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Abstract 

This thesis examined the interaction between assistive robots and humans, focusing on levels of 
automation (LOA). We focused on assistive robots in daily activities for older adults with 
adequate consideration for their expectations and preferences. The aim is for the robot to 
perform tasks in a collaborative manner to keep the older adults as active as possible in the 
interaction while preserving their independence. The task becomes a joint task between the 
older adult and the robot. 
LOA refers to the degree of robot autonomy  included in a given task. Creating a successful 
interaction is a challenging task. To avoid idleness, sedentariness, boredom, or loss of skill in the 
long run, the balance between assisting the user as much as possible and involving them in the 
task must be maintained,.  This study revisits the study of automation levels in everyday tasks 
such as table editing, specific to the adult population. We evaluated several different aspects that 
influence the interaction in combination with LOA. Specifically, the research focused on assessing 
the influence of transparency, feedback types, workload, and complexity in combination with 
LOA on different interaction and performance aspects.  
Two experimental systems were specially developed and evaluated in three experiments with 
older adults and simulated caregivers. The first part of the research examined robot assistance 
to the elderly population in a home environment. This preliminary experiment served as a case 
study to explore different influencing factors with fourteen older participants (8 Females and 6 
Males, aged 62-86, M=69.8, SD=4.48). A collaborative robot was programmed in a table-setting 
task performed jointly by an older adult and the robot with two levels of automation (LOA) and 
two levels of transparency (LOT) conditions. This study explored how LOA and LOT influences the 
quality of interaction (QoI). The QoI is a construct that entails the fluency, understanding, 
engagement and comfortability during the interaction. Results revealed that at the high LOA 
higher performance was consistently obtained. Furthermore, at the low LOT it was 
recommended to avoid clutter and confusion among the participants. The second part of the 
research used the same system as in the case study experiment and examined the effect of LOA 
and different feedback modalities in a table clearing robot assistant for elder care. 21 older adults 
(8 females and 13 males aged 70-86, M=74, SD=4.12) participated in the study. Two different 
feedback modalities (visual and auditory) were evaluated for three different LOA. The visual 
feedback included the use of LEDs and a GUI screen. The auditory feedback included voice 
recordings. Results provided insight into older adult's preferences; they would prefer the voice 
recording feedback. Most of the older adults testified that they would like a similar robot in their 
home to assist them, emphasizing the relevance of the developed system.  
In the third part, the examination of LOA modalities was tested in a task that was designed to 
include different levels of task complexity and workload. The goal was to perform the experiment 
with and for adults but due to the Covid-19 pandemic we were unable to recruit adults for the 
experiment and therefore focused on simulated caregivers instead. The effect of LOA, task 
complexity and task workload on the quality of the interaction was examined in a joint human-
robot assembly task. Eighty students from BGU (46 females and 36 males, aged 24-29, M=26, 



SD=1.4) were recruited as participants. This research investigated two levels of automation, two 
levels of workload (LOW) and two levels of complexity (LOC) in an assembly task using a robotic 
arm equipped with a suction gripper. The quality of interaction was measured in terms of 
objective and subjective measures including effectiveness, efficiency, understanding, and 
perceived workload. The results revealed that LOW had a significant impact on most of the 
measures of interaction quality and that it is an important component in designing a joint task 
between human and robot. 
A conclusion that emerged from the first and second parts of the research refers to the impact 
of the different LOA on the quality of interaction. Results revealed that in general, the adult 
population will be pleased to use an assistive robot that will help them with daily tasks. The best 
configuration for them is when the assistance is combined with their participation in the task. An 
aspect that can add to this and improve the interaction is by incorporating feedback from the 
robot during the task; this increases the adult involvement. As well, a certain level of 
transparency during the task makes the adult feel aware what is happening and makes him/her 
feel better leading to improved quality of interaction. In performing a joint task with a robot in 
parallel with additional tasks, participants prefer a higher level of automation that will allow them 
to distribute their attention more efficiently. The task complexity did not influence performance; 
however, this aspect should be examined in depth in future studies in different tasks and with 
different populations.  
 
 
Keywords: social assistive robots, assistive robots, levels of automation, levels of workload, levels 
of complexity, HRI, feedback, older adults. 
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Chapter 1. Introduction 

1.1 Overview 
The aging population rate is rising rapidly (United Nations, 2017) while the number of caregivers 
and nurses is deteriorating (Buerhaus et al. 2012). The high cost of long-term care for older adults 
is an issue that cannot be ignored, and it increases the financial burden on public health service 
and family members (Aurilla et al. 2011). A promising solution to help overcome this financial 
burden along with the lack of caregivers is the development of assistive robots (Broekens et al. 
2009; Shishehgar et al. 2019). It is important that the robots should augment the quality of life 
for the older adults yet not take away what they enjoy about life (Lewis et al. 2016). 
This research focuses on the interaction between assistive robots and older adults. This study 
revisits the study of automation levels in everyday tasks such as table editing, specific to the adult 
population. The research initially aimed to focus only on older adults. However, with the outbreak 
of COVID-19 it was impossible to complete experiments with older adults. The first part of the 
research included two experiments and focused on user studies with older adults. The last 
experiment was conducted with students that simulated caregivers and serves as a preliminary 
experiment to be followed up in a similar manner with older adults in the future. 
 

1.2 Background and problem description 
Assistive robots 
Assistive robots are generally designed to give aid or support to a human user (Kulyukin 2006; 
Pfeil-Seifer et al. 2005). Excellence in patient care can be achieved by using assistive robots (Nejat 
et al., 2009) in activities of daily living (ADL) and instrumental activities of daily living (IADL). ADLs 
include tasks essential to maintain older adults independence, such as toileting, eating, or 
bathing (Mucchiani et al. 2017). IADLs are tasks such as using a telephone, cooking, doing laundry 
or using transportation (Smarr et al. 2014). While there has been some progress in the design 
and development of assistive robots to aid in elder care (Kachouie et al. 2014), many challenges 
remain and call for further research. These challenges include among others misinterpretation of 
robot roles by older people, mismatch of expectations, insufficient engagement of the older adult 
while interacting with the robot, robot acceptance by the older adult, and ethical implications of 
using robots for elder care (Frennert et al. 2014) 
 
Levels of automation (LOA)  
Autonomous capabilities are being developed for a wide range of systems in order to reduce 
labor, extend human capabilities, and improve human safety (Endsley 2017a). Automation does 
not have to exist in an all-or-none fashion and can vary by level (Endsley 2017a; Vagia et al. 2016). 
The levels can vary in degree of control, responsibility and decision making of the human and 
system (Chidester et al. 1991). The lowest level usually has minimum system involvement and 
the user control the robot. This involvement increases through the levels up to the highest 
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degree, where the system is fully in charge of the task as seen in the initial LOA taxonomies 
proposed by Sheridan (Sheridan et al. 1978). 
LOA can be defined as the degree to which automation is employed in a given task (Endsley et al. 
1999). In terms of HRI, it is described as the extent to which the robot is given autonomy to 
perform a particular task (Parasuraman et al. 2008). The goal of LOA is to find the degree that 
maximizes the efficiency, effectiveness and performance of the human interacting with the 
robot. The extent of the robot’s autonomy has been defined in literature by various authors at 
different levels and with various taxonomies on a scale from fully autonomous to fully manual 
(Vagia et al. 2016). Designing LOA to fit the demands of the older adults in SAR operations is an 
important element of the interaction (Vagia er al. 2016). In order for such robots to be operated 
efficiently and effectively by older adults and non-technological users, it is important to examine 
if and how increasing the robotic system’s LOA impacts their performance (Olatunji et al. 2020). 

Robot feedback 
Incorporating feedback in human-robot-interaction improves the interaction (Mohammad et al. 
2007). Successful interaction requires communication between the human and the robot which 
generally involves sending and receiving of information to achieve specific goals (Doran et 
al.2017). Existing studies reveal that the information presented to the user significantly 
influences his / her comprehension of the robot’s behavior, performance, and limitations of the 
robot (Pangaro 2009), influencing interaction quality (Zafrani et al. 2019a). A robot that provides 
feedback is more likely to be perceived as a social communication partner (Heerink et al. 2009). 
Additionally, users that did not receive feedback during the interaction stated that they would 
like to receive feedback from the robot.  
Feedback provided to the users could be in different forms which could be varied with regards to 
mode, timing and other dimensions of the feedback (Avioz-Sarig et al. 2020). Visual feedback is 
one of the most popular feedback modalities since it is considered a natural communication 
channel (Perrin et al., 2008).The most common is using a screen to display information (Nicole 
Mirnig et al. 2014) and the use of lights (Baraka et al. 2018). Auditory feedback concerns the use 
of sound to communicate information to the user about the state of the robot (Rosati et al. 2013). 
 
Levels of transparency (LOT) 
Transparency is the degree of task-related information provided by the robot to the older adults 
to keep them aware of its state, actions and intentions of the robot  (Chen et al. 2018). The 
information presented by the robot should conform with the perceptual and cognitive 
peculiarities of the older adults (Feingold Polak et al. 2018; Fisk et al. 2009; Smarr et al. 2014) and 
relate to the environment, task, and robot (Lyons 2013). Too little information may not be 
sufficient to ensure reliable interaction with the robot (Launay et al. 2014), whereas too much 
information could cause confusion and error (Lyons 2013). 
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Levels of workload (LOW) 
It is a common belief that heavy workloads lead to elevated stress and reduced efficiency 
meaning workload effects performance (Glaser et al. 1999). Performance on a secondary task 
has been suggested as a useful method for assessing the attentional load placed on a performer 
(Ellmers et al. 2016; de Jong 2010). It is important to devise the secondary tasks so that it adds 
load. The effect of adding too much contextual information could increase extraneous load in 
less-skilled performers in a similar fashion to an unrelated secondary task (Runswick et al. 2018). 
Adding cognitive load during a vehicle-driving task revealed negative effect on processes under 
conscious control and could potentially have a positive effect on more automatic processes 
(Runswick et al. 2018). The use of a secondary task could induce the prioritization of more 
relevant information sources in working memory and force the performer to ignore un-relevant 
sources in order to avoid overloading resources. 
 
Levels of complexity (LOC) 
Task complexity has been identified in previous research as a critical factor influencing the LOA 
design in human robot interaction (Beer et al. 2014) and impacting performance (Crandall et al. 
2002). The complexity level depends on several factors such as the number and type of subtasks 
that must be managed individually, sequentially or simultaneously, the level of difficulty and/or 
criticality of each of these subtasks, the time required to complete subtasks, the degree of human 
intervention required for each of these subtasks, and the amount of clutter in an environment  
(Burke et al. 2004; Ginoian 1976; Kristoffersson et al. 2013). There are limited studies that have 
considered the task complexity in the design and evaluation of LOA particularly in the case of 
care for older adults. Performance on a task depends not only on objective complexity (a task 
characteristic) but also on one's perception of the task complexity (Chen et al. 2014). 

1.3 Research objectives 
The objective of this research was to evaluate the influence of LOA in human robot interaction 
for older adults. Two systems were designed and developed for different tasks. The specific 
objectives were to: 

1. Design the different levels of automation of the different tasks. 
2. Assess the influence of LOA on user’s interaction. 
3. Identify the influence of transparency (LOT), feedback types, workload (LOT) and task 

complexity (LOC) in combination with LOA on user’s interaction.  

1.4 Thesis structure 
The overall research methodology is depicted in chapter 2. The research includes three separate 
parts corresponding to three experiments that evaluate influence of mainly LOA in combination 
with LOT (study 1, chapter 3), feedback (study 2, chapter 4), LOW and LOC (study 3, chapter 5) 
on the interaction. Each chapter is an independent publication and as such includes a focused 
literature review and details the experimental and analysis methods and results. Overall 
conclusions and future research are discussed in chapter 6.  
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Chapter 2. Methodology 

2.1 Overview 
This research aims to evaluate the influence of LOA along with different parameters on the 
interaction of older adults interacting with assistive robots. Due to limited access to older adults 
due to the COVID-19 pandemic, one of the studies was not performed with older adults. Three 
experiments were designed to evaluate influence of LOA on user’s quality of interaction (QoI); 
each study focused on a different influencing parameter combined with LOA. In the first study, 
we examined the influence of LOA and LOT on QoI between the older adults and a robot. The 
second study examined the influence of LOA with types of feedback on the QoI between the 
older adults and a robot. In the third study, a combination of different LOAs with LOW and LOC 
was examined with simulated caregivers. The studies were performed in a series with conclusions 
from each study used as inputs in the next study. 
 

Table 1. Experimental design 

 Study 1 Study 2 Study 3 

Independent 
variable 

LOA LOA LOA 
Levels of transparency 

(LOT) Feedback 
Levels of workload (LOW) 
Levels of complexity (LOC) 

Robot platform KUKA KUKA DOBOT 

Task Table setting Table 
clearing Cubes assembling 

Population Older adults Older adults 
Students 

(In light of the 
circumstances of COVID-19) 

Thesis chapter Three Four Five 
Reference C1, C3, J3 J1 J2 

2.2 Study 1: Influence of LOA & LOT on the QoI 
This study explored how LOA and LOT influences the quality of interaction (QoI). Details are 
provided in Chapter 3. This exploratory work was conducted in collaboration with Markfeld, 2020 
and appears in publications C1, C3 and J3. 

In order for such robots to be operated efficiently and effectively by older adults, it is important 
to examine if and how increasing the robotic system’s level of automation (LOA) impacts their 
performance (Beer et al. 2014). To ensure transparency of the robot’s role at all times, the LOA 
implementation is reflected in the ways through which the users interact with the robots. 
Transparency in this context is the degree of task-related information provided by the robot to 
the older adults to keep them aware of its state, actions and intentions of the robot  (Chen et al. 
2018). It is essential that the level of transparency (LOT) of the information being presented to 
the older adults conforms with their perceptual and cognitive peculiarities such as the processing 
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and interpretation of the information provided by the robot (Feingold Polak et al. 2018; Smarr et 
al. 2014). 

A KUKA LBR iiwa 14 R820, 7 degrees of freedom collaborative robotic arm equipped with a 
pneumatic gripper was programmed in a table-setting task performed jointly by an older adult 
and the robot with two LOA and LOT conditions.  
 
Two LOA conditions were designed as follows: 

Low LOA condition. The robot minimally assists the human in acquiring information 
related to the task by presenting information through the applicable interface. The robot 
also assists in the information processing by providing options through which the task 
could be performed. The human must agree to the suggestions before the operation can 
continue. The human then solely makes the decision regarding what should be done while 
the robot assists in the execution of the actions.  

High LOA condition. The robot assists the human in acquiring information regarding 
details of the task. This information is fully processed by the robot. All decisions related 
to the task are taken only by the robot. The robot executes the decision but can be 
interrupted by the human. 

The two conditions differed by the purpose of the information provided by the robot; LOT 
conditions were set as follows: 

Low LOT condition. The low level of information included text messages that specified the 
status of the robot by indicating what it was doing (e.g. bringing a plate, putting a fork) 

High LOT condition. The high level of information included also the reason for this status 
(i.e. I’m bringing the plate since you asked me). 

During the experiment, many participants noted the fact that the interaction with the robot is 
purely visual interferes with them, and the use of voice may improve the interaction. This point 
led us to the next study - where we focused on how feedback modalities affect the collaboration 
between the adult and the robot. 

Based on the conclusions from this experiment, and given the nature of the population, it was 
decided to set the LOA at the high level where consistently higher performance was obtained. 
Accordingly, the LOT is set at the low level in order to avoid clutter and confusion among the 
participants. 

 

2.3 Study 2: Influence of LOA & feedback on the QoI 
In this second part, we continued to examine robotic assistance to the elderly population in the 
home environment. For this purpose, we used the same system as in the first study experiment, 
while adding changes and upgrades depending on the feedback modalities employed. Adding the 
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feedback was in addition to implementing three levels of automation in a table clearing task. The 
reason three automation levels were applied in this experiment, compared to two in the previous 
experiment is that we saw that most adults in the previous experiment preferred the higher level 
of automation. We wanted to examine this time what will happen when we insert a level that is 
in between the 2 levels that have been applied. This is because our goal is to examine what is the 
best level for adults in this task. Details are provided in Chapter 4 and in publication J1. 
 
The correct choice of interfaces between the assisting environment and the user is of high 
importance (Broekenset al. 2009). Older adults’ interaction with robots requires effective 
feedback to keep them aware of the state of the interaction for optimum interaction quality 
(Beer, Fisk, and Rogers 2014). The feedback is the information provided by the robot. The types 
of feedback were designed as follows: 

Visual: 
• GUI screen was presented on a PC screen, located on a desk to the left of the user. 
• LED lights were embedded in the robot and connected to the system using a Raspberry Pi 

computer. 
Audio: 

• Voice recordings was transmitted to the user through a speaker system connected to the 
main computer. 

