disappear

1 History  X 

2 History   

3 Direct  X 

4 Direct   

5 Direct   X

24

 (a)

 (b) (c)

Figure 9 - Direct-Following and History-Following experiment path. (a)-schematic

description. (b)-photograph of end of the path. (c)-photograph of start of the path

3.4.7 Adaptive Kinect-Laser vs. Non-Adaptive (for Direct Following and

History Following) Experiment

The two human-following methods (DF, HF) with the Kinect V2 with the best combination

of integrated algorithms (from the previous experiment, Section 3.4.6, denoted as Non-

Adaptive methods) were compared to the same human-following methods with a laser legs

detector, which was actuated when the Kinect lost the participant (denoted as Adaptive

methods). This experiment also took place in the offices of the CDI in Beer-Sheva Israel and

25

included a 25-m length path with three obstacles, a wall, and a corner (Figure 10). At the

beginning of the experiment, the subject was asked to stand in front of the robot so that the

robot's Kinect and laser sensors could detect her/him. If the robot was not able to detect the

legs of the subject because the width of her/his legs fell below the defined threshold for laser

detection, the subject was asked to wear rain boots to 'widen' the legs. When the trial started,

the subject walked slowly without stopping from the starting point through points 1 and 2 to

point 3 (marked on the floor). Once subject arrived at point 3, s/he was asked to wait until

the robot reached the first wall, and only then to complete the walking path. When the subject

moved from point 3 to the end-point, s/he disappeared behind the wall to simulate the

situation in which a person turns a corner in a hallway. Each subject completed this path four

times with different combinations of algorithms (Table 2) and in a different order. Twenty-

four participants participated in this experiment.

Table 2- Combinations of methods and algorithms Adaptive vs. Non-Adaptive experiment

Trial Following

method

Obstacle

avoidance

Depth

occlusion

Search

after

disappear

Laser

legs'

detector

1 History    

2 History    X

3 Direct    

4 Direct    X

26

(a)

(b)

Figure 10- Adaptive vs. Non-Adaptive experimental paths. (a)-schematic description. (b)-

photograph

27

3.5 ROS implementation

DF and HF methods and their integrated algorithms (DO, OA, and SAD) were implemented

in ROS with the following nodes and topics, as shown in Figure 11.

Figure 11- Nodes and topics flow-chart

 RosAria is the robot's main node. According to the movement of the robot's

wheels, it calculates the robot's position and sends it to

Simple_follower_kinect2_pan_laser by /RosAria/pose. It sends the laser scan

in two ways: 1) to the leg_detector by /RosAria/S3Series_1_laserscan and 2) to

laser_obstacles_avoidance by /RosAria/S3Series_1_pointcloud. It is also

responsible for the transformation of coordinated positions in the different

sensors by /tf.

 Twist_mux is the node that responsible for the subsequent commands to move

the robot. It decides on the priority of the incoming nodes. It receives move

commands from Simple_follower_kinect2_pan_laser and from joystick (via

turtlebot_teleop_joystick). It can also receive commands from the safety node,

which was not used in this case (safety is responsible for locking the robot's

28

wheels when the laser detects close obstacles). It publishes the move commands

to RosAria by /cmd_vel.

 Simple_follower_kinect2_pan_laser is the main node that includes the method

of following (DF or HF) and if necessary uses the SAD integrated algorithm. It

publishes on /follower/cmd_vel the linear and angular velocity commands to

twist_mux. It receives the following information from seven different topics for

analysis and synchronization:

1. The position of the robot from RosAria by /RosAria/pose.

2. The position of an obstacle related to the robot from

laser_obstacles_avoidance by /obstacles/laserObstacles.

3. The Boolean occlusion detection variables from image_converter by

/occlusions/sideOcclusions.

4. The position of the person by laser from leg_detector by

/people_tracker_measurements.

5. The position of the person by Kinect from tracker_node by /tracker/tracks.

6. The position of the Pan related to the center of the robot from (Pan)

serial_node by /Pan_Feedback.

7. The position of the person from the center of the Kinect from

orientation_control by /Pan_Error_Command.

 Leg_detector is the node that detects the position of a person's legs with the laser.

It receives the robot's laser scan determined by the laser sensor from RosAria by

/RosAria/S3Series_1_laserscan and is responsible for the transformation

between the laser measurements and the robot's position with /tf. It publishes the

coordinates of the person related to the robot to

Simple_follower_kinect2_pan_laser by /people_tracker_measurements.

 Laser_obstacles_avoidance is the node that searches with the laser for obstacles

near the robot. It receives the robot's laser scan from RosAria by

/RosAria/S3Series_1_pointcloud, the linear and angular velocity of the robot

from Twist_mux by /cmd_vel, and all the parameters to calculate the position of

the person with laser and Kinect (such as the information that

Simple_follower_kinect2_pan_laser receives). It publishes the linear and

angular velocity that is required to avoid collision if there is an obstacle to

Simple_follower_kinect2_pan_laser by /obstacles/laserObstacles.

 Image_converter is the node that detects occlusions near the person with the

Kinect Depth image. It receives the position of the person with the Kinect from

tracker_node by /tracker/tracks and the Kinect depth image from

29

kinect2_head_kinect2_bridge by /kinect2_head_depth_rect/image. It publishes

the Booleans of the size and side of an occlusion detection to

Simple_follower_kinect2_pan_laser by /occlusions/sideOcclusions.

 Orientation_control is the node that is responsible for moving the Pan

mechanism and for sending angular positions. It receives the position of the

person with the Kinect from tracker_node by /tracker/tracks and the position of

the Pan related to the center of the robot from (Pan) serial_node by

/Pan_Feedback. It publishes the angular velocity that the Pan needs in order to

maintain the person in the center of the Kinect to (Pan) serial_node by

/Pan_Error_Command.

3.6 Analysis

3.6.1 Performance Measures

The performance measures described below were used:

The following measures were counted manually during each trial:

 Number of losses of the person

 Number of self-recoveries and percent of self-recoveries out of total losses

 Number of interventions due to losses and percent of these interventions out of total losses

 Number of safety interventions

 Number of Kinect collapses

 Number of collisions with obstacles

The following measures were calculated directly from the ROS procedures:

 Number of laser detections of obstacles

 Distance between the robot and the participant (average and standard deviation)

 Length of the robot's path

 Number of matches between the Kinect person-detection position and laser legs detector

position that were <20 cm

 Ratio between tracking and no tracking from the Kinect and from the laser separately.

Each trial was recorded by Rviz and rqt_console to calculate:

 The participant's walking velocity

 The percent of false alarms for the position of the legs

 The DO algorithm's true positive and false alarm (false positive) results

30

The velocity of the participant was calculated by dividing the total time of subject walking

by the total path length s/he walked. The percent of legs false alarm detection was also

calculated from the recording of the trial by counting the time of true legs detection and the

time of false alarms. The true positives and false alarms of the DO algorithm were calculated

by using the ROS information and the recording. The relative time according to the position

of the robot related to the position of the participant was derived manually from the recording

and compared to the actual ROS information.

3.6.2 Statistical Analyses

Statistical analyses included SPSS ANOVA with 0.05 confidence level. To test for a

significant difference between more than two trials, a post-hoc pairwise comparison (Tukey

test) was conducted (Table 3). All raw data and the statistical analyses are detailed in

Appendix C.

Table 3- Statistical analyses

Experiment Section Hypothesis Statistical tests

Comparison of

occlusion

algorithms

3.4.5 Depth – preferable close

distance;

Vision – preferable far

distance

ANOVA and Pearson -

confidence level of 0.05

Direct-Following

and History-

Following

3.4.6 Combination of all the

integrated algorithms in

each method is the best

ANOVA and Tukey -

confidence level of 0.05

Adaptive Kinect-

Laser Direct

Following and

History Following

3.4.7 Adaptive methods are

better than

Direct methods;

ANOVA and Tukey -

confidence level of 0.05

31

4. Chapter Four: Algorithms
4.1 Overview

To summarize the previous chapters, two main methods for human-following were improved

and implemented on the human-following robot:

 Direct-Following (DF)

 History-Following (HF)

Three integrated occlusion detection algorithms were developed for these methods:

 Depth-Occlusions-Detection (DO)

 Vision-Occlusions-Detection (VO)

 Combined-Occlusions-Detection (CO)

Two integrated algorithms were developed for obstacle avoidance and search after

disappearance:

 Obstacle-Avoidance (OA)

 Search-after-Disappear (SAD)

All C++ codes are shown in Appendix D.

Algorithm Innovations

General

 All the algorithms and following methods work without a-priori

information about the environment or any kind of pre-built map

of the environment

Depth-

Occlusions

(DO)

 Real-time occlusion detection using depth information of the

pixels

 Compares the depth value of the pixels (distance value of the

pixels) inside the BBC of a detected person to the distance of the

whole person from the robot and searches for small values that

indicate closer pixels (indicating an occlusion)

 Reduces false alarms and can detect both small and large

occlusions and even a vertical occlusion like a wall

 Change the following angle to increase the line of sight

Obstacles-

Avoidance

(OA)

 Real-time obstacle detection and avoidance

 Declares an adaptive corridor in front and on the sides of the

robot to narrow the scan area, which depends on the prevailing

linear and angular velocities of the robot

 Search for obstacles inside the turning radius

32

Search-

After-

Disappear

(SAD)

 Increase of the ability to refollowing

 Moves the robot to the person's last known position and turns the

robot in the direction that is calculated according to the last few

frames obtained before the person had disappeared

Direct-

Following

(DF)

 Moves the robot directly to the position of the detected person

 Gives priority to sending the robot the linear and angular velocity

to avoid any obstacles change

History-

Following

(HF)

 Moves the robot directly to the historical position of the person

being tracked

 avoids big changes of the position of the person caused by the

movements of the robot and the Kinect

 avoids quick turns that cause the Kinect to lose the person

4.2 Depth Occlusions Detection

The DO detection algorithm compares the depth value of pixels inside the BBC of a

detected person to the distance of the whole person from the robot and searches for small

values that indicate closer pixels (indicating an occlusion). The number of pixels that are

closer than the distance of the person from the robot is counted by adding a threshold to

reduce small distance measurement errors and to avoid other body parts detected as closer

pixels.

In order to reduce false detections of a person, a valid tracking of a person is indicated only

if there is the tracking passes three thresholds of confidence within minimum and maximum

heights of the person (ConfidenceTheshold, HeightTheshold,

HeightMaxTheshold).

The OpenPTrack (Munaro et al. 2014) provides four parameters of the BBC around the

detected person. The DO refers to them as: 𝑥𝑚𝑖𝑛 the X value of the top-left corner of the

BBC, 𝑦𝑚𝑖𝑛 the Y value of the top-left corner of the BBC, 𝑥𝑚𝑎𝑥 the X value of the top-right

corner of the BBC and 𝑦𝑚𝑎𝑥 the Y value of the bottom-right corner of the BBC. In addition,

the center X value of the BBC is also calculated (𝑥𝑐 = (𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛)/2).

Since the detection parameters are related to the size of the BBC, we incorporated two

changes, as follows (Figure 12). First, to avoid the ground depth value and to reduce false

alarms, the 1/8 lower part of the BBC was cut (𝑑𝑜𝑤𝑛𝑐𝑢𝑡 = 𝑟𝑜𝑢𝑛𝑑((𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)/8)).

Second, to add dependency on the person’s distance from the robot from the width of the

BBC, a margin was added to the BBC (𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑑𝑑 = 𝑟𝑜𝑢𝑛𝑑(10/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒)). The margin

33

was added also to predict an occlusion process before it happens. After these changes, the

new BBC was ready for the occlusions detection process.

Figure 12- New BBC parameters (DO)

Each depth pixel value was normalized to 0-255 and compared to the normalized distance

of the person from the robot. To prevent small measurement errors, a depth constant

threshold was added to detect depth values of closer pixels (𝐷𝐸𝑃𝑇𝐻𝑇𝐻𝑅𝐸𝐻𝑂𝐿𝐷 = 3.0). The

values of the counters were increased for closer distances by adding a threshold of 3 (equal

to a distance of 0.5 m). For the left side, the pixels lie between [𝑥𝑚𝑖𝑛 − 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑑𝑑 , 𝑥𝑐 −

5] (from the left side of the BBC adding a small margin to the center of the BBC without

the last 5 columns). For the right side, the pixels lie between [𝑥𝑐 + 5 , 𝑥𝑚𝑎𝑥 + 𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑑𝑑]

(from the center of the BBC without 5 first columns to right side of the BBC, adding a small

margin). For wall detection, all the values of the same column must contain a smaller depth

value (indicating an occlusion from the top to the bottom of the BBC).

To declare a small or large occlusion from the left or the right, the BBC must be covered by

⅓ to a ½ of closer pixel values for small occlusions and >½ for large occlusions.

𝑠𝑚𝑎𝑙𝑙𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑜𝑢𝑛𝑑((
𝑥𝑐 − 𝑥𝑚𝑖𝑛

3
) ∗ (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗

7

8
)

𝑏𝑖𝑔𝑂𝑐𝑐𝑙𝑢𝑠𝑖𝑜𝑛𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡 = 𝑟𝑜𝑢𝑛𝑑((
𝑥𝑐 − 𝑥𝑚𝑖𝑛

2
) ∗ (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗

7

8
)

In addition, for wall detection, the algorithm finds continuous occlusions from the left or

right by finding entire columns in the BBC that have depth values that are closer than the

person's distance to the robot. There are four counters, one for each side for small and large

occlusions (𝑙𝑒𝑓𝑡𝑐𝑜𝑢𝑛𝑡, 𝑟𝑖𝑔ℎ𝑡𝑐𝑜𝑢𝑛𝑡), and one for each side for wall detection

34

(𝑙𝑒𝑓𝑡𝑊𝑎𝑙𝑙𝑐𝑜𝑢𝑛𝑡, 𝑟𝑖𝑔ℎ𝑡𝑊𝑎𝑙𝑙𝑐𝑜𝑢𝑛𝑡). Occlusion detection is published using six Boolean

variables (three for the left side and three for the right side) for small, large and wall

detections: (𝑠𝑚𝑎𝑙𝑙𝐿𝑒𝑓𝑡𝑡𝑟𝑢𝑒, 𝑏𝑖𝑔𝐿𝑒𝑓𝑡𝑡𝑟𝑢𝑒, 𝑤𝑎𝑙𝑙𝐿𝑒𝑓𝑡𝑡𝑟𝑢𝑒),

(𝑠𝑚𝑎𝑙𝑙𝑅𝑖𝑔ℎ𝑡𝑡𝑟𝑢𝑒 , 𝑏𝑖𝑔𝑅𝑖𝑔ℎ𝑡𝑡𝑟𝑢𝑒 , 𝑤𝑎𝑙𝑙𝑅𝑖𝑔ℎ𝑡𝑡𝑟𝑢𝑒).

A pseudo code is shown in Figure 13 and an example of the DO algorithm in Figure 14.

Figure 13 - DO pseudo code

35

Figure 14 - DO person detection with a half-BBC (from OpenPTrack) near a right wall

(left). Person's Distance of 2.4 m with a small right occlusion and right wall detection

without a left occlusion (right)

4.3 Vision Occlusions Detection

The VO algorithm uses the ROI of the detected person from a depth image and fuses it with

a MONO image from the Kinect to detect occlusions in a 2D image. In the MONO image,

after basic image processing routines, the algorithm searches for straight vertical lines to

detect a wall occlusion.

To reduce false detections from OpenPTrack, a tracking is indicated only if the tracking

passes the same three thresholds as for the DO. The BBC parameters from OpenPTrack

depend on the resolution of the Kinect depth image. The MONO image has a higher

resolution; therefore, extra parameters were added to the original BBC parameters. Another

problem with which the algorithm deals is the different horizontal fields of view between

the MONO image and the depth image of the Kinect. Several steps were therefore

undertaken to match the pixel coordinates of the depth image to the MONO image. These

steps were needed because it is not simple to convert, resize and extract ROIs in the MONO

image from the BBC parameters of the depth image due to the different resolutions [the

resolution of the MONO image is twice that of the depth image (19201080), and the two

36

techniques have different horizontal fields of view—MONO 84.1° and depth 70.6°]. The

first step was to subtract 105 pixels from each side of the MONO image to eliminate different

right and left image borders. Then, the image was resized to the same resolution as that of

the depth image (960540). Another problem caused by the differences in the horizontal

field of view was an unequal X value between the 𝑥𝑐 value that was calculated from the BBC

of the depth image and the real position of the person in the MONO image. This error

increases as the distance increases due to the different convexities of the depth and MONO

images. The best solution was to add pixels to the BBC from the left side of the ROI,

depending on the distance from the center of the image of the X-axis (the center of the image

is X=270) divided by 3:

𝑚𝑜𝑛𝑜𝑋𝑚𝑖𝑛 = 𝑥𝑚𝑖𝑛 ∗ 2 + 𝑟𝑜𝑢𝑛𝑑((
270 − 𝑥𝑐

3
) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 2)

For the right side, depending on the width of the original depth BBC and the new 𝑚𝑜𝑛𝑜𝑋𝑚𝑖𝑛

that was calculated, a new right side was declared:

𝑚𝑜𝑛𝑜𝑋𝑚𝑎𝑥 = 𝑚𝑜𝑛𝑜𝑋𝑚𝑖𝑛 + (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ∗ 1.4

The right side of the ROI in the MONO image was expanded to cover the whole person by

multiplying the width from the depth image by 1.4.

For the Y-axis new coordinates, the same minimum was taken, namely, 𝑚𝑜𝑛𝑜𝑌𝑚𝑖𝑛 = 𝑦𝑚𝑖𝑛

and for the maximum value, the height of the ROI was multiplied only by 1.3 to include the

legs but not the ground:

𝑚𝑜𝑛𝑜𝑌𝑚𝑎𝑥 = 𝑚𝑜𝑛𝑜𝑌𝑚𝑖𝑛 + (𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) ∗ 1.3

OpenCV was used for the image processing on the ROI, with the following steps and

parameters, which were empirically derived: Gaussian blur of size 33, Canny edge detector

with a low threshold of 50 and high threshold of 300 with a Sobel 2 sized and an L1 norm,

opening and then closing the pixels by 55.

To find the contours of the whole person, the OpenCV findContours function was used.

The function includes the contours vector of vector of points for saving the contours, with

a retrieval mode that organizes the contours into a two-level hierarchy and compresses

horizontal, vertical, and diagonal segments and leaves only their end points. To avoid small

contours, the size of the contour was compared to the height of the ROI. Only if the contour

was bigger than the whole height of the ROI multiplied by 1.5, was it noted as belonging to

the ROI; otherwise, it was deleted from the vector contours.

37

Straight lines were derived using the OpenCV HoughLinesP function. The function

includes vector lines that contain 4 arguments (𝑥𝑠𝑡𝑎𝑟𝑡 , 𝑥𝑒𝑛𝑑, 𝑦𝑠𝑡𝑎𝑟𝑡, 𝑦𝑒𝑛𝑑) for each line, with

a resolution of 1 pixel and 1°, with a minimum threshold of 50 and with a minimum line

length of half of the ROI height. To prevent too many straight lines in the ROI, only vertical

lines that were less than 1/10 size of the person’s box width were derived. If the edges of the

straight line were inside the ROI from the left to the center minus 5, the line was defined as

a left wall and if the edges of the straight line were inside the ROI from the center plus 5 to

the right, it is defined as a right wall.

The pseudo code of the algorithm is shown in Figure 15 and an example of the VO algorithm

in Figure 16.

Figure 15 - VO pseudo code

38

Figure 16 - green VO person contour with red straight line of a wall (left). MONO image

with a half hidden person with wall from the right (center). Right wall detection (right)

4.4 Combination of Depth and Vision Occlusions Detection

The CO algorithm uses the DO algorithm when the person is close to the Kinect (at distances

<5 m) and the VO algorithm when the person is far from the Kinect (at distances >5 m). This

decision is based on the premise that for close distances the DO will perform better than the

VO and as well as the CO and for far distances the VO will perform better than the DO and

as well as the CO.

4.5 Obstacle Avoidance

To detect and avoid obstacles without a map of the environment or any pre-knowledge of

where the obstacles related to the robot are situated, an integrated algorithm that scans the

environment with a laser at 10 Hz and searches for obstacles in real time was developed. The

laser measures a large number of points in the environment and outputs a point cloud (Rusu

and Cousins 2011) as a data file that contains 480 points (𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖], 𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖]) for every

0.5°. The point cloud represents the set of points that the laser device has measured, as

described below.

First, the integrated algorithm declares a corridor in front and on the sides of the robot to

narrow the scan area. If an obstacle is situated inside this corridor, then the robot reacts

accordingly and avoids a collision. If the distance between the robot and the person being

followed is smaller than the corridor distance, then it is implied that the person is transparent

39

and hence the obstacles detection algorithm is ignored to prevent confusion between the

person and the obstacle.

The corridor that may contain obstacles depends on the linear and angular velocity of the

robot (Figure 17). For the X-axis (in front of the robot), the minimum distance to search for

obstacles is 𝑚𝑖𝑛𝑑𝑖𝑠𝑡 = 0.8, irrespective of the robot's linear velocity. In other words, if there

is a point that the laser detects that is <0.8 m in front of the robot, the robot declares it as an

obstacle, independent of robot's velocity. At greater distances (>0.8 m), the declaration of

obstacles depends on the linear velocity of the robot multiplied by 𝐾𝑝𝐷𝑖𝑠𝑡 = 3. For example,

if the linear velocity of the robot is 0.4 m/s, then an obstacle can be found up to 0.43=1.2 m

in front of the robot. In addition, all the obstacles detected by the laser or Kinect sensors that

are near the detected person, namely, in a 1 m radius of the person (𝑅𝐴𝐷𝐼𝑈𝑆𝑃𝐸𝑅𝑆𝑂𝑁 = 1.0),

are ignored. To search in the negative X-axis if the robot is turning, the absolute value of the

angular velocity is used. If the angular velocity is large, the algorithm searches for larger

negative values of X.

If ((𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] < 𝐾𝑝𝐷𝑖𝑠𝑡 ∗ 𝑙𝑖𝑛𝑒𝑎𝑟𝑣𝑒𝑙) ⋃ (𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] < 𝑚𝑖𝑛𝑑𝑖𝑠𝑡)) ⋂ (𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] >

−|𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙|) ⋂ ((√(𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] − 𝑥𝑝𝑒𝑟𝑠𝑜𝑛)2 + (𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] − 𝑦𝑝𝑒𝑟𝑠𝑜𝑛)2) >

𝑅𝐴𝐷𝐼𝑈𝑆𝑃𝐸𝑅𝑆𝑂𝑁)

For the Y-axis (the sides of the robot), the obstacle must lie between the 𝑤𝑖𝑑𝑡ℎ =

0.5 multiplied by 1 + 𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙 and −𝑤𝑖𝑑𝑡ℎ multiplied by 1 − 𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙. If the

angular velocity is zero, then the corridor lies between 0.5 and -0.5, but if the robot is turning

and the angular velocity is not zero, then the corridor moves to the side of the turn in order

to search for obstacles inside the turning radius. As for the X-axis, the technique to ignore

obstacles near the person is used.

If ((𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] < 𝑤𝑖𝑑𝑡ℎ ∗ (1 + 𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙)) ⋂(𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] > −𝑤𝑖𝑑𝑡ℎ ∗ (1 −

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑣𝑒𝑙)))

40

(a)

(b)

Figure 17 - Obstacles corridor examples. (a)-robot moves only forward.

(b)-robot turns right.

The next step is to choose the closest obstacle to the robot inside the corridor. For each point

that is declared an obstacle inside the corridor, the distance of the point to the robot is

calculated as: 𝑑𝑖𝑠𝑡𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖] = √𝑥𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖]2 + 𝑦𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒[𝑖]2. The closet point coordinates

are passed to the next step and declared as an obstacle.

41

The final step is to calculate and publish the robot's linear and angular velocity to the robot

so that it can avoid the closet obstacle. For the linear velocity, after many trials with different

linear velocity values, a 0.2 m/s was chosen. For the angular velocity, the decision depends

on the position of the obstacles in the Y-axis related to the robot (from the left side of the

robot or from the right side). If the obstacle is to the robot's left, a command to turn right is

issued (negative angular velocity). The size of the angular velocity depends on the distance

from the 𝒘𝒊𝒅𝒕𝒉 value (0.5) divided by 2. If the obstacle's Y coordinate is at the center of

the robot (i.e., equal to zero), then the angular velocity is large. If the obstacle is at the robot's

left, then:

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = −(𝑤𝑖𝑑𝑡ℎ − 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡)/2.

If the obstacle is at the robot's right, a command to turn left is issued (positive angular

velocity). The size of the angular velocity depends on the distance from the −𝑤𝑖𝑑𝑡ℎ value

(-0.5) divided by 2. If the obstacle's Y coordinate is at the center of the robot (i.e., equal to

zero), then the angular velocity is large. If the obstacle is to the robot's right, then:

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = (−𝑤𝑖𝑑𝑡ℎ + 𝑦𝑐𝑙𝑜𝑠𝑒𝑠𝑡)/2.

4.6 Search-after-Disappear

In the SAD algorithm, the robot remembers the last position of the person and subtracts

between two values of 𝑦𝑘𝑖𝑛𝑒𝑐𝑡, namely, the last one and the value from four frames

previously. A positive 𝑦𝑘𝑖𝑛𝑒𝑐𝑡 implies that the person is on the right side of the robot, and a

negative 𝑦𝑘𝑖𝑛𝑒𝑐𝑡, that the person is on the left side. The value of the subtraction is defined as

the direction of turning of the robot in order to search for the person. After performing these

calculations, the robot moves to the last position of the person with constant linear velocity

of 0.3 m/s for a duration that depends on the distance of the last detection. When it reaches

this last position, it turns in the direction that it had calculated from the last four frames of

detection.

