BEN-GURION UNIVERSITY OF THE NEGEV
FACULTY OF ENGINEERING SCIENCES

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Levels of automation in a robot assistant for elder care

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE M.Sc. DEGREE

By: Dana Gutman

January 2021



BEN-GURION UNIVERSITY OF THE NEGEV
FACULTY OF ENGINEERING SCIENCES

DEPARTMENT OF INDUSTRIAL ENGINEERING AND MANAGEMENT

Levels of automation in a robot assistant for elder care

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE M.Sc. DEGREE

By: Dana Gutman

Supervised by: Prof. Yael Edan

Nq\

Author: <% Date: 03.01.2021
Supervisor: %"0' 6‘\ Date: 03.01.2021
Chairman of Graduate Studies Committee: Date:

January 2021



Abstract

This thesis examined the interaction between assistive robots and humans, focusing on levels of
automation (LOA). We focused on assistive robots in daily activities for older adults with
adequate consideration for their expectations and preferences. The aim is for the robot to
perform tasks in a collaborative manner to keep the older adults as active as possible in the
interaction while preserving their independence. The task becomes a joint task between the
older adult and the robot.

LOA refers to the degree of robot autonomy included in a given task. Creating a successful
interaction is a challenging task. To avoid idleness, sedentariness, boredom, or loss of skill in the
long run, the balance between assisting the user as much as possible and involving them in the
task must be maintained,. This study revisits the study of automation levels in everyday tasks
such as table editing, specific to the adult population. We evaluated several different aspects that
influence the interaction in combination with LOA. Specifically, the research focused on assessing
the influence of transparency, feedback types, workload, and complexity in combination with
LOA on different interaction and performance aspects.

Two experimental systems were specially developed and evaluated in three experiments with
older adults and simulated caregivers. The first part of the research examined robot assistance
to the elderly population in a home environment. This preliminary experiment served as a case
study to explore different influencing factors with fourteen older participants (8 Females and 6
Males, aged 62-86, M=69.8, SD=4.48). A collaborative robot was programmed in a table-setting
task performed jointly by an older adult and the robot with two levels of automation (LOA) and
two levels of transparency (LOT) conditions. This study explored how LOA and LOT influences the
quality of interaction (Qol). The Qol is a construct that entails the fluency, understanding,
engagement and comfortability during the interaction. Results revealed that at the high LOA
higher performance was consistently obtained. Furthermore, at the low LOT it was
recommended to avoid clutter and confusion among the participants. The second part of the
research used the same system as in the case study experiment and examined the effect of LOA
and different feedback modalities in a table clearing robot assistant for elder care. 21 older adults
(8 females and 13 males aged 70-86, M=74, SD=4.12) participated in the study. Two different
feedback modalities (visual and auditory) were evaluated for three different LOA. The visual
feedback included the use of LEDs and a GUI screen. The auditory feedback included voice
recordings. Results provided insight into older adult's preferences; they would prefer the voice
recording feedback. Most of the older adults testified that they would like a similar robot in their
home to assist them, emphasizing the relevance of the developed system.

In the third part, the examination of LOA modalities was tested in a task that was designed to
include different levels of task complexity and workload. The goal was to perform the experiment
with and for adults but due to the Covid-19 pandemic we were unable to recruit adults for the
experiment and therefore focused on simulated caregivers instead. The effect of LOA, task
complexity and task workload on the quality of the interaction was examined in a joint human-
robot assembly task. Eighty students from BGU (46 females and 36 males, aged 24-29, M=26,



SD=1.4) were recruited as participants. This research investigated two levels of automation, two
levels of workload (LOW) and two levels of complexity (LOC) in an assembly task using a robotic
arm equipped with a suction gripper. The quality of interaction was measured in terms of
objective and subjective measures including effectiveness, efficiency, understanding, and
perceived workload. The results revealed that LOW had a significant impact on most of the
measures of interaction quality and that it is an important component in designing a joint task
between human and robot.

A conclusion that emerged from the first and second parts of the research refers to the impact
of the different LOA on the quality of interaction. Results revealed that in general, the adult
population will be pleased to use an assistive robot that will help them with daily tasks. The best
configuration for them is when the assistance is combined with their participation in the task. An
aspect that can add to this and improve the interaction is by incorporating feedback from the
robot during the task; this increases the adult involvement. As well, a certain level of
transparency during the task makes the adult feel aware what is happening and makes him/her
feel better leading to improved quality of interaction. In performing a joint task with a robot in
parallel with additional tasks, participants prefer a higher level of automation that will allow them
to distribute their attention more efficiently. The task complexity did not influence performance;
however, this aspect should be examined in depth in future studies in different tasks and with
different populations.

Keywords: social assistive robots, assistive robots, levels of automation, levels of workload, levels
of complexity, HRI, feedback, older adults.
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Chapter 1. Introduction

1.1 Overview

The aging population rate is rising rapidly (United Nations, 2017) while the number of caregivers
and nurses is deteriorating (Buerhaus et al. 2012). The high cost of long-term care for older adults
is an issue that cannot be ignored, and it increases the financial burden on public health service
and family members (Aurilla et al. 2011). A promising solution to help overcome this financial
burden along with the lack of caregivers is the development of assistive robots (Broekens et al.
2009; Shishehgar et al. 2019). It is important that the robots should augment the quality of life
for the older adults yet not take away what they enjoy about life (Lewis et al. 2016).

This research focuses on the interaction between assistive robots and older adults. This study
revisits the study of automation levels in everyday tasks such as table editing, specific to the adult
population. The research initially aimed to focus only on older adults. However, with the outbreak
of COVID-19 it was impossible to complete experiments with older adults. The first part of the
research included two experiments and focused on user studies with older adults. The last
experiment was conducted with students that simulated caregivers and serves as a preliminary
experiment to be followed up in a similar manner with older adults in the future.

1.2 Background and problem description

Assistive robots

Assistive robots are generally designed to give aid or support to a human user (Kulyukin 2006;
Pfeil-Seifer et al. 2005). Excellence in patient care can be achieved by using assistive robots (Nejat
et al., 2009) in activities of daily living (ADL) and instrumental activities of daily living (IADL). ADLs
include tasks essential to maintain older adults independence, such as toileting, eating, or
bathing (Mucchiani et al. 2017). IADLs are tasks such as using a telephone, cooking, doing laundry
or using transportation (Smarr et al. 2014). While there has been some progress in the design
and development of assistive robots to aid in elder care (Kachouie et al. 2014), many challenges
remain and call for further research. These challenges include among others misinterpretation of
robot roles by older people, mismatch of expectations, insufficient engagement of the older adult
while interacting with the robot, robot acceptance by the older adult, and ethical implications of
using robots for elder care (Frennert et al. 2014)

Levels of automation (LOA)
Autonomous capabilities are being developed for a wide range of systems in order to reduce

labor, extend human capabilities, and improve human safety (Endsley 2017a). Automation does
not have to exist in an all-or-none fashion and can vary by level (Endsley 2017a; Vagia et al. 2016).
The levels can vary in degree of control, responsibility and decision making of the human and
system (Chidester et al. 1991). The lowest level usually has minimum system involvement and
the user control the robot. This involvement increases through the levels up to the highest



degree, where the system is fully in charge of the task as seen in the initial LOA taxonomies
proposed by Sheridan (Sheridan et al. 1978).

LOA can be defined as the degree to which automation is employed in a given task (Endsley et al.
1999). In terms of HRI, it is described as the extent to which the robot is given autonomy to
perform a particular task (Parasuraman et al. 2008). The goal of LOA is to find the degree that
maximizes the efficiency, effectiveness and performance of the human interacting with the
robot. The extent of the robot’s autonomy has been defined in literature by various authors at
different levels and with various taxonomies on a scale from fully autonomous to fully manual
(Vagia et al. 2016). Designing LOA to fit the demands of the older adults in SAR operations is an
important element of the interaction (Vagia er al. 2016). In order for such robots to be operated
efficiently and effectively by older adults and non-technological users, it is important to examine
if and how increasing the robotic system’s LOA impacts their performance (Olatuniji et al. 2020).

Robot feedback

Incorporating feedback in human-robot-interaction improves the interaction (Mohammad et al.
2007). Successful interaction requires communication between the human and the robot which
generally involves sending and receiving of information to achieve specific goals (Doran et
al.2017). Existing studies reveal that the information presented to the user significantly
influences his / her comprehension of the robot’s behavior, performance, and limitations of the
robot (Pangaro 2009), influencing interaction quality (Zafrani et al. 2019a). A robot that provides
feedback is more likely to be perceived as a social communication partner (Heerink et al. 2009).
Additionally, users that did not receive feedback during the interaction stated that they would
like to receive feedback from the robot.

Feedback provided to the users could be in different forms which could be varied with regards to
mode, timing and other dimensions of the feedback (Avioz-Sarig et al. 2020). Visual feedback is
one of the most popular feedback modalities since it is considered a natural communication
channel (Perrin et al., 2008).The most common is using a screen to display information (Nicole
Mirnig et al. 2014) and the use of lights (Baraka et al. 2018). Auditory feedback concerns the use
of sound to communicate information to the user about the state of the robot (Rosati et al. 2013).

Levels of transparency (LOT)

Transparency is the degree of task-related information provided by the robot to the older adults
to keep them aware of its state, actions and intentions of the robot (Chen et al. 2018). The
information presented by the robot should conform with the perceptual and cognitive
peculiarities of the older adults (Feingold Polak et al. 2018; Fisk et al. 2009; Smarr et al. 2014) and
relate to the environment, task, and robot (Lyons 2013). Too little information may not be
sufficient to ensure reliable interaction with the robot (Launay et al. 2014), whereas too much
information could cause confusion and error (Lyons 2013).




Levels of workload (LOW)

It is @ common belief that heavy workloads lead to elevated stress and reduced efficiency
meaning workload effects performance (Glaser et al. 1999). Performance on a secondary task
has been suggested as a useful method for assessing the attentional load placed on a performer
(Ellmers et al. 2016; de Jong 2010). It is important to devise the secondary tasks so that it adds
load. The effect of adding too much contextual information could increase extraneous load in
less-skilled performers in a similar fashion to an unrelated secondary task (Runswick et al. 2018).
Adding cognitive load during a vehicle-driving task revealed negative effect on processes under
conscious control and could potentially have a positive effect on more automatic processes
(Runswick et al. 2018). The use of a secondary task could induce the prioritization of more
relevant information sources in working memory and force the performer to ignore un-relevant
sources in order to avoid overloading resources.

Levels of complexity (LOC)

Task complexity has been identified in previous research as a critical factor influencing the LOA
design in human robot interaction (Beer et al. 2014) and impacting performance (Crandall et al.
2002). The complexity level depends on several factors such as the number and type of subtasks
that must be managed individually, sequentially or simultaneously, the level of difficulty and/or
criticality of each of these subtasks, the time required to complete subtasks, the degree of human
intervention required for each of these subtasks, and the amount of clutter in an environment
(Burke et al. 2004; Ginoian 1976; Kristoffersson et al. 2013). There are limited studies that have
considered the task complexity in the design and evaluation of LOA particularly in the case of
care for older adults. Performance on a task depends not only on objective complexity (a task
characteristic) but also on one's perception of the task complexity (Chen et al. 2014).

1.3 Research objectives
The objective of this research was to evaluate the influence of LOA in human robot interaction

for older adults. Two systems were designed and developed for different tasks. The specific
objectives were to:
1. Design the different levels of automation of the different tasks.
2. Assess the influence of LOA on user’s interaction.
3. Identify the influence of transparency (LOT), feedback types, workload (LOT) and task
complexity (LOC) in combination with LOA on user’s interaction.

1.4 Thesis structure
The overall research methodology is depicted in chapter 2. The research includes three separate

parts corresponding to three experiments that evaluate influence of mainly LOA in combination
with LOT (study 1, chapter 3), feedback (study 2, chapter 4), LOW and LOC (study 3, chapter 5)
on the interaction. Each chapter is an independent publication and as such includes a focused
literature review and details the experimental and analysis methods and results. Overall
conclusions and future research are discussed in chapter 6.



Chapter 2. Methodology

2.1 Overview

This research aims to evaluate the influence of LOA along with different parameters on the
interaction of older adults interacting with assistive robots. Due to limited access to older adults
due to the COVID-19 pandemic, one of the studies was not performed with older adults. Three
experiments were designed to evaluate influence of LOA on user’s quality of interaction (Qol);
each study focused on a different influencing parameter combined with LOA. In the first study,
we examined the influence of LOA and LOT on Qol between the older adults and a robot. The
second study examined the influence of LOA with types of feedback on the Qol between the
older adults and a robot. In the third study, a combination of different LOAs with LOW and LOC
was examined with simulated caregivers. The studies were performed in a series with conclusions
from each study used as inputs in the next study.

Table 1. Experimental design

Study 1 Study 2 Study 3
Ind d LOA LOA LOA
n v(:‘:iear:ol:nt Levels of transparency Feedback Levels of workload (LOW)
(LOT) Levels of complexity (LOC)
Robot platform KUKA KUKA DOBOT
Task Table setting Tab!e Cubes assembling
clearing
Students
Population Older adults Older adults (In light of the
circumstances of COVID-19)
Thesis chapter Three Four Five
Reference C1,C3,J3 J1 J2

2.2 Study 1: Influence of LOA & LOT on the Qol

This study explored how LOA and LOT influences the quality of interaction (Qol). Details are
provided in Chapter 3. This exploratory work was conducted in collaboration with Markfeld, 2020
and appears in publications C1, C3 and J3.

In order for such robots to be operated efficiently and effectively by older adults, it is important
to examine if and how increasing the robotic system’s level of automation (LOA) impacts their
performance (Beer et al. 2014). To ensure transparency of the robot’s role at all times, the LOA
implementation is reflected in the ways through which the users interact with the robots.
Transparency in this context is the degree of task-related information provided by the robot to
the older adults to keep them aware of its state, actions and intentions of the robot (Chen et al.
2018). It is essential that the level of transparency (LOT) of the information being presented to
the older adults conforms with their perceptual and cognitive peculiarities such as the processing
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and interpretation of the information provided by the robot (Feingold Polak et al. 2018; Smarr et
al. 2014).

A KUKA LBR iiwa 14 R820, 7 degrees of freedom collaborative robotic arm equipped with a
pneumatic gripper was programmed in a table-setting task performed jointly by an older adult
and the robot with two LOA and LOT conditions.

Two LOA conditions were designed as follows:
Low LOA condition. The robot minimally assists the human in acquiring information
related to the task by presenting information through the applicable interface. The robot
also assists in the information processing by providing options through which the task
could be performed. The human must agree to the suggestions before the operation can
continue. The human then solely makes the decision regarding what should be done while
the robot assists in the execution of the actions.

High LOA condition. The robot assists the human in acquiring information regarding
details of the task. This information is fully processed by the robot. All decisions related
to the task are taken only by the robot. The robot executes the decision but can be
interrupted by the human.

The two conditions differed by the purpose of the information provided by the robot; LOT
conditions were set as follows:

Low LOT condition. The low level of information included text messages that specified the
status of the robot by indicating what it was doing (e.g. bringing a plate, putting a fork)

High LOT condition. The high level of information included also the reason for this status
(i.e. I’'m bringing the plate since you asked me).

During the experiment, many participants noted the fact that the interaction with the robot is
purely visual interferes with them, and the use of voice may improve the interaction. This point
led us to the next study - where we focused on how feedback modalities affect the collaboration
between the adult and the robot.

Based on the conclusions from this experiment, and given the nature of the population, it was
decided to set the LOA at the high level where consistently higher performance was obtained.
Accordingly, the LOT is set at the low level in order to avoid clutter and confusion among the
participants.