The experimental results provide insight into a daily task of clearing a table that older adults 
would prefer a robot to assist with. Most of the older adults testified that they would like a similar 
robot in their home to assist them, emphasizing the relevance of the developed system. 

 

2.4 Study 3: Influence of LOA & LOW & LOC on the QoI 
The examination of LOA modalities on adults' daily environment was continued, while changing 
the robotic platform and the examined task. Originally, another robotic arm, DOBOT magician 
was programmed to assist the adult in routine tasks. The task chosen to implement this was to 
assemble a desired configuration of cubes of different colors, where the robot will help them 
bring the cubes to the user one after the other. In addition, the task was examined at different 
levels of workload (LOW), and at different levels of complexity (LOC).  

The experiment was performed on a student population simulating caregivers. Details are 
provided in Chapter 5 and in publication J2.

The experimental design includes three independent variables: LOA (two levels), LOW (two 
levels) and LOC (two levels). A between-within participants experimental design was conducted 
with the LOA as the within variables while LOW and LOC were the between variables. 

In this experiment, as mentioned we went back to implementing two levels of automation. This 
is in light of the fact that in this experiment unlike the others there are three independent 
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variables (rather than two) and therefore this makes the experiment more complicated. 
Therefore and in light of the limitations of the experiment we decided that it would be more 
correct to implement two levels of automation. 

LOA conditions: 

• Low LOA - The human operator (user) has the autonomy over the type and order of cubes 
desired. The human operator must identify the type of block needed to fit the required 
configuration to be assembled per time and then select the required cube through the 
user interface. The robot supports the user by bringing the type of cube the user selected.  

• High LOA - The robot has the autonomy to bring the specific type of cube and in the order 
preprogrammed in its operation. The user does not have to identify a specific type of 
cube. S/he simply demands for a cube through the user interface and the robot brings the 
type of cube suitable for the specific configuration assembled per time. 

 
LOW conditions: 

• Low LOW - The users perform only the main task that consists of assembling cubes to 
match the specific configuration required per time. The workload involves several task 
demands such as the physical demand of arranging the cubes, mental demand of thinking 
about the type of cube that would match the required configuration and some temporal 
demand related to completing the task in the shortest possible time.  

• High LOW - The users carry out the main task (composed of the aforementioned 
dimensions of workload) along with a secondary task. The secondary task was an off-the 
shelf well known cognitive game, the "RUSH HOUR" thinking game. It involves arranging 
toy cars in a way to get a specific car out of a gridlock. There are tabs at each stage 
showing how to arrange the cars, and afterwards, the player has to find a way to get the 
required car out. Once the user has managed to get the red car out, he/she advances a 
stage and arranges the cars according to what appears on the tab of the next stage. This 
contributes additional task demands to the overall workload. 

 

LOC conditions: 
• Low LOC - the cubes for the assembly differ only by color. The users are required to 

assemble the cubes to match particular configurations characterized by differences in 
color pattern. The complexity involves a partial dimension of component complexity 
where a specific number of cubes must be used to assemble the required configuration 
and coordination complexity where sequence and location of the specific color of cubes 
must be considered.   

• High LOC - the cubes for the assembly differ in color and by the numbers on a particular 
side. The users are required to assemble the cubes in color patterns as done in the low 
LOC condition, but in addition, they must ensure that the specific numbers on specific 
color’s of cubes match the required configuration per time. This therefore includes the 
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low LOC dimensions of complexity with an additional information cue (presence of 
numbers) along with a spatial consideration (position of the number in the configuration).  



9 

Chapter 3. Influence of LOA and LOT on QoI 
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Samuel Olatunji, Noa Markfeld, Dana Gutman, Shai Givati, Vardit Sarne-Fleischmann,  

Tal Oron-Gilad, Yael Edan  

Ben-Gurion University of the Negev, Beer-Sheva, Israel 
 

Abstract. This study provides user-studies aimed at exploring factors influencing the 
interaction between older adults and a robotic table setting assistant. The influence of 
level of automation (LOA) and level of transparency (LOT) on the quality of the 
interaction was considered. Results revealed that the interaction effect of LOA and 
LOT significantly influenced the interaction. A lower LOA which required the user to 
control some of the actions of the robot influenced the older adults to participate more 
in the interaction when the LOT was low compared to situations with higher LOT 
(more information) and higher LOA (more robot autonomy). Even though, the higher 
LOA influenced more fluency in the interaction, the lower LOA encouraged a more 
collaborative form of interaction which is a priority in the design of robotic aids for 
older adult users. The results provide some insights into shared control designs which 
accommodates the preferences of the older adult users as they interact with robotic 
aids such as the table setting robot used in this study 

Keywords: Shared control, Levels of automation, transparency, collaborative robots, 
human-robot interaction. 

1. Introduction 

Robots with improved capabilities are advancing into prominent roles while assisting older adults 
in performing daily living tasks such as cleaning, dressing, feeding (Honig et al. 2018; Shishehgar, 
Kerr, and Blake 2018). This has to be done with careful consideration for the strong desire of these 
older adults to maintain a certain level of autonomy while performing their daily living tasks, even 
if the robot provides the help they require (Wu et al. 2016).  Furthermore, the robot’s involvement 
should not drive the older adult to boredom, sedentariness or loss of skills relevant to daily living 
due to prolonged inactivity (Beer, Fisk, and Rogers 2014). A possible solution is shared control 
where the user preferences are adequately considered as the robot’s role and actions are being 
defined during the interaction design. This ensures that the older adults are not deprived of the 
independence they desire (Zwijsen, Niemeijer, and Hertogh 2011).  

This study, proposes a shared control strategy using levels of automation (LOA) which refers to 
the degree to which the robot would perform particular functions in its defined role of assisting the 
user in a specific task (Parasuraman, Sheridan, and Wickens 2008). The aim is to ensure high quality 
collaboration between the older adult and the robot in accomplishing desired tasks, without 
undermining the autonomy, preferences and satisfaction of the older adult.  

To ensure transparency of the robot’s role at all times, the LOA implementation is reflected in 
the ways through which the users interact with the robots. Transparency in this context is the degree 
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of task-related information provided by the robot to the older adults to keep them aware of its state, 
actions and intentions of the robot  (Chen et al. 2018). The content of this information provided by 
the robot can be graded according to the detail, quantity and type of information as mirrored in 
Endsley’s situation awareness (SA) study (Mica R. Endsley 1995) and Chen et al.’s SA-based 
Transparency model (Chen et al. 2014). It is essential that the level of transparency (LOT) of the 
information being presented to the older adults conforms with their perceptual and cognitive 
peculiarities such as the processing and interpretation of the information provided by the robot 
(Smarr et al., 2014; Mitzner et al., 2015; Feingold Polak et al., 2018). Existing studies reveal that 
the information presented to the users significantly influences their comprehension of the robot’s 
behavior, performance and limitations (Chen et al. 2014; Dzindolet et al. 2003; Lyons 2013). This 
information facilitates the users' knowledge of the  automation connected to the task (Mica R. 
Endsley 2017b). This affects the users' understanding of their role and that of the robot in any given 
interaction (Chen et al. 2014; Doran, Schulz, and Besold 2017; Hellström and Bensch 2018; Lyons 
2013). 

Some studies explored the presentation of information through various technological aids such 
as digital mobile applications, webpages, rehabilitation equipment, and other facilities through 
which older adults would interact with their environment (Cen/Cenelec 2002; Fisk et al. 2009; 
Mitzner et al. 2015). These studies, provided recommendations which served as design guidelines 
for information presented in various modes such as visual, audial or haptic information. These 
recommendations are not specific to information presented by robots to the older adults. They are 
general guidelines recommended to aid usability as older adults interact with technological devices. 
It was therefore recommended in those studies that more user studies should be conducted in 
specific robot-assistance domains such physical support, social interaction, safety monitoring, 
cognitive stimulation and rehabilitation (Cen/Cenelec 2002; Fisk et al. 2009; Mitzner et al. 2015; 
Van Wynsberghe 2016). Through such studies, suitable design parameters could be identified that 
would meet the needs of the older adults in specific applications such as the table setting robot 
application on which this study is focused. 

The aforementioned studies have explored individual effects of LOA or LOT separately in 
different domains. But this has not been examined in the use of socially assistive robots for older 
people. LOA, as a control strategy, tends to improve the collaboration between the user and the 
robot by sufficiently keeping the user in the loop. This is critical in older adults’ interaction with 
robots in order to avoid inactiveness. LOT, as an information presentation strategy, also tends to 
improve the awareness of the user during the interaction. This is also critical for the older adults to 
ensure that they are constantly carried along in the interaction. We therefore hypothesize that 
exploring some LOA and LOT options in robot-assisted tasks could increase the engagement and 
satisfaction of the older adults as they interact with the robots. The current study aims to explore 
how LOA and LOT influences the quality of interaction (QoI) between the older adults and the 
assistive robot in a shared task of table setting. The QoI is a construct in this paper which entails 
the fluency, understanding, engagement and comfortability during the interaction. 

2. Methods 

Overview 
A table setting task performed by a robotic arm was used as the case study. The robot had to pick 
up a plate, a cup, a fork and a knife and to place them at preset positions on the table. The user 
operated the robot in two levels of automation. In the high LOA condition, the robot operated 
autonomously. The user could only start and stop the robot’s operation by pressing a specific button. 
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In the low LOA condition, the user could still start and stop the robot, but the robot required the 
user’s consent before setting each item. The robot asked the user through a GUI which item to bring 
and the user was required to respond before the robot could continue its operation. 

Two conditions utilizing different levels of transparency (LOT) were compared for two different 
levels of the robot's automation: high and low (Table 1). Information was given by the robot in 
visual form through a GUI on an adjacent screen where the LOT manipulated (Figure 1). The two 
conditions differed by the amount of details provided by the robot. The low level of information 
included text messages that specified the status of the robot by indicating what it was doing (e.g. 
bringing a plate, putting a fork, etc.), while the high level of information included also the reason 
for this status (i.e. I’m bringing the plate since you asked me, etc.) 

Table 2. Experimental Conditions 

 
LOA 

Low High 

L
O

T
 

 
Lo

w
 

Condition 1 – LL 

User instructs the 
robot using the 

GUI and receives 
information about 
what the robot is 

doing in each 
stage.  

Condition 3 – LH 

Robot operates 
automatically. In 
each stage user 

receives 
information about 
what the robot is 

doing. 

H
ig

h  

Condition 2-HL 

User instructs the 
robot using the 

GUI and receives 
information about 
what the robot is 

doing and the 
reason for it in 

each stage. 

Condition 4-HH 

Robot operates 
automatically. In 
each stage user 

receives 
information about 
what the robot is 

doing and the 
reason for it. 

 

Apparatus 
A KUKA LBR iiwa 14 R820 7 degrees of freedom robotic arm equipped with a pneumatic gripper 
was used (Fig. 1). The tasks were programmed using python and executed on the ROS (Schaefer 
2015) platform.  
In order to instruct the robot and to present the information received by the robot a graphical user 
interface (GUI) was used on a PC screen, which was located on a desk to the left of the user (see 
Fig. 1). 
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Fig. 1. A participant using the GUI to instruct the robot. 

Participants 
Fourteen older adults (8 Females, 6 Males) aged 62-82 (mean 69.8) participated in the study. 
Participants were recruited through an advertisement which was publicized electronically. They 
were healthy individuals with no physical disability who came independently to the lab. Each 
participant completed the study separately at different timeslots, so there was no contact between 
participants.  

Experimental Design 
The experiment was set with a mixed between and within subject design with the LOA modes as 
the between subject variable, and the LOT as the within subject variable.  
Participants were assigned randomly to one of the two LOA conditions. All participants completed 
the same table setting task for both levels of transparency. The order of the two tasks was 
counterbalanced between participants, to accommodate for potential bias of learning effects, 
boredom or fatigue.  

Performance measures 
Initially, participants completed a pre-test questionnaire which included the following: 
demographic information, and a subset of questions from the Technology Adoption Propensity 
(TAP) index (Ratchford and Barnhart 2012) to assess their level of experience with technology 
and from the Negative Attitude toward Robots Scale (NARS) (Syrdal et al. 2009a) to assess their 
level of anxiety towards robots.  
Objective measures that were collected during each session are interaction-related variables such 
as fluency, engagement, understanding and comfortability.  Subjective measures were assessed via 
questionnaires. Participants completed a short post-session questionnaire after each session and a 
final questionnaire at the end of the two sessions to evaluate subjective measures. The post-session 
questionnaire used 5-point Likert scales with 5 representing "Strongly agree" and 1 representing 
"Strongly disagree". The final questionnaire related to the difference between both sessions. 

Analysis 
A two-tailed General Linear Mixed Model (GLMM) analysis was performed to evaluate for a 
positive or negative effect of the independent variables. The user ID was included as a random 
effect to account for individual differences. LOA and LOT were utilized as fixed factors while all 
objective and subjective variables representing ‘Quality of Interaction’ (QoC) were used as 
dependent variables.  
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3. Results 

Demographics and Attitude towards Technology 
There was an equal distribution of participants within the two groups. On a scale of 1 (strongly 
disagree) to 5 (strongly agree), the TAP index reveals that most of the participants are optimistic 
about technology providing more control and flexibility in life (mean = 3.86, SD=1.17). It was also 
observed that over 75% of the participants like to learn the use of new technology (mean=3.93, 
SD=1.07) and feel comfortable communicating with robots (mean= 3.43, SD=1.50). The majority 
(80%) did not have negative feelings about situations in which they have to interact with a robot 
(mean = 4.14, SD = 0.86). 

Quality of Interaction 
A two-way ANOVA was run to find out if there was a significant difference between the LOA-
LOT manipulation as conditions (F(3, 22) = 2.35, p=0.033). The effect of the manipulation was 
significant on the robot’s idle time (F(3, 22) = 4.91, p=0.009), functional delay (F(3, 22) = 21.22, 
p<0.001), human idle time (F(3, 22) = 3.03, p=0.005), the gaze on the robot (F(3, 22) = 3.97, 
p=0.021), perception of safety (F(3, 22) = 3.22, p=0.042) and overall interaction time (F(3, 22) = 
5.31, p=0.007). The effect of the manipulation was not significant on the gaze on the GUI where 
the robot provided feedback (F(3, 22) = 2.01, p=0.142). More details of the components of the 
quality of interaction are presented below. 

Fluency 
Fluency was represented by the idle time of the robot, functional delay and overall time spent on 
the task.  The LOA was significant on the robot’s idle time (mean = 122.54, SD = 59.70, F(1, 24) 
= 9.97, p=0.004) with the high LOA (mean=88.85, SD=2.48) having a lower robot idle time 
compared to low LOA (mean 156.21, SD=70.38). The LOT was not significant as a main effect but 
there was a significant effect in the interaction between the LOA and LOT (F(4, 24) = 44.2, 
p<0.001) as depicted in Fig. 3. In terms of delay (mean = 12.86, SD = 13.87), the LOA was 
significant (F(1, 24) = 14.48, p=0.001). The low LOA had more delays (mean=20.85, SD=15.99) 
than high LOA (mean=4.87, SD=13.87). The LOT was not significant (F(1, 24) = 2.04, p=0.17). 
There was also no interaction effect of the LOA and LOT on the delays (F(1, 24) = 1.49, p=0.23). 
The duration of the experiment with low LOA (mean=239.21, SD=74.41) were longer than that 
with high LOA 
(mean=158.53, 
SD=66.17). This was also 
statistically significant 
(mean = 198.53, SD = 
66.17, F(1, 24) = 15.42, 
p=0.001). The results 
therefore suggest that high 
LOA influenced more 
fluency in the interaction 
than low LOA. 
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Engagement  
The duration of the gaze on the robot was significantly affected by LOA (mean = 155.64, SD = 
34.51, p=0.006). Participants in low LOA (mean=175.57, SD=34.77) gazed on the robot more than 
participants in high LOA (mean=135.71, SD=20.22). The interaction between LOA and LOT on 
the time participants gazed on the robot was significant (F(1,24)=7.83, p=0.01). Participants in low 
LOA (mean=35.50, SD=17.81) were also more significantly focused on the GUI (mean = 27.01, 
SD = 19.60, p =0.037) than participants in high LOA (mean=18.643, SD=18.10). The interaction 
between LOA and LOT was significant regarding the focus on GUI (F(1, 24) = 4.48, p=0.045). The 
effect of LOA on the human’s active time was also significant (mean = 16.39, SD = 16.62, p<0.001) 
with low LOA (mean = 31.07, SD=10.47) keeping the human more active than the high LOA 
(mean=1.71, SD=0.82). There was an interaction effect between the LOA and LOT (F(1, 24) = 
47.28, p<0.001). 