4.7 Kinect Orientation Control – Pan Mechanism

The Pan mechanism moves to maintain the person being detected in the center of the Kinect.

Two levels of code were employed. The high-level code is an ordinary ROS implementation

with topics, publishers and subscribers. The low-level code, developed by Doisy and co-

workers, controls the movement commands of the Pan (Doisy et al. 2012).

42

The high-level code "Kinect_orientation_control" uses OpenPTrack to detect people with

three thresholds (confidence, height and max height). The code subscribes from two

topics: OpenPTrack parameters using /tracker/tracks and the angle of the Pan related to the

center of the robot using /Pan_Feedback that is published from the low-level code. The code

publishes the angle error of the Pan to the low-level code to angle the Pan to maintain the

person in the center of the Kinect using /Pan_Error_Command. After receiving the

parameters of the person from OpenPTrack and passing the thresholds, the code calculates

the angle of the person from the center of the Kinect as tan−1(
𝑦𝑘𝑖𝑛𝑒𝑐𝑡

𝑥𝑘𝑖𝑛𝑒𝑐𝑡
) of the person. The Y-

axis is from left to right of the Kinect (zero means the center of the Kinect) and the X-axis

is the depth (distance from the Kinect). The angle of the person from the center of the Kinect

is passed to the low-level code to move the Pan until the angle is zero (y equal to zero). If

no person is detected for more than three seconds, the command that passes to the low-level

code is half of the angle of the Pan related to the center of the robot in the opposite direction

(error_command.data=-0.5*AngleErrorPan;); this command causes the Pan to

return to the center of the robot.

The low-level code subscribes from two topics: 1) the move command from the high-level

code using /Pan_Error_Command and 2) a topic that sends true or false to the Pan for the

actual move command, using /Start_Stop_Pan. It publishes the angle of the Pan related to

the center of the robot using /Pan_Feedback to the high-level code.

The parameters for the movement of the Pan were empirically selected in a series of trials.

On the one hand, the Pan must move fast enough not to lose the person. On the other hand,

it must not move too fast to overshoot the person and move back and forth all the time

because of fast movements (like a harmonic motion). The best parameters were derived to

0.5 max speed of movement to avoid overshooting. Additionally, a small threshold of 0.01

rad was added to prevent small movements of the robot when the Pan is near the center of

the robot.

4.8 Direct-Following Method

This method of human-following by a robot causes the robot to move directly to the position

of the detected person. This method transforms and calculates the position of the person

obtained by the Kinect and by the laser, sends commands to the robot according to the OA,

changes the following angle according to the occlusions detection algorithms (DO, VO, CO),

and compares the results with and without SAD.

43

The integrated OA algorithm receives the Boolean values for slowing down and obstacle

detection and it also receives the values for the linear and angular velocities of the robot

directly from the OA algorithm. The first priority of sending the robot it's linear and

angular velocities to enable it to avoid any obstacles is implemented in all sections of this

main method. If the OA detects an obstacle, then the robot moves according to the position

of the obstacle in order to avoid it. Only when the OA detects that the path is clear, does the

method continue to send the commands to the robot to follow the person. During the

movements of the robot relative to the obstacle, the Kinect with the Pan mechanism and the

laser leg detector continue to follow the person without sending commands to the robot to

move. If OA is not running, then the method notes that there are no obstacles.

For the integrated occlusions detection algorithms (DO, VO, CO), The DF method receives

all the Boolean values for large and small occlusions from the right and the left. It changes

the following angle to 15° for small occlusions, and to 30° for large occlusions. When the

occlusions detection algorithms are not running, the following angle equals zero (the robot

moves directly to the person being detected).

The integrated SAD algorithm compares the last position of the person before losing her/him

with several frames before to realize the person's drift. To achieve this, the X- and Y-axes

of the person detected by the Kinect must be transformed to the robot's position. From the

Kinect detection, the transformation uses three variables that are related to the position of

the person vis-à-vis the robot, namely, 𝑎𝑘= the angle in radians of the person related to the

center of the Kinect, 𝑎𝑝= the position of the Pan related to the center of the robot in radians,

𝐷𝑘= the distance of the person from the Kinect. If there is a person detected by the Kinect

(OpenPTrack), then her/his position in relation to that of the robot is defined as:

𝑥𝑘𝑖𝑛𝑒𝑐𝑡 = 𝐷𝑘 ∗ cos(𝑎𝑘 + 𝑎𝑝)

𝑦𝑘𝑖𝑛𝑒𝑐𝑡 = 𝐷𝑘 ∗ sin(𝑎𝑘 + 𝑎𝑝)

For DF, the method uses many parameters, variables and constants. To calculate the distance

(𝐷) and angle (𝑎) of the person in relation to the robot, the DF method uses the position of

the person as obtained from the Kinect and from the laser detector. It sends velocity

commands with upper bounds of 𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑 = 0.3 and 𝑚𝑎𝑥𝑡𝑢𝑟𝑛 = 0.2, and with linear and

angular speed controller 𝐾𝑝𝐷𝑖𝑠𝑡 = 0.2, 𝐾𝑝𝐴𝑛𝑔𝑙𝑒 = 0.5, respectively. A constant of the

distance from the person 𝐷𝑇𝐴𝑅𝐺𝐸𝑇 = 1.2 is also included. The last parameter that depends

on the integrated occlusions detection algorithm (DO, VO, CO) is the value of the 𝑎𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔

that by default equals zero if no occlusion has been detected.

44

𝐷𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 = √𝑥𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟
2 + 𝑦𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟

2

𝑎𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 = tan−1
𝑦𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟

𝑥𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟

𝑎𝑛𝑔𝑢𝑙𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = max ((𝑎𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 + 𝑎𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔) ∗ 𝐾𝑝𝐴𝑛𝑔𝑙𝑒 , 𝑚𝑎𝑥𝑡𝑢𝑟𝑛)

𝑙𝑖𝑛𝑒𝑎𝑟𝑐𝑜𝑚𝑚𝑎𝑛𝑑 = max ((𝐷𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 − 𝐷𝑇𝐴𝑅𝐺𝐸𝑇) ∗ 𝐾𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 𝑚𝑎𝑥𝑠𝑝𝑒𝑒𝑑

The method first uses the Kinect detection, but if it loses tracking, it then changes to the laser

detection algorithm. If there is no detection by both sensors, it uses the SAD integrated

algorithm. This method can even work with only one source of person detection (Kinect or

laser). A method that works with both of the sources together will be described in Section

4.10 'Adaptive Following Methods'.

4.9 History-Following Method

The robot is able to avoid obstacles without detecting them by moving in the same path that

the person walks; of course, as long as the person does not jump over an obstacle. A semi

path follower that uses the history positions of the person and moves the robot directly to

these historical points was developed. The X- and Y-axes of the detected person obtained

from the Kinect or the from the laser detector were transformed to world coordinates and

related to the position of the robot in the world. This transformation was done without a map

of the environment and it can lose stability after a while due to robot slips. To calculate the

position of the person in relation to the world, the position and orientation of the robot in

relation to the world was obtained from RosAria (𝑥𝑟𝑜𝑏𝑜𝑡, 𝑦𝑟𝑜𝑏𝑜𝑡 , 𝑜𝑟𝑜𝑏𝑜𝑡).

For the laser calculation (Figure 18), the method first calculates the distance 𝐷𝑙𝑎𝑠𝑒𝑟 and

angle 𝑎𝑙𝑎𝑠𝑒𝑟 of the person in relation to the robot according to the laser:

𝐷𝑙𝑎𝑠𝑒𝑟 = √𝑥𝑙𝑎𝑠𝑒𝑟
2 + 𝑦𝑙𝑎𝑠𝑒𝑟

2

𝑎𝑙𝑎𝑠𝑒𝑟 = tan
𝑦𝑙𝑎𝑠𝑒𝑟

𝑥𝑙𝑎𝑠𝑒𝑟

Then, it transforms the position of the person to the world coordinates:

𝑥𝑙𝑎𝑠𝑒𝑟𝑃𝑎𝑡ℎ = 𝑥𝑟𝑜𝑏𝑜𝑡 + cos(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑙𝑎𝑠𝑒𝑟) ∗ 𝐷𝑙𝑎𝑠𝑒𝑟

𝑦𝑙𝑎𝑠𝑒𝑟𝑃𝑎𝑡ℎ = 𝑦𝑟𝑜𝑏𝑜𝑡 + sin(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑙𝑎𝑠𝑒𝑟) ∗ 𝐷𝑙𝑎𝑠𝑒𝑟

45

Figure 18 - Laser to world coordinates

For the Kinect calculation (Figure 19), the method uses three parameters:

𝑎𝑘=AngleSmallError, the person related to the center of the Kinect (from

/Pan_Error_Command); 𝑎𝑝=AngleErrorPan, the position of the Pan related to the center

of the robot (from /Pan_Feedback); and 𝐷𝑘= msg->tracks[i].distance, the distance of

the person from the Kinect (from /tracker/tracks).

The transformation of the person's position to the world coordinates is given by:

𝑥𝑘𝑖𝑛𝑒𝑐𝑡𝑃𝑎𝑡ℎ = 𝑥𝑟𝑜𝑏𝑜𝑡 + cos(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑘 + 𝑎𝑝) ∗ 𝐷𝑘

𝑦𝑘𝑖𝑛𝑒𝑐𝑡𝑃𝑎𝑡ℎ = 𝑦𝑟𝑜𝑏𝑜𝑡 + sin(𝑜𝑟𝑜𝑏𝑜𝑡 + 𝑎𝑘 + 𝑎𝑝) ∗ 𝐷𝑘

46

Figure 19 - Kinect to world coordinates

For using the history position, a vector of X values and Y values was inserted into the HF

method to calculate the position of the person (𝑥𝑝𝑎𝑡ℎ, 𝑦𝑝𝑎𝑡ℎ). The laser has an average

frequency of 8 Hz, and the Kinect has an average frequency of 15 Hz. In order for the robot

to use the same history points of the detected person, the 32nd point from the laser and the

60th point from the Kinect were taken each time to calculate the history position of the person

(4 seconds of history). To calculate the angle (𝑎𝑓𝑜𝑙𝑙𝑜𝑤) and the distance of following

(𝐷𝑓𝑜𝑙𝑙𝑜𝑤), these history points are used with the position and orientation of the robot, as

follows:

𝑎𝑓𝑜𝑙𝑙𝑜𝑤 = 𝑜𝑟𝑜𝑏𝑜𝑡 + tan−1 (
𝑦𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑦𝑟𝑜𝑏𝑜𝑡

𝑥𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑥𝑟𝑜𝑏𝑜𝑡
)

𝐷𝑓𝑜𝑙𝑙𝑜𝑤 = √(𝑥𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑥𝑟𝑜𝑏𝑜𝑡)2 + (𝑦𝑓𝑜𝑙𝑙𝑜𝑤 − 𝑦𝑟𝑜𝑏𝑜𝑡)2

To avoid problems near the forward and backward of the robot caused by large differences

when switching between positive and negative angle values, a positive transformation was

added to the value of the angles.

If the absolute value between the orientation of the robot and the angle of the history

following person to the robot is >π (3.14, half of a circle), then depending on whether the

angle is positive or negative, the angle changes with 2π (a circle) to avoid a large change

near those values. In other words, the values for 𝑎𝑓𝑜𝑙𝑙𝑜𝑤 lie between [-π, +π].

47

The velocity commands are executed in a manner similar to the DF method, but are related

to the history point and the real time position of the person to prevent the robot from getting

too close to the actual position of the person.

The angular velocity of the robot depends on 𝐾𝑝𝐴𝑛𝑔𝑙𝑒=0.5 (the twist speed controller) and

on the angle of following:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑎𝑛𝑔𝑢𝑙𝑎𝑟 = −𝑎𝑓𝑜𝑙𝑙𝑜𝑤 ∗ 𝐾𝑝𝐴𝑛𝑔𝑙𝑒

If 𝐷𝑘𝑖𝑛𝑒𝑐𝑡/𝑙𝑎𝑠𝑒𝑟 > 𝐷𝑇𝐴𝑅𝐺𝐸𝑇 , then the actual measurement of the distance from the Kinect or

from the laser to the person exceeds the distance that the robot needs to maintain following.

In such a case, the robot must to move in such a way as to reduce the distance from the

person, as follows:

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑙𝑖𝑛𝑒𝑎𝑟 = (𝐷𝑓𝑜𝑙𝑙𝑜𝑤 − 𝐷𝑇𝐴𝑅𝐺𝐸𝑇) ∗ 𝐾𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Otherwise, 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦𝑙𝑖𝑛𝑒𝑎𝑟 = 0

This equation implies that if the distance of the robot from the target (constant 1.2 m) exceeds

the distance of the robot to the history point, then the robot's linear speed will be zero,

indicating that the person is too close.

To prevent large changes in the position of the person caused by the movements of the

robot and the Kinect, a threshold of comparing the following samples was added and if the

distance between two followers samples of person's position is >1 m , the last sample will

be ignored.

To avoid quick turns that cause the Pan to lose the person, the angular velocity of the robot

was limited to 0.5 rad/s (like the maximum speed of the Pan).

To avoid problems related to two sources of person detection, the method uses first the

Kinect detection, and if it loses tracking, then it changes to laser detection. If there is no

detection by both sensors, the method can use the SAD integrated algorithm. This method

can work even with only one source of person detection (Kinect or laser). A method that

works with both of the sources together is described In Section 4.10 'Adaptive Following

Methods.'

4.10 Adaptive Following Methods (Kinect and Laser)

This adaptive method refers to DF and HF as an extension to the methods that are described

above (Direct-Following Section 4.8 and History-Following Section 4.9). To use two

sources of person detection, the method must implement a decision-making routine to select

48

which source to use for the following algorithm. An additional parameter was created to

compare the person's position determined by the laser detector in the world coordinates with

that determined by the Kinect. If the distance between these two measurements is >20 cm,

then the method declares a "Match," which implies the same person is detected from both

sources. Each sensor has inherent advantages and disadvantages as indicated in Table 4:

Table 4- Properties of Kinect vs. laser detector

 Kinect V2 Laser

Horizontal FOV (degrees) 84.1 RGB, 70.6 Depth 240

Vertical FOV (degrees) 53.8 RGB, 60 Depth Only 2D view (20 cm high)

Distance (meters) 1-10 RGB, 0.5-4.5 Depth 0-30

Reliability Depends (confidence level) Less reliable

Based on empirical investigations, the decision-making routine gives priority to the Kinect

(Figure 20) to calculate the following parameters. If after 3 s of "no" Kinect detection, the

routine changes to the laser detector to calculate the following parameters until the Kinect

recovers. If both sensors do not detect the person, then the routine uses the SAD algorithm.

Figure 20 - Flowchart of the adaptive decision making Kinect- and laser-detection

algorithm

49

5. Chapter Five: Results and Discussion

5.1 Overview

The results of all the experiments are detailed in this chapter. The two preliminary

experiments with Kinect V1 are described in Sections 5.2 and 5.3. The experiment that

compares the different following angles used with Kinect V2 is described in Section 5.4.

The comparison between the three occlusion detection algorithms is described in Section

5.5. The direct-following and history-following experiments that evaluate and compare the

performances of various combinations of integrated algorithms in the two main human-

following methods are described in Sections 5.6 and 5.7. The adaptive Kinect-laser vs non-

adaptive (for direct following and history following) experiment is described in Section 5.8.

5.2 Preliminary Experiment: Identifying Testable Parameters on a

No-Pan Kinect V1

A series of parameters were tested to evaluate the Kinect parameters (Table 5).

Table 5- The set of usable parameters tested for the variables

Max

speed

(m/s)

Respon-

siveness

distance

Respon-

siveness

turn

Minimum

distance to

person (m)

Angle

(rad)

Results/Opinion

1 1.2 1.2 2 0.5 Loses the person

(due to large angle)

1 1.2 1.2 2 0.4 Loses the person

(due to large angle)

1 1.2 1.2 2 0.3 Loses the person

(due to high velocity)

1 0.8 1.2 2 0.3 Causes the robot to vibrate and loses the

person (due to high velocity)

1 0.8 0.8 2 0.3 Causes the robot to vibrate and loses the

person (due to high velocity)

0.5 0.5 0.5 2 0.3 Slow near the person; some loss of the person

(due to high velocity and far distance)

0.3 0.8 0.8 2 0.3 Good tracking

but far distance from the person

0.3 0.8 0.8 1 0.3 Good tracking

and good distance from the person

The robot lost the person in the first and second trials due to the large tracking angle (0.5

and 0.4 rad, respectively). In the third trial, the robot lost the person due to its high linear

velocity (responsiveness of 1.2). After the responsiveness of the linear velocity (which

depends on the distance between the robot and the person) was decreased to 0.8, the robot

lost the person due to vibration caused by the angular responsiveness of 1.2. If the

50

responsiveness is too slow (0.5 for both linear and angular velocities) and the maximum

speed of the robot is also slow (0.5 m/s), the robot loses the person due to the far distance.

After obtaining good stable tracking at 0.3 rad from the side, with responsiveness of 0.8 for

both linear and angular velocities and a maximum speed of 0.3 m/s, the minimum distance

from the person can decreased to 1 m instead of 2 m.

Based on the above experiments, the final selected parameters were:

 0.3 rad for angle following

 1 m for minimum distance between a person and the Kinect camera

 0.8 responsiveness both for turning and distance

 0.3 m/s as maximum speed of the robot

5.3 Preliminary experiment: Testing Objective & Subjective Metric

Performances of Two Angles on a No-Pan Kinect V1

The following objective results were obtained:

 If the robot lost the person, it continued its current movement until it either found the

person and then continued to follow the person or it detected an obstacle and stopped.

This occurred in both ways.

 The maximum distance before losing the person was 4 m (see Figure 21 for an example

of losing the tracking at distances >4 m).

 Since the robot lacks a vertical tilt, it tended to lose track of tall people when they were

too close to it (see Figure 21 for an example of losing tracking at close distance).

 The robot detected shadows on the wall as additional people due to the lighting

conditions and to reflections. This happened mostly at side-following because of the

small distance between the robot and the wall (Figure 22).

 In 93% of instances of losing the person, the robot recovered by itself (26/28) (Figure

22).

 The average following angle was a bit larger than programmed (Figure 23, Table 6):

o Back-following 0.76° (supposed to be 0°)

o Side-following 18.25° (supposed to be 17.19°)

51

Figure 21 - Examples of losing tracking at distances > 4 m and at close distances

(Kinect V1)

Figure 22 - Losses reasons (back-following vs. side-following)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D
is

ta
n
c
e

Time

subject5_back

sumfarcloseturnshadow?

back-following 1658102

side-following 1235031

16

5

8

1

0

2

12

3

5

0

3

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

N
u
m

b
e
rs

 o
f

lo
s
s

Loss

52

Figure 23 - Means and variance degrees (back-following vs. side-following)

Table 6 - Following angle results (back-following vs. side-following)

subject side-following

All path

side-following

without turn

back-following

All path

back-following

Without turn

1 14.21 18.59 -3.4 0.93

2 13.72 17.96 -3.93 0.03

3 13.64 17.66 -1.25 0.46

4 13.72 17.61 -3.46 0.9

5 14.42 19.25 -1.48 0.98

6 13.94 18.42 -3.91 1.23

average 13.94 18.25 -2.91 0.76

covariance 0.10 0.40 1.48 0.19

53

The subjective results of the experiments are summarized in Table 7. The main findings

were:

 There were significant differences in the subjective assessments of 'following quality',

'robot responsiveness' and 'comfort with speed.'

 The robot lost the person more frequently in back following (by 33% more losses in

back-following) than in side-following. This is because people tended to walk faster (and

noticed the robot's presence less) and created a much larger distance between them and

the robot.

 Subjects felt that the robot moved too slowly and they thus lowered their speed to adapt

to the robot; yet to 4/6 subjects the robot felt slower in back-following than side-

following.

 The subjects reported that they adapted their walking speed and behavior to the robot to

a greater extent for back-following.

 4/6 of subjects felt less threatened with the following distance of the robot in back-

following.

 Subjects were slightly less stressed by the robot in the back-following condition.

 The task was perceived as non-stressful. The robot was perceived to be friendly and not

dangerous, scary, annoying or stressful.

 There was no conclusive self-reported preference between back-following and side-

following.

 There were no perceived differences in the quality of following.

 The comfort of the subjects with the responsiveness of the robot was the same for both

back and side-following.

54

Table 7- Subjective results of the performances of two angles experiment

Following behind

Average

Gender F M F M M F

Subject # 1 2 3 4 5 6

Person stressed by task 1 2 1 1 1 3 1.5

Person stressed by robot 2 2 1 1 1 1 1.33

Person adapted behavior based on robot 3 4 5 3 3 4 3.66

Robot adapted behavior based on person 4 3 3 4 4 4 3.66

Walking was independent of robot 1 2 1 2 2 2 1.66

Person was comfortable with speed of robot 1 4 3 3 2 5 3

Robot moved too slowly 5 4 5 4 5 1 4

Person was satisfied with the quality of following 2 4 5 3 3 5 3.66

Person felt safe regarding the distance of the robot 5 5 5 4 5 5 4.83

Person lowered speed to adapt to the speed of the robot 5 5 5 4 5 4 4.66

Following at angle

Average

Gender F M F M M F

Subject # 1 2 3 4 5 6

Person stressed by task 1 1 1 2 1 2 1.33

Person stressed by robot 2 3 1 2 1 3 2

Person adapted behavior based on robot 2 2 1 4 4 4 2.83

Robot adapted behavior based on person 4 3 5 4 4 4 4

Walking was independent of robot 2 3 2 2 2 1 2

Person was comfortable with speed of robot 3 4 5 3 2 5 3.66

Robot moved too slowly 4 3 1 4 4 2 3

Person was satisfied with the quality of following 4 4 5 3 2 4 3.66

Person felt safe regarding the distance of the robot 3 3 5 4 4 3 3.66

Person lowered speed to adapt to the speed of the robot 5 2 5 4 5 5 4.33

Comparison

Subject # 1 2 3 4 5 6

Person felt a difference in the difference between the 2 trials 4 4 3 2 4 4 3.5

Opinion of Robot (the robot is..)

Friendly 3 3 3 2 5 4 3.33

Disturbing 2 3 1 4 3 1 2.33

Considerate 1 4 3 3 1 4 2.66

Dangerous 2 1 1 2 1 1 1.33

Scary 1 2 1 2 1 2 1.5

Annoying 3 2 1 3 3 1 2.16

Stressful 3 1 1 2 2 2 1.83

5.4 Testing Objective & Subjective Metric Performances of Three

Angles on a Pan Kinect V2

Objective indicators used to assess the quality of following (Table 8) indicated while that the

mean following angle at 0° following and 30° following were consistently close to the

intended angles (2.31° and 28.26°, respectively), the implementation of 60° following was

unsuccessful (mean = 26.11°, STD = 7.315). This lack of success may be attributed to the

different methods of following and problems that were caused due to the implementation of

55

the 60° of following. There was no significant difference across trials in the following

distance (0° and 30°) (Honig et al., 2016). The mean following distance for men was 17.2

cm greater (by 8%) than that for women. The number of times the robot lost track of the

participants (defined as 'losses' in Table 8), and the mean number of interventions due to loss

or for safety reasons increased with the following angle, but these differences were not

statistically significant (sig. = 0.206, sig. = 0.205, sig. = 0.297, respectively).

Table 8- Cumulative results for objective measures for quality of walk

 0° 30° 60°

Distance 2.36±0.69 2.29±0.59 2.2±0.57

Angle 2.31±10.41 -28.26±11.04 26.11±12.73

Number of losses 0.36±0.75 0.72±0.62 1.16±0.28

Number of

interventions due

to loss

0.32±0.62 0.44±0.82 0.96±0.97

Number of

interventions due

to safety

0.08±0.27 0.24±0.43 0.52±0.71

5.5 Comparison of Occlusion Algorithms

The results (Table 9) show that the algorithm that uses depth information (DO) yielded

better average true detection (92.7%±8.75%) than the algorithms that use grey level images

(VO) (40.5%±23%) and their combination (CO) (63%±11.25%) in corrent implementation

for all scenarios and distances, including very far distances (8 m). DO exhibited high

sensitivity and specificity as compared to VO (sig. = 0.000) and CO (sig. = 0.000). DO

yielded the best detection results, followed by the CO algorithm, and the worst algorithm

was VO (sig. = 0.000, F = 25.748). DO yielded the least false alarms and misses

(9.7%±8.75%), less than CO (36.9%±11.25%) but not statistically significantly different,

and the worst results were obtained for VO (59.4%±23%) (sig. = 0.173, F = 1.98). These

results indicate the reliable measurements of the Kinect Depth stream that are used in the

DO algorithm developed to derive a compatible threshold to reduce false distance

measurements and closer body parts mistakes. The low performance of VO, namely, the high

number of false occlusions detected showed that the detection of straight lines was not

adequate.

56

Table 9- results of comparison occlusion algorithms experiment

 True

Negative

False

Positive

False

Negative

True

Positive

DO

(occlusions)

0.88±0.17 0.12±0.17 0.083±0.09 0.916±0.09

CO

(occlusions)

0.895±0.12 0.105±0.12 0.552±0.06 0.447±0.06

DO (wall) 1±0 0±0 0.088±0.09 0.912±0.09

VO (wall) 0.695±0.31 0.305±0.31 0.883±0.15 0.116±0.15

CO (wall) 0.94±0.08 0.06±0.08 0.76±0.19 0.24±0.19

*The best results are highlighted in yellow

The results indicate that CO detection was almost half of DO detection at distances <5 m

(Pearson: sig. = 0.01, r (43) = 0.706) and almost half of VO at distances >5 m (Pearson: sig.

