
 
BEN-GURION UNIVERSITY OF THE NEGEV 

FACULTY OF ENGINEERING SCIENCES 
DEPARTMENT OF BIOMEDICAL ENGINEERING 

 

 

 

 

 

DESIGN AND ANALYSIS OF A 

MINIMALLY ACTUATED SERIAL ROBOT 

FOR MEDICAL PROCEDURES 

 
 
 
 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE M.Sc. DEGREE 

 

 

 

 

 

By 
 
 

Lior Damti 
 

 

 

 

 

 

 

 

 

 

 

 
 
 

February 2017 



 

BEN-GURION UNIVERSITY OF THE NEGEV 
FACULTY OF ENGINEERING SCIENCES 

DEPARTMENT OF BIOMEDICAL ENGINEERING 
 

 

 

 

DESIGN AND ANALYSIS OF A 

MINIMALLY ACTUATED SERIAL ROBOT 

FOR MEDICAL PROCEDURES 
 
 

 
THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE M.Sc. DEGREE 

 

 

 

By:  Lior Damti 
 

Supervised by:  Dr. David Zarrouk 

                             Prof. Amnon Sintov 
 

 

 

 

Author:                                            Date: ……21/2/17……… 

 

Supervisor:                                        Date: ……21/2/17……… 

 

Supervisor:                                                                     Date: ……21/2/17……… 

 

 

Chairman of Graduate Studies Committee:                           Date: ….23/2/17…... 

 

 

 

 

 

February 2017 



i 

Abstract 

Endoscopy of the gastrointestinal (GI) tract is a widely used medical procedure in 

many countries. However, the conventional endoscopy, which is based on a 

compliant endoscope manually handled by a physician, has two drawbacks: (1) It 

results in patient discomfort, and (2) its access to the small intestine is very limited. 

Accessibility is quite important for many procedures, including biopsies, control of 

bleeding and strictures' dilatations. Attempts made to access body vessels have 

utilized highly articulated serial robots, sometimes called ‘snakes’. These robots are 

practically impossible to navigate along the intestine due to its length, and thus 

require dozens or hundreds of actuators, making them extremely cumbersome to 

operate, and limiting the potential to minimize their diameter. Furthermore, the 

excessive number of actuators would result in a compliant system incapable of 

applying forces that may be needed for traveling inside the intestine or perform 

simple procedures such as a biopsy. 

In this project, we propose a novel type of serial robot with minimal 

actuation, aka ‘MARS’ (minimally-actuated robotic snake). The robot is a serial 

rigid structure consisting of multiple links connected by passive joints and movable 

actuators. The novelty of this robot is that the actuators travel over the links to a 

given joint and adjust the relative angle between the two adjacent links. The joints 

passively preserve their angles until the actuator moves them again. This actuation 

can be applied to any serial robot with two or more links. This unique configuration 

enables the robot to undergo the same wide range of motions typically associated 

with hyper-redundant robots but with much fewer actuators. The robot is modular 

and its size and geometry can be easily changed. Besides its potential medical 

applications, this type of robots can also be used for industrial, agricultural, and 

search and rescue applications.  

In this thesis, we describe the robot’s mechanical design and kinematics in 

detail and demonstrate its capabilities for obstacle avoidance with some simulated 

examples using motion planning and optimization algorithms. In addition, we show 

how an experimental robot fitted with a single mobile actuator can maneuver 

through a confined space to reach its target. 

Keywords: GI endoscopy; serial robot; minimal actuation; mobile actuator. 
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Nomenclature 

𝐴𝑖 [−]  Homogeneous transformation matrix of frame 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 with  

respect to frame 𝑜𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1 

𝑎 [−]  Approach direction vector, represents the direction of 𝑧𝑖in  

                                     frame 𝑜𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1 

𝑎𝑖 [𝑚]  DH parameter - link length 

𝑐𝑖 [−]  Cosine of angle 𝜃𝑖 

𝑑 [𝑚]  Translation vector from 𝑜𝑖−1 to 𝑜𝑖 in frame 𝑜𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1 

𝑑𝑖 [𝑚]  Prismatic joint variable\ DH parameter - link offset  

𝐹 [𝑁]  Force 

𝑓 [−]  Function 

𝐻 [−]  Homogeneous transformation matrix 

ℎ𝑖𝑗 [−]  Elements of homogeneous transformation matrix 

𝐽 [𝑚]  Jacobian 

𝐾𝑡        [
𝑁𝑚

𝑟𝑎𝑑
]  Stiffness coefficient  

𝐿 [𝑚]  Link length  

𝑙𝑖 [𝑚]  Length of link i 

𝑁 [−]  Number of links in the chain\ Number of DOF 

𝑛 [−]  Normal direction vector, represents the direction of 𝑥𝑖 in  

frame 𝑜𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1 

𝑜 [𝑚]  Origin of a coordinate frame 

𝑝 [−]  Cost for the number of links to be moved 

𝑞𝑖    [𝑚], [𝑟𝑎𝑑] Joint variable 

�̇�𝑖    [
𝑚

𝑠𝑒𝑐
] , [

𝑟𝑎𝑑

𝑠𝑒𝑐
] Joint velocity 

𝑅 [−]  Rotation matrix 

𝑅𝑜𝑡 [−]  Basic homogeneous transformation matrix generating SE(3)  

                                    for rotation about the x, y, z-axes 

ℝ3 [−]  A set of real numbers in the 3D space 

𝑟𝑖 [𝑚]  Range vector from joint i to the force’s point of application 

𝑆𝐸 [−]  Special Euclidean group 

𝑆𝑂 [−]  Special Orthogonal group 



vi 

𝑠 [−]  Sliding direction vector, represents the direction of 𝑦𝑖in  

frame 𝑜𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1 

𝑠𝑖 [−]  Sine of angle 𝜃𝑖 

𝑇𝑗
𝑖 [−]  Homogeneous transformation matrix of frame 𝑜𝑗𝑥𝑗𝑦𝑗𝑧𝑗  with  

respect to frame 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖  

𝑇𝑟𝑎𝑛𝑠 [−]  Basic homogeneous transformation matrix generating SE(3)  

                                    for translation about the x, y, z-axes 

𝑣 [
𝑚

𝑠𝑒𝑐
]  Linear velocity vector 

𝑋 [𝑚]  Cartesian displacement vector\ Cartesian target coordinate  

𝑥 [𝑚]  Cartesian coordinate  

𝑌 [𝑚]  Cartesian displacement vector\ Cartesian target coordinate 

𝑦 [𝑚]  Cartesian coordinate  

𝑧 [𝑚]  Cartesian coordinate  

Greek letters 

𝛼𝑖 [𝑟𝑎𝑑]  DH parameter - link twist  

𝛿 [−]  Differential 

𝜃𝑖 [𝑟𝑎𝑑]  Revolute joint variable\ DH parameter - joint angle 

𝜉 [
𝑚

𝑠𝑒𝑐
]  Cartesian velocity vector (body velocity) 

𝜏 [𝑁𝑚]  Torque 

𝜔 [
𝑟𝑎𝑑

𝑠𝑒𝑐
]  Angular (rotational) velocity vector 

Subscripts 

𝑎 Translation along x-axis  

𝑏 Translation along y-axis\ Backlash angle 

𝑐 Translation along z-axis 

𝑓 Final coordinate 

𝑓𝑖𝑛 Final relative angle 

𝑖 Index 

𝑖𝑛𝑖𝑡 Initial relative angle  

𝑗 Index 

𝑘 Index 
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𝑛 Index 

𝑡 Torsion angle 

𝑣 Linear velocity component 

𝑥 Axis direction  

𝑦 Axis direction  

𝑧 Axis direction  

𝛼 Rotation angle about x-axis 

𝛽 Rotation angle about y-axis 

𝛾 Rotation angle about z-axis 

𝜔 Angular (rotational) velocity component 

Superscripts 

𝑇 Transpose of a matrix 
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1. Introduction 

The long-term purpose of this study is to develop a mechanically innovative serial 

robot for operating in confined places. This robot can be used for many applications 

in a number of fields, such as agriculture and search-and-rescue, yet, our interest was 

mainly directed towards its potential medical applications. With rapid technological 

advancement over the past decades, there is a growing need for minimally invasive 

surgeries world-wide. Most of these procedures are performed using robotic 

instruments, as they are more accurate and therefore can minimize the risks and 

complications involving surgical operations. They can also be used to enhance the 

capabilities of surgeons performing open surgery, leading to the possibility for 

remote surgery (in the case of computer-controlled systems).  

 

1.1 Literature Review 

Minimally-Invasive interventions provide the patient with numerous advantages 

over traditional open surgery by reducing pain, tissue damage, blood loss and 

cosmetic damage. Overall, they are proven to greatly improve the quality of life of 

patients and reduce the risk of postoperative complications. One of the most 

commonly used minimally invasive procedures is gastrointestinal endoscopy. 

However, the critical limitation of gastrointestinal endoscopy is the difficulty to 

access the small intestine. Such access is important for many procedures, including 

biopsies, control of bleeding, and strictures' dilatations.  

Multiple attempts were made to access biological vessels using highly 

articulated serial robots that are sometimes referred to as ‘snakes’ [1]. These robots 

are practically impossible to navigate along the intestine due to its length, and as 

such, snake robots usually require dozens or hundreds of actuators, making them 

extremely cumbersome to operate, and limiting the potential to minimize their 

diameter. Furthermore, the excessive number of actuators will result in a compliant 

system incapable of applying forces that may be needed for traveling inside the 

intestine or perform simple procedures such as biopsy.  

While some minimally invasive external surgical robots were successful 

(such as Da-Vinci and Renaissance [2] [3]), all attempts to travel a large distance 

through biological vessels with self-propelled miniature robots [4]-[19] or snake like 
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robots [19] [20] have not succeeded. In a recent study, Zarrouk et al. [21] modeled 

the locomotion of crawling inside highly elastic biological vessels and described 

how the compliance and varying properties and geometries of biological vessels [22] 

[23] stopped the advance of the robots. The models were later experimentally 

demonstrated [24] using a unique experimental single actuator worm robot [25].  

The movement inside biological vessels presents a major challenge for 

medical robots because of their substantial compliance and low friction on this 

surface [26]. Furthermore, it requires sophisticated motility for a tiny robot, 

available energy source and accessories for medical use. Therefore, research groups 

and technology companies worldwide have failed in their attempts to produce 

operationally reliable micro-robots capable of moving inside biological vessels.  

1.1.1 Gastrointestinal Endoscopy 

Endoscopy is a minimally invasive diagnostic medical procedure in which a 

surgeon uses an endoscope to look inside a patient’s body. The endoscope consists 

of a tubular probe fitted with a tiny camera and light, which is inserted to the body 

through a small incision. The camera transmits footage to a viewing screen that 

magnifies the images of the body’s internal structures. The surgeon can then perform 

certain surgical tasks by inserting instruments through one or more small incisions 

in the skin [27].  

 

Figure 1.1: Lower and upper endoscopy of the gastrointestinal tract [27]. 

http://www.thaimedicalnews.com/medical-tourism-thailand/what-is-endoscopy-gastrointestinal-digestion-disorder-exam/


3 

Most often the term ‘endoscopy’ is used to refer to an examination of the 

upper part of the gastrointestinal (GI) tract known as esophagogastroduodenoscopy, 

or EGD. Endoscopy of the lower GI tract is used to examine the intestine, most 

commonly known as colonoscopy (endoscopy of the large intestine), as shown in 

Fig. 1.1. 

The gastrointestinal tract is an organ system responsible for consuming and 

digesting food, absorbing nutrients and expelling waste. The GI tract includes all 

organs between the mouth and the anus (rectum) [28] and is divided into the upper 

and lower GI tract. The whole digestive tract is about 9 m long, and is presented in 

Figure 1.2.  

The upper GI tract consists of the organs between the mouth and the stomach. 

The process begins in the mouth and continues in a muscular tube padded mucous 

called the pharynx. The pharynx is connected to the esophagus, which is a 

fibromuscular tube approximately 25 cm long that ends in the stomach, a sack-like 

organ containing about 0.05 ÷ 1.5 L of fluid. The pH in the stomach is estimated 

between 1.5 ÷ 4, which is a very acidic environment.  

 

Figure 1.2: Anatomical representation of the gastrointestinal system [28]. 
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The lower GI tract is the segment extending from the stomach to the anus, 

and includes most of the small intestine and the large intestine. The small intestine 

consists of three parts: duodenum, jejunum and ileum. Its total length is about 6 m 

and the average diameter is approximately 3 cm [29]. The inner walls of the jejunum 

and ileum are coated with bumps named "villi". This unique structure increases the 

surface area of the inner wall and thereby contributes to the efficiency of nutrient 

absorption.  

The large intestine is a continuation of the small intestine. It is intermittently 

covered by peritoneum, which is the serous membrane that forms the lining of the 

abdominal cavity. The large intestine consists of four main parts: cecum, colon, 

rectum and anal canal. It also includes the appendix, which is attached to 

the cecum.  The colon is the longest part in the large intestine and is about 1.5 m 

long. It is organized in a type of an open-square shape around the small intestine. 

The colon is divided into four subsections: ascending colon, transverse colon, 

descending colon and sigmoid colon [29]. 

The gastrointestinal tract has a form of general histology with some 

differences that reflect the specialization in functional anatomy (for more details see 

Appendix A). The mechanical properties of the intestine differ from person to person 

and frequently change depending on the health, age, gender, diet and even the time 

and weather. In the last decades, many developments succeeded in entering and 

moving inside the large intestine [30], however, at this time, no robotic development 

in use can enter and move freely inside the small intestine. EGD gets as far as the 

first segment of the small bowel, the duodenum, but the next two parts, the jejunum 

and ileum, require other methods.  

Visualization of the small bowel has long posed a challenge to 

gastroenterologists, due to the physical difficulty of reaching its more distal regions. 

Pediatric colonoscopes which are much longer than standard gastroscopes can 

visualize the proximal jejunum. This technique is referred to as push enteroscopy, 

shown in Fig. 1.3 (A). Push forces required to advance the endoscope are usually 

greater than 6.6 N 40% of the time [31] [32], and can range up to 17.6 ÷ 4 N in live 

patients, depending on age, gender and examined part of the intestine [33]. 

According to a study performed on excised pig colon, the forces exerted by the 

colonoscope on the colon wall were about 3.0 ± 0.37 N [31]. In a different research, 

studying the effects of distractive forces to the small intestine, gross tissue disruption 



5 

in pig and human tissue performed ex-vivo was seen at forces starting as early as 2.3 

and 2.9 N, respectively; however, with in-vivo testing, blood flow to the bowel wall 

was reduced to undetectable levels at loads exceeding 0.98 N [34]. Due to the length 

of the small bowel, averaging 4-6 meters in the adult, push enteroscopy is still not 

effective to adequately visualize large portions of the small intestine [35] [36]. 

Wireless capsule endoscopy has proven to be the endoscopic investigation 

of choice for visualization of the entire small bowel. An 11 × 32 mm pill sized video 

camera is swallowed by the patient and approximately eight hours of video is 

transmitted wirelessly to a receiver worn by the patient. The procedure is painless, 

well accepted by patients and offers a very high accuracy. However, it is limited by 

the inability to carry out medical procedures, such as obtaining biopsies, and is 

therefore considered a purely diagnostic tool [30] [35] [37] [38].  

Newer techniques, including single and double-balloon endoscopy (see Fig. 

1.3 (B) and (C)) have been developed to overcome some of these issues, but are 

limited by the length of the procedure, and the need for deep sedation or general 

anesthesia. Spiral enteroscopy, shown in Fig. 1.3 (E), is a novel technique that 

utilizes an overtube with raised spirals affixed on the enteroscope that is rotated to 

advance the enteroscope deep into the small bowel [39]. Each of these three 

enteroscopy platforms offers similar accuracy and effectiveness but do not have 

widespread availability and are not without complications [38] [40]. 

 

 

Figure 1.3: Enteroscopic devices. (A) Push enteroscope, (B) double-balloon enteroscope, (C) 

single-balloon enteroscope, (D) balloon dilatation of jejunal stricture, (E) spiral enteroscope  [36]. 



6 

For these reasons, we believe that the use of a robotic endoscope will allow 

the physician to better control all parts of the device, especially the distal end of the 

endoscope, through which the surgical operations are executed. The configurable 

nature of the robot will provide easier access to the intestine compared to the current 

tubular probe, as the orientation of each link can be controlled remotely, which will 

result in fewer, if any, manual maneuvers required from the physician and thereby, 

reducing operation time and patient discomfort. In addition, our robotic device 

should meet the basic demands of any endoscope: reliability, low-cost, simple to 

operate, and the ability to perform procedures in real-time.  

1.1.2 Serial Robots  

Serial robots are made of multiple links connected through actuated joints. For 

6DOF (degrees-of-freedom) applications, these robots are generally made of six 

links and a seventh link may be added to avoid simple obstacles. Serial robots offer 

multiple advantages as they are accurate, quick to react and provide a large work 

volume [41]. Their widespread use and integration in numerous industrial 

applications such as pick and place and welding occurred a few years after being 

originally introduced in the early 1970s, with many companies offering multiple off-

the-shelf prototypes [42] [43].  

Over the years, the robots evolved in terms of force and precision, and 

current models can reach between 1 m to 3 m with a force range from 5 kg [44] to 

500 kg [45] and a precision of 40 microns [44]. However, the main setback of serial 

robots is their force to weight ratio and inability to operate through obstacles, cavities 

or in pipes. To overcome this challenge, snake robots which are practically serial 

robots made of large number of joints, about 20 or more, were developed in the mid-

1990s [26] [46] [47]. Initially, snake robots appeared to have a great potential for 

different applications in confined spaces, pipes and rubble, but after continuous work 

over two decades [48]-[54], they seem to be still facing some mechanical challenges 

and not ready to be used in a real-life applications due to their length, size and large 

weight. 

1.1.3 Hyper-Redundant Robots  

Hyper-redundant robots are robots with serially connected links that possess a large 

kinematic redundancy. As part of the robotic snake family, they are the subject of 
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extensive research over the past several decades [55] [56] with many different 

configurations, mechanisms, control strategies, and motion planning algorithms 

being proposed over the years. The principle motivation for developing hyper-

redundant robots is their ability to navigate around obstacles and in highly confined 

spaces. 

Still, there are some serious challenges facing rigid hyper-redundant robots. 

Because of their large number of actuators, they are often slow-acting and consume 

power even when static. In addition, they contain an actuator at each joint, which 

renders the robot relatively weak and energy inefficient. Furthermore, their bulky 

design results in a low operating payload and large deflections [57]. 

In addition to the technical shortcomings of hyper-redundant robots, 

algorithms for planning their motions present a formidable challenge. Most of the 

standard methods developed for robot motion planning [58] [59] are intractable for 

the high-dimensional coordinate space of hyper-redundant robots. Early motion 

planners for hyper-redundant robot motion planning were developed by Gregory 

Chirkjian in [60]-[63]. In those works, the curvature of the robotic snake was 

approximated as a continuous modal function with the obstacles expressed as 

boundary constraints on the robot’s shape. Many recent works have addressed 

obstacle avoidance schemes for hyper-redundant robots. State-of-the-art approaches 

including genetic algorithms [64] [65], variational methods [66], and probabilistic 

roadmaps [67] are used to plan the motions of the robots. However, these motion 

planners are usually time consuming and not always implementable in real-time 

applications.  

To avoid these shortcomings while still achieving high redundancy, flexible 

robots have been developed as an alternative. Also known as ‘soft’ robots or 

continuum robots, they consist of a flexible continuous structure that possess, at least 

in theory, an infinite number of degrees-of-freedom. The advantage of flexible 

robots over hyper-redundant robots is their lightweight and speed. However, there 

is still ongoing research to improve their accuracy, control and position and sensing 

capabilities (see [68] and [69]). Those shortfalls render them, as of today, unsuitable 

for tasks requiring a relatively high degree of accuracy such as medical and 

agricultural applications. 
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1.2 The MARS: A New Robotic Concept 

As previously stated, the long-term aim of this research is to develop a novel family 

of minimally-actuated multi-linkage serial robots (MMSR), for operating in 

confined spaces for light-load tasks.  

In this work, we propose the Minimally Actuated Robotic Snake (MARS), 

which combines some characteristics and advantages from both hyper-redundant 

robots and compliant robots. In contrast to classical hyper-redundant robots, the 

MARS is a serial robot consisting of multiple links connected by passive joints and 

of a small number of movable actuators. The actuators translate over the links to any 

given joint and adjust it to the desired angular displacement. The joint passively 

preserves its angle until it is actuated again. The number of degrees-of-freedom is 

equal to the number of joints. This enables the MARS to achieve similar mobility 

(albeit slower) to regular hyper-redundant robots. The advantages of the MARS are 

its simplicity, smaller weight, higher energy density (power/mass), low cost and 

modularity, as the number of links and actuators can be easily changed. 

The development of the under-actuated family of serial robots will allow 

reaching previously inaccessible areas. As such, the outcome of this research will 

also allow for the development of task-specific low-cost minimally invasive robots 

that will hopefully minimize operating room time and procedure cost. Furthermore, 

we expect that the ease of access to the large and small intestines will encourage 

doctors to develop new diagnostic and therapeutic procedures. 
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2. Theoretical Background 

Robot manipulators are composed of nearly rigid links connected by joints to form 

a kinematic chain. Joints are typically rotary (revolute) or linear (prismatic), as 

shown in Figure 2.1 bellow, and allow relative motion between adjacent links [70]. 

These joints are usually instrumented with position sensors, which allow the relative 

position of neighboring links to be measured. In the case of rotary or revolute joints, 

these displacements are called joint angles. Some manipulators contain sliding 

(prismatic) joints, in which the relative displacement between links is a translation, 

sometimes called the joint offset.  

At the free end of the chain of links that make up the manipulator is the end-

effector. Depending on the intended application of the robot, the end-effector could 

be a gripper, a welding torch, an electromagnet, or another device.  

In order to describe the position and orientation of a body in space, we will 

always attach a coordinate system, or frame, rigidly to the object. We then proceed 

to describe the position and orientation of this frame with respect to some reference 

coordinate system (see Fig. 2.2). We generally describe the position of the 

manipulator by giving a description of the tool frame, which is attached to the end-

effector, relative to the base frame, which is attached to the nonmoving base of the 

manipulator [71]. 

 

Figure 2.1: Symbolic representation of robot joints [70]. 
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Figure 2.2: Kinematic equations describe the tool frame relative to the base frame as a function of 

the joint variables [71]. 

 

2.1 The Configuration Space 

A configuration of a manipulator is a complete specification of the location 

of every point on the manipulator. The set of all possible configurations is called the 

configuration space. In our case, if we know the values for the joint variables (i.e., 

the joint angle for revolute joints, or the joint offset for prismatic joints), then it is 

straightforward to infer the position of any point on the manipulator, since the 

individual links of the manipulator are assumed to be rigid, and the base of the 

manipulator is assumed to be fixed. Therefore, in this text, we will represent a 

configuration by a set of values for the joint variables. We will denote this vector of 

values by q, and say that the robot is in configuration q when the joint variables take 

on the values q1,..,qn, with qi = θi for a revolute joint and qi = di for a prismatic joint. 