Fig. 2. Interaction effect of 
LOA and LOT on various 

some QoI variables 

Understanding 
There was no significant 
difference in the number 
of clarifications made by 
the participants during 
the interaction 

(mean=1.18, SD=1.59, p=0.124) as a result of the LOA manipulation. The participants seemed to 
understand the status of the interaction and actions of the robot in both LOA and LOT modes (F(1, 
24) = 2.27, p=0.15). Only a few participants asked for clarification at the low LOA (mean=1.64, 
SD=1.95) and high LOA modes (mean=0.71, SD=0.99). However, in terms of reaction time of the 
participants as the robot interacted with them, the LOA was significant (mean = 12.86, SD = 13.87, 
p=0.001). The participants spent more time observing and processing the information the robot was 
presenting to them as consent in the low LOA (mean=20.85, SD=15.99) compared to the high LOA 
(mean=4.87, SD=13.87). 

Comfortability 
The effect of the LOA and LOT did not influence the heart rate of the participants. But it was also 
not significant on the comfortability of the participants with regards to their perception of safety of 
the robot (mean = 2.54, SD = 0.58, p =0.48). However, it was observed that participants in low 
LOA moved much closer to the robot which represented more comfortability with it than 
participants in high LOA which sat further away from the robot. 

4. Discussion and Conclusion 

Most of the participants were comfortable interacting with a robot.  The results revealed that the 
quality of interaction, as measured via fluency, engagement, understanding and comfortability of 
the interaction was influenced mainly by the interaction of LOA and LOT. The main effect of LOA 
had less influence compared to that of the main effect of LOA but the interaction of LOA and LOT 
was significant across most of the variables. Participants seem to prefer less information (low 
LOT) when the robot was operating more autonomously (high LOA). They also seem to prefer 
more information (high LOT) when they were more active with the robot such as the case in low 



16 

LOA mode. This agrees with the findings in (Chen et al. 2018) where differences were not found 
in the transparency level that included only status information and reason without LOA involved. 
In current study where the level of involvement of the participant varies with the LOA, it is 
noteworthy that the LOT preferred is influenced by the LOA the robot is operating in.  

This corroborates the characteristics of the visuospatial sketchpad (VSSP) working principle as 
modelled by Baddeley (A.D. Baddeley et al. 1975; Alan D. Baddeley 1986, 1997). It suggests a 
dissociation within the VSSP, between active operations such as the movement of the robot and a 
passive store of information as the information displayed on the GUI (Bruyer and Scailquin 1998). 
Even though, there is a high cognitive demand on the participants when actively involved with the 
robot in a low LOA mode, the participants still handle more information (high LOT) since the 
information display was passive. This is in contrast to the scenario where the robot was more 
autonomous (high LOA), with less cognitive demand on the participant. 

Future research should advance a longitudinal study, to increase familiarity with the robot 
operation and overcome the suspected naivety effect (Kirchner and Alempijevic 2012; Shah and 
Wiken 2011) of the older adults with the robot. We expect that the more the older adults get 
familiar with the operation of the robot, their level of trust in the robot may change and thus cause 
a change in their LOT demands as well. 

According to the participants’ recommendations more awareness might be improved through 
voice feedback. This possibility is also supported by the suggestion of (Sobczak-Edmans et al. 
2016) indicating that some form of verbal representation of information supports visual 
representations. This should be explored in future work to improve the shared control of the older 
adult with the table setting robot.   

Previous research in human robot collaboration discovered the effectiveness of coordination in 
team performance as presented in (Shah and Wiken 2011). Our work further presents the potential 
of LOA in improving quality of interaction. This is reflected in the various objective measures 
taken for engagement, fluency, degree of involvement and comfortability with the robot where the 
LOA effect was significant. The low LOA enabled the participant to interact more with the robot 
by selecting the specific item that the robot should pick up and the order of arrangement. This 
inspired greater collaboration with the robot. It enhanced the concept of shared control where the 
user is more involved in the decisions and control of the robot’s operations. This is very critical to 
ensure that the older adult keeps active so as not to lose skills or functionality of the muscles (Wu 
et al. 2014). This corresponds with the “use it or lose it” logic presented by (Katzman 1995) in 
their study of older adult lifestyle.  

Most studies which included some form of adaptive coordination to improve the collaboration 
between the robot and the user (Huang, Cakmak, and Mutlu 2015; Someshwar and Edan 2017) 
tried to reduce the completion time of the task. There was a trade off in this current study regarding 
degree of involvement and time to complete task i.e., at a higher degree of user involvement, more 
time was spent to complete the task. It is noteworthy that the focus for the target population is to 
ensure user involvement to avoid idleness and other negative outcomes of sedentariness and not 
speed. Moreover, most participants expressed enjoyment, and pleasure as they interacted with the 
robot, which suggests other reasons for the longer interactive time. This can therefore be 
considered as a positive outcome of the interaction and a favorable contribution to improve shared 
control in human-robot interaction scenarios such as this. 
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1 Introduction 

Eldercare encompasses various activities involved in caring for older adults to meet their physical, 
cognitive, emotional and social needs (J. M. Bauer and Sousa-Poza 2015). These activities are 
commonly represented as activities of daily living (e.g. bathing, hair care), instrumental activities 
of daily living (e.g. cleaning, meal preparation) or enhanced activities of daily living (e.g. learning 
new hobbies, or assistance with new skills) (C. A. Smarr et al. 2012). To ensure that older adults 
enjoy their independence at home, these activities need to be adequately catered for (Allaban, 
Wang, and Padir 2020). There is a growing percentage of older adults who need help with these 
activities while the number of people available to care for them and assist them with these activities 
is declining (Bogue 2013). This foreshadows an ‘elder care gap’, which research over the years 
regarding possible solutions, has revealed that assistive robots could play a vital role in forestalling 
(Allaban, Wang, and Padir 2020; C. A. Smarr et al. 2014).  
Assistive robots are robots that generally provide support to a human user (Pfeil-Seifer and Mataric 
2005). One of the major applications is in eldercare where some robots are currently being 
developed to assist the older adults in daily care (C.-A. Smarr, Fausset, and Rogers 2010), 
rehabilitation (Burgar et al. 2000), ambulation (Glover et al. 2003) and companionship (Roy et al. 
2000)). With regards to daily care, previous studies have shown that the older adults were generally 
more open to robotic assistance in instrumental activities of daily living with activities such as 
cleaning and clearing emerging as one house chores where support is needed (Hall et al. 2019; C. 
A. Smarr et al. 2012, 2014). There are, however, very limited robots available for the variety of 
cleaning and clearing tasks in homes apart from floor cleaning robots (Prassler et al. 2000). This 
reveals the need for more robotic developments in the area of cleaning and clearing as one of the 
major domestic chores where the older adults need support (Prassler et al. 2000; C. A. Smarr et al. 
2014).  
Robot-aided table clearing, as an example of robots supporting with cleaning and clearing tasks, 
involves the assistive robot providing assistance in taking away certain items from the table with 
the consent of the user without overriding the preferences of the user (Masuta, Hiwada, and Kubota 
2011). The focus over the years has been on the development of the software, hardware and control 
architecture necessary for the robot to successfully perform this task (Suzuki et al. 2019). These 
developments have contributed immensely to the capabilities of the robot to perform object 
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identification and manipulation as it takes items from the table (Masuta, Hiwada, and Kubota 2011; 
Scopelliti, Giuliani, and Fornara 2005). While these developments have largely emerged successful 
(Chong et al. 2004; Suzuki et al. 2019), only very minimal studies have investigated the interactive 
role the robot plays in the different phases of the table-clearing task particularly for a sensitive 
population like older adults (J. M. Bauer and Sousa-Poza 2015; M. J. Johnson et al. 2020; Portugal 
et al. 2019; Zafrani and Nimrod 2019b).  
It is pertinent that the autonomy of the older adults is considered carefully in the development and 
operation of these table-clearing robots to ensure that the older adult user still stays in control of the 
process without being overburdened by the task (Czaja et al. 2009). This ensures that their interests, 
preferences and active engagements in the process are maintained while avoiding dissatisfaction 
(D. B. Kaber 2018), frustration (Scopelliti, Giuliani, and Fornara 2005) or a sedentary lifestyle 
which could evolve as a result in an unbalanced robot-user role allocation process (Czaja et al. 
2019). This brings to the fore the need to ensure a balance in the roles of the robot to avoid extremes 
of overreliance on the robot, misuse or disuse of the robot’s automated capabilities (Parasuraman 
and Riley 1997). A strategy proposed and tested over several years of research in different domains 
is through introduction of appropriate levels of automation which can be generally defined as the 
degree to which automation is employed in the task (Sheridan and Verplank 1978). In this context 
of eldercare robot-aided table clearing, it can be explained as the extent to which the robot 
participates in the task of clearing the table. This ensures that the autonomy of the older adult is 
considered in the process of aiding in the task (Beer, Fisk, and Rogers 2014).  
It is also crucial that the older adult is carried along regarding the robot’s activities as it carries out 
the task (Beer et al. 2012; Hellström and Bensch 2018), which connects with feedback provided by 
the robot (Lyons 2013). Feedback can be defined in this context as the information provided by the 
robot to the user regarding its intentions, reasoning, plans and actions (Nicole Mirnig and Manfred 
2015). This information could be encoded in different formats (visual, audial, haptic or a hybrid) 
through which the robot communicates the information to the user (N Mirnig, Weiss, and Tscheligi 
2011). This formats, which in this study is referred to as feedback modes differ in their capacity to 
convey the required information to the older adult population who have their peculiarities, age-
related differences and perception-related challenges (Cen/Cenelec 2002). The applicability of 
these feedback modes may also differ with consideration for LOA mode the robot is operating in. 
This underscores the aim of this study which is to develop and evaluate the influence of LOA modes 
and feedback modality in the interaction of older adults with a table-clearing robot while identifying 
suitable LOA-feedback mode combinations that would facilitate successful and satisfactory 
interactions. 

2 Methods 

2.1 Overview 

The current research deals with the application of three different levels of automation and three 
modes of feedback in the robotic table-clearing task. The task involved the robot taking clearing 
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eating utensils (e.g. a plate, fork, knife) and placing them at another location. The LOA and mode 
of feedback were the independent variables evaluated while performance in the interaction and 
perception of the users were assessed as dependent variables. The experimental system, 
development of LOA and feedback modes as well as the evaluation in user studies are described in 
the following subsections. 

2.2 The experimental system 

The system consisted of a table clearing robot, the interface for communicating with the robot and 
the older adults users. The robot used was a KUKA LBR iiwa 14 R820 which had 7 degrees of 
freedom and was equipped with a pneumatic gripper was used (Figure 1,2). Lifting load: up to 14 
kg, number of degrees of freedom: 7, self-weight: 30 kg, temperature Ambient temperature: 45-5 ° 
C, mounting positions: floor, ceiling, wall. 
 

 
Figure 3. KUKA robot 

 

 

 
The tasks were programmed using python and executed on Robot operating system (ROS) platform 
(Schaefer 2015). The transfer of the tools the robot to the elderly was done by means of an air 

Figure 4. The angle's range 
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pressure vacuum except for the cup which was transferred by gripper. This interface was setup with 
Raspberry Pi. In order to instruct the robot and to provide feedback, a graphical user interface (GUI) 
was developed and used on a PC screen, which was located on a desk to the left of the user (Figure 
4). 
 
 

 
Figure 5. The system 

 

 
Figure 6. A participant using the GUI to instruct the robot 

 
 

2.3 LOA modes 

The overarching goal in the LOA development was to ensure that the older adults remain in the 
loop of the robot’s operation at every LOA level and to maintain the availability of the robot to 
support at every level. This was implemented by varying the robot’s degree of involvement in the 
decisions required for the table clearing task across each of the LOA modes. These decisions include 
when to start the process of clearing, what items to take, when to take specific items and when to 
stop in the process. This details for each of the LOA modes are given as follows: 

i. High LOA: This was the highest degree of robot involvement in the decision making and 
the least user involvement. The robot performs the entire task of clearing the items on 
the table once the user initiates the process. The user is minimally involved to start the 

Older adults 
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process and also to stop the robot at any point by pressing the STOP button. The 
flowchart for process development is provided in Figure 4. 

ii. Middle LOA: This was a moderated degree of robot involvement in the decision making 
with more human involvement than the high LOA. The robot seeks the consent of the 
user before taking each item from the table. The robot suggests removing specific item 
and the user has to approve the action. If approved, the robot will perform the operation. 
If the offer is not approved, the robot offers take another item on the table till all items 
have been considered. The flowchart depicting this process is shown in Figure 3. 

iii.   Low LOA: The user’s degree of involvement in the decision making is highest while the 
robot acts on the decision of the user. The user initiates the process, decides an item s/he 
desires to take off the table and instructs the robot to clear the desired item. The robot 
clears the item requested and waits for the next instruction without suggesting any 
specific item to be cleared. The human makes most of the decisions involved in the 
process.  

 

 
Figure 7. High LOA 

 
Figure 8. Middle LOA 
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GUI screen feedback 

 

 
Figure 9. Low LOA 

 

2.4 Feedback modes 

The feedback was designed to ensure that sufficient information is provided to the older adult users 
to keep them informed (Mirnig et al., 2014) and at the same time not overloading them with 
information (Lyons, 2013). The three feedback modes implemented to operate at the three LOA 
modes are described as follows: 

i. GUI screen. Each time the robot brought a certain tool to an elderly person, a message 
appeared on the GUI screen detailing it. (Figure 8) 

ii. Led lights. Each time the robot brought a certain tool to an elderly person, the LED lights 
on the end of the robotic arm turned green. (Figure 9) 

iii. Voice recordings. Each time the robot brought a certain tool to an elderly person, a 
recording was heard detailing what the robot was doing. 

 

 
Figure 10. A participant experiences  LED light feedback from the robot 
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Figure 11. A participant experiences  LED light feedback from 
the robot 

LED light feedback 

 

 

 

  

2.5 Participants 

22 older adults (9 Females, 13 Males) over the aged 70 (mean:74, SD:4.12) participated in the study. 
Participants were recruited through an ad which was publicized electronically. They were healthy 
individuals with no physical disability who came independently to the lab. Each participant 
completed the study separately at different timeslots, so there was no contact between participants. 

2.6 Experimental Design 

The experiment was set with a mixed between and within subject design with the LOA modes as 
the within subject variable, and the feedback type as the between subject variables. 
Participants were assigned randomly to one of the three feedback types conditions. All participants 
completed the same table clearing task for the three levels of automation. The order of the three 
iterations was counterbalanced between participants, to accommodate for potential bias of learning 
effects, boredom, or fatigue. 
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Table 3. Experimental Conditions 

 
LOA 

Low Middle High 

Fe
ed

ba
ck

 
 

G
U

I s
cr

ee
n 

Condition 1 – LG 
User choose which item 
the robot clear for him 
each time and receives 

visual feedback through 
GUI screen 

Condition 4-MG 
User choose if approve 
the item the robot clear 
for him each time and 

receives visual feedback 
through GUI screen 

Condition 7-HG 
Robot operates 
automatically. 

User receives visual 
feedback 

through GUI screen 

Le
d 

lig
ht

s 

Condition 2-LL 
User choose which item 

the 
robot clear for him each 

time 
and receives visual 

feedback 
through Led lights 

Condition 5-ML 
User choose if approve 

the 
item the robot clear for 

him 
each time and receives 

visual feedback through 
Led lights 

Condition 8-HL 
Robot operates 
automatically. 

User receives visual 
feedback 

through Led lights 

V
oi

ce
 re

co
rd

in
gs

 

Condition 3-LV 
User choose which item 

the 
robot clear for him each 
timeand receives audial 
feedback through Voice 

recordings 

Condition 6-MV 
User choose if approve 

the 
item the robot clear for 

him 
each time and receives 

visual feedback through 
Voice recordings 

Condition 9-HV 
Robot operates 
automatically. 