= 0.01, r (22) = 0.535). VO produced a high number of false negatives. Unexpectedly, DO

was found to be better than VO and CO even at far distances.

5.6 Direct-Following Experiment

The main results obtained were:

 The results presented in Table 10 indicate that the trials with the two search algorithms

(trials 1 and 2) gave better results than the trial without the search algorithm (trial 3) in

terms of the percentage of self-recoveries and intervene-recovers out of the total number

of losses (with a search algorithm, all losses were self-recovered; without the search

algorithm, all the losses required intervention for 100% recovery). The only significant

difference between the three trials was in the ratio of stable tracking of the person to no

tracking of the person (sig. = 0.047, f = 3.633). The results for average ratio of stable

tracking of the person to no tracking of the person for the trials with the two search

algorithms were better by 21% (trials 1 and 2, mean±STD = 0.983±0.016) than for the

trial with no search algorithm (trial 3, mean±STD = 0.81±0.165). Post-hoc pairwise

comparisons (Tukey test) showed a difference that was almost significant between trial 3

and trials 1 and 2 (sig. = 0.075, p = 0.078, respectively), with a homogeneity of variances

of 0.11.

 For the seven subjects, there were differences in the total number of losses: trials with the

search algorithms yielded 60% less losses than those without a search algorithm (search

0.4±0.489; without search 1±1.264) but the homogeneity of variances of 0.01 indicates

that this difference was not significant. It was also found, as expected, that each subject

walked at a unique average velocity.

57

 There was no significant difference between the two search algorithms. The only

difference between trial 1 and trial 2 was that trial 1 was conducted with the DO

algorithm, and trial 2, without.

 The order in which the trials were conducted during the experiment did not influence the

results.

 In this experiment the best algorithm was the combination of SAD and DO (trial 2 -

Figure 24) because the combination gave significantly better results – by 21% – than the

DO algorithm alone (without the search algorithm) for average ratio of stable tracking of

the person to no tracking of the person; this result was similar to that of the first trial,

which used only the search algorithm without the DO algorithm (Table 10).

Table 10 - Results for Direct-Following experiment

Trial Type Total

loss

Total

loss with

self

recovery

Ratio

self-

recovery

to total

loss

Total loss

with

intervent

Ratio

intervent

to total

loss

Total

safety

intervent

Robot

distance

1 Search 2 2 100 0 0 3 13.28

2 Search+

occlusion

4 4 100 0 0 1 12.74

3 Occlusion 8 0 0 8 100 3 13.85

Trial Velocity

of the

subject

Depth

occlusion

False

alarm

depth

occlusion

Ratio

track to

no-track

Distance STD

distance

Total

obstacles

hit

1 0.54 0.98 3.14 0.83 2

2 0.56 0.84 0.46 0.98 2.99 0.71 2

3 0.52 0.79 0.49 0.81 3.29 0.86 1

*Yellow fill indicates the best results (although not statistically significant)

58

Figure 24- An example of Direct-Following with search and occlusion algorithms from

RVIZ (Blue-subject, Red-robot)

5.7 History Following Experiment

The results in Table 11 indicate that there was only one significant difference between the

two HF algorithms, namely, the difference in the total path length of the robot during the

experiment (sig. = 0.02, f = 15.765). The algorithm that gave the longer path – by 22% –

was the DO algorithm used in the second trial (without DO 16.085±1.604; with DO

19.157±1.007). In addition, there was no significant difference in the number of losses or in

the ratio of stable tracking to no tracking of the person. There was a difference in the percent

of self-recoveries—200% more self-recoveries with the DO algorithm (7.14% self-

recoveries for no DO algorithm vs 21.43% self-recoveries with the DO algorithm).

As in the DF experiment (Section 5.6), each subject had a unique average velocity, as

expected, and the order of the trials during the experiment did not influence the results.

A reasonable explanation for the difference in the length of the path is that this parameter

depends on the movements of the robot during recognizing an occlusion of the person (by

DO algorithm) and changing the following angle to change the line of sight between the

robot and the person (which increases the length of the path). In addition, the percent of self-

recoveries after loss was three times higher when using the DO algorithm; this finding

implies that it is better to use the DO algorithm in an unknown environment. Hence, the best

algorithm in this experiment was shown to be the DO algorithm (Table 11 and Figure 25).

59

Table 11- Results for History-Following experiment

Trial Type Total

loss

Total

loss with

self

recovery

Ratio

self-

recovery

to total

loss

Total loss

with

intervent

Ratio

intervent

to total

loss

Total

safety

intervent

Robot

distance

1 Search 8 1 12.5 7 87.5 2 16.08

2 Search+

occlusion

9 3 33.3 6 66.6 4 19.16

Trial Velocity

of the

subject

Depth

occlusion

False

alarm

depth

occlusion

Ratio

track to

no-track

Distance STD

distance

Total

obstacles

hit

1 0.50 0.81 3.29 0.92 1

2 0.48 0.80 0.51 0.82 3.50 0.91 1

*yellow fill indicates statistically significant result.

Figure 25 - Example of History-Following with search and occlusion algorithms from

RVIZ (Blue-subject, Red-robot)

A comparison of the three trials of the DF experiment (Section 5.5) and the two trials of the

HF experiment (Table 12) shows that direct following is better than history following (the

opposite than expected) due to large calculation processing in HF. Losses for DF were 45%

less than those for HF (sig. = 0.077, not significant). Out of the total losses, the percentage

of intervene-recoveries was lower by 70% in the DF (sig. = 0.003). The tracking ratio is 13%

60

better in the DF (sig. = 0.022) and the path distance of the robot was shorter by 25% (sig. =

0.000). In addition, the velocity of the subject was faster by 10% in the DF (sig. = 0.071, not

significant).

Table 12- Statistic comparison between 3 DF trials vs 2 HF trials

Variable 3 Direct trials

Mean±STD

2 History trials

Mean±STD

F Sig.

Number of total losses 0.67±0.856 1.21±0.893 3.332 0.077

Percent of intervene-recover out of

total loss

0.1905±0.402 0.6429±0.412 10.404 0.003

Tracking ratio (Kinect) 0.9257±0.129 0.8157±0.136 5.804 0.022

Average velocity of the subject (m/s) 0.5419±0.081 0.4877±0.083 3.484 0.071

Total path length of the robot (m) 13.29±1.989 17.6214±2.114 37.868 0.000

*Yellow fill indicates that the difference is significant at the 0.05 level.

The results indicate influence of the different following methods (DF vs HF) on the results

(Table 13). The next experiment must include a larger number of participants in order to

obtain statistically significant results.

Table 13 - Results for the comparison between 3 DF trials vs 2 HF trials

Trial Type Total

loss

Total

loss with

self

recovery

Ratio

self-

recovery

to total

loss

Total loss

with

intervent

Ratio

intervent

to total

loss

Total

safety

intervent

Robot

distance

1 Direct 4.67 2 66.66 2.67 33.33 2.33 13.29

2 History 8.50 2 22.90 6.50 77.05 3 17.62

Trial Velocity

of the

subject

Depth

occlusion

False

alarm

depth

occlusion

Ratio

track to

no-track

Distance STD

distance

Total

obstacles

hit

1 0.54 0.81 0.47 0.93 3.14 0.80 1.67

2 0.49 0.80 0.51 0.82 3.39 0.92 1

*Green indicates the best results (although not significant), and yellow indicates

results with statistical significance at the 0.05 level.

The main significant difference between the five trials lies in the total path length of the

robot (Figure 26 and Table 14), with homogeneity of variances of 0.74 (sig. = 0.000, f =

61

14.614). The shortest path (trial 2- DF with SAD and DO) was shorter by 33% than the

longest path (trial 5- HF with SAD and DO).

Figure 26 - Five trials total path length of the robot

Table 14 - Results for five trials

Trial Type Total

loss

Total

loss with

self

recovery

Ratio

self-

recovery

to total

loss

Total loss

with

intervent

Ratio

intervent

to total

loss

Total

safety

intervent

Robot

distance

1 Direct

search
2 2 100 0 0 3 13.28

2 Direct

search+

occlusion

4 4 100 0 0 1 12.74

3 Direct

occlusion
8 0 0 8 100 3 13.85

4 History

search
8 1 12.5 7 87.5 2 16.08

5 History

search+

occlusion

9 3 33.3 6 66.6 4 19.16

Trial Velocity

of the

subject

Depth

occlusion

FA

depth

occlusion

Ratio

track to

no-track

Distance STD

distance

Total

obstacles

hit

1 0.54 0.98 3.14 0.83 2

2 0.56 0.84 0.46 0.98 2.99 0.71 2

3 0.52 0.79 0.49 0.81 3.29 0.86 1

4 0.50 0.81 3.29 0.92 1

5 0.48 0.80 0.51 0.82 3.50 0.91 1

62

5.8 Adaptive Kinect-Laser Method vs. Non-Adaptive Kinect Method

(for Direct-Following and History-Following) Experiment

The comparison of the adaptive Kinect-laser methods with the non-adaptive Kinect

methods indicates better performance of the adaptive methods (Table 15):

Table 15 – Statistic comparison between Adaptive Kinect-laser methods vs Non-adaptive

Kinect methods

Variable Adaptive

Method

Mean±STD

Non-Adaptive

Method

Mean±STD

F Sig.

Number of total losses** 1.25±0.812

**0.982±0.54

2.27±1.18

**0.592±0.49

13.395 0.000

Percent of intervene-recover out of

total losses

0.225±0.362 0.651±0.364 32.897 0.000

Number of safety interventions 0.79±0.713 1.33±0.781 12.588 0.001

STD of the distance between robot

and subject (m)

0.785±0.261 0.905±0.306 4.266 0.042

Percent of false depth occlusions 0.237±0.114 0.296±0.147 4.866 0.03

Percent of depth occlusions 0.774±0.130 0.715±0.122 5.132 0.026

*Yellow fill indicates that the difference is significant at the 0.05 level.

**The total number of losses has a homogeneity of variances of 0.008. Therefore, a transformation

of 1/X was performed, resulting in a homogeneity of variances of 0.561.

The percent of 'intervene-recovers' out of total losses was lower in the adaptive Kinect-laser

methods by 65% (adaptive Kinect-laser average 0.225±0.362 vs. non-adaptive average

0.651±0.364) due to the ability of the robot to 'reconnect' with the person by using the laser

sensor when the Kinect had lost the person. For the same reason, the number of interventions

resulting from the robot getting too close to a wall was lower in the adaptive Kinect-laser

methods by 41% (adaptive Kinect-laser average 0.79±0.713; non-adaptive average

1.33±0.781). In addition, the STD of the distance between the robot and the subject was

smaller in the adaptive Kinect-laser methods by 13% (adaptive Kinect-laser average

0.785±0.261; non-adaptive average 0.905±0.306) due to fewer losses and more steady

following with less variation in the distances. Perhaps, this is also the reason for better

occlusion detection and less false occlusion detection in the adaptive Kinect-laser methods

by 8% and 20%, respectively.

63

The comparison between the two following methods (DF adaptive and non-adaptive

methods vs HF adaptive and non-adaptive methods) shows better results for the DF (Table

16):

Table 16- Direct-Following (adaptive and non-adaptive methods) vs History-Following

(adaptive and non-adaptive methods)

Variable Direct

Following

Mean±STD

History

Following

Mean±STD

F Sig.

Number of total losses 1.35±1.101 2.17±1.018 14.097 0.000

Number of intervene-recover 0.77±1.057 1.38±1.064 7.789 0.006

Number of laser obstacles found 37.29±19.64 50.69±23.46 9.2 0.03

Percent false alarm detection of legs 0.189±0.302 0.435±0.295 7.98 0.007

Tracking ratio for Kinect 0.935±0.081 0.88±0.094 9.174 0.003

Percent of false depth occlusion 0.225±0.125 0.309±0.131 10.373 0.002

Velocity of the subject 0.404±0.092 0.336±0.079 14.82 0.000

Total path length of the robot 19.298±1.80 23.607±2.08 64.718 0.000

Number of matchings for the position of

the subject by Kinect and laser detector

32.08±22.11 15.5±13.99 9.641 0.003

Tracking ratio for laser detector 0.596±0.264 0.318±0.186 17.689 0.000

*Yellow fill indicates difference is significant at the 0.05 level.

Higher – by 6% and 47%, respectively – stable tracking ratios were obtained with the Kinect

and laser sensors for the DF methods (adaptive and non-adaptive). A reasonable explanation

for this finding is that the robot always turns directly to the subject in DF methods, which

means that if the robot loses the person, the Pan returns the Kinect to the center of the robot

where the person is most likely to be and the line of sight of the laser sensor is aimed in front

of the robot. In contrast, in the HF (adaptive and non-adaptive) methods, the robot does not

move directly to the person but rather to the person's historical position. In other words, most

of the time the person is not in front of the robot. For the same reason, the number of

interventions due to losses was lower, by 44%, in DF (adaptive and non-adaptive) methods

than in HF (adaptive and non-adaptive) methods due to the direction of the sensors when the

robot loses the person and to the inferior ability of the robot to self-recover when the sensors

are not directed to the person (in front of the robot). This reasoning also explains the lower

– by 38% – number of total losses for DF (adaptive and non-adaptive) methods. In addition,

less stable tracking can cause more false occlusion detections due to false person detection.

64

The average distance between the robot and the subject was not significantly different

(homogeneity of variances of 0.012; DF 3.051±0.545; HF 3.696±0.370 with sig. = 0.000,

f = 45.905). The percent of false alarms of legs detection was higher in HF (adaptive and

non-adaptive) by 56% and showed a positive correlation to the distance. Longer distances

could cause a higher probability of false alarms, since it becomes more difficult for the laser

sensor to find the person's legs as the distance increases. The velocity of the subject could

be faster when the robot is closer and slower when the robot is further away (since the person

may have to wait for the robot). The number of matchings between the position of the subject

by the Kinect and by the laser sensor was higher when both sensors give stable and reliable

tracking, which also depends on the distance.

The total path length of the robot was shorter – by 18% – in DF (adaptive and non-adaptive),

as expected. In DF (adaptive and non-adaptive), the robot moves directly to the subject by

taking short cuts, while in HF (adaptive and non-adaptive) the robot moves to the historical

position of the subject without any short cuts. The difference may explain why the number

of laser obstacles in HF (adaptive and non-adaptive) was higher by 36%, since the robot

follows the subject's historical position when the subject moves near an obstacle.

In addition, people preferred the DF than HF due to the robot's response (location and

continuity of movement).

A comparison between the heights of the male and female participants showed that the men

were significantly taller than the women by 4% and the standard deviation (STD) of the

distance between the robot and the subject (Table 17) of the men were significantly higher

than the women by 3%.

Table 17- Statistical comparison between males vs females

Variable Males

Mean±STD

Females

Mean±STD

F Sig.

Height of the subject 1.635±0.626 1.593±0.060 10.95 0.001

STD of the distance between robot and

subject

0.792±0.279 0.921±0.289 4.836 0.03

*Yellow indicates difference is significant at the 0.05 level.

There was no difference in the tracking ratio or the average distance between the robot and

the subject that can explain the different STDs. The only reasonable explanation lies in the

fluctuations in the velocity of the subject. The velocity calculation was based only the

average velocity during the entire trial and not the fluctuation of the velocity during the trial.

If males, for instance, walked at a "more" constant velocity than females, then the STD

distance of males are smaller by 14% than females.

65

For the 24 participants, the only significant difference between the men and the women was

that in their height, as expected (sig. = 0.000, f = 22.775).

The order of the trials during the experiment did not influence on the results.

A comparison between the four trials (HF-Adaptive, HF-Non-Adaptive, DF-Adaptive, DF-

Non-Adaptive) shows differences (Table 18). The means for groups in homogeneous

subsets are displayed in

Figure 27.

Table 18- Statistical comparison between the four trials

Variable HF-

Adaptive

Method

Mean± STD

HF-Non-

Adaptive

Mean± STD

DF-

Adaptive

Mean± STD

DF-Non-

Adaptive

Mean± STD

F Sig.

Number of total losses 1.67±0.761 2.67±1.007 0.83± 0.637 1.88±0.899 19.39 0.000

Number of safety

interventions

0.88± 0.797 1.46±0.721 0.71±0.624 1.21±0.833 4.838 0.004

Average distance

between robot and

subject

3.614±0.39 3.778±0.33 2.985±0.50 3.118±0.58 16.21 0.000

Tracking ratio with

Kinect

0.872±0.11 0.888±0.06 0.950±0.05 0.919±0.09 3.664 0.015

Percent of false depth

occlusion

0.285±0.10 0.333±0.15 0.189±0.10 0.260±0.13 5.43 0.002

Percent of depth

occlusions detected

0.729±0.15 0.750±0.06 0.818±0.07 0.681±0.15 5.360 0.002

Velocity of the subject 0.327±0.07 0.346±0.08 0.404±0.09 0.404±0.09 5.051 0.003

Total path length of the

robot

23.40±2.10 23.80±2.08 18.60±1.72 19.99±1.62 43.52 0.000

*Yellow highlighting indicates the best results and black highlighting, the worst, with difference

being significant at the 0.05 level.

66

Figure 27-Means for groups in homogeneous subsets

The Kinect tracking ratio was highest in the DF-adaptive Kinect-laser mode as compared to

the ratio for the other modes (DF-non-adaptive by 3%; HF-adaptive by 9%; HF-non-

adaptive by 7%). There was a significant difference only between the best and the worst

results (DF-adaptive 0.95±0.05 vs HF-adaptive 0.872±0.11, with sig. = 0.015). A reasonable

explanation for this finding is that the robot always turns directly to the subject in DF

(adaptive and non-adaptive) methods, which means that if it loses the person, the Pan returns

the Kinect to the center of the robot where the person is most likely to be. In contrast, in the

HF (adaptive and non-adaptive) methods the robot does not move directly to the person but

rather to the person's historical position. In other words, most of the time, the person is not

in front of the robot. The results of false occlusion detection separates the DF-adaptive (once

again the best result) to the HF-adaptive and the HF-non-adaptive with sig. = 0.002.

Surprisingly, detection of real occlusions did not correlate with the false occlusions

detections. The only significant difference is between DF-adaptive with the best result

67

(0.818±0.07) that is higher by 20% than the DF-non-adaptive (0.681±0.15, with sig. =

0.001).

The average distance between the robot and the subject in both DF methods (DF-adaptive

2.985±0.5; DF-non-adaptive 3.118±0.58) was shorter by 17% than that in both the HF

methods (HF-adaptive 3.614±0.39; HF-non-adaptive 3.778±0.33, with sig. = 0.000). The

explanation of this significant difference lies in the differences between DF and HF, as

explained above. This distance difference can also explain the velocity of the subject with

significant differences between the DF (adaptive and non-adaptive) methods that are faster

by 20% than the HF-adaptive. The velocity of the subject can be faster when the robot is

closer and slower when the robot is farther (if waits for the robot).

There was a significant difference in the average number of interventions due to safety

reasons between the DF and HF methods, with adaptive Kinect-laser methods of following

having 46% less safety interventions (DF-adaptive 0.71±0.624; HF-adaptive 0.88±0.797)

than the HF-non-adaptive mode (1.46±0.721), with sig. = 0.004 and sig. = 0.04, respectively.

The reason for this difference lies in the stability of the tracking, i.e., the adaptive-following

methods use two sensors, and in the smaller number of losses – by 72% – in the adaptive-

following methods than in the non-adaptive-following methods. The average number of

losses was significantly different between trials. The DF-adaptive mode gave fewer losses

(0.833±0.637) than the HF-adaptive (1.666±0.761), the DF-non-adaptive (1.875±0.899) and

the HF-non-adaptive (2.666±1.007) by 50% (sig. = 0.005), 56% (sig. = 0.000) and 69% (sig.

= 0.000), respectively.

The total path length of the robot was shorter by 18% in the DF (adaptive and non-adaptive)

trials than in the HF (adaptive and non-adaptive) trials, as expected. There was a significant

difference between the DF methods (DF-adaptive 18.605±1.72; DF-non-adaptive

19.991±1.62) and the HF methods (HF-adaptive 23.405±2.1; HF-non-adaptive

23.809±2.08), with sig. = 0.000. In the DF (adaptive and non-adaptive) methods, the robot

moves directly to the subject with taking short cuts, as necessary, while in HF (adaptive and

non-adaptive) methods the robot moves to the historical position of the subject without

taking short cuts. Examples of trials are shown in Figure 28, where

1. DF-adaptive - loss near the third obstacle; robot maintains stable tracking around the

corner; Markers of Kinect and laser position

2. DF-adaptive - "short-cut" at the third obstacle; loss of tracking around the corner and

self-recovery; Markers of Kinect and laser position

3. DF-non-adaptive - "short-cut" at the third obstacle; stable tracking, even around the

corner

68

4. DF-non-adaptive - "short-cut" at the third obstacle; loss around the corner and self-

recovery

5. HF-adaptive - stable tracking even around the corner; Markers of Kinect and laser

position

6. HF-adaptive - two losses near the walls, another loss around the corner and self-

recovery; Markers of Kinect and laser position

7. HF-non-adaptive - two losses near the third obstacle; robot maintained stable tracking

around the corner

8. HF-non-adaptive - "short-cut" at the third obstacle and loss of tracking, some losses near

the walls and around the corner with self-recovery

69

Figure 28- Trials examples for the adaptive and non-adaptive experiment (Yellow-subject,

Red-robot)

-Green point with 2 small red points represent the position of the person by laser sensor

-Small turquoise point represents the position of the person by Kinect

-Straight blue line represents a wall

-Blue circle represents an obstacle

-Red line represents a stable robot following path

70

The summarized results for all the performance measures that were tested in the experiments

are shown in Table 19. According to the results, the best trial was DF-adaptive (the best in

all performance measures), followed by HF-adaptive, DF-non-adaptive and HF-non-

adaptive, in that order.

Table 19- The summarized results of the adaptive and non-adaptive (DF and HF)

experiment ranking

 History

Adaptive

History Direct

Adaptive

Direct

Total Loss 1.67 2.67 0.83 1.88

Total loss with self- recovery 0.88 0.71 0.71 0.46

Ratio self- recovery to total loss 52.50 26.56 85.00 24.44

Total loss with intervent 0.79 1.96 0.13 1.42

Ratio intervent to total loss 47.50 73.44 15.00 75.56

Total safety intervent 0.88 1.46 0.71 1.21

Obstacles hit 0.17 0.33 0.00 0.38

Laser obstacles 50.42 50.96 39.38 35.21

Match 15.50 32.08

Total Kinect fall 2 3 3 2

Robot distance 23.45 24.18 18.69 20.16

Velocity of the subject 0.33 0.35 0.40 0.40

Depth occlusion 0.73 0.75 0.82 0.68

False alarm depth occlusion 0.29 0.33 0.19 0.26

Ratio track to no-track Kinect 0.87 0.89 0.95 0.92

Ratio track to no-track Laser 0.32 0.60

Legs false alarm 0.44 0.19

Distance between robot to subject 3.61 3.78 2.99 3.12

STD distance 0.90 0.97 0.67 0.84

*Yellow fill indicates the best results and black fill, the worst, with significant difference at the

0.05 level.

71

6. Chapter Six: Conclusions and Future Work

6.1 Conclusions

In this thesis, different algorithms and following methods were developed and tested for a

human-following robot operating in unknown environments. The algorithms were developed

for a robot operating without any a-priori information about the environment and without

any special carry-on item and for people not wearing any specific items of clothing. The aim

was to reduce the number of robot's losses of the person being detected and improve the

robot's ability to self recover in unknown environments. The algorithms were implemented

on a Pioneer LXRobot mobile platform equipped with a Kinect and laser sensor.

The algorithms use depth methods to improve the occlusion detection process. It uses the

laser to avoid obstacles during the following process in real time, adapts to the linear and

angular velocities of the robot and it remembers the last position of the person to search the

person after disappear by moving to the person last position and turns to the direction, that

was calculated.

The main conclusions from this research were:

 The best occlusions detection algorithm is the DO, which uses the depth information

from the Kinect.

 For both following methods (DF and HF), the best performance was achieved by

integrating three algorithms—DO, OA, and SAD.

 Adaptive methods that combine the laser sensor with the Kinect for DF and HF

methods are better than the methods that do not use the laser (non-adaptive), and DF

methods are better than HF methods. The final ranking of algorithms is:

DF with laser→ HF with laser→ DF without laser→ HF without laser.

6.2 Research limitations

This research has some limitations:

 The experiments were performed on only one person at a time and not in crowded

environments (without the ability to distinguish between people).

 The obstacles and the entire room of the experiment was pre-tested and adapted to

reduce false alarms of legs detection due to chair and table legs.

 Indoor environments with manually adapting light conditions depends on the sun

reflection.

72

 The subjects and the robot moved slowly to test the robot's following parameters that

depend on large computing complexity.

6.3 Future Work

The algorithms and following methods presented in this thesis were tested in real-time on a

mobile robot for human-following in unknown environments. There are several suggestions

for future research:

 In this research, the CO uses the DO (depth) algorithm when the person is close to

the Kinect and the VO (vision) algorithm when the person is far from the Kinect. A

better combined algorithm can be developed by using both of the sensors in parallel

for comparing the results of each algorithm by defining a combined decision

parameter for occlusion detection.

 When the occlusion detection algorithm detects an occlusion process, it changes the

robot's following angle to 15° (small occlusion or wall occlusion) or 30° (large

occlusions). Adjusting the angle according to the size of the occlusion can result in

improved performance (instead of the current simple selection between two fixed

angles).

 Future research should focus on the use of dynamic maps, using SLAM to help the

robot navigate and orientate in previously visited environments.