2.3 Study 2: Influence of LOA & feedback on the Qol

In this second part, we continued to examine robotic assistance to the elderly population in the
home environment. For this purpose, we used the same system as in the first study experiment,
while adding changes and upgrades depending on the feedback modalities employed. Adding the



feedback was in addition to implementing three levels of automation in a table clearing task. The
reason three automation levels were applied in this experiment, compared to two in the previous
experiment is that we saw that most adults in the previous experiment preferred the higher level
of automation. We wanted to examine this time what will happen when we insert a level that is
in between the 2 levels that have been applied. This is because our goal is to examine what is the
best level for adults in this task. Details are provided in Chapter 4 and in publication J1.

The correct choice of interfaces between the assisting environment and the user is of high
importance (Broekenset al. 2009). Older adults’ interaction with robots requires effective
feedback to keep them aware of the state of the interaction for optimum interaction quality
(Beer, Fisk, and Rogers 2014). The feedback is the information provided by the robot. The types
of feedback were designed as follows:

Visual:
e GUIscreen was presented on a PC screen, located on a desk to the left of the user.
e LED lights were embedded in the robot and connected to the system using a Raspberry Pi
computer.
Audio:
e Voice recordings was transmitted to the user through a speaker system connected to the
main computer.

The experimental results provide insight into a daily task of clearing a table that older adults
would prefer a robot to assist with. Most of the older adults testified that they would like a similar
robot in their home to assist them, emphasizing the relevance of the developed system.

2.4 Study 3: Influence of LOA & LOW & LOC on the Qol

The examination of LOA modalities on adults' daily environment was continued, while changing
the robotic platform and the examined task. Originally, another robotic arm, DOBOT magician
was programmed to assist the adult in routine tasks. The task chosen to implement this was to
assemble a desired configuration of cubes of different colors, where the robot will help them
bring the cubes to the user one after the other. In addition, the task was examined at different
levels of workload (LOW), and at different levels of complexity (LOC).

The experiment was performed on a student population simulating caregivers. Details are
provided in Chapter 5 and in publication J2.

The experimental design includes three independent variables: LOA (two levels), LOW (two
levels) and LOC (two levels). A between-within participants experimental design was conducted
with the LOA as the within variables while LOW and LOC were the between variables.

In this experiment, as mentioned we went back to implementing two levels of automation. This
is in light of the fact that in this experiment unlike the others there are three independent

6



variables (rather than two) and therefore this makes the experiment more complicated.
Therefore and in light of the limitations of the experiment we decided that it would be more
correct to implement two levels of automation.

LOA conditions:

Low LOA - The human operator (user) has the autonomy over the type and order of cubes
desired. The human operator must identify the type of block needed to fit the required
configuration to be assembled per time and then select the required cube through the
user interface. The robot supports the user by bringing the type of cube the user selected.
High LOA - The robot has the autonomy to bring the specific type of cube and in the order
preprogrammed in its operation. The user does not have to identify a specific type of
cube. S/he simply demands for a cube through the user interface and the robot brings the
type of cube suitable for the specific configuration assembled per time.

LOW conditions:

Low LOW - The users perform only the main task that consists of assembling cubes to
match the specific configuration required per time. The workload involves several task
demands such as the physical demand of arranging the cubes, mental demand of thinking
about the type of cube that would match the required configuration and some temporal
demand related to completing the task in the shortest possible time.

High LOW - The users carry out the main task (composed of the aforementioned
dimensions of workload) along with a secondary task. The secondary task was an off-the
shelf well known cognitive game, the "RUSH HOUR" thinking game. It involves arranging
toy cars in a way to get a specific car out of a gridlock. There are tabs at each stage
showing how to arrange the cars, and afterwards, the player has to find a way to get the
required car out. Once the user has managed to get the red car out, he/she advances a
stage and arranges the cars according to what appears on the tab of the next stage. This
contributes additional task demands to the overall workload.

LOC conditions:

Low LOC - the cubes for the assembly differ only by color. The users are required to
assemble the cubes to match particular configurations characterized by differences in
color pattern. The complexity involves a partial dimension of component complexity
where a specific number of cubes must be used to assemble the required configuration
and coordination complexity where sequence and location of the specific color of cubes
must be considered.

High LOC - the cubes for the assembly differ in color and by the numbers on a particular
side. The users are required to assemble the cubes in color patterns as done in the low
LOC condition, but in addition, they must ensure that the specific numbers on specific
color’s of cubes match the required configuration per time. This therefore includes the



low LOC dimensions of complexity with an additional information cue (presence of
numbers) along with a spatial consideration (position of the number in the configuration).



Chapter 3. Influence of LOA and LOT on Qol



Improving the Interaction of Older Adults with a Socially Assistive Table Setting Robot

Samuel Olatunji, Noa Markfeld, Dana Gutman, Shai Givati, Vardit Sarne-Fleischmann,
Tal Oron-Gilad, Yael Edan

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract. This study provides user-studies aimed at exploring factors influencing the
interaction between older adults and a robotic table setting assistant. The influence of
level of automation (LOA) and level of transparency (LOT) on the quality of the
interaction was considered. Results revealed that the interaction effect of LOA and
LOT significantly influenced the interaction. A lower LOA which required the user to
control some of the actions of the robot influenced the older adults to participate more
in the interaction when the LOT was low compared to situations with higher LOT
(more information) and higher LOA (more robot autonomy). Even though, the higher
LOA influenced more fluency in the interaction, the lower LOA encouraged a more
collaborative form of interaction which is a priority in the design of robotic aids for
older adult users. The results provide some insights into shared control designs which
accommodates the preferences of the older adult users as they interact with robotic
aids such as the table setting robot used in this study

Keywords: Shared control, Levels of automation, transparency, collaborative robots,
human-robot interaction.

1. Introduction

Robots with improved capabilities are advancing into prominent roles while assisting older adults
in performing daily living tasks such as cleaning, dressing, feeding (Honig et al. 2018; Shishehgar,
Kerr, and Blake 2018). This has to be done with careful consideration for the strong desire of these
older adults to maintain a certain level of autonomy while performing their daily living tasks, even
if the robot provides the help they require (Wu et al. 2016). Furthermore, the robot’s involvement
should not drive the older adult to boredom, sedentariness or loss of skills relevant to daily living
due to prolonged inactivity (Beer, Fisk, and Rogers 2014). A possible solution is shared control
where the user preferences are adequately considered as the robot’s role and actions are being
defined during the interaction design. This ensures that the older adults are not deprived of the
independence they desire (Zwijsen, Niemeijer, and Hertogh 2011).

This study, proposes a shared control strategy using levels of automation (LOA) which refers to
the degree to which the robot would perform particular functions in its defined role of assisting the
user in a specific task (Parasuraman, Sheridan, and Wickens 2008). The aim is to ensure high quality
collaboration between the older adult and the robot in accomplishing desired tasks, without
undermining the autonomy, preferences and satisfaction of the older adult.

To ensure transparency of the robot’s role at all times, the LOA implementation is reflected in
the ways through which the users interact with the robots. Transparency in this context is the degree
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of task-related information provided by the robot to the older adults to keep them aware of its state,
actions and intentions of the robot (Chen et al. 2018). The content of this information provided by
the robot can be graded according to the detail, quantity and type of information as mirrored in
Endsley’s situation awareness (SA) study (Mica R. Endsley 1995) and Chen et al.’s SA-based
Transparency model (Chen et al. 2014). It is essential that the level of transparency (LOT) of the
information being presented to the older adults conforms with their perceptual and cognitive
peculiarities such as the processing and interpretation of the information provided by the robot
(Smarr et al., 2014; Mitzner et al., 2015; Feingold Polak et al., 2018). Existing studies reveal that
the information presented to the users significantly influences their comprehension of the robot’s
behavior, performance and limitations (Chen et al. 2014; Dzindolet et al. 2003; Lyons 2013). This
information facilitates the users' knowledge of the automation connected to the task (Mica R.
Endsley 2017b). This affects the users' understanding of their role and that of the robot in any given
interaction (Chen et al. 2014; Doran, Schulz, and Besold 2017; Hellstrom and Bensch 2018; Lyons
2013).

Some studies explored the presentation of information through various technological aids such
as digital mobile applications, webpages, rehabilitation equipment, and other facilities through
which older adults would interact with their environment (Cen/Cenelec 2002; Fisk et al. 2009;
Mitzner et al. 2015). These studies, provided recommendations which served as design guidelines
for information presented in various modes such as visual, audial or haptic information. These
recommendations are not specific to information presented by robots to the older adults. They are
general guidelines recommended to aid usability as older adults interact with technological devices.
It was therefore recommended in those studies that more user studies should be conducted in
specific robot-assistance domains such physical support, social interaction, safety monitoring,
cognitive stimulation and rehabilitation (Cen/Cenelec 2002; Fisk et al. 2009; Mitzner et al. 2015;
Van Wynsberghe 2016). Through such studies, suitable design parameters could be identified that
would meet the needs of the older adults in specific applications such as the table setting robot
application on which this study is focused.

The aforementioned studies have explored individual effects of LOA or LOT separately in
different domains. But this has not been examined in the use of socially assistive robots for older
people. LOA, as a control strategy, tends to improve the collaboration between the user and the
robot by sufficiently keeping the user in the loop. This is critical in older adults’ interaction with
robots in order to avoid inactiveness. LOT, as an information presentation strategy, also tends to
improve the awareness of the user during the interaction. This is also critical for the older adults to
ensure that they are constantly carried along in the interaction. We therefore hypothesize that
exploring some LOA and LOT options in robot-assisted tasks could increase the engagement and
satisfaction of the older adults as they interact with the robots. The current study aims to explore
how LOA and LOT influences the quality of interaction (Qol) between the older adults and the
assistive robot in a shared task of table setting. The Qol is a construct in this paper which entails
the fluency, understanding, engagement and comfortability during the interaction.

2. Methods

Overview

A table setting task performed by a robotic arm was used as the case study. The robot had to pick
up a plate, a cup, a fork and a knife and to place them at preset positions on the table. The user
operated the robot in two levels of automation. In the high LOA condition, the robot operated
autonomously. The user could only start and stop the robot’s operation by pressing a specific button.
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In the low LOA condition, the user could still start and stop the robot, but the robot required the
user’s consent before setting each item. The robot asked the user through a GUI which item to bring
and the user was required to respond before the robot could continue its operation.

Two conditions utilizing different levels of transparency (LOT) were compared for two different
levels of the robot's automation: high and low (Table 1). Information was given by the robot in
visual form through a GUI on an adjacent screen where the LOT manipulated (Figure 1). The two
conditions differed by the amount of details provided by the robot. The low level of information
included text messages that specified the status of the robot by indicating what it was doing (e.g.
bringing a plate, putting a fork, etc.), while the high level of information included also the reason
for this status (i.e. I’'m bringing the plate since you asked me, etc.)

Table 2. Experimental Conditions

LOA

Low

High

LOT

Low

Condition 1 — LL

User instructs the
robot using the
GUI and receives
information about
what the robot is
doing in each
stage.

Condition 3 — LH

Robot operates
automatically. In
each stage user
receives
information about
what the robot is
doing.

High

Condition 2-HL

User instructs the
robot using the
GUI and receives
information about
what the robot is
doing and the
reason for it in
each stage.

Condition 4-HH

Robot operates
automatically. In
each stage user
receives
information about
what the robot is
doing and the
reason for it.

Apparatus

A KUKA LBR iiwa 14 R820 7 degrees of freedom robotic arm equipped with a pneumatic gripper
was used (Fig. 1). The tasks were programmed using python and executed on the ROS (Schaefer
2015) platform.

In order to instruct the robot and to present the information received by the robot a graphical user
interface (GUI) was used on a PC screen, which was located on a desk to the left of the user (see
Fig. 1).
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Fig. 1. A participant using the GUI to instruct the robot.

Participants
Fourteen older adults (8 Females, 6 Males) aged 62-82 (mean 69.8) participated in the study.
Participants were recruited through an advertisement which was publicized electronically. They
were healthy individuals with no physical disability who came independently to the lab. Each
participant completed the study separately at different timeslots, so there was no contact between
participants.

Experimental Design

The experiment was set with a mixed between and within subject design with the LOA modes as
the between subject variable, and the LOT as the within subject variable.

Participants were assigned randomly to one of the two LOA conditions. All participants completed
the same table setting task for both levels of transparency. The order of the two tasks was
counterbalanced between participants, to accommodate for potential bias of learning effects,
boredom or fatigue.

Performance measures

Initially, participants completed a pre-test questionnaire which included the following:
demographic information, and a subset of questions from the Technology Adoption Propensity
(TAP) index (Ratchford and Barnhart 2012) to assess their level of experience with technology
and from the Negative Attitude toward Robots Scale (NARS) (Syrdal et al. 2009a) to assess their
level of anxiety towards robots.

Objective measures that were collected during each session are interaction-related variables such
as fluency, engagement, understanding and comfortability. Subjective measures were assessed via
questionnaires. Participants completed a short post-session questionnaire after each session and a
final questionnaire at the end of the two sessions to evaluate subjective measures. The post-session
questionnaire used 5-point Likert scales with 5 representing "Strongly agree" and 1 representing
"Strongly disagree". The final questionnaire related to the difference between both sessions.

Analysis

A two-tailed General Linear Mixed Model (GLMM) analysis was performed to evaluate for a
positive or negative effect of the independent variables. The user ID was included as a random
effect to account for individual differences. LOA and LOT were utilized as fixed factors while all
objective and subjective variables representing ‘Quality of Interaction’ (QoC) were used as
dependent variables.
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3. Results

Demographics and Attitude towards Technology

There was an equal distribution of participants within the two groups. On a scale of 1 (strongly
disagree) to 5 (strongly agree), the TAP index reveals that most of the participants are optimistic
about technology providing more control and flexibility in life (mean = 3.86, SD=1.17). It was also
observed that over 75% of the participants like to learn the use of new technology (mean=3.93,
SD=1.07) and feel comfortable communicating with robots (mean= 3.43, SD=1.50). The majority
(80%) did not have negative feelings about situations in which they have to interact with a robot
(mean = 4.14, SD = 0.86).

Quality of Interaction

A two-way ANOVA was run to find out if there was a significant difference between the LOA-
LOT manipulation as conditions (F(3, 22) = 2.35, p=0.033). The effect of the manipulation was
significant on the robot’s idle time (F(3, 22) = 4.91, p=0.009), functional delay (F(3, 22) = 21.22,
p<0.001), human idle time (F(3, 22) = 3.03, p=0.005), the gaze on the robot (F(3, 22) = 3.97,
p=0.021), perception of safety (F(3, 22) = 3.22, p=0.042) and overall interaction time (F(3, 22) =
5.31, p=0.007). The effect of the manipulation was not significant on the gaze on the GUI where
the robot provided feedback (F(3, 22) = 2.01, p=0.142). More details of the components of the
quality of interaction are presented below.