User receives visual 
feedback 

through Voice 
recordings 

 

2.7 Performance measures 

Initially, participants completed a pre-test questionnaire which included the following: 
demographic information, and a subset of questions from the Technology Adoption Propensity 
(TAP) index (Ratchford and Barnhart 2012) to assess their level of experience with technology and 
from the Negative Attitude toward Robots Scale (NARS) (Syrdal et al. 2009a) to assess their level 
of anxiety towards robots. 
Objective measures that were trial are collected during each interaction-related variables and 
included effort, accuracy, efficiency, engagement, comfortability, fluency, understanding as 
detailed below. Subjective measures were assessed via questionnaires and included reliability, 
satisfaction, understanding, engagement, and comfortability. The combination of these represents 
the dependent variable of the study – QoI. 
The details of the measures are listed in table 2. 
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Table 4. Dependent Variable 

 
Dependent 
Variable 

Measurement 

Objective 
measures 

Effort Heart rate change 

Accuracy Number of errors that occurred during the task 

Efficiency 𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 =
1 − 𝑡𝒐𝒕𝒂𝒍	𝒕𝒊𝒎𝒆	𝒐𝒇	𝒕𝒓𝒊𝒂𝒍	𝑖
𝒎𝒂𝒙{𝑡𝒐𝒕𝒂𝒍	𝒕𝒊𝒎𝒆	𝒐𝒇	𝒕𝒓𝒊𝒂𝒍	𝑖} 

i - trial number 

Engagement 

Gaze duration at GUI - The length of time the 
subject looked at the robot 

Gaze duration at the robot - The length of time the 
subject looked in the direction of the GUI screen 

Gestures - The number of gestures performed by 
the subject towards the robot during the mission 

Comfortability A categorical variable between 1-3 represents the 
proximity of the subject to the robot. Where 1 
represents a distance away from the robot and 3 
represents a very close proximity so that the 
subject touches the mission table surface. 

Fluency Subject idle time 

Understanding The number of questions asked by the subject 
during the assignment. 

Order LOA A categorical variable between 1 and 3 
representing the order of the automation levels 
experienced by the subject. 

Subjective 
measures 

Reliability How much the person relied on the robot 

Satisfaction The amount of satisfaction the person 
experiences 

Understanding The extent to which the person understood the 
task 
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Engagement The level of involvement of the subject in the 
task 

Comfortability The amount of comfort the person experiences 

 
 
Participants completed a short post-session questionnaire after each session and a final 
questionnaire at the end of the three sessions to evaluate subjective measures. The post-session 
questionnaire used 5-point Likert scales with 5 representing "Strongly agree" and 1 representing 
"Strongly disagree". The final questionnaire addresses the differences felt by the participants 
between the different trial (examines whether they felt a difference between the different levels of 
automation). 
 
2.8 Model and hypotheses 

We examined which LOA enhances the Quality of Interaction (QoI), a combined dependent 
variable defined as a combination of subjective measures listed earlier (Figure 10). 
 

The hypotheses of the experiment: 

 

H1: LOA will affect the quality of the interaction between the user and the robot 

 

H2: Feedback will improve the quality of interaction between the user and the robot 

 

H3: Feedback will improve user interaction with the robot at higher LOA  
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2.9 Analysis 

A two-tailed General Linear Mixed Model (GLMM) analysis was performed to evaluate for a 
positive or negative effect of the independent variables. The user ID was included as a random 
effect to account for individual differences. LOA and feedback type were utilized as fixed factors 
while all objective and subjective variables representing ‘Quality of Interaction’ (QoI) were used 
as dependent variables. 

3 Results 

3.1 Demographic Analysis 

The study population included 21 older adults, 8 females and 13 males, aged 70 to 86 (mean=74.1, 
SD= 4.12). Two of the participants possess a Ph.D., 5 have a master’s degree, 8 own bachelor’s 
degrees, 7 have a high school-based education and 3 are of alternative education. 

3.1.1 TAP - Technology Adoption Propensity 
Result shows that 75% of the participants firmly believe that technology provides increased control 
and flexibility in life. Although 40% of the participants noted low self-confidence regarding the 
general sense of being technological, as well as regarding the ability to quickly and easily learn 
operation of innovative technologies. Only 5% of the participants obtain high confidence in said 
ability, the remaining 20% remain indifferent. Nevertheless, 75% of the participants reported that 
they enjoy acquiring new technological skills and only 5% said otherwise do not. Furthermore, 
40% of the participants believe that they are being overly dependent on technology and are even 
enslaved by it, while 27% have a neutral opinion. 

3.1.2 NARS – Negative Attitude toward Robots Scale analysis 
Regarding attitude towards robots, 20% of the participants have a low scale negative view of 
robots, 20% have a high scale negative attitude while 60% are neutral. The mean is 13.5 and the 
standard deviation is 5.56. Additionally, 20% have highly negative attitudes toward situations 
which include robots, 30% are neutral while 50% have low negative attitude toward such 
situations. Apparently, 30% have highly negative attitudes toward robot’s social influence whereas 
70% are neutral. Finally, 30% have a highly negative attitude toward the concept of robots having 
emotions, 40% are indifferent and 30% have a low scale negative attitude towards it. 

LOA 

Feedback 

Quality of 
Interactio

𝐻1 

𝐻2 

𝐻3 

Figure 12. The Model 
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Figure 13. Quantity of subject vs. Statisfaction 

3.1.3 Demographics and Attitude towards Technology 
The study population consists of 21 older adults, 8 females and 13 males, aged 70 to 86 
(mean=74.1, SD= 4.12). Two of the participants possess a Ph.D., 5 have a master’s degree, 8 own 
bachelor’s degrees, 7 have a high school-based education and 3 are of alternative education. 
Result shows that 75% of the participants firmly believe that technology provides increased control 
and flexibility in life, Although 40% of the participants admitted to low self-confidence regarding 
the general sense of being technological, as well as regarding the ability to quickly and easily learn 
operation of innovative technologies. Only 5% of the participants obtain high confidence in said 
ability, the remaining 20% remain indifferent. Nevertheless, 75% of the participants reported that 
they enjoy acquiring new technological skills and only 5% said otherwise do not. Furthermore, 
40% of the participants believe that they are being overly dependent on technology and are even 
enslaved by it, while 27% have a neutral opinion. 

3.2 User perception 
From the questionnaires performed at the end of each trial, it appears that 86% of the respondents 
indicated that they were not at all stressed about cooperation with the robot, while 7% indicated 
that the cooperation experience was stressful for them. Satisfaction of subjects in the collaboration 
between them and the robot can be seen in Figure 7. It can be seen that the vast majority of the 
subjects (18 participants in the high LOA, 17 in the middle LOA and 15 in the low LOA) testified 
that they were most satisfied with the collaboration between them and the robot (Figure 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When respondents were asked whether they had relied on the robot during the mission, 56% 
indicated that they had fully trusted the robot, while a considerable 11% said they did not feel trust. 
This can be related to the fact that participants who testified that they relied on the robot at a low 
level were in cases where they testified that the robot had made a mistake during the mission. 
Correspondingly, the Pearson correlation between the results of the robot's reliability level 
question and the results on number of errors the robot performed in the person's opinion, is a high 
negative correlation of -0.426. In other words, the more the robot makes mistakes, the lower the 
level of reliability of the subject in the robot. 
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Results of the final questionnaire at the end of the experiment showed that the level of automation 
preferred by most subjects (50%) was the highest level of automation as can be seen in Figure 12. 

 
Figure 14. LOA preference 

Additionally, most subjects (41%) indicated that they would very much like to use the robot in a 
daily task, such as clearing the table. However, many other subjects (27%) indicated that they were 
not interested in using such a robot in their home.  Which may explain from what came up in the 
demographic questionnaire that many of the adults testified that they are admitted to low self-
confidence regarding the general sense of being technological 
Order Effect 
An ANOVA test (P=0.003) indicating that in which the subjects experienced the levels of 
automation (which was random for each subject) had an impact on their satisfaction, and ultimately 
on the level indicated as preferable in the final questionnaire. Post Hoc test (P=0.002) revealed 
that the difference in preferences was when the order of LOA does not occur in chronological 
order: 2->1->3 or 3->1->2. 
 
Results reveal that the automation level had significant effect on most of the performance 
measures. Feedback, and the interaction variable between the levels of automation and the 
feedback did not have a meaningful effect on most measures. 
None of the independent variables had significant effect on effort, gaze robot, comfortability and 
understanding (Table 3). LOA had significant effect on accuracy (M=0.18, SD=0.39), efficiency 
(M=70.21, SD=14.69), gaze GUI (M=17.96, 11.84) and fluency (M=57.13, 14.63). Feedback and 
the interaction variable between LOA and Feedback (Feedback*LOA) had significant effect on 
accuracy. 
 
 
 
 
 
 
 

4, 18%

7, 32%

11, 50%

Low LOA Middle LOA High LOA
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Table  5 . Significant variables 

 

Engagement Efficiency  Accuracy Effort 

Gaze 
robot 

Gaze 
GUI 

Total time  Errors HR 
 

.009 .000 .000  .012 .912 LOA 

.587 .465 .819  .037 .128 Feedback 

.938 .747 .861  .012 .376 LOA * 
Feedback 

understanding  Comfortability Fluency  
Questions  Proximity Human 

idle time 
 

.101  .134 .001 LOA 

.723  .082 .244 Feedback 

.150  .738 .545 LOA * 
Feedback 

 
Nevertheless, an interesting statistic identified that the interaction variable had a significant effect 
(P=0.017) on the transaction index measured by the amount of gestures the person made to the 
robot during the mission (Figure 13). This can be explained by combining an automation level 
with feedback, hence a person feeling more involved in the task and acting accordingly, making 
more gestures during the task. Figure 8 shows the difference in the effect of each level of 
automation with a specific feedback type, on the amount of gestures the person made to the robot 
during the task. Primary, we can conclude that at the highest level of automation the difference is 
the most significant (green line). This information makes sense considering controlling most of 
the robot increases the importance of feedback, since that is what keeps the person within the task 
and gives him the feeling that he is involved. If we examine the type of feedback, it appears that 
at the high level of automation, when the feedback type was voice recordings, the difference is 
most significant. This is justified in literature seeing as it is known that voice feedback, versus 
visual feedback, makes the user feel that the feedback is more human and as a result becomes more 
involved in the task. 
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Figure 15. Number of gestures at the level of automation with feedback type 

 

3.3 Qualitative analysis 

During the running of the experiments, it was possible to notice the nuances of the interaction of 
the adults with the robot according to the sentences they said. 
In term of trust, most adults who experienced a low and then high level of automation felt that 
control was taken away from them and said sentences like: "Why is he not listening to me this 
time?", "Let's see if he turns the tool I want". This reinforces what was said in the quantitative 
analysis of the questionnaires. 
In terms of adult preferences, most testified that they were happy for a similar robot in their home 
that would help with daily tasks. One participant said, "oh this robot knows better than me". 
But some shared that the specific robot with which they experienced the experiment – the KUKA, 
is too large for storage in their home and unsuitable. They were happy for a more compact robot 
to perform the same operation. 
 
 

4 Discussion and conclusions 

The system demonstrates feedback and LOA design aspects especially suited for older adults in 
an assistive robot task. The experimental results give insight into daily task of clearing a table that 
older adults would prefer a robot to assist with. Most of the participants testified that they would 
like a similar robot in their home to assist them, emphasizing the relevance of the developed 
system. This is consistent with previous research that older adults expressed interest in the robot 
assisting with difficult tasks, saving time, performing undesirable tasks, reducing effort, and 
performing tasks at a high-performance level (Fausset at el., 2011). For an older adult to accept 
technology, such as robotics, the benefit has to be clear (Ezer at el., 2007; Caine at el., 2009). 
Many of these tasks were physical in nature (e.g., cleaning kitchen or Bathroom) (J. M. Beer et al., 
2012). 
However, a significant percentage reported that they would not want such a large robot in their 
home since they do not think it will suit them. Many of the older adults reported that they lived in 
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a condo or apartment home, where storage was limited. Therefore, the robot design must be 
adapted to fit the working environment constraints.  
 
Most of the participants were comfortable and trusted the robot. Trust is an essential element for 
older adults and robot care providers to work effectively.  
The vast majority of the participants felt the difference between the various levels of automation, 
and noted preference for the highest level of automation.  
The integration of feedback during the task increases the participant's involvement, especially at a 
high level of automation. The subjects indicated that their preferred type of feedback was voice 
recording feedback. Some respondents suggested to consider the timing of giving feedback. They 
recommended that  the robot first performs the task and then provides the feedback rather than 
vice versa.  
The GUI screen feedback for this task was less relevant for older adults because they rarely looked 
at the screen probably because they were concentrated on the robot. Therefore, it is recommended 
to investigate into other types of feedback.  However, this also might be due to the novelity effect, 
after a certain period of time they might become accustomed to the robot and prefer visual feedback 
like a GUI screen. 
 
when an adult has control during the task and then it is taken some way, it affects the quality of 
interaction between the adult and robot and reduces his/her satisfaction. Thus, it is recommended 
to gradually increase control to the adult. This reinforces the initial suspicions that when subjects 
first experience a low level of automation (ie, the subject has more control over the task) and then 
experience a higher level of automation (ie control was taken from them), their satisfaction was 
reduced which also affected the preference level indication. The subjects expressed sentences such 
as, “But why did the robot not ask me this time what I wanted?”, “The robot does not listen to me”, 
etc. 
 
Further studies to improve the system and further its’ development with the objective of 
maximizing the quality of interaction between robot and elderly can address different aspects such 
as personal adaption of the level of automation and type of feedback and dynamic adaption of 
LOA along performance (depending on experience, fatigue). 
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Levels of automation for different levels of workload and task complexities in 
human-robot collaboration 

Dana Gutman          Samuel Olatunji          Yael Edan 
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel 

Abstract. This study explored how different levels of automation (LOA), workload and task 
complexity influence the interaction between a human and a robotic arm in a collaborative 
assembly task. Evaluation was conducted through a user study involving 80 participants. Two 
LOA modes were designed, implemented, and evaluated in an experimental setup for two different 
workload levels and task complexities. User preferences regarding the LOA modes in the different 
workload and task complexity conditions were assessed. In addition, two constructs were specially 
designed for the evaluation: quality of task (QoT) execution and usability. These constructs were 
measured objectively and subjectively through several dependent variables and combined using 
principal component analysis. Results revealed that most of the participants preferred the low LOA 
at high complexity and high LOA when the workload increases. The quality of task execution was 
also better at high LOA when workload is high irrespective of the task complexity, but the usability 
results reveal the benefits of low LOA in situations when task complexity changes. The outcome 
provides some insights into shared control designs which accommodate user preferences in the 
workload and task complexity situations that may arise in the collaboration with the robot. 

Keywords: Levels of automation, workload, complexity, collaborative robots, 
human-robot collaboration, usability, quality of task execution. 

1. Introduction 

Human-robot collaboration 
Human–robot collaboration (HRC) generally involves one or more humans working with one or 
more robots to accomplish a certain task or a specific goal (A. Bauer, Wollherr, and Buss 2008). 
This collaboration is a subset of human-robot interaction which more broadly involves 
understanding, designing, and evaluating robotic systems for use by or with humans (Goodrich 
and Schultz 2007). Effectiveness of HRC can be evaluated by the accuracy and completeness of 
the task which the human and robot  cooperate to execute (ISO 2018). This collaboration is 
commonly described as efficient when minimal resources such as time and human effort are 
expended to achieve the required goal (Baraglia et al. 2016).  To ensure that the human can 
successfully team up with the robot to achieve such collaboration, the human’s perception 
regarding ease of use is essential (Bröhl et al. 2019). Ease of use in this context refers to the degree 
to which the human operator believes that working with the robot will be free of difficulty or great 
effort (Davis 1989). A negative user perception regarding this ease of use could lead to disuse of 
the support the robot can provide in the collaboration (Parasuraman and Riley 1997). It is therefore 
necessary to consider the factors that can potentially affect the effectiveness, efficiency and ease 
of use in HRC when designing human robot collaborative tasks (A. Bauer, Wollherr, and Buss 
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2008; G. I. Johnson and Wilson 1988). It is also crucial to evaluate the effect, characteristics and 
implications of these factors through extensive user studies to ensure the users’ point of view, 
preferences and peculiarities are considered in the design (Kaber, 2018). This contributes to the 
development of detailed, accurate and user-tested models of HRC that increases the potential for 
successful collaboration  and higher user acceptance (Bröhl et al. 2019; Feigh 2011) 

The capabilities of robots have increased significantly such that with high precision, they can 
repeatedly perform specialized tasks without performance deterioration even in complex 
environments, with heavy workload (Wang, Kemény, Váncza, & Wang, 2017). However, there 
are still limitations the robots encounter in some areas particularly when handling unexpected 
situations (Monostori, Váncza, and Kumara 2006). Humans, on the other hand, usually respond to 
unexpected situations better and resolve such situations with more dexterity, even in complex and 
dynamic tasks (Wang et al., 2017). But, humans are more prone to stress or fatigue and errors 
particularly in high workload situations (Arai, Kato, and Fujita 2010). One of the motivations of 
HRC therefore, is to bridge the gaps in skills and operational characteristics such that the human 
and robots work cooperatively as partners (Fong, Thorpe, and Baur 2007). This partnership 
harnesses the combination of the complementary strengths, skills and intelligence of both the 
human and robot resulting in increased quality of task execution alongside, robustness and 
improved flexibility and work ergonomics (Wang et al., 2019). 