 Implementing ability of distinguish between people by using people parameters like

height and width, or clothes parameters like color and shape to distinguish between

people and then to search for the particular person being followed after loss.

 Developing following angle above 30° (like side by side following).

 For obstacles detection, the vertical search field of view should be increased by using

the Kinect; the currently used technique is based on legs detection by a laser sensor,

which has a very narrow search field of view (20 cm above the ground).

 Improve the run time during HF by adding more parallel computers and increase the

computing size.

73

7. References
Alvarez, S., Pardo, M., Iglesias, R., Canedo, A., & Regueiro, V. (2012) Feature Analysis for

Human Recognition and Discrimination : Application to a Person-Following Behaviour

in a Mobile Robot. Robotics and Autonomous Systems 60 (8): 1021–1036.

Young, E., Kamiyama, Y., Reichenbach, J., Igarashi, T., & Sharlin, E. (2011). How to walk

a robot: A dog-leash human-robot interface. IEEE Int. Work. Robot Human Interaction

Communication: 376–382.

Ding, S., Gangdun, L., Yang, L., Zhang, J., & Yuan, J. (2015). SLAM and Moving Target

Tracking Based on Constrained Local Submap Filter. IEEE International Conference

on Information and Automation: 831–836.

Doisy, G., Jevti, A., Lucet, E., & Edan, Y. (2012). Adaptive Person-Following Algorithm

Based on Depth Images and Mapping. IEEE/RSJ International Conference on

Intelligent Robots and Systems, IROS Vilamoura, Portugal, October 7-12.

Garcia, A., Garcia, A., Hagras, H., Dooley, J., Callaghan, V., & Botia, J. (2013). A Fuzzy

Logic-Based System for Indoor Localization Using WiFi in Ambient Intelligent

Environments. IEEE Transactions on Fuzzy Systems 21 (4): 702–718.

Granata, C., Bidaud, P., & Buendia, A. (2011). Interactive Person Following for Social

Robots: Hybrid Reasoning Based on Fuzzy and Multiple-Objectives Decision Making

Approaches. 14th International Conference on Climbing and Walking Robots and the

Support Technologies for Mobile Machines: 1–16.

Hadi, H., Rosbi, M., Sheikh, U., & Amin, M. (2015). Improved Occlusion Handling for

Human Detection from Mobile Robot. Science and Information Conference (SAI): 694-

698.

Huang, Chang, & Haizhou. (2007). High-Performance Rotation Invariant Multiview Face

Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (4):

671–686.

Rlenmes, I., Karakaya, S., Küçüky, G., Ocak, H., & Bingül, Z. (2012). Obstacles and optimal

heading direction detection algorithm on a mobile robot platform. 20th Signal

Processing and Communications Applications Conference (SIU): 1-4.

Ikemura, Sho, & Fujiyoshi. (2011). Real-Time Human Detection. Computer Vision – ACCV

2010 Volume 6495: 25–38.

Jafari, O., Mitzel, D., & Leibe, B. (2014). Real-Time RGB-D Based People Detection and

Tracking for Mobile Robots and Head-Worn Cameras. IEEE International Conference

on Robotics and Automation (ICRA): 5636–5643.

Jia, S., Wang, S., Wang, L., & Li, X. (2016). Human Tracking System Based on Adaptive

Multi- Feature Mean-Shift for Robot under the Double- Layer Locating Mechanism.

Advanced Robotics 28 (24): 1653-1664.

Jung, E., Lee, J., Yi, B., & Park, J. (2014). Development of a Laser-Range-Finder-Based

Human Tracking and Control Algorithm for a Marathoner Service Robot. IEEE/ASME

Transactions on Mechatronics 19 (6): 1963–1975.

Karakaya, S., Küçüky, G., Toprak, C., & Ocak, H. (2014). Development of a Human

Tracking Indoor Mobile Robot Platform. 16th International Conference on

Mechatronics - Mechatronika (ME): 683-687.

Kim, H., Chung, W., & Yoo, Y. (2010). Detection and Tracking of Human Legs for a Mobile

Service Robot. IEEE/ASME International Conference on Advanced Intelligent

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7267673
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7267673
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=91
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7222825
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6200808
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6200808
http://link.springer.com/book/10.1007/978-3-642-19282-1
http://link.springer.com/book/10.1007/978-3-642-19282-1
https://shibaura.pure.elsevier.com/en/publications/development-of-a-laser-range-finder-based-human-tracking-and-cont
https://shibaura.pure.elsevier.com/en/publications/development-of-a-laser-range-finder-based-human-tracking-and-cont
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7005968

74

Mechatronics: 812–817.

Kmiotek, Pawel, & Ruichek. (2008). Representing and Tracking of Dynamics Objects Using

Oriented Bounding Box and Extended Kalman Filter. IEEE Conference on Intelligent

Transportation Systems (ITSC): 322–328.

Li, X., Dick, A., Shen, C., Hengel, A., & Wang, H. (2013). Incremental Learning of 3D-DCT

Compact Representations for Robust Visual Tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence 35 (4): 863–881.

Li, Y., Ding, S., Zhai, Q., Zheng, Y., & Xuan, D. (2015). Human Feet Tracking Guided by

Locomotion Model. IEEE International Conference on Robotics and Automation

(ICRA): 2424–2429.

Liu, X. (2004). Hand Gesture Recognition Using Depth Data. Sixth IEEE International

Conference on Automatic Face and Gesture Recognition: 529-534.

Ma, X., Hu, C., Dai, X., & Qian, K. (2008). Sensor Integration for Person Tracking and

Following with Mobile Robot. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS): 3254-3259.

Machida, E., Cao, M., Murao, T., Hashimoto, H., & Cao, M. (2012). Human Motion

Tracking of Mobile Robot with Kinect 3D Sensor. SICE Annual Conference (SICE):

2207–2211.

Morales, Y., Satake, S., Huq, r., Glas, D., Kanda, T., & Hagita, N. (2012). How Do People

Walk Side-By-Side ? – Using A Computational Model Of Human Behavior For A

Social Robot. 7th ACM/IEEE International Conference on Human-Robot Interaction

(HRI): 301–308.

Motai, Y., Jha, s., & Kruse, D. (2012). Signal Processing : Image Communication Human

Tracking from a Mobile Agent : Optical Flow and Kalman Filter Arbitration. Signal

Processing : Image Communication 27 (1): 83–95.

Munaro, M., Horn, A., Illum, R., Burke, J., & Bogdan, R. (2014). OpenPTrack: People

Tracking for Heterogeneous Networks of Color-Depth Cameras. 1st Intl. Workshop on

3D Robot Perception with Point Cloud Library at the 13th Intelligent Autonomous

Systems Conference (IAS-13): 1–13.

Munaro, M., & Menegatti, E. (2014). Fast RGB-D People Tracking for Service Robots.

Autonomous Robots 37: 227–242.

Najmaei, N., & Kermani, M. (2011). Applications of Artificial Intelligence in Safe Human –

Robot Interactions. IEEE Trans Syst Man Cybern B Cybern 41 (2): 448–459.

Norhidayah & Norida. (2015). Particle Filter in simultaneous localization and mapping

(SLAM) using differential drive mobile. Journal Teknologi: 20: 91–97.

Ota, M., Ogitsu, t., Hisahara, H., Takemura, H., Ishii, Y., & Mizoguchi, H. (2013). Recovery

Function for Human Following Robot Losing Target. IECON 39th Industrial

Electronics Conference: 4253–4257.

Plagemann, C. (2010). Real Time Motion Capture Using a Single Time-Of-Flight Camera.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR): 755–762.

Plagemann, C., & Koller, D. (2010). Real-Time Identification and Localization of Body Parts

from Depth Images. IEEE International Conference on Robotics and Automation

(ICRA): 3108–3113.

Pucci, D., Marchetti, L., & Morin, P. (2013). Nonlinear Control of Unicycle-like Robots for

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7128761
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7128761
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9123
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4637508
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4637508
http://www.ncbi.nlm.nih.gov/pubmed/20699212

75

Person Following. IEEE/RSJ International Conference on Intelligent Robots and

Systems, 3406–3411.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, j., Berger, E., Wheeler, r.,

& Mg, A. (2009). ROS: An Open-Source Robot Operating System. ICRA workshop on

open source software 3 (1): 5.

Rusu, R., & Cousins, S. (2011). 3D Is Here: Point Cloud Library (PCL). IEEE International

Conference on Robotics and Automation (ICRA): 1–4.

Sahoo, S., & Ari, S. (2015). Automated Human Tracking Using Advanced Mean Shift

Algorithm. International Conference on Communications and Signal Processing

(ICCSP): 789–793.

Sales, J., Cervera, E., & Baynat, V. (2010). Multi-Sensor Person Following in Low-Visibility

Scenarios. Sensors 10 (12): 10953–10966.

Schmidt, A. (2016). Prediction-Based Perspective Warping SLAM Accuracy. Springer

International Publishing In Man–Machine Interactions 4: 169–177.

Yao, A., Lin, X., Wang, G., & Yu, S. (2012). A Compact Association of Particle Filtering

and Kernel Based Object Tracking. Pattern Recognition 45 (7): 2584–2597.

76

Appendix A- An explanation of how to start the following

methods and integrated algorithms

Connect to LXRobot Wifi

Computer 1 on the robot and Computer 2 not plugged to the robot

Computer 2- Open new terminal:

 ssh robot@robot-desktop (password: robot)

 cd ~/workspace/ros/catkin

 roslaunch start_base.launch

Computer 1- connect the kinect and the pan to computer 1 (on the robot)

Computer 1- open a terminal:

 export ROS_MASTER_URI=http://robot-desktop:11311

 cd ~/workspace/ros/catkin/devel/lib/kinect2_bridge
 sudo ./kinect2_bridge (ignore error)

 roslaunch tracking detection_and_tracking_kinect2.launch

Computer 1- open a terminal:

 export ROS_MASTER_URI=http://robot-desktop:11311

 rosrun rosserial_python serial_node.py _port:=/dev/ttyUSB0

_baud:=250000

Computer 1- open a terminal:

 export ROS_MASTER_URI=http://robot-desktop:11311

 rostopic pub /Start_Stop_Pan std_msgs/Bool true

Computer 1- open a terminal:

 export ROS_MASTER_URI=http://robot-desktop:11311

 rosrun kinect_orientation_control kinect_orientation_control_node

The main following method can works with "leg_detector", with Kinect detection

("Open_PTrack") and even with both of them (priority to the Kinect and than the Laser

Leg-Detector).

Computer 2- For "legs detector"- in new terminal:

 cd workspace/ros/catkin/src/launchers

 roslaunch start_leg_detector.launch

http://robot-desktop:11311/
http://robot-desktop:11311/
http://robot-desktop:11311/
http://robot-desktop:11311/

77

Computer 2- For obstacles avoidance, search for obstacles with the laser in real time- in

new terminal:

 rosrun obstacles laser_obstacles_avoidance

Computer 1- For occlusion detection, declares an occlusion using the depth information of

the Kinect during person detection- in new terminal:

 rosrun occlusions depth_occlusions

There are 4 main methods codes for robot following with integrated unknown

environments algorithms. Each one of them can works by himself.

In new terminal run one of the following lines:

computer 2- in new terminal:

 direct following with search algorithm when the person disappear:

 rosrun people_follower simple_follower_kinect2_pan_laser

 direct following without search algorithm when the person disappear:

 rosrun people_follower

simple_follower_kinect2_pan_laser_without_search

 history following with search algorithm when the person disappear:

 rosrun people_follower path_follower

 history following without search algorithm when the person disappear:

 rosrun people_follower path_follower_without_search

78

Appendix B- Likert-Style Questions for Section 3.4.3

After each trial (back-following and side-following):

Stressed by the task 1 2 3 4 5

Stressed by the robot 1 2 3 4 5

Person adapted behavior based on robot 1 2 3 4 5

Robot adapted behavior based on person 1 2 3 4 5

Walking was independent of robot 1 2 3 4 5

Walking was comfortable with speed of robot 1 2 3 4 5

Robot moved too slowly 1 2 3 4 5

Person was satisfied with the quality of following 1 2 3 4 5

Person felt safe regarding the distance of the robot 1 2 3 4 5

I lowered my speed to adapt to the speed of the robot 1 2 3 4 5

Final questionnaire to compare the two trials and the opinion on the robot:

I felt a difference between the two trials 1 2 3 4 5

In which trial did you feel more comfortable? 1 2

Why

Opinion of the Robot (the robot is..)

Friendly 1 2 3 4 5

Disturbing 1 2 3 4 5

Considerate 1 2 3 4 5

Dangerous 1 2 3 4 5

Scary 1 2 3 4 5

Annoying 1 2 3 4 5

Stressful 1 2 3 4 5

79

Appendix C- Statistical Analysis
For the analysis of the results for the comparison between occlusion detection algorithms

(section 5.4), the Direct-Following experiment (section 5.5), the History-Following

experiment (section 5.6) and the Adaptive vs Non-Adaptive Direct-Following and History-

Following experiment (section 5.7) there is a necessity to compare the means of the groups.

The comparisons are performed using one-way ANOVA (analysis of variance) and Tukey's

HSD test. The ANOVA analysis employs an F-test to determine whether there is a significant

difference between two or more of the means. Tukey's HSD is a post hoc multiple

comparison test, performed after the F-test determines that the means are not equal. The

Tukey's HSD test separates and ranks the groups demanding 95% confidence level (α=0.05)

for the entire comparison.

D.1 Occlusion's algorithms comparison

Raw data:

Table 20 - Raw data occlusion's algorithms comparison

false_bigfalse_smallfalse_wallfalse_occlusiontrue_bigtrue_smalltrue_walltrue_occlusiondistancetype

00000.850.1210.972depth

001.98rgb

00000.440.040.50.492.07depthrgb

00.4400.440.790.140.920.943.63depth

0.6704.05rgb

00.2900.290.410.050.440.454.18depthrgb

0.230.0500.280.680.030.730.724.9depth

0.10.114.89rgb

0.110.0200.130.340.010.350.354.71depthrgb

00000.80.120.910.925.81depth

0.7905.79rgb

0.180.025.7depthrgb

00000.970.03117.95depth

0.270.427.94rgb

0.180.137.83depthrgb

00000.250.700.954.33depth

00.173.94rgb

00000.260.2400.54.29depthrgb

80

Statistical analysis (ANOVA and Tukey):

Table 21- ANOVA occlusion's algorithms comparison

ANOVA

 Sum of Squares df Mean Square F Sig.

total_true Between Groups 1.722 2 .861 25.748 .000

Within Groups .502 15 .033
Total 2.224 17

trueWall Between Groups 1.415 2 .708 9.764 .002

Within Groups 1.087 15 .072
Total 2.502 17

total_false Between Groups .147 2 .073 1.980 .173

Within Groups .556 15 .037
Total .703 17

Table 22- Tukey HSD occlusion's algorithms comparison

Multiple Comparisons

Tukey HSD

Dependent Variable (I) algorithm (J) algorithm Mean

Difference (I-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

dimension1

total_true

dimension2

do

dimension3

vo .72167* .10559 .000 .4474 .9959

co .56083* .10559 .000 .2866 .8351

vo

dimension3

do -.72167* .10559 .000 -.9959 -.4474

co -.16083 .10559 .308 -.4351 .1134

co

dimension3

do -.56083* .10559 .000 -.8351 -.2866

vo .16083 .10559 .308 -.1134 .4351

trueWall

dimension2

do

dimension3

vo .64333* .15543 .002 .2396 1.0471

co .53000* .15543 .010 .1263 .9337

vo

dimension3

do -.64333* .15543 .002 -1.0471 -.2396

co -.11333 .15543 .750 -.5171 .2904

co

dimension3

do -.53000* .15543 .010 -.9337 -.1263

vo .11333 .15543 .750 -.2904 .5171

total_false

dimension2

do

dimension3

vo -.20667 .11118 .185 -.4955 .0821

co -.03500 .11118 .947 -.3238 .2538

vo

dimension3

do .20667 .11118 .185 -.0821 .4955

co .17167 .11118 .299 -.1171 .4605

co

dimension3

do .03500 .11118 .947 -.2538 .3238

vo -.17167 .11118 .299 -.4605 .1171

*. The mean difference is significant at the 0.05 level.

81

Table 23- Total_True occlusion's algorithms comparison

Table 24- True_Wall occlusion's algorithms comparison

Table 25- Total_False occlusion's algorithms comparison

Correlations (Pearson):

The Pearson product-moment correlation coefficient is a measure of the linear correlation

between two variables X and Y, giving a value between +1 and -1 inclusive, where 1 is total

positive correlation, 0 is no correlation and -1 is total negative correlation.

total_true

Tukey HSDa

algorithm

N

Subset for alpha = 0.05

1 2

dimension1

vo 6 .1167

co 6 .2775

do 6 .8383

Sig. .308 1.000

Means for groups in homogeneous subsets are

displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

trueWall

Tukey HSDa

algorithm

N

Subset for alpha = 0.05

1 2

dimension1

vo 6 .1167

co 6 .2300

do 6 .7600

Sig. .750 1.000

Means for groups in homogeneous subsets are

displayed.

a. Uses Harmonic Mean Sample Size = 6.000.

total_false

Tukey HSDa

algorithm

N

Subset for alpha

= 0.05

1

dimension1

do 6 .0600

co 6 .0950

vo 6 .2667

Sig. .185

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

6.000.

82

Table 26- PEARSON correlations occlusion's algorithms comparison

Correlations

 do_result co_result

do_result Pearson Correlation 1 .706**

Sig. (2-tailed) .000

N 45 45

co_result Pearson Correlation .706** 1

Sig. (2-tailed) .000

N 45 45

**. Correlation is significant at the 0.01 level (2-tailed).

Correlations

 co_result vo_result

co_result Pearson Correlation 1 .535**

Sig. (2-tailed) .009

N 44 23

vo_result Pearson Correlation .535** 1

Sig. (2-tailed) .009

N 23 23

**. Correlation is significant at the 0.01 level (2-tailed).

83

D.2 Direct Following and History Following Experiments

Raw data:

Table 27- Raw data Direct-Following and History-Following

Statistical analysis Direct Following Experiment (ANOVA and Tukey):

Table 28- ANOVA Ratio_Track_Kinect Direct-Following

ANOVA

Ratio_Track_Kinect

 Sum of Squares df Mean Square F Sig.

Between Groups 1406.000 2 703.000 3.633 .047
Within Groups 3483.143 18 193.508
Total 4889.143 20

robot

distance

avarage

velocity

of the

person

depth

occlusion

false

alarm

depth

occlusion

ratio

track/no

track

std

distance

avarage

distance

obstacles

hit

safety

intervension

loss with

intervension

loss with

self

recover

total lossorder
direct0

/history1
trialsubject

14.340.55--0.990.783.21000010111

10.510.610.80.30.950.742.960001120212

16.940.530.70.60.720.472.980010130313

18.190.45--0.720.853.520010141414

19.540.480.70.60.820.753.630010151515

11.780.6--10.923.231000030126

10.790.670.70.60.980.692.841001150227

11.950.580.80.60.730.913.140120240328

15.70.66--0.80.773.070110121429

20.410.580.70.60.610.863.7601112115210

13.530.57--0.980.883.0400011401311

12.390.560.90.510.843.2300000302312

140.590.80.50.990.793.4710000503313

16.650.51--0.540.733.5200303114314

18.560.580.80.60.80.823.6701101215315

16.390.41--10.642.7101000201416

12.870.420.90.510.822.700011302417

140.420.80.410.692.8100000103418

12.99---11.333.1400000514419

19.110.390.90.310.933.3800000415420

12.630.45--0.990.722.4500000301521

13.630.480.80.30.990.542.7400000102522

13.940.420.80.30.980.732.9600000203523

15.510.39--113.1710000414524

17.230.380.90.40.911.182.8301101515525

12.220.56--0.961.214.0102011501626

17.020.520.90.510.63.1701000402627

10.260.540.80.50.70.652.801303303628

17.840.47--0.840.963.2700112214629

20.290.430.80.50.811.033.7400112115630

12.050.66--0.970.673.3300000301731

11.990.650.90.50.960.733.2710011402732

15.860.590.80.50.551.84.901202503733

15.720.5--0.770.773.3301101114734

18.960.520.80.60.80.833.4711112215735

84

Table 29- Tukey HSD Ratio_Track_Kinect Direct-Following

Multiple Comparisons

Ratio_Track_Kinect
Tukey HSD

(I) trial (J) trial Mean
Difference (I-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

d

i
m

e
n

s
i

o

n
2

1

2 .14286 7.43559 1.000 -18.8340 19.1197

3

17.42857 7.43559 .075 -1.5483 36.4054

2

1 -.14286 7.43559 1.000 -19.1197 18.8340

3 17.28571 7.43559 .078 -1.6911 36.2626

3

1 -17.42857 7.43559 .075 -36.4054 1.5483

2 -17.28571 7.43559 .078 -36.2626 1.6911

Table 30- Ratio_Track_Kinect Direct-Following

Table 31- Descriptive Total_Loss Direct-Following

Ratio_Track_Kinect

Tukey HSDa

trial

N

Subset for

alpha = 0.05

1

3 7 81.0000

2 7 98.2857

1 7 98.4286

Sig. .075

Means for groups in homogeneous

subsets are displayed.

a. Uses Harmonic Mean Sample Size

= 7.000.

Descriptives

total loss

N Mean Std. Deviation Std. Error

95% Confidence Interval for Mean

Minimum Maximum Lower Bound Upper Bound

no search 7 1.14 1.215 .459 .02 2.27 0 3

search 14 .43 .514 .137 .13 .73 0 1

Total 21 .67 .856 .187 .28 1.06 0 3

85

Table 32- ANOVA Subject's_average_velocity Direct-Following

ANOVA

average velocity of the subject

 Sum of Squares df Mean Square F Sig.

Between Groups .119 6 .020 19.860 .000
Within Groups .014 14 .001
Total .133 20

Table 33- Tukey HSD Subject's_average_velocity Direct-Following

average velocity of the subject

Tukey HSDa

subject

N

Subset for alpha = 0.05

1 2 3

di
me

nsi
on

1

4 3 .4167
5 3 .4500
6 3 .5400
1 3 .5633 .5633

3 3 .5733 .5733

2 3 .6167 .6167

7 3 .6333

Sig. .844 .107 .164

Means for groups in homogeneous subsets are displayed.
a. Uses Harmonic Mean Sample Size = 3.000.

86

Statistical analysis History Following Experiment (ANOVA and Tukey):

Table 34- ANOVA Total_path_distance History-Following

ANOVA

total path distance of the robot

 Sum of Squares df Mean Square F Sig.

Between Groups 33.018 1 33.018 15.765 .002
Within Groups 25.133 12 2.094
Total 58.150 13

Statistical analysis Direct vs History Following Experiment (ANOVA and Tukey):

Levene's test:

Levene's test is an inferential statistic used to assess the equality of variances for a variable

calculated for two or more groups. It tests the null hypothesis that the population variances

are equal. If the resulting p-value is less than significance level of 0.05, the obtained

differences in sample variances are unlikely to have occurred based on random sampling

from a population with equal variances.

Table 35- Homogeneity of Variances Direct vs History

Test of Homogeneity of Variances

 Levene Statistic df1 df2 Sig.

total loss .001 1 33 .973
percent of intervent recover
from total loss

.395 1 33 .534

ratio track
o track

.001 1 33 .973

total path distance of the
robot

.076 1 33 .785

average velocity of the
subject

.000 1 32 .989

87

Table 36- ANOVA Direct vs History

ANOVA

 Sum of Squares df Mean Square F Sig.

total loss Between Groups 2.519 1 2.519 3.322 .077

Within Groups 25.024 33 .758

Total 27.543 34

percent of intervent recover

from total loss

Between Groups 1.719 1 1.719 10.404 .003

Within Groups 5.452 33 .165

Total 7.171 34

ratio track

o track

Between Groups .102 1 .102 5.804 .022

Within Groups .578 33 .018

Total .679 34

total path distance of the

robot

Between Groups 157.595 1 157.595 37.868 .000

Within Groups 137.337 33 4.162

Total 294.931 34

avarage velocity of the

subject

Between Groups .024 1 .024 3.484 .071

Within Groups .217 32 .007

Total .240 33

88

Figure 29- Descriptive Direct vs History

Statistical analysis 5 trials of Direct (2) and History (3) Following Experiment (ANOVA

and Tukey):

Table 37- Homogeneity of Variances Total_path_distance- 5 trials

Test of Homogeneity of Variances

total path distance of the robot

Levene Statistic df1 df2 Sig.

.494 4 30 .740

89

Table 38- ANOVA Total_path_distance- 5 trials

ANOVA

total path distance of the robot

 Sum of Squares df Mean Square F Sig.

Between Groups 194.904 4 48.726 14.614 .000
Within Groups 100.027 30 3.334
Total 294.931 34

Table 39- Tukey HSD Total_path_distance- 5 trials

Multiple Comparisons

total path distance of the robot
Tukey HSD

(I) trial (J) trial Mean
Difference (I-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

d
i

m
e

n

s
i

o
n

2

1

2 .53429 .97603 .981 -2.2968 3.3654

3 -.57286 .97603 .976 -3.4039 2.2582

4 -2.80857 .97603 .053 -5.6397 .0225

5 -5.88000* .97603 .000 -8.7111 -3.0489

2

1 -.53429 .97603 .981 -3.3654 2.2968

3 -1.10714 .97603 .787 -3.9382 1.7239

4 -3.34286* .97603 .014 -6.1739 -.5118

5 -6.41429* .97603 .000 -9.2454 -3.5832

3

1 .57286 .97603 .976 -2.2582 3.4039

2 1.10714 .97603 .787 -1.7239 3.9382

4 -2.23571 .97603 .176 -5.0668 .5954

5 -5.30714* .97603 .000 -8.1382 -2.4761

4

1 2.80857 .97603 .053 -.0225 5.6397

2 3.34286* .97603 .014 .5118 6.1739

3 2.23571 .97603 .176 -.5954 5.0668

5 -3.07143* .97603 .028 -5.9025 -.2403

5

1 5.88000* .97603 .000 3.0489 8.7111

2 6.41429* .97603 .000 3.5832 9.2454

3 5.30714* .97603 .000 2.4761 8.1382

4 3.07143* .97603 .028 .2403 5.9025

*. The mean difference is significant at the 0.05 level.