An object is said to have n degrees-of-freedom (DOF) if its configuration 

can be minimally specified by n parameters. Thus, the number of DOF is equal 

to the dimension of the configuration space. For a robot manipulator, the number of 

joints determines the number DOF. A rigid object in three-dimensional space has 

six DOF: Three for positioning and three for orientation (e.g., roll, pitch and yaw 

angles). Therefore, a manipulator should typically possess at least six independent 

DOF. With fewer than six DOF the arm cannot reach every point in its work 

environment with arbitrary orientation. Certain applications such as reaching around 
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or behind obstacles may require more than six DOF. A manipulator having more 

than six links is referred to as a kinematically redundant manipulator. The difficulty 

of controlling a manipulator increases rapidly with the number of links [70].  

 

2.2 The Workspace 

The workspace of a manipulator is the total volume swept out by the end-effector as 

the manipulator executes all possible motions (see Figs. 2.3-2.4). The workspace is 

constrained by the geometry of the manipulator as well as mechanical constraints on 

the joints. For example, a revolute joint may be limited to less than a full 360° of 

motion. The workspace is often broken down into a reachable workspace and a 

dexterous workspace. The reachable workspace is the entire set of points in space 

reachable by the manipulator (in at least one orientation), whereas the dexterous 

workspace consists of those points that the manipulator can reach with an arbitrary 

orientation of the end-effector. Obviously, the dexterous workspace is a subset of 

the reachable workspace [70]. 

 

Figure 2.3: Structure of the elbow manipulator [70]. 
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Figure 2.4: Workspace of the elbow manipulator [70]. 

 

2.3 Introduction to Robot Kinematics 

Kinematics is the science of motion that treats motion without regard to the forces 

which cause it. Within the science of kinematics, one studies position, velocity, 

acceleration, and all higher order derivatives of the position variables (with respect 

to time or any other variable(s)). Hence, the study of the kinematics of manipulators 

refers to all the geometrical and time-based properties of the motion. 

2.3.1 Rigid Motions and Homogeneous Transformations  

A rigid motion is a combination of pure translation and pure rotation; it is defined 

as an ordered pair (𝑑, 𝑅), in which 𝑑 ∈ ℝ3 and 𝑅 ∈ 𝑆𝑂(3), where the latter 

represents the rotation matrix (see Appendix B.1-B.2). The group of all rigid motions 

is known as the Special Euclidean group and is denoted by SE(3). Rigid motions can 

be represented in matrix form using the notion of homogeneous transformation,  

𝐻 = [
𝑅 𝑑
0 1

] ;     𝑅 ∈ 𝑆𝑂(3),   𝑑 ∈ ℝ3                          (2.1) 

so that composition of rigid motions can be reduced to matrix multiplication as in 

the case for composition of rotations. 

Homogeneous transformations combine the operations of rotation and 

translation into a single matrix multiplication, and are used to derive the so-called 

forward kinematic equations of rigid manipulators. Furthermore, homogeneous 
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transformation matrices can be used to perform coordinate transformations, such that 

allow us to represent various quantities in different coordinate frames. 

The most general homogeneous transformation that we will consider may be 

written as  

𝐻1
0 = [

𝑛𝑥 𝑠𝑥 𝑎𝑥 𝑑𝑥
𝑛𝑦 𝑠𝑦 𝑎𝑦 𝑑𝑦
𝑛𝑧
0

𝑠𝑧
0

𝑎𝑧
0

𝑑𝑧
1

] = [
𝑛 𝑠 𝑎 𝑑
0 0 0 1

],                       (2.2) 

where 𝑛 = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)
𝑇
is a vector representing the direction of 𝑥1 in the 𝑜0𝑥0𝑦0𝑧0 

system, the vector 𝑠 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧)
𝑇
 represents the direction of  𝑦1, and the vector 

𝑎 = (𝑎𝑥, 𝑎𝑦, 𝑎𝑧)
𝑇
 represents the direction of  𝑧1. The vector 𝑑 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧)

𝑇
 

represents the vector from the origin 𝑜0 to the origin 𝑜1 expressed in the 

frame 𝑜0𝑥0𝑦0𝑧0 [70]. 

 A set of basic homogeneous transformations generating SE(3) is given 

by Eq. (2.3)-(2.5) for translation and rotation about the x, y, z-axes, respectively: 

𝑇𝑟𝑎𝑛𝑠𝑥,𝑎 = [

1 0 0 𝑎
0 1 0 0
0
0

0
0

1
0

0
1

] ;   𝑅𝑜𝑡𝑥,𝛼 = [

1 0 0 0
0 𝑐𝛼 −𝑠𝛼 0

0
0

𝑠𝛼
0

𝑐𝛼
0

0
1

]             (2.3) 

𝑇𝑟𝑎𝑛𝑠𝑦,𝑏 = [

1 0 0 0
0 1 0 𝑏
0
0

0
0

1
0

0
1

] ;   𝑅𝑜𝑡𝑦,𝛽 = [

𝑐𝛽 0 𝑠𝛽 0

0 1 0 0
−𝑠𝛽
0

0
0

𝑐𝛽
0

0
1

]             (2.4) 

𝑇𝑟𝑎𝑛𝑠𝑧,𝑐 = [

1 0 0 0
0 1 0 0
0
0

0
0

1
0

𝑐
1

] ;   𝑅𝑜𝑡𝑧,𝛾 = [

𝑐𝛾 −𝑠𝛾 0 0
𝑠𝛾 𝑐𝛾 0 0

0
0

0
0

1
0

0
1

].            (2.5) 

The same interpretation regarding composition and ordering of 

transformations holds for 4 × 4 homogeneous transformations as for 3 × 3 rotations. 

Given a homogeneous transformation 𝐻1
0 relating two frames, if a second rigid 

motion represented by 𝐻 ∈ 𝑆𝐸(3) is performed relative to the current frame, then 

𝐻2
0 = 𝐻1

0𝐻,                                                    (2.6) 
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whereas if the second rigid motion is performed relative to the fixed frame, then 

𝐻2
0 = 𝐻𝐻1

0.                                                    (2.7) 

 

2.4 Forward Kinematics 

A very basic problem in the study of mechanical manipulation is forward kinematics. 

This is the static geometrical problem of computing the position and orientation of 

the end-effector of the manipulator. Specifically, given a set of joint angles, the 

forward kinematic problem is to compute the position and orientation of the tool 

frame relative to the base frame. Sometimes, we think of this as changing the 

representation of manipulator position from a joint space description into a Cartesian 

space description; namely, the position of the point is given with three numbers 

representing its location defined by three axes: x, y and z, and the orientation of a 

body is given with three numbers representing the rotation angles about these axes 

[71]. The orientation of the three axes, as a whole, is arbitrary, however, the 

orientation of the axes relative to each other should always comply with the right-

hand rule, unless specifically stated otherwise. 

2.4.1 The Denavit-Hartenberg Convention  

As previously stated, the forward kinematics problem is concerned with the 

relationship between the individual joints of the robot manipulator and the position 

and orientation of the tool or end-effector. The joint variables are the angles between 

the links in the case of revolute or rotational joints, and the link extension in the case 

of prismatic or sliding joints.  

A set of conventions was developed in order to provide a systematic 

procedure for performing this analysis [70]. It is, of course, possible to carry out 

forward kinematics analysis even without respecting these conventions, as in the 

case of a two-link planar manipulator (see Appendix B.4).  

A commonly used convention for selecting frames of reference in robotic 

applications is the Denavit-Hartenberg, or DH convention [70]. In this convention, 

each homogeneous transformation 𝐴𝑖 (see Appendix B.3) is represented as a product 

of four basic transformations: 
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𝐴𝑖 = 𝑅𝑜𝑡𝑧,𝜃𝑖𝑇𝑟𝑎𝑛𝑠𝑧,𝑑𝑖𝑇𝑟𝑎𝑛𝑠𝑥,𝑎𝑖𝑅𝑜𝑡𝑥,𝛼𝑖 =                          (2.8) 

= [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0

𝑠𝜃𝑖 𝑐𝜃𝑖 0 0

0
0

0
0

1
0

0
1

] [

1 0 0 0
0 1 0 0
0
0

0
0

1
0

𝑑𝑖
1

] [

1 0 0 𝑎𝑖
0 1 0 0
0
0

0
0

1
0

0
1

] [

1 0 0 0
0 𝑐𝛼𝑖 −𝑠𝛼𝑖 0

0
0

𝑠𝛼𝑖
0

𝑐𝛼𝑖
0

0
1

] = 

= [

𝑐𝜃𝑖 −𝑠𝜃𝑖𝑐𝛼𝑖
𝑠𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑐𝜃𝑖

𝑠𝜃𝑖 𝑐𝜃𝑖𝑐𝛼𝑖
−𝑐𝜃𝑖𝑠𝛼𝑖 𝑎𝑖𝑠𝜃𝑖

0
0

𝑠𝛼𝑖
0

𝑐𝛼𝑖
0

𝑑𝑖
1

] 

where the four quantities 𝑎𝑖, 𝛼𝑖 𝑑𝑖, 𝜃𝑖 are parameters associated with link i and joint 

i, and are generally given the names link length, link twist, link offset and joint angle, 

respectively. Since the matrix 𝐴𝑖 is a function of a single variable, it turns out that 

three of the above four quantities are constant for a given link, while the fourth 

parameter, 𝜃𝑖 for a revolute joint and 𝑑𝑖 for a prismatic joint, is the joint variable. 

Clearly it is not possible to represent any arbitrary homogeneous 

transformation using only four parameters1, as formerly discussed. Suppose we are 

given two frames denoted by frames 0 and 1, respectively, as illustrated in Figure 

2.5, which satisfy the following two conditions: 

(DH1) The axis 𝑥1 is perpendicular to the axis 𝑧0. 

(DH2) The axis 𝑥1 intersects the axis 𝑧0.   

 

Figure 2.5: Coordinate frames satisfying assumptions DH1 and DH2 [70]. 

                                                 
 1 Usually an arbitrary homogeneous transformation matrix is characterized by six numbers: three 

numbers to specify the fourth column of the matrix and three Euler angles to specify the upper left   

3 × 3 rotation matrix. 
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Under these conditions, it can be proven (proof can be found in [70], section 

3.2.1) there exists a unique homogeneous transformation matrix 𝐴 that takes the 

coordinates from frame 1 into those of frame 0, and can be represented in the form 

of Eq. (2.8).  

Now we can in fact give a physical interpretation to each of the four 

quantities in (2.8). The parameter 𝑎 is the distance between the axes 𝑧0 and 𝑧1, and 

is measured along the axis 𝑥1. The angle 𝛼 is the angle between the axes 𝑧0 and 𝑧1, 

measured in a plane normal to 𝑥1. The positive sense for 𝛼 is determined from 𝑧0 

to 𝑧1 by the right-handed rule. The parameter 𝑑 is the perpendicular distance from 

the origin 𝑜0 to the intersection of the 𝑥1 axis with 𝑧0, measured along the 𝑧0 axis. 

Finally, 𝜃 is the angle between 𝑥0 and 𝑥1 measured in a plane normal to 𝑧0. The 

positive sense for 𝜃 is determined from 𝑥0 to 𝑥1 by the right-handed rule [70].  

For a given robot manipulator, one can always choose the frames 0,… , 𝑛 in 

such a way that the above two conditions are satisfied. From Eq. (2.8), it is evident 

that the choice of 𝑧𝑖 is arbitrary since any direction for 𝑧𝑖 can be obtained by 

choosing 𝛼𝑖 and 𝜃𝑖 appropriately. Thus, axes 𝑧0, … , 𝑧𝑛−1 are assigned in an 

intuitively pleasing fashion; specifically, 𝑧𝑖 is assigned to be the axis of actuation for 

joint i + 1. In other words, if joint i + 1 is revolute, 𝑧𝑖 is the axis of revolution of joint 

i + 1; if joint i + 1 is prismatic, 𝑧𝑖 is the axis of translation of joint i + 1. This satisfies 

the convention that we established earlier, namely that joint i is fixed with respect to 

frame i, and that when joint i is actuated, link i and its attached frame 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 

experience a resulting motion. 

Once we have established the z-axes for the links, we need to establish the 

base frame, also referred to as frame 0. The choice of a base frame is nearly arbitrary, 

since its origin 𝑜0 can be chosen at any point on 𝑧0. The choice for 𝑥0, 𝑦0 can be 

done in any convenient manner so long as the resulting frame is right-handed.  

Once frame 0 has been established, we begin an iterative process in which 

frame i is defined using frame i − 1, starting with frame 1. This process is illustrated 

in Fig. 2.6 for two links with revolute joints, along with the corresponding DH 

parameters. In order to set up frame i it is necessary to consider three cases: (i) the 

axes 𝑧𝑖−1, 𝑧𝑖 are not coplanar, (ii) the axes 𝑧𝑖−1, 𝑧𝑖 are parallel, (iii) the axes 𝑧𝑖−1, 𝑧𝑖 

intersect. Each of these cases is specified below [70]. 
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Figure 2.6: Denavit-Hartenberg frame assignment and parameters [70]. 

 (i) 𝑧𝑖−1 and 𝑧𝑖 are not coplanar: If 𝑧𝑖−1 and 𝑧𝑖 are not coplanar, then there exists a 

unique line segment perpendicular to both 𝑧𝑖−1 and 𝑧𝑖 such that it connects 

both lines and it has minimum length. The line containing this common normal 

to 𝑧𝑖−1 and 𝑧𝑖 defines 𝑥𝑖, and the point where this line intersects 𝑧𝑖 is the origin 𝑜𝑖. 

By construction, both conditions DH1 and DH2 are satisfied and the vector from 

𝑜𝑖−1 to 𝑜𝑖 is a linear combination of 𝑧𝑖−1 and 𝑥𝑖. The specification of frame i is 

completed by choosing the axis 𝑦𝑖 to form a right-handed frame. Since 

assumptions DH1 and DH2 are satisfied, the homogeneous transformation matrix 𝐴𝑖 

is of the form of Eq. (2.8). 

(ii) 𝑧𝑖−1 is parallel to 𝑧𝑖: If the axes 𝑧𝑖−1 and 𝑧𝑖 are parallel, then there are 

infinitely many common normals between them and condition DH1 does not 

specify 𝑥𝑖 completely. In this case the origin 𝑜𝑖 can be chosen anywhere along 𝑧𝑖, 

preferably in a manner which simplifies the resulting equations. The axis 𝑥𝑖 is then 

chosen either to be directed from 𝑜𝑖 toward 𝑧𝑖−1, along the common normal, or as 

the opposite of this vector. A common method for choosing 𝑜𝑖 is to choose the 

normal that passes through 𝑜𝑖−1 as the 𝑥𝑖 axis; 𝑜𝑖 is then the point at which this 

normal intersects 𝑧𝑖. In this case, 𝑑𝑖 would be equal to zero. Once 𝑥𝑖 is fixed, 𝑦𝑖 is 

determined, as usual, by the right hand rule. Since the axes 𝑧𝑖−1 and 𝑧𝑖 are parallel, 

𝛼𝑖 will be zero in this case.  
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(iii) 𝑧𝑖−1 Intersects 𝑧𝑖: In this case 𝑥𝑖 is chosen normal to the plane formed by 𝑧𝑖 

and 𝑧𝑖−1. The positive direction of 𝑥𝑖 is arbitrary. The most natural choice for the 

origin 𝑜𝑖 in this case is at the point of intersection of 𝑧𝑖 and 𝑧𝑖−1, however, any 

convenient point along the axis 𝑧𝑖 suffices. Note that in this case the parameter 𝑎𝑖 

equals 0. 

This constructive procedure works for frames 0,… , 𝑛 − 1 in an n-link robot. 

To complete the construction, it is necessary to specify frame n. The final coordinate 

system 𝑜𝑛𝑥𝑛𝑦𝑛𝑧𝑛 is commonly referred to as the end-effector or tool frame. The 

origin 𝑜𝑛 is most often placed symmetrically between the fingers of the gripper, as 

shown in Fig. 2.7.  

The unit vectors along the 𝑥𝑛, 𝑦𝑛 and 𝑧𝑛 axes are labeled as n, s, and a, 

respectively. The terminology arises from the fact that the direction a is the approach 

direction, in the sense that the gripper typically approaches an object along the a 

direction. Similarly, the s direction is the sliding direction, the direction along which 

the fingers of the gripper slide to open and close, and n is the direction normal to the 

plane formed by a and s [70]. 

In most contemporary robots the final joint motion is a rotation of the end-

effector by 𝜃𝑛 and the final two joint axes, 𝑧𝑛−1 and 𝑧𝑛, coincide. In this case, the 

transformation between the final two coordinate frames is a translation along 𝑧𝑛−1 

by a distance 𝑑𝑛 followed (or preceded) by a rotation of 𝜃𝑛 about 𝑧𝑛−1. This 

observation will simplify the computation of the inverse kinematics, which will be 

addressed in the next section.  

 

Figure 2.7: Tool frame assignment for a 3D gripper [70]. 
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In all cases, whether the joint in question is revolute or prismatic, the 

quantities 𝑑𝑖 and 𝛼𝑖 are always constant for all i and are characteristic of the 

manipulator. If joint i is prismatic, then 𝜃𝑖 is also a constant, while 𝑎𝑖 is the i-th joint 

variable. Similarly, if joint i is revolute, then 𝑎𝑖 is constant and 𝜃𝑖 is the i-th joint 

variable. 

 

2.5 Inverse Kinematics 

In the previous section we considered the problem of computing the position and 

orientation of the end-effector when given the joint variables of the manipulator. 

This section is concerned with the more difficult converse problem: Given the 

desired position and orientation of the end-effector, how do we compute the set of 

joint variables which will achieve this desired result? 

Solving this problem requires first to formulate the general inverse 

kinematics problem: Given a 4 × 4 homogeneous transformation 𝐻, as defined in 

Eq. (2.11), find (one or all) solutions of the equation  

𝑇𝑛
0(𝑞1, … , 𝑞𝑛) = 𝐻                                                 (2.9) 

where 

𝑇𝑛
0(𝑞1, … , 𝑞𝑛) = 𝐴1(𝑞1)⋯𝐴𝑛(𝑞𝑛).                                 (2.10) 

Here, 𝐻 represents the desired position and orientation of the end-effector, and the 

objective is to find the values for the joint variables 𝑞1, … , 𝑞𝑛 so that Eq. (2.9) 

applies. 

Since the bottom row of both 𝑇𝑛
0 and 𝐻 is (0,0,0,1), four of the sixteen 

equations represented by Eq. (2.9) are trivial. Hence, the solution for Eq. (2.9) results 

in twelve nonlinear equations in n unknown variables, which can be written as  

𝑇𝑖𝑗(𝑞1, … , 𝑞𝑛) = ℎ𝑖𝑗 ,         𝑖 = 1,2,3,    𝑗 = 1,… ,4                   (2.11) 

where 𝑇𝑖𝑗, ℎ𝑖𝑗 refer to the twelve nontrivial entries of 𝑇𝑛
0 and 𝐻, respectively. 

Whereas the forward kinematics problem always has a unique solution that 

can be obtained simply by evaluating the forward equations, the inverse kinematics 

problem may or may not have a solution. Even if a solution exists, it may or may not 
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be unique. Furthermore, because these forward kinematic equations are in general 

complicated nonlinear functions of the joint variables, the solutions may be difficult 

to obtain even when they exist.  

For example, in the case of a two-link planar mechanism there may be no 

solution if the given (𝑥, 𝑦) coordinates are out of reach of the manipulator. If the 

given (𝑥, 𝑦) coordinates are within the manipulator’s reach there may be two 

solutions as shown in Figure 2.8 below, the so-called ‘elbow-up’ and ‘elbow-down’ 

configurations, or there may be exactly one solution if the manipulator must be fully 

extended to reach the point. There may even be an infinite number of solutions in 

some cases. 

In solving the inverse kinematics problem we are most interested in finding 

a closed form solution of the equations rather than a numerical solution. Finding a 

closed form solution means finding an explicit relationship: 

𝑞𝑘 = 𝑓𝑘(ℎ11, … , ℎ34),           𝑘 = 1,… , 𝑛.                        (2.12) 

Having closed form solutions allows one to develop rules for choosing a particular 

solution among several. In certain applications, where the equations must be solved 

at a rapid rate, having closed form expressions rather than an iterative search is a 

practical necessity.  

In most cases, the inverse kinematic equations are much too difficult to solve 

directly in closed form. Therefore, we need to use efficient and systematic 

techniques that exploit the particular kinematic structure of the manipulator (see 

Appendix B.5-B.7) [70]. 

 

Figure 2.8: Multiple inverse kinematic solutions for a two-link planar mechanism [70].  
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The practical question of the existence of solutions to the inverse kinematics 

problem depends on engineering as well as mathematical considerations. Once a 

solution to the mathematical equations is identified, it must be further checked to see 

whether or not it satisfies all constraints on the ranges of possible joint motions.  

 

2.6 Velocity Kinematics - The Manipulator Jacobian 

In the previous sections we discussed the forward and inverse position equations 

relating joint positions to the end-effector positions and orientations. In this chapter 

we derive the velocity relationships, relating the linear and angular velocities of 

the end-effector to the joint velocities.  

Mathematically, the forward kinematic equations define a function between 

the space of Cartesian positions and orientations and the space of joint positions. 

The velocity relationships are then determined by the Jacobian of this 

function. The Jacobian is a matrix that can be thought of as the vector version 

of the ordinary derivative of a scalar function. The Jacobian is one of the most 

important quantities in the analysis and control of robot motion. It arises in 

virtually every aspect of robotic manipulation, such as the planning and execution 

of smooth trajectories, the determination of singular configurations and in the 

derivation of the dynamic equations of motion. In this paper it is mainly used in the 

transformation of forces and torques from the end-effector to the manipulator’s 

joints, and in the transformation between the n-vector of joint velocities and the six-

vector consisting of the linear and angular velocities of the end-effector [70].  

2.6.1 Jacoboians  

As mentioned above, the Jacobian is a multidimensional form of the derivative. 

Suppose we have six functions, each of which is a function of six independent 

variables: 

𝑦1 = 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)

𝑦2 = 𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6)
⋮

𝑦6 = 𝑓6(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6).

                                     (2.13) 

If we wish to calculate the differentials of 𝑦𝑖 as a function of differentials of 𝑥𝑗, we  

simply use the chain rule and we get 
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𝛿𝑦1 =
𝜕𝑓1
𝜕𝑥1

𝛿𝑥1 +
𝜕𝑓1
𝜕𝑥2

𝛿𝑥2 +⋯+
𝜕𝑓1
𝜕𝑥6

𝛿𝑥6

𝛿𝑦2 =
𝜕𝑓2
𝜕𝑥1

𝛿𝑥1 +
𝜕𝑓2
𝜕𝑥2

𝛿𝑥2 +⋯+
𝜕𝑓2
𝜕𝑥6

𝛿𝑥6

⋮

𝛿𝑦6 =
𝜕𝑓6
𝜕𝑥1

𝛿𝑥1 +
𝜕𝑓6
𝜕𝑥2

𝛿𝑥2 +⋯+
𝜕𝑓6
𝜕𝑥6

𝛿𝑥6.