HRC in assembly tasks         

HRC in assembly tasks usually involves a robot retrieving an object for the human, holding the 
object for a designated time, laying it aside, placing or fixing in a required position (A. Bauer, 
Wollherr, and Buss 2008).  There are a variety of HRC techniques and advances that have emerged 
in recent years for different kind of assembly tasks. In automotive assembly tasks, as an example, 
cooperating robots for precise material handling and secondary assembly operations have been 
advanced to increase the precision and speed of the automation while accommodating the dexterity 
and intelligence of the human operators (Smets 2019). Dual arm robots have also been explored 
for various bimanual assembly tasks to improve stability flexibility and cooperation between the 
robot and the human (Krüger, Schreck, and Surdilovic 2011).   

In some other HRC assembly tasks such as computer assembly tasks, a form of symbiotic HRC 
has been investigated featuring the interplay of the human and the robot in a cyber-physical shared 
work space (Wang et al., 2019). This enabled better combination of complementing competencies 
to resolve complications in complex work environments (Nikolakis, Maratos, and Makris 2019). 
The effect of temporal and spatial relation of collaborating humans and robots in industrial 
production settings has also been researched to identify design considerations for situations where 
collaborating agents share (or partially share) the same space (Hoffman 2019; Krüger, Lien, and 
Verl 2009; Someshwar and Edan 2017). 
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Factors influencing HRC assembly tasks 

The level of automation (LOA) of the system, defined as the degree to which the robot and the 
human are involved in the collaborative task (Endsley & Kaber, 1999; Lindström, Winroth, & 
Stahre, 2008; Shi, Jimmerson, Pearson, & Menassa, 2012) influences the characteristics of the 
HRC (Burke, Murphy, Rogers, Lumelsky, & Scholtz, 2004;  Wang et al., 2017). This affects the 
dynamics of the collaboration, the behaviour of the robots, actions to be taken, as well as autonomy 
of the human in the collaboration (Wang et al., 2019). It is therefore critical in HRC task design to 
consider LOA modes suitable for the user and applicable to the task (Kaber & Endsley, 1997). 
Other factors that that could potentially influence the LOA design should also be considered such 
as the amount of work involved in the task, herein defined as level of workload (Onnasch et al. 
2014b; Wickens et al. 2010) and the degree of complicated actions needed to complete the task, 
herein defined as level of task complexity (Bailey and Scerbo 2007; Crandall and Goodrich 2002).  

Workload addresses the actual and perceived amount of work that the human operator experiences 
which includes the effort invested in the task (Hart and Wickens 1990; Xu et al. 2018). It can 
generally be described in terms of the elements which constitute the cost of accomplishing the goal 
for the human operator in the HRC (Hart 2006). These elements could be task-related (such as 
mental, temporal and physical demands, (Hart & Staveland, 1988)), operator-related (such as skill, 
strategy, experience, (Hilburn & Jorna, 2001)) or machine-related (such as poorly designed 
controls, feedback, inappropriate or inadequate automation (Hart & Wickens, 1990)). Workload 
consequences could be reflected in the stress, fatigue or frustration experienced by the human 
operator (Hart 2006), depletion of attentional, cognitive or response resources (Hart and Wickens 
1990) as well as in performance changes (Yeh and Wickens 1988).   

Task complexity depends on properties of the task (objective complexity) and the perception of 
the human operator (subjective complexity) (Rasmussen, Standal, and Laumann 2015). It can 
generally be characterized in terms of the stimuli involved in the task for inputs as well as the 
behavioral requirements the human operator should emit in order to achieve a specific level of 
performance (Wood 1986a). The elements include the component complexity - number of distinct 
actions that the human operator must execute or number of informational cues that should be 
processed (e.g. the number and type of subtasks to be managed, Olsen & Goodrich, 2003); 
coordinative complexity - nature of relationships between task inputs and task products, the 
strength of these relationships as well as the sequencing of inputs (e.g. timing, frequency, intensity 
and location requirements, Campbell, 1988)) and dynamic complexity - changes in the states of 
the environment (e.g. cause-effect chains, means-ends connections which the human operator 
should  adapt to, Braarud, 2001; Wood, 1986a).  

Objective of the study 

Previous research identified relations between workload and task complexity in terms of task 
demand factors contributing to workload as a result of the level of complexity of the task (Wickens 
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et al. 2015). However, there are limited studies that investigated these factors in relation to the 
design of LOA modes suitable for HRC assembly tasks while operationalizing these LOA modes 
to support practical use in different collaboration contexts (Kolbeinsson, Lagerstedt, and Lindblom 
2019). The current study aims to examine LOA design for different levels of workload (LOW) and 
different levels of complexity (LOC) for HRC in an assembly task. Since human operators could 
be stressed while collaborating with the robot on joint tasks (Arai et al., 2010), it is important to 
take into account user preferences and their perception regarding ease of use. This is in addition to 
the assessment of the quality of task execution and usability of the system. We design, implement 
and evaluate LOA modes in a user study involving 80 participants in different workload conditions 
and task complexities. We hypothesized that specific LOAs will improve users’ interaction and 
enhance their performance in the midst of additional workload of a secondary task at different task 
complexities. User preferences regarding the LOA modes in the various conditions were assessed 
subjectively while two constructs were additionally designed for the evaluation: quality of task 
(QoT) execution and usability. 

The model to evaluate the potential interactions of LOA, LOW and LOC with respect to the user 
preferences, quality of task execution, and usability is presented in section 2. This is followed by 
the research methods in section 3 which includes description of the system design, LOA modes, 
task, and experimental evaluations of the design. Section 4 is devoted to the results of the 
experiments conducted.  Conclusions and suggestions for future work are discussed in the last 
section. 

2. Model 

Definition of constructs 
The model for the study (Figure 1) depicts possible effects of LOA, LOW and LOC on different 
aspects of the HRC. One of the aspects is the User preference, which is operationally used here as 
the choice of the users regarding the LOA mode that meets their needs and expectations in the 
collaboration. The other aspects of the HRC were assessed using specially designed constructs 
(depicted in Figure 1) which are defined as follows: 
        
Quality of task (QoT) execution  
The extent to which specific goals in a task are accomplished to a specified degree of accuracy 
under a specified period of time (ISO 9001 2020). This construct involves accuracy of the executed 
task, time to complete the task, and the number of stages completed in the secondary task.  

Usability  
The extent to which the robotic system can be used to achieve specified goals with 
effectiveness, efficiency and satisfaction in a specified context of use (ISO 2018). This 
construct is composed of effectiveness and efficiency including the satisfaction derived 
from the perceived ease of use. 
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Figure 16. Constructs for assessments 

Hypotheses for the study 
Predictions on the influence of LOA, LOW and LOC on these constructs along with the user 
preference are presented as the study hypotheses with accompanying rationale for each of these 
hypotheses.  

In the design of adjustable robot autonomy in human-robot systems, it was pointed out that as task 
complexity increases, robot effectiveness is likely to reduce if the robot is operating at higher 
autonomy (Ashcraft, Goodrich, and Crandall 2019). Users seem to intuitively understand that 
autonomous systems such as the robot system developed in this study could have difficulties in 
more complex situations with high uncertainty. Users usually thus prefer to have more control due 
to higher confidence in their own ability to handle decisions at such higher levels of complexity 
(Endsley, 1995). We therefore propose: 
H1a - Participants will prefer the low LOA for higher task complexities. 

Research has also shown that as automation increases, workload is expected to decrease, 
particularly if the automation is properly designed and does not provide new challenges and tasks 
relating to monitoring or other forms of engagement (Onnasch et al. 2014a). Automation generally 
provides the opportunity for the user to allocate attention to other concurrent tasks involved in high 
workload (Hocraffer and Nam 2017; Wickens 2008). Based on this, we propose: 
H1b - Participants will prefer the high LOA for high task workload. 

Several meta-studies conducted regarding levels of automation (Onnasch et al. 2014a; Wickens et 
al. 2010) seem to suggest that the workload experienced by users is influenced by the LOA of the 
system, particularly in situations of routine performance. This does not discountenance the effect 
of task complexity but seems to point to the effect level of workload may have in low task 
complexity. The preference of participants based on the LOA being utilized is therefore influenced 
by the level of workload, particularly in low complex task. We, therefore, propose: 
H1c - Participants will prefer the high LOA for high workloads at low task complexity 

We assume, based on the aforementioned task complexity demands that high task complexity 
could involve higher uncertainties and failure. High LOA at high task complexity where more 
uncertainties can arise may not reduce workload, but rather create additional workload involving 
users monitoring to ensure performance (Murthy 2007; Niu et al. 2018). We propose therefore, 

Usability

User perceptions

Ease of use

QoT execution

Effectiveness Efficiency
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that participants may prefer to have more control if task complexity increases. This serves as the 
basis for 
H1d - Participants will prefer the low LOA for higher workloads at high task complexity. 

It has been established in literature that in routine performance, high LOA tends to increase the 
quality of task execution as related to accuracy, time to complete task and performance of the users 
(Onnasch et al. 2014a). We suspect that in low complex tasks, where there are lower probabilities 
of errors, uncertainties and failure, both high and low workloads can be better handled by the users 
if the automation affords them the opportunity to share their attention to improve performance 
(Wickens 2008). We therefore propose:   
H2 – Quality of task (QoT) execution will be higher with high LOA when the low complex task is 
performed at either high or low workload level. 

Several studies involving LOA have revealed the possibility of extending users’ capabilities when 
the level of autonomy of the robot increases (Endsley, 2017). Usability explained previously in 
terms of the effectiveness, efficiency, and perceived ease of use (Rani et al. 2002), may increase 
if the system is operated at high LOA. This is also true even in situations of low workload (Davis 
1989). We therefore propose: 
H3 - Usability will be higher with high LOA when the low complex task is performed at either low 
or high workload level. 

 

 

The system model depicting the connection between these hypotheses and the study variables are 
presented in Figure 2. 

  

Figure 17. The system model: 
LOW,LOA,LOC – levels of workload, automation, complexity; QoT – Quality of task  
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3. Methods 

Overview 
The HRC assembly task simulates a work scenario where participants are expected to assemble 
blocks made from cubes according to a configuration presented to them through a user interface. 
The robot brings to them a cube at each time. The task was performed in two LOA modes, at 
different LOW and two different LOC based on the experimental design protocol. Effectiveness 
and efficiency were assessed under the QoT execution construct while user preferences along with 
ease of use were added to the assessment of the usability construct.   

 

Experimental system 
The experimental system consists of a robotic arm, user interface (presented on a computer), cubes 
to be assembled and the human operator (Figure 3). The robotic arm is a 4 degree of freedom 
DOBOT Magician (https://www.dobot.cc/dobot-magician/product-overview.html). It is 135 mm 
high, 158 mm wide and has a 320 mm radius with a payload of 500 g. It connects to the computer 
through a USB connection and was equipped with a suction gripper to pick up the cubes.  

This robotic arm was programmed for the two LOA modes using the Python programming 
language. Both modes involved the robot bringing the cubes in a sequence one after another from 
a predetermined place according to the specific LOA the robot is operating in. The user 
communicates with the robot through a user interface implemented on a GUI screen (Figure 4). 
The configuration to be assembled is displayed on the GUI screen when starting the task.  The 
robot releases the cube when it reaches the front of the participant. The participants are expected 
to assemble the cubes when received from the robot and place these cubes in a marked area on the 
desk in front of them.  

 

 

 

 

 

 

 

Figure 18. The experimental setup 
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Experimental design 
The experimental design includes three independent variables: LOA (two levels), LOW (two 
levels) and LOC (two levels). A between-within participants experimental design was conducted 
with the LOA as the within variables while LOW and LOC were the between variables. There are 
four between participant groups consisting of a combination of the LOW and LOC. Each 
participant was randomly assigned to one of the four groups where the participant experiences both 
LOA modes as seen in Table 1. The description of the LOA modes along with the LOW and LOC 
are provided as follows: 

3.1.1. Levels of automation (LOA) modes 

Low LOA – The human operator (user) has the autonomy over the type and order of cubes desired. 
The human operator must identify the type of block needed to fit the required configuration to be 
assembled per time and then select the required cube through the user interface. The robot supports 
the user by bringing the type of cube the user selected.  

High LOA – The robot has the autonomy to bring the specific type of cube and in the order 
preprogrammed in its operation. The user does not have to identify a specific type of cube. The 
user simply demands for a cube through the user interface and the robot brings the type of cube 
suitable for the specific configuration assembled per time. 

3.1.2. Levels of workload (LOW) 

Figure 19. GUI screen 
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The red car  

The game  

Low LOW - The users perform only the main task which consists of assembling cubes to match 
the specific configuration required. The workload involves some task demands such as the physical 
demand of arranging the cubes, mental demand of thinking about the type of cube that would 
match the required configuration and some temporal demand related to completing the task in the 
shortest possible time.  

High LOW – The users carry out the main task (composed of the aforementioned dimensions of 
workload) along with a secondary task. The secondary task was an off-the shelf well known 
cognitive game, the "RUSH HOUR" thinking game (Figure 5, 
https://www.thinkfun.com/products/rush-hour/). It involves arranging toy cars in a way to get a 
specific car out of a gridlock. There are tabs at each stage showing how to arrange the cars, and 
afterwards, the player has to find a way to get the required car (red car) out. Once the user has 
succeeded in getting the red car out, the user proceeds to the next stage and arranges the cars 
according to what appears on the tab of the next stage. This contributes additional task demands 
to the overall workload. 

 

Figure 20. "RUSH HOUR" game 
 
 

3.1.3. Levels of complexity (LOC) 

Low LOC –the cubes for the assembly differ only by color. The users are required to assemble the 
cubes to match particular configurations characterized by differences in color pattern (Figure 6a). 
A specific number of cubes must be used to assemble the required configuration while considering 
the sequence and location of the specific cubes’ color of cubes.  

High LOC –the cubes for the assembly differ in color and by the numbers on a particular side 
(Figure 6b). The users are required to assemble the cubes in color patterns as done in the low LOC 
condition, but in addition, they must ensure that the specific numbers on particular color of cubes 
match the required configuration per time. The level of complexity is increased by the additional 
information cue (presence of numbers) and their spatial consideration (position of the number in 
the configuration). 
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Table 6. Experimental Design 

 

Level of Workload (LOW) 

Low LOW High LOW 

High LOC Low LOC High LOC Low LOC 
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Condition 1 – LLH 
The user chooses 
via a GUI screen 

which  color of cube 
the robot will bring 

him. 
The user 

concentrates only on 
the main task, with 

reference to the 
numbers written on 

the cubes. 

Condition 2 – LLL 
The user chooses 
via a GUI screen 
which  color of 

cube the robot will 
bring him. 
The user 

concentrates only 
on the main task, 
without  reference 

to the numbers 
written on the 

cubes. 

Condition 5 – LHH 
The user chooses 
via a GUI screen 

which  color of cube 
the robot will bring 

him. 
The user 

concentrates on 
performing a main + 

secondary task 
simultaneously, with  

reference to the 
numbers written on 

the cubes. 

Condition 6 – LHL 
The user chooses 
via a GUI screen 

which  color of cube 
the robot will bring 

him. 
The user 

concentrates on 
performing a main + 

secondary task 
simultaneously, 

without  reference to 
the numbers written 

on the cubes. 

H
ig

h 
L

O
A

 

Condition 3-HLH 
The robot brings 

the cubes to the user 
in a predefined 

order. 
The user 

concentrates only on 
the main task, with  

reference to the 

Condition 4-HLL 
The robot brings 
the cubes to the 

user in a predefined 
order. 

The user 
concentrates only 
on the main task, 
without  reference 

to the numbers 

Condition 7-HHH 
The robot brings 

the cubes to the user 
in a predefined 

order. 
The user 

concentrates on 
performing a main + 

secondary task 

Condition 8 – HHL 
The robot brings 

the cubes to the user 
in a predefined 

order. 
The user 

concentrates on 
performing a main + 

secondary task 
simultaneously, 

Figure 21. Sample of cubes configurations in a). Low LOC and b). High LOC 
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Participants 
Eighty undergraduate industrial engineering third year students (44 females, 36 males, Mean 
age=26, SD=1.4) at Ben-Gurion University participated in the study. All students had experience 
with both computers and robots. Participation was voluntary and every participant received 
compensation in the form of a bonus point which contributes to a credit in one of their courses.  
 