Table 40- Total_path_distance- 5 trials

total path distance of the robot

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2 3

2 7 12.7429

1 7 13.2771 13.2771

3 7 13.8500 13.8500

4 7 16.0857

5 7 19.1571

Sig. .787 .053 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 7.000.

90

D.3 Adaptive Kinect-Laser Direct and History Following Experiment

Raw data:

Table 41- Raw data Adaptive vs Non-Adaptive (Direct and History)

kinect

 fall

robot

distance

avarage

velocity

of the

person

depth

occlusion

false

alarm

depth

occlusion

ratio

track/no

track

kinect

ratio

track/no

track

laser

legs

false

alarm

(percent

from

ratio)

std

distance

avarage

distance
matce

laser

obstacles
height

obstacles

 hit

safety

intervension

loss with

intervension

loss

with

self

recover

total

loss
order

without0

/withLaser1

direct0

/history1
trial

gender

0male/1fe

male

subject

29.2460.450.80.250.9830.1320.950.843.977621.7131121111011

131.3830.50.80.150.8120.944.35111.66001012012012

18.6140.60.80.10.940.520.40.753.614671.69020113103013

20.6810.60.750.250.950.813.67481.67020224004014

28.6770.30.750.250.950.0310.813.590571.53010221111125

31.8310.30.70.30.941.064.02431.55011012012126

25.0730.40.650.350.980.5711.474.450511.61010114103127

25.5210.40.80.250.951.073.5381.54112023004128

20.7670.30.80.40.960.0411.053.690561.7100221111039

128.6230.30.90.40.791.053.4351.710210130120310

18.9670.50.90.450.9600.563.30301.690101121030311

18.1650.50.80.40.921.074.0501.660110140040312

23.5450.40.750.30.950.140.950.933.764621.470220211111413

27.5680.40.80.50.820.954.1921.560321330121414

18.4160.50.90.20.920.110.793.310191.50102241031415

21.2130.50.90.20.941.263.6201.50220220041416

20.2770.20.90.20.930.30.40.953.6822351.621211211111517

19.8660.40.80.50.91.094.34361.610330340121518

116.7750.50.80.050.750.460.40.543.832411.640120221031519

17.8810.50.70.2510.743.46391.630000030041520

22.0460.30.80.30.870.370.40.973.769591.620011211110621

22.5820.30.80.40.940.693.68711.611221340120622

121.8330.40.90.20.970.240.10.83.5615891.610001131030623

21.9770.40.50.50.981.053.19381.620000020040624

26.5620.20.80.30.860.530.50.733.3849711.710002221110725

27.7890.20.70.20.911.354.06711.690221310120726

17.0090.30.80.10.970.8200.972.8837521.710201131030727

24.3680.30.10.10.850.332.05141.740320240040728

126.670.40.10.40.450.260.21.314.867761.650021321110829

22.4040.40.60.20.921.153.94731.670111210120830

17.4480.40.80.150.990.710.10.512.9534501.680100041030831

18.3080.40.80.350.830.442.82571.681120230040832

23.5910.30.80.250.930.750.40.883.671501.70101121111933

20.2550.30.80.20.830.943.71541.71231430121934

18.7180.30.90.10.980.430.10.663.0141301.660000011031935

121.4520.30.60.70.590.784.41161.620230340041936

25.8930.30.70.20.850.660.50.643.527201.5701213211101037

27.8670.30.80.40.941.053.91191.6101224301201038

19.3150.40.90.110.860.10.472.7860101.6200000410301039

18.2520.40.80.30.841.113.68491.6201314100401040

27.1760.40.50.20.730.480.61.283.73581.6301112211101141

25.2820.40.70.30.960.834.05471.5901213401201142

19.9020.40.80.20.990.750.60.542.6556711.601000110301143

22.0590.40.70.20.990.893.21851.602000300401144

20.0450.30.80.20.960.2700.883.4335781.6402011211101245

20.0970.30.70.70.771.053.37841.6312314401201246

20.9690.30.70.150.990.9600.382.4274231.6600000310301247

20.6220.30.60.20.920.632.36231.6601213100401248

21.3450.30.70.20.950.290.050.973.3140591.5501000311111349

21.2610.30.80.40.870.783.77741.5601404101211350

19.8410.30.90.110.8900.282.3910681.5600000210311351

19.3340.30.70.30.961.073.17451.5702213400411352

121.1170.40.80.30.810.280.51.013.572331.6700101311101453

21.9920.40.80.60.820.663.71211.601202101201454

17.3820.40.90.20.870.5601.043.1138651.6501011410301455

19.2190.40.60.210.32.43261.6210000200401456

20.9540.40.80.30.710.220.50.93.97531.6101202311101557

21.7510.40.80.30.971.073.98581.5712213201201558

18.4640.40.80.310.6500.832.9242271.601011110301559

20.3970.40.70.210.522.99451.6100000400401560

23.0840.30.70.20.980.180.30.643.2312461.5200011311101661

23.7060.30.70.10.930.813.66401.511112201201662

16.6410.40.90.30.950.470.30.552.884271.5201011410301663

17.5890.50.80.30.980.492.91351.5311011100401664

20.7510.40.80.20.90.280.20.753.623371.6801112311111765

22.1490.40.80.20.931.133.67241.6911123401211766

17.1230.50.80.30.970.6900.782.718301.701011110311767

119.5410.50.80.30.70.82.85531.6321202200411768

20.4910.40.80.50.850.220.20.833.4913501.5401011311111869

20.6210.40.80.40.920.753.53581.5111112401211870

19.6040.50.80.30.990.4400.82.857661.5500011210311871

18.8810.50.70.30.981.123.28211.5302213100411872

21.2310.40.70.50.770.510.50.973.2910381.6710202411111973

124.5260.50.70.30.861.623.93401.5301303101211974

116.8830.50.80.10.870.590.10.292.9613261.6200112210311975

19.9280.50.60.20.960.973.22451.6301213300411976

21.5070.30.70.40.90.350.40.893.75701.601202411102077

24.0010.40.70.40.911.033.72751.5701213101202078

16.9910.40.80.050.970.9900.392.4131111.5800011310302079

17.6230.40.70.20.951.153.26501.5311213200402080

24.4140.30.60.20.810.240.41.093.71151141.6101112411102181

23.6860.30.70.30.820.913.95701.5502314201202182

19.7230.40.70.050.890.7600.762.6541391.601011110302183

19.8040.30.70.050.910.582.38351.6221213300402184

25.9190.20.80.10.990.530.30.523.1341191.7500000411102285

22.8360.20.70.050.990.332.83491.7411011201202286

16.4210.20.70.20.960.960.10.452.2569341.7501000310302287

19.8670.20.60.10.970.31.98161.7700011100402288

21.6940.20.80.30.920.470.20.652.731581.5701022411112389

26.1150.20.70.30.930.83.53481.5501202301212390

18.8770.30.80.20.960.590.051.012.8836291.5601011110312391

20.3950.30.70.20.931.663.25291.602202200412392

25.7080.40.80.40.920.1201.094.0513691.6501011411112493

22.240.40.70.40.841.23.48301.602303301212494

17.5460.40.90.30.930.3100.512.932501.600011210312495

20.7110.40.70.20.971.093.12181.6202303100412496

91

Statistical analysis Adaptive (with Laser) vs Non-Adaptive (without Laser) Following

Experiment (ANOVA and Tukey):

Table 42- Homogeneity of Variances Adaptive vs Non-Adaptive

Test of Homogeneity of Variances

 Levene Statistic df1 df2 Sig.

checkTotalLoss .340 1 94 .561
percent_intervent .422 1 94 .518
safety_intervension 1.121 1 94 .292
std_distance .942 1 94 .334
false_depth_occlusion 1.002 1 94 .319
depth_occlusion .010 1 94 .921

Table 43- ANOVA Adaptive vs Non-Adaptive

ANOVA

Sum of
Squares df Mean Square F Sig.

checkTotalLoss Between Groups 3.650 1 3.650 13.395 .000

Within Groups 25.618 94 .273

Total 29.268 95

percent_intervent Between Groups 4.348 1 4.348 32.897 .000

Within Groups 12.423 94 .132

Total 16.771 95

safety_intervension Between Groups 7.042 1 7.042 12.588 .001

Within Groups 52.583 94 .559

Total 59.625 95

std_distance Between Groups .346 1 .346 4.266 .042

Within Groups 7.616 94 .081

Total 7.962 95

false_depth_occlusion Between Groups .085 1 .085 4.866 .030

Within Groups 1.635 94 .017

Total 1.719 95

depth_occlusion Between Groups .082 1 .082 5.132 .026

Within Groups 1.496 94 .016

Total 1.577 95

92

Figure 30- Descriptive Adaptive vs Non-Adaptive

93

Statistical analysis Direct vs History Following Experiment (ANOVA and Tukey):

Table 44- ANOVA Direct vs History

ANOVA

 Sum of Squares df Mean Square F Sig.

checkTotalLoss Between Groups 3.650 1 3.650 13.395 .000

Within Groups 25.618 94 .273

Total 29.268 95

percent_intervent Between Groups 4.348 1 4.348 32.897 .000

Within Groups 12.423 94 .132

Total 16.771 95

safety_intervension Between Groups 7.042 1 7.042 12.588 .001

Within Groups 52.583 94 .559

Total 59.625 95

std_distance Between Groups .346 1 .346 4.266 .042

Within Groups 7.616 94 .081

Total 7.962 95

false_depth_occlusion Between Groups .085 1 .085 4.866 .030

Within Groups 1.635 94 .017

Total 1.719 95

depth_occlusion Between Groups .082 1 .082 5.132 .026

Within Groups 1.496 94 .016

Total 1.577 95

94

95

Figure 31- Descriptive Direct vs History

Statistical analysis Gender (Males vs Females) Following Experiment (ANOVA and

Tukey):

Table 45- Homogeneity of Variances Gender (Males vs females)

Test of Homogeneity of Variances

 Levene Statistic df1 df2 Sig.

height .015 1 94 .901
std_distance .447 1 94 .505

Table 46- ANOVA Gender (Males vs females)

ANOVA

 Sum of Squares df Mean Square F Sig.

height Between Groups .042 1 .042 10.950 .001

Within Groups .361 94 .004
Total .403 95

std_distance Between Groups .390 1 .390 4.836 .030

Within Groups 7.572 94 .081
Total 7.962 95

96

Figure 32- Descriptive Gender (Males vs females)

Statistical analysis Subjects (24) Following Experiment (ANOVA and Tukey):

Table 47- Homogeneity of Variances Subjects (24)

Test of Homogeneity of Variances

height

Levene Statistic df1 df2 Sig.

1.456 23 72 .116

Table 48- ANOVA Subjects (24)

ANOVA

height

 Sum of Squares df Mean Square F Sig.

Between Groups .354 23 .015 22.775 .000
Within Groups .049 72 .001
Total .403 95

97

Table 49- Tukey HSD Subjects (24)

height

Tukey HSDa

subject

N

Subset for alpha = 0.05

1 2 3 4 5 6 7 8 9 10

di

me

nsi

on

1

4 4 1.5075

16 4 1.5175

18 4 1.5325 1.5325

2 4 1.5575 1.5575 1.5575

13 4 1.5600 1.5600 1.5600

23 4 1.5700 1.5700 1.5700 1.5700

20 4 1.5700 1.5700 1.5700 1.5700

21 4 1.5950 1.5950 1.5950 1.5950

15 4 1.5975 1.5975 1.5975 1.5975

11 4 1.6050 1.6050 1.6050 1.6050

10 4 1.6050 1.6050 1.6050 1.6050

19 4 1.6125 1.6125 1.6125 1.6125 1.6125

6 4 1.6150 1.6150 1.6150 1.6150 1.6150

24 4 1.6175 1.6175 1.6175 1.6175 1.6175

5 4 1.6250 1.6250 1.6250 1.6250 1.6250 1.6250

14 4 1.6350 1.6350 1.6350 1.6350 1.6350

12 4 1.6475 1.6475 1.6475 1.6475 1.6475

8 4 1.6700 1.6700 1.6700 1.6700

9 4 1.6700 1.6700 1.6700 1.6700

17 4 1.6750 1.6750 1.6750

1 4 1.6800 1.6800 1.6800

3 4 1.6900 1.6900 1.6900

7 4 1.7125 1.7125

22 4 1.7525

Sig. .136 .097 .068 .097 .415 .097 .068 .097 .097 .136

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 4.000.

98

Figure 33- Descriptive Subjects (24)

Statistical analysis Trials (4) Following Experiment (ANOVA and Tukey):

Table 50- Homogeneity of Variances Trials (4)

Test of Homogeneity of Variances

 Levene Statistic df1 df2 Sig.

TotalLosses 2.506 3 92 .064
safety_intervension .505 3 92 .680
average_distance 1.937 3 92 .129
ratio_track_kinect 2.366 3 92 .076
false_depth_occlusion 1.110 3 92 .349
depth_occlusion 1.335 3 92 .268
velocity_subject .147 3 92 .931
RobotDistance 1.722 3 92 .168

99

Table 51- ANOVA Trials (4)

ANOVA

 Sum of Squares df Mean Square F Sig.

TotalLosses Between Groups 40.865 3 13.622 19.392 .000

Within Groups 64.625 92 .702

Total 105.490 95

safety_intervension Between Groups 8.125 3 2.708 4.838 .004

Within Groups 51.500 92 .560

Total 59.625 95

average_distance Between Groups 10.517 3 3.506 16.211 .000

Within Groups 19.894 92 .216

Total 30.410 95

ratio_track_kinect Between Groups .085 3 .028 3.664 .015

Within Groups .716 92 .008

Total .801 95

false_depth_occlusion Between Groups .259 3 .086 5.430 .002

Within Groups 1.461 92 .016

Total 1.719 95

depth_occlusion Between Groups .235 3 .078 5.360 .002

Within Groups 1.343 92 .015

Total 1.577 95

velocity_subject Between Groups .114 3 .038 5.051 .003

Within Groups .694 92 .008

Total .808 95

RobotDistance Between Groups 470.677 3 156.892 43.520 .000

Within Groups 331.668 92 3.605

Total 802.345 95

100

Table 52- Tukey HSD Trials (4)

Multiple Comparisons

Tukey HSD

Dependent Variable (I) trial (J) trial Mean Difference
(I-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound

TotalLosses

di

me
nsi

on
2

1
dim
ens

ion
3

2 -1.00000* .24194 .000 -1.6331 -.3669

3 .83333* .24194 .005 .2003 1.4664

4 -.20833 .24194 .825 -.8414 .4247

2
dim

ens

ion
3

1 1.00000* .24194 .000 .3669 1.6331

3 1.83333* .24194 .000 1.2003 2.4664

4 .79167* .24194 .008 .1586 1.4247

3
dim

ens
ion

3

1 -.83333* .24194 .005 -1.4664 -.2003

2 -1.83333* .24194 .000 -2.4664 -1.2003

4 -1.04167* .24194 .000 -1.6747 -.4086

4
dim
ens

ion

3

1 .20833 .24194 .825 -.4247 .8414

2 -.79167* .24194 .008 -1.4247 -.1586

3 1.04167* .24194 .000 .4086 1.6747

safety_intervension

di
me

nsi
on

2

1
dim

ens
ion

3

2 -.583* .216 .040 -1.15 -.02

3 .167 .216 .867 -.40 .73

4 -.333 .216 .416 -.90 .23

2
dim
ens

ion
3

1 .583* .216 .040 .02 1.15

3 .750* .216 .004 .18 1.32

4 .250 .216 .655 -.32 .82

3
dim

ens

ion
3

1 -.167 .216 .867 -.73 .40

2 -.750* .216 .004 -1.32 -.18

4 -.500 .216 .102 -1.07 .07

4
dim

ens
ion

3

1 .333 .216 .416 -.23 .90

2 -.250 .216 .655 -.82 .32

3 .500 .216 .102 -.07 1.07

average_distance

di
me

nsi
on

2

1
dim
ens

ion

3

2 -.16458 .13424 .612 -.5158 .1867

3 .62917* .13424 .000 .2779 .9804

4 .49583* .13424 .002 .1446 .8471

2
dim
ens

ion
3

1 .16458 .13424 .612 -.1867 .5158

3 .79375* .13424 .000 .4425 1.1450

4 .66042* .13424 .000 .3092 1.0117

3
dim

ens
ion

3

1 -.62917* .13424 .000 -.9804 -.2779

2 -.79375* .13424 .000 -1.1450 -.4425

4 -.13333 .13424 .754 -.4846 .2179

4
dim

ens
ion

3

1 -.49583* .13424 .002 -.8471 -.1446

2 -.66042* .13424 .000 -1.0117 -.3092

3 .13333 .13424 .754 -.2179 .4846

ratio_track_kinect

di
me

nsi
on

2

1
dim
ens

ion
3

2 -.016208 .025459 .920 -.08282 .05041

3 -.077792* .025459 .015 -.14441 -.01118

4 -.047375 .025459 .252 -.11399 .01924

2
dim

ens

ion
3

1 .016208 .025459 .920 -.05041 .08282

3 -.061583 .025459 .081 -.12820 .00503

4 -.031167 .025459 .613 -.09778 .03545

3
dim

ens
ion

3

1 .077792* .025459 .015 .01118 .14441

2 .061583 .025459 .081 -.00503 .12820

4 .030417 .025459 .632 -.03620 .09703

4
dim

ens
ion

3

1 .047375 .025459 .252 -.01924 .11399

2 .031167 .025459 .613 -.03545 .09778

3 -.030417 .025459 .632 -.09703 .03620

false_depth_occlusion

di
me

nsi
on

2

1
dim
ens

ion
3

2 -.04792 .03637 .554 -.1431 .0473

3 .09583* .03637 .048 .0007 .1910

4 .02500 .03637 .902 -.0702 .1202

2
dim

ens

ion
3

1 .04792 .03637 .554 -.0473 .1431

3 .14375* .03637 .001 .0486 .2389

4 .07292 .03637 .194 -.0223 .1681

101

3
dim

ens

ion
3

1 -.09583* .03637 .048 -.1910 -.0007

2 -.14375* .03637 .001 -.2389 -.0486

4 -.07083 .03637 .216 -.1660 .0243

4
dim

ens
ion

3

1 -.02500 .03637 .902 -.1202 .0702

2 -.07292 .03637 .194 -.1681 .0223

3 .07083 .03637 .216 -.0243 .1660

depth_occlusion

di
me

nsi
on

2

1
dim
ens

ion

3

2 -.02083 .03487 .933 -.1121 .0704

3 -.08958 .03487 .056 -.1808 .0017

4 .04792 .03487 .519 -.0433 .1392

2
dim
ens

ion
3

1 .02083 .03487 .933 -.0704 .1121

3 -.06875 .03487 .206 -.1600 .0225

4 .06875 .03487 .206 -.0225 .1600

3
dim

ens

ion
3

1 .08958 .03487 .056 -.0017 .1808

2 .06875 .03487 .206 -.0225 .1600

4 .13750* .03487 .001 .0462 .2288

4
dim

ens
ion

3

1 -.04792 .03487 .519 -.1392 .0433

2 -.06875 .03487 .206 -.1600 .0225

3 -.13750* .03487 .001 -.2288 -.0462

velocity_subject

di
me

nsi
on

2

1
dim
ens

ion

3

2 -.01875 .02507 .877 -.0843 .0468

3 -.07708* .02507 .014 -.1427 -.0115

4 -.07708* .02507 .014 -.1427 -.0115

2
dim
ens

ion
3

1 .01875 .02507 .877 -.0468 .0843

3 -.05833 .02507 .099 -.1239 .0073

4 -.05833 .02507 .099 -.1239 .0073

3
dim

ens
ion

3

1 .07708* .02507 .014 .0115 .1427

2 .05833 .02507 .099 -.0073 .1239

4 .00000 .02507 1.000 -.0656 .0656

4
dim

ens
ion

3

1 .07708* .02507 .014 .0115 .1427

2 .05833 .02507 .099 -.0073 .1239

3 .00000 .02507 1.000 -.0656 .0656

RobotDistance

di

me

nsi
on

2

1
dim

ens
ion

3

2 -.40421 .54811 .882 -1.8384 1.0300

3 4.80000* .54811 .000 3.3658 6.2342

4 3.41433* .54811 .000 1.9801 4.8485

2
dim
ens

ion

3

1 .40421 .54811 .882 -1.0300 1.8384

3 5.20421* .54811 .000 3.7700 6.6384

4 3.81854* .54811 .000 2.3844 5.2527

3
dim
ens

ion
3

1 -4.80000* .54811 .000 -6.2342 -3.3658

2 -5.20421* .54811 .000 -6.6384 -3.7700

4 -1.38567 .54811 .062 -2.8199 .0485

4
dim

ens
ion

3

1 -3.41433* .54811 .000 -4.8485 -1.9801

2 -3.81854* .54811 .000 -5.2527 -2.3844

3 1.38567 .54811 .062 -.0485 2.8199

*. The mean difference is significant at the 0.05 level.

Table 53- Total_Loss Trials (4)

TotalLosses

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2 3

3 24 .8333

1 24 1.6667

4 24 1.8750

2 24 2.6667

Sig. 1.000 .825 1.000

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 24.000.

102

Table 54- Safety_Intervention Trials (4)

Table 55- Average_Distance Trials (4)

safety_intervension

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2

3 24 .71

1 24 .88

4 24 1.21 1.21

2 24 1.46

Sig. .102 .655

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

average_distance

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2

3 24 2.9850

4 24 3.1183

1 24 3.6142

2 24 3.7788

Sig. .754 .612

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

103

Table 56- Ratio_Track_Kinect Trials (4)

Table 57- False_Depth_Occlusion Trials (4)

ratio_track_kinect

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2

1 24 .87221

2 24 .88842 .88842

4 24 .91958 .91958

3 24 .95000

Sig. .252 .081

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

false_depth_occlusion

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2

3 24 .1896

4 24 .2604 .2604

1 24 .2854

2 24 .3333

Sig. .216 .194

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

104

Table 58- Depth_Occlusion Trials (4)

Table 59- Subject's_Velocity Trials (4)

depth_occlusion

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2

4 24 .6812

1 24 .7292 .7292

2 24 .7500 .7500

3 24 .8188

Sig. .206 .056

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

velocity_subject

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2

1 24 .3271

2 24 .3458 .3458

3 24 .4042

4 24 .4042

Sig. .877 .099

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

105

Table 60- Robot's_Distance Trials (4)

RobotDistance

Tukey HSDa

trial

N

Subset for alpha = 0.05

1 2

3 24 18.6055

4 24 19.9912

1 24 23.4055

2 24 23.8097

Sig. .062 .882

Means for groups in homogeneous subsets

are displayed.

a. Uses Harmonic Mean Sample Size =

24.000.