Fluency

Fluency was represented by the idle time of the robot, functional delay and overall time spent on
the task. The LOA was significant on the robot’s idle time (mean = 122.54, SD = 59.70, F(1, 24)
= 9.97, p=0.004) with the high LOA (mean=388.85, SD=2.48) having a lower robot idle time
compared to low LOA (mean 156.21, SD=70.38). The LOT was not significant as a main effect but
there was a significant effect in the interaction between the LOA and LOT (F(4, 24) = 44.2,
p<0.001) as depicted in Fig. 3. In terms of delay (mean = 12.86, SD = 13.87), the LOA was
significant (F(1, 24) = 14.48, p=0.001). The low LOA had more delays (mean=20.85, SD=15.99)
than high LOA (mean=4.87, SD=13.87). The LOT was not significant (F(1, 24) = 2.04, p=0.17).
There was also no interaction effect of the LOA and LOT on the delays (F(1, 24) = 1.49, p=0.23).
The duration of the experiment with low LOA (mean=239.21, SD=74.41) were longer than that
with hlgh LOA Lot 0
(mean=158.53, i 20
SD=66.17). This was also  *7] %
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Engagement

The duration of the gaze on the robot was significantly affected by LOA (mean = 155.64, SD =
34.51, p=0.006). Participants in low LOA (mean=175.57, SD=34.77) gazed on the robot more than
participants in high LOA (mean=135.71, SD=20.22). The interaction between LOA and LOT on
the time participants gazed on the robot was significant (F(1,24)=7.83, p=0.01). Participants in low
LOA (mean=35.50, SD=17.81) were also more significantly focused on the GUI (mean = 27.01,
SD = 19.60, p =0.037) than participants in high LOA (mean=18.643, SD=18.10). The interaction
between LOA and LOT was significant regarding the focus on GUI (F(1, 24) = 4.48, p=0.045). The
effect of LOA on the human’s active time was also significant (mean = 16.39, SD = 16.62, p<0.001)
with low LOA (mean = 31.07, SD=10.47) keeping the human more active than the high LOA
(mean=1.71, SD=0.82). There was an interaction effect between the LOA and LOT (F(1, 24) =
47.28, p<0.001).

Lot wr  Fig. 2. Interaction effect of
w0 20 . 20 LOA and LOT on various
) some Qol variables

50.0

bot_idle_time

? Understanding
There was no significant
oof difference in the number
of clarifications made by
s ron o U % the participants during
the interaction
(mean=1.18, SD=1.59, p=0.124) as a result of the LOA manipulation. The participants seemed to
understand the status of the interaction and actions of the robot in both LOA and LOT modes (F(1,
24) =2.27, p=0.15). Only a few participants asked for clarification at the low LOA (mean=1.64,
SD=1.95) and high LOA modes (mean=0.71, SD=0.99). However, in terms of reaction time of the
participants as the robot interacted with them, the LOA was significant (mean = 12.86, SD = 13.87,
p=0.001). The participants spent more time observing and processing the information the robot was
presenting to them as consent in the low LOA (mean=20.85, SD=15.99) compared to the high LOA
(mean=4.87, SD=13.87).
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Comfortability

The effect of the LOA and LOT did not influence the heart rate of the participants. But it was also
not significant on the comfortability of the participants with regards to their perception of safety of
the robot (mean = 2.54, SD = 0.58, p =0.48). However, it was observed that participants in low
LOA moved much closer to the robot which represented more comfortability with it than
participants in high LOA which sat further away from the robot.

4. Discussion and Conclusion

Most of the participants were comfortable interacting with a robot. The results revealed that the
quality of interaction, as measured via fluency, engagement, understanding and comfortability of
the interaction was influenced mainly by the interaction of LOA and LOT. The main effect of LOA
had less influence compared to that of the main effect of LOA but the interaction of LOA and LOT
was significant across most of the variables. Participants seem to prefer less information (low
LOT) when the robot was operating more autonomously (high LOA). They also seem to prefer
more information (high LOT) when they were more active with the robot such as the case in low
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LOA mode. This agrees with the findings in (Chen et al. 2018) where differences were not found
in the transparency level that included only status information and reason without LOA involved.
In current study where the level of involvement of the participant varies with the LOA, it is
noteworthy that the LOT preferred is influenced by the LOA the robot is operating in.

This corroborates the characteristics of the visuospatial sketchpad (VSSP) working principle as
modelled by Baddeley (A.D. Baddeley et al. 1975; Alan D. Baddeley 1986, 1997). It suggests a
dissociation within the VSSP, between active operations such as the movement of the robot and a
passive store of information as the information displayed on the GUI (Bruyer and Scailquin 1998).
Even though, there is a high cognitive demand on the participants when actively involved with the
robot in a low LOA mode, the participants still handle more information (high LOT) since the
information display was passive. This is in contrast to the scenario where the robot was more
autonomous (high LOA), with less cognitive demand on the participant.

Future research should advance a longitudinal study, to increase familiarity with the robot
operation and overcome the suspected naivety effect (Kirchner and Alempijevic 2012; Shah and
Wiken 2011) of the older adults with the robot. We expect that the more the older adults get
familiar with the operation of the robot, their level of trust in the robot may change and thus cause
a change in their LOT demands as well.

According to the participants’ recommendations more awareness might be improved through
voice feedback. This possibility is also supported by the suggestion of (Sobczak-Edmans et al.
2016) indicating that some form of verbal representation of information supports visual
representations. This should be explored in future work to improve the shared control of the older
adult with the table setting robot.

Previous research in human robot collaboration discovered the effectiveness of coordination in
team performance as presented in (Shah and Wiken 2011). Our work further presents the potential
of LOA in improving quality of interaction. This is reflected in the various objective measures
taken for engagement, fluency, degree of involvement and comfortability with the robot where the
LOA effect was significant. The low LOA enabled the participant to interact more with the robot
by selecting the specific item that the robot should pick up and the order of arrangement. This
inspired greater collaboration with the robot. It enhanced the concept of shared control where the
user is more involved in the decisions and control of the robot’s operations. This is very critical to
ensure that the older adult keeps active so as not to lose skills or functionality of the muscles (Wu
et al. 2014). This corresponds with the “use it or lose it” logic presented by (Katzman 1995) in
their study of older adult lifestyle.

Most studies which included some form of adaptive coordination to improve the collaboration
between the robot and the user (Huang, Cakmak, and Mutlu 2015; Someshwar and Edan 2017)
tried to reduce the completion time of the task. There was a trade off in this current study regarding
degree of involvement and time to complete task i.e., at a higher degree of user involvement, more
time was spent to complete the task. It is noteworthy that the focus for the target population is to
ensure user involvement to avoid idleness and other negative outcomes of sedentariness and not
speed. Moreover, most participants expressed enjoyment, and pleasure as they interacted with the
robot, which suggests other reasons for the longer interactive time. This can therefore be
considered as a positive outcome of the interaction and a favorable contribution to improve shared
control in human-robot interaction scenarios such as this.
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Levels of automation and feedback modality development in an assistive robotic table
clearing task robot for older adults

Evaluating levels of automation and feedback in an assistive robotic table clearing task for eldercare
Dana Gutman, Samuel Olatunji, Shai Givati, Vardit Sarne-Fleischmann,
Tal Oron-Gilad, Yael Edan
Ben-Gurion University of the Negev, Beer-Sheva, Israel

1 Introduction

Eldercare encompasses various activities involved in caring for older adults to meet their physical,
cognitive, emotional and social needs (J. M. Bauer and Sousa-Poza 2015). These activities are
commonly represented as activities of daily living (e.g. bathing, hair care), instrumental activities
of daily living (e.g. cleaning, meal preparation) or enhanced activities of daily living (e.g. learning
new hobbies, or assistance with new skills) (C. A. Smarr et al. 2012). To ensure that older adults
enjoy their independence at home, these activities need to be adequately catered for (Allaban,
Wang, and Padir 2020). There is a growing percentage of older adults who need help with these
activities while the number of people available to care for them and assist them with these activities
is declining (Bogue 2013). This foreshadows an ‘elder care gap’, which research over the years
regarding possible solutions, has revealed that assistive robots could play a vital role in forestalling
(Allaban, Wang, and Padir 2020; C. A. Smarr et al. 2014).

Assistive robots are robots that generally provide support to a human user (Pfeil-Seifer and Mataric
2005). One of the major applications is in eldercare where some robots are currently being
developed to assist the older adults in daily care (C.-A. Smarr, Fausset, and Rogers 2010),
rehabilitation (Burgar et al. 2000), ambulation (Glover et al. 2003) and companionship (Roy et al.
2000)). With regards to daily care, previous studies have shown that the older adults were generally
more open to robotic assistance in instrumental activities of daily living with activities such as
cleaning and clearing emerging as one house chores where support is needed (Hall et al. 2019; C.
A. Smarr et al. 2012, 2014). There are, however, very limited robots available for the variety of
cleaning and clearing tasks in homes apart from floor cleaning robots (Prassler et al. 2000). This
reveals the need for more robotic developments in the area of cleaning and clearing as one of the
major domestic chores where the older adults need support (Prassler et al. 2000; C. A. Smarr et al.
2014).

Robot-aided table clearing, as an example of robots supporting with cleaning and clearing tasks,
involves the assistive robot providing assistance in taking away certain items from the table with
the consent of the user without overriding the preferences of the user (Masuta, Hiwada, and Kubota
2011). The focus over the years has been on the development of the software, hardware and control
architecture necessary for the robot to successfully perform this task (Suzuki et al. 2019). These
developments have contributed immensely to the capabilities of the robot to perform object
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identification and manipulation as it takes items from the table (Masuta, Hiwada, and Kubota 2011;
Scopelliti, Giuliani, and Fornara 2005). While these developments have largely emerged successful
(Chong et al. 2004; Suzuki et al. 2019), only very minimal studies have investigated the interactive
role the robot plays in the different phases of the table-clearing task particularly for a sensitive
population like older adults (J. M. Bauer and Sousa-Poza 2015; M. J. Johnson et al. 2020; Portugal
et al. 2019; Zafrani and Nimrod 2019b).

It is pertinent that the autonomy of the older adults is considered carefully in the development and
operation of these table-clearing robots to ensure that the older adult user still stays in control of the
process without being overburdened by the task (Czaja et al. 2009). This ensures that their interests,
preferences and active engagements in the process are maintained while avoiding dissatisfaction
(D. B. Kaber 2018), frustration (Scopelliti, Giuliani, and Fornara 2005) or a sedentary lifestyle
which could evolve as a result in an unbalanced robot-user role allocation process (Czaja et al.
2019). This brings to the fore the need to ensure a balance in the roles of the robot to avoid extremes
of overreliance on the robot, misuse or disuse of the robot’s automated capabilities (Parasuraman
and Riley 1997). A strategy proposed and tested over several years of research in different domains
is through introduction of appropriate levels of automation which can be generally defined as the
degree to which automation is employed in the task (Sheridan and Verplank 1978). In this context
of eldercare robot-aided table clearing, it can be explained as the extent to which the robot
participates in the task of clearing the table. This ensures that the autonomy of the older adult is
considered in the process of aiding in the task (Beer, Fisk, and Rogers 2014).

It is also crucial that the older adult is carried along regarding the robot’s activities as it carries out
the task (Beer et al. 2012; Hellstrom and Bensch 2018), which connects with feedback provided by
the robot (Lyons 2013). Feedback can be defined in this context as the information provided by the
robot to the user regarding its intentions, reasoning, plans and actions (Nicole Mirnig and Manfred
2015). This information could be encoded in different formats (visual, audial, haptic or a hybrid)
through which the robot communicates the information to the user (N Mirnig, Weiss, and Tscheligi
2011). This formats, which in this study is referred to as feedback modes differ in their capacity to
convey the required information to the older adult population who have their peculiarities, age-
related differences and perception-related challenges (Cen/Cenelec 2002). The applicability of
these feedback modes may also differ with consideration for LOA mode the robot is operating in.
This underscores the aim of this study which is to develop and evaluate the influence of LOA modes
and feedback modality in the interaction of older adults with a table-clearing robot while identifying
suitable LOA-feedback mode combinations that would facilitate successful and satisfactory
interactions.

2 Methods

2.1 Overview

The current research deals with the application of three different levels of automation and three
modes of feedback in the robotic table-clearing task. The task involved the robot taking clearing
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eating utensils (e.g. a plate, fork, knife) and placing them at another location. The LOA and mode
of feedback were the independent variables evaluated while performance in the interaction and
perception of the users were assessed as dependent variables. The experimental system,
development of LOA and feedback modes as well as the evaluation in user studies are described in
the following subsections.

2.2 The experimental system

The system consisted of a table clearing robot, the interface for communicating with the robot and
the older adults users. The robot used was a KUKA LBR iiwa 14 R820 which had 7 degrees of
freedom and was equipped with a pneumatic gripper was used (Figure 1,2). Lifting load: up to 14
kg, number of degrees of freedom: 7, self-weight: 30 kg, temperature Ambient temperature: 45-5 °
C, mounting positions: floor, ceiling, wall.

Manipulator

800

Figure 4. The angle's range

The tasks were programmed using python and executed on Robot operating system (ROS) platform
(Schaefer 2015). The transfer of the tools the robot to the elderly was done by means of an air
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pressure vacuum except for the cup which was transferred by gripper. This interface was setup with
Raspberry Pi. In order to instruct the robot and to provide feedback, a graphical user interface (GUI)

was developed and used on a PC screen, which was located on a desk to the left of the user (Figure
4).

S S

LOA 1 v I

oA3d 1 @

Raspberry Pi ..

suction —— ‘

\ LED — & KUKA/

Figure 5. The system

Figure 6. A participant using the GUI to instruct the robot

2.3 LOA modes

The overarching goal in the LOA development was to ensure that the older adults remain in the
loop of the robot’s operation at every LOA level and to maintain the availability of the robot to
support at every level. This was implemented by varying the robot’s degree of involvement in the
decisions required for the table clearing task across each of the LOA modes. These decisions include
when to start the process of clearing, what items to take, when to take specific items and when to
stop in the process. This details for each of the LOA modes are given as follows:

1. High LOA: This was the highest degree of robot involvement in the decision making and
the least user involvement. The robot performs the entire task of clearing the items on
the table once the user initiates the process. The user is minimally involved to start the
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process and also to stop the robot at any point by pressing the STOP button. The
flowchart for process development is provided in Figure 4.

ii.  Middle LOA: This was a moderated degree of robot involvement in the decision making
with more human involvement than the high LOA. The robot seeks the consent of the
user before taking each item from the table. The robot suggests removing specific item
and the user has to approve the action. If approved, the robot will perform the operation.
If the offer is not approved, the robot offers take another item on the table till all items
have been considered. The flowchart depicting this process is shown in Figure 3.

iii.  Low LOA: The user’s degree of involvement in the decision making is highest while the
robot acts on the decision of the user. The user initiates the process, decides an item s/he
desires to take off the table and instructs the robot to clear the desired item. The robot
clears the item requested and waits for the next instruction without suggesting any
specific item to be cleared. The human makes most of the decisions involved in the
process.

/ Start
clearing
the table f
Clear the
fork @

Clear the
plate

Figure 7. High LOA

=—® [ Clearthe |
| spoon |

Is there®
any tool
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Start
clearing
the

Would you
like me to
clear the

Would you
like me to
clear the
knife now?,

Is there®

any tool
left?

ould
you like
to stop?,

Figure 8. Middle LOA



Start
clearing
the table

O

Figure 9. Low LOA

2.4 Feedback modes

The feedback was designed to ensure that sufficient information is provided to the older adult users
to keep them informed (Mirnig et al., 2014) and at the same time not overloading them with
information (Lyons, 2013). The three feedback modes implemented to operate at the three LOA
modes are described as follows:

1. GUI screen. Each time the robot brought a certain tool to an elderly person, a message
appeared on the GUI screen detailing it. (Figure 8)

ii.  Led lights. Each time the robot brought a certain tool to an elderly person, the LED lights
on the end of the robotic arm turned green. (Figure 9)

iii.  Voice recordings. Each time the robot brought a certain tool to an elderly person, a
recording was heard detailing what the robot was doing.