Experimental Procedure 
Participants completed a preliminary questionnaire which was composed of demographics 
questions for the participants and the Negative Attitudes Towards Robots Scale (NARS, (Syrdal 
et al. 2009b). NARS questionnaire examines the participants' perception of technology and robots. 
Then, the participant experienced two experimental trials where they collaborated with the robot 
in each trial. In each trial, the user collaborated with the robot to assemble the configuration that 
appeared during the GUI in a specific LOA (high/low) in random order. The robot brings the cubes 
to the participant in a mode corresponding to the specific LOA in that trial condition. The 
participant took the cube from the robot each time and placed the cube in the place marked for it, 
according to the configuration required.  

A post-trial questionnaire was completed by the participants after each trial regarding their 
experience with the robot. The questionnaire was rated on a 5-point Likert scale ranging from "1 
– strongly disagree" to " "5 = strongly agree". At the end of the two trials, each participant 
completed a final questionnaire where they indicated their preferred level of automation. 

Dependent Variables 
The dependent variables were effectiveness, efficiency and ease of use of the system. These were 
measured objectively and subjectively as follows and used to form the quality of task and usability 
constructs using the analyses defined below. 

 

3.1.4. Objective Measures 

The objective measures (Table 2) included: 
The accuracy of the robot during the task – calculated from the number of times the robot erred in 
bringing the cubes (e.g., failed to catch a cube, brought an incorrect cube). This was measured in 
relation to the effectiveness of the system (explained in Table 2).  

numbers written on 
the cubes. 

written on the 
cubes. 

simultaneously, with  
reference to the 

numbers written on 
the cubes. 

without  reference to 
the numbers written 

on the cubes. 
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The total time it took the participant to complete the task for each trial. The time of the trial in 
which the participant experienced the higher level of automation was constant. This was measured 
in relation to the efficiency of the system. 
 
The heart rate change of the participant was measured through a Garmin watch at the beginning 
and end of each iteration (calculated as shown in equation 1). The difference in heart rate indicated 
the level of ease the participant may be experiencing during the experimental trials (Rani et al. 
2002, 2004). This was measured in relation to the ease of use of the system (explained in Table 2). 
	
                                                              𝐻𝑅	𝐶ℎ𝑎𝑛𝑔𝑒	 = 	"#	$%&'()"#	*'%+('

"#	*'%+('
                    

 (1) 
 
Half of the participants experienced the higher LOW and performed a secondary task in addition 
to the main task. For each participant, the performance in the secondary task was measured 
according to the stage they reached in the secondary task (the number of stages they pass).  
 

Table 7. Objective Measures 

Dependent Variable Measurement 

Effectiveness 

Accuracy                                               
(number of times the robot 
erred) 
Performance in the secondary 
task (number of sub-tasks 
completed - solved cards) 
(for the high LOW group) 

Efficiency Time to complete the task 
(seconds) 

Ease of use Heart rate change 
 
 

3.1.5. Subjective Measures 

The subjective measures were collected through questionnaires which were composed of questions 
regarding the participants' experience with the robot. The post-trial questionnaire and the variables 
assessed are presented in Table 3. The post-trial questionnaire included NASA-TLX questions 
(Hart and Staveland 1988) to assess perceived workload in relation to the efficiency of the system. 
This was measured in this context as the extent of resources demanded in the task. The post-trial 
questionnaire also included technology acceptance model (TAM) questions to assess perceived 
ease of use (Davis 1989). The participants indicated their level of agreement on a 5-point Likert 
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scale ranging from "1 = strongly disagree" to "5 = strongly agree". The final questionnaire was 
designed to assess user preferences regarding LOA modes and to evaluate their perceptions as they 
collaborate with the robot at specific LOA modes (Table 4). 
 

Table 8. Subjective Measures 

Dependent 
Variable 

Measurement  Question 

Effectiveness 

Accuracy Did the robot make a mistake during the 
mission? 

Secondary task Did the game negatively affect your 
performance in the main task? 

Efficiency 

Mental demand The task was mentally demanding 
Physical demand The task was physically demanding 
Temporal demand The pace of the mission made me accelerate my 

work 
Effort I had to work hard to finish the task at the level 

I performed it 
Performance I was successful in carrying out the task I was 

asked to do 
Frustration I felt despair / stress / nerves while performing 

the task 
Overall perceived 
workload 

Aggregated raw NASA-TLX scores (Hart 2006)  

Ease of Use 

Easy to use I think the system is easy to use 
Understanding It was clear to me what the robot was doing 
Intention to use I would love to use this system on a daily basis 

Useful 
Interacting with the robot can help people who 
have difficulty moving 

Perceived 
reliability 

Humans can rely on this robot 

Trust I felt the robot could be trusted 

Satisfaction 
Overall, I am satisfied with the way the 
interaction with the robot in the task was 
conducted 

 

Table 9. User Preference Questionnaire 

1. Did you feel a difference between the two iterations? 
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2. If so, what was different? 
3. Which of the trials would you prefer? 
4. Did you enjoy the task? 

 

Analysis 
Each participant performed two trials in the experiment. In both trials, the participant performed 
the experiment at a specific level of workload and complexity, but in each trial, a different level 
of automation was experienced in a random order. A t-test was applied to check if there was a 
significant effect between the iterations. Then, a generalized linear mixed model (GLMM) was 
applied to analyze the data with the type of LOA, LOW and LOC, with the variances between the 
participants selected as the random effect. All tests were designed as two-tailed with a significance 
level of 0.05. 

The items in the user preference questionnaire were analyzed individually to assess the preferences 
and perceptions of the users for each LOA mode they experienced. The variables: accuracy, time 
to complete the task and number of completed sub-tasks were compounded through principal 
component analysis (PCA) to form the QoT execution construct assessed in hypothesis H2. This 
transformed all the constituent variables into a single construct containing only the principal and 
relevant factors forming the construct. Similarly, the Usability construct to be assessed in 
hypothesis H3 was a compilation of the following variables through PCA: effectiveness, efficiency, 
and ease of use.  

4. Results 

4.1 Participants' Characteristics 
4.1.1 NARS - Negative Attitude towards Robots Scale analysis 

The NARS results revealed that 21.06% of the participants had a negative attitude towards 
situations and interactions with robots while 63.65% were neutral about it. 26.58% had highly 
negative attitudes towards the social influence of robots, 47.61% had a low attitude and 25.81% 
were neutral about it. 65.82% had a highly negative attitude towards the concept of robots having 
emotions, 8.87% were indifferent about it while 25.31% had a low negative attitude towards it. 
 

4.2 Evaluation of the Interaction 
4.2.1 LOA preference 

Most of the participants (59%) preferred the lower LOA, in which they felt more involved and in 
control of the task however, the difference between the two levels of automation was not 
significant (t=-1.365, P=0.174). Additionally, there was no difference in preferences depending 
on the order of experiencing the LOA. 57.5% of the participants who experienced first the high 
LOA and then low LOA, preferred the high LOA (Figure 7, right), compared to 60% of the 
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participants who experienced first the low LOA and then the high LOA that preferred the high 
LOA (Figure 7, left).    

 

Figure 22. LOA preference depending on the order of experiencing LOA 

(each experiment included 40 participants) 

 
The results (Figure 8-9) revealed that: 
• 57.5% of the participants that experienced the high LOC preferred the low LOA (in line with 

H1a).  
• 80% of the participants that experienced the high LOW preferred the high LOA (in line with 

H1b). 
• 90% of the participants that experienced the high LOW together with the low LOC preferred 

the high LOA (in line with H1c). 
•  65% of the participants that experienced the high LOW together with the high LOC preferred 

the high LOA (as opposed to H1d). 
 

 

Figure 23. LOA preferences when participants experienced high LOW/LOC 

(each experiment included 40 participants) 
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Figure 24. LOA preferences for different combinations of LOW and LOC 

(each experiment included 20 participants) 

 

4.2.2 Effectiveness 

LOW had significant influence on the number of errors the participant perceived (F(1,32)=11.91, 
P=0.04) and the performance of the secondary task (M=2.35, SD=0.85, F(1,32)= 4.23, P=0.00). 
All of the participants finish the first stage of the game (Figure 10). The majority reached the 
second stage of the game while only 10 reached the fourth stage.  

 

 

Figure 25. Number of participants who reached stage 1/2/3/4 in the secondary task 

4.2.3 Efficiency 

Time to complete the task. The three independent variables had significant effect on the 
completion time: LOA (F(1,152)=136.82 ,p=0.00), LOW (F(1,152)=5.757, p=0.018) and LOC 
(F(1,152)=6.167,p=0.014). At the higher LOA, the time to complete the task was constant and 
stood at 87.3 seconds. In the lower LOA, as expected, it took more time for the participant to 
complete the task (M=108.57, SD=16.39). At a higher LOW it took participants longer to complete 
the task (M=99.72, SD=19.22) than at the low level (M=95.64, SD=10.2) as expected. Similarly, 
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when the LOC was higher, it took them longer to complete the task (M=99.87, SD=18.86) when 
compared to the low level (M=95.59, SD=11.11) (Figure 11). 

 

Figure 26: Time to complete the task in LOC (left) and LOW (right) 

The combination of LOA with each of the other independent variables had a significant interaction 
effect, LOA*LOW (F(1,152)=6.98 ,P=0.009) and LOA*LOC (F(1,152)=1.86, P=0.026) (Figure 
12). 

 

 

 

 

 

 

 

Figure 27: Interaction variable LOA with LOC (left) and LOW (right) 

 

Considering those that performed the higher level of workload, LOA (P=0.00) and LOC 
(P=0.00) had also significant effect in this measure (M=99.72, SD=19.22). The interaction 
variable LOA*LOC (P=0.00) also had significant influence (Figure 13). 
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Figure 28. Time to complete the task for those who experienced high LOW 

 

 

 

 

 

 

 

 

 

LOW had significant effect in many of the measures: mental (M=1.88, SD=1.11, 
F(1,152)=38.42, P=0.00), temporal (M=1.37, SD=0.66, F(1,152)=29.54, P=0.00), performance 
(M=2.45, SD=1.37, F(1,152)=41.35, P=0.00), effort (M=1.99, SD=1.17, F(1,152)=39.93, 
P=0.00) and frustration (M=1.68, SD=0.98, F(1,152)=19.62, P=0.00). 

As shown in Figure 14, at the high level of workload, the mental load (M=2.39, SD=1.18), the 
temporal (M=3.15, SD=1.22), the effort (M=2.59, SD=1.19) and the frustration (M=2.09, 
SD=1.09) the participants felt was higher than at the lower level [mental (M=1.32, SD=0.71, 
P=0.00), temporal (M=1.67, SD=1.11, P=0.00), effort (M=1.35, SD=0.75, P=0.00) and 
frustration (M=1.25, SD=0.61, P=0.00)]. This is as compared to the performance (M=4.49, 
SD=0.65) that was better in the lower LOW (M=3.35, SD=1.09).  
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Figure 29. Outcome of perceived workload assessement 

In terms of the perceived effort, the interaction variable between LOA and LOC also was 
significant (F(1,32)=3.18, P=0.02). When LOA was high and LOC was low the participants 
testified that they felt the least effort (M=1.82, SD=1.15). 

LOA significantly influenced perceived workload as measured through the aggregated raw NASA-
TLX scores (F(1,152)=32.1, P=0.04). At the low level of automation, the participants experience 
greater load (M=11.56, SD=0.9), than at the higher level (M=11.2, SD=1.09). 

 

4.2.4 Ease of Use 

Heart rate change. The heart rate at the beginning of each iteration (M=80.7, SD=15.83) was 
significantly lower than the heart rate at the end of iteration (M=87.29, SD=16.17) as expected 
with significant influence of both LOA (M=6.39, SD=11.8), (F(1,152)=2.43, P=0.03) and LOW 
(F(1,152)=35.86, P=0.00). Higher LOA (M=8.04, SD=11.42) and higher LOW (M=11.64, 11.61) 
led to higher change in the heart rate (Figure 15). 
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Perceived reliability. LOW had significant effect (M=4.44, SD=0.73, F(1,152)=5.06, P=0.03) on 
perceived reliability as assessed through the questionnaire. The reliability was perceived as higher 
by the participants who experienced the low LOW (M=4.55, SD=0.66) than at the high LOW 
(M=4.34, SD=0.61) as shown in Figure 16. 

 

 

Figure 31. Perceived reliability of the system 

Secondary task. LOW had significant influence on the perception of the difficulty of the secondary 
task (F(1,32)=59.77, P=0.00) (Figure 17).  
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Figure 32. Did the secondary task make it harder for you? 

 

4.2.5 QoT execution 

Both LOA (F(1,152)=4.639,p=0.033) and LOW (F(1,152)=93.6,p=0.00) had significant effect 
on the QoT execution. The QoT execution was higher at the high LOA when the LOW was low 
(Figure 18) confirming H2. The higher QoT at a high LOA is consistent with the preferences of 
the participants. 

 

Figure 33: QoT execution for LOA and LOW 

 

4.2.6 Usability 

The LOW had significant effect (F(1,152)=68.935, P=0.00) on usability. At the high LOW, when 
the participants performed a secondary task in addition to the main task the usability was higher 
(Figure 19).  
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Figure 34. LOW for usability 

 

4.2.7 Summary 

A summary of all the variables (with their measures) where significant effects of the independent 
variables were observed are provided in Table 5 as follows: 

 

Table 10. Summary of significant variables 

Dependent 
Variable 

Measurement 
Independent 

Variable 
Significance 

level 
Effectiveness 

(Objective) 
Performance in 
secondary task 

LOW 0.00 

Efficiency 
(Objective) 

Time 

LOA 0.00 
LOW 0.018 
LOC 0.014 

LOA*LOW 0.009 
LOA*LOC 0.026 

Ease of use 
(Objective) 

Heart rate change 
LOA 0.03 
LOW 0.00 

Effectiveness 
(Subjective) 

Accuracy LOW 0.04 
Difficulty of secondary 

task 
LOW 0.00 

Efficiency 
(Subjective) 

Mental LOW 0.00 
Temporal LOW 0.00 

Effort LOW 0.00 

U
sa

bi
lit

y 
sc

or
e
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LOA*LOC 0.02 
Performance LOW 0.00 
Frustration LOW 0.00 

Perceived workload LOW 0.04 
Ease of Use 
(Subjective) 

Understanding LOC 0.05 
Perceived reliability LOW 0.03 

 

5. Discussion 
The results revealed the main influences and interacting influences of LOA, LOW and LOC in the 
HRC assembly task context. The implications of the influence of these independent variables in 
relation to the main dependent variables (user perception, quality of task execution and usability) 
are discussed below. 

Influence of LOA 
Most participants seem to prefer a low LOA when the task complexity is high. This is in line with 
H1a, and also in agreement with previous studies where it was stated that a higher LOA may not 
give a positive outcome in situations where uncertainties, and higher probabilities of failure exist 
(Onnasch et al. 2014a; Wickens et al. 2010). In high complex tasks where high component and 
coordinative complexity increases the probabilities of failure (Campbell 1988; Wood 1986b), 
humans usually have a higher potential to better manage unknown or unexpected situations 
compared to the robot in the collaboration (Monostori et al., 2006; Wang et al., 2017). This is also 
seen in the results relating to the perceived performance where lower LOA is rated by the 
participants to produce higher performance when the task complexity is higher. In higher workload 
situations, however, where additional resources are needed to complete the task in the least 
possible time and with minimal effort, higher LOA is preferred (in line with H1b, H1c). The QoT 
execution and usability were influenced in line with H2 and H3 respectively. This reinforces the 
significance of evaluating LOA modes alongside different workload and complexity situations. 
There was no significant effect of the order in which participants experienced the LOA modes 
which highlights the importance of appropriate selection of LOA applicable to different situations. 
This is important because the LOA design influences human activity, behaviour and involvement 
in the collaboration and can impose new coordination demands on the human operator 
(Parasuraman, Sheridan, and Wickens 2000). In our study, the low LOA was designed and 
implemented in such a way as to ensure that the user's involvement in the task is maintained, and 
the robot’s involvement lowers the workload. The high LOA seemed to support the user better 
when the workload increases as seen in the results for usability measures. This points to the 
necessity of having selectable and adaptable LOA settings in HRC designs to cater for situations 
of varying secondary tasks demands (Endsley & Kiris, 1995). In such contexts, the robot can be 
adapted to make additional attentional resources available for the human to handle simultaneous 
tasks (Kaber & Endsley, 2004).  
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Workload considerations 
LOW had significant influence on most of the measures indicating that the experimental design 
successfully simulated differences in workload. This inspired further examination of the impact of 
LOA and LOC for scenarios where the workload was higher (where the participants performed a 
secondary task in addition to the main task). The interaction between LOA and LOC had 
significant influence in those workload scenarios. The workload also had significant effect on 
effectiveness and efficiency of the system leading to reduced QoT execution in situations where 
the workload was high. This is consistent with the literature highlighting the contribution of task-
related demands (such as mental, temporal and physical demands involved in the HRC task) to 
workload, which could negatively influence resources available to complete task at hand (Hart and 
Wickens 1990). However, it is also observed that usability (which included the user perception 
regarding ease of use) increased at higher workload. This reflects the possible stress or fatigue that 
the users may have experienced at with increased work demands (as seen in the heart rate change 
results, Figure 14), and the tendency to desire the support of the robot in such workload situations 
as correlated in (Heger and Singh 2006). Provision is therefore made for workload changes and 
considerations through LOA options available to improve the QoT execution and usability as 
desired by the user.  