106

Appendix D- C++ codes
1. Depth Occlusions Detection

#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "math.h"
#include "std_msgs/String.h" #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h"
#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h"
#include "opt_msgs/TrackArray.h" #include <ros/console.h>
#include <cv_bridge/cv_bridge.h> #include <sensor_msgs/image_encodings.h>
#include "opt_msgs/DetectionArray.h" #include <occlusions/sideOcclusions.h>
#include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp>
occlusions::sideOcclusions bool_msg; //6 boolians variables
double AgeThreshold=0; //how "old" is the ID
double ConfidenceTheshold=1.1; //from the SVM+HOG classifier- confidence for a real person
double HeightTheshold=1.4; //height in meter of the person (minimum)
double HeightMaxTheshold=2.0; //height in meter of the person (maximum)
namespace enc = sensor_msgs::image_encodings;
static const std::string OPENCV_WINDOW = "Image window";
class ImageConverter
{
 ros::NodeHandle n;
 image_transport::ImageTransport it_;
 image_transport::Subscriber image_sub;
 image_transport::Publisher image_pub;
 ros::Subscriber person_sub = n.subscribe("/tracker/tracks", 10,
&ImageConverter::boxCallback, this); //get the track parameters
 ros::Publisher side=
(n.advertise<occlusions::sideOcclusions>("occlusions/sideOcclusions",10)); //the 6 boolians
 double xmin=0; //left side of the BBC (Bounding Box Coordinates)
 double ymin=0; //top side of the BBC
 double xmax=0; //right side of the BBC
 double ymax=0; //bottom side of the BBC
 double distance; //from Open_PTrack trackers- distance in meters to the detect person
 double confidence; //from Open_PTrack- the SVM+HOG classifier- confidence for a real person
 double age; //from Open_PTrack trackers
 double height; //from Open_PTrack trackers
 double xc; //center of the BBC
 float depth; //pixel depth value at xc,yc
 float personDepth; //distance*1000
 double depthTheshold=3.0; //threshold for detect closer pixels from the personDepth
 bool validTrack; //good track
 int nbOfTracks; //number of ID tracks
 float normalize; //normalize the depth value

public:
 ImageConverter()
 : it_(n){
 image_sub = it_.subscribe("/kinect2_head/depth_rect/image", 10,
&ImageConverter::imageCallback, this); //depth image (same as Open_PTrack uses)
 image_pub = it_.advertise("/image_converter/output_video", 1);
 cv::namedWindow(OPENCV_WINDOW);}
 ~ImageConverter()
 {cv::destroyWindow(OPENCV_WINDOW);}

void boxCallback(const opt_msgs::TrackArray::ConstPtr& msg){ //get all the tracks parameters
 validTrack=false;
 nbOfTracks=msg->tracks.size();
 if (nbOfTracks>0) {
 for(int i=0;i<nbOfTracks && !validTrack;i++){
 //oldest track which is older than the age threshold, above the confidence
threshold, above the height threshold and under max height threshold
 if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){
 xmin=msg->tracks[i].box_2D.x; //left side of the BBC (Bounding Box Coordinates)
 ymin=msg->tracks[i].box_2D.y; //top side of the BBC
 xmax=xmin+msg->tracks[i].box_2D.width; //right side of the BBC
 ymax=ymin+msg->tracks[i].box_2D.height; //bottom side of the BBC
 distance=msg->tracks[i].distance; //Open_PTrack-distance in meters to a person
 confidence=msg->tracks[i].confidence; //Open_PTrack- from the SVM+HOG classifier
 height=msg->tracks[i].height; //from Open_PTrack trackers
 age=msg->tracks[i].age; //from Open_PTrack trackers
validTrack=true;
 }
 }
 }
}

void imageCallback(const sensor_msgs::ImageConstPtr& msg) //working on the depth image

107

 {cv_bridge::CvImagePtr cv_ptr;
 try
 {cv_ptr = cv_bridge::toCvCopy(msg, sensor_msgs::image_encodings::TYPE_16UC1);} //now
cv_ptr is the matrix
 catch (cv_bridge::Exception& e)
 {ROS_ERROR("cv_bridge exception: %s", e.what());
 return;}
 image_pub.publish(cv_ptr->toImageMsg()); // Output modified video stream
 xc=(xmin+xmax)/2; //center of the BBC
 personDepth=distance*1000; //to avoid an error from calculate the depth only
from one pixel, it's better to calculate from the all distance from the person and multipile by
1000 to get milimeters
 depth=personDepth*255/pow(2,16); //to normalize to 255
//left and right detections
 int downCut= round((ymax-ymin)/8); //cut lower part of a person to reduce floor alarm
 int smallOcclusions= round(((xc-xmin)/3)*(ymax-ymin)*7/8); //detect small occlusion
 int bigOcclusions= round(((xc-xmin)/2)*(ymax-ymin)*7/8); //detect big occlusion
 int marginAdd= round(10/distance); //add margin depend on distance
 int countLeft= 0;
 int countRight= 0;
 bool smallLeftOcclusions= false; //detect occlusion from the left side of the robot
 bool bigLeftOcclusions= false; //detect occlusion from the left side of the robot
 bool LeftWall= false; //detect a "tall" occlusion from the left side of the
robot, like a wall for all the y axis of the person bounding box
 int countLeftWall= 0;
 bool smallRightOcclusions= false; //detect occlusion from the right side of the robot
 bool bigRightOcclusions= false; //detect occlusion from the right side of the robot
 bool RightWall= false; //detect a "tall" occlusion from the right side of the
robot, like a wall for all the y axis of the person bounding box
 int countRightWall= 0;
 //left side
 for (short int i=xmin-marginAdd;i<xc-5;i++){ //over each colom from the left with
margin up to the center minus 5
 countLeftWall= 0;
 for (short int j=ymin;j<ymax-downCut;j++){ //over all the specific colom from up
to down without the lower part to avoid the floor
 normalize=cv_ptr->image.at<short int>(cv::Point(i,j)); //get the pixel depth value
 normalize=normalize*255/pow(2,16); //normalize the depth value to 0-255
 if (normalize<(depth-depthTheshold)){ //closer than the personDepth
 countLeft++;
 countLeftWall++;
 if (countLeftWall==ymax-downCut-ymin){LeftWall=true;} //if the all colom is
closer than this is a wall
 }
 }
 }
 //right
 for (short int i=xc+5;i<xmax+marginAdd;i++){ //over each colom from the center plus 5
up to the right with margin
 countRightWall= 0;
 for (short int j=ymin;j<ymax-downCut;j++){ //over all the specific colom from up to
down without the lower part to avoid the floor
 normalize=cv_ptr->image.at<short int>(cv::Point(i,j)); //get the pixel depth value
 normalize=normalize*255/pow(2,16); //normalize the depth value to 0-255
 if (normalize<(depth-depthTheshold)){ //closer than the personDepth
 countRight++;
 countRightWall++;
 if (countRightWall==ymax-downCut-ymin){RightWall=true;} //if the all colom is
closer than this is a wall
 }
 }
 }
 if (countLeft>smallOcclusions&&countLeft<bigOcclusions){ //if number of pixels from the
left are between smallLeftOcclusions and bigLeftOcclusions this is a smallLeft
 smallLeftOcclusions=true;}
 else if (countLeft>bigOcclusions){ //if number of pixels from the left are more than
bigLeftOcclusions this is a bigLeft
 bigLeftOcclusions=true;}
 if (countRight>smallOcclusions&&countRight<bigOcclusions){ //if number of pixels from
the right are between smallRightOcclusions and bigRightOcclusions this is a smallRight
 smallRightOcclusions=true;}
 else if (countRight>bigOcclusions){ //if number of pixels from the right are more
than bigRightOcclusions this is a bigRight
 bigRightOcclusions=true;}
 //publish the boolians variables
 bool_msg.bigLeft=bigLeftOcclusions;
 bool_msg.smallLeft=smallLeftOcclusions;
 bool_msg.wallLeft=LeftWall;
 bool_msg.bigRight=bigRightOcclusions;

108

 bool_msg.smallRight=smallRightOcclusions;
 bool_msg.wallRight=RightWall;
 side.publish(bool_msg);
 }
};

int main(int argc, char **argv){
 ros::init(argc, argv, "image_converter");
 ImageConverter ic;
 ros::NodeHandle n;
 ros::spin();
 return 0;
}

2. Vision Occlusions Detection

#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "math.h"
#include "std_msgs/String.h" #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h"
#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h"
#include <ros/console.h> #include <image_transport/image_transport.h>
#include <cv_bridge/cv_bridge.h> #include <sensor_msgs/image_encodings.h>
#include "opt_msgs/DetectionArray.h" #include <occlusions/sideOcclusions.h>
#include <opencv2/imgproc/imgproc.hpp> #include <opencv2/highgui/highgui.hpp>
#define PI 3.14159265
occlusions::sideOcclusions bool_msg; //6 boolians variables
double AgeThreshold=0; //how "old" is the ID
double ConfidenceTheshold=1.1; //from the SVM+HOG classifier- confidence for a real person
double HeightTheshold=1.4; //height in meter of the person (minimum)
double HeightMaxTheshold=2.0; //height in meter of the person (maximum)
namespace enc = sensor_msgs::image_encodings;
using namespace cv; using namespace std;
static const std::string OPENCV_WINDOW = "Image window";

class ImageConverter
{
 ros::NodeHandle n;
 image_transport::ImageTransport it_;
 image_transport::Subscriber image_sub;
 image_transport::Publisher image_pub;
 ros::Subscriber person_sub = n.subscribe("/tracker/tracks", 10,
&ImageConverter::boxCallback, this); //get the track parameters
 ros::Publisher side=
(n.advertise<occlusions::sideOcclusions>("occlusions/sideOcclusions",10));// the 6 boolians
 double xmin=0; //left side of the BBC from the DEPTH image
 double ymin=0; //top side of the BBC from the DEPTH image
 double xmax=0; //right side of the BBC from the DEPTH image
 double ymax=0; //bottom side of the BBC from the DEPTH image
 double xcenter; //the center of the box in x axis at the DEPTH image
 double distance; //Open_PTrack- distance in meters to the detect person
 double confidence; //Open_PTrack- from the SVM+HOG classifier
 double age; //from Open_PTrack trackers
 double height; //from Open_PTrack trackers
 double rgbxmin=0; //left side of the BBC from the MONO image
 double rgbymin=0; //top side of the BBC from the MONO image
 double rgbxmax=0; //right side of the BBC from the MONO image
 double rgbymax=0; //bottom side of the BBC from the MONO image
 double xcBox; //the center of the box in the ROI
 bool validTrack; //good track
 int nbOfTracks; //number of ID tracks
 bool LeftWall= false; //detect left wall
 bool RightWall= false; //detect right wall

public:
 ImageConverter()
 : it_(n)
 {image_sub = it_.subscribe("/kinect2_head/mono_rect/image", 10,
&ImageConverter::imageCallback, this); //get the mono_rect image (gray image)
 image_pub = it_.advertise("/image_converter/output_video", 1);
 cv::namedWindow(OPENCV_WINDOW);}
 ~ImageConverter()
 {cv::destroyWindow(OPENCV_WINDOW);}

void boxCallback(const opt_msgs::TrackArray::ConstPtr& msg){//get all the tracks parameters
 validTrack=false;
 nbOfTracks=msg->tracks.size();
 if (nbOfTracks>0) {

109

 for(int i=0;i<nbOfTracks && !validTrack;i++){
//oldest track which is older than the age threshold, above the confidence threshold, above the
height threshold and under max height threshold
 if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){
 xmin=msg->tracks[i].box_2D.x; //left side of the BBC from the DEPTH image
 ymin=msg->tracks[i].box_2D.y; //top side of the BBC from the DEPTH image
 xmax=xmin+msg->tracks[i].box_2D.width; //right side of the BBC from the DEPTH image
 ymax=ymin+msg->tracks[i].box_2D.height; //bottom side of the BBC from the DEPTH image
 distance=msg->tracks[i].distance; //Open_PTrack- distance in meters to a person
 confidence=msg->tracks[i].confidence; //Open_PTrack- from the SVM+HOG classifier
 height=msg->tracks[i].height; //from Open_PTrack trackers
 age=msg->tracks[i].age; //from Open_PTrack trackers
validTrack=true;
 }
 }
 }
}

void imageCallback(const sensor_msgs::ImageConstPtr& msg) //working on the depth image
 {cv_bridge::CvImagePtr cv_ptr;
 try
 {cv_ptr = cv_bridge::toCvCopy(msg);} //now cv_ptr is the matrix of the image
 catch (cv_bridge::Exception& e)
 {ROS_ERROR("cv_bridge exception: %s", e.what());
 return;}
 cv::Mat deleteMargin= cv::Mat::zeros(1080,1710,0);
 deleteMargin = cv_ptr->image(Rect(104,0,1710,1080)).clone(); //because a different FOV
between depth and RGB i delete the 105 pixels from each side to reduce the FOV different
 cv::Size size(960,540); //size of the depth image
 cv::resize(deleteMargin,deleteMargin,size); //resize the gray mono image to the depth image
size because the resolotion of mono_rect is twice the resolotion of depth_rect
 xcenter=(xmin+xmax)/2; //the center of the box in x axis at the DEPTH image
 rgbxmin=xmin*2+round(((270-xcenter)/3)-distance*2); //left side of the BBC from the MONO
image with react to the center of the image and distance because different FOV
 rgbxmax=rgbxmin+(xmax-xmin)*1.4; //right side of the BBC from the MONO image with
more width to cover the all person
 rgbymin=ymin; //top side of the BBC from the MONO image
 rgbymax=rgbymin+(ymax-ymin)*1.3; //bottom side of the BBC from the
MONO image with more for the legs but not the ground
 int marginAdd= round(50/distance); //add margin depend on distance
 LeftWall= false; //detect a "tall" vertical occlusion from the left side of the robot
 RightWall= false; //detect a "tall" vertical occlusion from the right side of the robot
 xcBox=((xmax-xmin)*1.4+marginAdd*2)/2; //the center of the box in the ROI
 cv::Mat temp= cv::Mat::zeros(540,960,0); //temp with the maximum size of the MONO image
 int top = (int) (0.01*temp.rows); //for add borders to the image
 int bottom = (int) (0.01*temp.rows);
 int left = (int) (0.01*temp.cols);
 int right = (int) (0.01*temp.cols);
 if(rgbxmin-marginAdd*2 >= 0 && rgbymin >= 0 && rgbxmax+marginAdd < deleteMargin.cols && rgbymax
< deleteMargin.rows && (xmax-xmin)*1.4+marginAdd>0 && (ymax-ymin)*1.3>0){
 temp = deleteMargin(Rect(rgbxmin-marginAdd,rgbymin,(xmax-xmin)*1.4+marginAdd,(ymax-
ymin)*1.3)).clone();} //take only the BBC with the person with margin depend on distance
 cv::GaussianBlur(temp, temp, cv::Size(3,3), 0); //gaussian blur 3*3
 cv::Canny(temp, temp, 50.0, 300.0, 3, false); //canny edge detector
 cv::Mat element1= cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,5), cv::Point(-1,-
1)); // 5*5 open element
 cv::Mat element2= cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5,5), cv::Point(-1,-
1)); // 5*5 close element
 cv::dilate(temp, temp, element1); //open the pixels
 cv::erode(temp, temp, element2); //close the pixels
 cv::Mat temp2=temp;
 cv::cvtColor(temp2, temp2, cv::COLOR_GRAY2BGR); //color mat for show
 copyMakeBorder(temp2, temp2, top, bottom, left, right, BORDER_CONSTANT,
cv::Scalar(255,255,255)); //add white borders to help detect contours
 std::vector<std::vector<cv::Point> > contours; //vector of vector points- contours
 cv::findContours(temp,contours,CV_RETR_TREE,CV_CHAIN_APPROX_SIMPLE);//find contours
 for (int i=0; i<contours.size(); i++){
 if(contours[i].size()>(rgbymax-rgbymin)*1.5){ //only if the contour is bigger
than the whole height of the ROI multipile 1.5
 cv::drawContours(temp2,contours,i,cv::Scalar(0,255,0),8,8);} //draw green
 else {contours.pop_back();}//delete small contours from vector "contours"
 }
 cv::vector<Vec4i> lines;//"lines" contain 4 values for xStart,yStart,xEnd,yEnd
 HoughLinesP(temp, lines, 1, CV_PI / 180, 50, (rgbymax-rgbymin)*0.5, 0); //find
straight lines with Hough that are bigger than the half height of the ROI
 for (size_t i = 0; i < lines.size(); i++)
 {cv::Vec4i l = lines[i];

110

 if (abs(l[0]-l[2])<(rgbxmax-rgbxmin)/10) { //for only vertical lines depend on the
width of the person box divide by 10 (only 1/10 size of the width)
 line(temp2, Point(l[0], l[1]), Point(l[2], l[3]), Scalar(0, 0, 255), 10, 4);
//draw red line
 //left
 if (((l[0]>0) && (l[0]<xcBox-5)) || ((l[2]>0) && (l[2]<xcBox-5))){ //if the
edges of the straight line is inside the ROI from the left to the center minus 5
 LeftWall=true;}
 //right
 if (((l[0]>xcBox+5) && (l[0]<temp.cols)) || ((l[2]>xcBox+5) &&
(l[2]<temp.cols))){ //if the edges of the straight line is inside the ROI from the center plus
5 to the right
 RightWall=true;}
 }
 else {lines.pop_back();}//delete all the other lines from the vector "lines"
 }
rectangle(temp2,cv::Point(rgbxmin,rgbymin),cv::Point(rgbxmax,rgbymax),cv::Scalar(0,255,0), 10);
 cv::imshow(OPENCV_WINDOW, temp2); // Update GUI Window
 cv::waitKey(3);
 image_pub.publish(cv_ptr->toImageMsg());// Output modified video stream
 bool_msg.wallLeft=LeftWall;
 bool_msg.wallRight=RightWall;
 side.publish(bool_msg);
 }
};

int main(int argc, char **argv){
 ros::init(argc, argv, "image_converter");
 ImageConverter ic;
 ros::NodeHandle n;
 ros::spin();
 return 0;
}

3. Combination of Depth and Vision Occlusions Detection

Union of Depth and Vision Occlusion Detection codes according to the distance of the

person.

 double changeDepthToRGB=5.0; //which distance to change between depth to RGB (meters)
 double distance; //Open_PTrack- distance in meters to the detect person
if(distance<changeDepthToRGB){ //all the code from Depth Occlusion Detection }
if(distance>changeDepthToRGB){ //all the code from Vision Occlusion Detection }

4. Obstacles Avoidance

#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "std_msgs/String.h"
#include "std_msgs/Float64.h" #include "std_msgs/Float32.h" #include "std_msgs/Bool.h"
#include "geometry_msgs/Twist.h" #include "geometry_msgs/Point32.h"
#include "sensor_msgs/PointCloud.h" #include <tf/transform_listener.h>
#include "pcl_ros/point_cloud.h" #include "pcl_ros/transforms.h"
#include <obstacles/laserObstacles.h> #include <people_msgs/PositionMeasurementArray.h>
#include "opt_msgs/TrackArray.h"
obstacles::laserObstacles ob_msg; //publise two Booleans and velocity command

class LaserObstacles
{
 ros::NodeHandle n;
 tf::TransformListener tf_listener;
 ros::Subscriber cmdVel = n.subscribe("/cmd_vel", 10, &LaserObstacles::velocityCallback,
this);
 ros::Subscriber sub_laser = n.subscribe("/RosAria/S3Series_1_pointcloud", 10,
&LaserObstacles::LaserCallback,this); //get the laser point
 ros::Subscriber sub_people= n.subscribe("/people_tracker_measurements", 10,
&LaserObstacles::LaserLegsCallback, this); //get the leg detector point of the person
 ros::Subscriber sub_people_kinect= n.subscribe("/tracker/tracks", 10,
&LaserObstacles::KinectCallback, this); //get the kinect point of the person
 ros::Subscriber sub2= n.subscribe("/Pan_Feedback", 10, &LaserObstacles::panCallback, this);
 ros::Subscriber sub3= n.subscribe("/Pan_Error_Command", 10,
&LaserObstacles::smallErrorCallback, this);
 ros::Publisher pub=(n.advertise<obstacles::laserObstacles>
("/obstacles/laserObstacles",10));
 double KpDistanceCheck=3; //Kp for distance depend on linear velocity

111

 double DistanceCheck=0.8; // minimum distance in front of the robot
 double WidthCheck= 0.5; //for each side
 double DistanceSlowDownCheck= 1.5; //distance from an obstacle to slow down
 double angularVelocity; //angular velocity of the robot
 double linearVelocity; //linear velocity of the robot
 double xLaserPerson; double yLaserPerson; double xKinectPerson; double yKinectPerson;
 double radiusPerson=1.0; //radius around a person that clear from obstacles
 double AngleErrorPan=0; //the angle of the Pan related to the center of the robot
 bool smallError=false; //declare a small error to avoid small movements of the Pan
 double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan
 double AngleSmallError=0; //the angle of the person related to the center of the kinect

void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg)
 {AngleSmallError=msg->data;
 if ((abs(AngleSmallError)<smallErrorThreshold)&&
(abs(AngleErrorPan)<0.01)){smallError=true;}
 else {smallError=false;}}

void panCallback(const std_msgs::Float32::ConstPtr& msg)
 {AngleErrorPan=msg->data;}

void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg)
 {int nbOfTracksLaser=msg->people.size();
 if (nbOfTracksLaser>0) { //Extract coordinates of first detected person from laser
 for(int i=0; i<nbOfTracksLaser;i++){
 xLaserPerson=msg->people[i].pos.x; yLaserPerson=msg->people[i].pos.y;}}
 else{ xLaserPerson=xKinectPerson; yLaserPerson=yKinectPerson;}}

void KinectCallback(const opt_msgs::TrackArray::ConstPtr& msg)
 {int nbOfTracksKinect=msg->tracks.size();
 if (nbOfTracksKinect>0) { //Extract coordinates of first detected person from Kinect
 for(int i=0; i<nbOfTracksKinect;i++){
 xKinectPerson=((msg->tracks[i].distance)*cos(AngleSmallError+AngleErrorPan));
 yKinectPerson=((msg->tracks[i].distance)*sin(AngleSmallError+AngleErrorPan));}}}

void LaserCallback(const sensor_msgs::PointCloud::ConstPtr& msg)
 {sensor_msgs::PointCloud pc_out;
 bool obstacle=false; //true if an obstacle was found
 bool SlowDown=false; //true if an obstacle was found in slowdown distance
 double angularCommand; double linearCommand; //velocity to avoid obstacle
 double XclosestObstacle=100.0; double YclosestObstacle=100.0;
 double DclosestObstacle=100.0; /X, Y, distance- 100 when there is no obstacle
 tf_listener.waitForTransform("/laser_frame", (*msg).header.frame_id, (*msg).header.stamp,
ros::Duration(5.0));
 tf_listener.transformPointCloud("/laser_frame", *msg, pc_out);
 for (int i=0; i<pc_out.points.size() ;i++)
 {if (((pc_out.points[i].x < KpDistanceCheck*linearVelocity) || (pc_out.points[i].x <
DistanceCheck)) && (pc_out.points[i].x >-abs(angularVelocity)) &&
 (((sqrt(pow(pc_out.points[i].x-xLaserPerson,2)+pow(pc_out.points[i].y-
yLaserPerson,2))>radiusPerson) && (xLaserPerson!=0.0))||
 ((sqrt(pow(pc_out.points[i].x-xKinectPerson,2)+pow(pc_out.points[i].y-
yKinectPerson,2))>radiusPerson) && (xKinectPerson!=0.0)))) //an obstacle inside the
DistanceCheck and more than radiusPerson from a detected legs or detected person from the Kinect
 {if ((pc_out.points[i].y < WidthCheck*(1+angularVelocity)) && (pc_out.points[i].y > -
WidthCheck*(1-angularVelocity))){ //2 conditions: 1. y smaller than positive WidthCheck
multipile the power of the turn of the robot; 2.y bigger than negative WidthCheck multipile the
power of the turn of the robot;
 double pointDistance =sqrt(pow(pc_out.points[i].x,2)+pow(pc_out.points[i].y,2));
//to get the closet obstacle
 if (pointDistance<DclosestObstacle){ XclosestObstacle=pc_out.points[i].x;
 YclosestObstacle=pc_out.points[i].y; DclosestObstacle=pointDistance;}
 obstacle=true;}
 }
 }
 if (((XclosestObstacle < KpDistanceCheck*linearVelocity) || (XclosestObstacle <
DistanceCheck)) && (XclosestObstacle >-abs(angularVelocity)) &&
 (((sqrt(pow(XclosestObstacle-xLaserPerson,2)+pow(YclosestObstacle-
yLaserPerson,2))>radiusPerson) && (xLaserPerson!=0.0))||
 ((sqrt(pow(XclosestObstacle-xKinectPerson,2)+pow(YclosestObstacle-
yKinectPerson,2))>radiusPerson) && (xKinectPerson!=0.0)))){ //the closest obstacle inside the
DistanceCheck and more than radiusPerson from a detected legs or detected person from the Kinect
 linearCommand=0.2; //linear velocity near an obstacle
 if (YclosestObstacle>=0){angularCommand=-(WidthCheck-YclosestObstacle)/2;} //if obstacle
from the left than turn right (positive angular velocity)
 else {angularCommand=(WidthCheck+YclosestObstacle)/2;}} //if obstacle from the right than
turn left (negative angular velocity)
 else if(linearVelocity>0.3){
 linearCommand=0.3; //if the linear velocity above 0.3 than slowdown to 0.3
 angularCommand=angularVelocity; SlowDown=true;}

112

 else {linearCommand=linearVelocity;} //if linear velocity below 0.3- keep same velocity
 ob_msg.detect_obstacles=obstacle; //publish the variables
 ob_msg.slow_down=SlowDown;
 ob_msg.angular_velocity= angularCommand;
 ob_msg.linear_velocity= linearCommand;
 pub.publish(ob_msg);}

void velocityCallback(const geometry_msgs::Twist::ConstPtr& msg)
 {angularVelocity=msg->angular.z; linearVelocity=msg->linear.x;}//the robot's velocity
};

int main(int argc, char **argv)
{
 ros::init(argc, argv, "laser_obstacles_avoidance");
 LaserObstacles LO;
 ros::NodeHandle n;
 ros::spin();
 return 0;
}

5. Search After Disappear

Implemented in 7.Direct Following Method and 8.History Following Method

6. Kinect Orientation Control – Pan Mechanism

#include "ros/ros.h" #include <std_msgs/Float64.h> #include <std_msgs/Float32.h>
#include "std_msgs/String.h" #include "opt_msgs/TrackArray.h"
#include "sensor_msgs/JointState.h" #include <ros/console.h> #include "math.h"
#include "trajectory_msgs/JointTrajectory.h" #include "nav_msgs/Odometry.h"
#include "trajectory_msgs/JointTrajectoryPoint.h"

class PanMove
{
 ros::NodeHandle n;
 ros::Time lastTrackTime; //last time that a person was detected
 ros::Subscriber sub1;
 ros::Publisher pub;
 ros::Subscriber sub2;
 double ConfidenceTheshold=1.1; //the SVM+HOG classifier- confidence for a real person
 double HeightTheshold=1.4; //height in meter of the person (minimum)
 double HeightMaxTheshold=2.0; //height in meter of the person (maximum)
 int TrackedID=0; //init the track ID to zero
 std_msgs::Float32 error_command;
 double AngleErrorPan; //the angle of the Pan related to the center of robot
 bool validTrack=false; //true if there is a valid track
 double AngleError=0; //the angle of the person related to the center of the Kinect
 bool TrackInitialized=false; //init there is no track

public:
 PanMove()
 {sub1 = n.subscribe("/tracker/tracks", 10, &PanMove::personCallback, this); //Open_PTrack
 pub = n.advertise<std_msgs::Float32>("/Pan_Error_Command", 1);//AngleError
 sub2 = n.subscribe("/Pan_Feedback", 10, &PanMove::panCallback, this);} //AngleErrorPan

void panCallback(const std_msgs::Float32::ConstPtr& msg)
 {AngleErrorPan=msg->data;} //get the angle of the Pan related to the center of robot

void personCallback(const opt_msgs::TrackArray::ConstPtr& msg)
 {validTrack=false;
 AngleError=0;
 int nbOfTracks=msg->tracks.size(); //Get the number of tracks in the TrackArray
 if (nbOfTracks>0) { //If at least 1 track, proceed
 if (!TrackInitialized){
 for(int i=0;i<nbOfTracks;i++){
 if ((msg->tracks[i].confidence>ConfidenceTheshold) && (msg-
>tracks[i].height>HeightTheshold) && (msg->tracks[i].height<HeightMaxTheshold)){ //oldest track
which is older than the age threshold, above the confidence threshold, above the height
threshold and under max height threshold
 TrackedID=msg->tracks[i].id;
 TrackInitialized=true;}
 }
 }
 if (!TrackInitialized){ROS_INFO("No valid track found");}