GUI screen feedback

|

Figure 10. A participant experiences LED light feedback from the robot
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LED light feedback

Figure 11. A participant experiences LED light feedback from

2.5 Participants

22 older adults (9 Females, 13 Males) over the aged 70 (mean:74, SD:4.12) participated in the study.
Participants were recruited through an ad which was publicized electronically. They were healthy
individuals with no physical disability who came independently to the lab. Each participant
completed the study separately at different timeslots, so there was no contact between participants.

2.6  Experimental Design

The experiment was set with a mixed between and within subject design with the LOA modes as
the within subject variable, and the feedback type as the between subject variables.

Participants were assigned randomly to one of the three feedback types conditions. All participants
completed the same table clearing task for the three levels of automation. The order of the three
iterations was counterbalanced between participants, to accommodate for potential bias of learning
effects, boredom, or fatigue.
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Table 3. Experimental Conditions

LOA

Low

Middle

High

Feedback

Condition 1 — LG
User choose which item

Condition 4-MG
User choose if approve

Condition 7-HG
Robot operates

§ the robot clear for him the item the robot clear automatically.
§ each time and receives for him each time and User receives visual
S visual feedback through | receives visual feedback feedback
C) GUI screen through GUI screen through GUI screen
Condition 2-LL Condition 5-ML
User choose which item | User choose if approve Condition 8-HL
the the Robot operates
robot clear for him each | item the robot clear for automatically.
2 time him User receives visual
EQ and receives visual each time and receives feedback
~ feedback visual feedback through through Led lights
N through Led lights Led lights
Condition3-LY | | Condon &MY congition 91
& User choose which item the PP Robot operates
S the . automatically.
= . item the robot clear for . .
3 robot clear for him each hi User receives visual
S ) . . im
S timeand receives audial cach time and receives feedback
v | feedback through Voice . through Voice
8 . visual feedback through .
S recordings . . recordings
~ Voice recordings

2.7 Performance measures

Initially, participants completed a pre-test questionnaire which included the following:
demographic information, and a subset of questions from the Technology Adoption Propensity
(TAP) index (Ratchford and Barnhart 2012) to assess their level of experience with technology and
from the Negative Attitude toward Robots Scale (NARS) (Syrdal et al. 2009a) to assess their level
of anxiety towards robots.

Objective measures that were trial are collected during each interaction-related variables and
included effort, accuracy, efficiency, engagement, comfortability, fluency, understanding as
detailed below. Subjective measures were assessed via questionnaires and included reliability,
satisfaction, understanding, engagement, and comfortability. The combination of these represents
the dependent variable of the study — Qol.

The details of the measures are listed in table 2.
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Table 4. Dependent Variable

Dependent

Variable Measurement
Effort Heart rate change
Accuracy Number of errors that occurred during the task
Effici 1 — total time of trial i
iciency Efficiency = . f @t
max{total time of trial i}
1 - trial number

Gaze duration at GUI - The length of time the
subject looked at the robot

E ¢ Gaze duration at the robot - The length of time the

ngagemen . . o
gag subject looked in the direction of the GUI screen
Objective Gesturets - The number of gesturejs perforn.leq by
the subject towards the robot during the mission
measures
Comfortability A categorical variable between 1-3 represents the
proximity of the subject to the robot. Where 1
represents a distance away from the robot and 3
represents a very close proximity so that the
subject touches the mission table surface.
Fluency Subject idle time
Understanding  The number of questions asked by the subject
during the assignment.

Order LOA A categorical variable between 1 and 3
representing the order of the automation levels
experienced by the subject.

Reliability How much the person relied on the robot
.. Satisfaction The amount of satisfaction the person
Subjective .
experiences
measures
Understanding  The extent to which the person understood the
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Engagement The level of involvement of the subject in the
task

Comfortability = The amount of comfort the person experiences

Participants completed a short post-session questionnaire after each session and a final
questionnaire at the end of the three sessions to evaluate subjective measures. The post-session
questionnaire used 5-point Likert scales with 5 representing "Strongly agree" and 1 representing
"Strongly disagree". The final questionnaire addresses the differences felt by the participants
between the different trial (examines whether they felt a difference between the different levels of
automation).

2.8 Model and hypotheses

We examined which LOA enhances the Quality of Interaction (Qol), a combined dependent
variable defined as a combination of subjective measures listed earlier (Figure 10).

The hypotheses of the experiment:

H1: LOA will affect the quality of the interaction between the user and the robot

H?2: Feedback will improve the quality of interaction between the user and the robot

H3: Feedback will improve user interaction with the robot at higher LOA
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Figure 12. The Model

Feedback

2.9  Analysis

A two-tailed General Linear Mixed Model (GLMM) analysis was performed to evaluate for a
positive or negative effect of the independent variables. The user ID was included as a random
effect to account for individual differences. LOA and feedback type were utilized as fixed factors
while all objective and subjective variables representing ‘Quality of Interaction’ (Qol) were used
as dependent variables.

3 Results

3.1 Demographic Analysis

The study population included 21 older adults, 8 females and 13 males, aged 70 to 86 (mean=74.1,
SD= 4.12). Two of the participants possess a Ph.D., 5 have a master’s degree, 8 own bachelor’s
degrees, 7 have a high school-based education and 3 are of alternative education.

3.1.1  TAP - Technology Adoption Propensity

Result shows that 75% of the participants firmly believe that technology provides increased control
and flexibility in life. Although 40% of the participants noted low self-confidence regarding the
general sense of being technological, as well as regarding the ability to quickly and easily learn
operation of innovative technologies. Only 5% of the participants obtain high confidence in said
ability, the remaining 20% remain indifferent. Nevertheless, 75% of the participants reported that
they enjoy acquiring new technological skills and only 5% said otherwise do not. Furthermore,
40% of the participants believe that they are being overly dependent on technology and are even
enslaved by it, while 27% have a neutral opinion.

3.1.2  NARS — Negative Attitude toward Robots Scale analysis

Regarding attitude towards robots, 20% of the participants have a low scale negative view of
robots, 20% have a high scale negative attitude while 60% are neutral. The mean is 13.5 and the
standard deviation is 5.56. Additionally, 20% have highly negative attitudes toward situations
which include robots, 30% are neutral while 50% have low negative attitude toward such
situations. Apparently, 30% have highly negative attitudes toward robot’s social influence whereas
70% are neutral. Finally, 30% have a highly negative attitude toward the concept of robots having
emotions, 40% are indifferent and 30% have a low scale negative attitude towards it.
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3.1.3  Demographics and Attitude towards Technology

The study population consists of 21 older adults, 8 females and 13 males, aged 70 to 86
(mean=74.1, SD=4.12). Two of the participants possess a Ph.D., 5 have a master’s degree, 8 own
bachelor’s degrees, 7 have a high school-based education and 3 are of alternative education.
Result shows that 75% of the participants firmly believe that technology provides increased control
and flexibility in life, Although 40% of the participants admitted to low self-confidence regarding
the general sense of being technological, as well as regarding the ability to quickly and easily learn
operation of innovative technologies. Only 5% of the participants obtain high confidence in said
ability, the remaining 20% remain indifferent. Nevertheless, 75% of the participants reported that
they enjoy acquiring new technological skills and only 5% said otherwise do not. Furthermore,
40% of the participants believe that they are being overly dependent on technology and are even
enslaved by it, while 27% have a neutral opinion.

3.2 User perception

From the questionnaires performed at the end of each trial, it appears that 86% of the respondents
indicated that they were not at all stressed about cooperation with the robot, while 7% indicated
that the cooperation experience was stressful for them. Satisfaction of subjects in the collaboration
between them and the robot can be seen in Figure 7. It can be seen that the vast majority of the
subjects (18 participants in the high LOA, 17 in the middle LOA and 15 in the low LOA) testified
that they were most satisfied with the collaboration between them and the robot (Figure 11).

20
o
) 18
= 15 17°°
>
wv
% 10 — mlOA1l
- LOA 2
z |
s 11 000 112 I31 LOA 3
8 O 7j \- T
1 2 3 4 5

Satisfaction

Figure 13. Quantity of subject vs. Statisfaction

When respondents were asked whether they had relied on the robot during the mission, 56%
indicated that they had fully trusted the robot, while a considerable 11% said they did not feel trust.
This can be related to the fact that participants who testified that they relied on the robot at a low
level were in cases where they testified that the robot had made a mistake during the mission.
Correspondingly, the Pearson correlation between the results of the robot's reliability level
question and the results on number of errors the robot performed in the person's opinion, is a high
negative correlation of -0.426. In other words, the more the robot makes mistakes, the lower the
level of reliability of the subject in the robot.
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Results of the final questionnaire at the end of the experiment showed that the level of automation
preferred by most subjects (50%) was the highest level of automation as can be seen in Figure 12.

o Low LOA . Middle LOA = High LOA

Figure 14. LOA preference
Additionally, most subjects (41%) indicated that they would very much like to use the robot in a
daily task, such as clearing the table. However, many other subjects (27%) indicated that they were
not interested in using such a robot in their home. Which may explain from what came up in the
demographic questionnaire that many of the adults testified that they are admitted to low self-
confidence regarding the general sense of being technological
Order Effect
An ANOVA test (P=0.003) indicating that in which the subjects experienced the levels of
automation (which was random for each subject) had an impact on their satisfaction, and ultimately
on the level indicated as preferable in the final questionnaire. Post Hoc test (P=0.002) revealed
that the difference in preferences was when the order of LOA does not occur in chronological
order: 2->1->3 or 3->1->2.

Results reveal that the automation level had significant effect on most of the performance
measures. Feedback, and the interaction variable between the levels of automation and the
feedback did not have a meaningful effect on most measures.

None of the independent variables had significant effect on effort, gaze robot, comfortability and
understanding (Table 3). LOA had significant effect on accuracy (M=0.18, SD=0.39), efficiency
(M=70.21, SD=14.69), gaze GUI (M=17.96, 11.84) and fluency (M=57.13, 14.63). Feedback and
the interaction variable between LOA and Feedback (Feedback*LOA) had significant effect on
accuracy.
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Tables5 . Significant variables

Effort  Accuracy Efficiency Engagement
HR Errors Total time Gaze Gaze
GUI robot
LOA 912 .012 .000 .000 .009
Feedback 128 .037 819 465 587
LOA * 376 .012 .861 747 938
Feedback
Fluency Comfortability understanding
Human Proximity Questions
idle time
LOA .001 134 101
Feedback 244 .082 723
LOA * 545 738 150
Feedback

Nevertheless, an interesting statistic identified that the interaction variable had a significant effect
(P=0.017) on the transaction index measured by the amount of gestures the person made to the
robot during the mission (Figure 13). This can be explained by combining an automation level
with feedback, hence a person feeling more involved in the task and acting accordingly, making
more gestures during the task. Figure 8 shows the difference in the effect of each level of
automation with a specific feedback type, on the amount of gestures the person made to the robot
during the task. Primary, we can conclude that at the highest level of automation the difference is
the most significant (green line). This information makes sense considering controlling most of
the robot increases the importance of feedback, since that is what keeps the person within the task
and gives him the feeling that he is involved. If we examine the type of feedback, it appears that
at the high level of automation, when the feedback type was voice recordings, the difference is
most significant. This is justified in literature seeing as it is known that voice feedback, versus
visual feedback, makes the user feel that the feedback is more human and as a result becomes more
involved in the task.
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Figure 15. Number of gestures at the level of automation with feedback type

3.3 Qualitative analysis

During the running of the experiments, it was possible to notice the nuances of the interaction of
the adults with the robot according to the sentences they said.

In term of trust, most adults who experienced a low and then high level of automation felt that
control was taken away from them and said sentences like: "Why is he not listening to me this
time?", "Let's see if he turns the tool I want". This reinforces what was said in the quantitative
analysis of the questionnaires.

In terms of adult preferences, most testified that they were happy for a similar robot in their home
that would help with daily tasks. One participant said, "oh this robot knows better than me".

But some shared that the specific robot with which they experienced the experiment — the KUKA,
is too large for storage in their home and unsuitable. They were happy for a more compact robot
to perform the same operation.

4 Discussion and conclusions

The system demonstrates feedback and LOA design aspects especially suited for older adults in
an assistive robot task. The experimental results give insight into daily task of clearing a table that
older adults would prefer a robot to assist with. Most of the participants testified that they would
like a similar robot in their home to assist them, emphasizing the relevance of the developed
system. This is consistent with previous research that older adults expressed interest in the robot
assisting with difficult tasks, saving time, performing undesirable tasks, reducing effort, and
performing tasks at a high-performance level (Fausset at el., 2011). For an older adult to accept
technology, such as robotics, the benefit has to be clear (Ezer at el., 2007; Caine at el., 2009).
Many of these tasks were physical in nature (e.g., cleaning kitchen or Bathroom) (J. M. Beer et al.,
2012).

However, a significant percentage reported that they would not want such a large robot in their
home since they do not think it will suit them. Many of the older adults reported that they lived in
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a condo or apartment home, where storage was limited. Therefore, the robot design must be
adapted to fit the working environment constraints.

Most of the participants were comfortable and trusted the robot. Trust is an essential element for
older adults and robot care providers to work effectively.

The vast majority of the participants felt the difference between the various levels of automation,
and noted preference for the highest level of automation.

The integration of feedback during the task increases the participant's involvement, especially at a
high level of automation. The subjects indicated that their preferred type of feedback was voice
recording feedback. Some respondents suggested to consider the timing of giving feedback. They
recommended that the robot first performs the task and then provides the feedback rather than
vice versa.

The GUI screen feedback for this task was less relevant for older adults because they rarely looked
at the screen probably because they were concentrated on the robot. Therefore, it is recommended
to investigate into other types of feedback. However, this also might be due to the novelity effect,
after a certain period of time they might become accustomed to the robot and prefer visual feedback
like a GUI screen.

when an adult has control during the task and then it is taken some way, it affects the quality of
interaction between the adult and robot and reduces his/her satisfaction. Thus, it is recommended
to gradually increase control to the adult. This reinforces the initial suspicions that when subjects
first experience a low level of automation (ie, the subject has more control over the task) and then
experience a higher level of automation (ie control was taken from them), their satisfaction was
reduced which also affected the preference level indication. The subjects expressed sentences such
as, “But why did the robot not ask me this time what [ wanted?”, “The robot does not listen to me”,
etc.

Further studies to improve the system and further its’ development with the objective of
maximizing the quality of interaction between robot and elderly can address different aspects such
as personal adaption of the level of automation and type of feedback and dynamic adaption of
LOA along performance (depending on experience, fatigue).

5 References

1. Agrawal, Ajay, Joshua Gans, and Avi Goldfarb. Prediction machines: the simple economics of artificial
intelligence. Harvard Business Press, 2018.

2. Beer, J. M,, Fisk, A. D. and Rogers, W. A. (2014) ‘Toward a Framework for Levels of Robot Autonomy
in Human-Robot Interaction’, Journal of Human-Robot Interaction, 3(2), p. 74. doi:
10.5898/JHRI.3.2.Beer.

3. Butler, A. C,, Karpicke, J. D., & Roediger, H. L. III. (2007). The effect of type and timing of feedback
on learning from multiple-choice tests. Journal of Experimental Psychology: Applied, 13(4), 273-281.

4. Caine, K.E., Fisk, A.D. and Rogers, W.A. 2007. Designing privacy conscious aware homes for older
adults. In Hum. Fac. Erg. Soc. P. (Baltimore, MD, Oct 1-5, 2007). HFES’07.

5. Doisy, Guillaume, Joachim Meyer, and Yael Edan. "The impact of human-robot interface design on the
use of a learning robot system." IEEE Transactions on Human-Machine Systems 44.6 (2014): 788-795.

6. Dubberly, Hugh, Paul Pangaro, and Usman Haque. "ON MODELING What is interaction? are there
different types?." interactions 16.1 (2009): 69-75.