                          (2.14) 

These equations could also be written using vector notation: 

�⃗⃗� = 𝐹(�⃗�)                                                      (2.15) 

𝛿�⃗⃗� =
𝜕𝐹

𝜕�⃗�
𝛿�⃗�.                                                   (2.16) 

The 6 × 6 matrix of partial derivatives in (2.14) is called the Manipulator 

Jacobian, J, or Jacobian for short [71]. Note that if the functions 𝑓1(�⃗�) through 𝑓6(�⃗�) 

are nonlinear, then the partial derivatives are a function of the 𝑥𝑖 so the following 

notation can be used: 

𝛿�⃗⃗� = 𝐽(�⃗�)𝛿�⃗�                                                (2.17) 

By dividing both sides by the differential time element, the Jacobian defines a 

mapping between the velocities in �⃗� to those in �⃗⃗�: 

�̇⃗⃗� = 𝐽(�⃗�)�̇⃗�                                                   (2.18) 

At any particular instant, �⃗� has a certain value, and 𝐽(�⃗�) is a linear transformation. 

At each new time instant, �⃗� has changed and therefore, so has the linear 

transformation. Jacobians are time-varying linear transformations. 

In the field of robotics, we generally use Jacobians that relate joint velocities 

to Cartesian velocities of the end-effector. For example, 

𝜉 = 𝐽�̇�                                                       (2.19) 

where 𝑞 is the vector of joint angles of the manipulator and 𝜉 is a vector of Cartesian 

velocities. For the general case of an n-jointed manipulator, the Jacobian is 6 × n, �̇� 
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is n × 1, and 𝜉 is 6 × 1. This 6 × 1 Cartesian velocity vector2 is the 3 × 1 linear 

velocity vector and the 3 × 1 rotational velocity vector stacked together, which 

correspond to the linear and rotational components of the Jacobian, given by 

𝜉 = [
𝑣𝑛
𝜔𝑛
]  and  𝐽 = [

𝐽𝑣
𝐽𝜔
].                                       (2.20) 

Jacobians of any dimension (including non-square) can be defined. The 

number of rows equals the number of degrees-of-freedom in the Cartesian space 

being considered. The number of columns in a Jacobian is equal to the number of 

joints of the manipulator. In dealing with a planar arm, for example, there is no 

reason for the Jacobian to have more than three rows, although for redundant planar 

manipulators, there could be arbitrarily many columns (one for each joint). 

As shown in Eq. (2.20), the upper half of the Jacobian 𝐽𝑣 is given as 

 𝐽𝑣 = [𝐽𝑣1 … 𝐽𝑣𝑛]                                           (2.21) 

where the i-th column 𝐽𝑣𝑖 is 

𝐽𝑣𝑖 = {
 𝑧𝑖−1 × (𝑜𝑛 − 𝑜𝑖−1)     for revolute joint 𝑖 
            𝑧𝑖−1                       for prismatic joint 𝑖 

                (2.22) 

and the lower half of the Jacobian is given as 

𝐽𝜔 = [𝐽𝜔1 … 𝐽𝜔𝑛]                                          (2.23) 

where the i-th column 𝐽𝜔𝑖 is 

𝐽𝜔𝑖 = {
 𝑧𝑖−1     for revolute joint 𝑖 
     0        for prismatic joint 𝑖 

                            (2.24) 

Proof for Eqns. (2.22) and (2.24) can be found in [70], sections 4.6.2 and 4.6.1, 

respectively. 

Putting the upper and lower halves of the Jacobian together, the Jacobian for 

an n-link manipulator is of the form 

                                                 
2 In considering the motions of robotic links, we will always use link frame {0} as our reference 

frame. Hence, 𝑣𝑖 is the linear velocity of the origin of link frame {i} and 𝜔𝑖 is the angular velocity of 

link frame {i}. 
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𝐽 = [𝐽1 … 𝐽𝑛]                                               (2.25) 

where the i-th column 𝐽𝑖 is given by 

𝐽𝑖 = [
𝑧𝑖−1 × (𝑜𝑛 − 𝑜𝑖−1)

𝑧𝑖−1
]                                     (2.26) 

if joint i is revolute and 

𝐽𝑖 = [
𝑧𝑖−1
0
]                                                     (2.27) 

if joint i is prismatic. 

Figure 2.9 illustrates a second interpretation of Eq. (2.26). As can be seen in 

the figure, 𝑜𝑛 − 𝑜𝑖−1 = 𝑟 and 𝑧𝑖−1 = 𝜔 in the familiar expression 𝑣 = 𝜔 × 𝑟. The 

above formulas simplify the determination of the Jacobian of any manipulator since 

all of the quantities needed are available once the forward kinematics are worked 

out. The only quantities needed to compute the Jacobian are the unit vectors 𝑧𝑖 with 

respect to the base, which are given by the first three elements in the third column 

of 𝑇𝑖
0, and the coordinates of the origins 𝑜𝑖, which are given by the first three 

elements of the fourth column of 𝑇𝑖
0. 

 

Figure 2.9: Motion of the end-effector due to link i [70]. 
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2.6.2 Jacoboians in the Force Domain 

The chainlike nature of a manipulator leads us quite naturally to consider how forces 

and moments "propagate" from one link to the next. Typically, the robot is pushing 

on something in the environment with the chain's free end (the end-effector) or is 

perhaps supporting a load at the tip. We wish to solve for the joint torques that 

must be acting to keep the system in static equilibrium. 

When forces act on a mechanism, work (in the technical sense) is done if the 

mechanism moves through a displacement. Work is defined as a force acting 

through a distance and is a scalar with units of energy. The principle of “virtual 

work” allows us to make certain statements about the static case by allowing the 

amount of this displacement to go to an infinitesimal. Work has the units of energy, 

so it must be the same measured in any set of generalized coordinates. Specifically, 

we can equate the work done in Cartesian terms with the work done in joint-space 

terms. In the multidimensional case, work is the dot product of a vector force or 

torque and a vector displacement. Thus, we have 

�⃗� ∙ 𝛿�⃗� = 𝜏 ∙ 𝛿�⃗�                                                (2.28) 

where �⃗� is a 6 × 1 Cartesian force-moment vector acting at the end-effector, 𝛿�⃗� is 

a 6 × 1 infinitesimal Cartesian displacement of the end-effector, 𝜏 is a 6 × 1 vector 

of torques at the joints, and 𝛿�⃗� is a 6 × 1 vector of infinitesimal joint displacements. 

Expression (2.28) can also be written as 

�⃗�𝑇𝛿�⃗� = 𝜏𝑇𝛿�⃗�.                                                (2.29) 

Using the definition of the Jacobian from Eq. (2.17), where in this case   

𝛿�⃗� = 𝐽𝛿�⃗�,                                                   (2.30) 

and substituting into (2.29) yields the following expression  

�⃗�𝑇𝐽𝛿�⃗� = 𝜏𝑇𝛿�⃗�                                               (2.31) 

which must hold for all 𝛿�⃗�; hence, we get 

�⃗�𝑇𝐽 = 𝜏𝑇 .                                                   (2.32) 
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Transposing both sides yields this result: 

𝜏 = 𝐽𝑇�⃗�.                                                   (2.33) 

Eq. (2.33) verifies in general what was stated at the beginning of the section: The 

Jacobian transpose maps Cartesian forces acting at the end-effector into equivalent 

joint torques. This relationship is very useful in a many aspects of robotic 

manipulation as it allows us to convert a Cartesian quantity into a joint-space 

quantity without calculating any inverse kinematic functions [71]. 
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3. Robot Description and Design 

One of the most crucial elements in the general mechanical design of a robot is to 

determine the minimal actuation requirements to perform a specific task. The 

minimalistic approach allows us to simplify the geometry, minimize the robot size 

and reduce the costs altogether while increasing the accuracy of the operation and 

the forces it can apply.  

Our novel robot system is composed of N links connected through passive 

joints, mobile actuators that travel over the links, and an end-effector. The passivity 

of the joints is defined by there being no motors in between them, while the angle 

between adjacent links is preserved. The number of links and mobile actuators can 

be easily varied depending on the proposed task; the current design is composed of 

one mobile actuator and ten links (10 DOF), where the last link is unique and 

functions as the end-effector. The mobile actuator consists of two motors: One is 

required for translation, and the second for rotation. When the mobile actuator 

travels over the links it can rotate the desired joint, thereby changing the relative 

angle between the links by a desired angle of up to 45 degrees in each direction. The 

base is where the robot is connected to a constant support or a mobile platform, and 

is referred to as link 0, according to the DH convention. 

All of the robot’s parts are 3D printed using Object Connex 350 with nominal 

accuracy of nearly 50 microns using ‘VeroGray’ (prototype ‘A’) or ‘VeroWhite’ 

(prototype ‘C’) material, which possess similar mechanical properties. 

 

3.1 Prototype ‘A’ 

The initial version of the robot was developed during the first year, and our main 

objective was to show proof of concept. For this reason, as well as the simplicity of 

the design, it was decided to limit the robot’s capabilities to operate in a two-

dimensional workspace. The basic requirements which needed to be answered are 

as follows: 

 Modular structure of the links - the links must be easily connected (and 

disconnected) to each other so that the robot’s size could be changed on 

demand.  

 Structural rigidity - the links must be rigid enough to sustain self-weight. 
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 Each link could be rotated in a relative angle of up to 45° clockwise (CW) 

and counterclockwise (CCW) with respect to the link it is attached to. 

 Each link must have a locking mechanism in order to maintain its desired 

orientation. 

 The robot will consist of only one actuator with the ability to travel freely 

over the links, forward and backward, and rotate each link in the plane (CW 

and CCW).  

 The mobile actuator must travel over curved joints without changing their 

orientation. 

3.1.1 Mechanical Design  

In this version, the links are connected to each other by revolute joints and the joint 

angle is passively locked by a spring applying a friction force. The maximum relative 

angle between the links is 45 degrees, as shown in Fig. 3.1(a). At their bottom, the 

links have a track (see Fig. 3.1(b)) which allows the mobile actuator to travel along 

them to reach and actuate a desired joint. Each of the links is 2.5 cm wide and 5 cm 

long, giving the active section of the snake robot a total length of 50 cm. 

To increase the friction force we glued sand papers to the links and inserted 

a metal screw to the clamp. Using this mechanism, the friction torque required to 

move the links is nearly 50 mNm. As a result, a half meter long 3D printed robot can 

apply nearly 0.1 N only at its tip without slipping. 

 

Figure 3.1: A top and bottom view of two adjacent links. (a) The relative orientaion between the 

links, given by the angle 𝜃, is passively fixed by the clamp (shown in green). (b) At the bottom of 

each link there is a track for the mobile actuator. 
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Figure 3.2: The mobile actuator consists of two motors - one motor to travel over the links, and a 

second motor to rotate the links. 

The mobile actuator, presented in Figure 3.2, has two motors: One motor 

actuates the wheels to drive the mobile actuator along the tracks of the links, and a 

second motor is used to rotate the links. The rotational motor is attached to a linear 

gear mechanism, allowing the actuator to disconnect from the links when the 

translation motor is activated, or push them (the head of the clamp) for rotation. 

The final version of the design is shown in Fig. 3.3 below. This prototype 

was used in the preliminary experiments described in the next section, and was the 

subject of a paper submitted to the journal Robotica of Cambridge University Press. 

 

Figure 3.3: Prototype ‘A’ of the MARS, composed of ten links (including the end-effector), a base 

link and one mobile actuator. 
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3.1.2 Experiments 

To verify our results and prove the feasibility of the MARS, we performed a few 

experiments using this prototype. During all of the experiments, the mobile actuator 

was remotely controlled by a human operator. The operator had a two channel 

joystick: One channel is used to drive the mobile actuator forward and backward 

along the links, and the other to rotate the links CW or CCW.  

The robot’s modularity is demonstrated in the following experiments. We 

used a 4 Volts Lithium-ion battery to actuate the motors of the mobile actuator. The 

speed of locomotion is nearly 2.5 cm/s and the rotational speed is approximately 15 

degrees/s. We used motors with 1000:1 gear ratio which can produce 0.9 Nm of 

torque at 32 RPM [72]. This torque is necessary to overcome the friction torque 

between the different links and other external forces to produce motion. 

The basic experiment involved a chain of five links, as shown in Fig. 3.4. 

The mobile actuator was tested going towards the end of the chain and returning 

back to the base link, with and without rotating the links. Starting at (a), the robot 

advances towards its tip (b)-(c), then returns to the center (d). Next, the robot rotates 

the links clockwise (e) and counterclockwise (f). The robot then travels over the 

curved joint (g) and rotates its tip clockwise (h) and counterclockwise (i).  

     

     

     

Figure 3.4: The mobile actuator travels forward and backward over the links without changing their 

orientation, and activates them on demand (CW and CCW). 
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Figure 3.5: By rotating the four links CCW, the robot gets a ‘C’ shape. 

The weight of the mobile actuator is 102 grams, whereas the average weight 

of each link including the clamp and joint is nearly 25 grams. We attached a 1 cm3 

magnetic cube to the tip of the last link in order to grasp our target, as a form of an 

end-effector. 

As the joints can be rotated 45 degrees in each direction, the robot can make 

a ‘C’ shape (half a circle) by rotating four links in the same direction. This 

experiment is illustrated in Fig. 3.5. In both of these experiments, the robot had no 

difficulty travelling over the links or rotate them in either direction. 

In the following experiments we added five more links to the robot (ten in 

total). This operation required nearly two minutes thanks to the modular structure of 

the links. The additional links enlarged the robot’s configuration space, thereby 

enabling us to perform more diverse and complex tasks. Fig. 3.6 shows the MARS 

forming an ‘S’ shape by rotating links 6-9 clockwise, and links 1-4 

counterclockwise. 

 

Figure 3.6: By rotating links 6-9 CW and links 1-4 CCW, the robot gets an ‘S’ shape. 
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With the longer version, we performed another experiment in order to test 

the robot’s maneuverability in an environment which contains obstacles. We 

simulated a motion planning situation (with obstacles) as summarized in Fig. 3.7. 

The goal of the robot is to grab the round object (red ball) and bring it back to the 

robot’s original configuration. In this section, the planning was performed by the 

human operator.  

This task is composed of two main challenges. The first is going through the 

narrow pass of 15 mm, and the second is reaching the target with the small section 

of the robot that went through the opening. Throughout the whole task, the robot 

must avoid colliding with the obstacles.  

The robot accomplished this task by having the actuator translate and adjust 

the angles of the joints one at a time. The robot first passes through the narrow pass 

by transforming its second half into an arc-like shape. Then, the mobile actuator 

travels along the links through the pass and then rotates the top links to reach the 

target. Since four joints and links went through the pass, the robot had four degrees-

of-freedom to reach its target (only three are required in a 2D space to reach location 

and orientation). Only eight translational steps were required for the mobile actuator 

in each direction, demonstrating the dexterity and maneuverability of the MARS. 

    

          

Figure 3.7: An animation of MARS, equipped with a single mobile actuator, reaching its target. The 

mobile actuator rotates the base link (a) and then advances to the center (b). At (c), the mobile 

actuator rotates the six top links to make an arc shape and then advances to the base (d) to rotate the 

second link and penetrate through the small cavity. The actuator travels again to the top links to 

rotate them towards the target (e). After reaching its target (f), the robot makes the inverse plan of 

a-b-c-d-e to return to its original configuration. 
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Table 3.1: Motion summary of the MARS, as presented in the animation and the experiment. 

During each step, the mobile actuator advances from one joint (start) to another (end) and rotates 

the specific joint by an angle 𝜃.  

STEP 

no. 

Translation 

(start-end) 

Rotation [degrees]  

joint angle 

Reaching the target 

1 (1-1) 1 +45 

2 (1-2) 2 +45 

3 (2-6) 6 -45 

4 (6-7) 7 -45 

5 (7-9) 9 -45 

6 (9-2) 2 -45 

7 (2-9) 9 +75 

8 (9-10) 10 +45 

Returning to initial configuration 

9 (10-10) 10 -75 

10 (10-9) 9 -60 

11 (9-2) 2 +90 

12 (2-10) 10 +30 

13 (10-9) 9 +30 

14 (9-7) 7 +45 

15 (7-6) 6 +45 

16 (6-2) 2 -45 

17 (2-1) 1 -45 

 

As shown in Table 3.1, each stage of motion consists of rotating the given 

joint by the turning angle, then translating the actuator to the desired joint, and 

repeating the process. There are a total of eight actions required to reach the object, 

one action to grasp it, and another eight actions required to return to its initial state 

with the grasped object in hand. 
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  Figure 3.8: An experiment showing the MARS maneuverability in an environment with obstacles. 
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Following the same algorithm described in Table 3.1, the robot successfully 

reached its desired target and retrieved the object (3D printed blue ball), as shown 

in Fig. 3.8. However, we found that since the robot is made of printed material, it 

slightly curved downwards by nearly 1 cm. Even though the weight of the robot is 

larger than in the previous experiments, and the torque acting on the links 

substantially increased, the links remained locked during the entire session.  

3.2 Prototype ‘C’ 

During the second year, our main focus was to improve the original design of the 

MARS in order to achieve a fully-working 2D prototype, which will be mechanically 

stronger and efficient. Based on the challenges we encountered with prototype ‘A’, 

new design requirements were formed to overcome the shortcomings of the initial 

version, whilst preserving the robot’s strengths and without “violating” the basic 

requirements:  

 Stiffer links - in the longer version of the robot, where the chain consists of 

ten links, we detected a "sinking" problem due to the fact that the links are 

made of printed material (this challenge was resolved during the 

development of prototype ‘B’). 

 Locking mechanism - the current mechanism which allows the links to 

remain in a desired orientation is based completely on friction (passive lock), 

and therefore cannot maintain its position when great forces are applied at its 

direction. 

 Precision - the rotation angle of the joints is currently determined based on 

visual estimation of the human operator, which limits the robot’s abilities to 

maneuver in a confined space containing various obstacles. Integrating a 

simple control system would allow the MARS to gain higher precision in its 

motion and increase its automation. 

3.2.1 Mechanical Design  

In the course of developing the second version of the MARS (prototype ‘B’), we 

designed stiffer links in order to overcome the robot's "sinking" problem. The 

general structure and size of the links remained unchanged apart from the design of 

the track; the bottom of the track was altered to fit the structure of the joint, so that 
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the metal pin (2 mm diameter) connecting the two links will pass through the joint 

entirely, as shown in Fig. 3.9(a). This amendment increased the rigidity of the joints 

significantly, thereby eliminating the curving of the whole chain.  

In addition, we integrated a more "active" locking mechanism between the 

links; the previous lock was based completely on friction (passive lock), and 

therefore cannot maintain its position when great forces are applied at its direction. 

As presented in Fig. 3.9(b), the new mechanism consists of a worm drive 

transmission, where the worm gear (shown in green) is printed as part of the link and 

a 0.5 module worm is placed in the posterior part of each link. This mechanism 

prevents the links from sliding across one another and ensures they remain locked 

in the desired orientation. Furthermore, the gear transmission allows us to determine 

the exact angle of rotation between the links, a feature which was missing from the 

initial prototype.  

Altering the locking machanism required a different design of the mobile 

actuator. To maintain the robot’s mechanical uniqness, which is manifasted in the 

minimal actuation demand, a number of design alternatives were tested. The final 

version of the mobile actuator is presented in Fig. 3.10; this design was proven to be 

most efficient for both operations required from the actuator, namely, translation 

along the chain and rotation of the links.  

The mobile actuator consists of two gear transmissions, each connected to 

one motor. The actuator advances along the links using three wheels, two of which 

are actively spinning due to the motor located on the bottom left side of the structure,  

 

Figure 3.9: A top and bottom view of two adjacent links. (a) The bottom of the track (painted in 

blue) is similar to the structure of the joint (painted in pink) so that the connecting pin could pass 

through the entire joint. (b) The links are firmly locked at a relative angle of 45 degrees by the 

worm drive transmission. 
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and a horizontal gear transmission that allows for the two wheels to spin in the same 

direction. The third wheel, which is slightly larger in diameter, is located on the 

opposite side of the link between the two "active" wheels (see Fig. 3.10(a)). As a 

result of the force applied by the torsion spring on the right, the "passive" wheel is 

pressed against the track across from the "active" wheels, allowing the actuator to 

travel forward and backward over the links. Once the actuator reaches the desired 

link, the second motor activates the vertical gear transmission (see Fig. 3.10(b)), 

causing the worm to spin the worm gear, consequently rotating the adjacent link. 

 

Figure 3.10: A top and front view of the mobile actuator. (a) The bottom motor actuates the wheels 

using a gear transmission (left side) and a pressure wheel which is forced by the spring (right side).  

(b) The upper motor actuates a second gear transmission that connects to the worm drive 

transmission of a specific link and rotates it upon demand (CW and CCW). 

Figure 3.11: The mobile actuator rotating the eighth joint 30 degrees CW, shown from a side view. 
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Figure 3.11 shows the rotation gear transmission from a side view. The upper 

gear, which is connected directly to the rotation motor, is identical in size and 

module to the lower gear. However, six teeth were cut from the upper gear in order 

to prevent the two gears from integrating as the actuator advances along the chain. 

This allows us to control the relative rotation angle between two adjacent links with 

a precision of up to 2 degrees (see Appendix C.1). 

3.2.2 Experiments 

To prove the feasibility of the new prototype, we performed a few experiments using 

the latest version of the MARS combined with the control system. Integrating the 

control system allows the mobile actuator to operate autonomously by executing the 

commands given via the computer.  

The programming code, which was written in C++, enables the human 

operator to insert as input the current location of the actuator (joint no.), the next 

location (joint) it needs to be, the desired relative angle of the new joint (expressed 

in the number of spins executed by the motor) and its direction (CW/CCW). 

We used a 7.4 Volts Lithium-ion battary to actuate both motors (rotation - 

100:1 [73], translation - 1000:1) and the control system, which consists of four main 

electronic components including a micro-processor (Teensy 3.1), H-bridge and two 

electro-optical sesnsors: an encoder and a reflective IR sensor (for technical 

specifications see Appendix C). The IR sensor is placed at the bottom of the actuator, 

directly beneath the track of the links. The bottom of the tracks were painted black 

except for one small area which was painted in white, as presented in Fig. 3.12.  

 

Figure 3.12: The bottom of the tracks were painted black & white in order for the IR sensor to get 

different readings.   
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The white stripe was meant for the IR sensor to detect the optimal spot the actuator 

needs to be positioned along the link, so that the two gears of the rotation 

transmission will be intagrated successfully.   

As the actuator travels a distance of X links, the IR sensor counts the number 

of white stripes it passes under. Once the actuator reaches the desired joint, the 

controller (micro-processor) sends the command to the translation motor through the 

H-bridge to stop. Next, the rotation motor is activated as the encoder counts the 

number of spins executed by the motor. Once the desired angle is achieved, the 

controller sends the command to the rotation motor (through the H- bridge) to stop. 

The matrix upon which we formed the electric circle connecting all of the 

components (schematic is shown in Appendix C.2), was placed at the bottom right 

side of the actuator to maintain its balance (see Fig. 3.13).  

Table 3.2: Motion summary of the MARS with the control system, as presented in the experiment. 

The robot receives the commands through the computer, which is connected via a cable to the 

control board attached to the mobile actuator. 

STEP 

no. 