113

 else
 {for(int i=0;i<nbOfTracks && !validTrack;i++){
 if (msg->tracks[i].id==TrackedID){
 AngleError=atan2(msg->tracks[i].y,msg->tracks[i].x);//calculate
 ROS_INFO("Error: %f", AngleError); validTrack=true; //stop for loop
 lastTrackTime=ros::Time::now();}
 }
 }
 }
 ROS_INFO("valid %d" , validTrack);
 error_command.data=AngleError; //get the angle error of the person to send for twist
 if (!validTrack){ //no valid track
 error_command.data=-0.5*AngleErrorPan; //get opposite half of the angle of the pan (the
pan will return slowly to the center of the robot)
 if ((ros::Time::now()-lastTrackTime)>ros::Duration(3)) //more than 3 seconds without
a valid track
 {TrackInitialized=false;
 ROS_INFO("3 sec since last track seen, try to find it");}
 }
 pub.publish(error_command); //publish the command to the Pan to twist
 }
};

int main(int argc, char **argv){
 ros::init(argc, argv, "orientation_control");
 PanMove pm;
 ros::NodeHandle n;
 ros::spin();
 return 0;
}

7. Direct Following Method

#include "std_msgs/String.h" #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h"
#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h"
#include "opt_msgs/TrackArray.h" #include <ros/console.h>
#include "people_msgs/PositionMeasurementArray.h" #include <obstacles/laserObstacles.h>
#include "people_msgs/PositionMeasurement.h" #include <occlusions/sideOcclusions.h>
#include "visualization_msgs/Marker.h" #include "visualization_msgs/MarkerArray.h"
#include <pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h>
#include <pcl/PCLPointCloud2.h> #include <pcl/conversions.h> #define PI 3.14159265
geometry_msgs::Twist cmd_vel;

class kinect2_pan_laser
{
 ros::NodeHandle n; ros::Subscriber sub1; ros::Subscriber sub2; ros::Subscriber sub3;
 ros::Subscriber sub4; ros::Subscriber sub5; ros::Subscriber sub6; ros::Subscriber sub7;
 ros::Publisher cmd_vel_pub; ros::Publisher vis_pub1; ros::Publisher vis_pub2;
 ros::Publisher vis_pub3;
 double KpAngle=0.5; //the twist controller
 double KpAngleOcclusion=0.2; //for changing the following angle while occlusion
 double KpDistance=0.2; //the distance controller
 double DistanceTarget=1.2; //the minimum distance from the person
 double MaxSpeed=0.3; //the maximum linear speed
 double MaxTurn=0.2; //the maximum angular speed
 double AgeThreshold=0; //the "age" of the person (time that been detected)
 double ConfidenceTheshold=1.1; //SVM+HOG classifier- confidence for a real person
 double HeightTheshold=1.4; //height in meter of the person (minimum)
 double HeightMaxTheshold=2.0; //height in meter of the person (maximum)
 double AngleErrorPan=0; //the angle of the Pan related to the center of the robot
 bool smallError=false; //declare a small error to avoid small movements of the Pan
 double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan
 double AngleSmallError=0;//the angle of the person related to the Kinect center
 double xLaserPerson; double yLaserPerson; //position of the person from the laser
 double followingAngle=0; //15 deg= 0.2618 ,30 deg= 0.5236 rad, 60 deg= 1.0472 rad
 bool kinectLaserMatch=false; //the positions in both sensors correlate under 20 cm
 int nbOfTracksKinect=0; //number of people detection by the kinect
 double xRobot;double yRobot;double orientationRobot;//robot pose and orientation
 bool BigLeft; bool SmallLeft; bool WallLeft; //occlusions from the left side
 bool BigRight; bool SmallRight; bool WallRight; //occlusions from the right side
 bool laser_obstacle_flag; //true if an obstacle was found
 bool slow_down_flag; //true if an obstacle was found in slowdown distance
 double laser_angular_velocity=0; double laser_linear_velocity=0; //init the
velocities from obstacles avoidance algorithm to zero
 double distanceKinect; //the distance of the person by the kinect
 double DistanceError; //error between the Kinect distance and distanceTarget
 double tempDistanceKinect; //temp distance to for Search After Disappear algorithm

114

 double xPath; double yPath; //position of a person by Kinect related to the world
 double xLast1; double yLast1; //last position of a person by Kinect before loss
 double yLast2; //Y coordinates of a person by Kinect 4 frames before loss
 double yDirection; //the direction of person's disappear (substract Y coordinates)
 double tempDistance; //last distance of a person by Kinect before loss
 bool validTrackKinect=false; //true if there is a valid track by kinect
 double angular_command=0; //angular velocity to avoid obstacle
 bool validTrackLaser=false; //true if there is a valid track by laser
 double tempDistanceLaser; //last distance of a person by laser before loss
 double DistanceErrorLaser; //error between the laser distance and distanceTarget
 int nbOfTracksLaser=0; //number of people detection by the laser
 double AngleErrorFollow; //angle of last position of a person by kinect to robot
 double AngleErrorLaser; //angle of position of a person by laser to robot
 double xperson; double yperson; //position of a person by Kinect related to robot
 double AngleErrorKinect; //angle of position of a person by kinect to robot
 double age; //"age" of the person by Kinect (time that been detected)
 double height; //height of the person by kinect
 double confidence; //SVM+HOG classifier- confidence for a real person
 double error; //error distance between the two sensor that detect a person
 bool kinectTrack=false; //true if there is a valid track by kinect
 bool laserTrack=false; //true if there is a valid track by laser
 std::vector<double> YpathPoints; //vector of Y coordinates of a person by kinect

public:
 kinect2_pan_laser()
 {
 sub1= n.subscribe("/tracker/tracks", 10, &kinect2_pan_laser::personCallback, this);
//the kinect parameters of the person
 sub2= n.subscribe("/Pan_Feedback", 10, &kinect2_pan_laser::panCallback, this);
//the angle of the pan from the center of the robot
 sub3= n.subscribe("/Pan_Error_Command", 10, &kinect2_pan_laser::smallErrorCallback,
this); //the angle of a person from the center of the kinect
 sub4= n.subscribe("/people_tracker_measurements", 10,
&kinect2_pan_laser::LaserLegsCallback, this); //the laser parameters of a person
 sub5= n.subscribe("/occlusions/sideOcclusions", 10,
&kinect2_pan_laser::occlusionKinectCallback, this); //occlusions from depth Occlusion
 sub6= n.subscribe("/obstacles/laserObstacles", 10,
&kinect2_pan_laser::LaserObstaclesCallback, this); //obstacles from Obstacles Avoidance
 sub7= n.subscribe("/RosAria/pose", 10, &kinect2_pan_laser::poseCallback, this);
//position of the robot in the world
 cmd_vel_pub = ros::Publisher(n.advertise<geometry_msgs::Twist> ("follower/cmd_vel",
2)); //publish the velocities to the robot
 vis_pub1 = ros::Publisher(n.advertise<visualization_msgs::Marker>(
"/visualization_marker_array", 1)); //for laser legs (green)
 vis_pub2 = ros::Publisher(n.advertise<visualization_msgs::Marker>(
"/visualization_marker_array", 1)); //for Kinect person detected (blue)
 vis_pub3 = ros::Publisher(n.advertise<visualization_msgs::Marker>(
"/visualization_marker_array", 1)); //for robot position (red)
 }

void poseCallback(const nav_msgs::Odometry::ConstPtr& msg)
 {xRobot=msg->pose.pose.position.x; yRobot=msg->pose.pose.position.y; //robot's position
 tf::Pose pose; tf::poseMsgToTF(msg->pose.pose, pose);
 orientationRobot= tf::getYaw(pose.getRotation()); //get radiand rotation (0 front, 3.14
back, left positive, right negative)
 ROS_INFO("xRobot: %f", xRobot); //print the values of the parameters
 ROS_INFO("yRobot: %f", yRobot); ROS_INFO("BigLeft: %d", BigLeft);
 ROS_INFO("SmallLeft: %d", SmallLeft); ROS_INFO("WallLeft: %d", WallLeft);
 ROS_INFO("BigRight: %d", BigRight); ROS_INFO("SmallRight: %d", SmallRight);
 ROS_INFO("WallRight: %d", WallRight); ROS_INFO("Height: %f", height);
 ROS_INFO("laser_obstacle_flag: %d", laser_obstacle_flag);
 ROS_INFO("xLaser: %f", xLaserPerson); ROS_INFO("yLaser: %f", yLaserPerson);
 ROS_INFO("match: %d", kinectLaserMatch); ROS_INFO("Confidence: %f", confidence);
 ROS_INFO("distanceKinect: %f", distanceKinect);
 ROS_INFO("AngleErrorPan: %f", (AngleErrorPan*180)/PI);
 ROS_INFO("xKinect: %f", xperson); ROS_INFO("yKinect: %f", yperson);
 ROS_INFO("xPath: 0"); ROS_INFO("yPath: 0"); ROS_INFO("tempDistance: %f", tempDistance);
 ROS_INFO("xFollow: 0"); ROS_INFO("yFollow: 0");
 ROS_INFO("kinectTrack: %d", kinectTrack); ROS_INFO("laserTrack: %d", laserTrack);
 for(int i=0;i<100000;i++){ //robot's position marker
 visualization_msgs::Marker marker; marker.header.frame_id = "odom";
 marker.header.stamp = ros::Time();marker.ns = "robotPose"; marker.id = i;
 marker.type = visualization_msgs::Marker::SPHERE;
 marker.action = visualization_msgs::Marker::ADD;
 marker.lifetime=ros::Duration(100.0);
 marker.pose.position.x = xRobot; marker.pose.position.y = yRobot;
 marker.pose.position.z = 0; marker.pose.orientation.x = 0.0;
 marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.0;
 marker.pose.orientation.w = 1.0; marker.scale.x = 0.2; marker.scale.y = 0.2;

115

 marker.scale.z = 0.2; marker.color.a = 1.0; marker.color.r = 1.0;
 marker.color.g = 0.0; marker.color.b = 0.0; vis_pub3.publish(marker);}
}

void occlusionKinectCallback(const occlusions::sideOcclusions::ConstPtr& msg)
 {BigLeft= msg->bigLeft; //get all the Depth Occlusion algorithm parameters
 SmallLeft= msg->smallLeft; WallLeft= msg->wallLeft; BigRight= msg->bigRight;
 SmallRight= msg->smallRight; WallRight= msg->wallRight;
 if (BigLeft && !BigRight && !SmallRight){followingAngle=-0.5236;} //change the following
angle according to the occlusion
 if (SmallLeft && !BigLeft && !BigRight && !SmallRight){followingAngle=-0.2618;}
 if (WallLeft && !WallRight){followingAngle=-0.2618;}
 if (BigRight && !BigLeft && !SmallLeft){followingAngle=0.5236;}
 if (SmallRight && !BigRight && !BigLeft && !SmallLeft){followingAngle=0.2618;}
 if (WallRight && !WallLeft){followingAngle=0.2618;}
}

void LaserObstaclesCallback(const obstacles::laserObstacles::ConstPtr& msg)
 {laser_obstacle_flag=msg->detect_obstacles;//get Obstacle Avoidance algorithm parameters
 laser_angular_velocity=msg->angular_velocity;laser_linear_velocity=msg->linear_velocity;
 slow_down_flag=msg->slow_down;
 if (laser_obstacle_flag){
 cmd_vel.angular.z = laser_angular_velocity; //turn to avoid obstacles
 cmd_vel.linear.x = laser_linear_velocity; cmd_vel_pub.publish(cmd_vel);}
}

void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg)
 {AngleSmallError=msg->data; //get the angle of the person related to the kinect
 if ((abs(AngleSmallError)<smallErrorThreshold)&&
(abs(AngleErrorPan)<0.01)){smallError=true;}; //avoid small movements of the Pan
 else {smallError=false;}
}

void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg)
 {validTrackLaser=false;
 nbOfTracksLaser=msg->people.size();//number of people detection by the laser
 if (nbOfTracksLaser>0) {
 xLaserPerson=msg->people[0].pos.x; //position of first detected person by laser
 yLaserPerson=msg->people[0].pos.y;
 if (nbOfTracksKinect==0) { //if there is no Kinect detection
 AngleErrorLaser=atan2(yLaserPerson,xLaserPerson); //Calculate angle error by laser
 DistanceErrorLaser=sqrt(pow(xLaserPerson,2)+pow(yLaserPerson,2)); //distance error
 if(!laser_obstacle_flag){ //no obstacle
 angular_command=AngleErrorLaser*KpAngle; //angular velocity depends on the twist
controller and the angle error by laser
 if(angular_command>MaxTurn){angular_command=MaxTurn;} //limit maximum speed
 if(angular_command<-MaxTurn){angular_command=-MaxTurn;}
 cmd_vel.angular.z = angular_command;
 double linearspeedLaser=(DistanceErrorLaser-DistanceTarget)*KpDistance; //linear
velocity depends on the distance error, the distanceTarget and the distance controller
 if (linearspeedLaser>MaxSpeed) {linearspeedLaser=MaxSpeed;}//limit maximum speed
 if (linearspeedLaser<0){linearspeedLaser=0;}
 cmd_vel.linear.x = linearspeedLaser; cmd_vel_pub.publish(cmd_vel);}
 }
 validTrackLaser=true; laserTrack=true;
 visualization_msgs::Marker marker; //person's position by laser marker
 marker.header.frame_id = "base_link"; marker.header.stamp = ros::Time();
 marker.ns = "laser"; marker.id = 0;
 marker.action = visualization_msgs::Marker::ADD;
 marker.pose.position.x = xLaserPerson; marker.pose.position.y = yLaserPerson;
 marker.pose.position.z = 0; marker.pose.orientation.x = 0.0;
 marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.0;
 marker.pose.orientation.w = AngleErrorLaser;
 marker.scale.x = 0.1; marker.scale.y = 0.1; marker.scale.z = 0.1;
 marker.color.a = 1.0; marker.color.r = 0.0; marker.color.g = 1.0;
 marker.color.b = 0.0; vis_pub1.publish(marker);}
 else if(!validTrackKinect){laserTrack=false;}
}

void panCallback(const std_msgs::Float32::ConstPtr& msg)
{ AngleErrorPan=msg->data;} //get the angle of the Pan related to the robot

void personCallback(const opt_msgs::TrackArray::ConstPtr& msg)
 {validTrackKinect=false;
 nbOfTracksKinect=msg->tracks.size(); //get the number of people by kinect
 if (nbOfTracksKinect>0) { //if at least 1 track, proceed
 for(int i=0;i<nbOfTracksKinect && !validTrackKinect;i++){
 if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-

116

>tracks[i].height<HeightMaxTheshold)){ //oldest track which older than age threshold, above the
confidence threshold, above the height threshold and under max height threshold
 distanceKinect=msg->tracks[i].distance; //person's distance from the kinect
 xperson=((msg->tracks[i].distance)*cos(AngleSmallError+AngleErrorPan));
 yperson=((msg->tracks[i].distance)*sin(AngleSmallError+AngleErrorPan));
//position of the person related to the robot
 AngleErrorKinect=atan2(yperson,xperson); //angle of a person to robot
 age=msg->tracks[i].age; //"age" of a person (time that been detected)
 height=msg->tracks[i].height; //height of the person by kinect
 confidence=msg->tracks[i].confidence; //confidence for a real person
 YpathPoints.insert(YpathPoints.begin(),yperson); //insert the Y coordinate
 if (YpathPoints.size()>5){
 yLast1=YpathPoints.at(4); yLast2=YpathPoints.at(1); xLast1=xperson;
 tempDistanceKinect=distanceKinect; //get the last person's distance
 yDirection=yLast2-yLast1; //substract to get the direction
 YpathPoints.pop_back();} //clear space for more Y coordinate
 error= sqrt(pow(xperson-xLaserPerson,2)+pow(yperson-yLaserPerson,2));
//calculate the x and y error between the kinect and the laser
 if (error<0.2){kinectLaserMatch=true;} //true if under 20 cm deviation
 else{kinectLaserMatch=false;}
 DistanceError=distanceKinect-DistanceTarget; //Calculate distance error
 if (!laser_obstacle_flag){ //no obstacle
 angular_command= AngleErrorKinect*KpAngle; //angular velocity depends on the
twist controller and the angle error by kinect
 if(abs(followingAngle)>0.1 && abs(AngleErrorKinect)<0.2) {angular_command =
(AngleErrorKinect+followingAngle)*KpAngleOcclusion;} //angular velocity also depends on the
following angle if it bigger than absolute value of 0.1
 if(angular_command>MaxTurn){angular_command=MaxTurn;}//limit maximum speed
 if(angular_command<-MaxTurn){angular_command=-MaxTurn;}
 cmd_vel.angular.z = angular_command;
 if (DistanceError>0.05){//threshold for small distance error of 0.05 meter
 double command_speed=DistanceError*KpDistance; //linear velocity depends on
the distance error and the distance controller
 if (command_speed>MaxSpeed){command_speed=MaxSpeed;}//limit maximum speed
 if (command_speed<0){command_speed=0;} //Avoid going backward
 cmd_vel.linear.x = command_speed;}
 validTrackKinect=true; cmd_vel_pub.publish(cmd_vel);}
 }
 }
 kinectTrack=true;
 visualization_msgs::Marker marker; //person's position by kinect marker
 marker.header.frame_id = "base_link"; marker.header.stamp = ros::Time();
 marker.ns = "kinect"; marker.id = 0;
 marker.type = visualization_msgs::Marker::SPHERE;
 marker.action = visualization_msgs::Marker::ADD;
 marker.pose.position.x = xperson; marker.pose.position.y = yperson;
 marker.pose.position.z = 0; marker.pose.orientation.x = 0.0;
 marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.0;
 marker.pose.orientation.w = AngleErrorKinect; marker.scale.x = 0.1;
 marker.scale.y = 0.1; marker.scale.z = 0.1; marker.color.a = 1.0;
 marker.color.r = 0.0; marker.color.g = 1.0; marker.color.b = 1.0;
 vis_pub2.publish(marker);}
 else if(!validTrackLaser){kinectTrack=false;//no track in both sensors (kinect and laser)
 xPath= xRobot+cos(orientationRobot+AngleErrorKinect)*tempDistanceKinect;
 yPath= yRobot+sin(orientationRobot+AngleErrorKinect)*tempDistanceKinect; //last
person's position related to the world
 AngleErrorFollow=-atan2(yPath-yRobot,(xPath-xRobot))+orientationRobot; //angle
related to the world
 if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI]
 if(AngleErrorFollow<0){AngleErrorFollow=AngleErrorFollow+2*PI;}
 else{AngleErrorFollow=AngleErrorFollow-2*PI;}
 }
 tempDistance=sqrt(pow(xPath-xRobot,2)+pow(yPath-yRobot,2)); //person's distance
from the last position to the robot
 if (!laser_obstacle_flag){ //no obstacle
 ros::Time start= ros::Time::now();
 while((ros::Time::now()-start<ros::Duration(round(tempDistance/0.3))) &&
(!validTrackKinect) && (!laser_obstacle_flag)){ //no Kinect track, while time is shorter than
the distance of the last position divided by contast linear velocity of 0.3
 if (!laser_obstacle_flag)
 {cmd_vel.linear.x = 0.3; cmd_vel.angular.z=0.0;} //move straight
 else{cmd_vel.angular.z = laser_angular_velocity; //avoid obstacle
 cmd_vel.linear.x = laser_linear_velocity;}
 }
 cmd_vel.linear.x = 0.0;//robot reach to the last position of the person
 if(!validTrackKinect){ //if no Kinect track
 if(yDirection>0){cmd_vel.angular.z=0.2;}//robot turns to last direction
 else{cmd_vel.angular.z=-0.2;}
 }

117

 cmd_vel_pub.publish(cmd_vel);}
 }
 }
};

int main(int argc, char **argv){
 ros::init(argc, argv, "simple_follower_kinect2_pan_laser");
 kinect2_pan_laser kpl;
 ros::NodeHandle n;
 ros::spin();
 return 0;
}

8. History Following Method

#include <stdio.h> #include <stdlib.h> #include "ros/ros.h" #include "math.h"
#include "std_msgs/String.h" #include "std_msgs/Float32.h" #include "nav_msgs/Odometry.h"
#include "geometry_msgs/Twist.h" #include "sensor_msgs/LaserScan.h"
#include "opt_msgs/TrackArray.h" #include <ros/console.h>
#include "people_msgs/PositionMeasurementArray.h" #include <occlusions/sideOcclusions.h>
#include "people_msgs/PositionMeasurement.h" #include <obstacles/laserObstacles.h>
#include "visualization_msgs/Marker.h" #include "visualization_msgs/MarkerArray.h"
#include <pcl_conversions/pcl_conversions.h> #include <pcl/point_types.h>
#include <pcl/PCLPointCloud2.h> #include <pcl/conversions.h>
#include <pcl_ros/transforms.h> #include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp> #define PI 3.14159265
geometry_msgs::Twist cmd_vel;

class kinect2_pan_laser
{
 ros::NodeHandle n; ros::Subscriber sub1; ros::Subscriber sub2; ros::Subscriber sub3;
 ros::Subscriber sub4; ros::Subscriber sub5; ros::Subscriber sub6; ros::Subscriber sub7;
 ros::Publisher vis_pub1; ros::Publisher vis_pub2; ros::Publisher vis_pub3;
 ros::Publisher cmd_vel_pub;
 double KpAngle=0.5; //the twist controller
 double KpAngleOcclusion=0.2; //for changing the following angle while occlusion
 double KpDistance=0.2; //the distance controller
 double DistanceTarget=1.2; //the minimum distance from the person
 double MaxSpeed=0.3; //the maximum linear speed
 double MaxTurn=0.2; //the maximum angular speed
 double AgeThreshold=0; //the "age" of the person (time that been detected)
 double ConfidenceTheshold=1.1;//SVM+HOG classifier- confidence for a real person
 double HeightTheshold=1.4; //height in meter of the person (minimum)
 double HeightMaxTheshold=2; //height in meter of the person (maximum)
 double AngleErrorPan=0;//the angle of the Pan related to the center of the robot
 bool smallError=false; //declare a small error to avoid small movements of the Pan
 double smallErrorThreshold=0.01; //threshold for avoid small movements of the Pan
 double AngleSmallError=0; //the angle of the person related to the Kinect center
 double xLaserPerson; double yLaserPerson; //position of the person from the laser
 double linearspeedLaser; //linear speed that depends on the distance by laser
 double DistanceErrorLaser; //the distance of the person by the laser
 double DistanceErrorKinect; //the distance of the person by the kinect
 double linearspeedKinect; //linear speed that depends on the distance by kinect
 double xRobot;double yRobot;double orientationRobot;//robot's pose and orientation
 double xperson; double yperson; //position of a person by Kinect related to robot
 double xPath; double yPath; //position of a person by Kinect related to the world
 double distanceKinect; //the distance of the person by the kinect
 double xFollow; double yFollow;//person's historical position by Kinect
 double AngleErrorFollow; //angle of an historical position of a person by kinect
 double DistanceErrorFollow; //distance of an historical position of a person
 double followingAngle=0; //15 deg= 0.2618 ,30 deg= 0.5236 rad, 60 deg= 1.0472 rad
 bool kinectLaserMatch=false; //the positions in both sensors correlate under 20 cm
 int nbOfTracksKinect=0; //number of people detection by the kinect
 bool BigLeft; bool SmallLeft; bool WallLeft; //occlusions from the left side
 bool BigRight; bool SmallRight; bool WallRight; //occlusions from the right side
 bool laser_obstacle_flag; //true if an obstacle was found
 bool slow_down_flag; //true if an obstacle was found in slowdown distance
 double laser_angular_velocity=0; double laser_linear_velocity=0; //init the
velocities from obstacles avoidance algorithm to zero
 double AngleErrorLaser; //angle of position of a person by laser to robot
 double AngleErrorKinect; //angle of position of a person by kinect to robot
 double error; //error distance between the two sensor that detect a person
 double age; //"age" of the person by Kinect (time that been detected)
 double height; //height of the person by kinect
 double confidence; //SVM+HOG classifier- confidence for a real person
 bool kinectTrack=false; //true if there is a valid track by kinect
 bool laserTrack=false; //true if there is a valid track by laser