39



40

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Ezer, N., Fisk, A.D. and Roger, W.A. 2009. More than a servant: Self-reported willingness of younger
and older adults to having a robot perform interactive and critical tasks in the home. In Hum. Fac. Erg.
Soc. P., (San Antonio, TX,Oct 19-23, 2009) HFES’09, 136-150.

Fausset, C. B., Kelly, A. J., Rogers, W. A. and Fisk, A. D. 2011. Challenges to aging in place:
Understanding home maintenance difficulties. Journal of Housing for the Elderly, 25, 2 (May 2011),
125-141. DOI= http://dx.doi.org/10.1080/02763893.2011.571105.

Hellstrom, T. and Bensch, S. (2018) ‘Understandable Robots - What, Why, and How’, Paladyn, J.
Behav. Robot.

Honig, S. S. et al. (2018) ‘Towards Socially Aware Person-Following Robots’, IEEE Transactions on
Cognitive and Developmental Systems, pp. 1-1. doi: 10.1109/TCDS.2018.2825641.

Huang, C.-M., Cakmak, M. and Mutlu, B. (2015) ‘Adaptive Coordination Strategies for Human-Robot
Handovers Designing Gaze Cues for Social Robots View project CoOSTAR View project Adaptive
Coordination Strategies for Human-Robot Handovers’, in 2015 Robotics, Science and Systems
Conference. doi: 10.15607/RSS.2015.X1.031.

J. M. Beer et al., "The domesticated robot: Design guidelines for assisting older adults to age in
place," 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Boston, MA,
2012, pp. 335-342, doi: 10.1145/2157689.2157806.

Katzman, R. (1995) ‘Can Late Life Social or Leisure Activities Delay the Onset of Dementia?’, Journal
of the American Geriatrics Society, 43(5), pp. 583-584. doi: 10.1111/j.1532-5415.1995.tb06112 x.
Kirchner, N. and Alempijevic, A. (2012) ‘A Robot Centric Perspective on the HRI Paradigm’, Journal of
Human-Robot Interaction, 1(2), pp. 135-157. doi: 10.5898/JHRI.1.2.Kirchner.

Lyons, J. B. (2013) ‘Being Transparent about Transparency : A Model for Human-Robot Interaction’,
Trust and Autonomous Systems: Papers from the 2013 AAAI Spring Symposium, pp. 48-53.

Mi, Z. and Yang, Y. (2013) ‘Human-Robot Interaction in UVs Swarming: A Survey’, International
Journal of Computer Science Issues ( ..., 10(2), pp. 273-280. Available at:
http://www.ijcsi.org/papers/IJCSI-10-2-1-273-280.pdf.

Mica R Endsley and David B Kaber. 1999. Level of automation effects on performance, situation
awareness and workload in a dynamic control task. Ergonomics 42, 3 (1999), 462-492.

Mirnig, Nicole, et al. "A case study on the effect of feedback on itinerary requests in human-robot
interaction." 2011 RO-MAN. IEEE, 2011.

Mitzner, T. L. et al. (2015) ‘Adult’s perceptual abilities.pdf’, in The Cambridge Handbook of Applied
Perception Research, pp. 1051-1079.

Parasuraman, R., Sheridan, T. B. and Wickens, C. D. (2008) ‘Situation Awareness,Mental Workload,and
Trust in Automation: Viable,Empirically Supported Cognitive Engineering Constructs’, Journal of
Cognitive Engineering and Decision Making, 2(2), pp. 140—-160. doi: 10.1518/155534308X284417.
Rouanet, Philippe, et al. "Transanal endoscopic proctectomy: an innovative procedure for difficult
resection of rectal tumors in men with narrow pelvis." Diseases of the colon & rectum 56.4 (2013): 408-
415.

Shanee, H. S. et al. (no date) ‘“Towards Socially Aware Person-Following Robots’.

Shishehgar, M., Kerr, D. and Blake, J. (2018) ‘A systematic review of research into how robotic
technology can help older people’, Smart Health. doi: 10.1016/j.smhl.2018.03.002.

Stuck, Rachel E., and Wendy A. Rogers. "Older adults’ perceptions of supporting factors of trust in a
robot care provider." Journal of Robotics 2018 (2018).

Wu, Y.-H. et al. (2014) ‘Acceptance of an assistive robot in older adults: a mixed-method study of
human-robot interaction over a 1-month period in the Living Lab setting.’, Clinical interventions in
aging. Dove Press, 9, pp. 801-11. doi: 10.2147/CIA.S56435.

Wu, Y.-H. et al. (2016) ‘The Attitudes and Perceptions of Older Adults With Mild Cognitive
Impairment Toward an Assistive Robot’, Journal of Applied Gerontology, 35(1), pp. 3—17. doi:
10.1177/0733464813515092.

Zwijsen, S. A., Niemeijer, A. R. and Hertogh, C. M. P. M. (2011) “Ethics of using assistive technology
in the care for community-dwelling elderly people: An overview of the literature’, Aging and Mental
Health, 15(4), pp. 419—427. doi: 10.1080/13607863.2010.543662



41

Chapter 5: Influence of LOA, LOW and LOC on Qol



Levels of automation for different levels of workload and task complexities in
human-robot collaboration

Dana Gutman Samuel Olatunji Yael Edan
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel

Abstract. This study explored how different levels of automation (LOA), workload and task
complexity influence the interaction between a human and a robotic arm in a collaborative
assembly task. Evaluation was conducted through a user study involving 80 participants. Two
LOA modes were designed, implemented, and evaluated in an experimental setup for two different
workload levels and task complexities. User preferences regarding the LOA modes in the different
workload and task complexity conditions were assessed. In addition, two constructs were specially
designed for the evaluation: quality of task (QoT) execution and usability. These constructs were
measured objectively and subjectively through several dependent variables and combined using
principal component analysis. Results revealed that most of the participants preferred the low LOA
at high complexity and high LOA when the workload increases. The quality of task execution was
also better at high LOA when workload is high irrespective of the task complexity, but the usability
results reveal the benefits of low LOA in situations when task complexity changes. The outcome
provides some insights into shared control designs which accommodate user preferences in the
workload and task complexity situations that may arise in the collaboration with the robot.

Keywords: Levels of automation, workload, complexity, collaborative robots,
human-robot collaboration, usability, quality of task execution.

1. Introduction

Human-robot collaboration
Human-robot collaboration (HRC) generally involves one or more humans working with one or

more robots to accomplish a certain task or a specific goal (A. Bauer, Wollherr, and Buss 2008).
This collaboration is a subset of human-robot interaction which more broadly involves
understanding, designing, and evaluating robotic systems for use by or with humans (Goodrich
and Schultz 2007). Effectiveness of HRC can be evaluated by the accuracy and completeness of
the task which the human and robot cooperate to execute (ISO 2018). This collaboration is
commonly described as efficient when minimal resources such as time and human effort are
expended to achieve the required goal (Baraglia et al. 2016). To ensure that the human can
successfully team up with the robot to achieve such collaboration, the human’s perception
regarding ease of use is essential (Brohl et al. 2019). Ease of use in this context refers to the degree
to which the human operator believes that working with the robot will be free of difficulty or great
effort (Davis 1989). A negative user perception regarding this ease of use could lead to disuse of
the support the robot can provide in the collaboration (Parasuraman and Riley 1997). It is therefore
necessary to consider the factors that can potentially affect the effectiveness, efficiency and ease
of use in HRC when designing human robot collaborative tasks (A. Bauer, Wollherr, and Buss
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2008; G. I. Johnson and Wilson 1988). It is also crucial to evaluate the effect, characteristics and
implications of these factors through extensive user studies to ensure the users’ point of view,
preferences and peculiarities are considered in the design (Kaber, 2018). This contributes to the
development of detailed, accurate and user-tested models of HRC that increases the potential for
successful collaboration and higher user acceptance (Brohl et al. 2019; Feigh 2011)

The capabilities of robots have increased significantly such that with high precision, they can
repeatedly perform specialized tasks without performance deterioration even in complex
environments, with heavy workload (Wang, Kemény, Vancza, & Wang, 2017). However, there
are still limitations the robots encounter in some areas particularly when handling unexpected
situations (Monostori, Vancza, and Kumara 2006). Humans, on the other hand, usually respond to
unexpected situations better and resolve such situations with more dexterity, even in complex and
dynamic tasks (Wang et al., 2017). But, humans are more prone to stress or fatigue and errors
particularly in high workload situations (Arai, Kato, and Fujita 2010). One of the motivations of
HRC therefore, is to bridge the gaps in skills and operational characteristics such that the human
and robots work cooperatively as partners (Fong, Thorpe, and Baur 2007). This partnership
harnesses the combination of the complementary strengths, skills and intelligence of both the
human and robot resulting in increased quality of task execution alongside, robustness and
improved flexibility and work ergonomics (Wang et al., 2019).

HRC in assembly tasks

HRC in assembly tasks usually involves a robot retrieving an object for the human, holding the
object for a designated time, laying it aside, placing or fixing in a required position (A. Bauer,
Wollherr, and Buss 2008). There are a variety of HRC techniques and advances that have emerged
in recent years for different kind of assembly tasks. In automotive assembly tasks, as an example,
cooperating robots for precise material handling and secondary assembly operations have been
advanced to increase the precision and speed of the automation while accommodating the dexterity
and intelligence of the human operators (Smets 2019). Dual arm robots have also been explored
for various bimanual assembly tasks to improve stability flexibility and cooperation between the
robot and the human (Kriiger, Schreck, and Surdilovic 2011).

In some other HRC assembly tasks such as computer assembly tasks, a form of symbiotic HRC
has been investigated featuring the interplay of the human and the robot in a cyber-physical shared
work space (Wang et al., 2019). This enabled better combination of complementing competencies
to resolve complications in complex work environments (Nikolakis, Maratos, and Makris 2019).
The effect of temporal and spatial relation of collaborating humans and robots in industrial
production settings has also been researched to identify design considerations for situations where
collaborating agents share (or partially share) the same space (Hoffman 2019; Kriiger, Lien, and
Verl 2009; Someshwar and Edan 2017).

43



Factors influencing HRC assembly tasks

The level of automation (LOA) of the system, defined as the degree to which the robot and the
human are involved in the collaborative task (Endsley & Kaber, 1999; Lindstrém, Winroth, &
Stahre, 2008; Shi, Jimmerson, Pearson, & Menassa, 2012) influences the characteristics of the
HRC (Burke, Murphy, Rogers, Lumelsky, & Scholtz, 2004; Wang et al., 2017). This affects the
dynamics of the collaboration, the behaviour of the robots, actions to be taken, as well as autonomy
of the human in the collaboration (Wang et al., 2019). It is therefore critical in HRC task design to
consider LOA modes suitable for the user and applicable to the task (Kaber & Endsley, 1997).
Other factors that that could potentially influence the LOA design should also be considered such
as the amount of work involved in the task, herein defined as level of workload (Onnasch et al.
2014b; Wickens et al. 2010) and the degree of complicated actions needed to complete the task,
herein defined as level of task complexity (Bailey and Scerbo 2007; Crandall and Goodrich 2002).

Workload addresses the actual and perceived amount of work that the human operator experiences
which includes the effort invested in the task (Hart and Wickens 1990; Xu et al. 2018). It can
generally be described in terms of the elements which constitute the cost of accomplishing the goal
for the human operator in the HRC (Hart 2006). These elements could be task-related (such as
mental, temporal and physical demands, (Hart & Staveland, 1988)), operator-related (such as skill,
strategy, experience, (Hilburn & Jorna, 2001)) or machine-related (such as poorly designed
controls, feedback, inappropriate or inadequate automation (Hart & Wickens, 1990)). Workload
consequences could be reflected in the stress, fatigue or frustration experienced by the human
operator (Hart 2006), depletion of attentional, cognitive or response resources (Hart and Wickens
1990) as well as in performance changes (Yeh and Wickens 1988).

Task complexity depends on properties of the task (objective complexity) and the perception of
the human operator (subjective complexity) (Rasmussen, Standal, and Laumann 2015). It can
generally be characterized in terms of the stimuli involved in the task for inputs as well as the
behavioral requirements the human operator should emit in order to achieve a specific level of
performance (Wood 1986a). The elements include the component complexity - number of distinct
actions that the human operator must execute or number of informational cues that should be
processed (e.g. the number and type of subtasks to be managed, Olsen & Goodrich, 2003);
coordinative complexity - nature of relationships between task inputs and task products, the
strength of these relationships as well as the sequencing of inputs (e.g. timing, frequency, intensity
and location requirements, Campbell, 1988)) and dynamic complexity - changes in the states of
the environment (e.g. cause-effect chains, means-ends connections which the human operator
should adapt to, Braarud, 2001; Wood, 1986a).

Objective of the study

Previous research identified relations between workload and task complexity in terms of task
demand factors contributing to workload as a result of the level of complexity of the task (Wickens

44



et al. 2015). However, there are limited studies that investigated these factors in relation to the
design of LOA modes suitable for HRC assembly tasks while operationalizing these LOA modes
to support practical use in different collaboration contexts (Kolbeinsson, Lagerstedt, and Lindblom
2019). The current study aims to examine LOA design for different levels of workload (LOW) and
different levels of complexity (LOC) for HRC in an assembly task. Since human operators could
be stressed while collaborating with the robot on joint tasks (Arai et al., 2010), it is important to
take into account user preferences and their perception regarding ease of use. This is in addition to
the assessment of the quality of task execution and usability of the system. We design, implement
and evaluate LOA modes in a user study involving 80 participants in different workload conditions
and task complexities. We hypothesized that specific LOAs will improve users’ interaction and
enhance their performance in the midst of additional workload of a secondary task at different task
complexities. User preferences regarding the LOA modes in the various conditions were assessed
subjectively while two constructs were additionally designed for the evaluation: quality of task
(QoT) execution and usability.

The model to evaluate the potential interactions of LOA, LOW and LOC with respect to the user
preferences, quality of task execution, and usability is presented in section 2. This is followed by
the research methods in section 3 which includes description of the system design, LOA modes,
task, and experimental evaluations of the design. Section 4 is devoted to the results of the
experiments conducted. Conclusions and suggestions for future work are discussed in the last
section.

2. Model

Definition of constructs

The model for the study (Figure 1) depicts possible effects of LOA, LOW and LOC on different
aspects of the HRC. One of the aspects is the User preference, which is operationally used here as
the choice of the users regarding the LOA mode that meets their needs and expectations in the
collaboration. The other aspects of the HRC were assessed using specially designed constructs
(depicted in Figure 1) which are defined as follows:

Quality of task (QoT) execution

The extent to which specific goals in a task are accomplished to a specified degree of accuracy
under a specified period of time (ISO 9001 2020). This construct involves accuracy of the executed
task, time to complete the task, and the number of stages completed in the secondary task.

Usability
The extent to which the robotic system can be used to achieve specified goals with
effectiveness, efficiency and satisfaction in a specified context of use (ISO 2018). This
construct is composed of effectiveness and efficiency including the satisfaction derived
from the perceived ease of use.
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Usability

Ease of use Effectiveness Efficiency

Figure 16. Constructs for assessments

Hypotheses for the study
Predictions on the influence of LOA, LOW and LOC on these constructs along with the user

preference are presented as the study hypotheses with accompanying rationale for each of these
hypotheses.

In the design of adjustable robot autonomy in human-robot systems, it was pointed out that as task
complexity increases, robot effectiveness is likely to reduce if the robot is operating at higher
autonomy (Ashcraft, Goodrich, and Crandall 2019). Users seem to intuitively understand that
autonomous systems such as the robot system developed in this study could have difficulties in
more complex situations with high uncertainty. Users usually thus prefer to have more control due
to higher confidence in their own ability to handle decisions at such higher levels of complexity
(Endsley, 1995). We therefore propose:

Hla - Participants will prefer the low LOA for higher task complexities.