Translation 

(start-end) 

Rotation [degrees]  

joint angle 

Reaching the target 

1 (1-2) 2 +45 

2 (2-6) 6 -45 

3 (6-7) 7 -45 

4 (7-2) 2 -45 

5 (2-8) 8 -30 

6 (8-2) 2 -15 

Returning to initial configuration 

7 (2-8) 8 +30 

8 (8-2) 2 +45 

9 (2-7) 7 +45 

10 (7-6) 6 +45 

11 (6-2) 2 -30 

12 (2-1) 1 0 
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To demonstrate the maneuverability of the new MARS with the 

implemented control system, we performed an experiment similar to the one shown 

in Fig. 3.8. The goal is to retrieve the object (3D printed red minion), which is hidden 

behind one of the obstacles, and bring it back to the robot’s original configuration 

without colliding with the obstacles. The motion planning algorithm and the 

experiment (all twelve stages) are presented in Table 3.2 and Fig. 3.13, respectively. 

As can be seen from Fig. 3.13, the MARS successfully reached its target, 

which proves once again that this concept is viable. 

 

Figure 3.13: The latest experiment showing the MARS with the implemented control system, 

retrieving the minion (g) and returning to the initial configuration (l). 
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4. Robot Analysis  

This chapter will discuss the four main analyses performed on the MARS in order 

to investigate its motion and unique structure in operating in a two-dimensional 

workspace.  

  

4.1 Forward Kinematics  

In order to present the configuration of the robot’s links in the analyses performed 

in this chapter, we used the DH convention to form the homogenous transformation 

matrices as given in Eq. (2.8). Figure 4.1 shows the coordinate frames attached to 

the joints of the robot (prototype ‘A’), where the z-axis is pointed out of the page 

according to the positive direction of 𝜃, determined by the right-hand rule. 

  

Figure 4.1: Coordinate frames attached to the joints of the MARS, according to the DH convention. 

The z-all point out of the page and are not shown in the figure.  
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Since the MARS is a planar robot, consists of revolute joints with one 

DOF 𝜃𝑖, the general transformation matrix for each link is of the form: 

𝐴𝑖 =

[
 
 
 
𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑙𝑐𝜃𝑖
𝑠𝜃𝑖 𝑐𝜃𝑖 0 𝑙𝑠𝜃𝑖
0
0

0
0

1
0

0
1 ]
 
 
 

,                                          (4.1) 

where l represents the length of the links (DH parameter - 𝑎𝑖), or the distance 

between the joints, which is constant. The other parameters, 𝛼𝑖 and 𝑑𝑖, are zero 

according to the DH convention.  

In each analysis, the initial configuration of the robot was chosen randomly, 

where the links (joints) can be rotated in one of the following angles: 0°, ±30°, ±45°, 

relative to the preceding link (𝜃𝑖 is the angle between joint i − 1 and joint i). The 

code for this algorithm, as well as the other analyses performed in this chapter, can 

be found in Appendix E. 

  

4.2 Motion Planning Algorithm (Inverce Kinematics) 

Within the framework of this project, we also explored the robot's capability to 

maneuver in a two-dimensional workspace. A two-stage algorithm was written in 

MATLAB® software, for the purpose of finding the optimal configuration of the 

robot in order to reach any point in its workspace with minimal operations of the 

mobile actuator. The motion planning algorithm presented in this section was 

performed in C-space, due to the unique structure and capabilities of the MARS. 

As the MARS is constructed of multiple links while the end-effector has only 

two endpoint coordinates (𝑥, 𝑦), it has N-2 redundant DOF. There are many different 

techniques for resolving joint redundancy and different objectives for their 

resolution. One method to resolve this redundancy is by selecting the joint angles so 

as to maximize the determinant of JTJ, where J is the Jacobian, while constraining 

the endpoints to stay on target. This method was applied in the paper "Minimally 

Actuated Serial Robot", which was co-written with Dr. Moshe Mann and is currently 

pending acceptance for the prestigious journal Robotica of Cambridge University 

Press. This method was chosen because it is a standard objective in robotics that 

yields the maximum manipulability, or the ability to exert any desired motion at the 

manipulator’s end-effector.  
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The algorithm presented in this section was developed in a slightly different 

method than the one mentioned above. Here, the optimization was accomplished in 

two stages: First, by using the fmincon© function in the MATLAB™ Optimization 

Toolbox (which was also used in the paper but with different constraints) to find the 

optimal final configuration of the robot, and second, by adjusting the results to the 

current design with the two control systems used in the experiments. This algorithm 

provides the optimal path within minimal time period (the time required to perform 

each action of the actuator) and maximal precision. It should be noted that the motion 

planning algorithm presented here models the robot's motion in an obstacle-free 

environment, while the robot consists of ten links and only one mobile actuator. 

4.2.1 STAGE 1: Optimization Algorithm  

Given the initial (random) configuration of the robot, the objective is to find the final 

configuration of the links in order for the end-effector to reach the target with 

maximal precision. Since our prototype consists of a large number of joints (N=10), 

this problem can’t be solved using the conventional inverse kinematics equations, as 

presented in sections B.5-B.7. In order to resolve the robot’s redundancy problem 

we examined several known optimization tools, from which the function fmincon© 

was found to be conveniently suitable for this purpose. 

Based on design demands, the links of the MARS can operate in a range of 

90 degrees; meaning, the maximal (relative) rotation angle between two adjacent 

links is 45 degrees in each direction (CW/CCW). Therefore, the constraint was 

applied to the joints, where the upper and lower bounds for each DOF are π/4 and   

–π/4, respectively. The cost function was composed of two functions, intended to 

meet the two main requirements, 

𝑓1 =∑|𝜃𝑖,𝑓𝑖𝑛 − 𝜃𝑖,𝑖𝑛𝑖𝑡|
𝑝

𝑁

𝑖=1

                                         (4.2) 

𝑓2 = [(𝐿 ∙∑cos (∑𝜃𝑖,𝑓

𝑘

𝑖=1

)

𝑁

𝑖=𝑘

) − 𝑋𝑓]

2

+ [(𝐿 ∙∑sin(∑𝜃𝑖,𝑓

𝑘

𝑖=1

)

𝑁

𝑖=𝑘

) − 𝑌𝑓]

2

  (4.3) 
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where: 

𝐿 - length of the link [m]  

𝑁 - number of links in the chain  

𝜃𝑖,𝑖𝑛𝑖𝑡 - initial relative angle of link i [rad]                                                           

𝜃𝑖,𝑓𝑖𝑛 - final relative angle of link i [rad] 

(𝑋𝑓 , 𝑌𝑓) - target coordinates 

𝑝 - cost for the number of links to be moved 

The function f1 is designed to minimize the change in the robot's 

configuration from its initial to final state, which is manifested in the orientation of 

the links. The function f2 is designed to minimize the error in the desired positon of 

the end-effector, thereby ensuring the robot reaches the target with maximal 

precision. As both demands are equally important to our purpose, the two functions 

were given equal weight (lambda=1), therefore the total cost function is the sum of 

f1 and f2. 

Three cases were examined and compared, where the value of p was chosen 

to be greater, smaller and equal to 1. In the first case, p=2, f1 is a parabolic function, 

meaning there will be an increased additional cost for a larger difference in the links' 

configuration. In the second case, p=0.5, f1 is a square-root function, providing 

decreased additional cost for a larger difference in the orientation of the links. In the 

third case, p=1, f1 is a linear function, which means the cost is proportional to the 

change in the configuration of the links. 

This algorithm finds the optimal configuration of the MARS according to the 

chosen cost function, whether by minimizing the number of links that must be moved 

(p<1) or by minimizing the displacement angle of each link (p>1). In each case, the 

end-effector reaches the target with maximum precision. 

Figures 4.2-4.4 and Tables 4.1-4.3 present the optimization results based on 

the cost function combined of Eqns. (4.2) and (4.3), where p equals 2, 0.5 and 1, 

respectively. The initial configuration (in green) and the target coordinates (marked 

with a red 'X') were chosen arbitrarily. The final configuration is shown in blue. 

As shown in Table 4.1 below, almost all the joints had shifted from their 

initial positions, except for joint 5. The movements are quite small, between 1 and 3 

degrees, which is expected since the target is not very far from the initial position of 

the end-effector, but mainly due to the choice of p. 
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Figure 4.2: Optimization results for the case where f1 is parabolic (p=2), achieved in 31 iterations. 

Table 4.1: Change in configuration of the joints, resulted from the first optimization (p=2). 

Link 
Initial angle 

[degrees] 

Final angle 

[degrees]   

Angle disp. 

[degrees] 

1 0 -2 -2 

2 0 -2 -2 

3 +45 +43 -2 

4 -30 -31 -1 

5 -45 -45 0 

6 0 -2 -2 

7 +45 +42 -3 

8 +45 +42 -3 

9 0 -2 -2 

10 +30 +29 -1 

 

For the case where p was chosen to be 0.5, it is enticipated to see larger 

movements of the joints which consequently occur in fewer joints, as the cost 

decreases for a larger change in the orientation of the already actuated joints. The 

results shown in Table 4.2 clearly support this assumption since only joint 6 has 
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moved, and the change in its orientation is significantly larger than the one occurred 

in the first case. 

 

Figure 4.3: Optimization results for the case where f1 is square-root (p=0.5), achieved in 63 

iterations. 

Table 4.2: Change in configuration of the joints, resulted from the second optimization (p=0.5). 

Link 
Initial angle 

[degrees] 

Final angle 

[degrees]   

Angle disp. 

[degrees] 

1 0 0 0 

2 0 0 0 

3 +45 +45 0 

4 -30 -30 0 

5 -45 -45 0 

6 0 -17 -17 

7 +45 +45 0 

8 +45 +45 0 

9 0 0 0 

10 +30 +30 0 

 

 



47 

In the last case, we chose f1 to be a linear function, meaning the cost of 

changing the orientation of the joints is proportional to the number of actuated links. 

Therefore, in comparison to the previous case, the number of actuated links is 

expected to increase while the change in orientation is expected decrease. This is 

also evident from the results presented in Table 4.3.  

 

Figure 4.4: Optimization results for the case where f1 is linear (p=1), achieved in 60 iterations. 

Table 4.3: Change in configuration of the joints, resulted from the third optimization (p=1). 

Link 
Initial angle 

[degrees] 

Final angle 

[degrees]   

Angle disp. 

[degrees] 

1 0 -4 -4 

2 0 0 0 

3 +45 +45 0 

4 -30 -30 0 

5 -45 -45 0 

6 0 0 0 

7 +45 +36 -9 

8 +45 +45 0 

9 0 0 0 

10 +30 +30 0 
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Note that in all three cases the function f2 was not changed as the demand for 

maximum precision is crucial and could not be compromised.  

Next, we can calculate the time required for the robot to reach the target in 

each case, thereby determining the optimal path out of the three options presented 

above. The mobile actuator has two operations, travelling forward and backward 

over the links, and rotating the joints CW and CCW. The time to perform each 

operation was measured according to the speed of the motors used in the latest 

experiment with prototype ‘C’, shown in Fig. 3.13. 

The average time in which the actuator passes one link is about 2 seconds, 

and one spin of the rotation motor (4 degrees) takes approximately 2.5 seconds. 

Under these conditions, the algorithm produces the exact time period required for 

each path and provides the user with the optimal choice. In this case, for the chosen 

initial configuration of the robot and the location of the target, the output is: 

 

This result makes sense: Option 3 is the reasonable choice since the actuator 

has to travel a total of seven links and rotate only two joints (no. 1 and 7), as opposed 

to the first case shown in Table 4.1, in which the actuator has to travel over the entire 

chain and rotate all joints but one (t1=29.25 sec). This option is also preferable to the 

second case because it requires fewer spins of the rotation motor, as the total 

displacement angle is 13 degrees compared to the 17 degrees required for option 2 

(see Table 4.2). Having said that, the end result is quite similar; there is a minor 

difference between the time periods calculated for each of these options, which is 

about 0.5 seconds (t2=20.625 Vs. t3=20.125 sec). 

The first part of the motion planning algorithm provides accurate results for 

the optimization process, however, it does not take into consideration current design 

constraints and limitations that arise from the use of different control systems. This 

issue will be addressed in the following section. 

4.2.2 STAGE 2: Adjustments to Control Systems 

In order for the motion planning algorithm to be viable, it must produce results which 

are compatible with the physical features of the robot, such as its mechanical design, 

so that it could be implemented with the current control systems.  
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As mentioned in sub-section 3.2.1, the latest prototype of the MARS consists 

of a gear transmissions which allows the user to control the relative rotation angle 

between two adjacent links with a precision of up to 2 degrees, where one spin of 

the upper gear rotates the joints 4 degrees in the desired direction. During the 

development of prototype ‘C’, two control systems were used to operate the robot. 

Initially, the robot was controlled manually by the operator via a remote, a method 

which was also used in the experiments performed with prototype ‘A’. Later, an 

algorithm was written in C++ which allows the operator to control the robot via the 

computer, enabling the MARS to move autonomously. Although this method proved 

to be quite successful, for the moment, the control of the rotation motor is 

programmed according to the number of full spins executed by the upper gear; this 

means that the relative rotation angle of the joints is determined to a resolution of 4 

degrees instead of 2.  

For this reason, the results of the optimization performed in the previous 

section should be adjusted to the control system of choice. Therefore, the second 

part of the motion planning algorithm requires the user to first choose the way in 

which the MARS is operated:            

 

Figures 4.5-4.7 present the new configuration of the robot calculated for each 

of the cost functions, where p equals 2, 0.5 and 1, respectively. The final 

configuration of the robot is shown in pink. 

The values of the original (accurate) displacement angles of the joints were 

rounded to the nearest values that are multiples of 4, which is the resolution of the 

automated control system. These adjustments are shown in Tables 4.4-4.6. Note that 

in the case of multiple intermediate values, where the residual of the quotient is 2 

(e.g., Table 4.4), the results are rounded up or down intermittently to the nearest 

value that is a multiple of 4. 

Since the displacement angles were altered to fit the practical needs of the 

system, it is expected that the end-effector would not be able to reach the target with 

the same precision as before. Therefore, we determined a threshold for the 

acceptable error of the end-effector, above which the new path will not be chosen. 

The threshold was chosen to be a distance of 0.5 cm from the target, which 

is 1% of the entire length of the robot. The error is calculated using Pythagoras 
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theorem and indicated in the bottom of each figure. Observing Figures 4.5-4.7, one 

can notice there is indeed a deviation of the end-effector from the location of the 

target, as predicted. 

 

Figure 4.5: Adjusted results to the automated control system, in the case where f1 is parabolic (p=2), 

error is 0.3205 cm. 

Table 4.4: Change in configuration of the joints for the automated control system, in the case where 

f1 is parabolic (p=2). 

Link 
Initial angle 

[degrees] 

Optimal angle 

disp. [degrees] 

Adjusted angle 

disp. [degrees]   

Adjusted final 

angle [degrees] 

1 0 -2 0 0 

2 0 -2 -4 -4 

3 +45 -2 0 +45 

4 -30 -1 0 -30 

5 -45 0 0 -45 

6 0 -2 -4 -4 

7 +45 -3 -4 +41 

8 +45 -3 -4 +41 

9 0 -2 0 0 

10 +30 -1 0 +30 
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Figure 4.6: Adjusted results to the automated control system, in the case where f1 is square-root 

(p=0.5), error is 0.4762 cm. 

Table 4.5: Change in configuration of the joints for the automated control system, in the case where 

f1 is square-root (p=0.5). 

Link 
Initial angle 

[degrees] 

Optimal angle 

disp. [degrees] 

Adjusted angle 

disp. [degrees]   

Adjusted final 

angle [degrees] 

1 0 0 0 0 

2 0 0 0 0 

3 +45 0 0 +45 

4 -30 0 0 -30 

5 -45 0 0 -45 

6 0 -17 -16 -16 

7 +45 0 0 +45 

8 +45 0 0 +45 

9 0 0 0 0 

10 +30 0 0 +30 
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Figure 4.7: Adjusted results to the automated control system, in the case where f1 is linear (p=1), 

error is 0.6223 cm. 

Table 4.6: Change in configuration of the joints for the automated control system, in the case where 

f1 is linear (p=1). 

Link 
Initial angle 

[degrees] 

Optimal angle 

disp. [degrees] 

Adjusted angle 

disp. [degrees]   

Adjusted final 

angle [degrees] 

1 0 -4 -4 -4 

2 0 0 0 0 

3 +45 0 0 +45 

4 -30 0 0 -30 

5 -45 0 0 -45 

6 0 0 0 0 

7 +45 -9 -8 +37 

8 +45 0 0 +45 

9 0 0 0 0 

10 +30 0 0 +30 

                     

From the results presented above, the conclusion is that the optimal 

configuration of the robot should be executed according to option 1 (p=2) or 2 

(p=0.5). The algorithm alerts the user in case the calculated error exceeds the 
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determined threshold. For the aforementioned example the output is: 

 

Now we can calculated the time required for the actuator to achieve the new 

configurations in each case. Although option 3 (p=1) is the least preferable choice, 

as it produces the largest error out of the three, it is in fact the best option time-wise: 

t3=19.5 sec. However, as mentioned above, this option does not meet the accuracy 

demand and therefore will not be chosen.  

Comparing the two viable options, 1 and 2, the difference between the time 

periods is 4 seconds, where t1=24 sec and t2=20 sec, which means option 2 (p=0.5) 

best serves our purpose. 

In the case where the control is executed manually by the operator:  

 

Here, we can achieve a resolution of 2 degrees in rotation, which means fewer 

adjustments are needed to be performed on the results obtained from the 

optimization process. Consequently, the new configurations of the robot for the three 

cases examined are expected to be more similar to the original results shown in 

Figures 4.2-4.4. The final configurations are presented in Figures 4.8-4.10.  

 

Figure 4.8: Adjusted results to the manual control system, in the case where f1 is parabolic (p=2), 

error is 0.9954 cm. 
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Table 4.7: Change in configuration of the joints for the manual control system, in the case where f1 

is parabolic (p=2). 

Link 
Initial angle 

[degrees] 

Optimal angle 

disp. [degrees] 

Adjusted angle 

disp. [degrees]   

Adjusted final 

angle [degrees] 

1 0 -2 -2 -2 

2 0 -2 -2 -2 

3 +45 -2 -2 +43 

4 -30 -1 -2 -32 

5 -45 0 0 -45 

6 0 -2 -2 -2 

7 +45 -3 -2 +43 

8 +45 -3 -2 +43 

9 0 -2 -2 -2 

10 +30 -1 -2 +28 

  

The alterations made to the displacement angles of the joints included only 

the odd values, which were rounded up or down intermittently to the nearest even 

value. These results are displayed in Tables 4.7-4.9 for the three cases, respectively.       

 

Figure 4.9: Adjusted results to the manual control system, in the case where f1 is square-root 

(p=0.5), error is 0.2015 cm. 
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Table 4.8: Change in configuration of the joints for the manual control system, in the case where f1 

is square-root (p=0.5). 

Link 
Initial angle 

[degrees] 

Optimal angle 

disp. [degrees] 

Adjusted angle 

disp. [degrees]   

Adjusted final 

angle [degrees] 

1 0 0 0 0 

2 0 0 0 0 

3 +45 0 0 +45 

4 -30 0 0 -30 

5 -45 0 0 -45 

6 0 -17 -18 -18 

7 +45 0 0 +45 

8 +45 0 0 +45 

9 0 0 0 0 

10 +30 0 0 +30 

 

 

Figure 4.10: Adjusted results to the manual control system, in the case where f1 is linear (p=1), error 

is 0.1287 cm. 
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Table 4.9: Change in configuration of the joints for the manual control system, in the case where f1 

is linear (p=1). 

Link 
Initial angle 

[degrees] 

Optimal angle 

disp. [degrees] 

Adjusted angle 

disp. [degrees]   

Adjusted final 

angle [degrees] 

1 0 -4 -4 -4 

2 0 0 0 0 

3 +45 0 0 +45 

4 -30 0 0 -30 

5 -45 0 0 -45 

6 0 0 0 0 

7 +45 -9 -10 +35 

8 +45 0 0 +45 

9 0 0 0 0 

10 +30 0 0 +30 

  

As shown in Figures 4.8-4.10, the largest deviation of the end-effector from 

the target occurred in the first case (p=2), as opposed to the results presented in 

Figure 4.5, where the calculated error was the smallest out of the three options. 

However, for the second and third case, the calculated error was significantly smaller 

compared to the adjustments made for the automated control system. Since the first 

option was the only one of the three with an error above the threshold, the output is: 

 

From the results presented above, there are two viable options for the optimal 

path of the robot. Now we can choose the best option according to the time required 

for the actuator to perform the task in each case. After calculation of the time periods, 

the algorithm produces this output:     

 

Option 3 is indeed the best choice in this case, both time-wise and precision-wise, 

though the difference between this option and the second one (p=0.5) is negligible, 

as t2=21.25 sec and t3=20.75 sec. 

 



57 

In conclusion, the adjustments of the optimization results to the current 

control systems yield different outcomes in each of the three cases examined that 

could not have been predicted by the human operator. It is evident that the slightest 

change made to original values, such as an addition or subtraction of one degree 

from the orientation of a single joint, will result in a significantly different outcome, 

which will ultimately affect the operator’s choice in determining the optimal path of 

the MARS. 

 

4.3 Velocity Kinematics  

Given the velocity of the joints, we can calculate the velocity of the end-effector 

from Eq. (2.19) using the Jacobian. As the current design of the MARS consists of 

one mobile actuator, only one link can be actuated at each stage of the robot’s 

motion. Therefore, we examined two scenarios in which the velocity of the end-

effector was calculated at six stages of the experiment performed with prototype ‘A’, 

as listed in Table 3.1 (stages 1-5 and 8). Figure 4.11 illustrates the transition from 

one configuration to the next at each step, indicating the joint number and the relative 

rotation angle. The Jacobian was recalculated at each step of the robot's motion. 

First, the end-effector velocity was calculated for the case where all joints 

have the same angular velocity of 32 RPM (3.35 rad/sec), which is the actual speed 

of the rotation motor used in the experiment.  

Table 4.10: The initial velocity vector of the end-effector at six stages of the experiment. All the 

joints were given the same angular velocity - 32 RPM (speed of the rotation motor). 

STEP 

no. 

Rotation 

[degrees]  
Initial linear velocity [m/sec] 

Angular velocity 

[rad/sec] 

joint angle 𝑣𝑥 𝑣𝑦 𝑣𝑧 |𝑣𝑡𝑜𝑡| 𝜔𝑥 𝜔𝑦 𝜔𝑧 

1 1 +45 0 1.6750 0 1.6750 0 0 3.35 

2 2 +45 -1.0660 1.0660 0 1.5075 0 0 3.35 

3 6 -45 -0.8375 0 0 0.8375 0 0 3.35 

4 7 -45 -0.4738 0.4738 0 0.6700 0 0 3.35 

5 9 -45 0 0.3350 0 0.3350 0 0 3.35 

8 10 +45 0.1184 0.1184 0 0.1675 0 0 3.35 
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Figure 4.11: The six stages demonstrated in the experiment performed with prototype ‘A’, showing 

the change in the configuration of the links from (a)-(f) as listed in Table 4.10. 

In the second (theoretical) scenario, each joint was given a different angular 

velocity, which was chosen randomly from this set of  values: 1.5, 3 and 4 rad/sec. 

Tables 4.10 and 4.11 display the initial velocity vector of the end-effector for the 

a b 

c d 

e f 
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two scenarios discribed above, respectively. Table 4.10 clearly shows that when 

given the same angular velocity in all the joints, the total linear velocity of the end-

effector decreases as the actuated joint is closer to the tip of the chain. This is 

expected since the linear velocity components of the Jacobian are calculated based 

on the distance from the joints to the end-effector (see Eqns. (4.14) and (4.16) in 

section 4.4).  