Task complexity considerations 
LOC in the current study did not have influence on most of the dependent variables. This may be 
due to insufficient depiction of the level of complexity in the experimental design leading to 
minimal influence and perception of the difference between the complexity levels by the 
participants for the specific users. However, some of the dependent measures where the complexity 
was significant brings into prominence the relevance of the complexity of the task, the influence 
on effectiveness, efficiency and ease use. It could also inform the design and selection of LOA 
modes applicable for the complexity level of each task.  The results reveal that both objective and 
subjective complexity considerations as noted in (Rasmussen, Standal, and Laumann 2015) should 
be put in view while considering the suitable LOA modes for such HRC assembly tasks. This 
consequently affects the QoT execution and usability of the system.  
 

Design recommendations and limitations 
The study revealed the influence of LOA in the midst of different workload levels and task 
complexity differences. The results obtained in this study is with respect to the specific task, robot 
and scenario featured in the study. Furthermore, the evaluation was carried out with users who had 
experience with computers and robots. There may be significant differences in the influence of 
these variables when observed in other settings, with different forms of robots and tasks. We expect 
the results to be amplified with non- technological users. However, the outcome of our study 
spotlights some key points which could be relevant to other human-robot collaboration setups 
involving LOA at different task complexities and workload levels. We propose some of these 
points as design recommendations with caution that additional tests using other platforms may be 
beneficial. 
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We propose, based on the outcome of the study that a lower LOA is recommended for high task 
complexities where failure performance may occur, or uncertainties are prominent as noted in 
(Onnasch et al. 2014b). However, when the workload is high, a higher LOA could reduce the 
stress or pressure of additional secondary tasks which the robot could support in. This was 
observed in the outcome of the user preferences which tended towards higher LOA when the 
workload was high. This also agrees with the observations of (Wickens et al. 2010) in their meta-
analyses considering the influence of LOA on workload. High LOA, when designed effectively, 
helps to extend the capabilities of the user to attend to other tasks concurrently as noted by (Endsley 
& Kiris, 1995). In addition, the influence of the independent variables on the composed constructs 
(QoT execution and usability) reveals the potential and sensitivity of these constructs for 
assessment purposes in other HRC tasks. 

6. Conclusions and future work 
This paper presented the design and evaluation of LOA modes at different workload and task 
complexity levels for an HRC assembly task. The user study yielded valuable insights into 
participants’ preferences and characteristics of the operator interface related to LOA, LOW and 
LOC that are required to enhance the user experience and performance. Two constructs were 
specially designed for this evaluation: quality of task (QoT) execution and usability. Though, the 
three-way interaction of LOA, LOC and LOW did not influence QoT execution and usability as 
expected, there were significant two-way interactions across some of the variables assessed. The 
effect of the interaction of LOA and LOW was particularly significant on the system efficiency. 
The interaction effect of LOA and LOC was similarly significant as well. This highlights the need 
to consider the task complexity and workload experienced by the participant when designing LOA 
for similar human-robot collaboration tasks.  
 
There were main influences of the independent variables across all the variables with the workload 
playing a major role in the interaction and the human experience during the task. The users’ 
attitudes towards the workload informed some design recommendations regarding the need to 
ensure that users are always aware of the actions carried out by the robot in all LOA modes. This 
tends to reduce the stress of the human operators associated with workload shifting to quality 
control and performance monitoring. Options for error handling are further recommended to be 
included in the LOA modes as part of the fallback mechanisms in cases when the robot fails. 
 
Future work should include improving the design to depict more clearly, the complexity levels of 
the task for users to perceive. Workload differences with secondary tasks were more evident in the 
results obtained. Though, other forms of secondary tasks could also be tested with the same robot 
or other platforms as well. For instance, running the study with a mobile robot for daily tasks that 
require a wider range of motion may provide additional validation of the study outcomes. 
Additionally, similar research should be performed for other kind of tasks and types of users. 
Ongoing research is aimed at performing studies with older adults for some tasks of daily living. 
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The change of preferences and the differences in the reaction of the older adults should be 
examined. This is very relevant considering the situation along the COVID-19 pandemic in which 
many older adults are quarantined at home for long periods. Such assistive robots could be 
beneficial in performing various tasks for them with different LOA options for different task 
complexities and workload levels. 
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Chapter 6. Discussion and conclusions 

This research examined the influence of levels of automation (LOA) in interaction between 
assistive robots and non-technological users, focusing on older adults. Creating a successful 
interaction is a pretty challenging task (Breazeal et al. 2016). To achieve this the systems design 
utilizes levels of automation (LOA) to define the degree to which the robot would perform 
particular functions in its defined role of assisting the user in a specific task (Parasuraman, 
Sheridan, and Wickens 2008). The aim is to ensure high quality collaboration between the older 
adult and the robot in accomplishing desired tasks, without undermining the autonomy, 
preferences and satisfaction of the older adult. This LOA-aided design seeks a balance between 
assisting the older adults as much as possible and involving them in the task to avoid idleness, 
sedentariness, boredom or loss of skill in the long run. 
This research revisited the study of automation levels in everyday tasks such as table setting, 
specific for the older adult population. In this study we focused on several significant aspects in 
combination with LOA that are important in designing a robot-human collaboration. In addition, 
the combination of LOA with each of the other variables we examined at each stage of the study. 
The first aspect we studied was LOT. Existing studies reveal that the information presented to 
the users significantly influences their comprehension of the robot’s behavior, performance and 
limitations (Chen et al. 2014; Dzindolet et al. 2003; Lyons 2013). This information facilitates the 
users' knowledge of the  automation connected to the task (Endsley 2017b). This affects the 
users' understanding of their role and that of the robot in any given interaction (Chen et al. 2014; 
Doranet et al. 2017; Hellström et al. 2018; Lyons 2013). In this study where the level of 
involvement of the participant varies with the LOA, it is noteworthy that the LOT preferred is 
influenced by the LOA the robot is operating in. Participants seem to prefer less information (low 
LOT) when the robot was operating more autonomously (high LOA). They also seem to prefer 
more information (high LOT) when they were more active with the robot such as the case in low 
LOA mode. This agrees with the findings in (Chen et al. 2018) where differences were not found 
in the transparency level that included only status information and reason without LOA involved. 
As expected, there was a tradeoff regarding degree of involvement and time to complete task 
i.e., at a higher degree of user involvement, more time was spent to complete the task. 
The second aspect investigated was the feedback type that the robot gives the user during the 
task. The feedback loop is also an important feature of interactive systems; it provides the user 
with information improving the nature of the interaction between a person and a dynamic 
system. Since older adults’ perceptual capabilities and limitations differ from the younger 
population due to age-related perceptual declines, particularly evident in processing information 
(Mitzner et al. 2015). Thus, the correct choice of interaction between the assisting environment 
and the user is of high importance (Broekens et al. 2009). Older adults’ interaction with robots 
requires effective feedback to keep them aware of the state of the interaction for optimum 
interaction quality (Beer et al. 2014). Results revealed that the integration of different types of 
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feedback during the task increases the participant's involvement, especially at a high level of 
automation. For the more, it was found that GUI screen feedback for this task is less relevant for 
adults and they rarely looked at the screen because they were concentrated in the robot. 
Therefore, it is recommended to focus more on other types of feedback.  Furthermore, possibly 
due to the robot being new to them and therefore demanding more focus, after a certain period 
of time they will become accustomed to it and prefer visual feedback like a GUI screen. 
The additional aspects we addressed in this thesis were levels of workload and complexity of the 
task, LOW and LOC. Workload addresses the actual and perceived amount of work that the 
human operator experiences which includes the effort invested in the task (Hart et al. 1990). Task 
complexity depends on properties of the task (objective complexity) and the perception of the 
human operator (subjective complexity) (Rasmussen et al. 2015). It can generally be 
characterized in terms of the stimuli involved in the task for inputs as well as the behavioral 
requirements the human operator should emit in order to achieve a specific level of performance 
(Wood 1986a). Results revealed that the effect of the interaction of LOA and LOW was 
particularly significant on the system efficiency. The interaction effect of LOA and LOC was 
similarly significant as well. This highlights the need to consider the task complexity and 
workload experienced by the participant when designing LOA for similar human-robot 
collaboration tasks. There were main influences of the independent variables across all the 
variables with the workload playing a major role in the interaction and the human experience 
during the task. The users’ attitudes towards the workload inform some design 
recommendations regarding the need to ensure that users are always aware of the actions 
carried out by the robot in all LOA modes.  
As expected, from all the studies it emerged that the levels of automation influenced interaction 
and performance aspects and there seems to be a significant difference in the quality of the 
interaction at the different levels of automation. A main conclusion refers to the users' 
preferences for the level of automation in which they perform a joint task with a robot. According 
to these studies, in the older adults population a preference will be biased to a level that 
incorporates their involvement in task control while the robot performs the action. In situations 
where a secondary task is performed during the main task, the preference tendency will be for a 
higher level of automation. But it is important to mention that the population with which it was 
tested was students and therefore this study should be advanced with older adults population. 
This study yielded valuable insights into participants’ preferences and characteristics of the 
operator interface related to LOA, LOT, feedback, LOW and LOC that are required to enhance the 
user experience and performance.  The robotic systems were designed to assist in a routine task 
in the home environment. 
However, it is important to note that these experiments examined specific scenarios and robotic 
tasks. In order to generalize these conclusions, additional experiments must be performed to 
examine different tasks at different levels of workload and complexity.  
Another aspect for further research relates to the improving the design to depict more clearly, 
the complexity levels of the task for users to perceive. Workload differences with secondary tasks 
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were more evident in the results obtained. Though, other forms of secondary tasks could also be 
tested with the same robot or other platforms as well. 
As stated above, in light of the circumstances of the Corona, the last study was modified and 
adapted to a target audience of students instead of the older adult population. In the future, as 
we expand this experiment to our target population, changes will be made to the design of the 
experiment to accommodate for this. The changes will include changing the task itself, changing 
the level of the complexity and changing the secondary task to a less thoughtful task. If the 
changes are made in a tailored manner, I expect to get similar results in the older adult 
population. I expect when the adults feel the higher workload, they will prefer a higher level of 
automation, as well as when they experience a higher level of complexity. 
 
In general, this study has limitations that require longitudinal research in order to examine all the 
effects and reach more stable conclusions.  
This research can be applied in the future using a portable and easy-to-operate robotic arm that 
will converge on adult homes and help them perform, along with them, their daily tasks. 
Presumably this will bring with it large financial costs but it is important to remember that the 
potential population giving help to assisting adults is declining while the adult population is 
increasing. Therefore, the benefit in this case is very high and worth investing into since in the 
long run it can even be financially rewarding in addition to the profit and benefits it provides to 
the adults.  
With the advance of technology, its decreasing costs and the increasing demand for assistive 
technology we expect robots to penetrate into many applications. This research provides general 
recommendations for designing assistive robots for older adults by taking into account the effect 
of levels of automation as related to levels of transparency, feedback, workload and task 
complexity.   
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List of Appendices 

Appendix A- study 2 
A.1 BGU ethical committee 

 
I. General  
  
Name of Research Project: Level  of automation in combine  system human-robot  
To which agency is the proposal being submitted (or has been submitted): None.  
  

Principal Investigator/s (or academic supervisor/s):     
Name: Vardit Sarne-Fleischmann  Name: Yael Edan  
Department: IE&M Department: IE&M  
Academic position: Phd Academic position: Prof University Telephone:       
University Telephone:        
Mobile Phone:       Mobile Phone:        
University Email: varditf@gmail.com  University Email: yael@bgu.ac.il  
Other Email:   
 Other Email:   
     
    
  
  
Name(s) of those conducting the research (if different from above):     
Name: Dana Gutman Name:        
Department: IE&M Department:        
Academic position:       Academic position:        
University Telephone:       University Telephone:        
Mobile Phone: 0526566525 Mobile Phone:        
Email: danagut@post.bgu.ac.il Email:        
   
  
  
II. Consent to Participate  

Are the subjects able to legally consent to participate in the research?                   Yes /   No  
If you answered ‘No’ to question 1, complete section IIb  
Will the subjects be asked to sign a consent form?                                      Yes /   No       
If you answered ‘No’ to question 2, explain here:        
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IIb: Subjects who cannot legally consent (minors, mentally incapacitated, etc.):  
Will the subject's legal guardian be asked to sign a consent form?          Yes /   No  
 If you answered ‘No’, to question 3, please explain here:        
Will the subject be asked to give oral consent?                   
Yes /   No  
Are the instructions appropriate to the subjects' level of understanding?      
Yes /   No  
Comments: In the case of minors - they will be asked to give oral consent, whereas their 
parents will be asked to sign a consent form.   

6. If informed consent forms will be signed, how will the informed consent forms be stored to 
ensure confidentiality? All signed forms will be saved in a locked cabinet.    
III. Discomfort:  
Will the participants be subjected to physical discomfort?                         Yes /   
No  
Will the participants be subjected to psychological discomfort?:           Yes /   
No  
If you answered ‘Yes’ to question 7 or 8, add here a detailed explanation of the circumstances:        
  
IV. Deception  
Does the research involve deceiving the subjects?                            Yes /   No   
Is the decision on the part of the subject to participate in the study based on deception?                
(For example, if they are informed of their participation only after the event.)      Yes /   No  
If you answered ‘Yes’ to question 9 or 10, add here a detailed explanation why deception is 
necessary:         
  
V. Feedback to the Subject  
Note: Although feedback to the subject is recommended for all studies, it is required for studies 
that involve discomfort or deception.  Feedback entails providing the subject, upon completion 
of the experiment, explanation of the experiment and its aims.    
Will the subjects be provided with post-experiment oral feedback?            Yes /   
No  
Will the subjects be provided with post-experiment written feedback?           Yes /   
No  
If you answered ‘No’ to both questions 11 and 12, explain here: The purpose of the experiment 
is to find out the optimal level of automation for a simple task, such as table editing for an older 
population. This goal requires analysis and therefore participants do not receive feedback after 
the experiment  
  
VI. Compensation for Participation  
13. Will the subjects receive compensation for participation?                    Yes /   
No  
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Detail here the type and amount of compensation: 50 NIS   
If you answered ‘No’ to question 13, explain the basis for participation:        
  
VII. Privacy:  
Will audio and/or visual recordings be made of the subjects?        Yes /   No a. If 
yes, are they informed of this fact in the informed consent form?      Yes /   No  
Will the data collected (apart from the informed consent form) contain 
identifying details about the subjects?             Yes /   No  
a. If the data contains identifying details, please answer here: (1) What steps will you take to 
ensure the confidentiality of the information?  (2) How will the data be stored?  (3) What will be 
done with identifying information or recordings of the subjects at the end of the research?   
the data will be encoded and will be deleted after the research   
  
  
  
  
  
  
VIII. Withdrawal from the Study:  
Will subjects be informed that they may withdraw from the study at any time?         Yes /   
No  
Will the subjects’ compensation for participation be affected if they withdraw from the study 
before its completion?                 Yes /   No a. If yes, are they informed of this 
fact in the informed consent form?      Yes /   No  
  
IX. Research Equipment  
18. Does the research entail the use of equipment other than standard equipment, such as 
computers, video recording equipment?                                                                Yes /   No 19. 
If yes, does the equipment being used meet safety standard for use with human subjects?     
                            Yes /   No  
        
       Please specify which standards (include documentation where appropriate):  During the 
experiment, hands can be placed in the robot's work area. In order to deal with this  
situation, we defined clear and defined areas for the individual where he is allowed to work. 
Morover, the robot which will be used in the study is programmed to avoid collision and to slow 
down when approaching any obstacle. It meets the ISO 10218-1:2011 safety standard.                             
  
  
Signatories:     

Signature: Date: 4.2.19  Name:  Yael Edan        
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Name: Dana Gutman   Position:        
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A.2 Explanation form for the subject 

 

קדבנל רבסה ספוט  

 

טובור -   תכרעמב בושמ יגוס :רקחמה אשונ םדא תבלשמ

םינימה ינשל ןווכמ וניהו תוחונ ימעטמ רכז ןושלב חסונמ ןולאשה ףוג* . 