Research has also shown that as automation increases, workload is expected to decrease,
particularly if the automation is properly designed and does not provide new challenges and tasks
relating to monitoring or other forms of engagement (Onnasch et al. 2014a). Automation generally
provides the opportunity for the user to allocate attention to other concurrent tasks involved in high
workload (Hocraffer and Nam 2017; Wickens 2008). Based on this, we propose:

H1b - Participants will prefer the high LOA for high task workload.

Several meta-studies conducted regarding levels of automation (Onnasch et al. 2014a; Wickens et
al. 2010) seem to suggest that the workload experienced by users is influenced by the LOA of the
system, particularly in situations of routine performance. This does not discountenance the effect
of task complexity but seems to point to the effect level of workload may have in low task
complexity. The preference of participants based on the LOA being utilized is therefore influenced
by the level of workload, particularly in low complex task. We, therefore, propose:

Hlc - Participants will prefer the high LOA for high workloads at low task complexity

We assume, based on the aforementioned task complexity demands that high task complexity
could involve higher uncertainties and failure. High LOA at high task complexity where more
uncertainties can arise may not reduce workload, but rather create additional workload involving
users monitoring to ensure performance (Murthy 2007; Niu et al. 2018). We propose therefore,
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that participants may prefer to have more control if task complexity increases. This serves as the
basis for
H1d - Participants will prefer the low LOA for higher workloads at high task complexity.

It has been established in literature that in routine performance, high LOA tends to increase the
quality of task execution as related to accuracy, time to complete task and performance of the users
(Onnasch et al. 2014a). We suspect that in low complex tasks, where there are lower probabilities
of errors, uncertainties and failure, both high and low workloads can be better handled by the users
if the automation affords them the opportunity to share their attention to improve performance
(Wickens 2008). We therefore propose:

H?2 — Quality of task (QoT) execution will be higher with high LOA when the low complex task is
performed at either high or low workload level.

Several studies involving LOA have revealed the possibility of extending users’ capabilities when
the level of autonomy of the robot increases (Endsley, 2017). Usability explained previously in
terms of the effectiveness, efficiency, and perceived ease of use (Rani et al. 2002), may increase
if the system is operated at high LOA. This is also true even in situations of low workload (Davis
1989). We therefore propose:

H3 - Usability will be higher with high LOA when the low complex task is performed at either low
or high workload level.

The system model depicting the connection between these hypotheses and the study variables are
presented in Figure 2.

Hlcd

Figure 17. The system model.:
LOW,LOA,LOC — levels of workload, automation, complexity; QoT — Quality of task
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3. Methods

Overview
The HRC assembly task simulates a work scenario where participants are expected to assemble

blocks made from cubes according to a configuration presented to them through a user interface.
The robot brings to them a cube at each time. The task was performed in two LOA modes, at
different LOW and two different LOC based on the experimental design protocol. Effectiveness
and efficiency were assessed under the QoT execution construct while user preferences along with
ease of use were added to the assessment of the usability construct.

Experimental system
The experimental system consists of a robotic arm, user interface (presented on a computer), cubes

to be assembled and the human operator (Figure 3). The robotic arm is a 4 degree of freedom
DOBOT Magician (https://www.dobot.cc/dobot-magician/product-overview.html). It is 135 mm
high, 158 mm wide and has a 320 mm radius with a payload of 500 g. It connects to the computer
through a USB connection and was equipped with a suction gripper to pick up the cubes.

This robotic arm was programmed for the two LOA modes using the Python programming
language. Both modes involved the robot bringing the cubes in a sequence one after another from
a predetermined place according to the specific LOA the robot is operating in. The user
communicates with the robot through a user interface implemented on a GUI screen (Figure 4).
The configuration to be assembled is displayed on the GUI screen when starting the task. The
robot releases the cube when it reaches the front of the participant. The participants are expected
to assemble the cubes when received from the robot and place these cubes in a marked area on the
desk in front of them.

Dobot GUI screen with cubes &

Mark on the == B

table

Figure 18. The experimental setup
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The configuration you need to assemble:
1 -
4
6

Click on the color of the cube you want the robotto bring

Figure 19. GUI screen

Experimental design

The experimental design includes three independent variables: LOA (two levels), LOW (two
levels) and LOC (two levels). A between-within participants experimental design was conducted
with the LOA as the within variables while LOW and LOC were the between variables. There are
four between participant groups consisting of a combination of the LOW and LOC. Each
participant was randomly assigned to one of the four groups where the participant experiences both
LOA modes as seen in Table 1. The description of the LOA modes along with the LOW and LOC
are provided as follows:

3.1.1. Levels of automation (LOA) modes

Low LOA — The human operator (user) has the autonomy over the type and order of cubes desired.
The human operator must identify the type of block needed to fit the required configuration to be
assembled per time and then select the required cube through the user interface. The robot supports
the user by bringing the type of cube the user selected.

High LOA — The robot has the autonomy to bring the specific type of cube and in the order
preprogrammed in its operation. The user does not have to identify a specific type of cube. The
user simply demands for a cube through the user interface and the robot brings the type of cube
suitable for the specific configuration assembled per time.

3.1.2. Levels of workload (LOW)
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Low LOW - The users perform only the main task which consists of assembling cubes to match
the specific configuration required. The workload involves some task demands such as the physical
demand of arranging the cubes, mental demand of thinking about the type of cube that would
match the required configuration and some temporal demand related to completing the task in the
shortest possible time.

High LOW — The users carry out the main task (composed of the aforementioned dimensions of
workload) along with a secondary task. The secondary task was an off-the shelf well known
cognitive game, the "RUSH HOUR" thinking game (Figure 5,
https://www .thinkfun.com/products/rush-hour/). It involves arranging toy cars in a way to get a
specific car out of a gridlock. There are tabs at each stage showing how to arrange the cars, and
afterwards, the player has to find a way to get the required car (red car) out. Once the user has
succeeded in getting the red car out, the user proceeds to the next stage and arranges the cars
according to what appears on the tab of the next stage. This contributes additional task demands
to the overall workload.

The game

The red car

Figure 20. "RUSH HOUR" game

3.1.3. Levels of complexity (LOC)

Low LOC —the cubes for the assembly differ only by color. The users are required to assemble the
cubes to match particular configurations characterized by differences in color pattern (Figure 6a).
A specific number of cubes must be used to assemble the required configuration while considering
the sequence and location of the specific cubes’ color of cubes.

High LOC —the cubes for the assembly differ in color and by the numbers on a particular side
(Figure 6b). The users are required to assemble the cubes in color patterns as done in the low LOC
condition, but in addition, they must ensure that the specific numbers on particular color of cubes
match the required configuration per time. The level of complexity is increased by the additional
information cue (presence of numbers) and their spatial consideration (position of the number in
the configuration).

50



e

a

b

Figure 21. Sample of cubes configurations in a). Low LOC and b). High LOC

Table 6. Experimental Design

Level of Workload (LOW)

Low LOW

High LOW

High LOC

Low LOC

High LOC

Low LOC

Level of automation (LOA)

Condition 1 — LLH
The user chooses
via a GUI screen

Condition 2 — LLL
The user chooses
via a GUI screen

which color of

Condition 5 — LHH
The user chooses
via a GUI screen

which color of cube

Condition 6 — LHL
The user chooses
via a GUI screen

which color of cube

concentrates only on
the main task, with
reference to the

on the main task,
without reference
to the numbers

concentrates on
performing a main +
secondary task

which color of cube . the robot will bring | the robot will bring
oy cube the robot will ; )
< the robot will bring ; . him. him.
=) ; bring him.
= him. The user The user The user
3 The user concentrates on concentrates on
< concentrates only . . . .
- concentrates only on . performing a main + | performing a main +
) . on the main task,
the main task, with . secondary task secondary task
without reference | . . .
reference to the simultaneously, with simultaneously,
. to the numbers .
numbers written on : reference to the without reference to
written on the . .
the cubes. numbers written on | the numbers written
cubes.
the cubes. on the cubes.
.. Condition 4-HLL Condition 8 — HHL
Condition 3-HLH »
. The robot brings Condition 7-HHH The robot brings
The robot brings .
the cubes to the The robot brings | the cubes to the user
the cubes to the user . .
< : user in a predefined | the cubes to the user in a predefined
@) in a predefined .
3 order. in a predefined order.
= order.
s The user order. The user
= The user
= concentrates only The user concentrates on

performing a main +
secondary task
simultaneously,
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the cubes. cubes. reference to the the numbers written
numbers written on on the cubes.
the cubes.

Participants

Eighty undergraduate industrial engineering third year students (44 females, 36 males, Mean
age=26, SD=1.4) at Ben-Gurion University participated in the study. All students had experience
with both computers and robots. Participation was voluntary and every participant received
compensation in the form of a bonus point which contributes to a credit in one of their courses.

Experimental Procedure
Participants completed a preliminary questionnaire which was composed of demographics

questions for the participants and the Negative Attitudes Towards Robots Scale (NARS, (Syrdal
et al. 2009b). NARS questionnaire examines the participants' perception of technology and robots.
Then, the participant experienced two experimental trials where they collaborated with the robot
in each trial. In each trial, the user collaborated with the robot to assemble the configuration that
appeared during the GUI in a specific LOA (high/low) in random order. The robot brings the cubes
to the participant in a mode corresponding to the specific LOA in that trial condition. The
participant took the cube from the robot each time and placed the cube in the place marked for it,
according to the configuration required.

A post-trial questionnaire was completed by the participants after each trial regarding their
experience with the robot. The questionnaire was rated on a 5-point Likert scale ranging from "1
— strongly disagree" to " "5 = strongly agree". At the end of the two trials, each participant
completed a final questionnaire where they indicated their preferred level of automation.

Dependent Variables
The dependent variables were effectiveness, efficiency and ease of use of the system. These were

measured objectively and subjectively as follows and used to form the quality of task and usability
constructs using the analyses defined below.

3.1.4. Objective Measures

The objective measures (Table 2) included:

The accuracy of the robot during the task — calculated from the number of times the robot erred in
bringing the cubes (e.g., failed to catch a cube, brought an incorrect cube). This was measured in
relation to the effectiveness of the system (explained in Table 2).
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The total time it took the participant to complete the task for each trial. The time of the trial in
which the participant experienced the higher level of automation was constant. This was measured
in relation to the efficiency of the system.

The heart rate change of the participant was measured through a Garmin watch at the beginning
and end of each iteration (calculated as shown in equation 1). The difference in heart rate indicated
the level of ease the participant may be experiencing during the experimental trials (Rani et al.
2002, 2004). This was measured in relation to the ease of use of the system (explained in Table 2).

HR after—HR before
HR before

HR Change =

(1

Half of the participants experienced the higher LOW and performed a secondary task in addition
to the main task. For each participant, the performance in the secondary task was measured

according to the stage they reached in the secondary task (the number of stages they pass).

Table 7. Objective Measures

Dependent Variable Measurement
Accuracy
(number of times the robot
erred)

Effectiveness Performance in the secondary

task (number of sub-tasks
completed - solved cards)

(for the high LOW group)
Efficiency Time to complete the task
(seconds)
Ease of use Heart rate change

3.1.5. Subjective Measures

The subjective measures were collected through questionnaires which were composed of questions
regarding the participants' experience with the robot. The post-trial questionnaire and the variables
assessed are presented in Table 3. The post-trial questionnaire included NASA-TLX questions
(Hart and Staveland 1988) to assess perceived workload in relation to the efficiency of the system.
This was measured in this context as the extent of resources demanded in the task. The post-trial
questionnaire also included technology acceptance model (TAM) questions to assess perceived
ease of use (Davis 1989). The participants indicated their level of agreement on a 5-point Likert
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scale ranging from "1 = strongly disagree" to "5 = strongly agree". The final questionnaire was
designed to assess user preferences regarding LOA modes and to evaluate their perceptions as they

collaborate with the robot at specific LOA modes (Table 4).

Table 8. Subjective Measures

?]leie;)(::nt Measurement Question
Accuracy Did the robot make a mistake during the
mission?
Effectiveness . .
Secondary task Did the game negatively affect your
performance in the main task?
Mental demand The task was mentally demanding
Physical demand  The task was physically demanding
Temporal demand The pace of the mission made me accelerate my
work
Effort I had to work hard to finish the task at the level
Efficiency I performed it ' .
Performance I was successful in carrying out the task I was
asked to do
Frustration I felt despair / stress / nerves while performing
the task
Overall perceived  Aggregated raw NASA-TLX scores (Hart 2006)
workload
Easy to use I think the system is easy to use
Understanding It was clear to me what the robot was doing
Intention to use I would love to use this system on a daily basis
Interacting with the robot can help people who
Useful ) .
have difficulty moving
Ease of Use Perceived Humans can rely on this robot
reliability
Trust I felt the robot could be trusted
Overall, I am satisfied with the way the
Satisfaction interaction with the robot in the task was

conducted

Table 9. User Preference Questionnaire

1. Did you feel a difference between the two iterations?
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2. Ifso, what was different?
3. Which of the trials would you prefer?
4. Did you enjoy the task?

Analysis

Each participant performed two trials in the experiment. In both trials, the participant performed
the experiment at a specific level of workload and complexity, but in each trial, a different level
of automation was experienced in a random order. A t-test was applied to check if there was a
significant effect between the iterations. Then, a generalized linear mixed model (GLMM) was
applied to analyze the data with the type of LOA, LOW and LOC, with the variances between the
participants selected as the random effect. All tests were designed as two-tailed with a significance
level of 0.05.

The items in the user preference questionnaire were analyzed individually to assess the preferences
and perceptions of the users for each LOA mode they experienced. The variables: accuracy, time
to complete the task and number of completed sub-tasks were compounded through principal
component analysis (PCA) to form the QoT execution construct assessed in hypothesis H2. This
transformed all the constituent variables into a single construct containing only the principal and
relevant factors forming the construct. Similarly, the Usability construct to be assessed in
hypothesis H3 was a compilation of the following variables through PCA: effectiveness, efficiency,

and ease of use.

4. Results

4.1 Participants' Characteristics
4.1.1 NARS - Negative Attitude towards Robots Scale analysis

The NARS results revealed that 21.06% of the participants had a negative attitude towards
situations and interactions with robots while 63.65% were neutral about it. 26.58% had highly
negative attitudes towards the social influence of robots, 47.61% had a low attitude and 25.81%
were neutral about it. 65.82% had a highly negative attitude towards the concept of robots having
emotions, 8.87% were indifferent about it while 25.31% had a low negative attitude towards it.

4.2 Evaluation of the Interaction
4.2.1 LOA preference

Most of the participants (59%) preferred the lower LOA, in which they felt more involved and in
control of the task however, the difference between the two levels of automation was not
significant (1=-1.365, P=0.174). Additionally, there was no difference in preferences depending
on the order of experiencing the LOA. 57.5% of the participants who experienced first the high
LOA and then low LOA, preferred the high LOA (Figure 7, right), compared to 60% of the
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participants who experienced first the low LOA and then the high LOA that preferred the high
LOA (Figure 7, left).
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Figure 22. LOA preference depending on the order of experiencing LOA

(each experiment included 40 participants)

The results (Figure 8-9) revealed that:
¢ 57.5% of the participants that experienced the high LOC preferred the low LOA (in line with

Hla).

¢ 80% of the participants that experienced the high LOW preferred the high LOA (in line with

HIb).