Figures 4.12 and 4.13 display the linear velocity components, 𝑣𝑥 and 𝑣𝑦, and 

the total linear velocity of the end-effector for the six joints as a function of time, 

where the speed of the rotation motor is 15 degrees/sec, according to the experiment. 

Figure 4.12 shows there is a clear trend in the values of the end-effector velocity, as 

the total linear velocity (shown in cyan) decreases with time as the actuated joint is 

closer to the tip of the chain.   

In the case where the joints were given different angular velocities, the same 

consistency applies as before. The results presented in Table 4.11 clearly shows that 

for two adjacent links with the same angular velocity, the total liner velocity of the 

end-effector decreases as the actuated joint is closer to the tip, due to the use of the 

Jacobian.  

 

Figure 4.12: Linear velocity components, 𝑣𝑥 (in blue) and 𝑣𝑦 (in green), of the end-effector for the 

six stages demonstrated in the experiment, where each joint was given the same angular velocity - 

32 RPM (3.35 rad/sec). The total linear velocity is shown in cyan, and the velocity values at the 

beginning of each stage are marked with red asterisks. 
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Table 4.11: The initial velocity vector of the end-effector at six stages of the experiment. Each joint 

was given a different angular velocity, chosen randomly from the values 1.5, 3 and 4 rad/sec. 

STEP 

no. 

Rotation 

[degrees]  
Initial linear velocity [m/sec] 

Angular velocity 

[rad/sec] 

joint angle 𝑣𝑥 𝑣𝑦 𝑣𝑧 |𝑣𝑡𝑜𝑡| 𝜔𝑥 𝜔𝑦 𝜔𝑧 

1 1 +45 0 0.7500 0 0.7500 0 0 1.5 

2 2 +45 -0.4773 0.4773 0 0.6750 0 0 1.5 

3 6 -45 -0.7500 0 0 0.7500 0 0 3 

4 7 -45 -0.4243 0.4243 0 0.6000 0 0 3 

5 9 -45 0 0.4000 0 0.4000 0 0 4 

8 10 +45 0.1414 0.1414 0 0.2000 0 0 4 

    

 

Figure 4.13: Linear velocity components, 𝑣𝑥 (in blue) and 𝑣𝑦 (in green), of the end-effector for the 

six stages demonstrated in the experiment, where each joint was given a different angular velocity, 

chosen randomly from the values 1.5, 3 and 4 rad/sec. The total linear velocity is shown in cyan, 

and the velocity values at the beginning of each stage are marked with red asterisks. 

However, the magnitude of the angular velocity also plays a significant role 

in determing the velocity of the end-effector, as evident from the results for joints 2 

and 6. Although joint 6 is much closer to the tip of the chain, the total linear velocity 

end-effector is greater than the one calculated when joint 2 is actuated, because the 
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angular velocity of joint 6 was doubled. This increase in the end-effector’s velocity 

can also be observed in Fig. 4.13. 

The results presented in Tables 4.10 and 4.11 show there is a linear 

dependency between the angular velocity given in a specific joint and the total linear 

velocity of the end-effector, which corresponds to the basic dynamic equation: 

�⃗� = �⃗⃗⃗� × 𝑟                                                     (4.4) 

where 𝑟 is the vector from joint i to the end-effector. 

 

4.4 Structural Rigidity 

To examine the structural rigidity of the MARS, we performed a strength analysis 

of the robot by referring to the chain of links as a robotic arm (open kinematic chain). 

The goal is to calculate the displacement of the links as a result of an external force 

applied to the robot at its tip (the end-effector).  

In considering static forces in a manipulator, we first lock all the joints so 

that the manipulator becomes a structure. We then consider each link in this structure 

and write a force-moment balance relationship in terms of the link frames. Finally, 

we compute what static torque must be acting about the joint axis in order for the 

manipulator to be in static equilibrium. In this way, we solve for the set of joint 

torques needed to support a static load acting at the end-effector.  

In this section, we will not be considering the force acting on the links due 

to gravity. The static forces and torques we are considering at the joints are those 

caused by a static force acting on the last link; for example, as when the manipulator 

has its end-effector in contact with the environment. 

Figure 4.14 shows the initial configuration of the robot, in which the links 

are locked in one of the five possible angles, as mentioned in the beginning of the 

chapter (section 4.1). The blue arrow in the figure represents the external force 

applied to the end-effector, with a magnitude of 5 N directed +45 degrees with 

respect to the x-axis (these values were also chosen arbitrarily). 

From the experiments performed on the robot, it is evident that applying 

external force to the end-effector forms small perturbations along the chain of links.   
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Figure 4.14: Initial configuration of the links (in green), chosen randomly. The blue arrow 

represents the force vector (F=5 N at +45°) applied to the end-effector, and the red dots represent 

the location of the joints. 

Some perturbations are more significant than others, depending on the initial angle 

in which the link is locked and the distance between the joint and the position of the 

force, which affects the torque created in the joint.  

This analysis is based on the latest design of the robot (prototype ‘C’), in 

which the locking mechanism consists of a worm drive transmission, as opposed to 

the earlier version, where the lock was based completely on friction. Hence, the two 

main factors that contribute to the formation of these perturbations are the backlash 

of the transmission, and the stiffness of the joint (measured in an experiment 

conducted on the links of the current prototype, found in Appendix D).    

Fig. 4.15 shows the backlash of the worm drive transmission, as measured in 

the SolidWorks software. The “freedom” between the worm and the worm gear is 

illustrated in Fig. 4.15(a) and (b), marked with a red circle.  

It is evident from Fig. 4.15(c) there exists a small shift of 0.87 mm between 

the joints of two adjacent links, which results directly from the backlash. The center 

distance between the joints is constant and equals to 5 cm, therefore the backlash 

angle can be calculated using simple trigonometry: 

sin(𝜃𝑏) =
0.87

50
  ⇒   𝜃𝑏 = 0.997

∘ ≅ 1°.                             (4.5) 

�⃗� 
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Figure 4.15: The backlash of the worm drive transmission between two adjacent links. The red 

circle shows the space created between one tooth of the worm gear and the worm (a) when the links 

are aligned, and (b) when the preceding link is slightly tilted, so that the same tooth touches the 

helix of the worm from its other side. (c) The distance between the joints of the links resulted from 

the backlash, as measured in SolidWorks. 

In order to develop the model, we first examined the simplest case where 

only one link is connected to the base link, and a horizontal force is applied to the 

tip of the link. This case is illustrated in Fig. 4.16 below. 

 

Figure 4.16: Force-moment analysis of one link under the influence of a horizontal force �⃗� applied 

at the tip. 

 

a b 

c 
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The parameters used in this analysis are as follows: 

𝐿 - length of the link [m]  

�⃗� - external force applied to the tip of the link [N]  

𝑟𝑖 - range vector from the joint to the point of application [m] 

𝜏𝑖 - torque created in the joint due to the force [Nm]         

𝜃𝑖𝑛𝑖𝑡 - initial angle in which the link is locked [rad]                                                           

𝜃𝑏 - backlash angle (estimated at 1 degree, according to Eq. (4.5)) [rad] 

𝐾𝑡 - stiffness/torsion coefficient of the joint (estimated at 2 Nm/degree, based on  

       the experiment) [Nm/rad] 

𝜃𝑡 - torsion angle created by the torque [rad] 

The tourque created in the joint due to the force �⃗� is defined as 

𝜏1 = 𝑟1 × �⃗�                                                       (4.6) 

and the relation between the torque and the torsion angle is given by 

 𝜏 = 𝐾𝑡 ∙ 𝛿𝜃𝑡                                                       (4.7) 

according to Hooke’s law for torsion springs. 

Therefore, the torsion angle can be expressed from Eq. (4.6) and (4.7) as 

𝛿𝜃𝑡1 =
𝜏1
𝐾𝑡
=
𝑟1 × �⃗�

𝐾𝑡
.                                              (4.8) 

The total angle displacement of each link is influenced by the backlash of the worm 

drive transmission and the torque generated in the joint, so that 

    𝛿𝜃 = 𝛿𝜃𝑏 + 𝛿𝜃𝑡                                                  (4.9) 

as the direction of the backlash angle (CW/CCW) depends on the direction of the 

torque: 

    𝛿𝜃𝑏1 = 𝑠𝑖𝑔𝑛(𝜏1) ∙ |𝛿𝜃𝑏|.                                        (4.10) 

Substituting Eq. (4.8) and (4.10) into (4.9) yields the expression for the total 

angle displacement, 
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𝛿𝜃1 = 𝑠𝑖𝑔𝑛(𝜏1) ∙ |𝛿𝜃𝑏| +
𝑟1 × �⃗�

𝐾𝑡
                                  (4.11) 

and the final angle is:  

 𝜃𝑓𝑖𝑛1 = 𝜃𝑖𝑛𝑖𝑡1 + 𝑠𝑖𝑔𝑛(𝜏1) ∙ |𝛿𝜃𝑏| +
𝑟1 × �⃗�

𝐾𝑡
                          (4.12) 

where 𝜃𝑖𝑛𝑖𝑡1 is the initial angle of the link (prior to the application of the force). 

This analysis was also performed for the case where the robot consists of two 

links, and then for three links, as illustrated in Figure 4.17 below (for the complete 

analysis, see Appendix D). 

The anlysis was based on the assumptions that the force acting at the tip is 

relatively small, the movements occur slowly and the accelerations in the joints are 

negligible. Therefore, the torques created in the joints are calculated according to 

Eq. (4.6), where 𝑟𝑖 is the range vector from each joint to the end-effector (point of 

application). Also, under the assumption of small perturbations, the absolute angle 

of the final link can be calculated using superposition, since this is a linear system. 

For a serial robot composed of N links, the final (absolute) angle of the end-

effector is calculated according to Eq. (4.13): 

𝜃𝑒𝑛𝑑,𝑓𝑖𝑛 =∑𝜃𝑖𝑛𝑖𝑡𝑘

𝑁

𝑘=1

+ |𝛿𝜃𝑏| ∙ ∑ 𝑠𝑖𝑔𝑛(𝜏𝑘)

𝑁

𝑘=1

+
1

𝐾𝑡
(∑𝑘 ∙ 𝑟𝑘

𝑁

𝑘=1

) × �⃗�        (4.13) 

 

Figure 4.17: Force-moment analysis of three links under the influence of a horizontal force applied 

at the tip. 
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The final angle of each link is calculated in the same manner, as the summation limit 

(upper bound) varies according to the joint.  

The result of this analysis is illustrated in Figure 4.18. As expected in the 

case of the chosen initial configuration, the most significant change in the location 

of the joints manifested in the last link, which resulted from the perturbations 

occurred in each link along the chain. 

Table 4.12 presents the torques created in the joints due to the application of 

the force and the total angle displacement of each link, as calculated from the model. 

It is evident there is a clear trend in the values of the torques and the total angle 

displacement depending on the distance of the joint from the point of application. 

The largest torque is created in the first joint, which connects the first link to the 

base link, and the smallest torque is created in the last link, as it is closest to the 

location of the force. The total displacement angles correspond to the values of the 

torques, since this calculation includes the torsion angles (see Eq. (4.9)), however, 

they are mainley affected by the backlash angle, which is approximately 1 degree.   

  

Figure 4.18: Configuration of the links prior to and following the application of the force (green vs. 

black), according to the model. The blue arrows represents the force vector (F=5 N at +45°) applied 

to the end-effector, and the red dots represent the location of the joints. 

 

�⃗� 

�⃗� 

Initial configuration 

Final configuration 
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Table 4.12: The torques created in the joints and the total displacement angle of each link as a result 

of the external force acting on the end-effector, calculated according to the model. 

Link Torque [Nm] 
Total disp. angle 

[degrees]   

1 -1.0780 -1.5371 

2 -0.9012 -1.4490 

3 -0.9012 -1.4490 

4 -0.9012 -1.4490 

5 -0.7244 -1.3609 

6 -0.5477 -1.2729 

7 -0.4830 -1.2406 

8 -0.4183 -1.2084 

9 -0.2415 -1.1203 

10 -0.0647 -1.0322 

 

For comparison, the torques created in the joints were also calculated 

according to Eq. (2.33), which results from the principal of virtual work. The 

Jacobian was calculated according to Eq. (2.26), 

𝐽𝑖 = [
𝐽𝑣𝑖
𝐽𝑤𝑖
] = [

𝑧𝑖−1 × (𝑜𝑁 − 𝑜𝑖−1)
𝑧𝑖−1

].                               (4. 14) 

where the i-th column Ji corresponds to the i-th joint of the robot.  Since the MARS 

is a planar robot consists of revolute joints, the z-axes all point in the same direction 

(out of the page) according to the DH convention, as shown in Figure 4.1. Therefore, 

the angular velocity vector for each joint is given by 

𝑧𝑖−1 = [
0
0
1
].                                                       (4. 15) 

In order to find the linear velocity components of the Jacobian matrix, we 

calculated the distance from the end-effector to the joints,  

  𝑑𝑖−1
𝑁 = 𝑜𝑁 − 𝑜𝑖−1                                               (4. 16) 

where 𝑜𝑁 is the position of the end-effector. 
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The position of the coordinate frames, as well as the end-effector, can be derived 

from the fourth column of the homogenous transformation matrices.  

The Jacobian matrix3 for the initial configuration presented in Figure 4.14 is  

𝐽 =

[
 
 
 
 
 
−14.57 −14.57 −11.04
45.06 40.06 36.53

−7.5 −7.5 −7.5
32.99 27.99 22.99

−5 −2.5 −2.5 −2.5
18.66 14.33 9.33 4.33

0                0              0
0 0 0

0           0          0
0 0 0

0          0      0         0
0     0  0         0

0                0               0
1 1 1

0           0          0
1 1 1

0         0       0         0
1         1       1          1 ]

 
 
 
 
 

 

and the force was chosen to be  

�⃗� =

[
 
 
 
 
 
−3.5355
−3.5355

0
0
0
1 ]

 
 
 
 
 

N. 

 Hence, the torques in the joints are  

𝜏 = 𝐽𝑇𝐹 =

[
 
 
 
 
 
 
 
 
−1.0780
−0.9012
−0.9012
−0.9012
−0.7244
−0.5477
−0.4830
−0.4183
−0.2415
−0.0647]

 
 
 
 
 
 
 
 

Nm.                                           (4.17) 

Eq. (4.17) clearly validates the results presented in Table 4.12, which were 

calculated from the force-moment model. 

Another interesting point for discussion regarding this analysis is finding the 

maximal force (size and direction) which will cause failure to the entire structure of 

the robot, depending on the initial configuration of the links. This can be 

accomplished using optimization methods, similar to those discussed in section 4.2 

but with different contraints, cost functions and boundary conditions. Unfortunately, 

due to time duress, this point was not further investigated within the scope of this 

work. 

                                                 
3 Data values of the Jacobian are given in centimeters instead of meters due to lack of space. 
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5. Summary and Conclusions 

This work has introduced a minimally actuated robotic snake (MARS). The MARS 

can execute complex motions with a small number of actuators. It consists of a 

mobile actuator that shifts its position along the joints of the robot. This enables the 

actuator to shape the robot to any desired position by incrementally adjusting all of 

its joints. The capabilities of the MARS were first tested theoretically and shown by 

an example in which the robot successfully manipulates an object while 

maneuvering around obstacles, using a computerized animation. We have described 

the unique kinematics of the MARS and demonstrated how it can duplicate the 

motion of a fully actuated robot to within any desired degree of accuracy. 

The robot is suitable for applications in a complex and confined environment 

with low payload that do not require rapid deployment. While the robot cannot hold 

large weights, it is a “rigid” mechanism (not compliant) in the sense that it is not 

meant to deform due to performance of its tasks. The robot is also very modular - 

the number of links and mobile actuators can be changed in a matter of minutes to 

adjust it to a specific task.  

We built an experimental robot with ten links and one mobile actuator. We 

developed two main prototypes designed to show how by using a single mobile 

actuator, it is possible to control the ten joints of our robot and penetrate through a 

confined space and reach the target. We found that the control is simple and intuitive, 

and only a few minutes are required for a human operator to learn how to actuate the 

robot. We were able to perform simple tasks that included going through a small 

pass and reaching a target. Moreover, we demonstrated the robot’s capabilities in 

achieving different configurations, such as a ‘C’ shape or an ‘S’ shape.  

Further research and development of the MARS is ongoing. New improved 

designs are being developed for the physical actuating mechanism that will yield a 

more rigid structure (by producing metal links) and smoother motions in 3D, as well 

as reduce errors and malfunctions by fitting the mobile actuator with a more accurate 

controller and sensors. In our future work we aim at developing a comprehensive 

general motion planning algorithm to yield optimal motions for the MARS in an 

obstacle-embedded environment for one or more actuators. In addition, ex-vivo 

experiments using pig intestine should be performed in order to test the forces 

exerted by the robot (a minimized version) as it moves through biological vessels.  
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Appendix A - Histology of the Gastrointestinal Tract 

The GI tract can be divided into four concentric layers in the following order: 

mucosa, submucosa, muscular layer and serosa or adventitia, depending on whether 

the tissue is intraperitoneal or retroperitoneal, respectively. The mucosa is the 

innermost layer of the GI tract, surrounding the lumen. This layer comes in direct 

contact with digested food and it is highly specialized in each organ of the GI tract 

to deal with the different conditions. The submucosa consists of a dense irregular 

layer of connective tissue with large blood vessels, lymphatics, and nerves branching 

into the mucosa and muscularis externa. The muscular layer consists of an inner 

layer, which prevents food from traveling backward, and an outer layer which 

shortens the tract. The coordinated contractions of these layers is called 

peristalsis and propels the food through the tract; peristalsis is controlled by the 

myenteric plexus, located between the two muscle layers [29].  

The outermost layer of the GI tract consists of several layers of connective 

tissue. The intraperitoneal parts of the GI tract, which are located within the 

abdominal cavity, are covered with serosa and have a mesentery. These include the 

small intestine, appendix, cecum, transverse and sigmoid colon, rectum, first part of 

the duodenum and most of the stomach. In these sections there is clear boundary 

between the gut and the surrounding tissue. The retroperitoneal parts, which are the 

structures in the abdominal cavity that are located behind the intraperitoneal space, 

are covered with adventitia. They blend into the surrounding tissue and are fixed in 

position. These include the esophagus, pylorus of the stomach (connects the stomach 

to the duodenum), distal duodenum, ascending and descending colon and anal canal.  

 

Figure A.1: General structure of the intestinal wall [29]. 
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Appendix B - Theoretical Background 

B.1 Spatial Descriptions: Positions, Orientations and Frames  

A large part of robot kinematics is concerned with the establishment of 

various coordinate systems to represent the positions and orientations of rigid 

objects, and with transformations among these coordinate systems. Indeed, the 

geometry of three-dimensional space and of rigid motions plays a central role in 

all aspects of robotic manipulation. To define and manipulate mathematical 

quantities that represent position and orientation, we must define coordinate systems 

and develop conventions for representation. Many of the ideas presented here in the 

context of position and orientation will form a basis for our later consideration of 

linear and rotational velocities, forces, and torques [70] [71]. 

All positions and orientations will be described with respect to a universe 

coordinate system or with respect to other Cartesian coordinate systems that are (or 

could be) defined relative to the universe system. 

Once a coordinate system is established, we can locate any point in the 

universe with a 3 × 1 position vector. Because we will often define many coordinate 

systems in addition to the universe coordinate system, vectors must be tagged with 

information identifying which coordinate system they are defined within; for 

example, the components of the vector PA have numerical values that indicate 

distances along the axes of {A}. Each of these distances along an axis can be thought 

of as the result of projecting the vector onto the corresponding axis. Individual 

elements of a vector are given the subscripts x, y, and z: 

𝑃𝐴 = [

𝑃𝑥
𝑃𝑦
𝑃𝑧

].                                                    (𝐵. 1) 

In order to describe the orientation of a body, we will attach a 

coordinate system to the body and then give a description of this coordinate system 

relative to the reference system. In Fig. B.1, coordinate system {B} has been attached 

to the body in a known way. A description of {B} relative to {A} now suffices to 

give the orientation of the body.  
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Figure B.1: Locating an object in position and orientation [71]. 

One way to describe the body-attached coordinate system, {B}, is to write 

the unit vectors of its three principal axes4 in terms of the coordinate system {A}. 

We denote the unit vectors giving the principal directions of coordinate system {B} 

as �̂�𝐵, �̂�𝐵 and  �̂�𝐵. When written in terms of coordinate system {A}, they are 

called �̂�𝐵
𝐴, �̂�𝐵

𝐴 and �̂�𝐵
𝐴.  

It will be convenient if we stack these three unit vectors 

together as the columns of a 3 × 3 matrix - this matrix is called a rotation matrix. 

Because this particular rotation matrix describes {B} relative to {A}, we name it 

with the notation 𝑅𝐵
𝐴: 

𝑅𝐵
𝐴 = [�̂�𝐵

𝐴 �̂�𝐵
𝐴 �̂�𝐵

𝐴] = [

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

].                              (𝐵. 2) 

We can give expressions for the scalars 𝑟𝑖𝑗 in Eq. (B.2) by noting that the 

components of any vector are simply the projections of that vector onto the unit 

directions of its reference frame [71]. Hence, each component of 𝑅𝐵
𝐴 in (B.2) can be 

written as the dot product of a pair of unit vectors: 

                                                 
4 It is often convenient to use three, although any two would suffice (the third can always be recovered 

by taking the cross product of the two given). 
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𝑅𝐵
𝐴 = [�̂�𝐵

𝐴 �̂�𝐵
𝐴 �̂�𝐵

𝐴] = [

�̂�𝐵 ∙ �̂�𝐴 �̂�𝐵 ∙ �̂�𝐴 �̂�𝐵 ∙ �̂�𝐴
�̂�𝐵 ∙ �̂�𝐴 �̂�𝐵 ∙ �̂�𝐴 �̂�𝐵 ∙ �̂�𝐴
�̂�𝐵 ∙ �̂�𝐴 �̂�𝐵 ∙ �̂�𝐴 �̂�𝐵 ∙ �̂�𝐴

].              (𝐵. 3) 

The dot product of two unit vectors yields the cosine of the angle between 

them, so it is clear why the components of rotation matrices are often referred to as 

direction cosines. Since the inner product is commutative, (i.e.  �̂�𝐵 ∙ �̂�𝐴 = �̂�𝐵 ∙ �̂�𝐴), 

we see that 

𝑅𝐴
𝐵 = (𝑅𝐵

𝐴)𝑇.                                                    (𝐵. 4) 

In a geometric sense, the orientation of {A} with respect to the frame {B} is 

the inverse of the orientation of {B} with respect to the frame {A}. Algebraically, 

using the fact that coordinate axes are always mutually orthogonal, it can readily be 

seen that 

(𝑅𝐵
𝐴)𝑇 = (𝑅𝐵

𝐴)−1.                                                  (𝐵. 5) 

The column vectors of 𝑅𝐵
𝐴 are of unit length and mutually orthogonal. Such a matrix 

is said to be orthogonal. It can also be shown that det(𝑅𝐵
𝐴) = ±1. In keeping with 

conventional practice, if we restrict ourselves to right-handed coordinate systems, 

then det(𝑅𝐵
𝐴) = +1. It is customary to refer to the set of all such n × n matrices by 

the symbol SO(n), which denotes the Special Orthogonal group of order n. The 

properties of such matrices are summarized in Table B.1.  