 תרגובמ הייסולכוא ןיב תפתושמ המישמב םינוש םיבושמ יגוס תעפשה תניחב הניה טקיורפב לעה תרטמ
.תיטובור עורזל  

 .עבש ראבב ןוירוג ןב תטיסרבינוא םחתמב 16 ןיינבב ךרענ עצבתיש יוסינהו רקחמה לש יחכונה בלשה
.העש - כ רקחמה ךשמ . טובור -   קסוע רקחמה םדא תבלשמ תכרעמב בושמה ןויפאב

.ןחלוש תכירע תמישמב תיטובור עורז םע היצקארטניא עצבל שרדית רקחמה תרגסמב  

 גהונ התאש יפכ הליגרו תיעבט הרוצב גהנתהל הסנ ןכלו המישמב ךל עייסל הרומא תיטובורה עורזה
 ךכ התנכותו עגמל הביגמ עורזה יכ שיגדהל ונל בושח ,ףסונב .םוימויה ייחב רחא םדא םע רשקתל

תפתושמה הלועפהמ שושחל ךרוצ ןיא ןכלו  הנכס ההזמ איה םא לועפל קיפסתש  

 ינשה קלחה ,םייתוישיא םינולאש רפסממ בכרומ ןושארה קלחה .םיקלח השולשל קלחתמ יחכונה יוסינה
 הנוש בושמ לבקת םעפ לכבש ךכ םימעפ שולש עצבתי הז קלח .ןחלושה תכירע תמישמ עוציבמ בכרומ

.טובורה םע היצקארטניאל עגונב רצק ןולאש לע תונעל שי םעפ לכ םויסב . ותלועפ לע טובורהמ  

.םכסמ ןולאש לע תונעל ושרדית רקחמה ףוסב  

 דרפומ רשא קדבנ רפסמ לבקמ קדבנ לכ .םיקדבנה לש םיהזמה םיטרפה לש הרימש תעצבתמ אל
 ורמשיו רקחמה לע הנוממה תישארה תרקוחל רקחמה םותב ורסמיי םינולאשה לכ .קדבנה יטרפמ

.התוירחאב  

 ןפואב ךילא שגיי םייוסינה ךרועו יוסינה תא רוצע השקבב ,חונב אלש שח ךנה איהש הביס לכמ םא
.ידיימ  יכ ךנוצרו הדימב .רקחמב ךתופתתשה תא קיספהל ,הצרת םא ,לכות בלש לכבו תע לכב 

.תובייחתה אלל יוסינהמ ררחושת ,קספיי יוסינה  
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A.3 Consent form for the subject 

 

קדבנל המכסה ספוט  

דיינ טובורו    םדא תבלשמ תכרעמב בושמ יגוס :רקחמה אשונ

,רקי קדבנ  
.תונעל חמשנ ,תולאש שיו הדימב .יוסינל רשאב רבסהה ףד תא ארק השקבב  

.רקחמה יבלש תא בטיה ןיבמ ךנה יכ אדוו השקבב  
 עצבל שרדת יוסינה ךלהמב .טובור- םדא תבלשמ תכרעמב בושמה ןויפאב קסוע רקחמה ,ךריכזהל
 םאתהב םיבושמ ךל חלשי טובורה ןכלהמבש טובורה םע היצקארטניא תושרוד רשא תומישמ רפסמ

.העש רתויה לכל יוסינה ךשמ .ול ריבעתש תודוקפל םאתהבו המישמב בלשל  
16 ןיינבב םייקתמ יוסינה . עבש ראבב ןוירוג ןב תטיסרבינואב   

 
*:הטמ םותחה ינא  

.ז.ת :החפשמו יטרפ  םש   

 

:ןופלט :המיתח   

 

 יקלח תא טרפמה ךמסמב טרופמכ ,יוסינב ףתתשהל ה/םיכסמ ינא יכ תאזב ה/ריהצמ .א
.יוסינה  

 לכ ונענש רחאל קלח וב לוטיל יתמכסהו ייוסינה יקלח לכ טוריפב יל ורבסוהש ריהצמ .ב
. יוסינה יקלחמ דחא  לכ יבגל ייתולאש  

דלפקרמ הענ .ג - :תרקוחה ידי  לע יל רבסוה יכ תאזב ריהצמ  
1  יתופתתשה תא תע לכב קיספהל ישפוח ינא יכו יוסינב ףתתשהל אלש רוחבל ישפוח ינא יכ .

. איהש הביס לכמ יוסינב  
 תא קיספהל      תנמ לע ןייסנל חוודל ילע הבוח יוסינה ךלהמב תוחונ יאב וא ערב שח ינאו הדימב .2

.יוסינה  
 םסרופת אלו רקחמב םיברועמהו םיקסועה לכ ידי-לע תידוס רמשת תישיאה יתוהזש חטבומ .3

.םייעדמ םימוסרפב ללוכ םוסרפ לכב  
4 .ידי-לע ולעויש תולאשל תונעל תונוכנ יל תחטבומ .  

 
.דבלב רקחמ יכרוצל םינוטרסו תונומת ומלצי םירקוחה יוסינה ךלהמבו ןכתי  

_____________:ןאכ םותח ,תאז ת\רשאמ התאו הדימב  
 
: ונייצ אנא רוביצל וגצויש םינוש םימוסרפב עיפות םכתנומתש םימיכסמ ה\תאו הדימב  

םינוש םימוסרפב עיפות יתנומתש םיכסמ ינא ¨  
עיפות יתנומתש ןיינועמ יניא ¨  
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 יכרוצל טרפ רחא םרוג וא רבד םוש ךרוצל שומיש וא הרבעהל תנתינ הניאו תידוס הנה וז הרהצה*
.הז רקחמ  

_____________יוסינה ריבעמ תמיתח     ________________    ךיראת  

.רקחמב ךתופתתשה לע ךל םידומ ונא  
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A.4 Dermographique quaternaires  

 

 

A.5 TAP Questionnaire 

:םיאבה םירבדהמ דחא לכ עצבמ \ שמתשמ התא תורידת וזיאב ןייצ אנא  
 

םעפ ףא : 0  
הנש דע הנש יצחב םעפ : 1  

םישדוח 5 דע םיישדוחב םעפ : 2  
שדוחב םעפ : 3  

  עובשב םימעפ 3-1 : 4
םוי לכ טעמכ : 5  

 

ילש םוימויה ייחב הטילש רתוי יל תנתונ היגולונכט .1  
* 
רתוי םילקל ילש םייחה תא תוכפוה תושדח תויגולונכט .2  
* 
םירחאמ הרזע אלל םישדח קט-ייה יתורישו ירצומב שמתשהל דומלל לוכי ינא .3  
* 
תושדח תויגולונכטב שמתשהל דומלל הנהנ ינא .4  
* 
היגולונכטב טלוש ינאש הממ רתוי ייחב תטלוש היגולונכט .5  
* 
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A.6 NARS Questionnaire 

( תואבה תורימאה םע ךתמכסה תדימ תא ןייצ אנא NARS (:  
םיכסמ אל דואמ - 1  

םיכסמ אל - 2  
ילרטיינ - 3  

םיכסמ - 4  
דואמ םיכסמ - 5  

םיטובור םע רבדל חונינ שיגרמ יתייה .1  
* 
םיטובורב שמתשהל ךירצ יתייה וב דיקפת יל ןתינ היה םא חונב שיגרמ יתייה .2  
* 
יתוא ביהלמ םירבד יבגל תעד לוקיש וליעפי םיטובורש ןויערה .3  
* 
יתוא הציחלמ טובור לומ הדימעה םצע .4  
* 
תורקל לולע ער והשמ ,ידימ רתוי םיטובורב יולת היהא םאש שיגרמ ינא .5  
* 
 

A.7 Post-trial questionnaire  
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A.8 Final questionnaire 
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Appendix B- study 3 
B.1 BGU ethical committee 

Application for Approval to Use Humans as Subjects in Empirical Study   

   
I. General   
   
Name of Research Project: Level  of automationand workload in combine  system human-
robot To which agency is the proposal being submitted (or has been submitted): None.   
   

Principal Investigator/s (or academic supervisor/s):      
Name: Vardit Sarne-Fleischmann  Name: Yael Edan   
Department: IE&M Department: IE&M   
Academic position: Phd Academic position: Prof University Telephone:       
University  
Telephone:         
Mobile Phone:       Mobile Phone:         
University Email: varditf@gmail.com  University Email: yael@bgu.ac.il   
Other Email:    
 Other Email:    
       
      
   
   
Name(s) of those conducting the research (if different from above):      
Name: Dana Gutman Name:         
Department: IE&M Department:         
Academic position: Master student Academic position:         
University Telephone:       University Telephone:         
Mobile Phone:       Mobile Phone:         
Email: danagut@post.bgu.ac.il Email:         
   
   
   
   

II. Consent to Participate   
Are the subjects able to legally consent to participate in the research?                    Yes /    No   
If you answered ‘No’ to question 1, complete section IIb   
Will the subjects be asked to sign a consent form?                                        Yes /   No        
If you answered ‘No’ to question 2, explain here:         



98 

IIb: Subjects who cannot legally consent (minors, mentally incapacitated, etc.):   
Will the subject's legal guardian be asked to sign a consent form?            Yes /    No   
   If you answered ‘No’, to question 3, please explain here:         
Will the subject be asked to give oral consent?                       
Yes /   No   
Are the instructions appropriate to the subjects' level of understanding?       
Yes /   No   
Comments: In the case of minors - they will be asked to give oral consent, whereas their 
parents will be asked to sign a consent form.    

If informed consent forms will be signed, how will the informed consent forms be stored to 
ensure confidentiality? All signed forms will be saved in a locked cabinet.    III. 
Discomfort:   
Will the participants be subjected to physical discomfort?                         Yes /   
No   
Will the participants be subjected to psychological discomfort?:             Yes /   No   
If you answered ‘Yes’ to question 7 or 8, add here a detailed explanation of the circumstances:         
   
IV. Deception   
Does the research involve deceiving the subjects?                                Yes /    No    
Is the decision on the part of the subject to participate in the study based on deception?                 
 (For example, if they are informed of their participation only after the event.)       Yes /    
No   
If you answered ‘Yes’ to question 9 or 10, add here a detailed explanation why deception is 
necessary:          
   
V. Feedback to the Subject   
Note: Although feedback to the subject is recommended for all studies, it is required for studies 
that involve discomfort or deception.  Feedback entails providing the subject, upon completion 
of the experiment, explanation of the experiment and its aims.     
Will the subjects be provided with post-experiment oral feedback?            Yes 
/   No   
Will the subjects be provided with post-experiment written feedback?            Yes 
/   No   
If you answered ‘No’ to both questions 11 and 12, explain here: The purpose of the experiment 
is to find out the optimal level of automation for a simple task, such as table editing for an older 
population. This goal requires analysis and therefore participants do not receive feedback after 
the experiment   
   
VI. Compensation for Participation   
13. Will the subjects receive compensation for participation?                        Yes /    
No   
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Detail here the type and amount of compensation: -    
If you answered ‘No’ to question 13, explain the basis for participation: Students in Automation 
course will receive 1 bonus point to their grade.   
   
VII. Privacy:   
Will audio and/or visual recordings be made of the subjects?        Yes /   No a. If 
yes, are they informed of this fact in the informed consent form?      Yes /   No   
Will the data collected (apart from the informed consent form) contain 
identifying details about the subjects?              Yes /    No   
a. If the data contains identifying details, please answer here: (1) What steps will you take to 
ensure the confidentiality of the information?  (2) How will the data be stored?  (3) What will be 
done with identifying information or recordings of the subjects at the end of the research?    
the data will be encoded and will be deleted after the research    
   
   
   
   
   
   
VIII. Withdrawal from the Study:   
Will subjects be informed that they may withdraw from the study at any time?          Yes /    
No   
Will the subjects’ compensation for participation be affected if they withdraw from the study 
before its completion?                 Yes /   No a. If yes, are they informed of this 
fact in the informed consent form?      Yes /   No   
   
IX. Research Equipment   
18. Does the research entail the use of equipment other than standard equipment, such as 

computers, video recording equipment?                                                                Yes /   No   

19. If yes, does the equipment being used meet safety standard for use with human subjects?      

                                       Yes /    No   

         

       Please specify which standards (include documentation where appropriate):  The robot 

which will be used in the study (Dobot) is programmed to avoid collision and to slow down 

when aproaching any obstacle.  It meets the ISO 10218-1:2011 safety standard.                               
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Signatories:      

Name: Dana Gutman   Position:         

Signature:  Date: 4/6/20 
Name: Yael Edan       Position:         

Signature: Date: 4.6.20   
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B.2 Explanation form for the subject 
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B.3 Consent form for the subject 

רקי קדבנ , 
תונעל חמשנ ,תולאש שיו הדימב .יוסינה לש רבסהה ףד תא ארק השקבב . 

רקחמה יבלש תא בטיה ןיבמ ךנה יכ אדוו השקבב . 
ביכרהל שרדית יוסינה ךלהמב .טובור- םדא תבלשמ תכרעמב היצקארטניאב קסוע רקחמה ,ךריכזהל  

רוצעי אוהו רוצעל טובורל דיגהל ןותנ עגר לכב לכות התא .טובורה םע הלועפ ףותישב תויבוק לדגמ . 
העש יצח רתויה לכל יוסינה ךשמ . 

עבש ראבב ןוירוג ןב תטיסרבינואב 16 ןיינבב םייקתמ יוסינה . 
. 

הטמ םותחה ינא *: 
החפשמו יטרפ םש .ז.ת : 

 
המיתח :ןופלט : 

 
יקלח תא טרפמה ךמסמב טרופמכ ,יוסינב ףתתשהל ה/םיכסמ ינא יכ תאזב ה/ריהצמ .1  

יוסינה . 
לכ ונענש רחאל קלח וב לוטיל יתמכסהו ייוסינה יקלח לכ טוריפב יל ורבסוהש ריהצמ .2  

יוסינה יקלחמ דחא לכ יבגל ייתולאש . 
ןמטוג הנד :תרקוחה ידי-לע יל רבסוה יכ תאזב ריהצמ .3  

תא תע לכב קיספהל ישפוח ינא יכו יוסינב ףתתשהל אלש רוחבל ישפוח ינא יכ (1  
איהש הביס לכמ יוסינב יתופתתשה . 

תנמ לע ןייסנל חוודל ילע הבוח יוסינה ךלהמב תוחונ יאב וא ערב שח ינאו הדימב (2  
יוסינה תא קיספהל . 

אלו רקחמב םיברועמהו םיקסועה לכ ידי-לע תידוס רמשת תישיאה יתוהזש חטבומ (3  
םייעדמ םימוסרפב ללוכ םוסרפ לכב םסרופת . 

ידי-לע ולעויש תולאשל תונעל תונוכנ יל תחטבומ (4 . 
הדימב .דבלב רקחמ יכרוצל םינוטרסו תונומת ומלצי םירקוחה יוסינה ךלהמבו ןכתי (5  

ןאכ םותח ,תאז ת\רשאמ התאו :_____________ 
אנא רוביצל וגצויש םינוש םימוסרפב עיפות םכתנומתש םימיכסמ ה\תאו הדימב  

ונייצ . 
םינוש םימוסרפב עיפות יתנומתש םיכסמ ינא �  

עיפות יתנומתש ןיינועמ יניא �  
 

 יכרוצל טרפ רחא םרוג וא רבד םוש ךרוצל שומיש וא הרבעהל תנתינ הניאו תידוס הנה וז הרהצה *
הז רקחמ . 

יוסינה ריבעמ תמיתח ________________ ךיראת  _____________ 
 

רקחמב ךתופתתשה לע ךל םידומ ונא . 
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B.4 Pre-questionnaires 
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B.5 Post- trial questionnaire 
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B.6 Final questionnaire 
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 בגנב ןוירוג ןב תטיסרבינוא

 הסדנהה יעדמל הטלוקפה

 לוהינו היישעת תסדנהל הקלחמה

 

ישילשה ליגה תייסולכואל עויס תמישמב טובור לש היצמוטוא תומר  

 

ןמטוג הנד :תאמ  

ןדיא לעי 'פורפ :םי/החנמ  

 

202003.01.  :ךיראת                                       _______________ :רבחמה תמיתח  

 

03.01.2020  :ךיראת                                       ________________ :החנמה רושיא  

 

  ______________:ךיראת           ______________ :תיתקלחמ ינש ראות תדעו ר"וי רושיא

 

 

 

2020 ראוני  
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 בגנב ןוירוג ןב תטיסרבינוא

 הסדנהה יעדמל הטלוקפה

 לוהינו היישעת תסדנהל הקלחמה

 

ישילשה ליגה תייסולכואל עויס תמישמב טובור לש היצמוטוא תומר  

 

ןמטוג הנד :תאמ  

 

 

 

 

 

 

 

 

 

2020 ראוני  

 