® 90% of the participants that experienced the high LOW together with the low LOC preferred
the high LOA (in line with H1c).

® 65% of the participants that experienced the high LOW together with the high LOC preferred
the high LOA (as opposed to H1d).
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Figure 23. LOA preferences when participants experienced high LOW/LOC
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Figure 24. LOA preferences for different combinations of LOW and LOC

(each experiment included 20 participants)

4.2.2 Effectiveness

LOW had significant influence on the number of errors the participant perceived (F(1,32)=11.91,
P=0.04) and the performance of the secondary task (M=2.35, SD=0.85, F(1,32)= 4.23, P=0.00).
All of the participants finish the first stage of the game (Figure 10). The majority reached the
second stage of the game while only 10 reached the fourth stage.
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Figure 25. Number of participants who reached stage 1/2/3/4 in the secondary task
4.2.3 Efficiency

Time to complete the task. The three independent variables had significant effect on the
completion time: LOA (F(1,152)=136.82 ,p=0.00), LOW (F(1,152)=5.757, p=0.018) and LOC
(F(1,152)=6.167,p=0.014). At the higher LOA, the time to complete the task was constant and
stood at 87.3 seconds. In the lower LOA, as expected, it took more time for the participant to
complete the task (M=108.57, SD=16.39). At a higher LOW it took participants longer to complete
the task (M=99.72, SD=19.22) than at the low level (M=95.64, SD=10.2) as expected. Similarly,
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when the LOC was higher, it took them longer to complete the task (M=99.87, SD=18.86) when
compared to the low level (M=95.59, SD=11.11) (Figure 11).
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Figure 26: Time to complete the task in LOC (left) and LOW (right)

The combination of LOA with each of the other independent variables had a significant interaction
effect, LOA*LOW (F(1,152)=6.98 ,P=0.009) and LOA*LOC (F(1,152)=1.86, P=0.026) (Figure

12).
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Figure 27: Interaction variable LOA with LOC (left) and LOW (right)

Considering those that performed the higher level of workload, LOA (P=0.00) and LOC
(P=0.00) had also significant effect in this measure (M=99.72, SD=19.22). The interaction
variable LOA*LOC (P=0.00) also had significant influence (Figure 13).
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Figure 28. Time to compiete the taskf(s)r those who experienced high LOW

LOW had significant effect in many of the measures: mental (M=1.88, SD=1.11,
F(1,152)=38.42, P=0.00), temporal (M=1.37, SD=0.66, F(1,152)=29.54, P=0.00), performance
(M=2.45, SD=1.37, F(1,152)=41.35, P=0.00), effort (M=1.99, SD=1.17, F(1,152)=39.93,
P=0.00) and frustration (M=1.68, SD=0.98, F(1,152)=19.62, P=0.00).

As shown in Figure 14, at the high level of workload, the mental load (M=2.39, SD=1.18), the
temporal (M=3.15, SD=1.22), the effort (M=2.59, SD=1.19) and the frustration (M=2.09,
SD=1.09) the participants felt was higher than at the lower level [mental (M=1.32, SD=0.71,
P=0.00), temporal (M=1.67, SD=1.11, P=0.00), effort (M=1.35, SD=0.75, P=0.00) and
frustration (M=1.25, SD=0.61, P=0.00)]. This is as compared to the performance (M=4.49,
SD=0.65) that was better in the lower LOW (M=3.35, SD=1.09).
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Figure 29. Outcome of perceived workload assessement

In terms of the perceived effort, the interaction variable between LOA and LOC also was
significant (F(1,32)=3.18, P=0.02). When LOA was high and LOC was low the participants
testified that they felt the least effort (M=1.82, SD=1.15).

LOA significantly influenced perceived workload as measured through the aggregated raw NASA-
TLX scores (F(1,152)=32.1, P=0.04). At the low level of automation, the participants experience
greater load (M=11.56, SD=0.9), than at the higher level (M=11.2, SD=1.09).

4.2.4 Ease of Use

Heart rate change. The heart rate at the beginning of each iteration (M=80.7, SD=15.83) was
significantly lower than the heart rate at the end of iteration (M=87.29, SD=16.17) as expected
with significant influence of both LOA (M=6.39, SD=11.8), (F(1,152)=2.43, P=0.03) and LOW
(F(1,152)=35.86, P=0.00). Higher LOA (M=8.04, SD=11.42) and higher LOW (M=11.64, 11.61)
led to higher change in the heart rate (Figure 15).
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Perceived reliability. LOW had significant effect (M=4.44, SD=0.73, F(1,152)=5.06, P=0.03) on
perceived reliability as assessed through the questionnaire. The reliability was perceived as higher
by the participants who experienced the low LOW (M=4.55, SD=0.66) than at the high LOW
(M=4.34, SD=0.61) as shown in Figure 16.
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Figure 31. Perceived reliability of the system

Secondary task. LOW had significant influence on the perception of the difficulty of the secondary
task (F(1,32)=59.77, P=0.00) (Figure 17).
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Figure 32. Did the secondary task make it harder for you?

4.2.5 QoT execution

Both LOA (F(1,152)=4.639,p=0.033) and LOW (F(1,152)=93.6,p=0.00) had significant effect
on the QoT execution. The QoT execution was higher at the high LOA when the LOW was low
(Figure 18) confirming H2. The higher QoT at a high LOA is consistent with the preferences of

the participants.

QoT by LOA QoT by LOW

QoT Execution
QoT Execution

Low
Figure 33: QoT execution for LOA and LOW

4.2.6 Usability

The LOW had significant effect (F(1,152)=68.935, P=0.00) on usability. At the high LOW, when
the participants performed a secondary task in addition to the main task the usability was higher

(Figure 19).
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4.2.7 Summary

A summary of all the variables (with their measures) where significant effects of the independent
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Figure 34. LOW for usability

variables were observed are provided in Table 5 as follows:

Table 10. Summary of significant variables

Dependent Independent  Significance
. Measurement )
Variable Variable level
Effec.tlve:.ness Performance in LOW 0.00
(Objective) secondary task
LOA 0.00
Effici LOW 0.018
reency Time LOC 0.014
(Objective)
LOA*LOW 0.009
LOA*LOC 0.026
Ease of use LOA 0.03
o Heart rate change
(Objective) LOW 0.00
Effecti Accuracy LOW 0.04
ectiveness
. Difficulty of secondary LOW 0.00
(Subjective)
task
Effict Mental LOW 0.00
1?1en.cy Temporal LOW 0.00
(Subjective)
Effort LOW 0.00
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LOA*LOC 0.02

Performance LOW 0.00

Frustration LOW 0.00

Perceived workload LOW 0.04

Ease of Use Understanding LOC 0.05
(Subjective) Perceived reliability LOW 0.03

5. Discussion

The results revealed the main influences and interacting influences of LOA, LOW and LOC in the
HRC assembly task context. The implications of the influence of these independent variables in
relation to the main dependent variables (user perception, quality of task execution and usability)
are discussed below.

Influence of LOA
Most participants seem to prefer a low LOA when the task complexity is high. This is in line with

Hla, and also in agreement with previous studies where it was stated that a higher LOA may not
give a positive outcome in situations where uncertainties, and higher probabilities of failure exist
(Onnasch et al. 2014a; Wickens et al. 2010). In high complex tasks where high component and
coordinative complexity increases the probabilities of failure (Campbell 1988; Wood 1986b),
humans usually have a higher potential to better manage unknown or unexpected situations
compared to the robot in the collaboration (Monostori et al., 2006; Wang et al., 2017). This is also
seen in the results relating to the perceived performance where lower LOA is rated by the
participants to produce higher performance when the task complexity is higher. In higher workload
situations, however, where additional resources are needed to complete the task in the least
possible time and with minimal effort, higher LOA is preferred (in line with Hlb, Hlc). The QoT
execution and usability were influenced in line with A2 and H3 respectively. This reinforces the
significance of evaluating LOA modes alongside different workload and complexity situations.
There was no significant effect of the order in which participants experienced the LOA modes
which highlights the importance of appropriate selection of LOA applicable to different situations.
This is important because the LOA design influences human activity, behaviour and involvement
in the collaboration and can impose new coordination demands on the human operator
(Parasuraman, Sheridan, and Wickens 2000). In our study, the low LOA was designed and
implemented in such a way as to ensure that the user's involvement in the task is maintained, and
the robot’s involvement lowers the workload. The high LOA seemed to support the user better
when the workload increases as seen in the results for usability measures. This points to the
necessity of having selectable and adaptable LOA settings in HRC designs to cater for situations
of varying secondary tasks demands (Endsley & Kiris, 1995). In such contexts, the robot can be
adapted to make additional attentional resources available for the human to handle simultaneous
tasks (Kaber & Endsley, 2004).
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Workload considerations
LOW had significant influence on most of the measures indicating that the experimental design

successfully simulated differences in workload. This inspired further examination of the impact of
LOA and LOC for scenarios where the workload was higher (where the participants performed a
secondary task in addition to the main task). The interaction between LOA and LOC had
significant influence in those workload scenarios. The workload also had significant effect on
effectiveness and efficiency of the system leading to reduced QoT execution in situations where
the workload was high. This is consistent with the literature highlighting the contribution of task-
related demands (such as mental, temporal and physical demands involved in the HRC task) to
workload, which could negatively influence resources available to complete task at hand (Hart and
Wickens 1990). However, it is also observed that usability (which included the user perception
regarding ease of use) increased at higher workload. This reflects the possible stress or fatigue that
the users may have experienced at with increased work demands (as seen in the heart rate change
results, Figure 14), and the tendency to desire the support of the robot in such workload situations
as correlated in (Heger and Singh 2006). Provision is therefore made for workload changes and
considerations through LOA options available to improve the QoT execution and usability as
desired by the user.

Task complexity considerations
LOC in the current study did not have influence on most of the dependent variables. This may be

due to insufficient depiction of the level of complexity in the experimental design leading to
minimal influence and perception of the difference between the complexity levels by the
participants for the specific users. However, some of the dependent measures where the complexity
was significant brings into prominence the relevance of the complexity of the task, the influence
on effectiveness, efficiency and ease use. It could also inform the design and selection of LOA
modes applicable for the complexity level of each task. The results reveal that both objective and
subjective complexity considerations as noted in (Rasmussen, Standal, and Laumann 2015) should
be put in view while considering the suitable LOA modes for such HRC assembly tasks. This
consequently affects the QoT execution and usability of the system.

Design recommendations and limitations
The study revealed the influence of LOA in the midst of different workload levels and task

complexity differences. The results obtained in this study is with respect to the specific task, robot
and scenario featured in the study. Furthermore, the evaluation was carried out with users who had
experience with computers and robots. There may be significant differences in the influence of
these variables when observed in other settings, with different forms of robots and tasks. We expect
the results to be amplified with non- technological users. However, the outcome of our study
spotlights some key points which could be relevant to other human-robot collaboration setups
involving LOA at different task complexities and workload levels. We propose some of these
points as design recommendations with caution that additional tests using other platforms may be
beneficial.
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We propose, based on the outcome of the study that a lower LOA is recommended for high task
complexities where failure performance may occur, or uncertainties are prominent as noted in
(Onnasch et al. 2014b). However, when the workload is high, a higher LOA could reduce the
stress or pressure of additional secondary tasks which the robot could support in. This was
observed in the outcome of the user preferences which tended towards higher LOA when the
workload was high. This also agrees with the observations of (Wickens et al. 2010) in their meta-
analyses considering the influence of LOA on workload. High LOA, when designed effectively,
helps to extend the capabilities of the user to attend to other tasks concurrently as noted by (Endsley
& Kiris, 1995). In addition, the influence of the independent variables on the composed constructs
(QoT execution and usability) reveals the potential and sensitivity of these constructs for
assessment purposes in other HRC tasks.

6. Conclusions and future work

This paper presented the design and evaluation of LOA modes at different workload and task
complexity levels for an HRC assembly task. The user study yielded valuable insights into
participants’ preferences and characteristics of the operator interface related to LOA, LOW and
LOC that are required to enhance the user experience and performance. Two constructs were
specially designed for this evaluation: quality of task (QoT) execution and usability. Though, the
three-way interaction of LOA, LOC and LOW did not influence QoT execution and usability as
expected, there were significant two-way interactions across some of the variables assessed. The
effect of the interaction of LOA and LOW was particularly significant on the system efficiency.
The interaction effect of LOA and LOC was similarly significant as well. This highlights the need
to consider the task complexity and workload experienced by the participant when designing LOA
for similar human-robot collaboration tasks.

There were main influences of the independent variables across all the variables with the workload
playing a major role in the interaction and the human experience during the task. The users’
attitudes towards the workload informed some design recommendations regarding the need to
ensure that users are always aware of the actions carried out by the robot in all LOA modes. This
tends to reduce the stress of the human operators associated with workload shifting to quality
control and performance monitoring. Options for error handling are further recommended to be
included in the LOA modes as part of the fallback mechanisms in cases when the robot fails.

Future work should include improving the design to depict more clearly, the complexity levels of
the task for users to perceive. Workload differences with secondary tasks were more evident in the
results obtained. Though, other forms of secondary tasks could also be tested with the same robot
or other platforms as well. For instance, running the study with a mobile robot for daily tasks that
require a wider range of motion may provide additional validation of the study outcomes.
Additionally, similar research should be performed for other kind of tasks and types of users.
Ongoing research is aimed at performing studies with older adults for some tasks of daily living.
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The change of preferences and the differences in the reaction of the older adults should be
examined. This is very relevant considering the situation along the COVID-19 pandemic in which
many older adults are quarantined at home for long periods. Such assistive robots could be
beneficial in performing various tasks for them with different LOA options for different task
complexities and workload levels.
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Chapter 6. Discussion and conclusions

This research examined the influence of levels of automation (LOA) in interaction between
assistive robots and non-technological users, focusing on older adults. Creating a successful
interaction is a pretty challenging task (Breazeal et al. 2016). To achieve this the systems design
utilizes levels of automation (LOA) to define the degree to which the robot would perform
particular functions in its defined role of assisting the user in a specific task (Parasuraman,
Sheridan, and Wickens 2008). The aim is to ensure high quality collaboration between the older
adult and the robot in accomplishing desired tasks, without undermining the autonomy,
preferences and satisfaction of the older adult. This LOA-aided design seeks a balance between
assisting the older adults as much as possible and involving them in the task to avoid idleness,
sedentariness, boredom or loss of skill in the long run.

This research revisited the study of automation levels in everyday tasks such as table setting,
specific for the older adult population. In this study we focused on several significant aspects in
combination with LOA that are important in designing a robot-human collaboration. In addition,
the combination of LOA with each of the other variables we examined at each stage of the study.
The first aspect we studied was LOT. Existing studies reveal that the information presented to
the users significantly influences their comprehension of the robot’s behavior, performance and
limitations (Chen et al. 2014; Dzindolet et al. 2003; Lyons 2013). This information facilitates the
users' knowledge of the automation connected to the task (Endsley 2017b). This affects the
users' understanding of their role and that of the robot in any given interaction (Chen et al. 2014;
Doranet et al. 2017; Hellstrom et al. 2018; Lyons 2013). In this study where the level of
involvement of the participant varies with the LOA, it is noteworthy that the LOT preferred is
influenced by the LOA the robot is operating in. Participants seem to prefer less information (low
LOT) when the robot was operating more autonomously (high LOA). They also seem to prefer
more information (high LOT) when they were more active with the robot such as the case in low
LOA mode. This agrees with the findings in (Chen et al. 2018) where differences were not found
in the transparency level that included only status information and reason without LOA involved.
As expected, there was a tradeoff regarding degree of involvement and time to complete task
i.e., at a higher degree of user involvement, more time was spent to complete the task.