The basic rotation matrix of frame 𝑜1𝑥1𝑦1𝑧1 relative to a coordinate frame 

𝑜0𝑥0𝑦0𝑧0 about the z-axis can be easily calculated using Eq. (B.3), where the 

positive sense for the angle θ is given by the right hand rule. From Fig. B.2 we see 

that 

𝑥1 ∙ 𝑥0 = cos 𝜃 ,       𝑦1 ∙ 𝑥0 = −sin 𝜃 

𝑥1 ∙ 𝑦0 = sin 𝜃 ,       𝑦1 ∙ 𝑦0 = cos 𝜃 

and  

𝑧1 ∙ 𝑧0 = 1, 

while all other dot products are zero.  
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Table B.1: Properties of the matrix group SO(n) [70]. 

 𝑅 ∈ 𝑆𝑂(𝑛) 

 𝑅−1 ∈ 𝑆𝑂(𝑛) 

 𝑅−1 = 𝑅𝑇 

 The columns (and therefore the rows) of 𝑅 are mutually orthogonal 

 Each column (and therefore each row) of 𝑅 is a unit vector 

 det(𝑅) = 1 

  

Thus, the rotation matrix 𝑅1
0 has a particularly simple form in this case, namely 

𝑅1
0 = 𝑅𝑧,𝜃 = [

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

].                                 (𝐵. 6) 

Similarly the basic rotation matrices representing rotations about the x and 

y-axes are given as 

𝑅𝑥,𝜃 = [
1 0 0
0 cos 𝜃 − sin 𝜃
0 sin 𝜃 cos 𝜃

]                                       (𝐵. 7) 

𝑅𝑦,𝜃 = [
cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃
].                                      (𝐵. 8) 

 

Figure B.2: Rotation about z0 by an angle 𝜃 [70]. 
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The rotation matrix 𝑅1
0 can be used not only to represent the orientation of 

coordinate frame 𝑜1𝑥1𝑦1𝑧1 with respect to frame 𝑜0𝑥0𝑦0𝑧0, but also to transform the 

coordinates of a point from one frame to another. If a given point is expressed 

relative to 𝑜1𝑥1𝑦1𝑧1 by coordinates 𝑃1, then 𝑅1
0𝑃1 represents the same point 

expressed relative to the frame 𝑜0𝑥0𝑦0𝑧0. We can also use rotation matrices to 

represent rigid motions that correspond to pure rotation [70]. 

Often it is desired to perform a sequence of rotations, whether it is about a 

given fixed coordinate frame, or about successive current5 frames. The order in 

which a sequence of rotations are carried out, and consequently the order in which 

the rotation matrices are multiplied together, is crucial since the composition law of 

rotational transformations is different in each case.  

Given a fixed frame  𝑜0𝑥0𝑦0𝑧0 and a current frame 𝑜1𝑥1𝑦1𝑧1, together with 

rotation matrix 𝑅1
0 relating them, if a third frame 𝑜2𝑥2𝑦2𝑧2 is obtained by a rotation 

𝑅 performed relative to the current frame then 𝑅1
0 should be multiplied by 𝑅 = 𝑅2

1, 

yielding the expression 

𝑅2
0 = 𝑅1

0𝑅2
1.                                                   (𝐵. 9) 

However, if the second rotation is performed relative to the fixed frame then we 

represent the rotation by 𝑅 in order to avoid confusion.  

In this case the order in which the rotation matrices are multiplied is as follows: 

𝑅2
0 = 𝑅𝑅1

0.                                                  (𝐵. 10) 

In each case 𝑅2
0 represents the transformation between the frames 𝑜0𝑥0𝑦0𝑧0 

and 𝑜2𝑥2𝑦2𝑧2, although the frame 𝑜2𝑥2𝑦2𝑧2 that results in Eq. (B.9) will be different 

from that resulting from Eq. (B.10) [70].   

  

B.2 Parametrizations of Rotations  

The nine elements 𝑟𝑖𝑗 in a general rotational transformation 𝑅 are not independent 

quantities. Indeed a rigid body possesses at most three rotational degrees-of-freedom 

and thus at most three quantities are required to specify its orientation [70].  

                                                 
5 The term ‘current frame’ is referred to the frame relative to which the rotation occurs. 
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Figure B.3: Euler Angle representation. (1) Frame 𝑜𝑎𝑥𝑎𝑦𝑎𝑧𝑎 represents the new coordinate 

frame after the rotation by 𝜙, (2) frame 𝑜𝑏𝑥𝑏𝑦𝑏𝑧𝑏 represents the new coordinate 

frame after the rotation by 𝜃, and (3) frame 𝑜1𝑥1𝑦1𝑧1 represents the final frame, 

after the rotation by 𝜓 [70]. 

A common method of specifying a rotation matrix in terms of three 

independent quantities is to use the Euler Angle representation. Consider the fixed 

coordinate frame 𝑜0𝑥0𝑦0𝑧0 and the rotated frame 𝑜1𝑥1𝑦1𝑧1 shown in Figure B.3. We 

can specify the orientation of the frame 𝑜1𝑥1𝑦1𝑧1 relative to the frame 𝑜0𝑥0𝑦0𝑧0 by 

three angles (𝜙, 𝜃, 𝜓), known as Euler Angles, and obtained by three successive 

rotations as follows: First, a rotation about the z-axis by the angle 𝜙, next, a rotation 

about the current y-axis by the angle 𝜃, and finally a rotation about the current z-axis 

by the angle 𝜓. Frames 𝑜𝑎𝑥𝑎𝑦𝑎𝑧𝑎 and 𝑜𝑏𝑥𝑏𝑦𝑏𝑧𝑏 are shown in the figure to help 

visualize the rotations. 

In terms of the basic rotation matrices the resulting rotational transformation 

𝑅1
0 can be generated as the product 

𝑅𝑍𝑌𝑍 = 𝑅𝑧,𝜙𝑅𝑦,𝜃𝑅𝑧,𝜓 =                                      (𝐵. 11) 

= [

𝑐𝜙 −𝑠𝜙 0

𝑠𝜙 𝑐𝜙 0

0 0 1

] [
𝑐𝜃 0 𝑠𝜃
0 1 0
−𝑠𝜃 0 𝑐𝜃

] [

𝑐𝜓 −𝑠𝜓 0

𝑠𝜓 𝑐𝜓 0

0 0 1

] = 

= [

𝑐𝜙𝑐𝜃𝑐𝜓 − 𝑠𝜙𝑠𝜓 −𝑐𝜙𝑐𝜃𝑠𝜓 − 𝑠𝜙𝑐𝜓 𝑐𝜙𝑠𝜃
𝑠𝜙𝑐𝜃𝑐𝜓 + 𝑐𝜙𝑠𝜓 −𝑠𝜙𝑐𝜃𝑠𝜓 + 𝑐𝜙𝑐𝜓 𝑠𝜙𝑠𝜃

−𝑠𝜃𝑐𝜓 𝑠𝜃𝑠𝜓 𝑐𝜃
]. 

The matrix 𝑅𝑍𝑌𝑍 in Eq. (B.11) is called the ZYZ-Euler Angle Transformation. 

The three angles, 𝜙, 𝜃, 𝜓, can be obtained for a given rotation matrix 𝑅 ∈ 𝑆𝑂(3) 

using trigonometry and the properties of rotation matrices, which were discussed in 
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the previous section. This problem will be important later when we address the 

inverse kinematics problem for manipulators. 

A rotation matrix 𝑅 can also be described as a product of successive rotations 

about the principal coordinate axes 𝑥0, 𝑦0 and 𝑧0 taken in a specific order. 

These rotations define the roll, pitch, and yaw angles, as shown in Figure B.4, which 

are also denoted by 𝜙, 𝜃, 𝜓.  

We specify the order of rotation as x – y − z, in other words, first a yaw 

about 𝑥0 through an angle 𝜓, then pitch about the 𝑦0 by an angle 𝜃, and finally roll 

about the 𝑧0 by an angle 𝜙. Since the successive rotations are relative to the fixed 

frame, the resulting transformation matrix is given by 

𝑅𝑋𝑌𝑍 = 𝑅𝑧,𝜙𝑅𝑦,𝜃𝑅𝑥,𝜓 =                                      (𝐵. 12) 

= [

𝑐𝜙 −𝑠𝜙 0

𝑠𝜙 𝑐𝜙 0

0 0 1

] [
𝑐𝜃 0 𝑠𝜃
0 1 0
−𝑠𝜃 0 𝑐𝜃

] [

1 0 0
0 𝑐𝜓 −𝑠𝜓
0 𝑠𝜓 𝑐𝜓

] = 

= [

𝑐𝜙𝑐𝜃 −𝑠𝜙𝑐𝜓 + 𝑐𝜙𝑠𝜃𝑠𝜓 𝑠𝜙𝑠𝜓 + 𝑐𝜙𝑠𝜃𝑐𝜓
𝑠𝜙𝑐𝜃 −𝑐𝜙𝑐𝜓 + 𝑠𝜙𝑠𝜃𝑠𝜓 −𝑐𝜙𝑠𝜓 + 𝑠𝜙𝑠𝜃𝑐𝜓
−𝑠𝜃 𝑐𝜃𝑠𝜓 𝑐𝜃𝑐𝜓

]. 

Of course, instead of yaw-pitch-roll relative to the fixed frames we could also 

interpret the above transformation as roll-pitch-yaw, in that order, each taken with 

respect to the current frame. The end result is the same matrix as in Eq. (B.12). 

Another way in which an arbitrary rotation can be represented using only 

three independent quantities is the axis/angle representation, which can be found in 

[70], section 2.5.3. 

 

Figure B.4: Roll-pitch-yaw angle representation [70]. 
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B.3 Kinematic Chains 

As described in the beginning of chapter 2, a robot manipulator is composed of a set 

of links connected together by joints. The term ‘lower pair’ is used to describe the 

connection between a pair of bodies (or links) when the relative motion is 

characterized by two surfaces sliding over one another. Figure B.5 below shows the 

six possible lower pair joints. 

 Mechanical-design considerations favor manipulators' generally being 

constructed from joints that exhibit just one degree-of-freedom, so most 

manipulators have either revolute or prismatic joints. In the rare case that a 

mechanism is built with a joint having n degrees-of-freedom, it can be modeled as a 

succession of single degree-of-freedom joints with links of length zero in between. 

Therefore, without loss of generality, we will consider only manipulators that have 

joints with a single degree-of-freedom [71]. 

A robot manipulator with n joints will have n + 1 links, since each joint 

connects two links. We number the joints from 1 to n, and we number the links 

from 0 to n, starting from the base. By this convention, joint i connects link 

i − 1 to link i. We will consider the location of joint i to be fixed with respect to link 

i − 1. When joint i is actuated, link i moves. Therefore, link 0 (the 

first link) is fixed, and does not move when the joints are actuated. 

 

Figure B.5: The six possible lower-pair joints [71]. 
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With the i-th joint, we associate a joint variable, denoted by qi. In the case 

of a revolute joint, qi is the angle of rotation, and in the case of a prismatic 

joint, qi is the joint displacement: 

𝑞𝑖 = {
 𝜃𝑖       if joint 𝑖 is revolute
 𝑑𝑖     if joint 𝑖 is prismatic

                                   (𝐵. 13) 

To perform the kinematic analysis, we attach a coordinate frame rigidly 

to each link. In particular, frame 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 is attached to link i. This means that 

whatever motion the robot executes, the coordinates of each point on link i 

are constant when expressed in the i-th coordinate frame. Furthermore, when 

joint i is actuated, link i and its attached frame experience a resulting motion. The 

frame 𝑜0𝑥0𝑦0𝑧0, which is attached to the robot base, is referred to as the inertial 

frame. Figure B.6 illustrates the idea of attaching frames rigidly to links in the case 

of an elbow manipulator [70]. 

Suppose 𝐴𝑖 is the homogeneous transformation matrix that expresses the 

position and orientation of 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 with respect to 𝑜𝑖−1𝑥𝑖−1𝑦𝑖−1𝑧𝑖−1. The matrix 𝐴𝑖 

is not constant, but varies as the configuration of the robot is changed. However, the 

assumption that all joints are either revolute or prismatic means that 𝐴𝑖 is a function 

of only a single joint variable, namely qi. In other words, 

𝐴𝑖 = 𝐴𝑖(𝑞𝑖).                                                     (𝐵. 14) 

 

 

Figure B.6: Coordinate frames attached to elbow manipulator [70]. 
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The homogeneous transformation matrix that expresses the position and orientation 

of 𝑜𝑗𝑥𝑗𝑦𝑗𝑧𝑗 with respect to 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 is called, by convention, a transformation matrix, 

and is denoted by 𝑇𝑗
𝑖. From section 2.3 we see that 

𝑇𝑗
𝑖 = {

𝐴𝑖+1𝐴𝑖+2⋯𝐴𝑗−1𝐴𝑗          𝑖𝑓 𝑖 < 𝑗

𝐼                                          𝑖𝑓 𝑖 = 𝑗

(𝑇𝑖
𝑗
)
−1
                               𝑖𝑓 𝑖 > 𝑗

                             (𝐵. 15) 

By the manner in which we have rigidly attached the various frames to the 

corresponding links, it follows that the position of any point on the end-effector, 

when expressed in frame n, is a constant independent of the configuration of 

the robot [70]. Denote the position and orientation of the end-effector with respect 

to the inertial or base frame by a three-dimensional vector 𝑜𝑛
0 (which gives the 

coordinates of the origin of the end-effector frame with respect to the base frame) 

and the 3 × 3 rotation matrix 𝑅𝑛
0, and define the homogeneous transformation matrix: 

𝐻 = [𝑅𝑛
0 𝑜𝑛

0

0 1
].                                                   (𝐵. 16) 

Then the position and orientation of the end-effector in the inertial frame are given 

by 

𝐻 = 𝑇𝑛
0 = 𝐴1(𝑞1)⋯𝐴𝑛(𝑞𝑛)                                     (𝐵. 17) 

where each homogeneous transformation 𝐴𝑖 is of the form 

𝐴𝑖 = [
𝑅𝑖
𝑖−1 𝑜𝑖

𝑖−1

0 1
].                                                (𝐵. 18) 

Hence  

𝑇𝑗
𝑖 = 𝐴𝑖+1⋯𝐴𝑗 = [

𝑅𝑗
𝑖 𝑜𝑗

𝑖

0 1
]                                     (𝐵. 19) 

where the matrix 𝑅𝑗
𝑖 expresses the orientation of 𝑜𝑗𝑥𝑗𝑦𝑗𝑧𝑗 relative to 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 and is 

given by the rotational parts of the 𝐴-matrices as 

𝑅𝑗
𝑖 = 𝑅𝑖+1

𝑖 ⋯𝑅𝑗
𝑗−1
.                                             (𝐵. 20) 
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The coordinate vectors 𝑜𝑗
𝑖 are given recursively by the formula 

𝑜𝑗
𝑖 = 𝑜𝑗−1

𝑖 + 𝑅𝑗−1
𝑖 𝑜𝑗

𝑗−1
                                         (𝐵. 21) 

where 𝑜𝑗
𝑗−1

 is the vector form 𝑜𝑗−1 to 𝑜𝑗 in 𝑜𝑗−1 coordinate system.  

 

B.4 Forward Kinematic: Analysis of a Two-Link Planar Manipulator  

Suppose we wish to move the manipulator from its home position to position A, from 

which point the robot is to follow the contour of the surface S to the point B, at 

constant velocity, while maintaining a prescribed force F normal to the surface (see 

Figure B.7(a)). In doing so the robot will cut or grind the surface according to a 

predetermined specification. For this reason we first need to describe both the 

position of the tool and the locations A and B (and most likely the entire surface S) 

with respect to a common coordinate system. 

 Typically, the manipulator will be able to sense its own position in some 

manner using internal sensors (position encoders located at joints 1 and 2) that 

can measure directly the joint angles 𝜃1 and 𝜃2. Therefore, we also need to 

express the positions A and B in terms of these joint angles.  

Here, we establish the base coordinate frame 𝑜0𝑥0𝑦0𝑧0 at the base of the 

robot (see Figure B.7(b)), and the coordinates (𝑥, 𝑦) of the tool are expressed in this 

coordinate frame as  

   

 

Figure B.7: Industrial two-link planar robot manipulator. (a) The manipulator is shown with a 

grinding tool that it must use to remove a certain amount of metal from a surface. (b) Coordinate 

frames attached to the manipulator. The z-axes all point out of the page and are not shown. [70]. 
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𝑥 = 𝑥2 = 𝑙1 cos 𝜃1 + 𝑙2 cos(𝜃1 + 𝜃2)                             (𝐵. 22) 

𝑦 = 𝑦2 = 𝑙1 sin 𝜃1 + 𝑙2 sin(𝜃1 + 𝜃2)                             (𝐵. 23) 

in which 𝑙1 and 𝑙2 are the lengths of the two links, respectively. Also the orientation 

of the tool frame relative to the base frame is given by the direction cosines of the 

𝑥2 and 𝑦2 axes relative to the 𝑥0 and 𝑦0 axes, that is, 

𝑥2 ∙ 𝑥0 = cos(𝜃1 + 𝜃2) ;       𝑦2 ∙ 𝑥0 = −sin(𝜃1 + 𝜃2) 

𝑥2 ∙ 𝑦0 = sin(𝜃1 + 𝜃2) ;        𝑦2 ∙ 𝑦0 = cos(𝜃1 + 𝜃2) 

which can be combined into an orientation matrix: 

[
𝑥2 ∙ 𝑥0 𝑦2 ∙ 𝑥0
𝑥2 ∙ 𝑦0 𝑦2 ∙ 𝑦0

] = [
cos(𝜃1 + 𝜃2) − sin(𝜃1 + 𝜃2)

sin(𝜃1 + 𝜃2) cos(𝜃1 + 𝜃2)
].               (𝐵. 24) 

Equations (B.22)-(B.24) are called the forward kinematic equations for this 

arm, and can be derived quite easily due to its simple geometric structure. However, 

the kinematic analysis of an n-link manipulator with six degrees-of-freedom (or 

more) can be extremely complex and the conventions introduced below simplify the 

analysis considerably. Moreover, they give rise to a universal language with which 

robot engineers can communicate.  

 

B.5 Inverse Kinematics: Kinematic Decoupling  

Although the general problem of inverse kinematics is quite difficult, it turns out 

that for manipulators having six joints, with the last three joints intersecting at a 

point (such as the Stanford Manipulator), it is possible to decouple the inverse 

kinematics problem into two simpler problems, known respectively as inverse 

position kinematics, and inverse orientation kinematics. To put it another way, for a 

six-DOF manipulator with a spherical wrist, the inverse kinematics problem may be 

separated into two simpler problems, namely first finding the position of the 

intersection of the wrist axes, hereafter called the wrist center, and then finding the 

orientation of the wrist [70]. 

Under these conditions, Eq. (2.9) can be expressed as two sets of equations 

representing the rotational and positional equations: 
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𝑅6
0(𝑞1, … , 𝑞6) = 𝑅                                                (𝐵. 25) 

𝑜6
0(𝑞1, … , 𝑞6) = 𝑜                                                 (𝐵. 26) 

where 𝑜 and 𝑅 are the desired position and orientation of the tool frame, expressed 

with respect to the world coordinate system. Thus, given 𝑜 and 𝑅, the inverse 

kinematics problem is to solve for 𝑞1, … , 𝑞6. 

The assumption of a spherical wrist means that the axes 𝑧3, 𝑧4 and 𝑧5 

intersect at one point 𝑜𝑐, and hence the origins 𝑜4 and 𝑜5 assigned by the DH 

convention will always be at the wrist center 𝑜𝑐, as shown in Figure B.8 (often 𝑜3 

will also be at 𝑜𝑐, but this is not necessary for the subsequent development). The 

important point of this assumption is that motion of the final three links about these 

axes will not change the position of 𝑜𝑐, and thus, the position of the wrist center is a 

function of only the first three joint variables.  

The origin of the tool frame (whose desired coordinates are given by 𝑜) is 

simply obtained by a translation of distance 𝑑6 along 𝑧5 from 𝑜𝑐 (see Table B.2 and 

Fig. B.9). In this case, 𝑧5 and 𝑧6 are the same axis, and the third column of 𝑅 

expresses the direction of 𝑧6 with respect to the base frame.  

Table B.2: DH parameters for spherical wrist (* represents a variable) [70]. 

Link 𝑎𝑖 𝛼𝑖 𝑑𝑖 𝜃𝑖 

4 0 -90 0 𝜃4
∗ 

5 0 90 0 𝜃5
∗ 

6 0 0 𝑑6 𝜃6
∗ 

   

 

Figure B.8: The spherical wrist frame assignment in which the joint axes  

𝑧3, 𝑧4 and 𝑧5 intersect at 𝑜𝑐 [70].  
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Therefore, we have 

𝑜 = 𝑜𝑐
0 + 𝑑6𝑅 [

0
0
1
].                                              (𝐵. 27) 

If the components of the end-effector position 𝑜 are denoted 𝑜𝑥, 𝑜𝑦, 𝑜𝑧 and the 

components of the wrist center 𝑜𝑐
0 are denoted 𝑥𝑐, 𝑦𝑐, 𝑧𝑐, then from Eq. (B.27) we 

can extract the following relationship: 

[

𝑥𝑐
𝑦𝑐
𝑧𝑐
] = [

𝑜𝑥 − 𝑑6𝑟13
𝑜𝑦 − 𝑑6𝑟23
𝑜𝑧 − 𝑑6𝑟33

].                                               (𝐵. 28) 

Using Eq. (B.28) we can find the values of the first three joint variables, 

which determines the orientation transformation 𝑅3
0 since it depends only on these 

first three joint variables. We can now determine the orientation of the end-effector 

relative to the frame 𝑜3𝑥3𝑦3𝑧3 from the expression 

𝑅 = 𝑅3
0𝑅6

3                                                          (𝐵. 29) 

𝑅6
3 = (𝑅3

0)−1𝑅 = (𝑅3
0)𝑇𝑅.                                          (𝐵. 30) 

The final three joint angles can then be found as a set of Euler angles corresponding 

to 𝑅6
3. 

 

Figure B.9: Kinematic decoupling of a manipulator with a spherical wrist [70]. 
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B.6 Inverse Position: A Geometric Approach  

For the common kinematic arrangements that we consider, we can use a geometric 

approach to find the variables 𝑞1, 𝑞2, 𝑞3 corresponding to 𝑜𝑐
0 given by Eq. (B.28). 

In general, the complexity of the inverse kinematics problem increases with the 

number of nonzero link parameters, based on the DH convention. For most 

manipulators, many of the 𝑎𝑖, 𝑑𝑖 are zero, the 𝛼𝑖 are 0 or ±π/2, etc. In these cases 

especially, a geometric approach is the simplest and most natural.  