118

 std::vector<double> XpathPoints; //vector of X coordinates of a person
 std::vector<double> YpathPoints; //vector of Y coordinates of a person
 std::vector<double> AngleErrorPanHistory;//vector of angle of the Pan to the robot

public:
 kinect2_pan_laser()
 {
 sub1= n.subscribe("/tracker/tracks", 10, &kinect2_pan_laser::personCallback, this);
//the kinect parameters of the person
 sub2= n.subscribe("/Pan_Feedback", 10, &kinect2_pan_laser::panCallback, this);
//the angle of the pan from the center of the robot
 sub3= n.subscribe("/Pan_Error_Command", 10, &kinect2_pan_laser::smallErrorCallback,
this);//angle of a person from the kinect's center
 sub4= n.subscribe("/people_tracker_measurements", 10,
&kinect2_pan_laser::LaserLegsCallback, this); //the laser parameters of a person
 sub5= n.subscribe("/occlusions/sideOcclusions", 10,
&kinect2_pan_laser::occlusionKinectCallback, this); //occlusions from depth occlusion
 sub6= n.subscribe("/obstacles/laserObstacles", 10,
&kinect2_pan_laser::LaserObstaclesCallback, this); //obstacles from obstacle avoidance
 Sub7= n.subscribe("/RosAria/pose", 10, &kinect2_pan_laser::poseCallback, this);
//position of the robot in the world
 vis_pub1 = ros::Publisher(n.advertise<visualization_msgs::Marker>(
"/visualization_marker_array", 1)); //for laser legs (green)
 vis_pub2 = ros::Publisher(n.advertise<visualization_msgs::Marker>(
"/visualization_marker_array", 1)); //for Kinect person detected (blue)
 vis_pub3 = ros::Publisher(n.advertise<visualization_msgs::Marker>(
"/visualization_marker_array", 1)); //for robot position (red), when using rviz set the fixed
frame to odom
 cmd_vel_pub = ros::Publisher(n.advertise<geometry_msgs::Twist> ("follower/cmd_vel",
2));
 }

void poseCallback(const nav_msgs::Odometry::ConstPtr& msg)
 {xRobot=msg->pose.pose.position.x; yRobot=msg->pose.pose.position.y; //robot's position
 tf::Pose pose; tf::poseMsgToTF(msg->pose.pose, pose);
 orientationRobot= tf::getYaw(pose.getRotation()); //get radian rotation (0 front, 3.14 back,
left positive, right negative)
 ROS_INFO("xRobot: %f", xRobot); //print the values of the parameters
 ROS_INFO("yRobot: %f", yRobot); ROS_INFO("BigLeft: %d", BigLeft);
 ROS_INFO("SmallLeft: %d", SmallLeft); ROS_INFO("WallLeft: %d", WallLeft);
 ROS_INFO("BigRight: %d", BigRight); ROS_INFO("SmallRight: %d", SmallRight);
 ROS_INFO("WallRight: %d", WallRight);
 ROS_INFO("laser_obstacle_flag: %d", laser_obstacle_flag);
 ROS_INFO("xLaser: %f", xLaserPerson); ROS_INFO("yLaser: %f", yLaserPerson);
 ROS_INFO("match: %d", kinectLaserMatch); ROS_INFO("Confidence: %f", confidence);
 ROS_INFO("Height: %f", height); ROS_INFO("distanceKinect: %f", distanceKinect);
 ROS_INFO("AngleErrorPan: %f", (AngleErrorPan*180)/ PI); ROS_INFO("xKinect: %f", xperson);
 ROS_INFO("yKinect: %f", yperson); ROS_INFO("xPath: %f", xPath);
 ROS_INFO("yPath: %f", yPath); ROS_INFO("xFollow: %f", xFollow);
 ROS_INFO("yFollow: %f", yFollow); ROS_INFO("tempDistance: 0");
 ROS_INFO("kinectTrack: %d", kinectTrack); ROS_INFO("laserTrack: %d", laserTrack);
 for(int i=0;i<100000;i++){ //robot's position marker
 visualization_msgs::Marker marker; marker.header.frame_id = "odom";
 marker.header.stamp = ros::Time(); marker.ns = "robotPose";
 marker.id = i; marker.type = visualization_msgs::Marker::SPHERE;
 marker.action = visualization_msgs::Marker::ADD; marker.pose.position.x = xRobot;
 marker.pose.position.y = yRobot; marker.pose.position.z = 0;
 marker.pose.orientation.x = 0.0; marker.pose.orientation.y = 0.0;
 marker.pose.orientation.z = 0.0; marker.pose.orientation.w = 1.0;
 marker.scale.x = 0.2; marker.scale.y = 0.2; marker.scale.z = 0.2;
 marker.color.a = 1.0; marker.color.r = 1.0; marker.color.g = 0.0;
 marker.color.b = 0.0; vis_pub3.publish(marker);}
}

void occlusionKinectCallback(const occlusions::sideOcclusions::ConstPtr& msg)
 {BigLeft= msg->bigLeft; //get all the Depth Occlusion algorithm parameters
 SmallLeft= msg->smallLeft; WallLeft= msg->wallLeft; BigRight= msg->bigRight;
 SmallRight= msg->smallRight; WallRight= msg->wallRight;
 if (BigLeft && !BigRight && !SmallRight){followingAngle=-0.5236;} //change the following
angle according to the occlusion
 if (SmallLeft && !BigLeft && !BigRight && !SmallRight){followingAngle=-0.2618;}
 if (WallLeft && !WallRight){followingAngle=-0.2618;}
 if (BigRight && !BigLeft && !SmallLeft){followingAngle=0.5236;}
 if (SmallRight && !BigRight && !BigLeft && !SmallLeft){followingAngle=0.2618;}
 if (WallRight && !WallLeft){followingAngle=0.2618;}
}

void LaserObstaclesCallback(const obstacles::laserObstacles::ConstPtr& msg)
 {laser_obstacle_flag=msg->detect_obstacles;//get Obstacle Avoidance algorithm parameters

119

 laser_angular_velocity=msg->angular_velocity;laser_linear_velocity=msg->linear_velocity;
 slow_down_flag=msg->slow_down;
 if (laser_obstacle_flag){
 cmd_vel.angular.z = laser_angular_velocity; //turn to avoid obstacles
 cmd_vel.linear.x = laser_linear_velocity; cmd_vel_pub.publish(cmd_vel);}
}

void smallErrorCallback(const std_msgs::Float32::ConstPtr& msg)
 {AngleSmallError=msg->data; //get the angle of the person related to the kinect
 if ((abs(AngleSmallError)<smallErrorThreshold)&&
(abs(AngleErrorPan)<0.01)){smallError=true;} //avoid small movements of the Pan
 else {smallError=false;}
}

void LaserLegsCallback(const people_msgs::PositionMeasurementArray::ConstPtr& msg)
 {bool validTrackLaser=false;
 int nbOfTracksLaser=msg->people.size();();//number of people detection by the laser
 if (nbOfTracksLaser>0) {
 xLaserPerson=msg->people[0].pos.x; //position of first detected person by laser
 yLaserPerson=msg->people[0].pos.y;
 if (nbOfTracksKinect==0) { //if there is no Kinect detecti
 AngleErrorLaser=atan2(yLaserPerson,xLaserPerson); //Calculate angle error by laser
 DistanceErrorLaser=sqrt(pow(xLaserPerson,2)+pow(yLaserPerson,2)); //distance error
 xPath= xRobot+cos(orientationRobot+AngleErrorLaser)*DistanceErrorLaser; //person's
position related to the world
 yPath= yRobot+sin(orientationRobot+AngleErrorLaser)*DistanceErrorLaser;
 XpathPoints.insert(XpathPoints.begin(),xPath); //insert the X coordinate
 YpathPoints.insert(YpathPoints.begin(),yPath); //insert the Y coordinate
 if (XpathPoints.size()>31){ //30 equal to 4 second history (8 Hz)
 xFollow=XpathPoints.at(30); //get the 4 seconds historical position (8 Hz)
 yFollow=YpathPoints.at(30);
 XpathPoints.pop_back();//clear space for more coordinates
 YpathPoints.pop_back();
 if(!laser_obstacle_flag){ //no obstacle
 AngleErrorFollow=atan2(yFollow-yRobot,(xFollow-xRobot))+orientationRobot; //angle
related to the world
 if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI]
 if(AngleErrorFollow<0){AngleErrorFollow=AngleErrorFollow+2*PI;}
 else{AngleErrorFollow=AngleErrorFollow-2*PI;}
 }
 double angular_command;
 angular_command=-AngleErrorFollow*KpAngle; //angular velocity depends on the twist
controller and the angle error by laser
 if(angular_command>MaxTurn){angular_command=MaxTurn;} //limit maximum speed
 if(angular_command<-MaxTurn){angular_command=-MaxTurn;}
 cmd_vel.angular.z = angular_command;
 DistanceErrorFollow=sqrt(pow(xFollow-xRobot,2)+pow(yFollow-yRobot,2)); //distance related
to the world
 if (DistanceErrorLaser>DistanceTarget){ linearspeedLaser=(DistanceErrorFollow-
DistanceTarget)*KpDistance;} //as long as the distance is bigger than distanceTarget, linear
velocity depends on the distance error and the distance controller
 else{linearspeedLaser=0;}
 if (linearspeedLaser>MaxSpeed) {linearspeedLaser=MaxSpeed;} //limit maximum speed
 if (linearspeedLaser<0) {linearspeedLaser=0;} //avoid going backward
 cmd_vel.linear.x = linearspeedLaser;}
 }
 cmd_vel_pub.publish(cmd_vel);
 }
 validTrackLaser=true; laserTrack=true;
 visualization_msgs::Marker marker; //person's position by laser marker
 marker.header.frame_id = "base_link";marker.header.stamp = ros::Time();
 marker.ns = "laser"; marker.id = 0; marker.pose.position.x = xLaserPerson;
 marker.type = visualization_msgs::Marker::SPHERE;
 marker.action = visualization_msgs::Marker::ADD;
 marker.pose.position.y = yLaserPerson; marker.pose.position.z = 0;
 marker.pose.orientation.x = 0.0; marker.pose.orientation.y = 0.0;
 marker.pose.orientation.z = 0.0;
 marker.pose.orientation.w = AngleErrorLaser; marker.scale.x = 0.1;
 marker.scale.y = 0.1; marker.scale.z = 0.1; marker.color.a = 1.0;
 marker.color.r = 0.0; marker.color.g = 1.0; marker.color.b = 0.0;
 vis_pub1.publish(marker);}
 else{laserTrack=false;}
}

void panCallback(const std_msgs::Float32::ConstPtr& msg)
 {AngleErrorPan=msg->data; //get the angle of the Pan related to the robot
 AngleErrorPanHistory.insert(AngleErrorPanHistory.begin(),AngleErrorPan); //insert angle of
the Pan to the robot
 if(AngleErrorPanHistory.size()>3){

120

 if(abs(AngleErrorPan)>2.0){AngleErrorPan=AngleErrorPanHistory.at(2);} //avoid angles
above absolute value of 2 radians
 AngleErrorPanHistory.pop_back();}
}

void personCallback(const opt_msgs::TrackArray::ConstPtr& msg)
 {bool validTrack=false;
 nbOfTracksKinect=msg->tracks.size();//get the number of people by kinect
 if (nbOfTracksKinect>0) { //if at least 1 track, proceed
 for(int i=0;i<nbOfTracksKinect && !validTrack;i++){
 if ((msg->tracks[i].age>AgeThreshold) && (msg-
>tracks[i].confidence>ConfidenceTheshold) && (msg->tracks[i].height>HeightTheshold) && (msg-
>tracks[i].height<HeightMaxTheshold)){ //oldest track which older than age threshold, above the
confidence threshold, above the height threshold and under max height threshold
 distanceKinect=msg->tracks[i].distance; //person's distance from the kinect
 xperson=((distanceKinect)*cos(AngleSmallError+AngleErrorPan));
 yperson=((distanceKinect)*sin(AngleSmallError+AngleErrorPan)); //position of the
person related to the robot
 AngleErrorKinect=atan2(yperson,xperson); //angle of a person to robot
 age=msg->tracks[i].age; //"age" of a person (time that been detected)
 height=msg->tracks[i].height; //height of the person by kinect
 confidence=msg->tracks[i].confidence; //confidence for a real person
 xPath= xRobot+cos(orientationRobot+AngleErrorKinect)*distanceKinect;
 yPath= yRobot+sin(orientationRobot+AngleErrorKinect)*distanceKinect; //person's
position related to the world
 XpathPoints.insert(XpathPoints.begin(),xPath); //insert the X coordinate
 YpathPoints.insert(YpathPoints.begin(),yPath); //insert the Y coordinate
 if (XpathPoints.size()>81){ //80 equal to 4 second history (20 Hz)
 if(sqrt(pow(XpathPoints.at(80)-XpathPoints.at(79),2)+pow(YpathPoints.at(80)-
YpathPoints.at(79),2))<1.0){ //avoid big false position change, the position of a person can not
be change more than 1 meter at 1 frame
 xFollow=XpathPoints.at(80); //get the 4 seconds historical position (20 Hz)
 yFollow=YpathPoints.at(80);
 }
 XpathPoints.pop_back(); //clear space for more coordinates
 YpathPoints.pop_back();
 error= sqrt(pow(xperson-xLaserPerson,2)+pow(yperson-yLaserPerson,2));
//calculate the x and y error between the kinect and the laser
 if (error<0.2) {kinectLaserMatch=true;} //true if under 20 cm deviation
 else{kinectLaserMatch=false;}
 DistanceErrorKinect=msg->tracks[i].distance;//person's distance from kinect
 if (!laser_obstacle_flag){ //no obstacle
 AngleErrorFollow=-atan2(yFollow-yRobot,(xFollow-xRobot))+orientationRobot;
//angle related to the world
 if(abs(AngleErrorFollow)>PI){ //normalize the angle between [-PI,+PI]
 if(AngleErrorFollow<0){AngleErrorFollow=AngleErrorFollow+2*PI;}
 else{AngleErrorFollow=AngleErrorFollow-2*PI;}
 }
 double angular_command;
 if(abs(followingAngle)<0.1){angular_command = (-
AngleErrorFollow+followingAngle)*KpAngle;} //angular velocity also depends on the following
angle if it bigger than absolute value of 0.1
 else {angular_command =-AngleErrorFollow*KpAngleOcclusion;} //angular
velocity depends on the twist occlusion controller and the angle error by kinect
 if(angular_command>MaxTurn){angular_command=MaxTurn;}//limit speed
 if(angular_command<-MaxTurn){angular_command=-MaxTurn;}
 cmd_vel.angular.z = angular_command;
 DistanceErrorFollow=sqrt(pow(xFollow-xRobot,2)+pow(yFollow-yRobot,2));
//person's distance from the robot
 if (DistanceErrorKinect>DistanceTarget){ //as long as distance is bigger than
distanceTarget, linear velocity depends on distance error and distance controller
linearspeedKinect=(DistanceErrorFollow-DistanceTarget)*KpDistance;}
 else{linearspeedKinect=0;}
 if (linearspeedKinect>MaxSpeed) {linearspeedKinect=MaxSpeed;}//limit speed
 if (linearspeedKinect<0 || DistanceErrorKinect<0.05) //avoid going backward and
when reach to 5 cm threshold of disyanceTarget
 {linearspeedKinect=0;}
 cmd_vel.linear.x = linearspeedKinect;
 validTrack=true; cmd_vel_pub.publish(cmd_vel);}
 }
 }
 kinectTrack=true;
 visualization_msgs::Marker marker; //person's position by kinect marker
 marker.header.frame_id = "base_link";
 marker.header.stamp = ros::Time() ;marker.ns = "kinect"; marker.id = 0;
 marker.type = visualization_msgs::Marker::SPHERE;
 marker.action = visualization_msgs::Marker::ADD;
 marker.pose.position.x = xperson; marker.pose.position.y = yperson;
 marker.pose.position.z = 0; marker.pose.orientation.x = 0.0;

121

 marker.pose.orientation.y = 0.0; marker.pose.orientation.z = 0.0;
 marker.pose.orientation.w = AngleErrorKinect; marker.scale.x = 0.1;
 marker.scale.y = 0.1; marker.scale.z = 0.1; marker.color.a = 1.0;
 marker.color.r = 0.0; marker.color.g = 1.0; marker.color.b = 1.0;
 vis_pub2.publish(marker);}
 }
 else { kinectTrack=false;
 if (!laser_obstacle_flag && !laserTrack){ //no obstacle and no Kinect track
 ros::Time start= ros::Time::now();
 while((ros::Time::now()-start<ros::Duration(round(tempDistance/0.3))) &&
(!kinectTrack) && (!laser_obstacle_flag)){ //no Kinect track, while time is shorter than the
distance of the last position divided by contast linear velocity of 0.3
 if (!laser_obstacle_flag)
 {cmd_vel.linear.x = 0.3; cmd_vel.angular.z=0.0;} //move straight
 else{cmd_vel.angular.z = laser_angular_velocity; //avoid obstacle
 cmd_vel.linear.x = laser_linear_velocity;}
 }
 cmd_vel.linear.x = 0.0; //robot reach to the last position of the person
 if(!kinectTrack){ //if no Kinect track
 if(yDirection>0){cmd_vel.angular.z=0.2;}//robot turns to last direction
 else{cmd_vel.angular.z=-0.2;}
 cmd_vel_pub.publish(cmd_vel);}
 }
 }
};

int main(int argc, char **argv){
 ros::init(argc, argv, "simple_follower_kinect2_pan_laser");
 kinect2_pan_laser kpl;
 ros::NodeHandle n;
 ros::spin();
 return 0;
}

9. Adaptive Following Method (Kinect and Laser)

Implemented in 7.Direct Following Method and 8.History Following Method

שני הניסויים הראשונים היו ניסויים ראשוניים כדי לבחור את פרמטרי העקיבה של הרובוט. לאחר שילוב

(, נערך ניסוי לבחינת תוצאות Pan)הגרסה החדשה של הקינקט(עם מנגנון סיבוב הקינקט) V2קינקט

(. התוצאות הצביעו על כך 60, 30°, °0°יות שונות)אובייקטיביות וסובייקטיביות של עקיבה בשלוש זוו

. התוצאות °30)ישירות מאחורי האדם(לבין עקיבה בזווית °0שאין הבדל משמעותי בין עקיבה בזווית

 לא היו אמינות מספיק. °60עבור עקיבה בזווית

ניב את ה זיהוי הסתרות עומקבניסוי שמטרתו להשוות בין אלגוריתמי זיהוי ההסתרות השונים,

הימנעות הביצועים הטובים ביותר. בניסוי כדי לקבוע את השילוב הטוב ביותר של שלוש האלגוריתמים)

ופעם העקיבה הישירה(, פעם אחת עם שיטת חיפוש אחרי העלמותו זיהוי הסתרות עומק, ממכשולים

הטובים ביותר. , עולה כי השילוב של שלושת האלגוריתמים נתן את הביצועים העקיבה ההיסטוריתעם

(עם עקיבה היסטוריתו עקיבה ישירההניסוי האחרון והחשוב ביותר, השווה בין שתי שיטות העקיבה)

(חיפוש אחרי העלמותו זיהוי הסתרות עומק, הימנעות ממכשוליםשילוב של שלושת האלגוריתמים)

שיטת מסתגלת לאותן שיטות עקיבה עם אותם אלגוריתמים בתוספת לייזר לגילוי רגליים)נקראת

 אדפטיבית(לשימוש במידת הצורך אם הקינקט מאבד את האדם.

. התוצאות הראו כי השיטות המסתגלות)אדפטיביות(המשלבות את חיישן הקינקט וחיישן מסקנות

הלייזר לעקיבה אחרי האדם היו יותר טובות מהשיטות הלא מסתגלות)רק עם חיישן הקינקט לעקיבה

 .עקיבה היסטוריתעדיפה על ה עקיבה ישיראחר האדם(ו

 תקציר

יכולתו של הרובוט לעקוב אחר אדם בסביבה פנימית לא ממופה טומן בחובו אתגרים בשל מכשולים לא

ידועים, קירות לא חקורים, פינות לא מוכרות ומסדרונות. מטרת המחקר הנוכחי היא לפתח אלגוריתמי

מספר מקרי אובדן העקיבה אחר האדם כדי לשפר עקיבה אחרי אדם באמצעות רובוט אשר מפחיתים את

את יכולת הרובוט להתאוששות עצמאית בסביבה לא ידועה. לשם כך, חמישה אלגוריתמים ושתי שיטות

 עקיבה פותחו ונבדקו בסדרת ניסויים על פלטפורמת רובוט נייד.

ועלים ללא . האלגוריתמים שפותחו לא משתמשים במידע מקדים על הסביבה)למשל, פאלגוריתמים

 מיפוי מקדים(ואינם דורשים מהאדם לשאת פריט ספציפי או בגדים ספציפיים.

האלגוריתם משתמש בשיטות המבוססות על ראיית עומק כדי לשפר את תהליך זיהוי ההסתרה.

האלגוריתם משתמש בחיישן לייזר כדי להימנע ממכשולים במהלך העקיבה בזמן אמת, בהתאם למהירות

יתית של הרובוט וזוכר את המיקום האחרון של האדם כדי לחפש אותו אם נעלם על ידי הלינארית והזוו

 תזוזת הרובוט למיקום האחרון של האדם ופנייה לכיוון שחושב לפני ההעלמות.

בזמן אמת (Obstacles-Avoidance- OA)הימנעות ממכשולים חמשת האלגוריתמים שפותחו:

(לאחר איבוד עקיבה Search-After-Disappear- SAD)חיפוש אחרי העלמות באמצעות לייזר,

-Depth-Occlusion) זיהוי הסתרת עומקוהעלמות האדם, ושלושה אלגוריתמי זיהוי הסתרות,

Detection- DO ,זיהוי הסתרת ראיה(באמצעות מידע על מרחק הפיקסלים של הקינקט (Vision-

Occlusion-Detection- VOזיהוי הסתרה משולב ינקט ו(באמצעות מידע דו ממדי של הק

(Combined-Occlusion-Detection- CO.באמצעות שני הסנסורים של הקינקט שתוארו)

 OpenPTrack(קינקט באמצעות 1. שני חיישנים שימשו לזיהוי בני אדם: חיישנים

)http://openptrack.org/(המזהה אנשים העומדים על הקרקע באמצעות היסטוגרמה של אוריינטציה

 support vector(ומכונת ווקטורים תומכים)histogram of oriented gradients- HOGהדרגתית)

machine- SVM .)2 הלייזר המובנה על הרובוט)SICK300אשר יכול לזהות את הרגליים של האדם ב ,-

 רקע.סנטימטר מעל פני הק 20

(, DF -Following-Direct) עקיבה ישירה. שתי שיטות עקיבה עיקריות פותחו והוערכו. שיטות עקיבה

(אשר History-Following- HF)עקיבה היסטורית אשר גורמת לרובוט לנוע ישירות לכיוון האדם ו

בוצעה בשני גורמת לרובוט לנוע למיקומים היסטוריים)קודמים(של האדם. ההערכה של שיטות העקיבה

(עקיבה באמצעות זיהוי האדם רק על ידי הקינקט, נקראת שיטה לא מסתגלת)לא אדפטיבית(. 1אופנים:

(עקיבה באמצעות זיהוי האדם על ידי שני החיישנים)קינקט ולייזר(. כאשר הקינקט מאבד עקיבה אז 2

 דפטיבית(.שיטת העקיבה עוברת לחיישן הלייזר לזיהוי האדם, נקראת שיטה מסתגלת)א

מצוידת Pioneer LXRobot. האלגוריתמים יושמו על פלטפורמת רובוט ניידת פלטפורמת הרובוט

 בקינקט וחיישן לייזר.

. כדי להתגבר על הקשיים הכרוכים בסביבה לא מוכרת, אלגוריתמים הפועלים שיטות ותוצאות -ניסויים

עקיבה ישירה ועקיבה בה הראשיות)בזמן אמת פותחו ושולבו בצירופים שונים עם שתי שיטות העקי

(. סדרת ניסויים נערכה לטובת בחירת הפרמטרים הטובים ביותר והערכה של ביצועי היסטורית

האלגוריתמים. מדדי הביצוע שנבחרו לצורך השוואת הביצועים היו מספר מקרי איבוד העקיבה אחר

התערבות המפעיל, מספר האדם, מספר הפעמים בהן העקיבה התחדשה בעצמה על ידי הרובוט ללא

התערבויות המפעיל לטובת חידוש עקיבה ומספר התערבויות המפעיל לצורכי בטיחות, המרחק בין

הרובוט לבין האדם, אורך נתיב הרובוט, האמינות של זיהוי הרגליים, האמינות של גילוי ההסתרות,

ופן יציב אחר האדם מסך זמן והיחס של עקיבה יציבה לעומת אי עקיבה)אחוז הזמן בו החיישן עקב בא

 הניסוי כולו(של הקינקט ושל הלייזר.

http://openptrack.org/

 אוניברסיטת בן גוריון בנגב
 הפקולטה למדעי ההנדסה
 המחלקה לתעשיה וניהול

פיתוח אלגוריתמים עבור רובוט מצוייד
בחיישני קינקט ולייזר בסביבה פנימית לא

אשר עוקב אחר ידועה עם מכשולים ופינות
 אדם

 חיבור זה מהווה חלק מהדרישות לקבלת התואר "מגיסטר" בהנדסה

 דרור כץ

__דרור כץ חתימת הסטודנט:

_______________________________________פרופ' יעל אידן חתימת המנחה:

_________________________ד"ר ישראל פרמט חתימת יו"ר ועדה המחלקתית:

2016יולי

 אוניברסיטת בן גוריון בנגב
 הפקולטה למדעי ההנדסה
 המחלקה לתעשיה וניהול

פיתוח אלגוריתמים עבור רובוט מצוייד
בחיישני קינקט ולייזר בסביבה פנימית לא

אשר עוקב אחר ידועה עם מכשולים ופינות
 אדם

מהדרישות לקבלת התואר "מגיסטר" בהנדסה חיבור זה מהווה חלק

 דרור כץ
 מנחה: פרופ' יעל אידן

2016יולי

שבע-באר