The second aspect investigated was the feedback type that the robot gives the user during the
task. The feedback loop is also an important feature of interactive systems; it provides the user
with information improving the nature of the interaction between a person and a dynamic
system. Since older adults’ perceptual capabilities and limitations differ from the younger
population due to age-related perceptual declines, particularly evident in processing information
(Mitzner et al. 2015). Thus, the correct choice of interaction between the assisting environment
and the user is of high importance (Broekens et al. 2009). Older adults’ interaction with robots
requires effective feedback to keep them aware of the state of the interaction for optimum
interaction quality (Beer et al. 2014). Results revealed that the integration of different types of
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feedback during the task increases the participant's involvement, especially at a high level of
automation. For the more, it was found that GUI screen feedback for this task is less relevant for
adults and they rarely looked at the screen because they were concentrated in the robot.
Therefore, it is recommended to focus more on other types of feedback. Furthermore, possibly
due to the robot being new to them and therefore demanding more focus, after a certain period
of time they will become accustomed to it and prefer visual feedback like a GUI screen.

The additional aspects we addressed in this thesis were levels of workload and complexity of the
task, LOW and LOC. Workload addresses the actual and perceived amount of work that the
human operator experiences which includes the effort invested in the task (Hart et al. 1990). Task
complexity depends on properties of the task (objective complexity) and the perception of the
human operator (subjective complexity) (Rasmussen et al. 2015). It can generally be
characterized in terms of the stimuli involved in the task for inputs as well as the behavioral
requirements the human operator should emit in order to achieve a specific level of performance
(Wood 1986a). Results revealed that the effect of the interaction of LOA and LOW was
particularly significant on the system efficiency. The interaction effect of LOA and LOC was
similarly significant as well. This highlights the need to consider the task complexity and
workload experienced by the participant when designing LOA for similar human-robot
collaboration tasks. There were main influences of the independent variables across all the
variables with the workload playing a major role in the interaction and the human experience
during the task. The wusers’ attitudes towards the workload inform some design
recommendations regarding the need to ensure that users are always aware of the actions
carried out by the robot in all LOA modes.

As expected, from all the studies it emerged that the levels of automation influenced interaction
and performance aspects and there seems to be a significant difference in the quality of the
interaction at the different levels of automation. A main conclusion refers to the users'
preferences for the level of automation in which they perform a joint task with a robot. According
to these studies, in the older adults population a preference will be biased to a level that
incorporates their involvement in task control while the robot performs the action. In situations
where a secondary task is performed during the main task, the preference tendency will be for a
higher level of automation. But it is important to mention that the population with which it was
tested was students and therefore this study should be advanced with older adults population.
This study yielded valuable insights into participants’ preferences and characteristics of the
operator interface related to LOA, LOT, feedback, LOW and LOC that are required to enhance the
user experience and performance. The robotic systems were designed to assist in a routine task
in the home environment.

However, it is important to note that these experiments examined specific scenarios and robotic
tasks. In order to generalize these conclusions, additional experiments must be performed to
examine different tasks at different levels of workload and complexity.

Another aspect for further research relates to the improving the design to depict more clearly,
the complexity levels of the task for users to perceive. Workload differences with secondary tasks
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were more evident in the results obtained. Though, other forms of secondary tasks could also be
tested with the same robot or other platforms as well.

As stated above, in light of the circumstances of the Corona, the last study was modified and
adapted to a target audience of students instead of the older adult population. In the future, as
we expand this experiment to our target population, changes will be made to the design of the
experiment to accommodate for this. The changes will include changing the task itself, changing
the level of the complexity and changing the secondary task to a less thoughtful task. If the
changes are made in a tailored manner, | expect to get similar results in the older adult
population. | expect when the adults feel the higher workload, they will prefer a higher level of
automation, as well as when they experience a higher level of complexity.

In general, this study has limitations that require longitudinal research in order to examine all the
effects and reach more stable conclusions.

This research can be applied in the future using a portable and easy-to-operate robotic arm that
will converge on adult homes and help them perform, along with them, their daily tasks.
Presumably this will bring with it large financial costs but it is important to remember that the
potential population giving help to assisting adults is declining while the adult population is
increasing. Therefore, the benefit in this case is very high and worth investing into since in the
long run it can even be financially rewarding in addition to the profit and benefits it provides to
the adults.

With the advance of technology, its decreasing costs and the increasing demand for assistive
technology we expect robots to penetrate into many applications. This research provides general
recommendations for designing assistive robots for older adults by taking into account the effect
of levels of automation as related to levels of transparency, feedback, workload and task
complexity.
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List of Appendices

Appendix A- study 2
A.1 BGU ethical committee

|. General

Name of Research Project: Level of automation in combine system human-robot
To which agency is the proposal being submitted (or has been submitted): None.

Principal Investigator/s (or academic supervisor/s):

Name: Vardit Sarne-Fleischmann Name: Yael Edan

Department: IE&M Department: IE&M

Academic position: Phd Academic position: Prof University Telephone:

University Telephone:

Mobile Phone: Mobile Phone:
University Email: varditf@gmail.com University Email: yael@bgu.ac.il
Other Email:
Other Email:

Name(s) of those conducting the research (if different from above):
Name: Dana Gutman Name:

Department: IE&M Department:
Academic position:  Academic position:
University Telephone: University Telephone:
Mobile Phone: 0526566525 Mobile Phone:
Email: danagut@post.bgu.ac.il Email:

Il. Consent to Participate

Are the subjects able to legally consent to participate in the research? |ZYes/ [ INo
If you answered ‘No’ to question 1, complete section Ilb
Will the subjects be asked to sign a consent form? &Yes/ [ Ino

If you answered ‘No’ to question 2, explain here:
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lIb: Subjects who cannot legally consent (minors, mentally incapacitated, etc.):

Will the subject's legal guardian be asked to sign a consent form? [ es / [INo
If you answered ‘No’, to question 3, please explain here:

Will the subject be asked to give oral consent? [] []

Yes/ No

Are the instructions appropriate to the subjects' level of understanding? [] []

Yes/ No

Comments: In the case of minors - they will be asked to give oral consent, whereas their
parents will be asked to sign a consent form.

6. If informed consent forms will be signed, how will the informed consent forms be stored to
ensure confidentiality? All signed forms will be saved in a locked cabinet.

Ill. Discomfort:

Will the participants be subjected to physical discomfort? [] X Yes /
No

Will the participants be subjected to psychological discomfort?: [] X Yes /
No

If you answered ‘Yes’ to question 7 or 8, add here a detailed explanation of the circumstances:

IV. Deception

Does the research involve deceiving the subjects? [ es / >Xno

Is the decision on the part of the subject to participate in the study based on deception?

(For example, if they are informed of their participation only after the event.) [ es / >Xno
If you answered ‘Yes’ to question 9 or 10, add here a detailed explanation why deception is
necessary:

V. Feedback to the Subject

Note: Although feedback to the subject is recommended for all studies, it is required for studies
that involve discomfort or deception. Feedback entails providing the subject, upon completion
of the experiment, explanation of the experiment and its aims.

Will the subjects be provided with post-experiment oral feedback? [] X Yes /
No
Will the subjects be provided with post-experiment written feedback? [] X Yes /
No

If you answered ‘No’ to both questions 11 and 12, explain here: The purpose of the experiment
is to find out the optimal level of automation for a simple task, such as table editing for an older
population. This goal requires analysis and therefore participants do not receive feedback after
the experiment

VI. Compensation for Participation

13. Will the subjects receive compensation for participation? |ZYes/ []
No
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Detail here the type and amount of compensation: 50 NIS
If you answered ‘No’ to question 13, explain the basis for participation:

VII. Privacy:
Will audio and/or visual recordings be made of the subjects? Yes/ No |Z |:| a. If

yes, are they informed of this fact in the informed consent form?  Yes/ No
Will the data collected (apart from the informed consent form) contain X []
identifying details about the subjects? |ZYes/ [ INo

a. If the data contains identifying details, please answer here: (1) What steps will you take to
ensure the confidentiality of the information? (2) How will the data be stored? (3) What will be
done with identifying information or recordings of the subjects at the end of the research?

the data will be encoded and will be deleted after the research

VIII. Withdrawal from the Study:
Will subjects be informed that they may withdraw from the study at any time? Dves / []
No
Will the subjects’ compensation for participation be affected if they withdraw from the study
before its completion? Yes/ No a. If yes, are they informed of ] X this
fact in the informed consent form?  Yes/ No

1 [
IX. Research Equipment

18. Does the research entail the use of equipment other than standard equipment, such as

computers, video recording equipment? |ZYes/ [ INo 19.
If yes, does the equipment being used meet safety standard for use with human subjects?
>Xves / [ INo

Please specify which standards (include documentation where appropriate): During the
experiment, hands can be placed in the robot's work area. In order to deal with this
situation, we defined clear and defined areas for the individual where he is allowed to work.
Morover, the robot which will be used in the study is programmed to avoid collision and to slow
down when approaching any obstacle. It meets the ISO 10218-1:2011 safety standard.

Signatories:

Signature: - Date: 4.2.19 Name: Yael Edan
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Name: Dana Gutman Position:

88



A.2 Explanation form for the subject
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A.3 Consent form for the subject
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A.4 Dermographique quaternaires
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A.6 NARS Questionnaire
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Appendix B- study 3
B.1 BGU ethical committee

Application for Approval to Use Humans as Subjects in Empirical Study

|. General

Name of Research Project: Level of automationand workload in combine system human-
robot To which agency is the proposal being submitted (or has been submitted): None.

Principal Investigator/s (or academic supervisor/s):

Name: Vardit Sarne-Fleischmann Name: Yael Edan

Department: IE&M Department: IE&M

Academic position: Phd Academic position: Prof University Telephone:
University

Telephone:

Mobile Phone: = Mobile Phone:

University Email: varditf@gmail.com University Email: yael@bgu.ac.il
Other Email:

Other Email:

Name(s) of those conducting the research | (if different from above):
Name: Dana Gutman Name:
Department: IE&M Department:
Academic position: Master student Academic position:
University Telephone:  University Telephone:

Mobile Phone:  Mobile Phone:
Email: danagut@post.bgu.ac.il Email:

Il. Consent to Participate

N
Are the subjects able to legally consent to participate in the research? Yes /DNO
If you answered ‘No’ to question 1, complete section Ilb
Will the subjects be asked to sign a consent form? |ZYes/ [ Ino

If you answered ‘No’ to question 2, explain here:
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lib: Subjects who cannot legally consent (minors, mentally incapacitated, etc.):

Will the subject's legal guardian be asked to sign a consent form? Yes/ No
If you answered ‘No’, to question 3, please explain here:

Will the subject be asked to give oral consent? [] []

Yes/ No

Are the instructions appropriate to the subjects' level of understanding? L] L]

Yes/ No

Comments: In the case of minors - they will be asked to give oral consent, whereas their
parents will be asked to sign a consent form.

If informed consent forms will be signed, how will the informed consent forms be stored to
ensure confidentiality? All signed forms will be saved in a locked cabinet. lil.

Discomfort: [] ]

Will the participants be subjected to physical discomfort? Yes /
No []

Will the participants be subjected to psychological discomfort?: Yes/ No

If you answered ‘Yes’ to question 7 or 8, add here a detailed explanation of the circumstances:

IV. Deception
Does the research involve deceiving the subjects? [] Yes J/Z No
Is the decision on the part of the subject to participate in the study based on deception?

(For example, if they are informed of their participation only after th ent.) es/
No
If you answered ‘Yes’ to question 9 or 10, add here a detailed explanation why deception is
necessary:

V. Feedback to the Subject

Note: Although feedback to the subject is recommended for all studies, it is required for studies
that involve discomfort or deception. Feedback entails providing the subject, upon completion
of the experiment, explanation of the experiment and its aims.

Will the subjects be provided with post-experiment oral feedback? [] X Yes
/ No
Will the subjects be provided with post-experiment written feedback? [] Yes
/ No

If you answered ‘No’ to both questions 11 and 12, explain here: The purpose of the experiment
is to find out the optimal level of automation for a simple task, such as table editing for an older
population. This goal requires analysis and therefore participants do not receive feedback after
the experiment

VI. Compensation for Participation

13. Will the subjects receive compensation for participation? [] Ees/
No
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Detail here the type and amount of compensation: -
If you answered ‘N0’ to question 13, explain the basis for participation: Students in Automation
course will receive 1 bonus point to their grade.

VII. Privacy:

Will audio and/or visual recordings be made of the subjects? Yes/ No |Z |:| a. If
yes, are they informed of this fact in the informed consent form?  Yes/ No
Will the data collected (apart from the informed consent form) contain X []

identifying details d5git the[Supjects? Yes/ No

a. If the data contains identifying details, please answer here: (1) What steps will you take to
ensure the confidentiality of the information? (2) How will the data be stored? (3) What will be
done with identifying information or recordings of the subjects at the end of the research?

the data will be encoded and will be deleted after the research

VIll. Withdrawal from the Study:
Will subjects be informed that they may withdraw from the study at any timc@ I:k(es/
No
Will the subjects’ compensation for participation be affected if they withdraw from the study
before its completion? Yes/ No a. If yes, are they informed of [] this
fact in the informed consent form?  Yes/ No

1 [

IX. Research Equipment
18. Does the research entail the use of equipment other than standard equipment, such as

N
computers, video recording equipment? [] Yes/ No

19. If yes, does the equipment being used meet safety standard for use with human subjects?

&Yes / I:lNo

Please specify which standards (include documentation where appropriate): The robot
which will be used in the study (Dobot) is programmed to avoid collision and to slow down

when aproaching any obstacle. It meets the ISO 10218-1:2011 safety standard.
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Signatories:

Name: Dana Gutman Position:

= =
Signature: Date: 4/6/20
Name: Yael Edan Position:

oL b,

Signature: Date: 4.6.20
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B.2 Explanation form for the subject
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B.3 Consent form for the subject
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B.4 Pre-questionnaires
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B.5 Post- trial questionnaire

VUNIDX |I7XRY

LI QY ASFAN0XAY ON'3 KID IN'SAD OV O30 1o Mo
04200 XY aam -

oaon M -2

Tika

Q70 3T DD K N P NOOS [T

nnen won

~

1200 ann

* Zpwen nxnw o1a an

* wuna o'wpmaa owesa? ¥o'r A1 0NN oY AFO0IRD

"
»
w
[

* gana v oY nue neann

"
-
w
"

* aroam mxnn? oY o

"
»
w
"



108

* An'wma 0aNA QY AYENIDEED AN A2 7110 AXNn s Y e

<

@)

3 2 1

@) @) @)

* nP0in y'nan navam ana anwnn

3 2 1

o @) @)

- I 2'nan nauam anta aasena

3 2 1

O O O

* mvaw nicpral % oa amena asp

3 2 1

O @) @)

* neov'y MWUFANAY AN'WDRA Y] NYem TN

3 2 1

@) @) @)

* anm nyaa 03 A Anwnn 0H0Y 1193 Aep 1Yt 7 e



109

m
* anwna wara Yrana oo menn

3 2 1

O O o

* ot ora nrra nowm ennen’ nowK
» O
O

* wmwh vy nownne 2en ax
» O
O

* aww pana anama Yy an

3 2 1

@) O @)

Anwnn AN A 0aNa arn
» O
L O]

Zanvema ne vaa' 1Y o'na pnena axa
» O

L O]

npn (O

muaaan ()

{mavn % pnem avn ¥y ox ) 2pnwna nvan abe Ay

NP N T OO0

Amremn TYana NG ank axn
» O
L O]




110

B.6 Final questionnaire
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