The general idea of the geometric approach is to solve for joint variable 𝑞𝑖 

by projecting the manipulator onto the 𝑥𝑖−1 − 𝑦𝑖−1 plane and solving a simple 

trigonometry problem [70]. For example, consider the diagram of Figure B.10 for 

the two-link manipulator shown in Figure B.7. Using the Law of Cosines, angle 𝜃2 

is given by 

cos 𝜃2 =
𝑥2 + 𝑦2 − 𝛼1

2 − 𝛼2
2

2𝛼1𝛼2
∶= 𝐷                              (𝐵. 31) 

We could now determine 𝜃2 as 

𝜃2 = cos
−1(𝐷).                                                (𝐵. 32) 

However, a better way to find 𝜃2 is to notice that if cos 𝜃2 is given by 

Eq. (B.31) then sin 𝜃2 is given as 

sin 𝜃2 = ±√1 − 𝐷2                                            (𝐵. 33) 

 

Figure B.10: Solving for the joint angles of a two-link planar arm [70]. 
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and, hence, 𝜃2 can be found by 

𝜃2 = tan
−1 (

±√1 − 𝐷2  

𝐷
).                                     (𝐵. 34) 

The advantage of this latter approach is that both the elbow-up and elbow-down 

solutions are recovered by choosing the positive and negative signs in Eq. (B.34), 

respectively.  

 Now it can be shown that 𝜃1 is given as 

𝜃1 = tan
−1 (

𝑦

𝑥
) − tan−1 (

𝛼2 sin 𝜃2 

𝛼1 + 𝛼2 cos 𝜃2
).                       (𝐵. 35) 

It is evident that the angle 𝜃1 depends on 𝜃2. This makes sense physically since we 

would expect to require a different value for 𝜃1, depending on which solution is 

chosen for 𝜃2. 

A more comprehensive analysis of this approach can be found in [70], 

section 3.3.3, for the elbow manipulator shown in Figure 2.3. 

 

B.7 Inverse Orientation   

In the previous section we solved the inverse positon problem, thus attaining the 

values of the first three joint variables corresponding to a given position of the wrist 

origin. The inverse orientation problem is now one of finding the values of the final 

three joint variables corresponding to a given orientation with respect to the 

frame 𝑜3𝑥3𝑦3𝑧3. For a spherical wrist, this can be interpreted as the problem of 

finding a set of Euler angles corresponding to a given rotation matrix 𝑅. 

The DH parameters for the frame assignment shown in Figure 2.3 are 

summarized in Table B.3. Multiplying the corresponding 𝐴𝑖 matrices presented in 

the form of Eq. (2.8) gives the transformation matrix 𝑇3
0 for the articulated or elbow 

manipulator as  

𝑇3
0 = 𝐴1𝐴2𝐴3 = [

𝑅3
0 𝑜3

0

0 1
]                                  (𝐵. 36) 
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Table B.3: DH parameters for the elbow manipulator of Fig. 2.3 (* represents a variable) [70]. 

Link 𝑎𝑖 𝛼𝑖 𝑑𝑖 𝜃𝑖 

1 0 90 𝑑1 𝜃1
∗ 

2 𝑎2 0 0 𝜃2
∗ 

3 𝑎3 0 0 𝜃3
∗ 

 

where the rotational part 𝑅3
0 is  

𝑅3
0 = [

𝑐1𝑐23 −𝑐1𝑠23 𝑠1
𝑠1𝑐23 −𝑠1𝑠23 −𝑐1
𝑠23 𝑐23 0

].                               (𝐵. 37) 

For the spherical wrist configuration shown in Figure B.8, the transformation 

matrix 𝑇6
3 = 𝐴4𝐴5𝐴6 is computed using the DH parameters shown in Table B.2. The 

rotational part of this matrix is given as  

𝑅6
3 = [

𝑐4𝑐5𝑐6 − 𝑠4𝑠6 −𝑐4𝑐5𝑠6 − 𝑠4𝑐6 𝑐4𝑠5
𝑠4𝑐5𝑐6 + 𝑐4𝑠6 −𝑠4𝑐5𝑠6 + 𝑐4𝑐6 𝑠4𝑠5

−𝑠5𝑐6 𝑠5𝑠6 𝑐5
].                   (𝐵. 38) 

Equation (B.38) has the same form as the rotation matrix obtained for the Euler 

transformation, given in (B.11).  

Hence, the final three joint variables 𝜃4, 𝜃5, 𝜃6 can indeed be identified as 

the Euler angles 𝜙, 𝜃 and 𝜓 (with respect to the coordinate frame 𝑜3𝑥3𝑦3𝑧3), and 

the Euler angle solution can be applied to Eq. (B.30). In this case, the three equations 

given by the third column in the above matrix equation are as follows: 

𝑐4𝑠5 = 𝑐1𝑐23𝑟13 + 𝑠1𝑐23𝑟23 + 𝑠23𝑟33                          (𝐵. 39) 

𝑠4𝑠5 = −𝑐1𝑐23𝑟13 − 𝑠1𝑠23𝑟23 + 𝑐23𝑟33                         (𝐵. 40) 

𝑐5 = 𝑠1𝑟13 − 𝑐1𝑟23.                                           (𝐵. 41) 

If not both of the expressions (B.39), (B.40) are zero, meaning 𝑠5 ≠ 0, then 𝜃5 can 

be obtained from Eq. (B.41) as 

𝜃5 = atan2 (𝑠1𝑟13 − 𝑐1𝑟23, ±√1 − (𝑠1𝑟13 − 𝑐1𝑟23)2),              (𝐵. 42) 
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where atan2(𝑥, 𝑦) denotes the two-argument arctangent function, in which 𝑥 and 𝑦 

are the cosine and sine, respectively, of the angle 𝜃5. This function uses the signs of 

𝑥 and 𝑦 to select the appropriate quadrant for the angle 𝜃5.  

If the positive square root is chosen in (B.42), then 𝜃4 is given by Eqns. 

(B.39) and (B.40) as 

 𝜃4 = atan2(𝑐1𝑐23𝑟13 + 𝑠1𝑐23𝑟23 + 𝑠23𝑟33 ,                               (𝐵. 43) 

−𝑐1𝑐23𝑟13 − 𝑠1𝑠23𝑟23 + 𝑐23𝑟33)                                    

and 𝜃6 is given by the third row of Eq. (B.38): 

 𝜃6 = atan2(−𝑠1𝑟11 + 𝑐1𝑟21, 𝑠1𝑟12 − 𝑐1𝑟22).                        (𝐵. 44) 

The other solutions are obtained analogously.  

If 𝑠5 = 0, then joint axes 𝑧3 and 𝑧5 are collinear. This is a singular 

configuration and only the sum 𝜃4 + 𝜃6 can be determined, as Eq. (B.38) becomes 

𝑅6
3 = [

𝑐4𝑐6 − 𝑠4𝑠6 −𝑐4𝑠6 − 𝑠4𝑐6 0
𝑠4𝑐6 + 𝑐4𝑠6 −𝑠4𝑠6 + 𝑐4𝑐6 0

0 0 1

] = [
𝑐4+6 −𝑠4+6 0
𝑠4+6 𝑐4+6 0
0 0 1

]         (𝐵. 45) 

if 𝑐5 = +1 (and 𝜃5 = 0) , or 

𝑅6
3 = [

−𝑐4𝑐6 − 𝑠4𝑠6 𝑐4𝑠6 − 𝑠4𝑐6 0
−𝑠4𝑐6 + 𝑐4𝑠6 𝑠4𝑠6 + 𝑐4𝑐6 0

0 0 −1
] = [

−𝑐4−6 −𝑠4−6 0
−𝑠4−6 𝑐4−6 0
0 0 −1

]      (𝐵. 46) 

if 𝑐5 = −1 (and 𝜃5 = 𝜋) . 

One solution is to choose 𝜃4 arbitrarily and then determine 𝜃6 using the following 

expressions:  

𝜃4 + 𝜃6 = atan2(𝑟11, 𝑟21) = atan2(𝑟22, −𝑟12)                        (𝐵. 47) 

𝜃4 − 𝜃6 = atan2(−𝑟11, −𝑟12) = atan2(𝑟22, −𝑟21).                   (𝐵. 48) 

In each case, there are infinitely many solutions [70]. 
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Appendix C - Prototype ‘C’ 

C.1 Mechanical Design: Transmission Ratio of Rotation Motor 

To achieve a precision of 2 degrees in rotation, the following calculations were 

made: Since the upper (input) and lower (output) gears of the vertical transmission 

are identical originally, they have the same module 

𝑚𝑖𝑛𝑝𝑢𝑡 = 𝑚𝑜𝑢𝑡𝑝𝑢𝑡 = 2.                                           (𝐶. 1) 

However, six teeth were cut from the upper gear (see Fig. C.1 below) in order to 

prevent the two gears from integrating as the mobile actuator advances along the 

links. Therefore, the transmission ratio between the two gears is calculated according 

to the ratio between the number of teeth, Z: 

𝑖𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =
𝑍𝑖𝑛𝑝𝑢𝑡

𝑍𝑜𝑢𝑡𝑝𝑢𝑡
=
4

10
= 2 ∶ 5.                                 (𝐶. 2) 

Because the output gear and the worm are fixated on the same axis (2 mm metal 

pin), they spin together. Hence, the transmission ratio between the input gear and 

the worm is 

𝑖𝑖𝑛𝑝𝑢𝑡−𝑤𝑜𝑟𝑚 = 𝑖𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 ∙
𝑛𝑜𝑢𝑡𝑝𝑢𝑡

𝑛𝑤𝑜𝑟𝑚⏟    
=1

= 2 ∶ 5.                            (𝐶. 3) 

 

Figure C.1: The rotation mechanism consists of a vertical transmission activated by the motor  

(input and output gears) and a worm drive transmission (worm and worm gear) rotating each link. 
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Using a 0.5 module worm (as part of the locking mechanism) required us to 

design the worm gear with 36 teeth, in order to maintain the same module within the 

design constraints of the link. Therefore, the worm drive transmission ratio is   

𝑖𝑤𝑜𝑟𝑚 𝑑𝑟𝑖𝑣𝑒 =
𝑍𝑤𝑜𝑟𝑚

𝑍𝑤𝑜𝑟𝑚 𝑔𝑒𝑎𝑟
= 1 ∶ 36.                                (𝐶. 4) 

The transmission ratio of the entire mechanism can be calculated by multiplying Eq. 

(C.3) and (C.4): 

𝑖𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑖𝑖𝑛𝑝𝑢𝑡−𝑤𝑜𝑟𝑚 ∙ 𝑖𝑤𝑜𝑟𝑚 𝑑𝑟𝑖𝑣𝑒 = 1 ∶ 90.                       (𝐶. 5) 

From Eq. (C.5) we derive the relative angle of rotation for every spin of the motor: 

𝜃 = 𝑖𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 ∙ 2𝜋 =
𝜋

45
= 4 deg.                                (𝐶. 6) 

As the input and output gears can be disconnected from each other twice over the 

course of one spin, we can in fact gain control over 2 degrees of rotation between 

two adjacent links. 

C.2 The Control System  

The control system described in sub-section 3.2.2 is comprised of the electrical 

circuit presented in Figure C.2. The components of the electrical circuit used in our 

experiments are shown below in the following order: The controller (Teensy 3.1), 

H-bridge, optical encoder and reflective IR sensor. The complete technical 

specifications of each component can be found online. 

 

Figure C.2: A schematic diagram of the electrical circuit of the control system. 
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Figure C.3: Micro-processor Teensy 3.1 shown from the front (upper image) and back side (lower 

image) [74].  
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Figure C.4: Minimal wiring diagram for connecting a micro-controller to a DRV8833  

dual-H-bridge motor driver carrier [75]. 

 

  

Figure C.5: Reflective optical encoder for micro metal gearmotors pinout (on the right), and from a 

bottom view with dimensions [76].  

 

Figure C.6: Installed micro metal gearmotor reflective optical encoder with 5-tooth wheel, side 

view [76]. 
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Figure C.7: TCRT5000 Reflective infrared sensor with photoelectric switches [77]. 
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Appendix D - Strength Analysis 

D.1 Structural Rigidity: Complete Analysis 

 
 

 
 

 

 

 

 

 



95 

 
 

 
 

The stiffness coefficient 𝐾𝑡 was estimated from the experiment conducted on two 

adjacent links of the latest design (prototype ‘C’). One link was fixated using a 

metalworking vise (shown in Fig. D.1), while the other link was gradually loaded 

with different weights, ranging from 50 g to 1 kg. The experiment was conducted 

three times, until a small deformation occurred in the joint. The average weight 

which caused a deformation of 1 degree was about 4 kg.  
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Figure D.1: The experiment conducted on two adjacent links, 3D printed using ‘VeroWhite’ 

material. One link is fixated using a metalworking vise, while the other link is gradually loaded 

with different weights. 

As the force was applied at the free joint of the link, the torque which caused 

the deformation can be calculated from the following equation: 

�⃗⃗⃗� = 𝑟 × �⃗�𝑔                                                     (𝐷. 1) 

where 𝑟 is the range vector from the fixed joint to the point of application. In this 

case, 𝑟 is the distance between the two joints of the link and is equal to the length of 

the link, L=5 cm.  

Metalworking 

vise 

Links 

Weights 
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�⃗�𝑔 is the gravitational force, which according to the results of the experiment equals 

to 

�⃗�𝑔 = 𝑚�⃗�                                                      (𝐷. 2) 

�⃗�𝑔 = 4 ∙ 9.81 = 39.24 𝑁.                                      (𝐷. 3) 

Hence, the maximum torque is  

𝑀 = 0.05 ∙ 39.24 = 1.96 ≅ 2 𝑁𝑚,                              (𝐷. 4) 

and the stiffness coefficient can be calculated from Eq. (4.7), 

𝐾𝑡 =
𝑀

𝜃𝑡
= 2 

𝑁𝑚

𝑑𝑒𝑔
.                                             (𝐷. 5) 

Converting the result given by Eq. (D.5) to the appropriate units (degrees to radians), 

the estimated stiffness coefficient of the joint is  

𝐾𝑡 = 2 ∙
180

𝜋
≅ 115 

𝑁𝑚

𝑟𝑎𝑑
.                                      (𝐷. 6) 
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Appendix E - MATLAB codes 

OptimizationUpdated 

% This program finds the optimal path of the MARS to a specific (arbitrary) point in the 2D  
% workspace according to the chosen cost functions. 
  
close all; 
clear; clc 
  
N = 10;                            % number of links 
l = 5;                                               % length of each link [cm] 
angle = [0 pi/6 pi/4 -pi/6 -pi/4]';   % angle between two links 
thetaInit = datasample(angle,N);                   % initial angle of each link 
%thetaInit = [0 0 pi/4 -pi/6 -pi/4 0 pi/4 pi/4 0 pi/6]'; 
clr = cell(1,4);                                                       % path colors 
clr{1} = 'g';  clr{2} = 'b';  clr{3} = 'c';  clr{4} = 'm';    
xyFinal = [40 10];                                                % target coordinates [cm] 
error = (N*l)/100;                                              % error deviation allowed (1% of MARS length) 
[MARS_path,~,~] = plotPath(thetaInit,l,clr{1}); 
plot(xyFinal(1),xyFinal(2),'xr','linewidth',3,'markersize',15) 
  
% check if target is in workspace 
if sqrt(xyFinal(1)^2+xyFinal(2)^2) > N*l  
    disp('Target is Not in Workspace') 
    return    
end 
  
%% optimization process 
lb = -pi/4*ones(N,1);                                % lower bound of theta 
ub = pi/4*ones(N,1);                                % upper bound of theta 
lambda = 1; 
power = [2 0.5 1];                                      % cost function f1 
diff_angle = zeros(N,7);                           % pre-allocation  
diff_angle(:,1) = round(rad2deg(thetaInit));  
  
for i = 1:length(power) 
    figure(i) 
    [MARS_path,~,~] = plotPath(thetaInit,l,clr{1}); 
    plot(xyFinal(1),xyFinal(2),'xr','linewidth',3,'markersize',15) 
    x0 = zeros(N,1);                                                  % initial guess for theta (1st iteration) 
    fun = @(theta)costFun(theta,thetaInit,l,lambda,xyFinal,power(i)); 
    options = optimset('Display','iter');              % iterations of the solution 
    %options = optimoptions('fmincon','Algorithm','trust-region-reflective','GradObj','on'); 
    [thetaFinal,fval] = fmincon(fun,x0,[],[],[],[],lb,ub,[],options); 
    [MARS_path_opt,~,~] = plotPath(thetaFinal,l,clr{2}); 

  
    % plots end-effector trajectory  
    xf = zeros(N+1,1);  yf = zeros(N+1,1); 
    temp = thetaInit; 
    xf(1) = l*sum(cos(cumsum(temp)));   
    yf(1) = l*sum(sin(cumsum(temp))); 
    for k = 1:length(thetaFinal) 
        temp(k) = thetaFinal(k); 
        xf(k+1) = l*sum(cos(cumsum(temp))); 
        yf(k+1) = l*sum(sin(cumsum(temp))); 
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    end 
    trj = plot(xf,yf,'sk','linewidth',1,'markersize',8,'markerfacecolor','c'); 
    axis equal;  xlim([-5 45]);   
    legend([MARS_path,MARS_path_opt,trj],'initial configuration','optimal configuration','end-  
                    effector trajectory'... 
                    ,'location','southwest'); 
    title(['Optimal Path of 10-links MARS, cost function: power = ',num2str(power(i))] 
               ,'FontSize',12); 
    xlabel('X [cm]');  ylabel('Y [cm]'); 
  
    % change in orientation of each link 
    diff_angle(:,2*i) = round(rad2deg(thetaFinal));  
    diff_angle(:,2*i+1) = round(rad2deg(thetaFinal-thetaInit));  
     
    % check results 
    if sqrt((l*sum(cos(cumsum(thetaFinal)))-xyFinal(1)).^2 +  
                 (l*sum(sin(cumsum(thetaFinal)))-xyFinal(2)).^2) > error 
        disp(['End-effector position Exceeds acceptable Error, power = ',num2str(power(i))])  
        x0 = thetaInit; 
        figure(i) 
        fun = @(theta)costFun(theta,thetaInit,l,lambda,xyFinal,power(i)); 
        options = optimset('Display','iter');                % iterations of the solution 
        [thetaFinal,fval] = fmincon(fun,x0,[],[],[],[],lb,ub,[],options); 
        [MARS_path_opt,~,~] = plotPath(thetaFinal,l,clr{3}); 
        legend([MARS_path,MARS_path_opt],'initial path','optimal path'); 
        title(['Optimal Path of 10-links MARS, cost function: power = ',num2str(power(i))],   
                   'FontSize',12); 
        % change in orientation of each link 
        diff_angle(:,2*i) = round(rad2deg(thetaFinal));  
        diff_angle(:,2*i+1) = round(rad2deg(thetaFinal-thetaInit));  
    end 
    if sqrt((l*sum(cos(cumsum(thetaFinal)))-xyFinal(1)).^2 + 
(l*sum(sin(cumsum(thetaFinal)))-xyFinal(2)).^2) > error 
        title(['Target is Not in Workspace (power = ',num2str(power(i)),')'],'FontSize',12);  
    end    
end 
  
%% choose optimal path for minimum time 
t_trans = 2;                      % time to pass one link [sec] 
t_rot = 2.5;                       % time to rotate one link 4 deg [sec] 
% pre-allocation  
time = zeros(1,3);    
pos_rot = zeros(1,3);   % number of links to be rotated 
  
for j = 1:length(power) 
    pos_rot(j) = find(diff_angle(:,2*j+1),1,'last'); 
    counter = 0; 
    t1 = 0; 
    for k = 1:pos_rot(j) 
        counter = counter+1; 
        if diff_angle(k,2*j+1)        % computes rotation time 
            t1 = t1+t_rot*abs(diff_angle(k,2*j+1)/4); 
        end 
    end 
    t2 = t_trans*(counter-1);    % computes translation time 
    time(j) = t1+t2; 
end  
[val,ind] = min(time);              % finds minimum time 
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disp(['Choose option ',num2str(ind),'(p=',num2str(power(ind)),'): Optimal path is achieved 
within ',num2str(round(val)),... 
      ' seconds (about ',num2str(val/60),' minutes)']) 
   

%% adjusting results to current design with different control systems: 
% case 1 - Automated control, via algorithm (control of 4 degrees in rotation) 
% case 2 - Manual control, via joystick (control of 2 degrees in rotation) 
  
% pre-allocation  
adj_rot = zeros(N,3);  
adj_ang = zeros(N,3);     
thetaFinal_new = zeros(N,3);  
tFinal_new = zeros(N,3);  
Err = zeros(1,3); 
diff_new = zeros(N,3);  
  
operator = input('Enter 1 for Automated control or 2 for Manual control: '); 
switch operator 
    case 1 
        for j = 1:length(power) 
            temp = find(mod(diff_angle(:,2*j+1),4)==2); 
            adj_rot(:,j) = round(diff_angle(:,2*j+1)/4);       % number of upper gear spins 
            for i = 1:2:length(temp) 
                adj_rot(temp(i),j) = adj_rot(temp(i),j)-1*sign(adj_rot(temp(i),j)); 
            end 
            thetaFinal_new(:,j) = adj_rot(:,j)*4+diff_angle(:,1); 
            joint = find(abs(thetaFinal_new(:,j)) > 45); 
            for k = 1:length(joint) 
                adj_rot(joint(k),j) = adj_rot(joint(k),j)-1*sign(adj_rot(joint(k),j)); 
                thetaFinal_new(joint(k),j) = adj_rot(joint(k),j)*4+diff_angle(joint(k),1); 
            end 
            % check error 
            tFinal_new(:,j) = deg2rad(thetaFinal_new(:,j)); 
            Err(j) = sqrt((l*sum(cos(cumsum(tFinal_new(:,j))))-xyFinal(1)).^2 +  
                                       (l*sum(sin(cumsum(tFinal_new(:,j))))-xyFinal(2)).^2); 
            if Err(j) > error 
                disp(['Option',num2str(j),'(p=',num2str(power(j)),'): Error=',num2str(Err(j)),... 
                            ', End-effector position Exceeds acceptable Error(0.5cm)']); 
            end 
            figure(j+3) 
            [MARS_path,~,~] = plotPath(thetaInit,l,clr{1}); 
            [path_new,~,~] = plotPath(tFinal_new(:,j),l,clr{4}); 
            plot(xyFinal(1),xyFinal(2),'xr','linewidth',3,'markersize',15) 
             
            % plots end-effector trajectory  
            xf = zeros(N+1,1);  yf = zeros(N+1,1); 
            temp = thetaInit; 
            xf(1) = l*sum(cos(cumsum(temp)));   
            yf(1) = l*sum(sin(cumsum(temp))); 
            for k = 1:length(thetaFinal) 
                temp(k) = tFinal_new(k,j); 
                xf(k+1) = l*sum(cos(cumsum(temp))); 
                yf(k+1) = l*sum(sin(cumsum(temp))); 
            end 
            trj = plot(xf,yf,'sk','linewidth',1,'markersize',8,'markerfacecolor','c'); 
            axis equal;  xlim([-5 45]);   
            legend([MARS_path,path_new,trj],'initial configuration','adjusted configuration','end- 
                            effector trajectory'... 
                            ,'location','southwest'); 
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            xlabel('X [cm]');  ylabel('Y [cm]'); 
            title(['Adjusted Path, cost function: power = ',num2str(power(j)),', Error =  
                       ',num2str(Err(j))],'FontSize',12); 
            diff_new(:,j) = thetaFinal_new(:,j)-diff_angle(:,1); 
        end 
    case 2 
        for j = 1:length(power) 
            adj_ang(:,j) = diff_angle(:,2*j+1); 
            odd = find(mod(adj_ang(:,j),2));       % indices of odd angle displacement values  
            temp = zeros(1,length(odd)); 
            for k = 1:length(odd) 
                temp(k) = adj_ang(odd(k),j); 
            end 
            val = median(temp); 
            for k = 1:length(temp) 
                if temp(k)<val 
                    adj_ang(odd(k),j) = adj_ang(odd(k),j)+1; 
                else  
                    adj_ang(odd(k),j) = adj_ang(odd(k),j)-1; 
                end 
            end   
            thetaFinal_new(:,j) = adj_ang(:,j)+diff_angle(:,1); 
            joint = find(abs(thetaFinal_new(:,j)) > 45); 
            for k = 1:length(joint) 
                adj_ang(joint(k),j) = adj_ang(joint(k),j)-2*sign(adj_ang(joint(k),j)); 
                thetaFinal_new(joint(k),j) = adj_ang(joint(k),j)+diff_angle(joint(k),1); 
            end 
            % check error 
            tFinal_new(:,j) = deg2rad(thetaFinal_new(:,j)); 
            Err(j) = sqrt((l*sum(cos(cumsum(tFinal_new(:,j))))-xyFinal(1)).^2 +  
                                       (l*sum(sin(cumsum(tFinal_new(:,j))))-xyFinal(2)).^2);  
            if Err(j) > error 
                disp(['Option',num2str(j),'(p=',num2str(power(j)),'): Error=',num2str(Err(j)),... 
                            ', End-effector position Exceeds acceptable Error(0.5cm)']); 
            end 
            figure(j+3) 
            [MARS_path,~,~] = plotPath(thetaInit,l,clr{1}); 
            [path_new,~,~] = plotPath(tFinal_new(:,j),l,clr{4}); 
            plot(xyFinal(1),xyFinal(2),'xr','linewidth',3,'markersize',15) 
 
           % plots end-effector trajectory  
            xf = zeros(N+1,1);  yf = zeros(N+1,1); 
            temp = thetaInit; 
            xf(1) = l*sum(cos(cumsum(temp)));   
            yf(1) = l*sum(sin(cumsum(temp))); 
            for k = 1:length(thetaFinal) 
                temp(k) = tFinal_new(k,j); 
                xf(k+1) = l*sum(cos(cumsum(temp))); 
                yf(k+1) = l*sum(sin(cumsum(temp))); 
            end 
            trj = plot(xf,yf,'sk','linewidth',1,'markersize',8,'markerfacecolor','c'); 
            axis equal;  xlim([-5 45]);   
            legend([MARS_path,path_new,trj],'initial configuration','adjusted configuration','end- 
                            effector trajectory'... 
                            ,'location','southwest'); 
            xlabel('X [cm]');  ylabel('Y [cm]'); 
            title(['Adjusted Path, cost function: power = ',num2str(power(j)),', Error =            
                       ',num2str(Err(j))],'FontSize',12); 
            diff_new(:,j) = thetaFinal_new(:,j)-diff_angle(:,1); 
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        end 
end 
  
%% choose new optimal path for minimum time 
% pre-allocation  
time = zeros(1,3);    
pos_rot = zeros(1,3);                % number of links to be rotated 
  
for j = 1:length(power) 
    pos_rot(j) = find(diff_new(:,j),1,'last'); 
    counter = 0; 
    t1 = 0; 
    for k = 1:pos_rot(j) 
        counter = counter+1; 
        if diff_new(k,j)                     % computes rotation time 
            t1 = t1+t_rot*abs(diff_new(k,j)/4);   
        end 
    end 
    t2 = t_trans*(counter-1);    % computes translation time 
    time(j) = t1+t2; 
end  
%[val,ind] = min(time);          % finds minimum time 
  
for i = 1:length(time)           % finds minimum time according to threshold 
    if Err(i) > error               
        time(i) = NaN; 
    end 
end 
[val,ind] = min(time);   
disp(['Choose option ',num2str(ind),'(p=',num2str(power(ind)),'): Optimal path is achieved 
within ',num2str(round(val)),... 
      ' seconds (about ',num2str(val/60),' minutes)']) 
 

plotPath 

function [data,x,y] = plotPath(theta,l,color) 
% This function plots the MARS path (links configuration), given the length of each link (l)  
% and the relative angles between the links (theta).  
  
axis equal; grid on;  
hold on;   
  
w = 2.5;            % width of each link [cm] 
rd = 1.25;         % radius of link's head [cm] 
N = numel(theta); 
abs_angle = cumsum(theta); 
  
% pre-allocation 
x = zeros(1,length(N+1)); 
y = zeros(1,length(N+1)); 
x(1) = 0;  y(1) = 0; 
mat = zeros(4,4,N); 
  
% DH transformation matrices  
T_tot = 1; 
for j = 2:N+1 
    mat(:,:,j) = [cos(theta(j-1)) -sin(theta(j-1)) 0 l*cos(theta(j-1)); 
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                            sin(theta(j-1)) cos(theta(j-1)) 0 l*sin(theta(j-1));  
                       0 0 1 0;  
                            0 0 0 1]; 
    T_tot = T_tot*mat(:,:,j); 
    x(j) = T_tot(1,4); 
    y(j) = T_tot(2,4); 
    data = line(x,y,'linewidth',1,'color',color);         %  links configuration 
end 
 
% creating a chain of links - the MARS path 
t1 = -pi/2:0.01:pi/2; 
t2 = pi/2:0.01:3*pi/2; 
x1 = (rd/sqrt(2))*cos(t1); 
y1 = (rd/sqrt(2))*sin(t1); 
base = patch([-l 0 x1 0 -l],[w rd y1 -rd -w],'r');    %  base link 
x1 = 0;  y1 = 0;   
x2 = 0;  y2 = 0;   
ang1 = 0;  ang2 = 0; 
for i = 1:N 
    ang1 = t1+abs_angle(i); 
    ang2 = t2+abs_angle(i); 
    x1 = (rd/sqrt(2))*cos(ang1)+x(i); 
    y1 = (rd/sqrt(2))*sin(ang1)+y(i); 
    x2 = (rd/sqrt(2))*cos(ang2)+x(i); 
    y2 = (rd/sqrt(2))*sin(ang2)+y(i); 
    xdata = [x1+l*cos(abs_angle(i)) x2]; 
    ydata = [y1+l*sin(abs_angle(i)) y2]; 
    patch(xdata,ydata,color,'FaceAlpha',.5); 
end 
end 
 

costFun 

function [f] = costFun(theta,thetaInit,l,lambda,xyFinal,pow) 
% This function describes the cost of the combined functions f1 & f2 designed to find the  
% optimal path from the initial position to the target ('X'). 
% Input: thetaInit - initial relative angle; l - link length;  xyFinal - target destination 
%              lambda - cost of f2 relative to f1;  theta - relative angle after optimization. 
 
% pow=1 - proportional cost (absolute value) 
% pow>1 - increased additional cost for larger difference (prabolic) 
% pow<1 - decreased additional cost for larger difference (square root) 
  
% f1 - minimizes the number of links that must be moved 
f1 = sum((abs(theta - thetaInit)).^pow);   
% f2 - maximizes the precision of the robot (all links) in order to reach the target 
f2 = (l*sum(cos(cumsum(theta)))-xyFinal(1)).^2 + (l*sum(sin(cumsum(theta)))- 
           xyFinal(2)).^2; 
 
f = lambda*f1 + f2;  
end 
 

EndVelocity 

% This program calculates the velocity of the end-effector, given random and constant angular 
% velocities in the joints. 
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close all; 
clear; clc 
  
init_ang = zeros(1,10);                                     % initial relative angle of displacement 
N = numel(init_ang);                                         % number of links 
l=5;                                                                          % length of each link [cm] 
ng = [1  2  6  7  9  10];                                        % link to move 
alpg = [pi/4 pi/4 -pi/4 -pi/4 -pi/4 pi/4];    % angle to change 
abs_angle = cumsum(alpg);                             % absolute angle of displacement 
velocity = [3.35 3.35 3.35 3.35 3.35 3.35;     % angular velocity of our motor - 32 RPM [rad/sec] 
                      1.5 1.5 3 3 4 4];                                             % optional angular velocities [rad/sec] 
%single_joint_velocity = datasample(velocity(2,:),length(ng));             % choose velocities 
single_joint_velocity = velocity(1,:);             % choose case 
end_velocity = zeros(length(ng),6);             % velocity of end-effector 
MARS_path = zeros(7,length(init_ang)); 
MARS_path(1,:) = init_ang; 
w = 2.5;                                                                   % width of mobile actuator [cm] 
  
path_color = ['g' 'y' 'b' 'c' 'm' 'k' 'g']; 
for k = 1:length(ng) 
    joint_velocity = zeros(N,1);                                              % pre-allocation 
    joint_velocity(ng(k)) = single_joint_velocity(k);       % choose velocity 
    jacob = Jacobian(l,init_ang); 
    end_velocity(:,k) = jacob*joint_velocity; 
    init_ang(ng(k)) = init_ang(ng(k))+alpg(k); 
    MARS_path(k+1,:) = init_ang; 
    figure(k) 
    xlabel('X [cm]','FontSize',12);  ylabel('Y [cm]','FontSize',12); 
    hold on 
    p1 = plotPath(MARS_path(k,:),l,path_color(k)); 
    [p2,x,y] = plotPath(MARS_path(k+1,:),l,path_color(k+1)); 
    drawMotor([x(ng(k)) y(ng(k))],abs_angle(k),w);      
    if k==1 
        legend([p1,p2],'initial configuration',['link ' num2str(ng(k)) ' rotated '    
                       num2str(rad2deg(alpg(k))) '^\circ']); 
    else 
        legend([p1,p2],'current configuration',['link ' num2str(ng(k)) ' rotated '  
                       num2str(rad2deg(alpg(k))) '^\circ']); 
    end 
    axis([-5 55 -5 55]); 
end 
% calculating the absolute linear velocity of each link 
abs_vel = sqrt(end_velocity(1,:).^2+end_velocity(2,:).^2); 
 
% display results 
figure(k+1) 
y1 = end_velocity(1,:); 
y2 = end_velocity(2,:); 
hold on;  grid on 
axis([0.999 6 -1.5 2]) 
Vx = plot(y1,'--b','linewidth',1.5);  plot(y1,'r*'); 
Vy = plot(y2,'--g','linewidth',1.5);  plot(y2,'r*'); 
Vtot = plot(abs_vel,'c','linewidth',1.5);  plot(abs_vel,'r*'); 
set(gca,'XTickLabel',{'1','','2','','6','','7','','9','','10'}) 
xlabel('Joint No.');  ylabel('End-Effector Velocity [m/sec]'); 
legend([Vx,Vy,Vtot],'V_x','V_y','V_t_o_t_a_l') 
 
%% calculating velocity components of the end-effector with 1 degree increments 
deg = pi/180; 
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inc = (pi/4)/deg+1;         % number of increments in each section 
inc_end_vel = zeros(6,inc,length(ng));   
% pre-allocation 
v_x = zeros(1,length(ng)*inc);  
v_y = zeros(1,length(ng)*inc);  
v_x_init = ones(1,length(ng)*inc); 
v_y_init = ones(1,length(ng)*inc); 
init_ang = zeros(1,N);   
  
for k = 1:length(alpg) 
    joint_velocity = zeros(N,1);                                            % pre-allocation 
    joint_velocity(ng(k)) = single_joint_velocity(k);     % choose velocity 
    for i = 1:inc 
        jacob = Jacobian(l,init_ang); 
        inc_end_vel(:,i,k) = jacob*joint_velocity; 
        if i==inc 
            j = inc*k-45; 
            v_x(j:j+45) = inc_end_vel(1,:,k); 
            v_x_init(j) = inc_end_vel(1,1,k); 
            v_y(j:j+45) = inc_end_vel(2,:,k); 
            v_y_init(j) = inc_end_vel(2,1,k); 
            continue; 
        else 
            init_ang(ng(k)) = init_ang(ng(k))+deg*sign(alpg(k)); 
        end 
    end 
end 
v_tot = sqrt(v_x.^2+v_y.^2); 
  
% display results 
figure(k+2) 
hold on;  grid on 
v_x_ind = find(v_x_init~=1); 
v_y_ind = find(v_y_init~=1); 
t_rot = 3;                           % time to rotate one link 45 deg [sec] 
time_inc = t_rot/45;      % time increment - time to rotate one link 1 deg [sec] 
t_deg = 0:time_inc:time_inc*(inc*k-1); 
Vx = plot(t_deg,v_x,'--b','linewidth',1.5);     plot(t_deg(v_x_ind),v_x(v_x_ind),'*r');  
Vy = plot(t_deg,v_y,'--g','linewidth',1.5);     plot(t_deg(v_y_ind),v_y(v_y_ind),'*r');  
Vtot = plot(t_deg,v_tot,'c','linewidth',1.5);   plot(t_deg(v_y_ind),v_tot(v_y_ind),'*r');  
xlabel('Time [sec]');  ylabel('End-Effector Velocity [m/sec]'); 
axis([0 18 -1.8 2]); 
legend([Vx,Vy,Vtot],'V_x','V_y','V_t_o_t_a_l') 

 

drawMotor 

function drawMotor (center,ang,w) 
% This function plots the mobile actuator given the location of the joint (center=[x y]),  
% the absolute angle of rotation (ang) and the width of the actuator (w).  
       
h = fill([(center(1)-w),(center(1)+w),(center(1)+w),(center(1)-w),(center(1)-w)],... 
               [(center(2)-w),(center(2)-w),(center(2)+w),(center(2)+w),(center(2)-w)],'r', 
               'FaceAlpha',0.3); 
ang = rad2deg(ang); 
rotate(h,[0 0 1],ang,[center 1]) 
end 
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StrengthAnalysis 

% This program finds the new configuration of the MARS due to a small external force applied 
% to the end-effector (small perturbations) and calculates the torques in the joints.  
  
close all;  
clear; clc 
  
N = 10;                                            % number of links 
l = 5;                                % length of each link [cm] 
w = 2.5;                                  % width of each link [cm]  
rd = 1.25;                                % radius of link's head [cm] 
theta = [0 pi/6 pi/4 -pi/6 -pi/4];      % possible angles between 2 links 
%init_ang = datasample(theta,N);      
init_ang = [0 pi/4 0 -pi/4 0 pi/6 0 -pi/6 0 pi/6];    % initial relative angle of displacement 
abs_angle = cumsum(init_ang);        % initial absolute angle of displacement 
clr = cell(1,2);                      % path colors 
clr{1} = 'g';  clr{2} = 'k'; 
  
figure 
[MARS_config,x,y] = plotPath(init_ang,l,clr{1});     % initial configuration  
xlabel('X [cm]', 'FontSize',12);  ylabel('Y [cm]', 'FontSize',12); 
% plot force vector 
fx = -5*cos(pi/4);  fy = -5*sin(pi/4);     % F=5N, for example 
F_ext = [fx,fy,0];                                % external force applied to the end-effector 
drawArrow = @(x,y) quiver(x(1),y(1),x(2)-x(1),y(2)-y(1),0,'LineWidth',2.1, 
'MaxHeadSize',0.8,'color','b');     
xf = [(x(N+1)-fx) x(N+1)]; 
yf = [(y(N+1)-fy) y(N+1)]; 
drawArrow(xf,yf);  
 
%% kinematic analysis - angle displacement 
theta_b = pi/180;                                     % backlash angle - 1 degree 
Kt = 115;                                                          % stiffness coefficient (from experiment with VeroWhite) 
r = zeros(length(N),3);                          % pre-allocation 
for i = 1:N 
    r(i,:) = [x(i+1)-x(i),y(i+1)-y(i),0];           % range vector 
end 
% pre-allocation 
M_ext = zeros(N,3); 
theta_t = zeros(N,1); 
theta_b_link = zeros(N,1); 
d_theta = zeros(N,1); 
new_theta = zeros(N,1); 
  
sum_r = [zeros(1,3); cumsum(r)];  
for j = 1:N 
    M_ext(j,:) = cross(sum_r(N+1,:)-sum_r(j,:),F_ext);         % torque due to external force 
    theta_t(j) = M_ext(j,3)/Kt;                                                       % torsion angle 
    theta_b_link(j) = sign(M_ext(j,3))*theta_b;                        % backlash angle 
    d_theta(j) = theta_t(j)+theta_b_link(j);                               % angle displacement of each link 
    new_theta(j) = init_ang(j)+d_theta(j);                  % relative (new) angle of each link 
end 
  
[MARS_config_new,x_new,y_new] = plotPath(new_theta,l,clr{2});  % new configuration after 
applying the force 
% plot force vector 
drawArrow = @(x,y) quiver(x(1),y(1),x(2)-x(1),y(2)-y(1),0,'LineWidth',2.1, 
'MaxHeadSize',0.8,'color','b');     
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xf_new = [(x_new(N+1)-fx) x_new(N+1)]; 
yf_new = [(y_new(N+1)-fy) y_new(N+1)]; 
drawArrow(xf_new,yf_new);  
  
for i=1:N 
    plot(x(i),y(i),'.r','MarkerSize',16) 
    plot(x_new(i),y_new(i),'.r','MarkerSize',16) 
end 
legend([MARS_config,MARS_config_new],'initial configuration','angle displacement'); 
title('Kinematic Analysis of 10-links MARS - Angle Displacement due to External Force 
(F=5N)','FontSize',12); 
xlabel('X [cm]', 'FontSize',12);  ylabel('Y [cm]', 'FontSize',12); 
  
jacob = Jacobian(l,init_ang); 
Torque = jacob'*[F_ext 0 0 0]'; 
dist = sqrt((xf(2)-xf_new(2))^2+(yf(2)-yf_new(2))^2);     % distance the end-effector moved 
 

Jacobian 

function [jacob] = Jacobian(l,init_ang) 
% This function creates the Jacobian matrix of the MARS given the length of the links (l) and  
% the initial relative angles between the links (init_ang).  
  
N = numel(init_ang);                % number of links 
a=l/100*ones(N);                     % length of each link [m] 

 
% pre-allocation 
mat = zeros(4,4,N); 
x_link = zeros(N,1); 
y_link = zeros(N,1); 
z_link = zeros(N,1); 
o_link = zeros(N,3); 
jacob = zeros(6,N); 
     
T_tot = 1;                                      % initial value of transformation matrix  
for j = 2:N+1 
    mat(:,:,j) = [cos(init_ang(j-1)) -sin(init_ang(j-1)) 0 a(j-1)*cos(init_ang(j-1)); 
                            sin(init_ang(j-1)) cos(init_ang(j-1)) 0 a(j-1)*sin(init_ang(j-1));  
                            0 0 1 0;  
                            0 0 0 1]; 
    T_tot = T_tot*mat(:,:,j); 
    x_link(j) = T_tot(1,4); 
    y_link(j) = T_tot(2,4); 
    z_link(j) = T_tot(3,4); 
    o_link(j,:) = [x_link(j) y_link(j) z_link(j)]; 
end 
  
z_axis = [0 0 1]; 
for i = 1:N 
    d = o_link(N+1,:)-o_link(i,:); 
    jacob(1:3,i) = cross(z_axis,d);      % linear velocity component 
    jacob(4:6,i) = [0 0 1];                      % angular velocity component 
end 
end 
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 תקציר

, עם זאת נרחב במדינות רבות.בשימוש  הנמצא הליך רפואי נואנדוסקופיה של מערכת העיכול הי

שני  בעלתרופא, העל ידי  צינור פלסטי גמיש החדרה ידנית שלעל  תמבוססה ,תהקונבנציונלי הטכניקה

( 2) -, ומשמעותית אי נוחותב תהליך התאוששות המטופל לאחר ההליך מלווה( 1: )עיקריים חסרונות

 ביניהם:רבים, רפואיים חשובה למדי עבור הליכים זו נגישות מעי הדק היא מוגבלת מאוד. לנגישותו 

זמן ביצוע ההליך ולאחריו )בזמן הנוצר ב דימוםה ביטשלשל כלי דם והרחבת הצירויות ביופסיות, 

 ם טוריים מרובי מפרקים,רובוטיב שימוש כללו דםכלי הגישה אל  ניסיונותמרבית . ההתאוששות(

ו, ועל ווט לאורך המעי בשל אורכילעתים "נחשים". רובוטים אלו הם כמעט בלתי אפשריים לנ יםהמכונ

 הופך אותם מסורבלים מאוד לתפעול, מה שאקטואטורים להפעלתם תועשרות או מאנדרשים כן 

 מערכת עלול להניב רב של אקטואטוריםמספר שימוש ביתר על כן, הם. רולמזע היכולת ומגבילים את

ע הליכים וציאו לב המעיבתוך  למעבר הנדרשים להפעיל את הכוחותמסוגלת  גמישה למדי, אשר אינה

 פשוטים כגון ביופסיה.

 "MARS"בפרויקט זה אנו מציעים סוג חדש של רובוט טורי בעל הנעה מינימלית, המכונה 

(Minimally Actuated Robotic Snake רובוט זה מורכב ממספר חוליות קשיחות המחוברות זו .)

החידוש של הרובוט . יםנייד יםאקטואטורבעל לזו באמצעות מפרקים סיבוביים פסיביים )חסרי הנעה(, ו

ותו ליצירת זווית יחסית בין כך שהאקטואטור נע על גבי החוליות אל המפרק הרצוי ומסובב אטבוע ב

סמוכות. המפרקים, ובהתאם לכך גם החוליות, משמרים את האוריינטציה שלהם חוליות אותן שתי 

טורי על כל רובוט  ניתן ליישוםזה בצורה פסיבית, עד אשר האקטואטור מניע אותם שוב. מנגנון הנעה 

, בדומה לרובוטים רחב תנועה טווח ייחודית זו מאפשרת לרובוט קונפיגורציהעל שתי חוליות או יותר. ב

 ווהגיאומטריה של הגודל שכן ,. הרובוט הוא מודולרימעט אקטואטורים אבל עםבעלי יתירות גבוהה, 

ביצוע  כמומלבד האפליקציות הרפואיות, . , כמו גם כמות החוליות והאקטואטוריםבקלות לשינוי ניםנית

 למשל  נציאל גדול ליישום במגוון תחומים,הם בעלי פוט זה מסוג רובוטיםפולשניים, -הליכים זעיר

 הצלה.ו ובמשימות חיפושחקלאות, בתעשייה, ב

 גוףבמתוארים והאנליזות הקינמטיות  הטיפוס העיקריים(-)עבור שני אבי התכן המכני של הרובוט

בביצוע משימות בסביבה מרובת מכשולים תוך לניסויים המדגימים את יכולות הרובוט בנוסף  העבודה,

שני אבי הטיפוס בהם  המבוססים על אופטימיזציה.שימוש בסימולציות ובאלגוריתמים לתכנון תנועה 

ות השתמשנו לביצוע הניסויים והאנליזות כוללים עשר חוליות ואקטואטור נייד אחד, אם כי כמות החולי

 והאקטואטורים ניתנים לשינוי בהתאם למשימה של הרובוט, כפי שנאמר קודם לכן.

; רובוט טורי; הנעה מינימלית; אקטואטור נייד.אנדוסקופיה של מערכת העיכולמילות מפתח: 
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